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Abstract

High utility itemset mining discovers itemsets whose utility is above a given thresh-

old, where utilities measure the importance of itemsets. In high utility itemset

mining, memory and time performance limitations cause scalability issues, when

the dataset is very large. In this thesis, the problem is addressed by proposing a

distributed parallel algorithm, PHUI-Miner, and a sampling strategy, which can be

used either separately or simultaneously. PHUI-Miner parallelizes the state-of-the-

art high utility itemset mining algorithm HUI-Miner. The sampling strategy inves-

tigates the required sample size of a dataset, in order to achieve a given accuracy.

We also propose an approach combining sampling with PHUI-Miner, which pro-

vides better time performance. In our experiments, we show that PHUI-Miner has

high performance and outperforms the state-of-the-art non-parallel algorithm. The

sampling strategy achieves accuracies much higher than the guarantee. Extensive

experiments are also conducted to compare the time performance of PHUI-Miner

with and without sampling.
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1 Introduction

Frequent pattern mining has been an important topic since the concept of frequent

itemsets was first introduced by Agrawal et al [6]. Given a dataset of transac-

tions, frequent pattern mining finds the itemsets whose support (i.e. the percentage

of transactions containing the itemset) is no less than a given minimum support

threshold. However, neither the number of occurrences of an item in a transaction,

nor the importance of an item, is considered in frequent pattern mining. Itemsets

with more occurrences or importance may be more interesting to users, since they

may bring more profit.

In light of this, high utility itemset mining has been studied [9, 15, 42, 35]. In

high utility itemset mining, the term utility refers to the importance of an itemset;

e.g., the total profit the itemset brings. An itemset is a High Utility Itemset (HUI)

if the utility of the itemset is no less than a given minimum threshold. High utility

itemset mining focuses more on the utility values in the dataset, which are usually

related to profits for the business. Such utilities are interesting to the business
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owners, who could gain more profits from them. For example, supermarkets use

frequent itemset mining to find merchandises customers usually buy together, so as

to make recommendations to customers. However, with high utility itemset mining,

supermarkets will be able to recommend not only the merchandises people usually

buy together, but also the merchandises which will lead to more profits for the

store.1

Most of the frequent pattern mining algorithms prune off itemsets in an early

stage based on the popular Apriori property [8]: every sub-pattern of a frequent

pattern must be frequent (also called the downward closure property). However,

this property does not hold in high utility itemset mining, which makes mining

high utility itemsets more challenging. The state-of-the-art approaches achieve

good performance when the dataset is relatively small. However, the volume of

data can grow so faster than expected, that a single machine may not be able to

handle a very large amount of data.

One option to solve the problem of large volumes of data is to use parallel

distributed computing techniques. The MapReduce framework [18] (e.g., Hadoop)

has been a popular solution recently, which enables scalable and fault-tolerant dis-

tributed processing of huge data on large clusters. Applications in the MapReduce

framework have to conform the protocols of mapper and reducer as a disk-based

1In Section 6.3, another example will be given to show a real world application of high utility
itemset mining for news recommendation.
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paradigm, which restricts the flexibility as well as the performance of the algorithm.

Spark is also a distributed computing framework, which is memory-based, and thus

provides performance up to 100 times faster than Hadoop for certain applications

[44]. Spark uses Resilient Distributed Dataset (RDD), which is a distributed mem-

ory abstraction, for in-memory computation of data, allowing efficient reuse of data.

For very large datasets, obtaining exact results is sometimes infeasible. Recent

studies focus on mining an approximate set of frequent itemsets. In most cases, ap-

proximate solutions may already be satisfactory to users. In general, approximation

methods can be divided into two categories: pattern compressing [13, 34, 12, 43]

and sampling [40, 37, 49, 47]. Sampling is a method that mines approximate results

from a sample of the entire dataset. The most important step in sampling is to

decide the size of the sample we need in order to obtain a certain accuracy, which

is also the focus of our sampling strategy proposed in this thesis.

In this thesis, we address the problem of high utility itemset mining by proposing

PHUI-Miner (Parallel High Utility Itemset Miner) and a sampling strategy. PHUI-

Miner is a parallel distributed algorithm, which parallelizes HUI-Miner, a state-of-

the-art algorithm for high utility itemset mining. The sampling strategy provides

the required sample size for a dataset in order to achieve a given accuracy. It can

be used together with any exact high utility itemset mining algorithm. To the best

of our knowledge, this is the first piece of work to utilize sampling in high utility
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itemset mining. Our contributions are summarized as follows:

• PHUI-Miner, a parallel distributed algorithm, is proposed for parallel mining

of high utility itemsets without sampling, which could lead to exact results.

• We propose and prove a new theorem, which shows the relationship between

the high utility itemset mining results from the whole dataset, and those from

a sample of it. The theorem leads to a sampling method with theoretical

guarantees on the probability that an HUI can be returned and on the utility

of a returned itemset. A feature of this sampling method is that the sample

size required to achieve the theoretical guarantees is independent of the size of

the original data, and is thus not necessarily going up as the data set grows.

• We also propose PHUI-Miner with sampling, an approach combining sampling

with PHUI-Miner, which mines an approximate set of high utility itemsets,

but achieves better performances.

• Extensive experiments are conducted and the time performance and scalabil-

ity of PHUI-Miner are evaluated. PHUI-Miner is demonstrated to outperform

the state-of-the-art non-parallel high utility itemset mining algorithm HUI-

Miner. The time performance of PHUI-Miner with sampling is also evaluated,

which is shown to be better than using PHUI-Miner alone. Furthermore,

the accuracy of the sampling strategy is evaluated with several datasets and
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different parameters. Our results show that our sampling strategy achieves

accuracy even higher than the expectations based on our theoretical analysis.

The thesis is organized as follows. Chapter 2 is a literature survey of related

work. Chapter 3 introduces relevant definitions and a problem statement. Chapter

4 presents PHUI-Miner. Chapter 5 describes the sampling strategy and PHUI-

Miner with sampling. We show experimental results in Chapter 6, and conclude

the thesis in Chapter 7.
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2 Related Work

Before the problem of high utility itemset mining was first proposed by Yao et al.

[46], a variation of the problem, named share frequent itemsets mining, was studied

by many researchers. Several algorithms have been proposed: e.g., ZP [11], ZSP

[11], FSH [31], ShFSH [31], and DCG [30]. These algorithms can be used to mine

high utility itemsets. However, they all use the Apriori [7] like strategy, which

results in the problem of repeated database scans and large numbers of candidates.

To improve the performance of these algorithms, Liu et al. proposed Two-phase

[36], which uses an important utility measure, named Transaction Weighted Utility

(TWU), for pruning the search space, since the downward closure property is not

applicable in high utility itemset mining. Afterwards, another pruning strategy,

called the isolated items discarding strategy (IIDS), was proposed in FUM [32]

and DCG+ [32]. The number of candidates are largely reduced by these pruning

strategies. However, the problem of repeated database scans is still not solved.

An algorithms based on FP-Growth algorithm [22] have been proposed to mine
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high utility itemsets with at most three scans of database, and thus have better

performance. Examples of these algorithms include IHUP [9], HUC-Prune [10], UP-

Growth [42], UP-Growth+ [41]. However, the candidate itemsets are still too many

compared to the high utility itemsets. HUI-Miner [35] is one of the recent efficient

algorithms proposed by Liu et al. demonstrated to have an order of magnitude

better performance than other algorithms.

Parallel distributed algorithms solve the problem of mining massive datasets.

Several studies [17, 28, 45, 27, 20, 23] have been done for mining frequent patterns

in distributed environments, inspired by the MapReduce framework proposed by

Google [18]. Some of them [17, 28, 45] use a naive approach which computes the

support of every itemset in the dataset in a single MapReduce round, resulting in

huge data replication. An adaption of FP-Growth algorithm to MapReduce, called

PFP [27], is a more sophisticated approach. Given a minimum frequency threshold,

PFP first applies a parallel and distributed counting approach to compute the

frequent items. The frequent items are then partitioned into groups randomly.

Subsequently, the dataset is used to generate group-dependent transactions, which

are sent to reducers. Finally, the reducers use an FP-Growth like approach to

generate group-dependent frequent itemsets. However, very few studies have been

conducted on high utility itemset mining with distributed computing techniques so

far.
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As the volume of data grows, the mining task consumes more and more time.

Mannila et al. [38] first suggested that sampling can be used to efficiently obtain

association rules. Then Toivonen [40] presented a sampling algorithm, which builds

a complete set of association rules with a probability depending on the sample size.

The Chernoff bound and the union bound are used, in which the Bernoulli random

variable refers to whether an itemset appears in a transaction. A number of previous

works [49, 25, 51, 29, 50, 14, 16] have been focusing on improving the bound of the

sample size using different techniques in association rules mining or frequent pattern

mining. Sampling techniques in high utility itemset mining are more complicated

since an itemset has a utility value in each transaction, instead of 0 or 1 in frequent

pattern mining. There has hitherto been little research on using sampling in high

utility itemset mining.
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3 Preliminaries

3.1 Distributed Computing Frameworks

In data mining and other fields which require analyzing and extracting information

from data, the hardware restricts the size of the data we are able to process. CPU,

memory and data storage are three different kinds of resources which affect the

overall scalability of algorithms. These resources are limited, so it is very hard to

process a very large dataset which usually exceeds the capacity of the resources.

Distributed computing frameworks solve this problem by using a cluster of com-

puters, connected by a network, to perform computing tasks in parallel.

The most commonly known distributed computing framework is Apache Hadoop

[1]. Apache Hadoop provides reliable, scalable, and distributed computing solution,

which is used by many companies, including Yahoo! and Facebook.

There are two main parts in the core of Apache Hadoop, the storage part and

the processing part. The storage part, also known as Hadoop Distributed File

System (HDFS), stores data by splitting them into blocks and distributing them
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amongst different nodes in the cluster. Each block of a file is usually replicated,

and stored in several different nodes, so that data loss in HDFS is very rare in

case of hardware failure. The processing part, also known as MapReduce, uses

two procedures, map and reduce, for parallel processing of data. The map and

reduce procedures are called mappers and reducers respectively. In mappers, a set

of data is converted into tuples (key-value pairs), while reducers take output from

mappers and combine tuples into smaller sets of tuples, by aggregating tuples with

the same key into a single tuple. HDFS and MapReduce are inspired by the ideas

proposed by Google based on the Google File System (GFS) and their proprietary

MapReduce technology.

However, there are some drawbacks of Apache Hadoop, which limits the perfor-

mance and flexibility of the algorithms implemented on it. On the one hand, the

MapReduce paradigm requires that each mapper is followed by a reducer, and they

must be programmed in a strictly pre-defined way. On the other hand, each pair

of mapper and reducer in Apache Hadoop has to read data from disks, and write

results back to disks, which results in a bottleneck in its performance.

In order to deal with these two drawbacks of Apache Hadoop, another dis-

tributed computing framework, Apache Spark, was developed. Instead of the

two-stage disk-based MapReduce paradigm introduced in Apache Hadoop, Apache

Spark uses a data abstraction, known as Resilient Distributed Datasets (RDD).
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RDDs are read-only, partitioned collection of records, which are created by reading

from data storages or transforming from other RDDs. [48] An RDD holds refer-

ences to Partition objects, where each Partition object is a subset of the dataset

represented by this RDD. RDDs are usually not in materialized form. Instead, if

an RDD A is transformed from another RDD B, we only need the information of

the transformation and the RDD B, in order to derive the RDD A. As a result,

RDDs are only materialized when they are asked to perform a reduce operation,

which aggregates data in different nodes to a single machine. Apache Spark loads

data into the memories of machines in a cluster as RDDs, and uses them repeatedly

for data processing tasks. Apache Spark also allows programmers to have arbitrary

mappers and reducers in any order, providing a much more flexible API for its

users. In an Apache Spark cluster, there is one Master node and several Worker

nodes. The Master node is responsible for allocating resources and assigning tasks

to Worker nodes. However, Apache Spark is only an alternative for MapReduce in

Apache Hadoop. HDFS is still a state-of-the-art open source distributed data stor-

age framework. Apache Spark has interfaces with different types of data storage,

including HDFS, Cassandra [2], OpenStack Swift [3], etc. Apache Spark is able to

read from these types of data storage for data processing, which makes Spark more

popular. Therefore, in this thesis, Apache Spark is used as the main platform for

our proposed algorithms, while HDFS is used as our data storage.
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TID Transaction Transaction Utility

T1 (a, 1) (c, 2) (d, 1) (g, 1) 11

T2 (a, 2) (b, 5) (c, 3) (d, 1) (e, 2) 30

T3 (b, 4) (c, 3) (d, 1) 16

T4 (c, 2) (f, 1) 3

T5 (b, 3) (c, 4) (e, 2) (g, 2) 18

(a) Transaction Dataset

Item a b c d e f g

External Utility 3 2 1 5 3 1 1

(b) External Utilities

Table 3.1: An Example Transaction Database with External Utilities

3.2 High Utility Itemset Mining

Let I∗ = {I1, I2, ..., Im} be a set of items. An itemsetX is a set of items {Ie1 , Ie2 , ..., IeZ},

where Z is the length of X, denoted by |X|. A dataset D is a list of transactions

{T1, T2, ..., Tn}, where each transaction Td ∈ D is an itemset.

Definition 1. (Internal utility and external utility) In high utility itemset

mining, each item I ∈ I∗ is associated with a positive value p(I), called its external

utility (e.g., item profit). Each item I in transaction Td ∈ D is also associated with

12



a positive value q(I, Td), called its internal utility (e.g. purchase quantity). For

example, in Table 3.1, p(b) = 2 and q(b, T2) = 5.

Definition 2. (Utility of an item I in transaction Td) Given I ∈ Td, the utility

of item I in transaction Td is defined as u(I, Td) = p(I)q(I, Td). For example, in

Table 3.1, u(b, T2) = p(b)q(b, T2) = 10.

Definition 3. (Utility of an itemset X in transaction Td) The utility of itemset

X in transaction Td is defined as u(X,Td) =
∑
I∈X

u(I, Td), if X ⊆ Td. Otherwise,

u(X,Td) = 0. For example, in Table 3.1, u({b, c}, T2) = u(b, T2)+u(c, T2) = 10+3 =

13.

Definition 4. (Utility of an itemset X in dataset D) The utility of itemset

X in dataset D is defined as uD(X) =
∑
Td∈D

u(X,Td). For example, in Table 3.1,

uD({b, c}) = u({b, c}, T2) + u({b, c}, T3) + u({b, c}, T5) = 13 + 11 + 10 = 34.

Definition 5. (Utility of a transaction Td) The utility of transaction Td is

defined as u(Td) =
∑
I∈Td

u(I, Td). For example, in Table 3.1, u(T4) = u(c, T4) +

u(f, T4) = 2 + 1 = 3.

Definition 6. (Transaction weighted utilization of an itemset X in dataset

D) The transaction weighted utilization (TWU) of an itemset X in dataset D is

defined as twu(X) =
∑

X⊆Td,Td∈D
u(Td). For example, in Table 3.1, twu({b, c}) =

u(T2) + u(T3) + u(T5) = 30 + 16 + 18 = 64.

13



Itemset {a} {b} {c} {d} {e} {f} {g}

TWU 41 64 78 57 48 3 29

Table 3.2: Transaction Weighted Utilities (TWUs) for the Example Database

Transaction weighted utilization has downward closure property, which means

for any itemset X and utility threshold θ, if twu(X) < θ, the utility of any superset

of X is lower than θ. For example, since twu({b, c}) = 64, any superset of X will

have utility lower than 64. Table 3.2 shows the TWU values for each item in the

example database.

Definition 7. (Total utility of a dataset D) The total utility of dataset D is

defined as UD =
∑
Td∈D

u(Td). For example, in Table 3.1, UD = u(T1) + u(T2) + ...+

U(T5) = 84.

Definition 8. (Relative utility of an itemset X in a dataset D) The relative

utility of an itemset X in dataset D is defined as uD(X)
UD

.

Definition 9. (High utility itemset) An itemset X is a high utility itemset (HUI)

in dataset D, iff uD(X) is no less than θUD, where θ is a user specified minimum

relative utility threshold.

Given a dataset D and a user specified minimum relative utility threshold θ, the

problem of high utility itemset mining is to discover all the high utility itemsets in

14



D.

However, mining all the high utility itemsets from a very large dataset is very

time and memory consuming. Distributed computing framework and sampling

based algorithms are, thus, more suitable to this task. In this thesis, distributed

computing framework and sampling are both utilized in our proposed algorithms.
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4 PHUI-Miner: Parallel High Utility Itemset

Mining

In this chapter, we propose a parallel high utility itemset mining algorithm, named

PHUI-Miner (Parallel High Utility Itemset Miner), which parallelizes the state-

of-the-art high utility itemset mining algorithm HUI-Miner [35]. PHUI-Miner is

proposed to mine exact results from a dataset, based on Apache Spark. PHUI-

Miner adopts a way to split the search space, which is inspired by PFP [27] from

Google.

Below, the HUI-Miner algorithm will be reviewed first, so that the reader can

better understand our proposed approach. And then, our novel parallel distributed

algorithm PHUI-Miner is elaborated.

4.1 Review of HUI-Miner

HUI-Miner mines high utility itemsets without candidate generation. It utilizes a

utility-list structure to store the utility information of a database. Constructing

16



TID Transaction

T1 (a, 3) (d, 5) (c, 2)

T2 (a, 6) (e, 6) (d, 5) (b, 10) (c, 3)

T3 (d, 5) (b, 8) (c, 3)

T4 (c, 2)

T5 (e, 3) (b, 6) (c, 4)

Table 4.1: Revised Transactions

the initial utility-lists needs two database scans. The first scan of database accu-

mulates the TWU values for all the items. During the second database scan, the

unpromising items are filtered, and the rest of the items in all the transactions

are sorted according to their TWU, in ascending order. The filtered and sorted

transactions are called revised transactions. Simultaneously, the initial utility-lists

are constructed. The structure of utility-lists is explained later in this section.

For example, in the example database in Table 3.1, if the utility threshold is 30,

f and g are unpromising items since their TWU values are less than 30. The rest of

the items are sorted according to their TWU ascending order: a < e < d < b < c.

The revised transactions of the example database are shown in Table 4.1. In the

utility-lists, each utility-list of itemset X has a list of elements, where each element

contains three fields: tid, iutil and rutil. [35]
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{ a }

1

2

3

6

7

24

{ e }

2

5

6

3

18

10

{ d }

1

2

5

5

2

13

{ b }

2

3

10

8

3

3

{ c }

1

2

2

3

0

0

3 5 11 5 6 4 3

4

5

3

2

4

0

0

0

tid iutil rutil

Figure 4.1: Initial Utility-Lists

• tid is the transaction ID of T containing X.

• iutil is the utility of X in T .

• rutil is the sum of utilities of all the items after X in T .

Figure 4.1 shows the initial utility-lists constructed by the second database scan.

Then utility-lists of k-itemsets are constructed from utility-lists of (k-1)-itemsets

and (k-2)-itemsets recursively. The utility-list of itemset Pxy is constructed from

utility-lists of itemsets P , Px and Py, where P is an itemset, while x and y are

items. For example, to construct the utility-list of itemset edbc, the utility-lists

of itemsets ed, edb and edc are needed. In the case of k = 2, the utility-lists of

2-itemsets are constructed from utility-lists of 1-itemsets and 0-itemsets. Since 0-

itemsets are empty itemsets, the utility-lists of 0-itemsets are defined to be empty

too in HUI-Miner. Algorithm 1 [35] shows the procedure in constructing a utility-
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root

a e d cb

ae ad ab ac ed eb ec db dc bc

aed aeb aec adb adc abc edb edc ebc dbc

aedb aedc aebc adbc edbc

aedbc

Figure 4.2: Search Space

list of a k-itemset.

The search space of high utility itemset mining can be represented as a set-

enumeration tree [39]. In the tree, each node is an itemset. Given a list of items

sorted in their TWU ascending order, the children of the root node is all the items.

The other nodes in the tree are generated by appending an item to the itemset

X in the parent node. The item is from the siblings of the parent node whose

itemsets are the same as X except for the last item. The last items of those siblings

are appended to X as the children of the parent node. For example, given five

items with TWU ascending order a < e < d < b < c, the set-enumeration tree is
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depicted in Figure 4.2 [35]. HUI-Miner mines HUIs recursively, using a depth first

search in the search tree. HUI-Miner also prunes subtrees of the search space if

it determines that all the itemsets in the subtrees are unpromising based on some

criterion. Algorithm 2 [35] shows the procedure of HUI-Miner.

4.2 PHUI-Miner

PHUI-Miner is a distributed algorithm, which parallelizes HUI-Miner. In PHUI-

Miner, the search space is divided and assigned to each node in a cluster. Each

node is only responsible for mining the assigned search space, which in another

word, splits the workload into different nodes in the cluster.

Figure 4.3 is the data flow of PHUI-Miner. Given a transaction dataset D,

PHUI-Miner first reads the dataset from HDFS to different nodes. The dataset is

stored in HDFS in a distributed way, that the dataset is split into blocks, where

every block has a fixed size, defined in the configuration file of HDFS, except the

last block. The blocks are usually replicated to ensure reliability. The dataset is

read from HDFS in a unit of block, and the blocks will be as evenly distributed in

different nodes as possible. Also, the blocks will be assigned to their local nodes if

possible, to lower the communication cost. Each node stores a part of D. Then,

itemTWU list is built, which contains the TWU values of each item in the whole

dataset. itemTWU is used to revise the transactions, which prunes the unpromising
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Figure 4.3: Data Flow of PHUI-Miner
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items and sorts the items in ascending order according to their TWU values in all

the transactions. itemTWU is also used to generate an item-node list, which assigns

each promising item to a node in the cluster, as described in Section 4.2.1. The

item-node list is also required for generating transactions required for each node to

mine their assigned search space, referred to as node data. The details of generating

node data are described in Section 4.2.2. Then each node mines its node data in its

assigned search space for node HUIs, as described in Section 4.2.3. Finally, node

HUIs in all the nodes are aggregated directly for final results.

4.2.1 Dividing the Search Space

In PHUI-Miner, we use a divide and conquer strategy that divides a big task into

smaller sub-tasks. In another word, the search space is split into sub-spaces. For

example, in Figure 4.2, the list of items is a, e, d, b, c in TWU-ascending order.

Based on this list, we divide the itemsets to be mined into the itemsets containing

a, the itemsets containing e but no a, the itemsets containing d but no a or e, and

so on.

In PHUI-Miner, each node is assigned one or more sub-tasks. For example,

in Figure 4.2, if there are 2 nodes in the cluster, the items are divided into 2

groups and assigned to different nodes. Assuming items a, e, d are assigned to

node 1, and b, c are assigned to node 2, node 1 will be responsible for mining all
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the itemsets containing item a, the itemsets containing item e but no a and the

itemsets containing item d but no a or e, while node 2 will be responsible for mining

itemsets containing item b but no a, e or d and itemsets containing item c but no

a, e, d or b.

The way of assigning the items to nodes affects the time performance of our

algorithm, since the numbers of itemsets in different sub-spaces are different. For

example, in Figure 4.2, there are 16, 8, 4, 2, 1 itemsets in the sub-spaces a, e, d, b, c

respectively. However, due to pruning in HUI-Miner and the fact that the items

are sorted according to their TWU values, the difference of the numbers of itemsets

is not as big as shown in the search space.

To split the workload to different nodes more evenly, we designed an approach,

which makes the assignment of items more balanced. Suppose there are N nodes

in the cluster with node id 1, 2, ..., N , the items sorted according to their TWU

ascending order are assigned one by one to nodes 1, 2, ..., N , and then nodes N,N−

1, ..., 1, etc. For example, if the sorted items are a, e, d, b, c and we have 2 nodes

in the cluster, items a, e are assigned to nodes 1, 2 respectively. And then, items

d, b are assigned to nodes 2, 1 and item c is assigned to node 1. So finally, items

a, b, c are assigned to node 1 and items e, d are assigned to node 2. We do not

guarantee that this assignment is the optimal solution. However, this approach is

demonstrated to be better than random assignment in most cases according to our
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experiments in Chapter 6. If in the example above, the items d, b are assigned to

nodes 1, 2 instead. The subspaces assigned to node 1 will always be much bigger

than the ones assigned to node 2. So our way of assigning the subspaces is also

intuitively more balanced. Algorithm 3 depicts the procedure of assigning items to

different nodes. The output of this procedure is a hashmap, which maps items to

it assigned nodes, called inlist.

We also try to further improve the balance of workloads by splitting the search

space, so that each node mines itemsets with a prefix of depth d, where d > 1.

However, in this approach, the node data generating phase requires a lot of pattern

matching, which could largely reduce the time performance. Also, the itemsets with

length smaller than d need to be mined in another way. We designed an algorithm

which replicates the whole dataset to all the nodes, instead of generating node data

for them. We conducted several experiments and found that this approach is slower

than PHUI-Miner, but faster than HUI-Miner on a single machine.

4.2.2 Generating Node Data

The data for each node is generated such that, if an item is assigned to a node, the

exact utility of the itemsets beginning with the item can be mined with only the

data assigned to the node. So if a transaction does not contain any of the assigned

items, the transaction is not included in the data for the node. If a transaction
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contains some of the assigned items, only a subset of the transaction, starting from

the leftmost item which is assigned to the node to the end, are included in the data

for the node.

Algorithm 4 is the procedure of generating the node data. The procedure utilizes

a flatMap operation in Spark. The flatMap operation allows mapping a value to

0 or more key-value pairs. For every revised transaction, it is scanned from the

beginning to the end. For each item in the transaction, the node id nid of the item

is found in inlist. If nid has not been output, the procedure outputs a key-value

pair of <nid, T>, where T is a subset of the transaction, starting from the item to

the end. The output RDD of the flatMap operation is then grouped according to

the key values and repartitioned to each node.

4.2.3 Mining Node Data

After the node data is generated, each node mines its node data in its assigned

search space for node HUIs. Specifically, each node mines HUIs beginning with the

items assigned to it. Algorithm 5 illustrates the mining process. This process is

very similar to Algorithm 2, except that Algorithm 5 checks whether the utility-list

should be generated in Line 3.

Before we designed the algorithm PHUI-Miner, we also designed an algorithm

parallelizing UP-Growth [42]. The algorithm is the same as PHUI-Miner except for
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the Mining Node Data phase. In parallelized UP-Growth, each node in the cluster

mines itemsets starting with specific items by constructing local UP-Tree [42] for

those items. After discovering all the potential high utility itemsets, another step is

taken to calculate the exact utility values of all the potential HUIs. However, this

approach on a cluster of 20 machines is much slower than HUI-Miner on a single

machine. As a result, we do not introduce this approach in detail in this thesis.
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Algorithm 1 Constructing Utility-List for K-Itemset (Taken from [35])

Input: P.UL, the utility-list of itemset P

Px.UL, the utility-list of itemset Px

Py.UL, the utility-list of itemset Py

Output: Pxy.UL, the utility-list of itemset Pxy

1: procedure Construct

2: Pxy.UL = NULL

3: for element Ex ∈ Px.UL do

4: if ∃Ey ∈ Py.UL and Ex.tid == Ey.tid then

5: if P.UL is not empty then

6: search such element E ∈ P.UL that E.tid == Ex.tid

7: Exy =< Ex.tid, Ex.iutil + Ey.iutil − E.iutil, Ey.rutil >

8: else

9: Exy =< Ex.tid, Ex.iutil + Ey.iutil, Ey.rutil >

10: end if

11: append Exy to Pxy.UL

12: end if

13: end for

14: return Pxy.UL

15: end procedure
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Algorithm 2 HUI-Miner (Taken from [35])

Input: P.UL, the utility-list of itemset P , initially empty

ULs, the set of utility-lists of all P ’s 1-extensions

minUtil, the minimum utility threshold

Output: all the HUIs with P as prefix

1: procedure HUI-Miner

2: for utility-list X ∈ ULs do

3: if SUM(X.iutil) ≥ minutil then

4: output the extension associated with X

5: end if

6: if SUM(X.iutil) + SUM(X.rutil) ≥ minutil then

7: exULs = NULL

8: for utility-list Y after X in ULs do

9: exULs = exULs+ Construct(P.UL,X, Y )

10: end for

11: HUI-Miner(X, exULs, minutil)

12: end if

13: end for

14: end procedure
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Algorithm 3 Divide Search Space

Input: items, items sorted according to their TWU ascending order

N , the number of nodes

Output: inlist, a hashmap which maps items to nodes

1: procedure

2: mp ← empty hashmap

3: node ← 1

4: inc ← 1

5: flag ← false

6: for x in items do

7: mp[x] ← node

8: node ← node + inc

9: if node is the first or last node of all the nodes then

10: if flag then

11: flag ← false

12: if node is the first one then

13: inc ← 1
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14: else

15: inc ← -1

16: end if

17: else

18: flag ← true

19: inc ← 0

20: end if

21: end if

22: end for

23: return mp

24: end procedure
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Algorithm 4 Generating Node Data
Input: Ti, transaction

inlist, the hashmap which maps items to nodes

Output: 0 or more <node id, transaction>

1: procedure flatMap

2: added← empty set

3: for j ← 0 to |Ti| − 1 do

4: find item Ti[j] in inlist and get node id nid

5: if nid is not in added then

6: add nid to added

7: T ← subset of Ti from j to end

8: output <nid, T>

9: end if

10: end for

11: end procedure
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Algorithm 5 Mining Node Data

Input: P.UL, the utility-list of itemset P , initially empty

ULs, the set of utility-lists of all P ’s 1-extensions

minUtil, the minimum utility threshold

inlist, the item-node list

nid, the node id of the current node

Output: all the HUIs with P as prefix

1: procedure Node-Miner

2: for utility-list X ∈ ULs do

3: if P is not empty or inlist(X.firstItem) == nid then

4: if SUM(X.iutil) ≥ minutil then

5: output the extension associated with X

6: end if
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7: if SUM(X.iutil) + SUM(X.rutil) ≥ minutil then

8: exULs = NULL

9: for utility-list Y after X in ULs do

10: exULs = exULs+ Construct(P.UL,X, Y )

11: end for

12: Node-Miner(X, exULs, minutil, inlist, nid)

13: end if

14: end if

15: end for

16: end procedure
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5 Sampling: Approximate High Utility Itemset

Mining

In the previous chapter, a parallel distributed algorithm was proposed, which splits

the search space, and mines HUIs parallelly with a cluster of nodes. However, when

the dataset gets bigger, the running time could sometimes be unacceptably long.

One option to solve this problem is to only get an approximate set of results, instead

of the exact results. In most cases, approximation results are already satisfactory

to business owners.

In this chapter, a sampling strategy is proposed which determines the required

sample size in order to achieve a given accuracy. A theorem will be proved which

provides a theoretical bound for the error introduced by sampling.

The sampling method proposed in this thesis mines an approximate set of HUIs,

by mining a subset of the whole dataset, which could lead to better time per-

formance. An approach that combines sampling with PHUI-Miner proposed in

Chapter 4 is also proposed in this chapter which does sampling first and then uses
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PHUI-Miner to mine the sampled dataset.

We present the definitions and lemmas used in the theorem first, and then the

theorem is provided. Finally, PHUI-Miner with Sampling is proposed.

5.1 Definitions and Lemmas

Given a dataset D, a user defined minimum threshold θ ∈ [0, 1], probability bound

δ ∈ [0, 1), error bound ε ∈ [0, θ] and probability parameter k > 1, the sampling

strategy introduced in this chapter guarantees that itemset X is output with prob-

ability at least 1− δ− 1
k2

, if X is a HUI. To achieve this guarantee, a new theorem

will be given, and proved in this section, which provides the minimum sample size

required, given the parameters.

Before determining the sample size needed, another step is needed in order

to get the statistics, including total utility, average transaction utility, maximum

transaction utility and standard deviation of transaction utilities, of dataset D.

Total utility is to be used in the mining process, while the other three are needed

in the theorem.

Definition 10. (Average Transaction Utility of a dataset D) The average

transaction utility of dataset D is defined as avgD = 1
n

∑
Td∈D

u(Td), where n is the

number of transactions in D.
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Figure 5.1: Data Flow for Getting Statistics of a Dataset

Definition 11. (Maximum Transaction Utility of a dataset D) The maxi-

mum transaction utility of dataset D is defined as maxD = max
Td∈D

u(Td).

Definition 12. (Standard Deviation of Transaction Utilities of a dataset

D) The standard deviation of transaction utilities of a dataset D is denoted as σD.

Figure 5.1 illustrates the data flow in Spark for getting the statistics of a dataset.

The dataset is first read from HDFS to Spark as a RDD (Resilient Distributed

Dataset) of transactions. Then the data in each node is scanned for their statistics.

Finally, the statistics are combined. This process is expected to be fast, since only

addition and comparison are involved here. In the case that the dataset is so huge

that even determining the statistics is not feasible, sampling could also be used

here. However, the discussion of this case is out of the scope of this thesis.

It is worth to mention that the way of getting standard deviation of transaction

utilities in one pass of database scan is not very obvious. Usually, we use the

36



formula

σ =

√√√√ 1

N − 1

N∑
i=1

(xi − x)2 (5.1)

to calculate the standard deviation of xi, i = 1, 2, ..., N , where x is the average of

these N values. This formula requires two scans of the values: one is to calculate

x and the other is to calculate the final result. However, (5.1) has an algebraic

identity

σ =

√√√√ 1

N − 1

[(
N∑
i=1

x2i

)
−Nx2

]
, (5.2)

which only need one scan of the values.

In order to derive the new theorem later in this section, the following lemmas

are discussed first.

Lemma 1. (Hoeffding’s inequality) [24, Theorem 2] If X1, X2, ..., Xn are inde-

pendent variables, S = X1 +X2 + ...+Xn and ai ≤ Xi ≤ bi(i = 1, 2, ..., n), then for

any v > 0,

Pr

(
S

n
− E

(
S

n

)
≥ v

)
≤ exp

(
−2n2v2∑n

i=1 (bi − ai)2

)
. (5.3)

Lemma 2. If X1, X2, ..., Xn are independent variables, S = X1 +X2 + ...+Xn and

ai ≤ Xi ≤ bi(i = 1, 2, ..., n), then for any t > 0,

Pr (|S − E(S)| ≥ t) ≤ 2 exp

(
−2t2∑n

i=1 (bi − ai)2

)
(5.4)

Proof. Using a similar proof in [24], we have

Pr

(
S

n
− E

(
S

n

)
≤ −v

)
≤ exp

(
−2n2v2∑n

i=1 (bi − ai)2

)
. (5.5)
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From (5.3) and (5.5),

Pr

(∣∣∣∣Sn − E
(
S

n

)∣∣∣∣ ≥ v

)
≤ 2 exp

(
−2n2v2∑n

i=1 (bi − ai)2

)
. (5.6)

Let v = t
n
, so for any t > 0,

Pr(|S − E(S)| ≥ t) ≤ 2 exp

(
−2t2∑n

i=1 (bi − ai)2

)
. (5.7)

Lemma 3. (Chebyshev’s inequality) Let X (integrable) be a random variable

with finite expected value µ and finite non-zero variance σ2. Then for any real

number k > 0,

Pr (|X − µ| ≥ kσ) ≤ 1

k2
(5.8)

Lemma 4. Let X1, X2, ..., XN be a set of N independent random variables, and

each Xi has the same probability distribution with mean E(X) and variance σ2.

Then, the average of the N variables X = X1+X2+...+XN

N
has a distribution with

mean E(X) = E(X) and variance σ2
X

= σ2

N
.

Proof. The property of means states that if X and Y are two random variables,

then

E(X + Y ) = E(X) + E(Y ) (5.9)

and

E(a+ bX) = a+ bE(X), (5.10)
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where a and b are constant values.

The property of variances states that if X and Y are two random variables, then

σ2
X+Y = σ2

X + σ2
Y (5.11)

and

σ2
a+bX = b2σ2

X , (5.12)

where a and b are constant values.

So,

E(X) = E

(
X1 +X2 + ...+XN

N

)
=
E(X1) + E(X2) + ...+ E(XN)

N
=
N · E(X)

N
= E(X) (5.13)

and

σ2
X

= σ2
X1+X2+...+XN

N

=
σ2
X1

+ σ2
X2

+ ...+ σ2
XN

N2
=
N · σ2

N2
=
σ2

N
. (5.14)

In Lemma 4, X1, X2, ..., XN can be a sample drawn from a population. So this

lemma reveals the property of the probability distribution of the sample mean.

5.2 Sampling Strategy

The main challenge in sampling methods is to determine the required sample size

to achieve a given accuracy. A new theorem is proposed and proved in this section,
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in order to select the sample size we need.

We derive the following theorem from Lemma 2, 3 and 4:

Theorem 1. Given a dataset D with n transactions, and user given parameters

ε ∈ (0, 1), δ ∈ (0, 1), k > 1. Let S be a random sample of D, so that the size of S,

m ≥ 1
2ε2

(
maxD
avgD

)2
ln 2

δ
, then with probability at least 1 − δ − 1

k2
, uS(X)

US
is within the

interval
[
uD(X)
UD
−
(
ε+ k σD√

m·avgD

)
, uD(X)

UD
+
(
ε+ k σD√

m·avgD

)]
, for any itemset X.

Proof. Suppose there are m transactions in S: Tg1 , Tg2 , ..., Tgm . The utilities of

itemset X in these transactions are u(X,Tg1), u(X,Tg2), ..., u(X,Tgm), which can be

viewed as independent random variables.

The values of u(X,Tgi) are bounded:

u(X,Tgi) ∈ [0,maxD], 1 ≤ i ≤ m. (5.15)

Based on Definition 4,

uS(X) = u(X,Tg1) + u(X,Tg2) + ...+ u(X,Tgm). (5.16)

According to (5.4) and (5.16),

Pr(|uS(X)− E[uS(X)]| ≥ t) ≤ 2exp

(
− 2t2

m ·maxD2

)
,∀t > 0. (5.17)

Hence,

Pr

(∣∣∣∣uS(X)

m
− E

[
uS(X)

m

]∣∣∣∣ ≥ t

m

)
≤ 2exp

(
− 2t2

m ·maxD2

)
,∀t > 0. (5.18)
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From Lemma 4,

E

[
uS(X)

m

]
=
uD(X)

n
. (5.19)

We have,

Pr

(∣∣∣∣uS(X)

m
− uD(X)

n

∣∣∣∣ ≥ t

m

)
≤ 2exp

(
− 2t2

m ·maxD2

)
,∀t > 0. (5.20)

Hence,

Pr

(∣∣∣∣ uS(X)

m · avgD
− uD(X)

n · avgD

∣∣∣∣ ≥ t

m · avgD

)
≤ 2exp

(
− 2t2

m ·maxD2

)
,∀t > 0. (5.21)

Let t = εm · avgD, we have

Pr

(∣∣∣∣ uS(X)

m · avgD
− uD(X)

n · avgD

∣∣∣∣ ≥ ε

)
≤ 2exp

(
−2mε2 · avg2D

maxD2

)
,∀ε > 0. (5.22)

Since m ≥ 1
2ε2

(
maxD
avgD

)2
ln 2

δ
from the pre-condition of the theorem,

2exp

(
−2mε2 · avg2D

maxD2

)
≤ δ. (5.23)

From (5.22) and (5.23),

Pr

(∣∣∣∣ uS(X)

m · avgD
− uD(X)

n · avgD

∣∣∣∣ ≥ ε

)
≤ δ, ∀ε > 0. (5.24)

Thus,

Pr

(∣∣∣∣ uS(X)

m · avgS
· avgS
avgD

− uD(X)

n · avgD

∣∣∣∣ ≤ ε

)
≥ 1− δ, ∀ε > 0. (5.25)

Consequently,

Pr

(∣∣∣∣uS(X)

US
· avgS
avgD

− uD(X)

UD

∣∣∣∣ ≤ ε

)
≥ 1− δ,∀ε > 0. (5.26)
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From Lemma 4, we also have

E(avgS) = avgD (5.27)

and

σavgS =
σD√
m
. (5.28)

If σD 6= 0, from Lemma 3 we have

Pr

(
|avgS − avgD| ≥ k · σD√

m

)
≤ 1

k2
,∀k > 1, (5.29)

where avgS is viewed as a random variable.

So,

Pr

(∣∣∣∣ avgSavgD
− 1

∣∣∣∣ ≥ k · σD√
m · avgD

)
≤ 1

k2
,∀k > 1. (5.30)

Hence,

Pr

(∣∣∣∣ avgSavgD
− 1

∣∣∣∣ ≤ k · σD√
m · avgD

)
≥ 1− 1

k2
, ∀k > 1. (5.31)

In (5.26), if we denote
∣∣∣uS(X)

US
· avgS
avgD
− uD(X)

UD

∣∣∣ ≤ ε as event A, (5.26) is equivalent

to Pr (A) ≥ 1− δ.

In (5.31), if we denote
∣∣∣ avgSavgD

− 1
∣∣∣ ≤ k · σD√

m·avgD
as event B, (5.31) is equivalent

to Pr (B) ≥ 1− 1
k2

.

And,

Pr(A) + Pr(B)− Pr(A ∧B) = Pr(A ∨B) ≤ 1. (5.32)
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So,

Pr(A ∧B) ≥ Pr(A) + Pr(B)− 1 ≥ 1− δ − 1

k2
, (5.33)

which is equivalent to

Pr

(∣∣∣∣uS(X)

US
· avgS
avgD

− uD(X)

UD

∣∣∣∣ ≤ ε ∧
∣∣∣∣ avgSavgD

− 1

∣∣∣∣ ≤ k · σD√
m · avgD

)
≥

1− δ − 1

k2
, ∀ε > 0, k > 1. (5.34)

Since

∣∣∣∣uS(X)

US
· avgS
avgD

− uD(X)

UD

∣∣∣∣ ≤ ε ∧
∣∣∣∣ avgSavgD

− 1

∣∣∣∣ ≤ k · σD√
m · avgD

⇒∣∣∣∣uS(X)

US
− uD(X)

UD

∣∣∣∣ ≤ ε+
uS(X)

US
· k σD√

m · avgD
, (5.35)

we have

Pr

(∣∣∣∣uS(X)

US
− uD(X)

UD

∣∣∣∣ ≤ ε+
uS(X)

US
· k σD√

m · avgD

)
≥

Pr

(∣∣∣∣uS(X)

US
· avgS
avgD

− uD(X)

UD

∣∣∣∣ ≤ ε ∧
∣∣∣∣ avgSavgD

− 1

∣∣∣∣ ≤ k · σD√
m · avgD

)
. (5.36)

From (5.34) and (5.36),

Pr

(∣∣∣∣uS(X)

US
− uD(X)

UD

∣∣∣∣ ≤ ε+
uS(X)

US
· k σD√

m · avgD

)
≥

1− δ − 1

k2
, ∀ε > 0, k > 1. (5.37)
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And since

uS(X)

US
≤ 1, (5.38)

consequently,

Pr

(∣∣∣∣uS(X)

US
− uD(X)

UD

∣∣∣∣ ≤ ε+ k
σD√

m · avgD

)
≥

Pr

(∣∣∣∣uS(X)

US
− uD(X)

UD

∣∣∣∣ ≤ ε+
uS(X)

US
· k σD√

m · avgD

)
. (5.39)

Thus, from (5.37) and (5.39),

Pr

(∣∣∣∣uS(X)

US
− uD(X)

UD

∣∣∣∣ ≤ ε+ k
σD√

m · avgD

)
≥ 1− δ − 1

k2
, ∀ε > 0, k > 1, (5.40)

under the condition that σD 6= 0.

If σD = 0, all the transactions are having the same utility. So avgS = avgD.

From (5.26),

Pr

(∣∣∣∣uS(X)

US
− uD(X)

UD

∣∣∣∣ ≤ ε

)
≥ 1− δ, ∀ε > 0. (5.41)

So

Pr

(∣∣∣∣uS(X)

US
− uD(X)

UD

∣∣∣∣ ≤ ε+ k
σD√

m · avgD

)
≥

Pr

(∣∣∣∣uS(X)

US
− uD(X)

UD

∣∣∣∣ ≤ ε

)
≥ 1− δ ≥ 1− δ − 1

k2
, ∀ε > 0, k > 1, (5.42)

under the condition that σD = 0.

To sum up,

Pr

(∣∣∣∣uS(X)

US
− uD(X)

UD

∣∣∣∣ ≤ ε+ k
σD√

m · avgD

)
≥ 1− δ − 1

k2
, ∀ε > 0, k > 1, (5.43)

44



under all conditions, which concludes that for any itemsetX, ifm ≥ 1
2ε2

(
maxD
avgD

)2
ln 2

δ
,

then with probability at least 1− δ − 1
k2

, uS(X)
US

is within the interval[
uD(X)
UD
−
(
ε+ k σD√

m·avgD

)
, uD(X)

UD
+
(
ε+ k σD√

m·avgD

)]
.

For simplicity, we denote

ω(ε, δ,D) =
1

2ε2

(
maxD
avgD

)2

ln
2

δ
(5.44)

and

ε′ = ε+ k
σD√

m · avgD
(5.45)

in the rest of this thesis.

In the final results, if the minimum threshold is θ, we output all the itemsets

with utility at least (θ − ε′)US in sample S of size at least ω(ε, δ,D).

It is worth to mention that ω(ε, δ,D) is independent of the size of the original

dataset. The only factor from the dataset comes from the statistics of it, i.e. maxD

and avgD. When the dataset becomes larger, if maxD
avgD

does not change much, the

required sample size will also stays similar. In general, we can expect that avgD

does not change much, and maxD grows slowly as the dataset size becomes bigger.

If some transactions make maxD much higher than the majority of the transactions,

we can also remove these transactions, since they are usually considered outliers.

We hereby prove that the accuracy of our results is guaranteed.
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Theorem 2. With minimum threshold θ, if we output all the itemsets with utility

at least (θ − ε′)US in sample S of size at least ω(ε, δ,D), itemset X is output with

probability at least 1− δ − 1
k2

, if X is an HUI in dataset D.

Proof. Since itemset X is an HUI, according to the definition of HUI, we have

uD(X) ≥ θUD. (5.46)

Hence,

uD(X)

UD
− ε′ ≥ θ − ε′. (5.47)

According to Theorem 1,

uS(X)

US
≥ uD(X)

UD
− ε′ (5.48)

with probability at least 1− δ − 1
k2

.

From 5.47 and 5.48, we have

uS(X)

US
≥ θ − ε′ (5.49)

with probability at least 1− δ − 1
k2

.

So X is output with probability at least 1− δ − 1
k2

.

Theorem 3. With minimum threshold θ, if we output all the itemsets with utility

at least (θ − ε′)US in sample S of sample size at least ω(ε, δ,D), any itemsets in

the output are guaranteed to have a utility at least (θ − 2ε′)UD in dataset D with

probability at least 1− δ − 1
k2

.
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Proof. Suppose itemset X is output, we have

uS(X) ≥ (θ − ε′)US. (5.50)

Hence,

uS(X)

US
≥ θ − ε′. (5.51)

According to Theorem 1,

uS(X)

US
≤ uD(X)

UD
+ ε′ (5.52)

with probability at least 1− δ − 1
k2

.

From 5.51 and 5.52, we have

θ − ε′ ≤ uD(X)

UD
+ ε′ (5.53)

with probability at least 1− δ − 1
k2

.

Hence,

uD(X)

UD
≥ θ − 2ε′ (5.54)

with probability at least 1− δ − 1
k2

.

So X has a utility at least (θ − 2ε′)UD in dataset D with probability at least

1− δ − 1
k2

.

There are 3 parameters used in this sampling strategy, namely ε, δ and k. The

value of k determines a base value for the probability bound. k will be set to 2
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in our experiments. The reason for choosing this value for k will be explained in

Section 6.2. The value of δ, in the range of (0, 1), determines the probability bound

together with k. If users want to have more confidence in the results, δ could be

set to a lower value, and the required sample size will be bigger. ε, in the range

of (0, 1), is the extra error bound for the relative utility, i.e. error in addition to

k σD√
m·avgD

. Choosing a smaller value for ε will lead to more accurate results, but a

bigger required sample size. So choosing the values for δ and ε is very important in

the sampling strategy. We need to make sure that the values for parameters will

not result in a sample size even bigger than the total size of the dataset. Also, we

want the error bound to be low and the probability bound to be high, so that the

results could have a relatively high accuracy and confidence. In my experiments,

we usually choose the value of ε to be 1
10

of the relative utility threshold. If the

required sample size is too big compared to the total size of the dataset, the value

of ε will be increased a little bit for looser error bound and smaller sample size.

5.3 PHUI-Miner with Sampling

The sampling method mines an approximate set of HUIs, but reduces the size

of the dataset to ω(ε, δ,D) as shown in this chapter. However, in most cases, a

sample with size ω(ε, δ,D) is still too large to mine for a single machine. Besides,

the parallel distributed algorithm proposed in the previous chapter also has the

48



running time issue, when the dataset gets bigger. Our solution to this problem is

to combine the two methods, so that the dataset is sampled before being processed

by PHUI-Miner.

In this section, an approach combining sampling and PHUI-Miner, referred to

as, PHUI-Miner with Sampling, is proposed.

Given a dataset D, a minimum relative utility threshold θ, user provided pa-

rameters δ, ε and k. Theorem 1 guarantees that if we only use a sample of D with

size ω(ε, δ,D), and mine all the itemsets with relative utility no less than θ − ε′,

any high utility itemset X will appear in the output with probability 1− δ − 1
k2

.

Our approach first draws a sample with size ω(ε, δ,D) from the whole dataset,

and then mines HUIs with threshold θ − ε′ parallelly with PHUI-Miner. In this

way, PHUI-Miner with Sampling is able to achieve the same accuracy as using a

single machine to mine a sample of the dataset, and have better time and memory

performance than using PHUI-Miner alone.
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6 Experimental Results

The parallel distributed algorithm PHUI-Miner and the sampling method, pro-

posed in this thesis, are evaluated in this chapter. The evaluations are focused on

the time performance of PHUI-Miner, and the accuracy of the sampling method.

Experiments are also conducted to evaluate the time performance of PHUI-Miner

with Sampling in Section 6.1.

In our experiments, parallel distributed algorithms are run on Amazon Web

Services (AWS). We used twenty r3.xlarge instances to run HDFS and Spark on

them. One of the instances is used as Master, while the others are Workers. The

non-parallel algorithms are conducted on a single Intel(R) Xeon(R) X5660 computer

with 50 GB of RAM.

The experiments are conducted on different datasets, kosarak [19], accidents [19],

chess [19], twitter [26], T5000L10I1P10PL6, ta-feng [4] and globe. T5000L10I1P10PL6

is a synthetic dataset, while the other six are real-world datasets. T5000L10I1P10PL6

is generated using the IBM Quest Data Generator [21]. The IBM Quest Data
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number of transactions 5,000,000

average items per transaction 10

number of different items 1,000

number of patterns 10

average length of maximal pattern 6

Table 6.1: Parameters of the Synthetic Dataset

Generator is often used in studies of frequent pattern mining and association rule

mining, and can generate datasets without utilities according to input parameters.

The parameters for the synthetic dataset used in this paper are shown in Table

6.1. For T5000L10I1P10PL6, the internal utilities are generated using a uniform

distribution in [1, 10], while the external utilities are generated using a log-normal

distribution, with µ = 1 and σ = 0.5. The kosarak dataset contains anonymized

click-stream data of a Hungarian online news portal, which is a sparse dataset.

The accidents dataset consists of a collection of traffic accident records. Each

record contains a description of an accident such as gender of the driver, speed

limit of the road, and whether alcohol is involved. The chess dataset is derived

from chess game steps, which is very dense. The utility values for kosarak, acci-

dents and chess are taken from [19], where the internal utility values are generated

using a uniform distribution in [1, 10] and the external utility values are generated
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using a normal distribution. The twitter dataset describes the followers of Twitter

users, in which each transaction corresponds to a user and contains the list of fol-

lowers of the user. For the twitter dataset, the internal utilities are generated using

a log-normal distribution, with µ = 2.22 and σ = 0.6. The external utilities are

generated using a log-normal distribution, with µ = 0 and σ = 0.1. The ta-feng

dataset is from a supermarket in Taiwan and describes the transactions collected

within a time span of four months, from November, 2000 to February, 2001. There

are a total of 119,578 transactions involving 24,069 products and 32,266 customers

in the dataset [33], which contains profits of each merchandise. The globe dataset

comes from The Globe and Mail [5], which is a news company in Canada. Each

transaction in the globe dataset represents page views of a visitor in one time. The

items are the titles of articles, while the internal utilities are the times spent on the

articles and the external utilities are all 1’s. The reason for choosing the values in

T5000L10I1P10PL6 and twitter is that, in the sampling method, the resulting sam-

ple size ω(ε, φ,D) should be smaller than the original dataset. Otherwise, we should

mine the HUIs using the original dataset without sampling. We also trimmed the

lengths of transactions in twitter to at most 15 for simplicity.

Below, we first present the performance of PHUI-Miner and PHUI-Miner with

Sampling. Then, the accuracy of the sampling strategy will be evaluated. Finally,

the application of high utility itemset mining will be discussed.
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6.1 PHUI-Miner and PHUI-Miner with Sampling

Since PHUI-Miner is an exact approach, there is no need for the accuracy evaluation

for it. The evaluation of PHUI-Miner is conducted in terms of time performance

and speedup. We also evaluate the time performance of PHUI-Miner with Sampling

in this section.

To better evaluate our algorithm, we designed an algorithm, called PHUI-Miner

Rnd, for comparison purpose. The PHUI-Miner Rnd algorithm is the same as

PHUI-Miner except for the Split Search Space phase. In PHUI-Miner Rnd, the

items are split randomly into different nodes instead of using the procedure shown

in Algorithm 3. Comparing PHUI-Miner Rnd with PHUI-Miner shows that the

choice of the way of splitting the search space in our designing of PHUI-Miner is

reasonable. Experiments on PHUI-Miner Rnd are conducted at least 5 times for

each experiment to get average results.

Below, the time performance of PHUI-Miner and PHUI-Miner with Sampling

is first presented. And then, the speedup of PHUI-Miner is evaluated.

6.1.1 Time Performance

To the best of our knowledge, very few studies have been proposed to use distributed

computing technique to mine high utility itemsets. Thus, the time performance of
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PHUI-Miner is evaluated against HUI-Miner and PHUI-Miner Rnd, while PHUI-

Miner with Sampling is compared with PHUI-Miner.

Since the datasets twitter and T5000L10I1P10PL6 consume too much mem-

ory as well as running time, HUI-Miner is not able to mine these two datasets.

So the comparison of PHUI-Miner and HUI-Miner is only conducted on kosarak,

accidents, chess, ta-feng and globe. Figures 6.1a, 6.1b, 6.1c, 6.1f and 6.1g show

the results for comparing PHUI-Miner with HUI-Miner. Our method outperforms

HUI-Miner in all the cases. However, when the relative utility threshold is big,

the time performance of HUI-Miner approaches PHUI-Miner. This is because of

the network latency the cluster introduces. PHUI-Miner will need at least some

time to read the data from the HDFS, repartion the data, etc. When the threshold

is small, and a large amount time is needed in the mining process. PHUI-Miner

works much better than HUI-Miner.

Figure 6.1 also shows the time performance of PHUI-Miner and PHUI-Miner

Rnd. In kosarak, accidents, chess, ta-feng and globe, the time performances of

the two methods are similar. However, PHUI-Miner is slightly faster than PHUI-

Miner Rnd in these datasets. For the twitter dataset, PHUI-Miner works much

better than PHUI-Miner Rnd. For the T5000L10I1P10PL6 dataset, PHUI-Miner

is slightly slower than PHUI-Miner Rnd though. These are normal behaviours,

since the distributions of different datasets are different. Some datasets may have
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very special distribution, that our approach is not the optimal solution to them.

However, it is shown that in most cases, PHUI-Miner works better than PHUI-

Miner Rnd. In the cases that PHUI-Miner works slower, the difference of them is

very small. As a result, our way of splitting the search space is demonstrated to be

a good choice.

For the comparison of PHUI-Miner with PHUI-Miner with Sampling, it is only

conducted on datasets accidents, twitter and T5000L10I1P10PL6. The other four

datasets are not suitable for the sample technique, since their minimum required

sample sizes exceed the sizes of the whole datasets. Figures 6.1b, 6.1d and 6.1e

show the experimental results of the time performance for PHUI-Miner with Sam-

pling and PHUI-Miner. The values of other parameters used in PHUI-Miner with

Sampling in this section are provided in Table 6.2. It’s demonstrated that PHUI-

Miner with Sampling has better time performances in all three datasets. In datasets

twitter and T5000L10I1P10PL6, which have millions of transactions, PHUI-Miner

with Sampling is much faster than PHUI-Miner.

6.1.2 Speedup

The speedup for PHUI-Miner is evaluated on the kosarak dataset. We used different

number of nodes to run the experiments, regarding the speed using two nodes as 1.

The results are in Figure 6.2. The relative utility threshold used for kosarak
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Dataset ε δ k

accidents 0.005 0.4 2

T5000L10I1P10PL6 0.005 0.1 2

twitter 0.001 0.7 2

Table 6.2: Values of Parameters
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Figure 6.1: Running Time of PHUI-Miner on (a) kosarak, (b) accidents, (c) chess,

(d) twitter, (e) T5000L10I1P10PL6, (f) ta-feng and (g) globe
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Figure 6.2: Speedup of PHUI-Miner

is 0.01. It’s shown that the speedup of PHUI-Miner is near linear, which means

our approach could scale well when we have more and more nodes. However, it is

notable that our algorithm could not have a linear speedup when we have a large

number of nodes. If there are too many nodes, the communication cost will be

dominating the total running time. But if the number of nodes is not very big, the

computation cost is the main cost.

6.2 Accuracy of Sampling Strategy

In order to evaluate the accuracy of our sampling strategy, we have performed

several experiments on accidents, T5000L10I1P10PL6 and twitter.

The statistics for the three datasets are in Table 6.3.

In this section, the effectiveness of Theorem 1 is demonstrated by experiments
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Dataset twitter T5000L10I1P10PL6 accidents

# of transactions 19,265,416 4,947,263 340,183

maximum utility 456 788 1034

average utility 121.15 196.04 576.58

Table 6.3: Statistics of Datasets in the Sampling Strategy

Dataset θ ε k

accidents 0.085 0.005 2

T5000L10I1P10PL6 0.03 0.005 2

twitter 0.004 0.001 2

Table 6.4: Values of Parameters

on mining samples drawn from different datasets. We evaluate the effectiveness of

the proposed sampling method against the exact results and provide the precision,

recall, f-measure and relative utility error of our method on the three datasets. The

relative utility error is computed as the utility error compared with the exact utility

results:

relative utility error =

∣∣∣∣approximate utility − exact utilityexact utility

∣∣∣∣ . (6.1)

Since ω(ε, δ,D) is independent of the total size of the dataset, even when the

dataset is very small, it’s still possible that a huge dataset size is required for a
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Figure 6.3: Sample Size of (a) accidents, (b) T5000L10I1P10PL6 and (c) twitter
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Figure 6.4: Sample Sizes for Different Sizes of Datasets

given accuracy according to our theorem, depending on the data distribution of

the dataset, while for some datasets, only a small fraction of the whole dataset

is required. Figure 6.3 presents the required sample size of the three datasets for

different δ’s. The values for other parameters used in this section are shown in

Table 6.4. The sample sizes grow exponentially as δ decreases. However, if a

reasonable δ is chosen, the sample size is usually much smaller than real-world big

datasets, that can have billions of transactions. Figure 6.4 shows the sample size for

different sizes of datasets. The datasets used in this figure are all generated using

the IBM Quest Data Generator with the same parameters as used in generating

T5000L10I1P10PL6 except the dataset size. The sample size in this figure is shown

to be not very related to the total size of the dataset. The sample size gets slightly
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bigger as the total size gets bigger because the value of maxD is more likely to get

bigger.

It is worth to mention that we chose the values for ε’s in Table 6.4 according to

the characteristics of the datasets. ε’s are chosen so that ε is much smaller than θ so

as to have a good accuracy. In the meanwhile, ε’s cannot be too small, since smaller

ε values result in bigger sample sizes. We chose 2 for k’s in all the datasets, since the

probability 1− δ− 1
k2

would be 0.75− δ, which is acceptable in our experiments. If

k is bigger, the threshold θ− ε′ used for mining would be smaller, which will affect

the accuracy and running performance of the sampling strategy. If k is smaller,

the probability guarantee of 1− δ − 1
k2

would be smaller. For the same reason, we

choose the same value for k’s in Section 6.1.

In our experiments, in order to better measure the accuracy of our algorithms,

we used a measure called precision with AFPs. Since our approach is to find all

HUIs with relative utility at least θ−ε′, the HUIs with relative utility in the range of

[θ− ε′, θ), called Acceptable False Positives (AFPs), are considered as true positives

in our results when computing the precision with AFPs. Correspondingly, we use

f-measure with AFPs to replace the commonly used f-measure.

Figure 6.5 shows the precision with AFPs, recall, and f-measure with AFPs

for different δ values. The recall is constantly 1, which means all the exact high

utility itemsets are found, although our theorem only guarantees that a high utility
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Figure 6.5: Accuracy of Sampling on (a) accidents, (b) T5000L10I1P10PL6 and

(c) twitter
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Figure 6.6: Accuracy of Sampling without AFPs on (a) accidents, (b)

T5000L10I1P10PL6 and (c) twitter
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Figure 6.7: Average Value and Standard Deviation of Relative Utility Error on (a)

accidents, (b) T5000L10I1P10PL6 and (c) twitter
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itemset can be found with probability 1 − δ − 1
k2

. This behaviour is reasonable.

We have a relatively loose bound for the sample size, which leads to sets of results

having recall higher than expected in our theorem. According to our experiments,

the precision with AFPs is always above 0.96, and approaches 1 as δ decreases. The

f-measure with AFPs has higher values than precision with AFPs as expected, and

also grows as δ decreases.

Sometimes, AFPs are even more than the true positives we have. However,

it is acceptable, since they all have relative utilities very close to θ. The number

of AFPs in the results depends on the distribution of datasets, as well as the

parameters provided. We also provide the experimental results of precision, recall,

and f-measure without considering AFPs in Figure 6.6.

The average relative utility errors and its standard deviations of itemsets in

the results are provided for different δ’s and different datasets, in Figure 6.7. The

relative utility errors and their standard deviations are trivial. Their values decrease

as δ gets smaller.

The experimental results show that our method works well and provides results

even better than what is expected in our theorem.
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6.3 Usefulness of High Utility Itemset Mining

High utility itemset mining has been studied by many researchers. In this section,

we use experimental results of the real-world dataset, globe, to present a real-world

example of the application of high utility itemset mining, for showing the usefulness

of high utility itemset mining.

As mentioned in the beginning of this chapter, the globe dataset contains news

articles and the time spent on them for each user. Our objective of this application

is to make recommendations of news articles to readers. When a user reads an

article on The Globe and Mail, we want to recommend some other related articles

to this reader.

Frequent itemset mining and high utility itemset mining can both be used in

this application. Given an high utility itemset or frequent itemset, if a user reads

any item in the itemset, an simple way to do recommendation is to recommend the

remaining items in the itemset to the user. Frequent pattern mining is used a lot in

this type of applications. However, frequent pattern mining does not consider the

time spent on the articles. It is possible that the users browse articles very quickly

without interests in them. High utility itemset mining solves this problem by only

getting the itemsets with high utilities, which, in this case, is the total time spent

on these items. So if we recommend articles according to high utility itemsets, the
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users are expected to spend more time on the website, than recommending articles

based on frequent itemsets.

In this section, we use FP-Growth [22] and HUI-Miner [35] to get the top 10

frequent patterns and high utility itemsets from the globe dataset, and compare the

differences between them. Our objective is to find itemsets, that contain two or

more items so that we can make recommendations according to them. Thus, the

itemsets with only 1 item are not included in the results.

Rank Frequent Pattern Support Utility

1 [Vigil held for daughter of Conservative Party pres-

ident] [MH17: Disaster ratchets up Russia-Ukraine

tensions]

367 163523

2 [Canadian professor was killed in targeted attack,

Florida police say] [La Prairie, Quebec mayor dies

from wasp stings]

271 58493

3 [Target faces calls to withdraw from Canada] [Mike

Duffy facing 31 charges from Senate expenses scan-

dal, RCMP says]

231 77388
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4 [MH17: Disaster ratchets up Russia-Ukraine ten-

sions] [Rob Ford to undergo foot surgery; sobriety

coach no longer working full-time]

211 85182

5 [CBC lays off veteran sportscasters amid budget

cuts] [Celine Dion takes indefinite break to focus

on health, family]

201 46191

6 [Robin Williams warp-speed improvisation was al-

most too fast to be human] [CBC lays off veteran

sportscasters amid budget cuts]

200 70219

7 [Wednesday’s analyst upgrades and downgrades]

[One of the few quality dividend stocks left that

pays a 5% yield]

199 54302

8 [We need to talk about masturbation, the last

great sexual taboo] [Retiree, 60, wonders how long

her money will last]

191 123149

9 [Controversial First Nation chiefs salary raises con-

cern] [Harper sticks to hard line on Hamas; U.S.

condemns Israel’s deadly shelling of UN school]

186 68096

70



10 [’Massive explosive decompression’ downed MH17:

Kiev] [Canada should learn from Ireland’s housing

crash]

182 60293

Table 6.5: Top 10 Frequent Patterns of globe

Rank High Utility Itemset Utility Support

1 [Vigil held for daughter of Conservative Party pres-

ident] [MH17: Disaster ratchets up Russia-Ukraine

tensions]

163523 367

2 [Retiree, 60, wonders how long her money will

last] [We need to talk about masturbation, the last

great sexual taboo]

123149 191

3 [Retiree, 60, wonders how long her money will last]

[Which is better, a RRIF or an annuity? You may

be surprised]

104080 167

4 [Rob Ford to undergo foot surgery; sobriety coach

no longer working full-time] [MH17: Disaster

ratchets up Russia-Ukraine tensions]

85182 211
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5 [Israel prepares to ’significantly’ expand campaign

as UN chief heads for Middle East as mediator]

[MH17: Disaster ratchets up Russia-Ukraine ten-

sions]

78104 138

6 [Exercise both body and mind with a different kind

of cross-training] [How used Google smartphones

cough up former owners personal data] [Christy

Clark goes public with support for Israel] [Say

goodbye to the family cottage before it’s too late]

77994 1

7 [Exercise both body and mind with a different kind

of cross-training] [How used Google smartphones

cough up former owners personal data] [Say good-

bye to the family cottage before it’s too late]

77888 1

8 [Exercise both body and mind with a different kind

of cross-training] [Christy Clark goes public with

support for Israel] [Say goodbye to the family cot-

tage before it’s too late]

77831 1
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9 [Exercise both body and mind with a different kind

of cross-training] [How used Google smartphones

cough up former owners personal data] [Christy

Clark goes public with support for Israel]

77727 1

10 [Exercise both body and mind with a different kind

of cross-training] [Say goodbye to the family cot-

tage before it’s too late]

77725 1

Table 6.6: Top 10 High Utility Itemsets of globe

Table 6.5 and 6.6 show the top 10 results from frequent pattern mining and

high utility itemset mining respectively. The patterns and itemsets in the tables

are titles of news articles. The titles in the same pattern or itemset usually belong

to the related categories of topics, as shown in the tables. However, the rank of

some patterns and itemsets is very different in the results of frequent pattern mining

and high utility itemset mining. The 3rd and 5th HUIs are not within the top 10

FPs. If we only use the top 10 results for recommendation, we would miss such

patterns if frequent pattern mining is used. In addition, the last 4 HUIs in the

results have very low supports. However, users spent a long time reading these

articles together. This pattern will not be discovered by frequent itemset mining.
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In the results of frequent pattern mining, the 2nd and 3rd FPs do not have as high

utility as the itemsets in the top 10 HUIs. Using the top FPs for recommendation

may not lead to a longer reading time of the user, than using the top HUIs, since

the HUIs have higher utility values, which in this case represents the total reading

time of the itemset.

Apart from the simple recommendation method we showed above, there are

quite a few other ways to do recommendation, which could have improvements

over our method. However, The discuss of these improvements is out of the scope

of this thesis.
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7 Conclusion

7.1 Summary of Contributions

The contributions of this thesis are summarized as follows.

• A distributed algorithm, PHUI-Miner, is proposed, which parallelizes the

state-of-the-art algorithm HUI-Miner, for mining exact set of HUIs. The algo-

rithm employs the memory-based distributed computing framework, Apache

Spark, which enables PHUI-Miner to have a good performance and be fault-

tolerant.

• We proposed and proved a new theorem, which provides us with the required

sample size to achieve a given accuracy for approximately mining HUIs. The

theorem leads to a sampling method with theoretical guarantees on the prob-

ability that an HUI can be returned and on the utility of a returned itemset.

A feature of this sampling method is that the sample size required to achieve

the theoretical guarantees is independent of the size of the original data, and
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is thus not necessarily going up as the data set grows.

• We proposed an approach, PHUI-Miner with Sampling, combining PHUI-

Miner with the sampling technique, which mines an approximate set of high

utility itemsets, but achieves better time performances.

• Extensive experiments are conducted to evaluate our proposed algorithms.

Our experimental results on different datasets show that our sampling method

achieves highly accurate results, much better than what the theory guaran-

tees. Empirically, we demonstrated that the sampling strategy could achieve

very high accuracy. We also demonstrated that PHUI-Miner has a good

time performance, and outperforms the state-of-the-art non-parallel algorithm

HUI-Miner. Finally, PHUI-Miner with Sampling is shown to have better time

performance than PHUI-Miner.

7.2 Future Research

There are several possible improvements, which could be done in the future:

• The search space division in PHUI-Miner is not even and has rooms for further

improvements. In most cases, the mining processes in different nodes end at

very differentiated times. It is possible that there are other ways to split the

search space so that the workload of each node in the cluster is more even.
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• The required sample size in the sampling strategy is relatively a loose bound,

which means it is possible to find another better bound for the required sample

size. Future research could focus on improving the bound for better time

performance.
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