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Abstract

The last few decades have seen growing concerns about climate change caused by global
warming, which is cause primarily by CO, emissions. Thus, the reduction of these
emissions has become critically important. One of the effective methods for achieving
this goal is to shift towards green electricity energy resources and green vehicles in
transportation. For these reasons, the goal of the work presented in this thesis was to
address the challenges associated with the planning of plug-in electric vehicles (PEVS)
parking lots in combination with renewable energy sources (RES) and battery energy

storage systems (BESS) in power distribution networks.

This thesis introduces a new planning technique that aims to minimize the overall
capital and operational costs, taking into consideration the operational aspects of
distribution networks, such as 1) coordinated PEV charging, 2) smart inverter control of
renewable distributed generation (DG) units, and 3) smart scheduling of BESS.
Moreover, a new model for the PEV coordinated charging demand is introduced in this
work. Due to the complexity of the proposed planning approach, a combination between
metaheuristic technique and deterministic optimization techniques have been utilized to

manage both the planning and operational aspects respectively.
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Chapter 1
Introduction and Motivations

Reducing greenhouse gas emissions have gained global interest over the last few decades.
A key factor for reducing these emissions is shifting towards RES in electricity
generation and low or zero-emission vehicles in transportation. Electrification of the
transportation sector is currently the most viable option for reducing transportation
emissions and the deployment of PEVs is thus predicted to rise dramatically in the next
few decades [1]. Some countries put targets up to 7.9 M electric vehicles by 2030 [2], as
reported by IEA (see Table 1-1).

Current power grid structure is capable of accommodating low penetration levels of
uncontrolled PEV charging (i.e. charging starts as soon as PEVs are plugged). However,
looking to the future, the increasing use of PEVs will have a considerable impact on the
demand for electricity and the development of future power grids. Recent studies showed
that the rapid growth of PEVs along with the additional energy consumption likely to
cause severe consequences on the existing grids [3-6]. Hence, accommodating the extra
load on the grid due to PEV charging will require: 1) upgrading the existing power
distribution system infrastructure so that it can accommodate uncoordinated charging,
and/or 2) integration of smart grid technologies to coordinate PEV charging via real-time
monitoring and control (i.e. optimally scheduling of PEVs charging, where the battery

pack of PEV acts as a controllable load) [7, 8].



Table 1-1: Announced national PEV targets [2]

Country Target [2]
Ireland 2020: 230 000
Canada 2018: 500 000

United States 2015: 1 000 000
France 2020: 2 000 000
Spain 2020: 2 500 000

United Kingdom 2030: 7 900 000

Yet, supplying the extra load imposed by charging PEVs from conventional electricity
generation resources will shift the emissions from the transportation to the electricity
generation. To allay this concern, RES are expected to play an important role in
supplying energy to the transportation sector [9, 10]. Levels of RES deployment have
been rising satisfactorily due to government incentives and developing technology in this
area [11, 12]. However, integrating large levels of renewable distributed generation (DG)
into the grid is also challenging as the variable and unpredictable nature of wind and solar
exposes the grid to stability issues and makes the investment planning of future power
grids more complicated [13]. Despite these challenges, other considerations show
promise. Storage systems (e.g. BESS) can be a critical component of grid stability and
resiliency [14]. The grid integration of energy storage technologies would reduce the
intermittency of RES, thus increasing their capacity factor [15]. Storage systems can also
prevent wastage of excess renewable energy feeding into the grid at times when

production is at a peak, but demand is low by effectively storing this energy [16]. In
2



addition, integrating BESS into existing grids could enable confident deployment of
PEVs by ensuring a stable and consistent supply of the electricity vital to charge their
batteries [17].

The combined integration and advancement of PEVS, RES, and BESS technologies has
been recently gained interest in industry [18, 19]. This in turn introduces paradigm shift
in distribution systems operation and planning. Due to the interesting and recent subject,
numerous efforts have been spent on related research. Yet, most of the work in this area
focused on optimal PEV coordination in real-time, without considering the planning
aspects (i.e. the location and sizing of PEV charging stations along with RES and BESS),
which has significant impacts on 1) the owverall system performance, and 2) the
effectiveness of the real-time coordination schemes.

It is expected that PEVs will likely be concentrated in specific geographical areas, which
if not properly managed, may have severe consequences on the electrical grid, such as
feeders’ thermal limit violation, phase imbalance, transformer degradation, and fuse
blowouts [20]. Planning the location and sizes of PEV parking lots in electrical
distribution systems thus requires further study and analysis.

Optimal allocation and sizing of such new technologies should be appropriately
integrated in distribution networks investment planning studies in order to: 1) get the
highest benefit from the environmental aspects, 2) bring economic benefits for the system
operators and their stakeholders and, 3) enhance the system reliability, stability and

resiliency.



Therefore, the work presented in this thesis proposes a new comprehensive framework
for the planning studies of smart distribution systems including PEVs.

Conventional planning studies are not tailored for accommodating new smart distribution
systems planning studies, given that they rely on dedicated distribution systems with
conventional loads, deterministic distributed generation units, and lack of two-way
communications, which is anticipated to be the backbone of the smart grid.

Therefore, the proposed framework integrates the key components of smart
distribution system: renewable distributed generation, battery storage system, electrical
vehicles, and two-way communication system.

The proposed planning approach considers smart coordinated charging system, which
utilizes real-time measurements from the electrical smart grid and coordinates the PEV

charging under the smart grid paradigm.

1.1 ResearchObjectives

The aim of this research is to develop a comprehensive planning framework to allocate
PEV parking lots in conjunction with RES and BESS taking into consideration different
operational aspects. Toward this aim, the work presented in this thesis is divided into
three main objectives, as depicted in Figure 1-1. A brief description of each objective is

presented below in the following subsections.



Chapter3

Objective 1: Optimal allocation of RES DG in distribution networks

N\

Chapter4

Objective 2: Optimal allocation of RES and BESS units

N\

Chapter5

Optimal allocaiton and operation of PEV parkinglotsin conjunction with RES and BESS units

Figure 1-1: Research objectives

1.1.1 Objective (1): Optimal allocation of RESDG

The goal of the first objective is to develop a planning approach for the optimal location
and sizes of renewable DG units taking into consideration: 1) the uncertainty due to the
intermittent nature of RES output power, and 2) the variability of conventional power
loads. Toward this objective, probabilistic models for both RES and loads are developed
and incorporated in the optimization problem. The developed optimization approach has
been utilized to investigate the impacts of the distribution network technical constraints

on the allocation process, to identify the most significant binding constraints.



1.1.2 Objective (2): Optimal allocation and operation of RES and BESS

In the second objective, the task is to develop methodologies for optimal allocation of
renewable DG in conjunction with BESS units in distribution networks taking in to
consideration the operational aspects of these units. The operational aspects include: 1)
controlling the smart inverter of the renewable DG units, and 2) optimal scheduling of
BESS units to achieve minimum overall system costs. To that end, Monte Carlo
Simulation has been used to develop virtual chronological scenarios of RES output

power.

1.1.3 Objective (3): Optimal allocation and operation of PEV parking lots

The third objective aims to develop a comprehensive planning framework to allocate and
sizz PEV parking lots in distribution networks. Smart coordination of the PEV charging
is considered as the operating scheme of these PEV parking lots. Moreover, as a mean to
facilitate the allocation, RES and BESS allocations are considered in the same planning
approach. The RES and BESS should be optimally sized and scheduled to serve the PEV
charging requirements. A new model is introduced to incorporate the smart PEV parking

lots into the planning approach.

1.2 Thesisoutline

The remainder of the thesis is organized as shown above in Figure 1-1. The details of

each chapter are as follows:



Chapter 2 provides a brief review of the background topics and associated
literature pertinent to this research.

Chapter 3 presents the proposed approach for the optimal allocation of renewable
DG along with related simulation results.

Chapter 4 describes the proposed planning approach for the renewable DG and
BESS optimal allocation and operation.

Chapter 5 introduces the proposed planning method for PEV parking lots in
conjunction with RES and BESS along with related models.

Chapter 6 concludes the research and offers suggestions for future work.



Chapter 2
Background and literature review

Chapter 1 provided a brief introduction to the research presented in this thesis, explaining
the motivation behind the work and outlining the specific objectives. This chapter
provides an introduction to the new components of smart distribution networks (i.e., RES,
BESS, and PEV) and their modelling in the planning problem of future distribution
networks. The introduction is followed by a discussion of previous research. Finally, the

concluding remarks from previous research are highlighted.

2.1 Backgroundto RES

Renewable energy is generated from sustainable resources that are naturally renewed
within human life [21]. These resources include but not limited to flowing water, moving
air, solar radiation, and geothermal. Other resources can be assumed renewable, such as
biomass, as long as the rate of its consumption is lower than the rate of its production.
Canada is a world leader in renewable energy resources. Ontario province has 34,780
MW of installed generation with a supply mix as shown in Figure 2-1 as of June 2015

[22]. RES presents about 34 % of the total installed capacity.
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Figure 2-1: Ontario supply mix as of June 2015 [22]

Hydroelectricity has the biggest share of the renewable energy production in Ontario, as
shown in Figure 2-1. However, wind and solar RES are expected to have the highest
growth rate in the next few years [21].

A brief overview of the available RES technologies can be explained as follows [23]:

2.1.1 Hydroelectricity

Electricity is generated through transforming the useful Kinetic energy offered by moving
water into electrical energy. Mainly, the moving water is directed to the rotating turbine
blades; thus, producing a rotating mechanical energy. These turbines are in turn
connected to electricity generators, which converts the mechanical energy into electric
energy and supply it to the electric grid.

Dams and gates are used to regulate the water volume and speed, which in turn regulates

the amount of electricity generated. Hydroelectricity generation stations are highly



MW

Figure 2-2: Installed Hydroelectric Capacity by Provinces (2010, in megawatts) [21]

dependent on the geography and hydrography [21]. This is the reason for the province of
Quebec to have the highest installed hydro capacity in Canada [21], as shown in Figure
2-2.

Canada has many rivers flowing from mountainous areas toward its three bordering
oceans. In 2010, Canada had 529 hydroelectric stations with more than 75 thousand
megawatts of installed capacity. These stations include 379 small hydroelectric facilities,
that is, facilities with a nameplate capacity of 50 megawatts or less, and they together
represent 3.5 thousand megawatts, which is about 2.7% of Canada’s installed capacity. A
study by HEC Montréal (formerly known as: Ecole des hautes études commerciales de
Montréal) shows that by 2030, there is a potential in Canada for new hydroelectricity

capacity installed of 29,000 MW [21].
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2.1.2 Bioenergy

This RES relies on biological materials (solid, liquid, or gaseous) as a fuel, where the
chemical stored energy is converted to electricity. The biomass fuel is combusted to
produce heat, which can be used directly in industrial processes or to heat up steam,
which is used to rotate a turbine and a generator to produce electricity. Industrial wood

waste is the most important source of bioenergy in Canada [21].

2.1.3 Geothermal Energy

Geothermal energy is generated by earth stored heat. The geothermal energy can be
harvested from natural underground steam, which in turn is used to generate electricity.
Another approach is to use the temperature difference between ambient air temperature
and the ground water for heating or cooling of buildings in order to save electricity.

The highest potentials for geothermal energy harvesting are in British Columbia,
Northwest Territories, Yukon, and Alberta, where highest underground temperatures are
available. The most advanced geothermal power generation project in Canada is the

South Meager project in British Columbia [21].

2.1.4 Wind Energy

Kinetic energy in wind is one of the most promising RES. It can be easily used to rotate
wind turbines, which in turns produce electricity. For thousands of years the Kinetic
energy in wind has been used for propelling sailing ships, pumping water, and powering
factory machinery [23].

11



The first wind turbine to produce electricity was built in 1891 by a Dane, Poul la Cour.
Currently, many wind farms are located in high wind areas to produce efficient electric
energy over the year. The wind turbines are characterized by long life time and low
maintenance requirements. Wind turbines range from few kW and up to 8 MW (Vestas
\V164-8.0).

There are excellent wind resource areas in Canada, which are mainly offshore and along
coastlines [21]. Wind turbines installed capacity in Canada has increased rapidly in the
recent years. Canada has 10,204 MW installed capacity in 2015 compared to 5,265 MW
in 2011 and 23 MW in 1997. The provincial leaders in installed wind turbines capacity

are Ontario, and Quebec, as shown in Figure 2-3.

Figure 2-3: Canada’s installed wind turbines capacity as of June 2015 [24]

12
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Figure 2-4: Horizontal axis wind turbines structure [23]

The most popular wind turbine structure is the horizontal axis wind turbines. These wind

turbines mainly consist of blades, generator, gear box, and tower as shown in Figure 2-4.

2.1.4.1 Wind Power

The wind energy that can be harvested depends on the sweep area of the turbine blades

and the wind speed [23], as in (2-1). It is noteworthy that the wind output power is
proportional to the square of the blades diameter as A, = (E)DZ. Thus, doubling the

diameter of the blades increases the power by four times. Moreover, the power is
proportional to the cube of the wind speed, which means doubling the wind speed

increases the power by eight times.

p =140 (2-1)

w

13
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Figure 2-5: Wind power per unit area for 15°C and 1 atm [23]

A typical wind power relation versus wind speed per unit sweep area is shown in Figure

2-5.

2.1.4.2 Impact of tower height

Due to the fact that wind power is proportional to the cube of the wind speed, the height
of the wind turbine is very important economic aspect in the wind turbine design and
harvesting energy. As the tower height increases, the wind speed increases [23].
However, this depends on the friction that the air experiences when it moves across the
earth’s surface. The smoother the surface, the faster the wind speeds can be at higher
heights. The impact of the surface roughness can be expressed by the following formula

[25]:
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h
In(z%)
_ 2o~ (2-2)

Uy = V.
ln(h
Zy

The roughness factor (z,), which varies from 0.0002 to 1 [26], for different terrain

descriptions is listed in Table 2-1.

Table 2-1: Roughness factor for different terrains [26]

Terrain Description z, (M)
Open sea, fetch at least 5 km 0.0002
Mud flats, snow; no vegetation, no obstacles 0.005
Open flat terrain; grass, few isolated obstacles 0.03
Low crops, occasional large obstacles 0.10
High crops, scattered obstacles 0.25
Parkland, bushes, numerous obstacles 0.50
Normal large obstacle coverage (suburb, forest) 1.0
City centre with high- and low-rise buildings >20

2.1.4.3 Wind turbine output power

The wind turbine output power characteristics as given in a manufacturer data sheet
depend on four parameters: rated output power, cut-in speed, rated speed, and cut-out

speed, as in (2-3). These characteristics are also illustrated in Figure 2-6.

I( 0 VO<v <y,
V—V;
Pmted.(—m) YV Vip SV < Vpgted -
PWT(U) = 4 wr Urated — Vin m rate (2 3)
I Pv?%"ted V' Vratea SV < Voyt
k 0 VVour <V
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Figure 2-6: Wind turbine output power [27]

2.1.4.4 Wind DG modeling for planning applications

Due to the fact that RES are characterized by a high degree of uncertainty and variability,
probabilistic methods are used to model these types of resources for the planning
applications. On the other hand, for few minutes and up to few days operational
applications, these resources can be forecasted using proper forecast methods.

For wind turbines, Weibull Probability density function (pdf) f,,z(v)is considered as
the most commonly used pdf to represent the wind speed variability [28], and in
consequence the wind turbines output power. The Weibull pdf formula [29] given in

(2-4) defines the probability of wind speed to be equal to or less than a specific speed v.

fws (W) = % (E)k_l exp <— (E)k) (2-4)

Cc Cc
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The formula in (2-4) depends on two parameters to fit the pdf to the historical measured
wind speeds. These parameters can be calculated using the average wind speeds and the

standard deviation of the historical wind speed data [29], as in (2-5) to (2-8).

_ z —-1.086 2_5
I — (ﬁ) (2-5)

. 7
- 2-6
ra+ (&)
b= Zg:l V) (2'7)

N
5 Yn=1(V— v(y)? (2-8)

N N-1

2.1.5 Solar Energy
Solar energy is available as radiated heat and light from the sun. Solar energy can only be
collected during the day light and are affected by clouds or other obstacles.
Nowadays, two main technologies are used to convert the solar energy to usable energy
[23]:

e Solar collectors, which are used to heat water or air to be used in buildings.

e Solar photovoltaic (PV) cells which converts solar irradiation directly to

electricity.

Recently, Canada installed capacity of solar energy has increased, although it is still

relatively small compared to the size of the energy market (0.12 % of the total installed
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electricity generation capacity, as shown in Figure 2-7) However, with the reduction of
the photovoltaic system prices, which has been reduced to one third in the last six years
[30], the installed capacity of photovoltaic systems is expected to increase rapidly. This is
also due to the incentives given by the Canadians government for RES installation,
especially photovoltaic systems, which can sell their generated energy to the grid with up
to 38.4 ¢/kwWh, as shown in Table 2-2. Moreover, Canada south regions have a great

potential for solar energy generation, as shown in Figure 2-7.

| |
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Figure 2-7: Annual Photowltaic potential and solar resource maps of Canada [21]
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Table 2-2: FIT/microFIT price schedule [31]

Renewable Fuel Project Size Price (¢/kWh)
<10 kW 384
Solar (PV) (Rooftop) > 10 kW < 100 kW 34.3
> 100 kW <500 kW 316
<10 kW 289
Solar (PV) (Non-Rooftop)
> 10 kW < 500 kW 275

The photovoltaic potential is the amount of electricity in kWh that can be generated
annually on the average lifetime of the typical photovoltaic system per kW installed
capacity. The potential of solar energy is lower in coastal areas in Canada and is higher in
the central areas. Despite this, installing solar panels on residential buildings roofs can
meet about half the residential electricity demand in Canada [21].

Most of these RES are geographically dependent. However, solar energy is one of the
most promising source of energy due to the fact that it can be implemented anywhere on
earth. They have wide variety of sizes that range with few watts and up to MW. The solar
panels can be placed on ground, or can be roof top.

Besides solar panels, wind turbines currently are offered in the market with wide range of
capacities that ranges from few kW and up to few MW for a single unit. Smaller units are

available in roof mount structure.
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2.1.5.1 Photovoltaic system structure

An individual photovoltaic cell produces about 0.5 V. These cells are connected in series
to form a module with higher wvoltage, e.g. 12-V module. Further, the modules are
connected in series to increase the voltage and in parallel to increase their current. Thus,
several modules can be connected in series and parallel to form the photovoltaic array
with desired output voltage, current, and power, as shown in Figure 2-8. Further, the
photovoltaic arrays are connected to DC/DC converter to boost their voltage and DC/AC

converter to interface with the AC grid.

S~
o~

ﬂ I I

Cell Module Array

Figure 2-8: Photowltaic array structure [23]

2.1.5.2 Photovoltaic system characteristics

The photovoltaic array has unique |-V characteristics, depending on the types of cells,
and the connection of the cells and modules. Typical I-V characteristics of a PV array are
shown in Figure 2-9 at specific solar irradiance and ambient temperature conditions.

Three distinct operating points on the PV system characteristics can be identified:

20



e Short circuit current: this is the current that is delivered by the PV array at a zero
terminal voltage, i.e. short circuit.

e Open circuit voltage: this is the voltage generated at the terminals of the PV array
when the terminal current is zero, i.e. open circuit.

Maximum output power: this operating point lies near the knee of the I-V curve,

where maximum power can be generated from the PV array at the same solar

irradiance and ambient temperature conditions. This point is the most desirable

operating point; therefore, maximum power point tracking (MPPT) techniques are

used to track this point at any solar irradiance and ambient temperature.
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Figure 2-9: The I-V characteristics of a typical PV array [23]
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2.1.5.3 PV system output power

As mentioned before, the output power of the PV system depends on the PV modules
characteristics, solar irradiance, and ambient temperature. The output power of a PV

module assuming MPPT can be calculated using [28]:

T —20
Teeu =Ty + Sig X (L> (2-9)
0.8

IPV = SIR X (Isc + Ki (Tcell - 25)) (2_10)
VPV = VOC - KvTcell (2-11)

Ppy = Neeys X FFX Vpy X Ipy (2-12)
FF = M (2-13)

Voc X Igc

2.1.5.4 PV DG modeling for planning applications

Due to the intermittent nature of the PV panels output power, a probabilistic model is
used to model these types of RES [28]. For a specific hour during the day, the solar
irradiance is usually modeled with a Beta pdf, which best describes the solar irradiance

behaviour. The Beta pdf can be given as [28]:

F(“"‘ﬁ) S(a—l)

FBem(s,RRF{m we =SV VOSSipe<laz0p20  (214)
0

otherwise
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2.2 Backgroundto battery energy storage systems

Several technologies are available as means of electrical energy storage system (ESS).
Any energy storage system consists of two basic components: energy storage reservoir
and a power conditioning circuit (PCC) [32]. The function of the PCC is to convert the
energy from the grid to a form that can be stored in the storage system, and vice versa.
The PCC can be a power electronics converter as in batteries or a motor-generator set as
in pumped hydro [32, 33].
The available ESS technologies can be categorized according to their application, which
varies from power quality, bridging power, and energy management purposes, which can
be briefly explained as follows (also illustrated in Figure 2-10) [32-35]:
e For power quality applications, the energy stored in the ESS is used to enhance
the power quality of the power system, such as improving the voltage profile.
These applications require responding time in the range of seconds or fraction of
seconds. This can be achieved by flywheels, capacitors, and BESS technologies.

e Bridging power applications are used to ensure continuity of the electricity supply
whenever switching from one source of power to another occurs. This application

requires respond time in the range of seconds and up to minutes. BES and
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superconducting magnetic energy storage (SMES) technologies can be used for
this purpose.

e Energy management is used to reshape the energy consumption curves by storing
energy during off-peak or low prices periods and using this energy during peak or
high prices periods. BES, SMES, pumped hydro, and compressed air energy
storage (CAES) technologies can be used for this application which has a time

span of hours.

a . Y a y
Power quality Flywheels
apppications (fraction off Capacitors
seconds and up to
seconds) SMES
v \
3
idi Batteries
ESS tehcologies Briding power '(seconds
and up to minutes) SMES
\ v \ J
a Y a . y
Batteries
Energy managament CAES
(hours) Pumped hydro
SMES
\ v J

Figure 2-10: ESS technologies classification according to the application [35]

Each ESS technology has unique characteristics, which depends on the medium in which
the energy is stored. The physics behind each energy storage technology and the
advantages/disadvantages of each technology are described briefly as follows [32, 33, 36-

38]:
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SMES stores energy in the form of magnetic field, which is generated by current
flowing in a superconducting coil, which is made of special alloy and maintained
at very low temperature to reduce its resistance to be almost negligible. Although
this technology has high efficiency and long life time, it is very expensive to
implement.

Energy is stored in capacitors in the form of electrical field. Capacitors have high
efficiency and long life time; however, they provide only short-term storage.
Super capacitors are also available, which can store more energy for longer time
periods; however, this technology is expensive compared to other ESS.

Batteries are the most popular ESS, which store energy in the electrochemical
form. BESS has lower life time and lower efficiency (60-80 %) compared to other
ESS. Several types of batteries are available based on the material used in
manufacturing: LA, Na/S, Ni/Cad, and VR batteries.

Flywheel stores electrical energy in the form of kinetic energy in a rotating mass.
Flywheels have fast response, good efficiency, and long life time; however, they
can deliver energy for short time periods.

CAES stores energy in the form of compressed air. Further, the compressed air is
used to produce electrical energy. it has moderate efficiency and life time. This
technology is highly dependent on the geography and cannot be economical

feasible except in special locations.
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e Pumped hydro storage is widely used, where water is pumped to high altitudes
and used to drive hydro-turbines and produce electricity when needed. This
technology store the electrical energy in the form of potential energy stored in the

pumped water.

dams.

Therefore, each technology has its power ratings and response time, which determine the
proper application for each ESS type. Figure 2-11 shows the comparison between

different technologies as reported by Electricity Storage Association and shown in [32].
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Figure 2-11: Power rating and discharge time for different ESS technologies [32]
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A recent project in Canada by Toronto Hydro was installed with rating of 500
kW-250 kWh [39]. Ontario government also put a plan for a total of 50 MW of ESS to be
installed by the end of 2016 [40].

ESSs have very expensive capital costs. The installation cost of ESS has been reduced by
50 % in the last decade, and is expected to decrease further to less than $600 /kW by

2020, as shown in Figure 2-12.
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Figure 2-12: Historical and projected installation cost of ESS per kW [41]

2.2.1 BESS modeling for planning applications

The BESS in this work are assumed to be four quadrants, as shown in Figure 2-13.
Technical limitations on the stored energy, state of charge (SOC) level, charge/discharge

rates, and reactive power limits should be considered in the model. Thus, at any instant of
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Figure 2-13: Four quadrant BESS characteristics

time, the active and reactive power produced or absorbed by the BESS should not exceed
the capability limits given in Figure 2-13, i.e.

P2+ Q? < SZ, (2-17)
where P and Q are the active and reactive powers produced or absorbed by the BESS and
Suax 18 the maximum apparent power of the BESS in kVA. The value of S, in
practical changes is based on the BESS temperature; however, for simplicity, the effect of
temperature variation is ignored in this work. Moreover, the SOC at any instant of time

shouldn’t reach below a minimum value according to the BESS specifications.
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2.3 Backgroundto Plug-in Electric vehicles

The electric vehicle (EV) is a wvehicle with a driving torque produced by an electric
motor. The source of the electric energy to this motor and how this energy is delivered
define the type of the EV. Three types are currently available: hybrid electric vehicle
(HEV), PEV, and fuel cell EV. A brief description of each type is given hereunder.

e The HEV has a conventional fossil fuel engine, which provides the required
electric energy to the driving motor. Although it has better fuel efficiency
compared to conventional vehicles, the only source of energy is the fossil fuel.

e The PEV is a wvehicle with a higher-capacity battery that can restore its charge
from an external electric power source. These wehicles may contain a
conventional fossil fuel engine to extend the driving range or it may be pure EV.
Some of these vehicles may restore the charge of the battery by swapping their
batteries with another charged battery without the need to connect to an external
electric power source.

e The third type is the fuel cell EV. These vehicles are equipped with fuel cell
technology which converts chemical energy stored in fuel (usually hydrogen) to
electric energy, which is supplied to the motor. These vehicles are more expensive
compared to PEV. Moreover, hydrogen fueling stations infrastructure requires
massive investments. On the other hand, the electric power system is almost

available everywnhere.
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PEV is the most popular type of EVs, due to its low running cost and the availability of
charging outlets. However, still the capital cost of the battery pack system is a challenge.
The sizes of the batteries of these vehicles are determined by the vehicles class (sedan,
SUV, pick-up, ..., etc.) and all electric range (AER) [3]. The AER is the total distance
that the wvehicle can be driven in pure electric mode, i.e. battery depletion mode. In this
mode, the stored energy in the battery is used to power the electric motor [3]. On the
other hand, when the PEV is equipped with a fossil fuel engine, it can be driven in battery
sustained mode, where the fossil fuel engine is used to power the electric motor or the
engine can be used directly to produce the driving torque [42].
Several types of chargers are available to charge the PEV battery pack from an electric
outlet ranging from 3.3 kW (can deliver 3.3 kWh in one hour to the PEV battery pack)
and up to 100 kW. However, the most common charger is the 7 kW charger, which is
also known as level two charger [43].
A typical PEV charger structure is shown in Figure 2-14. This charger performs two main
tasks [44]:

e Converts the AC woltage from the grid to DC woltage via AC/DC power

electronics converter.

e Controls the battery pack voltage and current via DC/DC converter.

For a Li-ion battery, usually it is charged in constant-current mode via the DC/DC

converter till it reach a high SOC, then the constant-voltage charging mode is used to
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avoid overcharging the battery pack, which may destroy it. Typical charging

characteristics of a Li-ion battery pack are shown in Figure 2-15.
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Figure 2-14:PEV battery charger structure [44]
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Figure 2-15: Li-ion battery characteristics [45]

2.4 Literaturereview

The work presented in this thesis focuses on optimal allocation of PEV parking
lots in conjunction with RES and BESS units. This implies determining the optimal
location and sizes of installation. Moreover, the work includes consideration of optimal
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operating strategy of the allocated resources. A literature survey in the topic of research is

presented below.

2.4.1 Optimal allocation of RES

Although RES are environmental friendly, the harvested power from them is
characterized by highly uncertainty, as they depend on highly variable and uncertain
quantities of wind speed and solar irradiance. Moreover, existing distribution networks
are not designed to accommodate high penetration level of such generation [46].
Therefore, planning the location and sizes of renewable DG units is a complicated
process, and should be performed as accurately as possible [46-48]. The optimal
allocation of DG wunits is a very important topic, which gained high interest since early
2000’s. Nowadays, the focus is to increase the intake of the distribution networks from
the renewable DG units without jeopardizing the distribution system equipment.

The optimal DG allocation algorithm presented in [46-52] were developed with
the goal of improving the voltage profile and reducing power losses on radial topology;
however the work presented in [46-52] is based only on DG units with dispatchable
output power and did not consider the intermittent nature of renewable based DGs output
power. In [53], time-varying models for generation and loads are utilized for optimal DG
allocation. However, modeling the renewable DG with one day of variable data is not
sufficient to include the uncertainty associated with the output of such DG units. The
work in [28] includes consideration of the uncertainty associated with renewable DG

units, by using probabilistic models for both generation and loads. However, the work
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does not study the effect of the binding constraints on the DG allocation and utilized only
balanced systems, which does not reflect the practical case of distribution feeders, which
are usually unbalanced systems. Moreover, the work assumed that all system customers
have the same loading profile, which is not practical. In [54], the authors proposed a
technique for optimal renewable DG units’ allocation, taking into consideration smart
control schemes. In [27] and [43], the authors introduced a multi-objective DG allocation
algorithm to allocate renewable and dispatchable DG units in distribution networks.
However, the work only includes consideration of balanced distribution networks. Multi-
objective techniques for DG allocation are proposed in [55] and [56] to minimize losses
and optimally allocate renewable DG units. In [57], the authors presented a DG allocation
algorithm, which is based on Genetic Algorithm (GA). The proposed work in [57] can
efficiently deal with distribution system topology changes in timely manner. However,
the study did not include consideration of the uncertainty of renewable DG units’ output
power; besides, the run time is not a burden in these types of planning problems. The
work in [58] presents an optimal DG allocation method to enhance the reliability of
microgrid systems. The work includes consideration of the uncertainty associated with
renewable DG output power, through utilizing probabilistic models for wind speed and
solar irradiance. However, the work only included consideration of balanced systems.

The work in [46] to [58] focus on identifying the optimal location and sizes of DG
units without studying the impacts of the binding constraints on the objective, where a

change in these constraints might lead to increase of the DG intake with slight decrease in
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the objective function, which can be preferred from the point of view of the distribution
network operators (DNOs). Hence, a careful study of the effect of the binding constraints
on the allocation of DG units is required. Moreover, most of the aforementioned studies
assumed balanced distribution systems with same load profile for all customers, which do

not reflect the practical situation of distribution systems [59].

2.4.2 Optimal allocation of BESS

The BESS allocation has been tackled in research to optimize several objectives, which
include [36]:

o Deferring the network upgrades

e Peak demand shifting

e Enhancing the power system reliability
Several publications tackled the optimal operation of ESS, as in [60-62] in electricity
markets. Another work addressed minimizing the annual capital and operational costs of
a system composed of generation and storage facilities, as in [66]. However, this work
didn’t include consideration of the power network, i.e., the optimal location of the BESS
was not considered.
The work in [67] proposed methods to investigate the impacts of high penetration of
energy storage on the electricity market. However, the presented work didn’t include a
method to integrate an optimal operating strategy. Moreover, the work in [67] didn’t

include consideration of the optimal location of BESS.
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The authors in [63] proposed a two-stage methodology for optimal allocation of storage
units in distribution networks to improve the system reliability through successful
islanding operation, which results in reduced interruptions of the power supply. The work
in [64] proposed optimal sizing and siting of BESS to optimize overall costs of operating
the distribution networks in regulating price or locational marginal price mechanisms. In
[65, 66], the authors proposed optimal allocation of BESS to optimize several objectives,
which include voltage profile, and losses. A probabilistic based technique is proposed in
[67] to optimally allocate BESS in distribution systems with high penetration of wind
based DG units. The aim was to maximize the benefits for the DG owners and the grid
operators. The work in [68] proposed an optimal allocation of BESS to defer system
upgrades and minimize system losses. However, the work in [68] was based on heuristic

approach and didn’t provide a complete mathematical model to the planning problem.

2.4.3 PEV charging stations planning

Although, PEV charging stations required to be carefully allocated in distribution
networks, as these networks are not designed originally to accommodate this extra load,
very few publication exist in the area of PEV charging stations allocation. As in [69], the
authors proposed a technique to optimally allocate inductive charging stations and
charging pads in distribution networks. However, the work included consideration of the
EV traffic flows without considering the electrical system characteristics. In [70], a
technique is proposed for allocation and energy scheduling of EV charging facilities,

while implementing vehicle to grid (V2G) mechanism. However, similar to [69], the
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work in [70] didn’t consider the electrical system characteristics. The work in [71]
proposes a method to optimally allocate EV charging stations taking into consideration
customers’ preferences into the location planning model. In [72], a multi-objective
approach is used for optimal allocation of PEV charging stations while considering the
traditional investment in network reinforcement as means of accommodating the PEV
charging stations. A multi-stage approach is proposed in [73] to allocate PEV charging
stations. The work includes consideration of several aspects, such as travel pattern,
consumer behavior, road network, and grid limits. In [74], the authors proposed a method
to optimally allocate PEV charging stations taking into consideration drivers’ trip model.
A methodology based on GA is proposed in [75] for the optimal allocation of PEV
charging stations to improve the system reliability.

Some work included consideration of distribution system technical limits and grid
impacts of allocating PEV charging stations, as in [76, 77]. In [76], the authors included
preferences of PEV owners, who are likely to spend more time in certain locations, such
as restaurant, stores, and shopping malls. An approach is developed in [77] and [78] to
allocate the PEV charging stations in order to minimize the trips for charging stations.

The work in [79] considered optimal allocation of PEV charging stations based on
game theory to maximize the social welfare. The methodology is proposed in [80] for
optimal allocation of EV charging stations taking into consideration the AER range and
the overall costs. The authors in [81] proposed an optimal allocation approach for PEV

charging stations to minimize the overall costs.
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In all previous work, the authors didn’t include the probabilistic nature of PEV
consumption, renewable resources generation, and normal demand of the distribution

system.
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Chapter 3
RES DG optimal allocation

This chapter investigates the impacts of binding constraints of the planning algorithms on
the optimal allocation and sizing of renewable based DG units in distribution networks.
The planning algorithm under study depends on developing multi-state probabilistic
models for the distribution system components and combining these models in one
comprehensive model that describes all possible system states. Several technical
constraints are taken into consideration, including maximum reverse power at the
substation, maximum number of renewable DG connections, voltage technical limits,
thermal limits of cables and overhead lines, and wvoltage unbalance. In this work, the
renewable DG allocation binding constraints are studied, where the effect of these
constraints on the objective function, also known as shadow price, is investigated. The
123-bus unbalanced three phase IEEE test system has been utilized in a case study to
show the effectiveness of the proposed algorithm. The renewable DG allocation problem
is formulated as nonlinear mixed-integer programming and solved in general algebraic

modeling system (GAMS) environment.

3.1 Introduction

The goal of the work presented in this chapter is to evaluate and quantify the impacts of
the binding constraints on the optimal allocation and sizing of RES DG units with

consideration of the following:
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. Uncertainty due to the intermittent nature of renewable based DGs output power.

. Load variation and customer sector type.

. Unbalanced distribution networks.

Figure 3-1 depicts a schematic diagram of the proposed study. As shown in the figure, the
proposed study starts by modeling the distribution system, the loads, and the renewable
DG units. The planning problem is then formulated, with an objective function of
minimizing the cost of energy losses. The problem will be subjected to several system
constraints in order to make sure that the normal operating practices of the distribution
system are not violated. The most salient constraints will be investigated versus the DG
intake and the objective variations. The renewable DG allocation problem is formulated

as a probabilistic nonlinear mixed-integer programming.

Renewable DG
model using
historical data

Load models
according to types

|

Distribution network model (line Probabilistic model of DG generation
data, load rating and type) and load demand

Control variable: DG sizes and locations
Objectives: minimize energy losses cost

Figure 3-1: A brief description of the DG allocation approach.
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3.2 Modeling

3.2.1 Renewable DG modeling

In this section, the probabilistic model of photovoltaic (PV) is presented. The same
technique used to model PV based DG can also be used to model wind based DG.
However, for a specific time segment, the solar irradiance data usually have a bimodal
distribution function (pdf) [28]. Therefore, the data for each time segment are divided
into two groups, each with a unimodal distribution function described by Beta probability
density function [82]. On the other hand, the wind speeds usually follow a Weibull
distribution function [28].

For this work, the solar irradiance for each hour of the day are modelled by Beta pdfs
using six years of historical data from weather station located in Toronto, Ontario,
Canada. The probabilistic model for the PV based DG units’ output power is described as
follows [43]:

e The entire year is divided into 12 months, and each month is being represented by a

day within that month.

e The day which is representing the month is further subdivided into 24 one-hour

segments each referring to a particular hourly interval of the entire month.

e The mean and standard deviation for each time segment are calculated utilizing the

historical solar irradiance data.
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The Beta pdfs are generated for each hour using the mean and standard deviation for
each segment.

To describe the random phenomenon of the irradiance data, a Beta pdf is utilized for
each unimodal [82].

In order to integrate the output power of the PV modules as multistate, the
continuous pdf of each is divided into a proper number of states, which is a trade-off
between accuracy and computational time.

Then, the probability of each irradiance state is calculated.

Therefore, 24 pdfs (i.e., one pdf for each hour of the day hours) are developed for
each month.

The corresponding output power of the PV modules in each state are calculated using

PV module characteristics [28].

3.2.2 Load modeling

The load in the distribution network under study is assumed to follow the three different

load patterns [43]: residential, commercial, and industrial. Each type is modeled based on

a defined number of states, depending on the desired accuracy, time scale, and speed of

simulation, where the central centroid sorting process described in [83] is utilized to

discretize the hourly load model. Each customer sector is assumed to follow same profile

for each weekday and weekend in a specific month. This means that for each customer
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sector, the load profile has 576 (12 month x 2 days x 24 hours) time segments, where

each time segment has a unique pdf.

3.2.3 Combined generation-load model

This model describes all system states and their probabilities p ., that correspond to
different generation and load states. For the generation of this model, the year is divided
into 12 months, and each month is modeled by two days: weekday and weekend. For
each time segment of the 576, the probability of each combined state is then calculated as
the convolution of all the probabilities associated with that state, as in (3-1). The
probability of the occurrence of each state s € S,,; during any time segment is also

evaluated, as in (3-2).

Pts) = Piespy) X Peesg) X Plese) X Poes)) (3-1)
1 576 3.2
P = (%) X Pes) Vs € Ssys (3-2)

t=1

3.3 Problemformulation

This section presents the DG allocation mixed integer nonlinear programming (MINLP)

problem, which consists of the objective function and constraints, as follows:

minz Z Psy % 8760 X Cryrp X Plogs(spn1) (3-3)
s phl

Subject to:
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1) Power flow constraints

Pinj (iphls) — PG (iph1,s) — PL(i,phl,s)

= Z z ( mag (i,ph1) mag(l ph2) Ymag(l] ph1,ph2) COS( ang(i,j,ph1,ph2)

bus
]Egbus ph2 €S ph(])

(3-4)
+V ang(i,ph2) — Vang(i.phl)))
( mag (i, phl) mag(j phZ)Y ag(i,j,ph1,ph2) cos(Y, ang(i,j,ph1,ph2) tV ang(j,ph2)
- Vang(i,phl))) Vi € Sp,Ph1 € 55#(51)
Qinj(i,phl) = QG(i,phl) - QL(i,phl)
Z Z < Vinag (i,pn1) Vinag (j,ph2) Ymag (1.j,pn1,pn2) >
€S ph2 s sin(Y, ang(i.jph1ph2) T Vang(jpnz) — Vang(i.phl)) (35)

- (Vmag(i.phl)V ag(i,ph2) Ymag (i,j,ph1,ph2) sin (¥, ang(i,jph1,ph2) T Vang(ipn2)

- Vang(i,phl) )) Vi € Spys phl e 55#(51)

2) Voltage technical limits

The woltage of the system has to be kept within maximum and minimum limits,
which are typically £ 5-6% dependent on the system voltage level. Moreover, the

voltage unbalance has to be kept below the maximum allowable limit

Vmin —= (3-6)

<V

mag (i,ph1,s)

<V

max

43



100 x Vmag (iph1s) — VAVG (i,5) < UVmax
Vave Gis)

VAVG Gi,s) = Z Vmag(i,phl,s) /Nph(i)
phl

3) Linesthermal limits

The current flow in lines should not exceed the thermal capacity, as in (3-9).

Imag (1,ph1) = Imax (L,ph1)

4) Generated powers constraints

(3-7)

(3-8)

(3-9)

It is assumed in this work that the renewable DG units operate at fixed power factor,

which is assumed unity. Also, it is assumed that the total number of DG units installed in

the system is limited to a maximum of N2',.

PG (iph1) = Ovie Sno—GEN

QG(i,phl) =0VIi€ESy, g

PG (i,ph1) = a(i,phl) X {r(i,phl) X PVstep Vie SPV

PG(i,phl) = PVMAX Vie ‘SPV

QG(i,phl) =0V i€y
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(3-11)

(3-12)

(3-13)
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2 Z AGipn1) < Narax (3-15)

i pht

5) Reverse power flow limit

According to the regulation of the distribution network operator, the reverse power
flow at the substation should be limited to a maximum of 60% of the substation

capacity [43].

\/PG(i=1,ph1) 2+ Qg (i=1pn1)° > 0.6 X kVAgs/3 (3-16)

6) Losses constraints

Ploss (ph1) — z PG (iph1) — PL(i,phl) Vphl (3'17)
i

Qloss(phl) = 2 QG(i,phl) - QL(i,phl) Vphl (3'18)
i

3.4 Samplecasestudy

Consider the 123-bus IEEE test system under study in [84] which is unbalanced and
contains a mix of residential, commercial and industrial customers being supplied from a
common supply point, which is similar to the Canadian distribution as shown in Figure

3-2. The load and lines data are available in appendix A [84] .
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Choosing the candidate buses for the DG allocation is complicated techno-economic
problem, which is out of the scope of the presented study. Thus, all system buses are
assumed to be candidate buses for the proposed work. The probabilistic model presented
here is utilized to model the PV based DG units output power. Twenty states are assumed
to represent the PV module output, where the outcomes of the clustering process are
shown in Table 3-1. Moreover, the load is assumed to be of three types: residential,
commercial, and industrial. It is assumed that 10 states represent each type. The outcomes
of the load clustering process are shown in Table 3-2.

Table 3-1: PV based DG states as a percentage of capacity

Generation State as a percentage of

state DG capacity

1 0.00%
2.13%

3 4.82%
4 7.79%
5 11.05%
6 14.76%
7 18.49%
8 22.23%
9 26.22%
10 30.34%
11 35.18%
12 39.89%
13 44.49%
14 49.57%
15 55.08%
16 60.83%
17 67.08%
18 73.96%
19 81.74%
20 90.75%
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Table 3-2: Load states as a percentage of peak load

Load state

© 00 N O O A W DN -

[E
o

State as a percentage of peak load

Residential
37.45%
43.74%
49.75%
55.27%
61.87%
66.96%
72.48%
78.57%
84.60%
100.00%

Commercial
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29.47%
4.21%
31.58%
44.21%
55.79%
73.68%
86.32%
90.53%
96.84%
100.00%

Industrial
2.90%
6.60%
25.00%
30.00%
44.00%
53.50%
60.00%
62.00%
75.00%

100.00%
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Figure 3-2: IEEE 123 node unbalanced test feeder [84]

Here it is noteworthy that only PV based DG units are utilized in this work; however,
other types of renewable DG units, such as wind turbines can be utilized in same manner.
For each customer type, the system buses are assigned as follows:
¢ Set of commercial customer buses: {2, 5, 7, 10, 15, 19, 22, 23, 25, 27, 33-35, 38-40,
42, 48, 55, 57, 58, 69, 70, 75, 77, 79, 80, 81, 83, 85, 86, 88, 91, 93, 94, 96, 98, 100,
104, 105, 106, 109, 110, 112, 113, 115, 119},
o Set of industrial customer buses: {52, 53, 54, 71, 72, 73, 82},

e The residential customer buses: All other buses.
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Two cases are presented in this work representing base case, and optimal allocation. A

detailed description of the results obtained in each case study is presented hereunder.

3.4.1 The base case results

For the base case, no DG units are considered. The price of energy is assumed to be
0.05 $/kWh. The total expected annual cost of the system energy losses is found to be
$6533.4. This value corresponds to 130,668.7 kWh annual losses. These losses represent

almost 3.24 % of the total kWh delivered to the customers.

3.4.2 DG allocation results

In this case study, the PV based DG units are allocated in the system. The outcomes of

the DG allocation are shown in Figure 3-3, where PV, is set to 5 kW, and the

maximum number of DG units Niayx i set to very large number. Table 3-3 shows the
total Installed capacity in KW on each phase where the total connected PV capacity is

found to be 2,115 kW on the three phases a, b and c.
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Figure 3-3: The outcomes of the DG allocation
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Figure 3-5: Effect of varying the maximum number of DG units installed in the system
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Table 3-3: Installed Capacities of DG units

Installed capacity in KW on each phase

Bus N b B

Total (kW) 870 570 675
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Moreover, the maximum allowable capacity per connection PV,,,x is limited to 200
kW. The corresponding total system losses are 66,492.6 kWh, which represents 49.11 %
reduction in the system annual energy losses compared to the base case, which is very
significant.

Further, to investigate the effect of varying the reverse power limit in (3-16), this limit
is changed gradually to investigate its effect on the optimal sizes of DG units and the
annual energy losses. As shown in Figure 3-4, limiting the reverse power flow to more
than 60 % does not have significant effect on the allocated capacity or the losses
reduction. This is due to the fact that the PV panels output cease during night, where
normal load is minimum and the reverse power flow is expected to be significant. These
results are system dependent, and are different for another system and/or another DG
type. On the other hand, for reverse power limits lower than 60%, the allocated capacity
keeps reducing and the losses reduction as well. For no reverse power allowance (0 %
reverse power flow limit), the total losses reduction is 56.16 % and the total allocated PV
panels capacity is 1,260 kW on all three phases, which is almost 59 % less than the
capacity allocated with 60 % reverse power flow limit. Also, the results show that the
constraint in (3-16) is almost binding just below the 60 % reverse power flow limit.

Moreover, the number of DG units N4y in (3-15) is reduced gradually to study its
effect on the allocation problem. As shown in Figure 3-5, when Nf%, > 40 the
constraint in (3-15) is not binding constraint and does not affect the losses or the installed
capacity significantly. However, the slope of the increase in system losses gets steeper as
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Niax is reduced more. For example, when Ni“. is reduced from 40 to 10, the reduction
in the system losses is reduced from 49.11 % to 39.5 %. However, when N4 is reduced
from 10 to 3, the reduction in the system losses is reduced from 39.5 % to 26 %, where
also (3-13) becomes binding. This can be noticed from the installed capacity, which is
exactly 600 KW (3 x PVyx)-

Finally, the maximum capacity per PV based DG connection PV, i changed to
investigate its effect on the problem outcomes. As shown in Figure 3-6, for PVy,x > 10
kKW, no significant change occurs in the losses or the total installed capacity. However,
the reduction in losses and the total installed capacity are reduced at high rate when
PVyax is reduced below 10 kW. For example, when PV, is reduced from 10 kW to 5

kW, the reduction in losses is reduced from 49 % to 39.8 %, respectively.

3.5 Discussionsandconclusions

In this chapter, the optimal RES DG allocation problem is studied to quantify the
impacts of binding constraints on the planning process of distribution systems. To that
end, a probabilistic nonlinear mixed-integer planning problem is formulated. The
generation and demand are individually modeled in probabilistic manner; then, different
models are combined to generate a comprehensive multi-state probabilistic model that
describes all possible system states. PV based DG units are considered in this work as the
most promising renewable DG. The type of customers and unbalanced system, which

reflect the practical situation of the grid, are modeled in the presented planning problem.
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The study shows that optimal allocation of renewable DG units is very significant
regarding energy losses reduction. Further, different aspects are studied regarding the
effect of varying some of the salient constraints on the outcomes of the planning problem.
By studying the effect of the reverse power flow limit at the substation, the 60 % limit
imposed by Hydro One in Ontario, Canada is enough to reach the maximum possible
intake of PV based DG units, as increasing this limit further does not result in significant
increase in the total optimal allocated capacity in the system. Moreover, the maximum
number of renewable DG units installed in the system has significant effect if reduced
below certain limit, where this constraint becomes binding constraint. This limit is totally
system dependent and can be extracted by varying the maximum number of DG units
while keeping the other technical limits fixed. Furthermore, varying the maximum
installed individual DG capacity also has significant effect on the DG allocation problem
outcomes if reduced below certain threshold. Based on the outcomes and the analysis
provided in this chapter, it is recommended to study the effect of the three studied
technical limits on the outcomes of the allocation problem, as they have significant effect
on the DG intake and the cost function reduction. Some of these technical constraints
may be enhanced while the DG intake and the reduction in the cost of system losses are

not affected, such as reducing the reverse power flow limit at the substation.
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Chapter 4
RES and BESS optimal allocation in smart
distribution power grid

The previous chapter focuses on optimal allocation of RES in distribution networks based
on analytical probabilistic models. Chapter 4 extends the developed algorithm in the
previous chapter to develop an approach for optimal allocation of RES and BESS units in

distribution systems.

4.1 Introduction

The massive deployment of RES and BESS has gained significant interest in distribution
networks, which creates a great challenge for distribution network investment planners
and stakeholders. Toward this, an optimization problem formulation has been developed
to determine the optimal locations and capacities of RES and BESS units in distribution
systems. The objective of the proposed planning aims to minimize the overall capital and
operational costs. For the purpose of accuracy, smart inverter control of renewable DG
units and smart scheduling of BESS have been taken into consideration. The planning
problem of determining the optimal location and sizes of RES and BESS units is

formulated as MINLP.
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4.2 Modeling

In this section the modeling of the system components (ie. normal load, BESS, and
RES) will be discussed. The previous chapter presented only the optimal allocation of
renewable DG units in distribution networks, where an analytical probabilistic approach
has been used to model RES and loads. However, due to the involvement of BESS, where
the energy stored at any time segment is related to the energy stored in the previous time
segment, chronological probabilistic models should be utilized in this work. Accordingly,
a Monte Carlo simulation (MCS) is used in this chapter for modelling the distribution

system components instead of analytical probabilistic models

4.2.1 Normal load modeling

The normal load model is assumed to follow the reliability test system (RTS) load
pattern [85], where uncertainty of -5% to +5% is added as a uniform distribution to

generate random scenarios of normal load.

4.2.2 RES generated output power modeling

RES output power should be modeled with proper pdf. The work in this thesis focuses
on PV based RES, which are modeled using Beta pdf. However, the same model can be
applied for wind based renewable DG units, where Weibull pdf is more suitable to fit the
wind speed data [28]. The available historical data of solar irradiance for 6 years are
clustered into four seasons, where each season is modeled as 24 hours. Thus, the model
consists of 96 time segments. For each hour, proper pdf parameters are calculated, which
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in this case Beta pdf. Then, MCS is used to generate a number of virtual scenarios, which
mimic the history for the solar irradiance as shown in Figure 4-1. Finally, the simulated
values of solar irradiance and average monthly temperatures are converted into output

power based on the characteristics of the PV panels as discussed in 2.1.5.3.
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4.2.3 Battery energy storage systems

The BESS in this work is assumed to be four quadrants, as explained previously in 2.2.1
and shown in Figure 2-13. For simplicity, the BESS is modeled as a constant power
demand or generation at any instant of time. Further, technical limitations on the stored
energy, SOC level, charge/discharge rates, and reactive power limits are considered. The
BESS receives two reference signals for active and reactive powers, which represent the
decision variable of the optimal operating schedule of the BESS. The reference signals
are different in the operation time horizon (i.e. from one hour to another) based on the
system state. The detailed model is incorporated in the optimization problem formulation

present below.

4.3 Problemformulation

This section presents the mathematical formulation of the proposed optimization-
planning problem. The objective function of the planning problem including
consideration of 1) the capital and operating cost of the new technologies (RES, BESS),
2) the cost of energy losses and consumed energy by normal load and BESS, and 3) the

profit of selling energy from RES. The objective function is represented as follows:

m&nz ]p(s) X ( CPV - GPV(S) + CBES + CLOSS(S) + CCOTLS(S)) (4_1)
N

where,
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Cpy = Z CPV/kW P PV_CAP(iphl) /LV (4'2)
i

GPV(S) - GPV/kth 2 ((NWD/Ntot) Z Z PPV(Lphlhds)

i phl dewD

(4-3)

+ (Nwg/Ntot) Z Z P PV(i,phl,h,d,s))

deEWE h

Cpgs = Z Z (CBES/kW Pggs kw(ipny) /LV + (Cespy + CBES )PgESs kwn(iph1) /LV) (4-4)
i phl

CLoss(s) + Ccons(s)

= (Cyria/kwn

/LV) ((NWD/Ntot) Z Zpgnd(hds) (4_5)

deEWD

+ (NWE/Ntot) Z Z rLd(h,d,s))

dewe

1+r)r-1 (4-6)

LV =
v r'(1+ 1)L

=
I
~

r = (4-7)

[EnN
+
\H

As shown in (4-1), the objective function of the planning problem depends on the
decision variable set 2, which contains the decision variables of installing the RES and
BESS units , as well as, the decision variables of the operation scheduling including the

active and reactive power absorbed/delivered by BESS and the active and reactive power
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generated/curtailed by RES. Here it is worth noting that all the capital costs ($) are
annualized or levelized ($/yr) by assuming that the capital investments are borrowed and
paid annually with a fixed amount ($/yr). The costs of the system equipment are
annualized as shown in (4-2) to (4-7) where the fixed capital costs are divided by the
levelized cost (LV), which is expressed in terms of the interest rate (r), inflation rate (f),
and lifetime of the equipment (LT) [23] .The objective function is subject to the
following:

1) Power flow constraints
Pinjiphihas) = Pe (iphihas) — PL(iphihds)

= z z (Vmag(i,phl.h,d,s) Vinag(iphzhds) Ymag(,jphiph2) COS(Yang( jphiph2)
JE€Shus ph2 e sb¥s

ph(j)
(4-8)
+ Vang(i,phz,h,d,s) - Vang(i,phl,h,d,s)))
- (Vmag(i,phl,h,d,s) Vinag(ph2nd,s) Ymag(,jpniph2) COSYang(ijpniph2) + Vang(jphzhds)
: bus

—~Vangiphinas)) Vi € Spus,phl € SH) hd, s
Qinj(iphihds) = Qaiphihds) — QL(iphihds)
. Z Z ( Vmag(i,phl,h,d,s) Vmag(j,phz,h,d,s) Ymag(i,j,phl,phz) >

= | s Sin(Yang(i,j,phl,phZJ + Vang(ipnzhdas) — Vang(i.phl,h,d,s))

JEobus phZESph(]-) (4_9)

- (Vmag(i,phl,h,d,s) Vmag(i,phz,h,d,s) Ymag(i,j,phl,phz) Sin(Yang(i,j,phl,phZ) + Vang(i,phz,h,d,s)
—Vang(iphihas)) Vi € Spus,phl € SR hd, s
Pe(iphinas) = Pg—-pEs(iphinas) + Prviiphings) Vi € Spusphl € S%),hd,s  (4-10)

Qa(ipninds) = Qg-Es(iphinds) T Qpv(iphinds) Vi € Spus,phl € PG h,d,s  (4-11)
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2) Voltage technical limits

The voltage of the system has to be kept within maximum and minimum limits, which are

typically + 5-6% dependent on the system voltage level.
Vinin < V(i,phl,h,d,s) < Vinax Vi€ Spyus,phl € Sﬁ(si):ht d,s

3) Linesthermal limits

I jphinds) S Imax(ijpria) Vi € Spus,phl € SPiE), b d,s
4) Discrete size of DER constraints
P n1y = oy X B pesicionn X Pore? Wi € Spys,phl € SPUS
BES_kW(i,phl) = ABES(i,phl) BES1(i,phl) BES—kw VU bus'P ph(i)
P oy = Apgstiont) X aEsationt) X Porl? Vi € Spyusphl € SPUS,
BES_KkWh(i,ph1) BES(i,ph1) BES2(i,phl) BES—kWh bus'P ph()

St .
Poy_cap(ipht) = @pv(ipht) X Fpv(iphn) X Poy T Vi € Spys,phl € P

5) Candidate bus constraints

agesi(ipht) » U BES1(iph1) ABES2(i,ph1) » Y BES2(iph1) = 0 Vi € Jpgs, phl € 55’111(50

bus

apy(iph1) Hpvipny =0 Vi €Tpy phl € Spu(y

6) RES operational constraints

Pev(iphiahs) = Xp—pv(iphtans) X Pev_cap(ipny X Phy(ans Vi phl
€SPty dh,s

Qpv(iphians) = Xo-pPv(iphiahs) X Pev(iphians) X tan(cos ™ (pfpy)) Vi, phl
€SPy d s

7) Reverse power flow limit
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According to the regulation of the distribution network operator, the reverse power flow

at the substation should be limited to a maximum of 60% of the substation capacity [28].

Z Z(P G(iph1hds) — PL(i,phl,h,d,s)) < Pi% Vhd,s (4-21)
i#1 phl

8) BESS operation constraints
As mentioned in the previous section, the BESS receives two reference signals: P, _p,r

and Q,_par. The constraint in (4-22) relates the stored energy in any time segment to the
stored energy in the previous time segment. The constraint in (4-23) limits the stored
energy to the maximum kWh capacity of the BESS. The delivered or absorbed active
power at any time segment is related to the charging/discharging decisions as in (4-24).

Other technical limitations are introduced in (4-25) to (4-27).

Epar(iphin+1as) = Eparipnihas) T Xp—par(iphihds) X Ppar-max(iphihds) Vi

(4-22)
€ :]BES , phl

Epar(ipning) < Epar—maxipn1) Vi € Jpgs, phl (4-23)

Ppar -max(phihds) .
Py_par(iphinds) = Xp—BAT(iphihd,s) X Ef fourh Vi € Igar,phl (4-24)
L

Epar(iphihas) = 0.01 X SOCpar—min(iph1) X Epar-maxpn1) Vi € Iggs,ph1  (4-25)

2 2 2
P g—pariphinas) T Qg par(ipninas) = P BAT-MAX(ph1RAS) (4-26)
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Qg-Bar(iphihds) = Xo-BAT(iph1hds) X CBAT-MAX (iph1hd,s) (4-27)

4.4 Samplecasestudy and discussions

The proposed planning framework is tested using the 38-bus distribution system shown in
Figure 4-2 [86]. Although the problem formulation is based on unbalanced three phase
system, the approach is applied to a balanced system for simplicity and to facilitate
analyzing the results. The system contains a mix of residential, commercial and industrial
customers being supplied from a common supply point. The system data are given in
appendix B and type of customers are given in [86]. The total system peak load is 4.37
MVA. The interest rate and the inflation rate are assumed to be 5% and 1% respectively.
For the RES, in this case PV, the capital cost is 3,500 $/kW [87] and the lifetime is 20
years. The step size is assumed to be 5 KW. The LA batteries, as one of the most cost
effective storage technologies, are used in this case study. The parameters of LA batteries
are given in Table 4-1 [32]. It is worth noting that candidate PV bus locations are
determined by detailed techno-economic planning analysis, which are outside the scope
of the presented work and assumed to be inputs to this study. Therefore, all the system
buses are assumed to be candidate for the PV and BESS connections.

Table 4-2 shows a description of several case studies that have been conducted as

a means of evaluating the merits of the proposed planning framework.
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Figure 4-2: The 38-bus distribution test system
Table 4-1: Data of LA battery [32]
Power capital cost 175 $/kw
Energy capital cost 305 $/kwhr
Annual operation and maintenance cost 15 $/kwW
Round-trip efficiency 5%
Life-time 3200 cycles
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Table 4-2: Description of the conducted case studies

Case Description Case Description
A Base case B PV DG allocation
C BESS allocation D PV DG and BESS allocation

Table 4-3 shows the detailed simulation results of the cost of consumed energy and
losses, the expenses of installations for PVs, and BESSs, and the profits achieved for the
installations in each case study. Table 4-4 presents the optimal number, sizes and
locations of the installed PVs, and BESS for each case study. As shown in Table 4-3, the
total annual cost of the energy purchased from the grid in the base case (A), where no
allocation is performed, is $1.320 M. This energy is the sum of the energy consumed by
normal load customers and the energy dissipated as losses with contributions of 97.4 %
and 2.6 % respectively. In case B, where only the allocation of PV is considered, it is
assumed that the generated energy is sold to the grid at a fixed rate, which represents the
incentives from the government to reduce the greenhouse gas emissions. The allocated
capacity varies depending on the tariff at which the generated energy is sold. As shown in
Figure 4-3, the profit of installing PV in the system is negative up to around 14.1 C/kWh.
However, for a tariff above 12.5 €/kWh, the sum of the savings in the cost of energy
losses and the negative profit is positive; thus, the planning problem starts allocating PV
units in the system although the cost of installation is higher than the profit of selling

energy to the grid. In this work, the feed-in-tariff (FIT) program in Ontario, Canada, is
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used as a reference for a 27.5 ¢/kWh [31]. The total allocated capacity in this case is 4
MW, which represents the maximum allowable allocated capacity of DG units in the
system. The allocation results in 30.4 % reduction in the annual energy losses and 53.8 %
reduction in the cost of energy losses. This is due to the reduction of the losses in periods
of high price. As shown in Table 4-3, the annual profit of selling energy to the grid is
90.8 % higher than the annualized installation cost of the PV. The net expenses to run the
system are 72 % lower than the base case.

In case C, the allocation of the BESS resulted in a saving of 20.9 % in the cost of
energy losses, and an annual profit of $51,457 due to price differences of energy from
peak to off-peak periods. The net expenses to run the system are 1.6 % lower than the
base case. The allocated BESS is at bus 31 with a capacity of 200 kW and 875 kWh. As
shown in Figure 4-3, which shows one scenario of BESS charging/discharging schedule,
The BESS starts charging when the prices are low till 8:00 am. Then, when the energy
prices gets higher, it starts discharging from 8:00 am till 11:00 am and holds the stored
energy till the prices drop at 12:00 noon. Case D considers allocating both PV and BESS.
The total allocated capacity of PV is found to be 3,165 kW. On the other hand, one BESS
unit is allocated at bus 38 with capacity of 625 kW and 3500 kWh. The reduction in the
cost of energy loss is 77.8 %, which is very high due to smart scheduling of the BESS

unit. Compared to the base case, the net expenses are 75.9 % lower.
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Table 4-3: Cost related results

Case A B C D
L 5 (%) 1,286,360 1,286,360 1,286,360 1,286,360
23
= 5 .
So (%) 0.00% 0.00% 0.00% 0.00%
= ($) 33,880 15,655 26,800 7,511
2 2
2 S
w (%)" 0.00% -53.79% -20.90% -77.83%
8 RES 0 1,026,543 1,026,543
SR
Q_V
fn BESS 0 0 37,519 143,397
= RES 0 1,959,130 0 1,959,130
5 e
o
BESS 0 0 51,457 187,252

B
- 2 1,320,240 369,428 1,299,222 317,429
ZZ (%)

X

L

* Percentage increase frombase case
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Table 4-4: Technical results

Case A B C D
g (Mwh) 427 297 663 959
S () | 0.00% -30.44% 55.27% 124.59%
5,6,8,9,10, 11,12, 13, 14,15, 16, 4,5,6,7,10,11,12, 13, 16, 17, 18, 20,
Bus — 17.18.21.22.24.25.26 27, 28 29, o6 1 10:11,12,13,16,17,18,2
c 30,31, 32, 33, 34, 37 24,25, 26, 29, 30, 31, 32,
o
g
8
=
@ 5, 150, 125, 30, 75, 115, 190, 190, 90,20, 215, 25, 75, 80, 165, 160, 125,
T (kw) ~ 275,120,180,130,155, 15, 35,160, 4547130 50 25, 565, 505, 55, 125
335, 30, 20, 30, 110, 600, 275, 545, +130, 50, 25, 565, 505, 55, 125,
505, 60, 50, 30
85,5, 15
c Bus - - 31 38
0
QE | (kw) - - 200 625
@ 8
T | (kwh) - - 875 3500

69



30

25

20

cent/kWh 15

10

1000
800
600
kWh
400

200

(a) Energy price

Time of day

(b) Stored energy in BESS unit

Maximum
stored
energy

Minimum
stored
energy

Time of day

Figure 4-4: Energy prices and stored energy for a scenario from case C

70



45 Conclusions

This chapter presents a planning approach to allocate RES and BESS units in distribution
networks. The presented approach can help the distribution companies and investors to
optimize their investments. The proposed planning approach includes smart scheduling of
the BESS units, and smart control of PV inverters. The planning problem is defined as
MINLP, which is solved using deterministic optimization tool. Simulation results on a
typical distribution system demonstrate that significant profit can be achieved by
allocating BESS units in addition to renewable DG units. Although the results are entirely
system dependent, the proposed method is generalizable and can be applied to any

distribution network.
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Chapter 5
PEV charging stations optimal allocation in
smart power distribution grid

In this chapter, the previous work in chapter 4 is extended to include PEV parking lots

allocation in conjunction with RES and BESS optimal allocation.

5.1 Introduction

This chapter presents the core of this thesis, which is presented by a conceptual
framework and a methodology for optimal sizing and siting of grid-interfaced PEV
chargers in parking lots in combination with RES and BESS in distribution networks.
Unlike previous works, the proposed framework is more comprehensive, where the
planning problems of PEVS, RES, and BESS all are combined together. To that end, a
MINLP optimization planning problem formulation has been developed. The objective of
the developed optimization problem is to achieve the minimum cost and maximum
efficiency for local distribution companies and their stakeholders. The formulated
problem accounts for the uncertainty due to the intermittent nature of RES output power
and PEV charging load. In this regard, a new modeling for PEVs charging demand is
proposed. Moreover, compared with previous works, the proposed framework is more
accurate, where optimal operation scheduling of PEVs, RES and BESS has been
incorporated in the formulated planning problem. Due to its complexity, the global

optimization-planning problem has been split into two nested layers (sub-problems);
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namely exterior and interior. The exterior layer represents the installation problem and it
contains the solution space of the number, location and sizes of PEVs, RES and BESS;
while, the interior layer determines the operation schedules of PEVs charging, RES and
BESS for each candidate solution in the exterior layer. A combination between
metaheuristic and deterministic optimization techniques has been utilized to solve the

exterior and interior problems concurrently.

5.2 Modeling

In this section the modeling of the PEV demand is discussed. The normal load, BESS,
and RES models are the same as in chapter 4.

Unlike previous models, which adopted rigid charging schedules for coordinated PEV
charging, the proposed model utilizes historical data to generate virtual scenarios of
vehicles arrivals and departures. These scenarios are later converted to energy
consumption during the planning problem.

Since, each type of parking lots (residential, commercial down town, commercial
commute, etc.) has unique arrival rates and parking durations, a generalized model is
developed in this section, which utilizes MCS to generate virtual scenarios for PEV
arrivals and parking durations. The output of this model can be described as virtual
scenarios of PEVs charging, which are further translated to power consumption from the
grid in the optimization process. Here it is worth noting that the power demand of PEVs
depends on the charging mode of operation (i.e. uncoordinated or coordinated/scheduled)

considered in the planning problem.
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To generate this model, two major variables have to be considered, which affect the
PEV coordinated load model in a parking lot; they are arrival rate and parking duration.
The proposed model utilizes practical historical data of arrival rates and parking durations
of conventional vehicles in several parking lots in Toronto, Ontario, Canada. These data
are made available through Toronto Parking Authority. However, due to the lack of PEVs
charging data, the required charging energy and charging rates limits are assumed to
follow standard uniform distribution between minimum and maximum values. These two
values are chosen based on the available PEVs in the market [1]. The proposed PEV
model is illustrated in Figure 5-1, and can be described as follows:

Step 1: Each season of the year is modeled with two days: weekend (or holiday), and
weekday. Consequently, the historical data is clustered into seasons, and each season data
is clustered into weekday or weekend.

Step 2: The arrival rates in each of the 24 hours of the eight days (4 seasons x 2 days)
representing the year are extracted from the historical data. Different types of pdfs are
used to fit the arrival data. For instance, the arrival rates of the PEVs to a parking lot
located in downtown Toronto are found to be modelled as Gaussian distribution.
Therefore, for each of the eight days representing the year, there are 48 parameters (24 h
X 2 parameters), ie. mean and variance, are calculated from the historical data of the

arrival rates.
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Step3: For each hour of the 192 hours (24 h x 8 days) representing the year, the inverse
of the Gaussian distribution of each cumulative distribution function (cdf) is used to

generate Ns virtual scenarios of PEV arrivals, asin (1).

A@ns) = CDFA_(}i,h) (U(s)) vd,h,s < Ns (5-1)

Step 4: Virtual parking durations are generated for all vehicles in all scenarios for hour

h in day d, as follows:

Tanw = COFr(am(Uw)  Vd,h< Nyyen (5-2)

Step 5: As stated before, due to the lack of PEVs charging data, the numbers of PEVs
arriving each hour for different scenarios are assigned random required charging energy
and charging rate limit values according to uniform standard distribution. Hence, the
parking duration, required charging energy, and charging rate, are defined for each PEV

arrives to the parking lot in any scenario s.
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Figure 5-1: Proposed PEV arrival rate modeling

5.3 Problemformulation

This section presents the mathematical formulation of the optimization-planning problem.
The objective function of the planning problem including consideration of 1) the capital

and operating cost of the new technologies (PEVs, PV, BESS), 2) the cost of energy
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losses and consumed energy by normal load, PEVS, and BESS, and 3) the profit of selling

energy from PV. The objective function is represented as follows:

(Iifllglz Z P(s) X ( CPV - GPV(S) + CBES + CEV + CLoss(s) + Ccons(s)) (5-3)
s

where, all costs are as in (4-2) to (4-7) and

(5-4)
Cgv = Cgv_ch Nev_cupy /LV

As shown in (5-3), the objective function of the planning problem depends on two
decision variable sets (22, and ,). The set 2, contains the decision variables of the
installation problem, ie. 2, ={agrs ,apy, pps1pes, Cev, Opy 3. ON the other hand,
the set £, contains the decision variables of the operation scheduling including the active
power consumed by PEVs, the active and reactive power absorbed/delivered by BESS
and the active and reactive power generated/curtailed by PVs, ie.
2, = {Xp_par»Xg-parXp—py» Xg-pv, Xgy } - The objective function is subject to the

same constraints in chapter 4, except for these changes or additions:

1) Power flow constraints
The power flow constraints are the same as in chapter 4. However, the demand on each

bus includes the PEV consumption, i.e.

Pr(ipnihas) = PniGipnihas) T Prev (ipninas Vi PRL hd,s (5-5)

2) Candidate bus constraints
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. (5-6)
&EV(I') =0 VlEjEV

3) PEV operational constraints:

Based on the number of charging stations, i.e. &y ), the PEV demand can be expressed
in terms of the charging decision of vehicles v (Xgy(;ansv)) @ in (5-7) and (5-8). The
maximum allowable rate of charge for each vehicle v is formulated as a function of the

SOC as in (5-9). The total energy delivered for each vehicle is evaluated as in (5-10) and
(5-11). The constraints in (5-12) relate the SOC of each vehicle v to the SOC in the

previous time step.

p _ ZXEV(i,phl.d.h,s,v) P CH(i,ph1,d,h,s,v) (5-7)
PEV(i,ph1,d,h,s) — n
- CH
capcit
_ P gilia(fpm,d,h,s,v) VP g}ﬁ)ic,phl.d,h,s,v) <P CH(pi,phji.d,h,S,V) (5-8)
PCH(i,phl,d,h,s,v) - Pcapcity v pmax > Pcapcity
CH(i,ph1,d,h,s,v) CH(i,ph1,d,h,sv) CH(i,ph1,d,h,sv)

P gIlJICEJifphl,d,h,s,v) = f (Lg,lz-)lhl,d,h,s,v) (S OC(i,phl,d,h,s,v)) (5_9)

ED(i,phl dsp) = EBAT(i,phl ,d,s,v) 2 (SOC(i,phl,d,h,s,v) - SOC(i,phl,d,h—l,s,v) )/1 00 (5'10)
h

(5-11)

Ep (i,ph1dsv) = Erg Q(i,ph1,d,sv)

Xeviph1dhsy) PCr(Lph1dhsy) (5-12)
SOC(i,phl,d,h,s,v) = SOC(i,phl,d,h—l,s,v) + 100 %

E BAT(i,ph1,d,s,v)
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5.4 PROBLEM SOLUTION

The formulation described in the previous section is a mixed integer nonlinear
programming MINLP problem. To lower its complexity, the problem is split into two
nested parts ie. exterior and interior. The exterior and interior parts represent the
installation and operation-scheduling problems, which are controlled by the decision
variable sets, 2, and ,, respectively. Figure 5-2 shows a flowchart that summarizes the
proposed solution mechanism of the formulated planning problem. As shown in the
figure, a combination between metaheuristic technique and deterministic technique has
been utilized to manage exterior and interior parts concurrently. The GA toolbox under
the Matlab® environment is used as the metaheuristic technique, which governs the
exterior part by determining the decision variable set 2,. As depicted in the figure, the
interior NLP problem describing the operation scheduling is solved for an initial
population of 2, wusing a powerful commercial optimization software (GAMS
environment) for each hour of the 8 days representing the year, and for each possible
scenario s. The solution of the interior part yields the set of decision variables for the
operation scheduling, i.e. 2,. Then, based on 2, and (2,, the total capital and operational

costs are calculated for each scenario.
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The fitness of each individual, i.e. 2,, is defined as the overall expected costs or the
overall system annualized costs. The overall annualized costs consist of the capital and
operating costs of PEV charging stations, PVs, and BESS and the cost of purchasing
energy from the grid, which includes the energy losses and consumed energy. Based on
the fitness of each individual in the population, the stopping criterion is checked. If the
stopping criterion is met, the approach terminates and the best individual is stored. If the
stopping criterion is not met, the parents are selected through choosing elite child(s),
crossover, and mutation. Then, a fitness proportionate selection is used to produce the

new population of 2,

5.5 Samplecasestudy and discussions

The proposed planning framework is tested using the 38-bus distribution system
described in 4.4 and shown in Figure 4-2. All the information in 4.4 about the RES and
BESS units is utilized in this work. The interest rate and the inflation rate are assumed to
be 5% and 1% respectively [32]. The PEV chargers rating utilized in this study are 208-
240Volt AC - 7.2kW 30Amp [43]. The price for a single pedestal charger is assumed to
be $2,000 and the labour, permits, and material is$2,000 per charger. The installation cost
for a single or double pedestal charger is assumed to be 1,000$. The PEV battery ratings
are normally distributed between a minimum of 24 kWh to a maximum of 65 kWh. The
PEV charging price is assumed to be flat at 0.35 $/kWhr. All the system buses are

assumed to be candidate for the PV and BESS connections. However, for the PEV
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charging stations busses 29 to 38 are only assumed as candidate buses arbitrary to reflect
the locations of possible PEV chargers installation. Table Il shows a description of a
number of case studies were conducted as a means of evaluating the merits of the
proposed planning framework. Table 5-1 shows the detailed simulation results of the cost
of consumed energy and losses, the expenses of installations for PEVs, PVs, and BESSs,

and the profits achieved for the installations in each case study.

Table 5-1: Description of the conducted case studies

Case Description Case Description
A Base case B PV DG allocation
C BESS allocation D PV DG and BESS allocation
E PEV stations allocation F PEV stations and PV DG allocation
G PEV stations and BESS allocation H | PEV stations, PV DG, and BESS allocation

Table 4-3 and Table 4-4 present the total annual cost and the optimal number, sizes and
locations of the installed PVs, and BESS for cases A, B, C, and D. These results are also

presented in Table 5-2 and Table 5-3, in addition to cases E, F, G, and H.

For the PEV stations allocation in case E, since it is extra load, the planning problem will
only allocate these stations if the profit is higher than the sum of the cost of installation
and the increase in the energy losses. The maximum allowable PEV charging stations in
the system are 2.5 MW, which represents 285 chargers of level 2. The price of charging

PEVs is assumed to be the base energy price plus a fixed profit to cover the capital costs,
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operating costs, and cost of increased energy loss. For a fixed profit up to 3.25 ¢/kWh,
the planning problem doesn’t allocate any chargers. For a fixed profit of 4 ¢/kWh, the
planning problem allocated 285 chargers, as shown in Table 5-2, where the cost of energy
purchased from the grid and consumed by the customers is increased by 14.96 % and the
energy loss is increased by 20.9 %. The total expenses to run the system are 2.6 % lower
than the base case.

For case F, the PV units’ installations are allowed to support PEV charging stations. As
shown in Table 5-3, a total capacity of 4,000 kW of PV is installed in the system, which
reduces the cost of energy loss by 48.8 % compared to case E, and 35.3 % compared to
the base case. The net expenses are 74.7 % less than the base case. In case G, the
planning problem allocates BESS to support the PEV charging stations. Although, the
allocated capacity of BESS is 3,000 kW and 5,000 kWh, the cost of energy loss are still
18.8 % higher than the base case, but 1.8 % lower than case E. The net expenses are 18.1
% lower than the base case. For case H, the PV and BESS installation is allowed to
support the PEV charging stations. However, the results show only PV allocated in the
system, same as case F. This is due to two reasons. 1) The fact that the PV generation
pattern fits PEV charging pattern in commercial lots, while residential PEV charging
patterns can easily be shifted to low normal demand period at night, which doesn’t need
support from BESS units. 2) The incentives from governments for clean energy from PV
give superiority for PV allocation in the system compared with much lower profit for
allocating BESS units.
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Table 5-2: Cost related results

Case A B C D E F G H
= %) 1,286,360 | 1,286,360 | 1,286,360 | 1,286,360 | 1,467,436 | 1,478,122 | 1,600,843 | 1,478,122
E >
2 @
é & (% )* 0.00% 0.00% 0.00% 0.00% 14.08% 14.91% 24.45% 14.91%
= %) 33,880 15,655 26,800 7,511 40,980 21,914 40,250 21,914
D o»n
s 8
= (%)" 0.00% | -53.79% | -20.90% | -77.83% | 20.96% | -35.32% | 18.80% | -35.32%
RES 0 1,026,543 1,026,543 0 1,026,543 0 1,026,543
‘3’; BESS 0 0 37,519 | 143,397 0 0 257,683 0
(5]
=
S
i BV 0 0 0 0 162,092 | 162,092 | 162,092 | 162,092
chargers ' ' ‘ ‘
RES 0 1,959,130 0 1,959,130 0 1,959,130 0 1,959,130
ﬁg & BESS 0 0 51,457 187,252 0 0 461,441 0
E N—r
EV
0 0 0 0 384,315 | 395,001 | 517,722 | 395,001
chargers
:
§ é %) 1,320,240 369,428 |1,299,222| 317,429 |1,286,193| 333,587 (1,081,705 334,540
x
L

Percentage increase from base case
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Table 5-3: Technical results

Case A B C D E F G H
o | (MWh)| 427 297 663 959 738 369 1042 369
w
w
o *
S %) 000% -3044% (5527% 12459% |72.83% -1358% | 144.03% @ -1358%
6,789
5.6, 8,9, 10, 10, 11,12, " B
11, 12, 13, 14, 4,5 6 7 10, 13, 14, 15, PRTETS
15, 16, 17, 18, 11, 12, 13, 16, 16, 17, 18, o
Bus | - 2122 24 25| — |17 18 20, 23, 200,25 - | h8%
26, 27, 28, 29, 24, 25, 26, 29, 26, 27, 28, paiodes
30, 31 32, 33, 30, 31, 32, 38 29, 30, 31, 28,29,
34, 37 3233, 34 30, 31, 32,
c : 33, 34, 33, 34, 38
.9 38 1 )
S
5]
= 111315’152060 115, 20, 110,
U) 1 ) H
o 5, 150, 125, 30, %, 20, 215 5080, 150, 15, 60, 80,
@ 75, 115, 190, 80, 120, 200,
25, 75, 80, 200, 100,
190, 275, 120, 102, 105,
165, 160, 125, 105, 100,
180, 130, 155 100, 150, 25,
kw) | — ~ 120 130,50, - | 150, 25 -
15, 35, 160, 130, 225, 30,
25, 565, 505, 130, 225,
335, 30, 20, 30, 15, 30, 610,
55, 125, 505, 30, 15, 30,
110, 600, 275, > 12 50 o2 560, 185,
545, 85, 5, 15 20, » 200, 385, 85, 395,
185, 390, o
85, 305, 75
c
S  Bus | - - 31 38 - - 35 -
[+
S]
= &kw) | - - 200 625 - - 3000 -
A
o kwn) - - 875 3500 - - 5000 -
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(n . . _ 7 il 1 1 ]
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O
S © Number %5, 15, 100
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5.6 Conclusions

This chapter presents a smart planning approach to accommodate PEV charging load in
distribution networks. The presented approach can help the distribution companies and
investors to optimize their investments. The planning method utilizes probabilistic
approaches to optimally allocate PEV charging stations, PV units and BESS systems to
maximize the profit of the system operators and investors. The proposed approach
includes smart coordination of the PEV charging process, smart scheduling of the BESS
units, and smart control of PV inverters. The planning problem is defined as MINLP,
which is solved using, a combination between GA and deterministic optimization tool
due to the problem complexity. Simulation results on a typical distribution system
demonstrate that significant profit can be achieved by allocating PV units to support the
PEV charging stations. On the other hand, the results proved that BESS units do not
present significant support for PEV charging stations, either for commercial charging
stations or residential charging stations. Although the results are entirely system
dependent, the proposed method is generalizable and can be applied to any distribution

network.
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Chapter 6
Concluding remarks

6.1 Summaryand Conclusions

The research in this thesis presents new approaches to optimally allocate PEV charging
parking lots in conjunction with RES and BESS units in distribution networks under the
smart grid paradigm.

The objective of the proposed planning aims to minimize the overall capital and
operational costs. The operational costs include consideration of 1) coordinated PEV
charging, 2) smart inverter control of renewable DG units, and 3) smart scheduling of
BESS.

The research presented in this thesis is developed on three main stages presented in
chapters 3, 4, and 5.

In chapter 3, an approach to optimally allocate RES DG is developed taking into
consideration the uncertainty due to the intermittent nature of RES DG output power. The
work also investigates the impacts of the technical constraints on the allocation process,
to identify the most significant binding constraints. It is concluded in this chapter that
constraints such as maximum number of DG units and maximum reverse power flow
were found to be very significant to the results of the allocation process; however,

beyond certain limit, the improvement is negligible.
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In chapter 4, the developed approach in chapter 3 is extended to include consideration of
BESS units. Chronological probabilistic models based on MCS are used in this work to
encounter for the BESS characteristics. Simulation results on a typical distribution system
demonstrate that significant profit can be achieved by allocating BESS units in addition

to renewable DG units.

Chapter 5 presents a smart planning approach, which utilizes probabilistic approaches to
optimally allocate PEV charging stations, PV units and BESS systems to maximize the
profit of the system operators and investors. The proposed approach includes smart
coordination of the PEV charging process, smart scheduling of the BESS units, and smart
control of PV inverters. Due to the complexity of the proposed problem, it is split into
two nested parts ie. exterior and interior. The exterior and interior parts represent the
installation and operation-scheduling problems respectively. Further, a combination
between metaheuristic technique and deterministic technique has been utilized to manage
exterior and interior parts concurrently.

Moreover, a new model for the PEV coordinated charging demand is introduced in this
thesis, which is based on developing all possible scenarios during a calendar year of PEV
arrivals and PEV requirements. Further, this model is converted to energy consumption
model during the optimization process based on the optimal schedule of PEV charging
and the technical limits of the distribution network. Simulation results on a typical

distribution system demonstrate that significant profit can be achieved by allocating PV
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units to support the PEV charging stations; on the other hand, the results proved that
BESS units do not present significant support for PEV charging stations.

The main contribution of this thesis is the development of a new approach to allocate
PEV smart charging stations in distribution networks in conjunction with RES and BESS.
Moreover, as a by-product, a new probabilistic model for the PEV demand in smart grid

is developed.

6.2 Directions for Future Work

In continuation of this research, the following subjects are suggested for future work:

» Investigating the benefits that can be offered by discharging of PEVs under the smart
grids.

»  Deweloping planning approaches to allocate PEV charging stations in microgrid

systems.
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Appendix A

The 123-bus test system load data

Table A1 123-bus test system data [84]

Node|Load| Ph-1| Ph-1|Ph-2|Ph-2| Ph-3 [ Ph-4 [Node| Load| Ph-1 | Ph-1| Ph-2|Ph-2 | Ph-3 | Ph-4
Mode| kW [kVAr| kW |kVAr| kW |kVAr Mode| kW [(kVAr| kW |kVAr| kW [kVAr

1 |Y-PQ| 40 20 0 0 0 0 59 [Y-PQ| O 0 20 10 0 0
2 |Y-PQ| O 0 20 10 0 0 60 |Y-PQ| 20 10 0 0 0 0
4 |Y-PR[ O 0 0 0 40 20 62 | Y-Z 0 0 0 0 40 20
5 Y-l 0 0 0 0 20 10 63 |Y-PQ| 40 20 0 0 0 0
6 Y-Z 0 0 0 0 40 20 64 Y- 0 0 75 35 0 0
7 |Y-PQ| 20 10 0 0 0 0 65 | D-Z | 35 25 35 25 70 50
9 |Y-PQ| 40 20 0 0 0 0 66 |Y-PQ| O 0 0 0 75 35
10 Y-I 20 10 0 0 0 0 68 |Y-PQ| 20 10 0 0 0 0
11 | Y-Z | 40 20 0 0 0 0 69 |Y-PQ| 40 20 0 0 0 0
12 |Y-PQ| O 0 20 10 0 0 70 [Y-PQ| 20 10 0 0 0 0
16 |Y-PQ| O 0 0 0 40 20 71 | Y-PQ| 40 20 0 0 0 0
17 |Y-PQ| O 0 0 0 20 10 73 |Y-PQ| O 0 0 0 40 20
19 |Y-PQ| 40 20 0 0 0 0 74 | Y-Z 0 0 0 0 40 20
20 Y-l | 40 20 0 0 0 0 75 |Y-PQ| O 0 0 0 40 20
22 | Y-Z 0 0 40 20 0 0 76 Dl | 105 | 80 70 50 70 50
24 |Y-PQ| O 0 0 0 40 20 77 |Y-PQ| O 0 40 20 0 0
28 Y-l | 40 20 0 0 0 0 79 | Y-Z | 40 20 0 0 0 0
29 | Y-Z| 40 20 0 0 0 0 80 |Y-PQ| O 0 40 20 0 0
30 [Y-PQ| O 0 0 0 40 20 82 |Y-PQ| 40 20 0 0 0 0
31 |Y-PQ| O 0 0 0 20 10 83 |Y-PQ| O 0 0 0 20 10
32 |Y-PQ| O 0 0 0 20 10 84 |Y-PQ| O 0 0 0 20 10
33 Y-l | 40 20 0 0 0 0 85 |Y-PQ| O 0 0 0 40 20
34 | Y-Z 0 0 0 0 40 20 86 |Y-PQ| O 0 20 10 0 0
35 [D-PQ| 40 20 0 0 0 0 87 |Y-PQ| O 0 40 20 0 0
37 | Y-Z| 40 20 0 0 0 0 88 | Y-PQ| 40 20 0 0 0 0
38 Y-I 0 0 20 10 0 0 90 Y- 0 0 40 20 0 0
39 |Y-PQ| O 0 20 10 0 0 92 |Y-PQ| O 0 0 0 40 20
41 |Y-PQ| O 0 0 0 20 10 94 |Y-PQ| 40 20 0 0 0 0
42 |Y-PQ| 20 10 0 0 0 0 95 |Y-PQ| O 0 20 10 0 0
43 | Y-Z 0 0 40 20 0 0 96 |Y-PQ| O 0 20 10 0 0
45 Y-I 20 10 0 0 0 0 98 |Y-PQ| 40 20 0 0 0 0
46 |Y-PQ| 20 10 0 0 0 0 99 |Y-PQ| O 0 40 20 0 0
47 Y-l 35 25 35 25 35 25 | 100 | Y-Z 0 0 0 0 40 20
48 | Y-Z | 70 50 70 50 70 50 | 102 |Y-PQ| O 0 0 0 20 10
49 |Y-PQ| 35 25 70 50 35 20 ] 103 |Y-PQ| O 0 0 0 40 20
50 |Y-PQ| O 0 0 0 40 20 | 104 |Y-PQ| O 0 0 0 40 20
51 |Y-PQ| 20 10 0 0 0 0 106 [ Y-PQ| O 0 40 20 0 0
52 |Y-PQ| 40 20 0 0 0 0 107 [Y-PQ| O 0 40 20 0 0
53 |Y-PQ| 40 20 0 0 0 0 109 | Y-PQ| 40 20 0 0 0 0
55 | Y-Z| 20 10 0 0 0 0 111 [ Y-PQ| 20 10 0 0 0 0
56 |Y-PQ| O 0 20 10 0 0 112 | Y- 20 10 0 0 0 0
58 Y-l 0 0 20 10 0 0 113 | Y-Z | 40 20 0 0 0 0
114 | Y-PQ| 20 10 0 0 0 0

Total 760 | 410 | 375 | 225 | 520 | 285
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Appendix B

The 38-bus test system data

Table B.2 38-bus test system data [86]
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Ln

1

11
12
13
22
23
25
27
28
29
31
32
33

Line impedance in pu

0.000574+0.000293j
0.00307+0.001564j
0.002279+0.001161j
0.002373+0.001209j
0.0051+0.004402j
0.001166+0.003853]
0.00443+0.001464j
0.006413+0.004608j
0.006501+0.004608j
0.001224+0.000405j
0.002331+0.000771j
0.009141+0.007192j
0.003372+0.004439j
0.00368+0.003275j
0.004647+0.003394j
0.008026+0.010716j
0.004558+0.003574j
0.001021+0.000974j
0.009366+0.00844j
0.00255+0.002979j
0.004414+0.005836j
0.002809+0.00192j
0.005592+0.004415j
0.005579+0.004366j
0.001264+0.000644j
0.00177+0.000901j
0.006594+0.005814j
0.005007+0.004362j
0.00316+0.00161j
0.006067+0.005996j
0.001933+0.002253j
0.002123+0.003301;j
0.012453+0.012453]
0.012453+0.012453]
0.012453+0.012453)
0.003113+0.003113j

0.1
0.09
0.12
0.06
0.06

0.2

0.2
0.06
0.06

0.045
0.06
0.06
0.12
0.06
0.06
0.06
0.09
0.09
0.09
0.09
0.09
0.09
0.42
0.42
0.06
0.06
0.06
0.12

0.2
0.15
0.21
0.06

o O o

To node - load
Q
0.06
0.04
0.08
0.03
0.02
0.1
0.1
0.02
0.02
0.03
0.035
0.035
0.08
0.01
0.02
0.02
0.04
0.04
0.04
0.04
0.04
0.05
0.2
0.2
0.025
0.025
0.02
0.07
0.6
0.07
0.1
0.04

o O o
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