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Abstract 

There is increasing evidence that Lyme disease is an emerging threat for pub­

lic health in Canada. In this dissertation, we study the impact of climate change 

on establishment/extinction of the Lyme disease tick vector Ixodes scapularis and 

Lyme pathogen Borrelia burgdorferi in the Canadian landscape by utilizing mathe­

matical techniques and computer simulations. We develop principal mathematical 

frameworks using ordinary differential equations with periodic coefficients, partial 

differential equations with seasonality and a periodic system of delay differential 

equations with periodic delay. We develop analysis and tools to predict the long­

term status of Lyme disease transmission dynamics in the vector population. We 

determine factors, which are of interest to public health policy makers, for Lyme 

disease prevention and control in Canada in varying environmental conditions. We 

provide the theoretical foundation of a risk map of Lyme disease in Canada. 
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1 Introduction 

Lyme disease (LD) was first time described in 1977 following the investigation of a 

cluster of arthritis cases among children living near Lyme, Connecticut [95). LD is 

universally acknowledged as the most common vector-borne infectious disea.5e for 

most of the world, especially in Europe and North America, caused by a bacterium 

called Borrelia burgd01feri. The disease can affect both humans and animals with 

more than 30,000 human cases reported in United States alone in 2010 [17). Usually 

mice, squirrels and shrews, and other small vertebrates can carry the bacterium that 

causes Lyme disease [88]. 

The black-legged tick, lxodes scapularir;, is the primary vector of Borrelia burgdor­

feri in north-eastern regions of North America [25, 45). The immature ticks (i.e., 

larvae and nymphs) can become infected when they feed on normally small-size 

rodents carrying the bacteria, and then the infected immature ticks are able to 

transmit the pathogen to the next host in the subsequent blood meals. The life 

cycle of tick, I. scapularis, is very complex and takes place nearly two years to 
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reach the adult stage from an egg. After hatching from eggs, they have to pass 

through three developmental stages: larva, nymph, adult. Each of the three stages 

exhibits their activity in different seasons. Eggs are laid by an adult female tick 

in the spring and larvae hatch during the late summer. In all three stages, larvae, 

nymph and adult ticks, seek to attach a host to draw a blood meal, and then drop 

off to digest the meal. The fed larvae in the spring or summer moult and overwinter 

as nymphs; the very few larvae fed after September overwinter as engorged larvae 

and are ready to moult in the next spring. Unfed larvae survive less than one year 

hence no overlap can be seen with the successive cohorts. Most nymphs fed in 

spring or early summer will moult to adult ticks in the same year. Unfed nymphs 

able to survive throughout the spring or summer to the next year overlap with new 

generation of nymph cohorts. Adult ticks feed during fall and spring. The gravid 

females lay their eggs in early spring and die shortly. Unfed adults of fall overwinter 

and resume host-seeking in the spring and die, unless they feed during their first 

season, of questing [20, 106, 54, 79, 71]. 

Lyme disease has been recognized as an emerging disease in Canada. The risk of 

Lyme disease in Canada is changing rapidly due to the geographic range expansion 

of I. scapularis [46, 73]. A decade ago I. scapularis populations were geographically 

restricted to specific locations on the north shores of Lake Erie and Lake Ontario, 

one location in southeast Manitoba and one location in Nova Scotia [68]. How-
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ever, more recently I. scapularis tick populations have been identified in multiple 

locations in southern Manitoba, New Brunswick and Nova Scotia and is spreading 

widely in some areas of southern Ontario and Quebec [46]. In addition, "adventi­

tious" ticks, if infected with B. burgdorferi, can be found over a wide geographic 

range of Canada [7 4]. These ticks could transmit the bacterium to humans or an­

imals residing in areas outside of LD endemic area. Thus, it is possible for people 

or animals to acquire LD in non-endemic areas across Canada. These "ad venti-

tious" ticks are dispersed from reproducing tick populations by hosts (particularly 

migratory birds [44, 62, 72]). Where climate conditions, host densities and habitats 

are suitable for establishment these adventitious ticks may seed new, reproducing 

and self-sustaining tick populations [72]. Field observations indicate that many 

woodland habitats in Canada are suitable for survival of ticks off-host, and in such 

habitats mortality rates of ticks over winter and summer are comparable (52, 74], 

most likely because the duff layer insulates ticks from deep freezing in winter and 

desiccation in the summer. The studies (74, 75] also suggest that the range of I. 

scapularis will continue to expand northward in the coming decades, and may be 

accelerated by global warming. 

The geographic distribution of I. scapularis can be affected by many factors 

such as habitat suitability, host abundance, climate suitability and tick dispersal. 

Climate suitability, in particular, temperature variation, is regarded as the principal 
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restricting factor in the establishment of I. scapularis. Climate affects the survival of 

tick populations in a number of ways. First, climate indirectly affects tick survival 

in being a determinant of the occurrence of suitable communities of vertebrate 

animal hosts of the ticks, and of vegetation that allows development of a duff layer 

that provides refuge for off-host ticks from desiccation, drowning and extremes of 

temperature that can directly kill ticks. Second, host-seeking activity is affected by 

ambient temperature and humidity. Third, rates of development of ticks from one 

life stage to the next depend in most cases on temperature, being faster at higher 

temperature and zero at 0°C. 

These factors are reviewed by [68] in which they were incorporated into a de­

tailed process-based dynamical simulation model to explain and simulate "realistic, 

seasonal effects of temperature" on development and activity of I. scapularis. This 

model aimed to investigate the hypothesis that temperature conditions controlling 

the duration of the tick life cycle (via effects on interstadial development rates and 

activities) determine the northern geographic limits for this tick. Model simulations 

identified minimal seasonal-variable temperature conditions (best captured by the 

annual cumulative degree days > 0°C : DD > 0°C) to support the persistence of 

the vector population. However this structure is mathematically intractable and 

the calculation of the effects of climate change-induced increasing temperatures (or 

of other environmental changes) on basic reproductive ratio for the tick population 
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is not directly possible. 

The development of mathematically tractable models capable of esti­

mating basic reproductive ratios for both I. scapularis and its pathogen 

in the Canadian landscape under varying environmental conditions re­

mains a major challenge. In this thesis, we will study the impact of 

climate change-induced increasing temperature on the establishment of 

Lyme disease tick vector I. scapularis, range expansion of the tick popu­

lation and disease spread in the Canadian landscape based on the frame­

work of Ogden et al (2005) [68]. 

Lyme disease spread involves complex interaction of a spirochete, multiple ver­

tebrate hosts, and a vector with a two-year life cycle strongly influenced by the sea­

son rhythm. Mathematical models with different levels of complexity and different 

methodological approaches have been developed to investigate the ecological behav­

ior of tick populations and disease transmission. Some examples include the differ­

ential equation (continuous) models the difference (discrete) models [4, 15, 64, 84]; 

or a periodic process in time [84, 81, 64, 31, 68]. Spatial spread dynamics has 

also been studied using a reaction-diffusion (partial differential) equation model by 

[16], and a metapopulation model by [39]. More specifically, for example, Sand­

berg et al. [84] first used a matrix model with month-dependent transition rates 

to investigate the seasonally varying population densities of questing ticks. Caraco 
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et al. [16] presented a reaction-diffusion model to identify factors influencing the 

rate at which the disease spreads spatially, and the study emphasized that the vec­

tor's stage-structured dynamics would govern the spatial expansion of infection. 

Norman et al. [66] studied two simple deterministic models to examine the effect 

of interactions of shared hosts on the persistence and dynamics of the tick-borne 

pathogens. Awerbuch-Friedlander et al. [4] formulated two delay difference systems 

to study the effect of seasonality on the behavior of the tick population by com­

paring the seasonal model with a non-seasonal one, and showed that seasonality 

can increase the stability of the system. Rosa et al. [83, 82] studied how the per­

sistence of ticks and pathogens is affected by the dynamics of tick populations and 

by their host densities, and different transmission routes. However, how to derive 

a general framework of multi-host tick/pathegon dynamics through the integration 

of host movement behaviors and tick's seasonality in time-continuous process have 

not been studied yet, to our best knowledge. 

In Chapter 2, we propose an ordinary differential equation model with constant 

coefficients based on the process-based dynamic population model [68], which com­

prises of 12 mutually exclusive states and investigate the influence of temperature 

change (time-independent) on the establishment of tick population in a large scale. 

The development rates from one state to next are temperature-dependent, here 

temperature means mean annual temperature in a given area. In this chapter, we 
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derive the basic reproductive ratio ('R~'c) for I. scapu,laris and yield a threshold, 

summarizing the reproduction rate of the vector population during the two year life 

cycle, determining how the survival or extinction of tick vector population depends 

on the temperature as well as the host densities in a spatially homogeneous habitat. 

In Chapter 3, we develop a periodic system of ordinary differential equations 

with periodic coefficients describing the influence of climate change on the establish­

ment of Lyme disease tick vector I. scapularis in a fine scale. Firstly we parameterize 

and validate the system using existing surveillance data from Public Health Agency 

of Canada. We derive the key threshold, the basic reproductive ratio ('R~'P) for I. 

scapularis in a periodic environment, by utilizing some recent developments (8, 99] 

about the qualitative theory for epidemic models with periodic coefficients. Our 

goal is to generate a risk map of Lyme disease tick vector I. scapularis by calcu­

lating the basic reproductive ratio 'R~,p from a number of locations in southeastern 

Canada, which is a key step in our evolving ability to develop tools for assessment 

of Lyme disease risk emergence and for development of public health policies on 

surveillance, prevention and control. Finally, we carry out sensitive analysis on the 

basic reproductive ratio to explore how variation in temperature, host community 

composition and other key parameters in the model alter the rate of spread of I. 

scapularis. 

Motivated by the recent range expansion of I. scapularis and its ecological ac-
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tivities highly regulated by seasonality, in Chapter 4, we develop a periodic system 

of reaction-diffusion equations capturing some key features and stage developments 

of the tick population as well as the spatial random movements of involved hosts in 

an isolated landscape of Canada. Such a system may generate an order-preserving 

periodic process, but only some iteration of the periodic map can be strongly order­

preserving due to the seasonal on-or-off biological activities. Hence how to derive 

qualitative properties of the periodic map from those of its iterations is of practical 

implication. By applying some recent results of strongly order-preserving periodic 

processes with strictly subhomogeneous nonlinearities [48, 49, 50] to a certain itera­

tion of the associated periodic map, we establish the existence of periodic traveling 

waves and calculate the range e:>..rpansion speed. 

To better understand the effects of the seasonal temperature variation and host 

community composition on the pathogen transmission, in Chapter 5, we develop 

a detailed stage-structured periodic deterministic model integrating seasonal tick 

development and activity, multiple host species and complex transmission routes 

between ticks and hosts. vVe derive two basic reproductive ratios, one for ticks 

n~v,p' another for disease pathogen n~,p' analyzing how the two thresholds play 

important roles in determining the tick invasion and disease persistence. We carry 

out numerical simulations to describe the effect of climate warming and host di­

versity on population dynamics of the tick and pathogen. A sensitivity analysis is 
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also performed to determine the relative importance of the key factors to spirochete 

population. 

Finally, motivated by the physiology of the tick population, namely the fact 

that the length of time from one life stage to the next varies periodically with 

time, we derive a system of delay differential equations with periodic delays. The 

time-periodic delayed system simultaneously contain two different types of effects 

in time: time-periodic coefficients and delays. There have been some studies of 

these two effects in the past, but most of these studies have concentrated on only 

one of the two effects separately. We have some very limited studies regarding on 

the examining two effects in a single mode. Moreover, none to elate has studied 

the basic reproductive ratio for this type of delay differential equations to our best 

knowledge. Following the works of [96, 42, 8, 5, 99], we derive the basic reproductive 

ratio of the linearized system at the trivial solution, which is defined as the spectral 

radius of a linear integral operator, and a numerical algorithm to compute the basic 

reproductive ratio is presented in this chapter. The thesis ends with a final chapter 

that summarizes the results and describes a few topics which should be considered 

in the future. 
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2 Temperature change-driven tick population 

dynamics with non-seasonal development 

2.1 Introduction 

As described in Chapter 1, climate change, in particular increasing temperature, has 

been shown to facilitate the rapid geographical expansion of vector I. scapularis and 

such an expansion might establish Lyme disease in non-endemic areas of Canada. 

The risk of Lyme disease is tied to the abundance and distribution of the tick 

population. The environmental factor plays a vital role in the development of I. 

scapularis because 98% of the 2-year life cycle occurs off the host. Climate should 

act as an essential determinant of distribution of the tick population. 

In this chapter we assume that there is a spatially homogeneous habitat with 

constant environmental conditions. Our first goal of the thesis is to predict the 

impact of temperature change on the complex tick population life cycle as well as 

on their establishment conditions in the presence of primary and secondary hosts in 
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a large scale, a preliminary step to understand the disease risk in terms of studying 

the population dynamics of its vector. 

We convert the model of [68] into an ordinary differential system involving 12 

mutually exclusive tick stages, investigating the influence of temperature change on 

the persistence/extinction of tick population. The model is a considerable simplifi­

cation compared to the model of (68]. A key simplification here is that rather than 

taking account of development delay by accumulating daily proportions of devel­

opment from one stage to next, we consider the mean proportion of development 

in a whole year (being the reciprocal of temperature-dependent or temperature­

independent duration of development) as a development rate from this stage to 

the next. Another simplification is about the host community composition and 

we assume the community of hosts of I. scapularis, consists of white-footed mice 

serving as a host of immature tick and white-tailed deer as a primary source of 

nourishment for adult tick. This is not biologically accurate but adequate for our 

study purposes in this stage to identify the crucial temperature condition. 

We consider the qualitative behaviors of the high-dimensional ordinary differ­

ential equations in section 2.2. We establish the positiveness and boundedness of 

the system and show the existence, uniqueness of an endemic equilibrium, and sta­

bility of the endemic equilibrium under the assumption of weak density dependent 

reduction in fecundity of egg-laying females. We find the threshold condition, in 
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terms of the basic reproductive ratio (denoted by R,~·c), for tick persistence. We 

also conduct some numerical simulations to illustrate the analytical results. Our 

analysis indicates that lower or higher mean annual temperature will bring about 

threshold R~,c < 1, thereby forces the tick population to extinction in the habitat. 

Therefore temperature can be used as a decisive factor to predict the distribution, 

establishment of tick populations. 

2.2 Model formulation and analysis 

The life cycle of the tick has three developmental stages: larva, nymph and adult. 

Each stage subdivides in turn according to the phase of activity: 'questing', in 

which the unfed tick seeks a host; 'feeding', in which the attached tick feeds; and 

'engorged' after feeding and then drop off their hosts. In the model, ticks are 

classified into 12 different states: eggs (x2), hardening larvae (x3 ), questing larvae 

(x4 ), nymphs (x1) and adults. (x10), feeding larvae (x5), nymphs (x8) and adult 

females (x11), engorged larvae (x6), nymphs (x9 ) and adult females (x12) and egg­

laying adult females (x1). Each state represents a specific point in the life of the 

ticks (Figure 2.1). 

We assume that the development rates of pre-oviposition period (POP), pre­

eclosion period (PEP), larva-t<>-nymph and nymph-to-adult are influenced by tem­

perature, and questing activity is assumed to vary with temperature as well, where 
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Rodents 

Hardening d3 Questing Feeding d5 Engorged 
Larvae (x3) Lan'ae(x4) -- Larvae (x5) Larvae (x6) 

d2 (T) 

Eggs (12) 

Rodents 
pf(xu) Temperatuz 

(T) 

Feeding 
Nymphs{Xg) 

ds 

EngorgedAdult Questing Engorged 
Females (x12) ""!! du - Adults <10) '"·-~(T)-- Nymphs (xg) 

Deer 

Figure 2.1: A diagram of tick population model adapted from Ogden et al., Int. J. 

Pamsitol., 35 (2005) 375-389. 
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temperature means mean annual temperature through this chapter. 

With these assumptions, the model equations that describe tick population 

dynamics are as following: 

with initial condition 

x~ (t) = di2(T)x12 - µ1x1, 

x~(t) = pf(xu)X1 - (d2(T) + JL2)X2, 

x;(t) = d2(T)x2 - (d3 + µ3)x3, 

x~(t) = d3X3 - (d4(T) + µ4)X4, 

x~(t) = d4(T)x4 - (d5 + µ5(x5))x5, 

x~(t) = d5x5 - (d5(T) + µ5)X5, 

x~(t) = d6(T)x6 - (d1(T) + µ1 )x1, 

x~(t) = d1(T)x1 - (ds + µs(xs))xs, 

x~(t) = dsxs - (d9 (T) + Jt9 )x9 , 

X~o(t) = dg(T)xg - (d10(T) + µ10)X10, 

x~ 1 (t) = ~d10(T)x10 - (dn + µu(xu))xu, 

x~2 (t) = duxu - (d12(T) + µi2)X12, 

(2.2.1) 

(2.2.2) 

Where, :i;(t) = ftxi(t) is the derivative of xi(t) with respect to the time variable t, 

and Tis the mean annual temperature in Celsius (°C). Note here that we consider 

autonomous system in this chapter, and we use the mean annual temperature to 
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be considered in the progression rates. Note also that we use equal sex ratio (1/2), 

and we will discuss this issue in the last chapter. Here, c~/d.i(T) is the progression 

rate from the i-th stage to the next stage, µi/11i(xi) is the death rate for stage i, 

and pis the per-capita egg reproduction rate by egg-laying females. Note that in 

this model, we have three density-dependent death rates Jl·5 ( X5), µs ( Xs), Jl·u (Xu) 

and we assume that each µ1(xi) is a monotonically increasing function of x1 with 

limxi-4+oo µj(XJ) = +oo for j = 5, 8, 11. To account for the density dependent 

reduction in fecundity of egg laying females, we suppose that f (1:u) is a decreasing 

function of Xu between 0 and 1. According to the form of f(x 11 ) (see Table 2.1), 

we assume that once f (xu) attains zero at some point Xu, then J (xu) is zero when 

Xu is bigger than Xu. The host population is fixed at 200 rodents and 20 deer as 

in [68] in our simulations. 

Daily host-finding probabilities vary with host abundance according to the rec­

ommendations of [64] and as calibrated in [68] as follows: 

Aql, the host-finding probability for questing larvae (0.0013R0
·
515

); 

Aqn, the host-finding probability for questing nymphs (0.0013R0
·
515

); and 

Aqa, the host-finding probability for questing adults (0.086D0
·
515

), 

where R is the number of rodents and Dis the number of deer. The temperature­

dependent factors for questing activities of immature ticks Bi and adult ticks ea are 
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supplied by Public Health Agency of Canada. All parameter values for the tick 

model (2.2.1) are summarized in Table 2.1 . 

2.2.1 Positivity and boundedness of solutions 

We first show our mathematical model is biologically well-posed. Namely we prove 

that the model (2.2.1) with initial condition (2.2.2) has a w1ique globally defined, 

differentiable solution which remains nonnegative and bounded. 

Lemma 2.2.1. Each component of the solution of the system {2.2.1} fort > 0, 

subject to initial condition {2.2.2), remains nonnegative for all t > 0. Furthermore, 

each component of the above solution is also bounded for all t > 0. 

Proof The n01megativity of each Xi(t) follows immediately from [92, Theorem 

5.2.l]. Hence IR~ is positively invariant for the system (2.2.1). It is easy to 

know every function of the right hand in system (2.2.1) is continuous, differen­

tiable and locally Lipschitzian in x = (xi, x2 , · · · , x12)T on each compact subset 

of IR~2 . Hence, there is a unique solution x(t, :iP) for system (2.2.1) through the 

initial value x0 E IR~ in its maximal interval of the existence. According to the 

properties of functions µs(x5 ), µs(xs), µ.n (xn), monotonically increasing fm1ctions 

with respect to their arguments x5 , x8 , and xn, and the decreasing function f (xn), 
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Parameter 

1•1 

µ2 

µ3 

1•4 

µ5(:i:11) 

1•6 

µ7 

µs(:i:s) 

1•9 

µ10 

µ11 (:i:11) 

1•12 
......... 
-l p 

f(:i:11) 

~(T) 

da 

d4(T) 

d11 

da(T) 

d1(T) 

ds 

dg(T) 

d1o(T) 

d11 

d12(T) 

R 

D 

Table 2.1: Model parameter definitions and values adapted from [68] (all rates are per day). 
De11crlptlon 

Per capita mortality rate of egg-laying adult females 

Per capita mortality rate of eggs 

Per capita mortality rate of hardening larvae 

Per capita mortality rate of questing larvae 

Per capita mortality rate of feeding larvae on rodents 

Per capita mortality rate of engorged larvae 

Per capita mortality rate of questing nymphs 

Per capita mortality rate of feeding nymphs on rodents 

Per capita mortality rate of engorged nymphs 

Per capita mortality rate of questing adults 

Per capita mortality rate of feeding adults on deer 

Per capita mortality rate of engorged adult females 

Per capita egg production by egg-laying adult females 

Reduction in fecundity of egg-laying adult females 

Development rate from eggs to hardening larvae 

Development rate from hardening larvae to questing larvae 

Host attaching rate for questing larvae 

Development rate from feeding larvae to engorged larvae 

Development rate from engorged larvae to questing nymphs 

Host attaching rate for questing nymphs 

Development rate from feeding nymphs to engorged nymphs 

Development rate from engorged nymphs to questing adults 

Host attaching rate for questing adults 

Development rate from feeding adults females to engorged females 

Development rate from engorged females to egg-laying females 

Number of rodents 

Number of deer 

Value 

0.002 

0.006 

0.006 

(0.65 + (0.0491n( {l.01 + :i:11}/ R)J) 

0.003 

0.006 

(0.55 + (0.0491n( {l.01 +:cs}/ R)J) 

0.002 

0.006 

(0.5 + (0.0491n( {l.01 + :i:11} / D))) 

0.0001 

3000 

1 - (0.01 + 0.041n{l.Ol + :i:11 / D}] 

1/(34, 234 x T-2·27 ) 

1/21 

1/3 

1/(101, 181 x r- 2 ·1111 ) 

Aqn X 9i 

1/5 

1/(1596 x T- 1 ·42 ) 

1/10 

1/(1300 x T-1 · 42 ) 

200 
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system (2.2.1) can be controlled by the following linear system 

xHt) = d12(T)x12 - µ1xi, 

x;(t) =pf (O)x1 - (d2(T) + µ2)x2, 

i:~3 (t) = d2(T)x2 - (d3 + µ3)~c3, 

x~(t) = d3x3 - (d4(T) + µ.4)X4, 

x~(t) = d4(T)x4 - (d5 + µ5(0))1:5, 

x~(t) = dsX5 - (d6(T) + µ.6)X5, 

x~(t) = d6(T)x6 - (d,(T) + JJ,7 )~c1, 

x~(t) = d1(T)x1 - (ds + µ.s(O))xs, 

1:~(t) = dsXs - (dg(T) + Jlg)Xg, 

X~o(t) = dg(T)xg - (d10(T) + µ10)X10, 

x~ 1 (t) = ~d10(T)x10 - (du+ µu(0))1:u, 

x~2 (t) = duxu - (d12(T) + µi2)X12. 

(2.2.3) 

Solutions of linear system (2.2.3) exist on [O, oo ). By the comparison theorem [92, 

Theorem 5.1.1], every solution x(t) of system (2.2.1) exists globally. 

Next we establish the boundedness of solutions. The system (2.2.1) can be 
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controlled by the following cooperative and irreducible ordinary differential system: 

x~ (t) = d12(T)x12 - µ1x1, 

x~(t) = pf(O)x1 - (d2(T) + µ2)x2, 

x;(t) = d2(T)x2 - (d3 + µ3)x3, 

x~(t) = d3x3 - (d4(T) + µ4)x4, 

x~(t) = d4(T)x4 - (d5 + µ5(0))x5, 

x~(t) = dsX5 - (d6(T) + µ6)X6, 

x~(t) = d6(T)x6 - (d1(T) + µ1 )x1, 

x~(t) = d1(T)x1 - (ds + /ts(O))xs, 

x~(t) = dsxs - (dg(T) + µg)X9, 

x~0 (t) = dg(T)xg - (d10(T) + µ10)X10, 

x~1 (t) = ~d10(T)x10 - (dn + J1.11(xu))x11, 

X~2(t) = d11Xu - (d12(T) + µ.12)X12-

(2.2.4) 

For the above system (2.2.4), there exists a threshold R* > 0 (in fact, R* = R~'c) 

such that there is a unique tick-free equilibrium when R* :::; 1, which is glob­

ally asymptotically stable according to [109, Corollary 3.2]. If R* > 1, system 

(2.2.4) admits a unique positive equilibrium (see next section for the uniqueness 

and existence of the positive equilibrium in a general form), which is also glob­

ally asymptotically stable for all nonzero solutions by [109, Corollary 3.2]. Hence, 

the comparison principle implies that every solution x(t) of system (2.2.1) with 
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nonnegative initial value is bounded for all t E [O, oo ). D 

2.2.2 Equilibria and reproductive ratio 'R~,c 

System (2.2.1) has a tick-free equilibrium denoted by E0 := (xi, x2 , • • • , :r12f = 

(0, 0, ···,Of. The following analysis of the local stability of E0 yields the threshold 

condition under which the number of tick in all different stages will increase or de-

crease exponentially. This threshold condition is characterized by the reproductive 

ratio, denoted by ~,c [21]. 

The Jacobian matrix of (2.2.1) at £ 0 has the form J1 = F - V, where F and V 

are given respectively by 

0 0 0 0 0 0 0 0 0 0 0 d12(T) 

pf(O) 0 0 0 0 0 0 0 0 0 0 0 

0 d2(T) 0 0 0 0 0 0 0 0 0 0 

0 0 d3 0 0 0 0 0 0 0 0 0 

0 0 0 d4(T) 0 0 0 0 0 0 0 0 

0 0 0 0 ds 0 0 0 0 0 0 0 
F= 

0 0 0 0 0 d6(T) 0 0 0 0 0 0 

0 0 0 0 0 0 d1(T) 0 0 0 0 0 

0 0 0 0 0 0 0 ds 0 0 0 0 

0 0 0 0 0 0 0 0 dg(T) 0 0 0 

0 0 0 0 0 0 0 0 0 ~d1o(T) 0 0 

0 0 0 0 0 0 0 0 0 0 du 0 

and 

v d'iag(µ1;d2(T) + µ2;d3 + µ3;d4(T) + µ4;ds + /ts(O);d5(T) + µ6;d1(T) + µ1; 

ds + µs(O); d9(T) + µ9; dio(T) + µ10; dn + µn(O); di2(T) + µi2). 
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All real parts of the eigenvalues of J1 are less than zeros if and only if the dominant 

eigenvalue of the positive matrix Fv-1 is less than 1 according to [21, Theorem 

6.13]. Furthermore, the characteristic equation of matrix Fv-1 is ,\12 - R~,c = O, 

where 

nv,c 
0 

d2(T) d3 d4(T) ds d6(T) d1(T) 
d2(T) + µ2 d3 + µ3 d4(T) + Jt4 d5 + µs(O) d6(T) + µ5 d1(T) + µ1 

ds dg(T) 4d10(T) du d12(T) pf(O) 

ds + µs(O) dg(T) + p,g dlo(T) + µ10 du + Jln (0) d12(T) + µ12 Jli · 

Note that each factor in the above multiplication except fJ.Ql represents the survival 
µi 

rate, where /~~) is the net reproduction rate during the mean duration of egg-laying 

females (l). 
1i1 

This dominant eigenvalue is smaller than one if and only if R~,c < 1. The defini-

tion, given in [21], yields the reproductive ratio of such a system (though not really 

an epidemic model) as 1~. Here, we tentatively consider this reproductive ratio 

as a threshold parameter. In Chapter 3, we will have more discussions about the 

basic reproductive ratio. Regardless, we conclude that E0 is loca.lly asymptotically 

stable if and only if R~,c < 1, and is also globally asymptotically stable according to 

lemma 2.2.1 and the comparison theorem [92, Theorem 5.1.l]; and E0 is unstable if 

and only if R~,c > 1. We assume in the remaining part of this section that 'R.~,c > 1. 
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Setting the right-hand sides of (2.2.l) to zeros, we obtain the following relations: 

H(xn) : 

where 

d2(T) d3 d4(T) d5(T) d1(T) d9 (T) 
d2(T) + ft2 . d3 + µ3 . d4(T) + µ4 . d5(T) + fl·6 d1(T) + µ.,. d9(T) + µg 

~d10(T) di2(T) . l!._d5dsd11 > 0, 
d10(T) + µ10 di2 (T) + µi2 µi . 

k
2 

= dg(T) + µg dw(T) + µ10 
1 

1 > O. 
ds dg(T) 2d10(T) ' 

k
3 

= d6(T) + µ6 . d,( T) + µ1 . _1 _ > O 
d5 d5(T) d1(T) . 

A unique positive equilibrium of system (2.2.1) exists if and only if there exists 

some unique xi1 > 0 such that H(xi1) = 0. 

vVe note that all of the terms µ5(x5), µs(:rs), µ11(x11), which are functions of 

x11 , are monotonically increasing functions to x11 . Moreover, f (x11 ) is a decreasing 

function of Xu. We hence conclude that H(x11 ) is a monotonically decreasing 

function with respect to Xu. Moreover, 

H(O) = f(O) x ki - (d5 + µ5(0))(ds + µs(O))(du + JL11(0)) 

= (d5 + µ5(0))(ds + µs(O))(du + µu(O)(R~t - 1) > 0. 
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On the other hand, there exists x11 > 0 such that f(x11 ) = 0 owing to the form 

µ 11 (x11 )) < 0. Therefore it follows that there exists a unique positive 0 < xi1 < x11 

such that H(xi1) = 0. Consequently, a unique endemic equilibrium of system 

(2.2.1) exists if and only if R~,c > 1. 
To address the stability of this unique endemic equilibrium, denote by X* -

(xi, x;, · · · , xi2) E JR.~\ {O}. We note that the Jacobian matrix J2 at the endemic 
equilibrium can be expressed as J2 := A - B, where A and B are given respectively 
by 

0 0 0 0 0 0 0 0 0 0 0 di2(T) 

p/(:ri1> 0 0 0 0 0 0 0 0 0 :rip/'(:ri1> 0 

0 d2(T) 0 0 0 0 0 0 0 0 0 0 

0 0 da 0 0 0 0 0 0 0 0 0 

0 0 0 d.s(T) 0 0 0 0 0 0 0 0 

0 0 0 0 ds 0 0 0 0 0 0 0 
A= 

0 0 0 0 0 dtJ(T) 0 0 0 0 0 0 

0 0 0 0 0 0 d7(T) 0 0 0 0 0 

0 0 0 0 0 0 0 ds 0 0 0 0 

0 0 0 0 0 0 0 0 dg(T) 0 0 0 

0 0 0 0 0 0 0 0 0 !d1o(T) 0 0 

0 0 0 0 0 0 0 0 0 0 du 0 

and 

B diag(µ1; d2(T) + µ2; da + 1i3; d4(T) + Ji4; ds + µs(x5) + 11~(x5)x5; da(T) +µa; d1(T) + 1i1; 

ds + µs(x8) + µ~(x8)x8; dg(T) + µg; d10(T) + µio; dn + µ11(xi 1 ) + µ~ 1 (xii)xii; di2(T) + µi2). 
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Therefore, .12 can be written as 

an,10 -an,n 

where ai,j > 0 and all other empty entries are zeros. Hence, the endemic equilibrium 

is locally stable if all eigenvalues of .12 have negative real parts. 

Let A be an eigenvalue of J2 and a corresponding eigenvector be X :=(xi, X2, • • • , x12f. 

Then we have 

(2.2.5) 

(2.2.6) 

(2.2.7) 

It follows from (2.2.7) that 

ai ·i-1 
Xi = A ' Xi-1, i = 3, ... '12. 

+ ai,i 
(2.2.8) 

Therefore, we have 

(2.2.9) 

Xn (2.2.10) 
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Substituting (2.2.9) and (2.2.10) into (2.2.5) and (2.2.6) yields 

{ 
(,\ + al,l)X1 - al,12 ni:3 ~~~i X2 = 0, 

-a2,1~r1 + [ (,\ + a2,2) + a2,11 TI.~~3 ~~~i] X2 = 0. 

(2.2.11) 

Then we arrive at the simplified characteristic equation 

12 11 12 

F(.>..) TI(.>..+ ai,i) + (.>.. + al,1)(.>.. + a12,12)a2,11 II ai,i-1 - a1,i2 II ai,i-1 

i=l i=3 i=2 

0. (2.2.12) 

Note that the system (2.2.1) admits the endemic equilibrium X* =(xi,··· , xi2) E 

JR~\ {O} if n~,c > 1. Putting the right-hand side of system (2.2.1) to zero at the 

endemic equilibrimn X* and following the relations below 

with a tedious but straightforward calculation, we can verify that 

12 12 

IT ai,i > a1,12 IT a.i,i-1 · (2.2.13) 
i=l i=2 

Recall that f(x 11 ) = r0 - E ln(l.01 + x11 / D) (0 < ro < 1, E > 0) (see Table 2.1). 

We start with the case E = 0, then a2,11 = 0. This leads to the matrix J2 to be 

irreducible and quasi-positive. According to [97, TheoremA.45], then ,\ := s(J2 ) 

is an eigenvalue of 12 with strictly positive eigenvectors, where s( h) is the largest 

real part of all eigenvalues of 12 . Assuming ,\ 2: 0 and substituting,\ into (2.2.12), 

it follows that 

12 12 12 12 

F(,\) = IT(,\+ ai,·i) - a1,12 IT a.i,i-1 2: IT ai,i - a1,12 IT a.i,i-1 > 0, 
i=l i=2 i=l i=2 
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a contradiction. Therefore matrix J2 with Eis zero has only eigenvalues with nega­

tive real parts. The continuous dependence of solutions on the parameter E implies 

that all eigenvalues of J2 have negative real parts if Eis small enough, namely, the 

endemic equilibrium is locally asymptotically stable when we have the weak density 

dependent reduction in fecundity of egg-laying females. In summary, we have 

Theorem 2.2.2. When R~,c < 1, the system (2.2.1) has a unique tick-free equi­

librium, which is globally asymptotically stable. When n~·c > 1: then an endemic 

equilibrium exists, and it is unique and locally asymptotically stable if E < < 1. 

Next we investigate the persistence of the tick population. Recall that f (x11 ) 

is a decreasing function of x11 . Replacing f(::c11 ) by f(O) in the system (2.2.1), we 

get a system of ordinary differential equations system: 

(2.2.14) 

with denoting x0 = x12 . We have the following 

Theorem 2.2.3. For system (2.2.14), there exists a unique endemic equilibrium 

which is globally asymptotically stable, when n~,c > 1. 

The proof of the existence of the endemic equilibrium is similar to the proof for 

equations (2.2.1), by considering the function 

G(i11) = (d5 + µ5(x5))(ds + µ.s(xs))(du + µu (in)) - f(O)k1. 
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Since system (2.2.14) is a positive feedback cyclic system, then the system has a 

unique positive equilibrium in the positively invariant set R~2 in case of ~,c > 1, 

the forward trajectory of every initial point of R~\ {O} approaches the equilibrium 

X*. 

Now, let X(t, X 0) be a solution of system (2.2.1) starting initial point X 0 E 

R~\ {O}, let X(t, X 0 ) be a solution of system (2.2.14) with the same initial data. 

By a standard comparison argument, we get X(t, Xo) :S X(t, X 0 ), Vt 2 0. Taking 

limit both sides gives limt-Hxi X(t, Xo) :S limHoo X(t, Xo) = X*. Choosing initial 

value X 0 = X* E R~ in the above inequality gives X* = limt-+oo X(t, X*) :S 

limt-+ooX(t,X*) ~ X*. Moreover, limsupt-+00 X(t,Xo) :S ..-Y*. This implies, when 

tis large enough, that 0 < X(t,X0 ) ~ X*. In particular, V c 2 0, :3 t 1 > 0 so that 

fort 2 ti we have xn(t, Xo) ~ ii1 + £. Thus since f is decreasing, /(xn(t, Xo)) 2 

f (xi1 + c: ), when t large enough. Taking c: -+ 0, we obtain f (xn (t, Xo)) 2 f (xi1). 

Now, replacing /(x11 ) by f(ii 1 ) at second equation of system (2.2.1), this arrives 

at the third system 

(2.2.16) 

with io = i12. 

Theorem 2.2.4. when 'R~,c > !~~~~) > 1, then system {2.2.16} has a unique en-
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demic equilibrium X* > 0. Moreover, 

X* :::; X* :::; X*, and X*:::; X(t, Xo) :::; X*, when t large enough. (2.2.17) 

Proof. Using same arguments as above, we arrive at the following equation 

L(xu) = (ds + µs(±s))(ds + /Ls(is))(du + µ.11(±11)) - f(xi1)k1 = 0. (2.2.18) 

Similarly, the function L( Xu) is also a strictly increasing function of Xu. So, equa-

tion (2.2.18) has a unique positive solution X* if and only if L(O) < 0, which is 

· al f(xi 1) Rv,c 1 · Rv,c f(O) l eqmv . ent to f(O) 0 > , i.e., o > /(xi
1

) > · 

A standard comparison argument gives 

..1Y(t, X0 ) :::; X(t, X0 ), V initial value X0 , when t large enough. (2.2.19) 

Choosing X 0 = X*. Then 

X(t, X*):::; X(t, X*). (2.2.20) 

Since system (2.2.16) is also a positive feedback cyclic system, the forward trajectory 

of every nonzero initial point approaches the equilibrium X*. Taking limit for 

(2.2.20), we obtain 

X* = lim X(t, X*) :::; lim X(t, X*) = X*. 
t~oo t~oo 

(2.2.21) 

From (2.2.19), it follows that 

X* = lim X(t, X0 ):::; liminf X(t, Xo). 
t~oo t~oo 

(2.2.22) 
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Then there exists c ~ 0 such that 

X* - c ::; X(t, X 0 ), when t large enough. 

Taking limit, i.e., c -t 0, we have 

X* ::; X(t, X 0 ), when t large enough. (2.2.23) 

Therefore, ..1Y* ::; X ( t, Xo) ::; .X• when t large enough and X* ::; X* ::; X*, com-

pleting the proof. D 

2.3 Simulations and discussions 

To illustrate these theoretical results, we perform numerical simulations using MAT­

LAB R2009a version for both case R~,c < 1 and R~,c > 1 using all parameters 

presented in Table 2.1. 

Figure 2.2 (left graph) explains how the reproductive ratio R~,c change is in­

fluenced by temperature (mean annual temperature in fact) when we fix other en­

vironmental conditions. For example, temperatures at 14.5 degree Celsius, R,~·c = 

0. 7018 < 1 in this case, would not provide favorable environment for the develop­

ment of vectors, thereby the spread of pathogen. Tick population can survive at 

temperature 15.5 degree Celsius which leads to R~,c = 1.5770 > 1. To depict the 

balance of host densities and temperature on reproductive ratio of the tick popu­

lation, Figure 2.2 shows that low host densities could impede the growth of tick 
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developmental stages due to the scarcity of blood meal, further reduce the Lyme 

disease risk to the public owing to the low infection maintenance and spread. 

Figures 2.3 and 2.4 confirm the theoretical results by capturing the trends of 

some key developmental stages: feeding larvae, feeding nymphs and feeding adults 

females over time period based on R~,c value. These simulation results indicate a.11 

tick populations will die out under the temperature condition in case 'R~,c < 1 and 

tick population has the persistent development at certain temperature conditions 

when 'R~,c > 1. 

In summary, we formulate and present a mathematical model based on the eco­

logical history of the tick population, to analyse the effects of temperature change 

and hosts (rodents and deer) densities on the tick developmental stages and their 

establishment, in terms of the threshold value 'R~,c. Furthermore, this model helps 

to reveal the role of environment condition, mainly mean annual temperature, for I. 

scapularis population sustenance. As observed in the left graph of Figure 2.2, lower 

or higher temperature will not support the establishment of tick populations in an 

area by postponing or speeding up intersstadial development and limiting the time 

availability of tick activity. However high host densities can provide enough food 

and nourishment (right graph of Figure 2.2), thereby help in tick survival, devel­

opment and even spread of B. burgdorf eri infection. Our findings am in agreement 

with the earlier research on the Lyme disease ecology and ·with the earlier work 

30 



on tick population and Lyme disease models [79, 14, 4]. In general, our finding 

indicates temperature can be used as a crucial factor to predict the distribution, 

establishment of tick populations and thus the risk of Lyme disease in the new 

regions. 
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Figure 2.2: The relationship between n~,c and mean annual temperature and num-

ber of hosts. Left graph represents the impact of mean annual temperature on 

reproductive ratio R~·c; right graph represents the effect of host densities and mean 

annual temperature on reproductive ratio 'R~,c. 
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Figure 2.3: A graphic illustration of the result in Theorem 2.2.2 when 'R~,c < 1. 

Tick-free equilibrium is globally asymptotically stable in case R~,c = 0.7018 < 1, 

where the initial value is [O, 20, 30, 75, 30, 350, 100, 2, 10, 2, 1, 20], temperature 

sets as 14.5°C, and all other parameter values are the same as listed in Table 2.1. 
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Figure 2.4: A graph of solution behavior when n~·c > 1. The tick-free equilibrium 

is unstable and the solution evolves to an endemic equilibrium which is global 

asymptotically stable in case n~·c = 1.5770 > A~~~) = 1.0001 > 1. Here the initial 

value is [O, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0.4, 10], temperature sets as 15.5°C and all 

other parameter values are listed in Table 2.1. 
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3 Climate change-driven tick population 

dynamics with seasonal development 

3.1 Introduction 

In this chapter, we study the impact of climate change, in particular, mean monthly 

temperature change induced by seasonal force, on establishment of tick population 

in Canada. We develop a model for I. scapularis that is capable of providing values 

for ba.5ic reproductive ratio, denoted by 'R~'P. This is a key step in our evolving 

ability to develop tools for assessment of Lyme disease risk emergence and for 

development of public health policies on surveillance, prevention and control. 

Ogden et al. (2005) used multiple simulations of their model (68], one for each 

of a number of locations in southeastern Canada, to obtain a threshold of monthly 

temperature conditions for I. scapularis population survival below which the du­

ration of the lifecycle was too long to support long-term survival for particular 

field-observed rates of daily per capita mortality of the ticks. This allowed map-
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ping of the geographic extent of limits for I. scapularis establishment, development 

of projected future limits for establishment according to predicted future climate 

change, as well as risk maps for tick establishment accounting for tick dispersion 

trajectories [68, 74, 75]. These practical and validated outcomes were possible 

because the simulation model precisely models the effects of temperature (and 

temperature-independent diapause) as delays in transition from one state to an­

other (e.g. engorged larva to questing nymph) to produce a biologically realistic 

life-cycle length for the tick given the particular monthly temperature conditions 

for each location for which a simulation was run. The threshold of temperature 

condition for tick population survival (i.e. the number of ticks is eventually zero) 

was that at which the lifecycle of the tick is so long that the total number of ticks 

that die (the sum of daily mortalities) is greater than the number of eggs produced 

by mated females. This sort of model structure has been used in a number of stud­

ies of ticks [63, 79, 24] that aim to predict seasons of tick activity and variations in 

tick abundance in different locations. 

·whether tick populations can persist or not under climate or other environmen­

tal conditions (e.g., temperature) may be summarized by the basic reproductive 

ratio ~·P, a key value in the field of infectious disease epidemiology for assessing 

environmental conditions under which micro-or macro-parasites can persist in na­

ture. For microparasites it is defined as the average number of secondary cases 
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produced by one infectious primary case in a totally susceptible population and for 

macroparasites it is defined as the number of new female parasites produced by a 

female parasite when there are no density dependent constraints acting anywhere 

in the life cycle of the parasites [2]. The model structure [68] was developed to 

provide field-comparable values for numbers of ticks as an index of the effective 

reproductive number at model equilibriwn. However, values for R~,p cannot be 

obtained from this mechanistic model using existing mathematical techniques. 

Our aim in this chapter is to derive an analytic formula to calculate ng·P so 

we can evaluate the effects of climate and other envii-onmental changes on ~·P. 

This is highly desirable because ng·P is the universally accepted value to describe 

the propensity for a parasite or microparasite to survive and be propagated. To 

achieve this aim, we develop an appropriate, mathematically tractable model to 

which currently developed algorithms for calculating R~,p can be applied directly. 

We start, in section 3.2, to bring out a periodic system of ordinary differential 

equations, derive the basic reproductive ratio of I. scapularis as the spectral radius 

of an abstract integral operator, examine the condition under which the tick popu­

lation can persist or not. We then use the derived R~'P formula for validation of the 

outcomes of the model, sensitivity analysis and, for the first time, direct estimation 

of the effects of climate (in terms of ambient temperature) on ng·P of I. scapularis 

to produce a map of R,~·P for this tick. 
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3.2 Model formulation and analysis 

We refine the mechanistic model of [68] to examine the monthly temperature effect 

on each stage of the tick life cycle. Unlike those development rates of Chapter 2 

(time-independent development rates), the rates of development and questing ac­

tivity here vary according to mean monthly temperature at each day of each month 

of the year, which are time-dependent. This leads to a periodic system of ordinary 

differential equations. The system is essentially a mathematical simplification of 

a complex biological system, but by comparing output from the new model and 

the original mechanistic model (68] and field observation, we are able to show that 

the differential equation model developed here adequately describes the biological 

system for practical purposes and the objectives of our study. We adapt the same 

mathematical notations as those of Chapter 2 to denote a specific point of the tick's 

life cycle, that is egg-laying adult females (x1), eggs (x2 ), hardening larvae (x3 ), 

questing larvae (x4 ), feeding larvae (x5), engorged larvae (x6 ), questing nymphs 

(x7 ), feeding nymphs (x8), engorged nymphs (x9), questing adults (x 10 ), feeding 
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adult females (x11 ) and engorged adult females (x12). The model is given by 

x~ = di2(t)x12 - µi (t)xi, 

x~ = p(t)f(x11)x1 - (d2(t) + µ2(t))x2, 

x~ = d2(t)x2 - (d3(t) + J.t3(t))x3, 

~ = d3(t)x3 - (d4(t) + µ4(t))x4, 

x~ = d4(t)x4 - (d5(t) + J.t5(t, X5) )x5, 

x~ = d5(t)x5 - (d6(t) + µ6(t))x6, 

x~ = d5(t)x5 - (d1(t) + µ1(t))x1, 

x~ = d1(t)x1 - (dB(t) + µB(t,xB))xB, 

x'9 = ds(t)xs - (dg(t) + ftg(t))xg, 

x~0 = dg(t)xg - (d10(t) + µ.1o(t) )x10, 

:r~ 1 = ~d10(t)x10 - (dn(t) + µn(t,x11)):r11, 

x~2 = d11(t)x11 - (d12(t) + µ12(t))x12· 

(3.2.1) 

All the parameter definitions are the same as those in Table 2.1 of Chapter 2 except 

the values which vary in time. That is to say, di(t) is the time-dependent progession 

rate from the ·i-th stage to the next, µi ( t) / µi ( t, Xi) is the time-dependent or/ and 

density-dependent death rate for stage 'i, and p( t) is the time-dependent per-capita 

egg production rate by egg-laying adults females. We assume that each coefficient 

is a periodic function of time t with the same period of one year. 
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3.2.1 Mathematical analysis 

For the stage-structured periodic tick model (3.2.1), we first rigorously show that 

it is biologically and mathematically well-posed, which ensures that the population 

size for each stage can not become negative (that is xi(t) 2: 0 for each i), as 

established in the next lemma. 

Lemma 3.2.1. For any x0 E ~~2 , system {3.2.1} has a unique nonnegative solution 

with x(O) = x 0
1 and each component of the solution i.s bounded for all t > 0. 

Proof Re-writing the model system in the vector form 

x' ( t) = g ( t: x) : 

we can see that g(t, x) is continuous and Lipschitzian in x in each compact set in 

~~. Hence, there is a Ox such that a unique non-continuable solution of system 

(3.2.1) exists on (0, Ox) with x(O) = x0
. Note that g,i(t, x) 2: 0 whenever x E ~~and 

Xi = 0. It then follows from (92, Theorem 5.2.1] that~~ is positively invariant. 

Since x11 (t) 2: 0 and f(x 11 ) is a decreasing function of x11 , system (3.2.1) can 
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be controlled by the following linear system 

(3.2.2) 

x~ = d8 (t)x8 - (dg(t) + µ9 (t))x9 , 

x~0 = dg(t)xg - (d1o(t) + /L1o(t))x10, 

x~1 = !d10(t)x10 - dn(t)xn, 

Note that the solution for linear system (3.2.2) exists on [O, oo). By the comparison 

theorem (see, e.g., [92, Theorem 5.1.1]), each solution x(t) of the nonlinear system 

(3.2.1) with initial value x0 E JR~ exists globally. 

Let p = max p(t), di = max di(t), fL = min di(t) for ·i E {2, · · · , 12}, µi = 
tE[O,w) tE[O,w) tE[O,w) 

min µi(t) for j E {l, · · · , 12} \ {5, 8, 11 }, Jli(O) = min µi(t, 0) for j = 5, 8, Jtn (xn) = 
tE[O,w] tE[O,w] 
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min µ 11 (t, x11 ). Then the original system (3.2.1) can be controlled by the following 
tE(O,w] 

(3.2.3) 

The system (3.2.3) is a cooperative and irreducible system. Using the same argu-

ment as those in section 2.2.1 of Chapter 2, we obtain that either zero equilibrium 

or a unique endemic equilibrium of the system (3.2.3) is globally asymptotically 

stable. Hence, the comparison principle implies that every solution x(t) of system 

(3.2.1) with nonnegative initial value is bounded for all t E (0, oo). D 
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3.2.2 Uniform persistence of positive periodic solutions 

In this section, we show the existence of positive solutions of the system (3.2.1). 

We start to derive the basic reproductive ratio ('R,~'P) to classify the tick population 

dynamics. The basic reproductive ratio R..g·P determines the threshold value at 

which the tick population model exhibits the change of stability of the tick-free state 

and the change of population dynamics from persistence to extinction [21, 99). More 

precisely, R~,p > 1 implies the instability of the tick-free state and the persistence 

of ticks, while R~'P < 1 implies the stability of the tick-free state and hence the 

extinction of the ticks. Hartemink et al. [36) presented an approach to estimate 

the R~·P of tick-borne infections by obtaining the dominant eigenvalue of the next 

generation matrix of their model equations. This technique is applicable to the case 

where parameters of the system are constant. Here, we used a recently developed 

general approach [8, 99) to evaluate n~,p for time periodic systems. 
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3.2.2.1 Basic reproductive ratio ('R~'P) 

In the approaches recently developed by [8, 99], the calculation of n~·P is determined 

by the system (3.2.1) linearized at the tick-free state given below: 

J;~ = p(t)f(O)x1 - (d2(t) + µ2(t))x2, 

x~ = d2(t)x2 - (d3(t) + µ3(t))x:3, 

x~ = d4(t)x4 - (d5(t) + µ5(t, O))xs, 

x~ = ds(t)x5 - (d5(t) + µ5(t))x6, 

x~ = d8(t)x8 - (dg(t) + µ9(t))x9 , 

x~0 = dg(t)xg - (d10(t) + µ10(t))x10, 

x~1 = ~d10(t)x10 - (dn(t) + µu(t, O))x11, 

(3.2.4) 

The basic reproductive ratio describes the net reproduction (birth rate minus 

death rate) per generation when the tick population is small (near the tick-free 

state). However, since the tick population is stratified by development stages, the 

calculation of 'R_~·P requires the separation of the processes of birth, development 

and death. As such, we first introduce the birth matrix F(t) = (Jii(t)) 12x 12 , where 

h,1 (t) = p(t)f (0) and fi,j(t) = 0 if ( i, j) -:/= (2, 1 ). We also need to introduce the 

progressive matrix V(t) = v-(t) - v+(t), with v+(t) and v-(t) := [Vt(t)lv;-(t)] 
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denoting the input and output to a particular tick stage due to development or 

natural death. These are given by 

0 0 0 0 0 0 0 0 0 0 0 d12(t) 

0 0 0 0 0 0 0 0 0 0 0 0 

0 d2(t) 0 0 0 0 0 0 0 0 0 0 

0 0 dJ(t) 0 0 0 0 0 0 0 0 0 

0 0 0 d4(t) 0 0 0 0 0 0 0 0 

0 0 0 0 ds(t) 0 0 0 0 0 0 0 
v+(t) = 

0 0 0 0 0 d{}(t) 0 0 0 0 0 0 

0 0 0 0 0 0 d1(t) 0 0 0 0 0 

0 0 0 0 0 0 0 ds(t) 0 0 0 0 

0 0 0 0 0 0 0 0 d9(t) 0 0 0 

0 0 0 0 0 0 0 0 0 d1o(t) 0 0 

0 0 0 0 0 0 0 0 0 0 du(t) 0 

µi (t) 0 0 0 0 0 

0 d2(t) + Jt2(t) 0 0 0 0 

0 0 da(t) + µa(t) 0 0 0 

0 0 0 d4(t) + µ4(t) 0 0 

0 0 0 0 ds{t) + µs(t, O} 0 

0 0 0 0 0 d5(t) + J1'6(t) 
v1-(t) = 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 
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and 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 
V2-(t) = 

d1(t) + µ1(t) 0 0 0 0 0 

0 ds(t) + µs(t, 0) 0 0 0 0 

0 0 dg(t) + 1i9(t) 0 0 0 

0 0 0 dio(t) + 1i1o(t) 0 0 

0 0 0 0 du(t) + µu(t,O) 0 

0 0 0 0 0 di2(t) + µi2(t) 

In the above progressive matrices, ~j(t) is the input (development) rate of the 

ticks from the xrstage to the Xi-stage, and V:j(t) is the output rate at which ticks 

at the xrstage move out to the Xi-stage, or die. 

With these matrix notations, we can rewrite the linear system (3.2.4) as 

rlxl·(t) = (F(t) - V(t) )x(t). 
(. t 

Whether the tick population grows or decays over time is determined by how the 

population is (dynamically) transferred from the beginning to the end of a year. 

The growth or decay rate of the tick population is determined by the transfer 

rate. To calculate this transfer rate, we need to study the so-called fundamental 

matrix solution of the above linear periodic system. These are the solutions of the 

linear system with special initial conditions (see [33]) so that all other solutions 
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with arbitrarily given initial condition can be expressed analytically in terms of the 

fundamental matrix solution and the initial condition. The work in [8, 99] develops 

a general approach that ties the fundamental matrix solution of the above linear 

system and the growth or decay rate of tick population to the evolution operator 

Y ( t, s), t ~ s, of the linear periodic system y' = - V ( t )y. This operator is defined 

as follows: for each s ER, the 12 x 12 matrix Y(t, s) satisfies 

:t Y(t, s) = -V(t)Y(t, s) Vt?: s, Y(s, s) =I, 

where I is the 12 x 12 identity matrix. To relate to the basic reproductive ratio, 

we let Cw denote the collection of all possible initial tick populations distributed 

over the period [O, w]-the set of all continuous periodic functions from [O, w] to R12 

equipped with certain mathematical structures such as the supremum norm. For a 

fixed initial tick population distribution <PE Cw, F(s)</>(s) is the rate of new ticks 

produced by the initial ticks who were introduced at time s, and Y(t, s)F(s)</>(s) 

represents the distribution of those ticks who were newly produced at time s and 

remained alive at time t for t ~ s. Hence, 

'lj;(t) = [~ Y(t, s)F(s)¢(s)ds = [" Y(t, t - a)F(t - a)¢(t - a)da 

is the distribution of accmnulated ticks at time t produced by all those ticks <P( s) 

introduced at the previous time. This naturally leads to the linear operator L : 
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Cw --+ Cw given by 

(L</> )(t) = [" Y(t, t - a)F(t - a)</>(t - a)da \ft ER., </> E Cw. 

It then follows from [99] that L is the next generation operator, and the basic 

reproductive ratio is R~,p := p(L), the spectral radius of L. 

3.2.2.2 Uniform persistence of tick population 

Based on the basic reproductive ratio, we have the following two Theorems, which 

show that the tick population dies out if the basic reproductive ratio is less than 

unity while remains endemic in the habitat if the ratio exceeds one. 

Theorem 3.2.2. If the basic reproductive rat'io R~·P < 1; then the zero sofotion is 

globally asymptotically stable. 

Proof By [99, Theorem 2.2], we know that if R~·P < 1, then zero is loca.lly asymp­

totically stable. It is sufficient to prove that zero is also globally attractive if 

R~,v < 1. Consider the linear system (3.2.4), that is 

d~~t) = (F(t) - V(t))x(t). 

Denote <I>F-v(t) and p(<I>F-v(w)) be the monodromy matrix of linear w-periodic 

system (3.2.4) and the spectral radius of <I>F-v(w), respectively. Since ~,p < 1, 

we have p(<I>F-v(w)) < 1. However the solution map of (3.2.4) is not strongly 
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monotone when t > 0, but it is eventually strongly monotone when t ~ llw. The 

reason will be clear in Theorem 4.3.2 of Chapter 4. It then follows from (107, lemma 

2.1] that there exists a positive, llw-periodic (also w-periodic) function h(t) such 

that 

is a solution of (3.2.4). Since p(<I>F-v(w)) < 1, e~ln(p(iflF-v(w)))th(t) -t 0 as t -too. 

For any nonnegative initial value x0 , there is a sufficiently large M such that x0 
::; 

Nlh(O). Since system (3.2.1) can be controlled by the linear system (3.2.4), applying 

the comparison principle, we have x(t,x0 )::; Metln(p(<f>F-v(w)))th(t). Therefore, we 

obtain x(t, ;1:0) -t 0 as t -t oo. D 

Theorem 3.2.3. If the basic reproductive ratio R~,p > l~ then there exists an E > 0 

such that every solution x(t, x0 ) of system {3.2.1) with initial value x0 
=/=- 0 satisfies 

liminfxi(t,x0
) > E, 

t-t-oo 

and system (3.2.1} admits at least one positive periodic solution. 

Proof Let p = max p(t), Di = max di(t) for i E {2, · · · , 12}, Di.i = min µi(t) 
tE(O,w] tE(O,w] tE(O,w] 

for j E {1, · · · , 12} \ {5, 8, 11 }, Di.5 = min µ5(t, 0), ~s = min µs(t, 0) and bi.11 = 
tE[O,w] tE[O,w] 
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min 81' 11 (t,o) Then the original system (3.2.1) can be controlled by the following 
tE[O,w] axu 

(3.2.5) 

x~ = Dsxs - ~gXg, 

X' _ 1 D x· " 'Y.2 · 11 - 2 10· 10 - uu..c..·11, 

It is easy to see that system (3.2.5) has a positive equilibrium x*. Hence, this pos-

itive equilibrium is globally asymptotically stable with respect to JR~\ {O} accord-

ing to [109, Corollary 3.2]. Moreover, an application of the comparison principle 

yields limsupx(t,x0 ) ~ x*, where x(t,x0 ) is the unique solution of (3.2.1) with 
t~oo 

x(O, x0 ) = x0 for x0 E JR~2 • This indicates that system (3.2.1) is point dissipative. 

Let w(t) be the solution map associated with system (3.2.1), that is 

w(t)(x0
) = x(t, x0

), Vx0 E JR~, 
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where x(t, x0 ) is the unique solution of (3.2.1) with x(O, x0 ) = x0 . Let P: JR.l2 -t JR~ 

be the Poincare map associated with system (3.2.1), that is 

Define X =IR~, X 0 = IntIR~2 = {1: E IR;_2 : xi > 0, 'i = 1, 2, ... , 12}. Then 8X0 

:=X \Xo={x E IRl2: Ilf~1 x'i. = O}. We first prove that Pis uniformly persistent 

with respect to (X0 , 8X0 ). By the form of (3.2.1), it is easy to see that both X and 

X 0 are positively invariant. Clearly, 8X0 is relatively closed in X. Furthermore, 

system (3.2.1) is point dissipative. Set Ma = {x E 1Rl2 : pm(:r:) E 8X0 , \frn > O}, 

then it is easy to see that Ma= {0}. Since n~iP > 1, then p(<PF-v(w)) > 1. Hence, 

there exists a small 8 > 0 such that p(<PF(<>)-v(w)) > 1, where F(<5) is generated by 

replacing f(O) with J(8) in the matrix F(t). It then follows from [99, Theorem 2.2] 

and [109, Theorem 2.2 and Lemma 2.1] that system (3.2.1) with f(x 11 ) replaced 

by f(8) has a positive periodic solution x*(t, 8), which is globally asymptotically 

stable with respect to 1Rl2 \ {O}. Suppose x*(t, 0) is the positive solution associated 

with system (3.2.1) with f(x11 ) replaced by f(O). Since x*(t, 8) -t x*(t, 0) » 0 as 

8 -t 0. We can choose a 80 < 8 small enough such that xr1 ( t, 80 ) > 80 , \ft ~ 0. 

Since 

lim \Jl(t)x = 0 
x-tO 
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uniformly for t E [O, w], there exists 81 > 0 such that 

llW(t)xll < 8o/2, Vt E [O, w], llxll < 81. 

Our next claim shows that {O} is a uniform weak repeller for X 0 • 

Suppose, by contradiction, that lim supn-+oo II pnxo II < 81 for some Xo E Xo. 

Let A = limsupn-+oo llPnxoll, then A < 81. Let E = c5i;A > 0. Since we know 

limsupn-+oo llPnxoll =A, then there exists n1 > 0, such that 

llPnxoll < A+c=A+c 

A + 81 - A = 81 + A 
2 2 2 

Let t ~ n1w, there exists a n2 > 0 such that n2 ~ nl and t - n2w E (0, w], therefore 

Since f is decreasing function along with x11 (t) ::; 80 /2 < 80 when t ~ n1w, we have 

f(xu(t)) ~ /(8o/2) > f(8o). 

That is, there exists a nl > 0 such that llW(t)(xo)ll ::; 8o/2 and ~ ~ x1p(t)f(80) -

(d2 (t) + µ2 (t)):r;2 , Vt ~ n 1w. By the comparison principle, we have 

limsupx11(t,xo) ~ x~1 (t,8o) > 80, 
t-+oo 
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a contradiction to ll'11(t)(xo) II :::; 8o/2 for all t 2: niw. 

Note that every orbit in Ma approaches to {O}, and {O} is acyclic in M0 . By [108, 

Theorem 1.3.1], it follows that Pis uniformly persistent with respect to (X0 , 8X0 ). 

It then follows from [108, Theorem 3.1.1] that the solutions of system (3.2.1) are 

uniformly persistent with respect to (X0 , 8X0 ), that is, there exists an E > 0 such 

that any solution x(t, x0 ) of system (3.2.1) with initial value x0 =f 0 satisfies 

liminf :ri(t, x0
) > E. 

t~oo 

Furthermore, [108, Theorem 1.3.6] implies that P has a fixed point :c* E X 0 . Thus, 

x(t, x*), the solution through x*, is a positive periodic solution. D 

3.3 Model parameterization and validation 

The aim of this section is to provide the values ofR~·P, defined in subsection 3.2.2.1, 

at each of 30 location .. c:; in southeastern Canada. Then we obtain a threshold of 

monthly temperature conditions for I. scapularis establishment, compare the results 

with the mechanistic model of [68]. To achieve this aim, we will first parameterize 

the model as described below. 
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3.3.1 Materials and methods 

All model parameter values (3.2.1) are the same as for the model of [68], i.e. they are 

derived from laboratory and field studies in the Lyme-endemic woodlands of Long 

Point, Ontario, by Lindsay and collaborators [52, 51]. The host population is fixed 

at 200 rodents and 20 deer as in [68]. The hosts in the model are a considerable 

simplification of the community of hosts of I. .scapularis, but this approach has 

been found to be adequate in field validation of the previous mechanistic version 

of the model (e.g. [75]). Specifically, all parameter values are the same as those in 

Table 2.1 of Chapter 2 except the development rates of POP, PEP, larva-to-nymph, 

nymph-to adult and questing activity. How to estimate these values will to be clear 

below (section 3.3.1.1). The estimated detailed formulas in one specific location 

over 1971-2000 period are shown in Appendix A. We adopt the method, outlined 

in Bacaer 2007 [5] and Wang and Zhao 2008 [99], to evaluate R 0 . This is based on 

the Floquet theory and a standard dichotomy argument. 

3.3.1.1 Estimation of the development rates 

For the study of (68] temperature data from the Port Dover weather station were 

used, this station being the closest to Long Point Ontario where the field data 

used in model calibration were collected, and where field studies on tick season-
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ality allowed validation. However, Port Dover weather station has closed, so in 

this study we shall use temperature data from the Delhi CDA station (obtained 

from the Environment Canada website: www.climate.weatheroffice.gc.ca), which is 

the currently functioning weather station that is closest to Long Point (latitude: 

42°36' N; longitude: 80°05'W), so that we can provide simulations with more recent 

temperature data (temperature normal for 1971-2000). The distance from the Delhi 

CDA station to Long point is 28.254 km, obtained by the city distance calculator 

from the website: www.javascripter.net/math/calculators/distancecalculator.htm. 

Some early studies of ticks in the field suggest that as far as air temperatures 

affecting development are concerned, this spatial resolution is adequate [71]. 

As described in the literature [51, 71], we assume that the development rates 

of POP, PEP and larva-to-nymph are temperature-dependent and development 

rates of nymph-to-adult are influenced by both temperature and tempera.ture­

independent diapause induced by photoperiodicity. Similarly questing activity is 

assumed to vary with temperature and as in [68] the host finding probabilities is 

varied according to host densities. 

As in [68] we use the relationships between temperature and tick stage specific 
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development duration derived from field-validated laboratory observations [71]: 

D1(T) = 1300 x r-i.42 (time delay for the pre-oviposition period) (3.3.6) 

D2(T) = 34234 x r-2
·
27 (time delay for the pre-eclosion period of eggs) (3.3. 7) 

D3(T) = 101181 x T-2
·
55 (time delay for engorged larva to questing nymph) 

(3.3.8) 

D4(T) = 1596 x r-i.21 (time delay for engorged nymph to questing adult) 

(3.3.9) 

where T is the temperature in Celsius (0 C). Nymph-to-adult development rates 

are only determined by temperature for those nymphs that fed before mid-June; all 

nymphs that feed after mid-June enter diapause (which is temperature independent 

and likely daylength-induced [71]) and molt on the same day of the ne:>..1; year, a 

day predicted by the temperature-development relationship, for nymphs feeding on 

December 31st of that year. 

A key simplification here, compared to the model of [68], is that rather than 

accumulating daily proportions of development from one stage to another, the pro­

portion of development for a particular day of the year (being the reciprocal of 

the relationship between duration of development and temperature on that day) 

becomes the proportion of ticks in a particular life stage that move to the ne:>..1; 

life stage on that day, i.e. this becomes the coefficient (that varies for each day 

of the year according to temperature) for the rate of movement from engorged to 
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molted ticks, engorged to egg-laying females and eggs to hatched larvae (d12 (t), 

d2(t), d6 (t) and d9 (t)). For the daily development rate (d9 (t)) of nymph-to-adult 

after the summer solstice, when temperature-independent diapause determines de­

velopment time, the coefficient is the reciprocal of the estimated length of diapause 

for each day of the duration of diapause. As in [68] development is set at zero for all 

temperatures of 0°C and below. While this method is not biologically accurate (no 

tick of any stage develops to the next stage without undergoing the full process of 

development lasting weeks to months), this simplification would allow development 

of a differential equation model, and in our validation we aim to investigate whether 

this model is adequate or not. 

Observations against field data [68] suggest that this method does not pro­

duce realistic seasonality of nymphal ticks, so a modified method of calculating 

the daily rate (d6(t)) at which ticks move from the engorged larva state to the 

questing nymph state is used as described in the following. To estimate the larvae­

to-nymph development rate for a specific day, temperature data points on that day 

and subsequent days are used. Suppose the temperature for day 'i is 7i, then the 

development duration from engorged larvae to molted nymphs w1der condition of 

subsequent constant temperature for day i is D 3(7i), which is calculated by the 

relationship between development and temperature (formula (3.3.8)). Therefore, 

the development proportion for day i is I/ D3('Ji). Similarly, the development pro-
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portion for day i + 1 is 1 / D3 (7i+i). When the sum of the accumulative proportion 

for subsequent n days: 

i+n 1 

f; D3(T;) 

equals unity, we obtain a number n and then l/n is defined as the development 

rate of larva-to-nymph at the particular day i. 

The 1971-2000 temperature normals used are averages of 30 years data and 

present as monthly means. While this is adequate for the mechanistic model of (68] 

we smooth the temperature-driven periodic coefficients for development by Fourier 

analysis as shown in Figure 3.1. 

3.3.1.2 Sensitivity analysis 

To assess the sensitivity of model outcomes to variations in each parameter we 

carry out a global sensitivity analysis with the Monte Carlo-based Latin Hypercube 

Sampling (LHS) variance method [61, 58] using the R~'P as the outcome variable. 

All the parameters in the investigation are changed by 20% from their start values 

and then 600 simulations are run. Sensitivity to each given parameter is measured 

by the partial rank correlation coefficient (PRCC) between the parameter and the 

outcome variable (R~'P). 

57 



Development rate of POP (d
12

(t)) 

J F M A M J A S 0 N D 

Development rate of larva-to-nymph (d
6
(t)) 

J F M A M J J A S 0 N D 

Host-attaching rate of immature ticks (d
4
(t), d

7
(t)) 

0. 015 ,------,----.---.--.---.----r---.---.--.----~.----. 

J F M A M J J A S 0 N D 
Time (month) 

Development rate of PEP (~(t)) 

0.04~~~~~------

0.03 .. 

0.02 . 

0.01 . 

O'---.illlllllil~-'--'-----'--'--'-_..._~ 

0.03 

0.4 

0.2 

J F M A M J J A S 0 N D 

Development rate of nymph-to-adult (~(t)) 

: R2=0.9057 

J F M A M J J A S 0 N D 

Host-attaching rate of adult ticks (d
10

(t)) 

J F M A M J J A S 0 N D 
Time (month) 

Figure 3.1: Development rates and host-attaching rates of I. scapularis ticks in a 

one year period. Blue lines represent development rates or host-attaching rates at 

each day of the year, calculated from the mean monthly normal temperature data 

of Delhi CDA for 1971-2000 periods. Red lines represent the development rates and 

host-attaching rates at each day of the year after smoothing by Fourier series. R 2 

are shown. 
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3.3.1.3 Simulation and validation 

We perform model simulations using temperature data (mean monthly temperature 

normal data for the period 1971-2000) from 16 meteorological stations in southern 

Ontario and 14 meteorological stations in Quebec. In each case R~·P is calculated 

and these are compared with the data obtained in simulations of the model of [68]. 

From these latter data, Ogden et al. [68] produced a graph of the relationship be­

tween the cumulative degree days above 0°C for each meteorological station and an 

index of the numbers of ticks at model equilibrium. By finding the x-axis intercept 

of the fitted regression line the temperature conditions at which the number of ticks 

was zero in the model were determined. This graph is reproduced and compares 

with the R~·P values obtained for the same locations using simulations of the model 

developed here. We also compare the seasonality of tick activity produced by the 

new model and the model in [68]. 

3.3.1.4 Mapping 

A map of R~·P values > 1 in Canada east of the Rocky Mountains (a different tick 

species transmits Lyme west of this) is prepared using the relationship between R~·P 

and temperature conditions (using cumulative annual degree-days > 0°C [DD > 

0°C] as an index) estimated from the simulations for meteorological stations in 
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Quebec (which provides a more cautious assessment of risk of I. scapularis invasion­

see results section) as described above. The method used is similar to that described 

in [75]: DD > 0°C values are obtained for 2368 meteorological stations that have 

data for > 15 years during the period 1971-2000 and these values are converted to 

n~,p values according to the relationship described above, and then n~,p values are 

interpolated by inverse distance weighting across a 4 x 4 km pixelated landscape 

with pixel size 4 x 4 km. 

3.4 Results 

3.4.1 Model simulations 

There is considerable concurrence in the outcomes of simulations by the modified 

model and the model of [68]. n~,p for I. scapularis at Long Point, Point Pelee and 

Chatham, sites where I. scapulari,s populations are known to be established during 

the period 1971-2000, is estimated at 1.5, 3.19 and 3.65 respectively (Table 3.1). 

The temperature conditions identified by the two models as being those at which 

n~·P = 1 (i.e. threshold conditions for tick population persistence) are effectively 

identical at 3100 DD> 0°C (Figure 3.2). The relationship between R~·P and DD> 

0°C is essentially linear and, as in [68] slightly different for Ontario and Quebec 

(R~,p = 0.0033DD > 0°C-9.358 and R~,p = 0.003DD > 0°C-7.551 respectively). 
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Based on the aforementioned relationship between ng·P and temperature conditions 

estimated from the simulations for meteorological stations, an n~,p map for Canada 

is developed (Figure 3.3). Simulated seasonality of ticks by the two models a.re also 

similar (Figure 3.4). 

3.4.2 Sensitivity analysis 

Figure 3.5 presents the Partial Rank Correlation Coefficients (PRCC) for each pa­

rameter used in the sensitivity analysis that, in turn, explains the sensitivity of the 

'R~'P value to each parameter. The model is particularly sensitive (absolute PRCC 

> 0. 7) to changes in summer (July, August, June) mean temperatures and host 

abundance of immature ticks. n~,p is moderately sensitive to development rates 

Of feeding ticks and mortalities Of immature questing ticks. 'R.,~,p is particularly 

insensitive to mean temperatures in April/October/November, mortalities of en­

gorged/ questing adults, mortalities of hardening larvae, number of deer (absolute 

PRCC < 0.2). Table 3.3 lists parameters in a descending order of importance. 

3.5 Discussion 

Our study applies a new mathematical approach to predict the survival and oc­

currence of the tick vector of Lyme disease, and by inference the spread of Lyme 

disease risk, using a direct n~,p -based approach. 
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Table 3.1: Outcomes of simulations of the current model and that in [68] (respec-

tively n~,p and numbers of feeding adult ticks at equilibrimn). The locations of 

meteorological stations from Ontario where temperature data are used in the sim-

ulations. 

Station Location Mean DD> 0°C Resident tick Maximum no. 'R.v,p 
0 

(Y/N) of FA at equilibrium 

Ontario 

Point Pelee 41°57' N, 82o31'W 3791 y 383 3.19 

Chatham WCPC 42°23'N, s2°12'w :3911 N 409 :3.65 

New Glasgow 42°31' N, s1°3s'w 3536 N 205 2.06 

Port Stanley 42040' N, s1013'w 3315 N 104 1.50 

Courtright 42o45' N, s2°211 w 3734 N 358 3.04 

Delhi CDA 42°52' N, so033'W 3441 N N.A 2.04 

London Airport 43°02' N, 81°09'W :3355 N 104 1.73 

Exeter 430211 N, 81°29'W 3336 N 100 1.71 

Blyth 43o43' N, s1°23'w :3221 N 54 1.30 

Hanover 44oo11N, s1°001w 3100 N 23 1.01 

Wiarton Airport 44045'N, 81°06'W 2959 N 0 0.71 

South Baymouth 450:351N, s20011 w 273;3 N 0 0.52 

Timmins Airport 48°34' N, s1°23'w 2351 N 0 0.20 

Cochrane 49°o4'N, s1°02'w 2256 N 0 0.17 

Kapuskasing CDA 49o24' N, 82°26' W 2317 N 0 0.19 

Smoky Falls 50°041 N, s2°101W 2283 N 0 0.19 

DD: Degree days; FA: Feeding adults; 'R.0•P: The basic reproductive ratio; N.A: Not avdilable in [68J. 
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Table 3.2: Outcomes of simulations of the current model and that in [68] (respec-

tively R~,p and numbers of feeding adult ticks at equilibrium). The locations of 

meteorological stations from Quebec where temperature data are used in the sim-

ulations. 

Station Location Mean DD> 0°C Resident tick Maximum no. nv,p 
0 

(Y/N) of FA at equilibrium 

Quebec 

Hemmingford 45o04' N, n°4:3'w 3076 N 87 1.61 

St Anicet 45°08' N, 74°21'W 3167 N 126 1.86 

Iberville 45°20' N, n°15'w 3131 N 117 1.80 

Montreal McGill 4503o'N, 73°35'W 3409 N 288 2.84 

Ste Therese Ouest 45° 39' N, 73° 53' W 3000 N 70 1.50 

St .Janvier 45°44'N, n°5a'w 2860 N 24 1.19 

Fleury 45o43' N, 73°00'W 2969 N 54 l.37 

Sorel 46°02' N, 13°011w 3095 N 129 1.94 

St Come 46°17'N, 73°45'W 2417 N 0 0.38 

St Zenon 46037' N, 73o52'W 2236 N 0 0.20 

St Michel des Saints 46041' N, n°55'W 2392 N 0 0.35 

Grande Anse 47°06' N, 72°561W 2575 N 0 0.60 

La Dore 48°46'N, 72o43'w 2264 N 0 0.26 

Chapais 2 49o47' N, 74051'W 2001 N 0 0.11 

DD: Degree days; FA: Feeding adults; 'R.~'P: The basic reproductive ratio; N.A: Not available in [68]. 
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Figure 3.2: Model validation. R~,p calculated in this study (light gray squares), as 

well as the maximum numbers of feeding adult ticks at equilibrium using the model 

of [68] (dark gray lozenges with linear trend line), are plotted against the mean 

annual number of degree-days > 0°C (DD > 0°C) for the meteorological stations 

in Ontario that provided temperature data for the simulations. The horizontal 

dashed line indicates ng,p = 1 on the secondary axis and the arrow indicates the 

value of DD > 0°C at which R~,p is estimated at 1 by both models. 
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Figure 3.3: A map of n~·P values for I. scapularis for Canada east of the Rocky 

Mountains. Assuming that all model parameter values other than those affected 

by temperature conditions are the same as those used in model simulations in this 

model. 
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Figure 3.4: Comparison of model simulations of the seasonality of ticks (lozenges) 

generated by our model using mean monthly temperatures from Delhi CDA, On-

tario meterorological station, and the seasonality simulated in [68] (square). The 

numbers of y-axis are the proportion of ticks of that instar feeding on the same day 

as field observations, against presented as a proportion of the total annual number 

of ticks feeding on the same dates in the simulation. 
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Figure 3.5: Global sensitivity analysis of 'R~'P. The grnph is obtained by 20% 

change in the value of in the chosen different parameters and by 600 simulations. 
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Table 3.3: PRCC results for each parameter in the LHS/PRCC sensitivity analysis. 

Parameter description PRCC p-value Significant (p < 0.01) 

July mean monthly temperature 0.93103 8.9284e - 255 * 
August mean monthly temperature 0.91524 5.8975e - 230 * 
June mean monthly temperature 0.83477 1.1508e - 151 * 
Number of rodents (R) 0.70357 1.1792e - 087 * 
Development rate of feeding adults (d11) 0.68585 1.1092e - 081 * 
September mean monthly temperature 0.5938 1.861e -056 * 
Development rate of feeding nymphs (ds) 0.57262 9.5196e - 052 * 
Questing nymph mortality (µ7) -0.53144 l.6233e - 043 * 
Development rate of feeding larvcW ( ds) 0.51807 4.4421e - 041 * 
Questing larva mortality (1i4) -0.50762 3.0201e-039 * 
Engorged larva mortality (µ6) -0.41474 1. 7793e - 025 * 
Engorged nymph mortality (µ9) -0.31698 5.5725e - 015 * 
May mean monthly temperature 0.29966 1.7717e - 13 * 
Development rate of hardening larvae (d3) 0.21037 3.2498e - 007 * 
Egg mortality (µ2) -0.20051 1.1513e - 006 * 
Questing adult mortality (J.'10) -0.14358 0.00052924 * 
November mean monthly temperature 0.096436 0.020294 

Number of deer (D) 0.09592 0.020977 

Hardening larva mortality (J'3) -0.086626 0.037175 

April mean monthly temperature 0.08569 0.039279 

October mean monthly temperature 0.078827 0.058012 

Engorged adult mortality (1i12) -0.0076705 0.85388 

This table summarizes results in terms of PRCC and p-value when changing model parameter values by 20% from 

their start values. The start values of mean monthly temperature are adapted from Delhi CDA weather station 

over 1971-2000 period, and all other parameters are the same as those in Table 2.1 in this study. The sign of PRCC 

represents the positive ( +) or negative (-) response of n~·P to the changed parameter values. The parameters are 

listed in descending order of the magnitude of the sensitivity of R~·P to changes in their values. •: Significant at 

the p < 0.01. 68 



Models of vectors and vector-borne diseases (including ticks and tick-borne 

pathogens) include those that aim to explore theoretically the behaviors of the 

systems, which may or may not use R~,p as an index of the relative contributions or 

effects of different model parameters (e.g. [66, 85, 83, 82, 80, 16, 31, 29, 36]); and 

simulation models that aim to explicitly simulate aspects of the biology of vectors 

and vector-borne disease systems as accurately as possible (e.g. [63, 64, 79, 68, 24]). 

The outcomes of the latter models have been used to produce predictive and risk 

assessment tools for practical animal health and public health decision-making. Ex­

amples include risk maps for Lyme disease, Bluetonge virus and Leishmaniasis (e.g. 

[36, 35, 34]), but none to date have been able to produce maps using a dynan1ical 

version of R~,p. 

Here we have developed a relatively highly parameterized model that employs 

the next generation matrix approach to obtain values for n~·P in complex systems 

with multiple differential equations [23, 36, 34). Special attention has to be made to 

ensure that the simplification of the mechanistic model of [68) allows retention of a 

key feature-a realistic modelling of the effect of temperature on total tick mortality 

indirectly induced by variations in the length of the tick lifecycle. Both models 

produce near identical results in terms of identifying the temperature conditions at 

which ~,p falls below unity, i.e. they identify threshold environmental conditions 

for survival of the tick I. scapularis, which is a prerequisite for Ly1ne disease risk 
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emergence. However using the model developed here we can obtain and map direct 

estimates for n~,p for I. scapularis. As a consequence we could produce an 'Rg'P map 

for I. scapularis for regions of Canada east of the Rocky Mountains (although this 

assumes habitat in terms of host community and off-host tick survival is constant). 

The geographic extent of territory where R~,p > 1 is similar to that for the map 

generated by the model of [68] although the n~,p map immediately provides a 

gradient of suitability above R~,p = 1. To our knowledge this is the first R~,p map 

for an arthropod tick vector. 

Sensitivity analysis produces expected results. Because I. scapularis is an obli­

gate parasite, host densities have a strong effect on tick abundance although deer 

abundance must fall below a certain threshold before the abundance of ticks falls 

significantly [69]. Also, variations in temperature conditions during the warmer 

months have a greater effect on n~,p than changes during the coolest months be­

cause of the non-linear relationship between temperature and tick development rates 

[71]. This is also the reason why the relationships between R~,p and DD> 0°C are 

slightly different for simulations in southern Quebec and southern Ontario: sum­

mers are shorter but warmer in southern Quebec and R~,p is rather higher than in 

southern Ontario for locations having the same DD > 0°C values. 

The accuracy of the model developed here is demonstrated by the model's ability 

to identify a threshold temperature condition for tick population persistence of 
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3100 DD > 0°C, which is the same as that identified by the model of [68]. This 

value has been extensively validated in the field against the locations of confirmed 

endemic populations of I. scapularis [75]. The appropriateness of our approach is 

also demonstrated by the ability of the model to simulate tick seasonality expected 

in northeastern North America [68). The model is also, however, able to quantify 

relationships between temperature and n~·P. When DD > 0°C is greater than the 

threshold condition for n~,p = 1, n~,p increases by approximately 0.5 for every 100 

increase in DD> 0°C (see Fig 3.2) although this will vary with a number of model 

parameters such as host finding rates and host densities [68]. Subsequent empirical 

and field-observation studies have underlined the importance of temperature as a 

driver of establishment of I. scapularis ([70, 46]), and future studies must aim to 

precisely model effects of climate change on n~·P for I. scapularis. Nevertheless, we 

have developed here a methodology for estimating n~,p for ticks that can be used 

for practical animal and public health purposes. 

The model presented here is parameterized in mostly the same way, and with 

the same values, as the model in [68], and the impact of variation in these on tick 

survival and abundance are explored in that paper as well as here. The factors 

affecting the threshold temperature conditions for n~,p ~ 1 are the relationship 

between temperature and development rates, and the per-capita daily mortality 

rates of free-living ticks [68]. As mentioned in [68] variations in the former could 
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occur with different genotypes of I. scapularis although we have no evidence for 

that. Variations in the latter could occur due to the characteristics of the habitats 

in which the ticks live, so for some locations the map in Fig 3.3 may rather over 

or under estimate risk (see [67) for details). Above the threshold conditions for 

R~,p 2: 1, the magnitude of the relationship between R~,p and DD> 0°C (and the 

abundance of ticks at equilibrium in [68]) depend on parameters such as host finding 

rates and host densities and these will vary from one location to the next according 

to different ecological conditions, but these factors will vary at a scale that is too 

fine for visualization at a national scale. They may well be very significant at a 

local, operational scale, however. Stochastic effects are not included in the model 

because of lack of information on which to parameterize them. Therefore, the 

model in this chapter estimates the main macroclimatic influence on possible tick 

population occurrence in Canada upon which more local variations in ecological 

conditions will be superimposed to determine R~,p at these more precise locations. 

It would be expected that at marginal temperature conditions, stochastic events 

could drive recently established populations to extinction, but ticks are constantly 

re-introduced by migratory birds and other hosts to re-establish populations [72, 

75) so stochastic fade out of tick populations would likely be only temporary in 

southern Canada. Furthermore, tick populations are resilient to wide temperature 

and humidity variations on a short (day-to-year) time scale because ticks actively 
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seek effective refugia from climatic extremes in the surface layers of the forest floor, 

and there is latency in changes in development rates in response to fluctuations in 

temperatures [71]. 

The methodology developed here can be expanded to directly model the effects 

on n~,p for the agent of Lyme disease, Borrelia burgdorferi, of a greater range of 

environmental factors that determine Lyme disease risk establishment such as host 

densities, community structure, habitat effects on tick mortality, and immigration 

rates for ticks and B. burgdorferi. It could also be adapted for other tick species in 

other parts of the world. 

3.6 Conclusion 

We have developed a methodology for modelling the biology of the tick vector 

of Lyme disease to produce a. value for R~,p according to ambient temperature 

conditions. It can also be adapted to investigate how n~·P may vary with other 

environmental variables such as host densities and habitat effects on tick mortality. 

The model can be used directly to assess the risk from emerging Lyme disease in 

Canada (and elsewhere) that will allow more effective planning of public health 

policy, and development/ evaluation of preventive and control strategies. ·while the 

precise parameterizations of the model is relevant for Canada. and the northeastern 

USA, the methodology is applicable to other tick species elsewhere in the world. 
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This tool is particularly powerful by providing a value for R~'P, which is the uni­

versally accepted value translatable to all branches of epidemiology including those 

involved in vector borne diseases (The malERA Consultative Group on Modeling 

(57]) and emerging infectious diseases (e.g. [100, 32, 28, 89, 26]). In the process 

we have produced estimates of 'R,~·P for locations in Canada where I. scapularis are 

established, and produced the first R~,p map for an arthropod vector. 
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4 Spatial spread of tick population with 

seasonality 

4.1 Introduction 

Periodic systems arise very naturally in population dynamics when relevant biolog­

ical activities are regulated by seasonality. \iVhen state variables of such systems 

correspond to the densities of the population at different development stages, we ob­

tain certain positive feedback systems which generate monotone or order-preserving 

periodic processes/ discrete dynamical systems. Interestingly, the associated peri­

odic maps are usually not strongly monotone. 

This lack of strong monotonicity of the periodic (solution) map for a system 

[91] has been previously observed by Smith [90] in a completely different setting 

of functional differential equations with constant coefficients, where the solution 

operators are not strongly monotone but eventually strongly monotone due to the 

involved time lags. vVe observe similar phenomena here for periodic systems even 
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without time lags, where model parameters such as birth and developmental rates 

are periodic in time but can be positive only during particular seasons of the year 

or the life cycle of the species considered. For this reason, it will take a few cycles 

for two ordered initial points to be strongly separated along their solutions and 

hence we can only expect the strong order-preserving property for some iterations 

of the periodic map. Existing results for strongly monotone maps can of course 

be applied to these iterations of the periodic map to yield such qualitative results 

as the threshold dynamics, existence of non-trivial fixed points, heteroclinic orbits, 

and traveling waves (if spatial movement involved), but only for the considered 

iteration of the period map. Although some qualitative aspects such as persis­

tence/extinction can and have been addressed for discrete maps whose iterations 

are eventually strongly order-preserving, how to derive fine qualitative properties 

for the periodic map itself rather than its iterations remains an issue. For example, 

how do we know the minimal period of a stable positive periodic solution once if 

the periodic solution is established by applying genera.I theories to an iteration of 

the periodic map? If this is a spatially homogeneous periodic solution of a corre­

sponding reaction-diffusion system that corresponds to the persistence state of a 

transition (wavefront) from the trivial solution, how do we calculate the propaga­

tion speed/minimal wave speed of the periodic map when corresponding results are 

obtained by applying using general results to an iteration of the periodic map? 
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In this chapter, we develop some techniques to address the aforementioned ques­

tions, using a reaction-diffusion system modeling the range expansion of blacklegged 

tick I. scapularis. As discussed in the earlier chapters, the range expansion of I. 

scapulari,s is of importance for relevant tick-borne diseases control and prevention, 

and tick dispersal is a major reason for its northward spread in Canada. Though 

ticks ability of self-directed horizontal or long-range movement is very limited [19], 

the lifestyle of I. scapularis indicates that it is perfectly possible for the tick vector 

to disperse in a number of ways. Firstly, when engorged adult females lay eggs on 

the ground at the site where they detached from their hosts, the light-weighted eggs 

may have small movement due to the strong wind or the floating water. Secondly, 

I. scapularis can crawl no more than a few meters during any of its life stages 

[27, 56]. Feeding ticks move as far as their hosts during its lifetime. Furthermore, 

the relatively long feeding period (larvae feed for 3-5 days, nymphs feed for 3-4 days 

and adults feed for 5-7 days [94]) and the firm attachment once ticks attach to the 

host boost dispersal of the tick when the host moves in the environment. Finally, 

many studies [75, 87, 93] demonstrate that I. scapularis are carried into Canada 

by migratory birds in spring either from endemic foci in the United States or from 

existing Canadian habitats. How to model the effect of the mobility of ticks in their 

different development stages on the range expansion is the focus of this chapter. 

In the rest of the chapter, we consider the range expansion of ticks in an isolated 
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unbounded I-dimensional domain and we model the tick movement by diffusion. 

Our approach in analyzing the model is guided by applying some recent results in 

monotone reaction-diffusion equations with periodic coefficients [48, 49, 50, 55] to 

our specific setting, and we focus on how to move further beyond direct application 

of these results to an iteration of the periodic map so we can draw conclusions 

about the periodic map itself. 

4.2 Model formulation 

\Ve capture some key stages of the tick life cycle, explicitly incorporating 7 mutually 

exclusive stages, and this yields a minor simplification of the model developed in 

[68]. In what follows, all variables are functions of space variable x E JR and the 

time variable t. These variables are the numbers of eggs (E(t, :r)), questing larvae 

(LQ(t, x)), feeding larvae (Lp(t, x)), questing nymphs (NQ(t, x)), feeding nymphs 

(Np(t, x)), questing adults (AQ(t, x)) and feeding adults (AF(t, :c)). 

We assume the birth rate of eggs per day is given by a periodic function (of time) 

b(t), and we use d.i(t) (i = E, L, N) to denote respective development rates per day 

from eggs to larvae, from larvae to nymphs, and from nymphs to adults. vVe de­

note by ai(i = L, N, A) the attachment rate of questing larvae, nymphs and adults 

per day, respectively and these rates may depend on corresponding host densities 

(in our consideration, R is the number of rodents and D is the number of deers, 
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both assumed to be constants). Finally, we use µe, µql, µfl, µqn, JLfn, µqa, JLJa to de-

note the death rates of ticks in respective stages. We emphasize that we use three 

density-dependent death rates µfl ( L F), µJn (NF), µI a ( Ap), and we assume each of 

these functions is strictly increasing, differentiable and goes to infinity when its ar-

gument goes to infinity with. In the following, all coefficients, if written as functions 

of the time variable t, will be assumed to be continuous and periodic with the period 

w = 365 days. As for spatial movements, we let Di('i = E, LQ, Lp, NQ, Np, AQ, AF) 

be the diffusion coefficients of the ticks in respective stages, and we assume all co-

efficients are positive. vVe will use random diffusion to model the spatial movement 

of ticks and assume ticks move with different rates in different stages. 

\Vith these assumptions, we have the following system of reaction-diffusion equa-

tions with periodic coefficients: 

M ~E fit= b(t)AF - dE(t)E - µeE +DE 8x2, 

8~Q = dE(t)E - aL(t, R)LQ - µqtLQ + DLQ 
0;~2Q, 

8~F = aL(t, R)LQ - dL(t)LF - µ11(Lp )LF +DLF ~;l, 

8~Q = dL(t)LF - aN(t, R)NQ - µqnNQ + DNQ ~~Q, 

8~F = aN(t, R)NQ - dN(t)Np - µJn(Np)NF + DNF 8~~F 

8~Q = dN(t)Np - aA(t, D)AQ - µqaAQ + DAQ a;~Q, 
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The corresponding periodic systems of ordinary differential equations is 

~~ = b(t)AF - dE(t)E - µeE, 

~ = dE(t)E- aL(t, R)LQ - µqlLQ, 

d~{ = aL(t, R)LQ - dL(t)LF - µJt(Lp)LF, 

d~q = dL(t)Lp - aN(t, R)NQ - µqnNQ, 

did/ = aN(t, R)NQ - dN(t)Np - Jl'fn(Np)Np, 

d:tQ = dN(t)NF - aA(t, D)AQ - µqaAQ, 

d:t = aA(t, D)AQ - µJa(AF )AF, 

and this system can be re\VTitten as 

du 
- = G(t 'U) 
dt ' 

with initial data 

u(O) = u0 E ne, 

where, 

(E(t); LQ(t); Lp(t); NQ(t); Np(t); AQ(t); Ap(t)), 
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b(t)u1 - (dE(t) + µe)U1 

dE(t)u1 - (aL(t, R) + µqz)·u2 

aL(t, R)u2 - (dL(t) + µ11(u3))u3 

G(t, u) = dL(t)u3 - (aN(t, R) + µqn)U4 

aN(t, R)u4 - (dN(t) + µJn(lt5))'u5 

dN(t)u5 - (aA(t, D) + µqa)u6 

aA(t, D)·u6 - µtaCu1 }u1 

(4.2.5) 

Since Rand Dare constants in this chapter, in what follows, we will write aL(t, R) = 

4.3 The spatially homogeneous system 

vVe first show our mathematical model is biologically well-posed. Namely we show 

that the model (4.2.3) with initial condition (4.2.4) has a unique globally defined, 

differentiable solution which remains non-negative and bounded. 

Proposition 4.3.1. For system (4.2.3) with initial data (4-2.4), we have ·u(t) 2:: 0 

for all t 2:: 0, that is: JR~ is positively invariant. Moreover, the system (4.2.3) exists 

a unique and bounded solution ·u(t, u0 ) for every initial value 'u0 E ~~. 

Proof The nonnegativity of each ui(t) follows immediately from (92, Theorem 

5.2.l]. Hence ~~ is positively invariant for the system (4.2.3). It is easy to 
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check G(t, u) is continuous, differentiable and locally Lipschitzian in u on each 

compact subset of JR~. Hence, there is a unique solution u(t, u0 ) for system (4.2.3) 

through the initial value it0 E JR~ in its maximal interval of the existence. Since 

µ11(u3),µJn(u5),µJa(u1) are strictly increasing functions with respect to their ar-

guments u:3, u5 , and 'U7 , system ( 4.2.3) can be controlled by the following linear 

system 

(4.3.6) 

Note that solutions for linear system ( 4.3.6) exist on [O, oo ). By the comparison 

theorem [92, Theorem 5.1.1], every solution ·u(t) of system (4.2.3) exists globally. 

Next we establish the boundedness of solutions. For any periodic nonnegative 

function f(t) with period w, we denote J = max f(t). It is easy to see that system 
tE[O,w] 

(4.2.3) can be controlled by the following cooperative and irreducible system with 
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constant coefficients: 

(4.3.7) 

rium 0 exists for system ( 4.3. 7), which is globally asymptotically stable according 

to [109, Corollary 3.2]. If aA(o) b.. aN(o) _4i._ aL(o) kl!_ > 1, system ( 4.3. 7) admits 
µfa Jiqa µJn µqn µfl µqi µE 

a unique positive equilibrium, which is also globally asymptotically stable for all 

nonzero solutions by [109, Corollary 3.2]. Hence, the comparison principle im-

plies that every solution u(t) of system (4.2.3) with nonnegative initial value ·u0 is 

bounded for all t E [O, oo ). D 

4.3.1 Existence and stability of nonnegative periodic solutions 

In this section, we show the existence and stability of two types of periodic solutions 

of system (4.2.3). Namely, the tick-free periodic solution and a tick-persistent 

periodic solution. We start with some notations. 
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Let C be the set of all bounded and continuous functions from JR to JR7 and 

in C, we write r.p ~ 'ljJ (r.p » 7/1) provided 'Pi(x) ~ Wi(x) (r.pi(x) > Wi(x)), for any 

i = 1, · · · , 7, x E JR; <p > 'i/J provided <p ~ 'l/; but <p-=/= 'i/J. It is easy to see that C+ is a 

closed cone of C. In what follows, we will also identify a vector in JR7 as a constant 

map with the vector value. For any r » 0, we define [O, r] := {'u E JR7 : 0 :S u :S r} 

and Cr := { r.p E C : 0 :S r.p :S r}. We equip C with the compact open topology, 

i.e. r.pm -t <pin C means that the sequence of <pm(x) converges to r.p(:r) as m -7 oo 

uniformly for x in any compact set in R Define 

Vr.p EC, (4.3.8) 

where I· I denotes the usual norm in JR7
. Then (C, II · lie) is a normed space. Let 

de(·,·) be the distance induced by the norm II · lie- It follows that the topology in 

the metric space ( C, de) is the same as the compact open topology in C. Moreover, 

(Cri de) is a complete metric space. 

Note that it is easy to see that 0 is an w-periodic solution of system (4.2.3), and 

the corresponding linearized system for (4.2.3) at the zero solution is 

dz 
dt = D11G(t, O)z (4.3.9) 
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with DuG(t, 0) given by 

-(µe + dE(t)) 0 0 0 0 0 b(t) 

dE(t) -(aL(t) + J.lq1) 0 0 0 0 0 

0 G£(t) -{dL(t) +µfl (O)) 0 0 0 0 

0 0 dL(t) -(aN(t) + l'qn) 0 0 0 

0 0 0 aN(t) -(dN(t) + 1'/n(O)} 0 0 

0 0 0 0 dN(t) -(aA(t) + l•qa) 0 

0 0 0 0 0 aA(t) -(µ11(0)) 

We follow ideas of [8, 99] to define the basic reproduction ratio for system ( 4.2.3). 

Let 

(4.3.10) 

where Ji,7(t) = b(t) and fi,j(t) = 0 if (i,j) # (1, 7). In addition, we define V(t) as 

1-'e + dE(t) 0 0 0 0 0 0 

-dE(t) aL(t) + 1-'ql 0 0 0 0 0 

0 -aL(t) dL(t)+µ1z(O} 0 0 0 0 

0 0 -dL(t) aN(t) + 1-'qn 0 0 0 

0 0 0 -aN(t) dN(t) + 1-'/n(O) 0 0 

0 0 0 0 -dN(t) aA(t) + J.lqa 0 

0 0 0 0 0 -aA(t) µ11(0) 

Then we can rewrite (4.3.9) as 

dz(t) dt = (F(t) - V(t))z(t). 

Let 4>v(t) and p(4>v(w)) be the monodromy matrix of the linear w-periodic 

system z'(t) = V(t)z and the spectral radius of 4>v(w), respectively. Assume Y(t, s), 

t 2:: s, is the evolution operator of the linear periodic system 

dy 
- = -V(t)y. 
dt 
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That is, for each s E IR, the 7 x 7 matrix Y(t, s) satisfies 

d 
dtY(t,s)=-V(t)Y(t,s) Vt~s, Y(s,s)=I, 

where I is the 7 x 7 identity matrix. 

Let Cw be the Banach space of all w-periodic functions from IR! to ne, equipped 

with the supremum norm. Suppose w( s) E Cw is the initial distribution at time s of 

ticks in this periodic environment. Then F(s)w(s) is the rate of new ticks produced 

by the initial ticks who were introduced at times, and Y(t, s)F(s)w(s) represents 

the distribution of those ticks newly produced at times and remain alive at time t 

for t ~ s. Hence, 

'lf;(t) = [,,, Y(t, s)F(s)w(s)ds = [" Y(t, t - a)F(t - a)w(t - a)da (4.3.11) 

is the distribution of accumulative ticks at time t produced by all those ticks w( s) 

introduced at the previous time. We then define the linear operator £ : Cw -+ Cw 

by 

(.Cw)(t) = 1"° Y(t, t - a)F(t - a)w(t - a)da Vt E JR., w E Cw. (4.3.12) 

It then follows from [8, 99] that £ is the next generation operator, and the basic 

reproduction ratio, denoted by n~iv,p, is the spectral radius of£, i.e., n~i·v,p := p(£). 

We denote by Pt : IR!~ -+ IR!~, the solution map of system (4.2.3). That is 

if u(t, u0 ) = (u1(t), u2(t), · · · , u7(t)f is the solution of (4.2.3) with initial value 
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u0 = ( u~, ug, · · · , u~)T E JR~, here T is transpose of a matrix or vector, then Pt ( u0 ) = 

It is natural to try to employ [108, Theorem 2.3.4] for monotone discrete dy-

namical systems to establish the existence of a unique positive periodic solution of 

system ( 4.2.3). Unfortunately, the map Pw is not strongly monotone for reasons 

to be clear below. Therefore, we start \vith P6w (which is strongly monotone) to 

obtain the existence and uniqueness of a positive periodic solution with a period 

6w, and we will then show that the minimal period of this solution must be w. 

Theorem 4.3.2. The solution map Pt is strongly order-preserving (monotone) for 

all t 2: 6w. In particular, P6w is strongly monotone. That is) for any ·u0
, v0 E JR~ 

Proof DenoteX(t) = ~ (w) = g:(t, w) and A(t) = Du(G(t, ·u(t, w))) = (ai1(t)hx1· 

Since 

BM 8M a M 
X'(t) = -(-(w)) = -(-(w)) = -(G(t, ·u(t, w))) = DuG(t, 'u(t, w))-(w), 

8t aw aw 8t &w aw 

we have that X(t) = (xij(t)hx1 satisfies 

X'(t) = A(t)X(t), X(O) =I. (4.3.13) 

Since ~(t, ·u) = %(t) ~ 0, for all 'i =I= j, (t, u) E JR+ x JR~, the Kamke's theorem 
J 

(see page 425 of [37]) implies xi1(t) ~ 0 for all i,j E {l, · · · , 7} and t ~ 0, and 
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x~i(t) ~ aii(t)xii(t) for any i,j E {l, · · · , 7} and t ~ 0. If there exists t0 > 0 such 

that Xij(t0 ) > 0, then it follows that Xij(t) > 0 for all t ~ t0 . Since Xii(O) = 1, we 

have Xii(t) > 0 for all t ~ 0, i E {1, · · · , 7}. 

We now prove that Xij(t) > 0 for all t > 6w, 'i,j E {1, · · · , 7}. Note that 

A(t) = D11G(t, u(t, w)) is given by 

-(1•e + dE(t)) 0 0 0 0 0 b(t) 

dE(t) -(aL(t) +µ.qi) 0 0 0 0 0 

0 aL(t) a33(t) 0 0 0 0 

0 0 dL(t) -(aN (t) + l•qn) 0 0 0 

0 0 0 aN(t) a55(t) 0 0 

0 0 0 0 dN(t) -(aA(t) + µqa) 0 

0 0 0 0 0 aA(t) a 77(t) 

where 

a71(t) = -(J.t/a('w1)W7 + µJa(w1)). 

Assume, by contradiction, that there is an element x·i(i-I)(t) = 0 for all t E [O, w] 

with 'i E {2, · · · , 7}. Then from equation (4.3.13) we have 

7 

x~(i-1) (t) = L ai1(t)x1(i-1) ( t) = ai(i-1) (t)x(i-I)(i-1) (t) + aii(t)xi(i-1) (t) 
l=l 

Immediately, we obtain a·i(i-1)(t) = 0, Vt E [O, w] by using the fact X(i-l)(i-1) (t) > 

0, Vt ~ 0. This contradicts with a·i(i-1)(t) ~ 0 but ai(i-1)(t) ¢= 0, Vt E [O, w]. So, 
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Xi(i-l) > 0 for some t E [O, w]. Once Xi(i-l)(t) is strictly positive it remains so, and 

therefore Xi(i-l)(t) > 0 for all t ~ w, i E {2, · · · , 7}. 

Similarly, if Xi(i-2)(t) = 0 for all t E [w, 2w] with i E {3, · · · , 7}, then from 

equation ( 4.3.13) we have 

x~(i-2)(t) = ai(i-1)(t)X(i-1)(i-2)(t) + aii(t)Xi('i-2)(t) = ai(i-1)(t)x('i-1)(i-2)(t) = 0, Vt E [w, 2w]. 

But from X(i-l)(i-2)(t) > 0 for all t E [w, 2w], it follows that ai(i-t)(t) = 0 for all 

t E [w, 2w]. This contradicts with ai(i-l)(t) ~ 0, t E [w, 2w]. So, Xi(i-2)(t) > 0 for 

all t ~ 2w, 'i E {3, · · · , 7}. 

Using the same argument, we can obtain 

(1) If i > j, then Xij(t) > 0 for all t ~kw provided i - j = k, i E {2, · · · , 7}; 

(2) If i < j, then Xij(t) > 0 for all t ~ (7 - k)w provide j - i = k, j E {2, · · · , 7}. 

Therefore, we get X(t) » 0 for all t ~ 6w, that is, ~1;: (w) » 0 for all t ~ 6w. 

Furthermore, if u0
, v0 E IR~ satisfy u0 < v0

, then for all t ~ 6w, we have 

1
1 ()P, 

Pt(v0
) - Pt(u0

) = _t (u0 + r(v0 
- 'U

0 ))(v0 
- 'u0 )dr » 0. 

0 aw 

Hence, we have Pt(u0 ) « Pt(v0 ), Vt~ 6w. That is, Pt is strongly monotone when-

ever t ~ 6w. In particular, P6w is strongly monotone. D 

Theorem 4.3.3. The folloW'ing statements hold: 
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( 1) If the basic reproduction ratio ng1 v,p :S 1, then zero is globally asymptotically 

stable for system (4.2.3} in R~; 

(2) If the basic reproduction ratio n~iv,p > 1, then system (4.2.3} admits a unique 

positive w-periodic solution u*(t) = (E*(t), LQ(t), Lf,(t), NQ(t), N;(t), AQ(t), A;,(t)), 

which i.s globally asymptotically stable for system (4.2.3} with 'initial values in 

JR~\ {O}. 

Proof We have shown that P6w is strongly monotone. Furthermore, P6w(O) = 0, 

DP6w(O) = X(6w)lw=O is compact and strongly positive. Since we have already 

shown the positivity and boundedness of the .solutions of (4.2.3) with the initial 

data 11° in JR~, the operator P6w : R~ --+ R~ is asymptotically smooth and every 

positive orbit of P6w in JR~ is bounded. 

\Ve also know that P6w is strictly subhomogeneous. This can be easily done 

since G(t, u) is strictly subhomogeneous on lL in the sense that G(t, au) > aG(t, u) 

for all u E JR~ \ {O}, a E (0, 1), t > 0. Therefore, by [99, Therorem 2.2] and [108, 

Theorem 2.3.4], we have the following threshold dynamics: 

• If p(DP6w(O)) ::; 1, then all solutions of system (4.2.3) with initial data u0 in 

R 7 converge to zero· 
+ ' 

• If p(DP6w(O)) > 1, then system (4.2.3) has a unique positive 6w-periodic 

solution u*(t), and every solution of system (4.2.3) with initial data ·u0 in 
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IR~ \ {O} converges to u*(t) as t -7 oo. 

By the similar argument used already in the last paragraph of the proof of 

Theorem 3.2 in [102], we have 

Since P6w has a unique positive fixed point, we conclude that Pw('u*) = ·u*. There-

fore, u* is a fixed point of Pw. D 

4.4 Spatial dynamics 

In this section, we study the spatial dynamics of the model (4.2.1) in the unbounded 

spatial domain IR. We always assume that R~iv,p > 1 in this section. Therefore 

according to Theorem 4.3.3 of this chapter, there exist two w-periodic solutions, 0 

and ·u*(t), for the spatially homogeneous system (4.2.3). 

Now we consider the reaction-diffusion system ( 4.2.1) on the unbounded spatial 

domain IR. We rewrite ( 4.2.1) with a given initial data r.p EC+ as 

{ 

atu(t, x) = Dilu(t, x) + G(t, u(t, x)), 

'U(O, x) = <p(x), x E IR, 

x E IR, t > 0, 
(4.4.14) 

where u(t, x) = (1t1(t, x), · · · , u7(t, x)f = (E(t, x), LQ(t, x), Lp(t, x), NQ(t, x), Np(t, x), 

AQ(t, x), Ap(t, x))T, G: IR x C -7 IR7 is defined in (4.2.5), r.p = (r.pi, l{J2, · · · , r.p7 f E 
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C+ is the initial data, ~ is the Laplacian operator on JR, 

4.4.1 Existence, uniqueness, positivity and monotonicity of solutions 

Let D be the set of all bounded and continuous functions from JR to JR equipped 

with the compact open topology. Let D+ = { r.p E D : r.p(x) 2: 0, Vx E JR}. Consider 

t > 0, x E JR, 
(4.4.15) 

The solution of (4.4.15) can be expressed in terms of the heat kernel as: 

Then {7i(t)}t2:'.:0 (i = 1, · · · , 7) is a strongly continuous semigroup (or C0-semigroup) 

on D generated by the infinitesimal generator Di~ which satisfies: (a). 1i(O)r.p = r.p, 

for all r.p E D; (b). 1i(t + s)r.p = 1i(t)Ti(s)r.p, for all t, s 2: 0, r.p ED; (c). For any 

fixed r.p E D, 1i(·)tp : [O,oo) -t Dis continuous; (d). 3 it 2: 0 and w E JR, 

such that ll7i(t)ll = sup{ll7i(t)r.pllv : lr.p(1:)I :::; 1,x E JR} :::; Ifiewt for all t 2: 0. 

We adapt the similar analysis as in [55, Lemma 2.6] to conclude that 1i(t) is a 

compact and positive operator on V for each t > 0 (or see Appendix B). By 

[59, proposition 5.1], Ti(t) is continuous for all t > 0. Moreover 1i(t)V+ C 'D+. 

Therefore, {T(t)}t2:'.:0 = { {7i(t)}T=ih2:'.:o is compact and positive operator semigroup. 

92 



(4.4.14) can be written as an abstract integral equation associated with the 

initial value problem 

{ 

u(t, ·, <p) = T(t)<p + J; T(t - s)G(s, u(s))ds, 

u(O) = <p E C+, 

(4.4.16) 

whose solution is called the mild solution of the system (4.4.14). In the next 

theorem, we establish the existence, uniqueness, positivity and monotonicity of 

the mild solution of the Cauchy problem (4.4.14). 

Theorem 4.4.1. For any <p E C+, system (4.4.14) has a unique mild solution 

u(t, ·, <p) with u(O, ·, <p) = <p, and u(t, x, cp) is a classical solution when t > 0. More-

over, if 0 s; <p s; 'l/J < oo, then 0 s; u(t, ·, <p) s; it(t, ·, '1/,i) < oo, Vt~ 0. 

Proof In order to verify the existence, uniqueness, positivity and monotonicity of 

the solution of the Cauchy problem (4.4.14), we need to show that G is a quasi-

monotone map from [O, oo) x C+ to JR~ and locally Lipschitz continuous, as specified 

in (2.3) on page 18 on [60]. 

Since for any k E {1, · · · , 7}, (t, u), (t, v) E [O, oo) x JR~ with u s; v, when 

'Uk = Vk implies Gk(t, 'U) s; Gk(t, v), From [60, Remark 1.4], the function G is 

quasi-monotone on JR~. It is easy to show that G(t, it) satisfies the locally Lipschitz 

continuity, that is, for any R > 0, there exist a LR > 0 and a continuous function 

Vil : [O, oo) -t [O, oo) such that vn(O) = 0 and 

IG(t, u) - G(s, v)I s; vn(lt - sl) + Lnllu - vii 
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for all (t, u), (s, v) E [O, oo) x JR~ with llull, llvll :::; Rand 0 :::; s, t :::; R. By [60, 

Corollary 5] with v+(t, ~c) = +oo, v-(t, x) = 0, and S(t, s) = T(t, s) = T(t - s), t ~ 

s ~ 0, system (4.4.14) has a unique non-continuable mild solution 1t(t, ·, c.p) on 

[O, tmax(<p)) with tmax(<p) > 0 for any <p EC+ and u(t, ·, c.p) E C+. It then follows 

from [60, Theorem 1] that u(t, ·, <p) is a classical solution for all t E [O, tmax(cp)). 

By the theory of continuation of solution (see Theorem 2.3 on page 49 or Theorem 

2.6 on page 51 of [103]), we conclude that tmax(cp) = oo, this means the solution 

'u(t, ·, c.p) exists globally. Moreover, the comparison principle holds by [60, Corollary 

~· D 

4.4.2 Traveling waves of the system 

In this subsection, we establish the existence/nonexistence of w-period traveling 

waves of system (4.4.14). We say u(t, x) = U(t, x - tc) is an w-periodic traveling 

wave of system (4.4.14) if it is a solution of (4.4.14) and U(t, s) is w-periodic int. 

To study spreading speeds and traveling waves for system ( 4.4.14), we define the 

reflection operator 'R by 'R[u](x) = 'U(-~i:). Given any y E JR, define the translation 

operator Ty by Ty[u](x) = u(x -y). 

Let ,B E JR7 with ,B » 0 and Q = (Qi,··· , Q7 ) : Cf3 4- Cf3. In order to use the 

theory of spreading speeds and traveling waves developed in [48, 49], we introduce 

the following assumptions on Q: 
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(Al) Q[R[u]] = R[Q[u]], Ty[Q[u]] = Q[Ty[u]], Vy E JR. 

(A2) Q: C/3 -t Cp is continuous with respect to the compact open topology. 

(A3) Q[Cp] is precompact in Cp. 

(A4) Q : Cf3 -t Cf3 is monotone (order-preserving) in the sense that Q[·u] ~ Q[v] 

whenever u ~ v in cf3. 

(A5) Q : [O, ,BJ -t (0, ,B] admits exactly two fixed points 0 and (3, and for any positive 

number c, there is a E [O,JJ] with llall < c such that Q[a] »a. 

Recall that a family of mappings { Qth2::o is said to be an w-periodic semiflow 

on the metric space (Cr, de) with the metric de, provided Qt satisfies the follmving 

properties: 

(iii) Q(t, cp) := Qt('P) is continuous in (t, <p) E [O, oo) x Cr with respect to the 

compact open topology. 

Define a family of maps { Qth2::o from C+ to C+ by 

where u(t, x, <p) is the mild solution of system (4.4.14) with ~t(O, ·, cp) = r.p. 

95 



Lemma 4.4.2. The following three statements hold for the solution map Qt: 

{1) {Qth:?:o is an w-periodic semiftow on Cu•(O)· 

{2) Qt[Cu•(o)] is precompact in Cu*(O) for all t > 0. 

{3) For each t > 0, Qt is strictly subhomogenous and monotone from C+ \ {O} to 

C+\{O}. 

Proof It is easy to know { Qth:?:o satisfy (i) and (ii) on Cu•(O), since for every t ~ 0, 

<p E C.u*(O), 

Qt+w['P] = u(t + w, ·, <p) 

= T(t + w)cp + J;+w T(t + w - s)G(s, u(s))ds 

= T(t)T(w)<p + f0w T(t + w - s)G(s, u(s))ds + J~+w T(t + w - s)G(s, u(s))ds 

= T(t)[T(w)cp + J; T(w - s)G(s, ·u(s))ds] + J; T(t - s)G(s + w, 'u(s + w))ds 

= T(t)Qw(<p) + J; T(t - s)G(s, ·u(s + w))ds 

= Qt[Qw(cp)]. 

Note that {T(t)}t:?:O is compact on metric space (Cu•(o), de), T(t)r,p is continuous in 

(t, r,p) E [O, oo) x C.u*(O) and in particular T(t) is continuous for each t > 0, by a 

similar argument as in [59, Theorem 8.5.2], we obtain that Qt(cp) is continuous in 

(t, cp) E [O, oo) x Cu*(O) with respect to the compact open topology and Qt[Cu•(o)] is 

precompact in Cu*(O) for all t > 0 (see Appendix B). 

96 



For any u E ~~ \ {O}, G(t, u) is strictly subhomogeneous in u. Therefore, for 

any (t, VJ) E [O, oo) x C+ \ {O} and any k E (0, 1), we have 

kQt(<P) = k-u(t, ·,VJ) = kT(t)cp + k J~ T(t - r)G(r, u(r))dr 

= T(t)kVJ + J~ T(t - r)[kG(r, u(r))]dr 

< T(t)kcp + J~ G(r, k-u(r))dr 

= -u(t, x, kVJ) = Qt(kcp). 

Thus, {Qth>o is strictly subhomogeneous and monotone by Theorem 4.4.1. D 

Lemma 4.4.3. The map Q6w satisfies all hypotheses (A1)-{A5) with f3 = -u*(O) 

and Qt satisfies {Al) and (A4) for any t > 0. 

Proof. If 'lt(t, x) is a solution for the system (4.4.14), then u(t, x - y), Vy E ~' is 

also a solution, and hence (Al) holds. (A2) and (A3) come from Lemma 4.4.2. 

(A4) follows directly from the comparison principle in Theorem 4.4.1. 

Let Q6w = Q6wl(o,u•(o)]"R7 • Then Q6w : [O, u*(O)] --+ [O, u*(O)] is the map generated 

by system (4.2.3). Note that (4.2.3) has a positive 6w-periodic solution u*(t) which 

is globally asymptotically stable in~~\ {O}. We see that Q6w has only two fixed 

points 0 and u*(O) in [O, 'lt*(O)]. Thus, by the Dancer-Hess connecting orbit lemma 

((108, section 2.2.1]), we obtain that there exists a strictly monotone full orbit 

{ an}~00 connecting 0 to u*(O) and ai < ai+l for all i E Z. Since Q6w is strongly 

monotone, ai+l = Q6w(ai) « Q6w(aH1) = ai+2 for any 'i E Z. Therefore, ai « ai+l 

for any i E Z. This implies that (A5) holds for Q6w. 
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Remark 4.4.1. Q6w satisfies (Al)-(A5) with T = 0 and f3 = u*(O), Theorem A ([48]) 

implies that Q6w admits a spreading speed cfu,. That is, Q6w has the asymptotic 

speed of spread cfu,. 

Remark 4.4.2. Theorem 4.3.3 implies that the assumption (A5) in the paper [50] 

holds for the Poincare map Qw. As a consequence of Theorems 3.1-3.2 and Remark 

3.1, Qw has the spreading speed c:. That is, Qw has the asymptotic speed of spread 

Next we use Theorem B in [48] to obtain the explicit expression cfu,. Consider 

the linearized system of (4.2.1) at the zero solution 

8u~,x) = b(t)u1(t, x) - (dE(t) + µe)ui(t, x) +DE 02~~~,x), 

au~:,x) = dE(t)'u1(t, x) - (aL(t) + µql)u2(t, x) + DLQ 02~~;,x), 

8u3J:,x) = aL(t}u2(t, x) - ((h(t) + µ11(0)}u3(t, x) +DLF 02~~;,x), 

&u~:,x) = dL(t)u3(t, x) - (aN(t) + µqn)u4(t, x) + DNQ 02~~~,x), 

au5(t,x) - (t) (t ) (d (t) (0)) (t ) D 02us(t,x) -Ot- - a,N · U4 , X - N +µJn U5 , X + NF ox2 1 

&u6(t,x) _ d (t)' (t ) ( (t) + )· (t ) + D 02u6(t,x) 
ot - N U5 'X - aA µqa U5 'X AQ ox2 ' 

8ur(t,x) _ ( )· ( ) (O)· (t ) D 8
2
ur(t,x) -Ot- - (LA t U5 t, X - µfa U7 , X + AF ox2 · 

(4.4.18) 

For anyµ E [O,oo), let u(t,x) = e-µxv(t), where u(t,x) = (u1(t,x),··· ,-u7(t,x))T 
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and v(t) = (v1(t), · · · , v1(t)f. Substituting u(t, x) into (4.4.18) yields 

dv~t) = b(t)v1(t) - (dE(t) + µe)v1(t) + DEµ2v1(t), 

dv~?) = dE(t)v1 (t) - (aL(t) + µq1)v2(t) + DLQµ2v2(t), 

dv~tt) = aL(t)v2(t) - (dL(t) + µJt(O))v3(t) + DLFJ1.2v3(t), 

dv~?) = (h(t)v3(t) - (aN(t) + µqn)v4(t) + DNQµ2v4(t), 

dv~?) = aN(t)v4(t) - (dN(t) + µJn(O))v5(t) + DNFJ1.2V5(t), 

dv~?) = dN(t)v5(t) - (aA(t) + µqa)v6(t) + D AQµ2v6(t), 

dv~?) = aA(t)v6(t) - µfa(O)v1(t) + DAFµ 2v1(t). 

( 4.4.19) 

So, if v(t) is a solution of (4.4.19), then u(t, x) = e-µxv(t) is a solution of (4.4.18). 

Let {Mth~o be the linear solution map associated with (4.4.18), define 

where v(t, <p) is the solution of (4.4.19) with initial data v(O, <p) = cp. Therefore, B!, 

is just the solution map of linear ordinary differential equation (4.4.19) on JR~. 

We rewrite ( 4.4.19) as 

dv(t) -cit = H(t, µ)v(t), (4.4.20) 

where H(t, µ) = (H1(t, µ)IH2(t, µ)) with 

DEµ 2 - (µe + dE(t)) 0 0 0 

dE(t) DLQµ 2 - (aL(t) + µqz) 0 0 

0 aL(t) DLFµ 2 - (dL(t) + 1'/1(0)) 0 

H 1(t,µ) = 0 0 dL(t) DNQµ 2 - (aN(t) + l'qn) 

0 0 0 aN(t) 

0 0 0 0 

0 0 0 0 
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and 

0 

0 

0 

0 

DNFµ2 - (dN(t) + µfn(O)) 

dN(t) 

0 

0 b(t) 

0 0 

0 0 

0 0 

0 0 

DAqµ 2 - (aA(t) + µqa) 0 

aA(t) DApµ2 - µ/1(0) 

Note that H(t, µ)is a continuous, cooperative and w-periodic 7 x 7 matrix function. 

In fact, B! is the fundamental solution matrix of the linear ordinary differential 

system (4.4.20). Let p(µ) be spectral radius of the 6w-periodic solution map Br; 
associated with (4.4.20). It follows from the similar argument in Theorem 4.3.2 

that B~ is strongly monotone for all t ~ 6w in the sense that B:Jvo] » 0 for all 

v0 > 0. By the Krein-Rutman theorem, p(Jt) is the principle eigenvalue of B'; 

in the sense that it is simple and positive with a strongly positive eigenvector v*. 

Define a function 

<J?(µ) := Inp(µ)' Vµ > 0. 
µ 

(4.4.21) 

In order to use (48, Theorem B], we have to show <J?( oo) = oo. The following result 

is used to prove <I>( oo) = oo. 

Lemma 4.4.4. Let)..(µ) = Llnp(µ) = Llnp(Bi:). Then there exists a positive 

6w-periodic function w(t) such that e>-(1i)tw(t) is a solution of v' = H(t, µ)v. 
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Proof We will use the similar argument developed in (107, Lemma 2.1]. Let w* » 0 

be an eigenvector associated with the principal eigenvalue p(B~), that is, B';w* = 

p(B~)w*. Substituting v(t) = e>.(µ)tw(t) into the linear system v' = H(t, JL)v gives 

w' = (H(t, µ) - J..(µ)I)w. (4.4.22) 

Thus, w(t) = </J(H(·,µ)->.(ii)I)(t)w* is a positive solution of (4.4.22), where </>(H(·,µ)->.(µ)I)(t) 

is the fundamental solution matrix of (4.4.22), and 

>.(µ)t I . (t) - ,!,. (t) - Bt e (/J(H(·,µ)->.(1i)I) · - <f H(·,1i) - I'· 

Moreover, 

w(6w) = ¢(H(·,µ)->.(µ)J)(6w)w* = e->.(µ)6w¢H(·,µ)(6w)w* 

= c>.(ii)6w p(¢H(·,µ)(6w))w* = w* = w(O). 

Therefore, w(t) is a positive 6w-periodic solution of (4.4.22), and hence, v(t) = 

e>.(1i)tw(t) is a solution of v' = H(t, µ)v. 

Proposition 4.4.5. Let c6w be the spreading speed of Q6w 1 then cfui = inf CI>(µ). 
11>0 

D 

Proof \i\Then µ = 0, ( 4.4.20) becomes ( 4.3.9). Since in this section, we assume 

'R~i-u,v > 1, then we have p(O) = p(Bgw) = (p(B0))6 > 1, where B0 is the Poincare 

map associated with (4.3.9). Hence (C7) in (49] is satisfied. Now we need to prove 

<I>( oo) = oo. By Lemma 4.4.4, we have 

v~(t) = (DE/L2 
- µe - dE(t))v1(t) + b(t)v;(t) 2:: (DE/L2 

- µe - dE(t))v1(t), 

101 



and hence 

Then 

w~ (t) 2 - ~ DEµ - µe - dE(t) - >..(µ). 
W1(t) 

-J.6w w~(t) 
0 - ( )dt o W1 t 

> lw (Deµ 2 
- µe - de(t) - A(µ))dt 

(Deµ 2 
- /te - A(µ))6w - 6 [ de(t)dt, 

which implies that 

Thus, we have 

<I>(µ)= lnp(µ) = 6w>..(µ) ~ 6wDEµ _ 6wµe + 6 J0w dE(t)dt. 
µ µ µ 

Lettingµ-+ oo, we obtain <I>(oo) = oo. Therefore, <I>(µ) can attain the infimum at 

some valueµ* E (0, oo). 

Note that M6w and B<;: satisfy (Cl)-(C7) in [49]. Since µ1i(x)(i = l, n, a) are 

strictly increasing functions on IR+, we have -/LJi(x)x ~ -/LJi(O)x (i = l, n, a) 

for all x E IR+. Then by the comparison theorem, we have Q6w['P] ~ M6w['P] for 

each <p E Cu•(o)· Consequently, [49, Theorem 3.10] implies that Cfui ~ inf lnp(ii) = 
µ>0 µ 

. f lnp(E!"') m . 
µ>0 µ 
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Let { M;}t;:::o be the solution map associated with the linear system 

&uiJ:,x) = b(t)u1(t, x) - (dE(t) + µe)U1 (t, x) +DE <P~~~,x), 

ou2J:,x) = dE(t)u1 (t, x) - (aL(t) + µql}u2(t, x) + DL
0 

()2,~~~,x), 

auag,x) = aL(t}u2(t, x) - dL(t}u3(t, x) - (1 - E)J,LJl(O)u3(t, x) +DLF c-P~};·x), 

&u4Jt,x) = dL(t)u3(t, x) - (aN(t) + µqn}U4(t, x) + DN
0 
<P~~~,x), 

ausg,x) = aN(t)u4(t, x) - dN(t)'u5(t, x) - (1 - E)µJn(O}u5(t, x) + DNF 021;}x~,x), 

au~,x) = dN(t)·u5(t,x) - (a.4(t) + µqa}u5(t,x) + DAQ <J2,~:~,x), 

au~,x) = aA(t)'U5(t, ;r;) - (1 - E)µ1a(O)u1(t, 1:) + DAF 
02~x(:,x)' 

( 4.4.23) 

p" (µ) be spectral radius of the 6w-periodic solution map associated with the follow-

ing linear periodic cooperative system 

dv~?) = b(t)v7(t) - (dE(t) + JLe)V1 (t) + DEµ2v1 (t), 

dv~?) = dE(t)v1(t) - (aL(t) + µqt)v2(t) + DLQµ2v2(t), 

dv~;t) = aL(t)v2(t) - dL(t)v3(t) - (1 - E)J11z(O)v3(t) + DLFJL2V3(t), 

dv~?) = dL(t)v3(t) - (aN(t) + µqn)V4(t) + DNQµ2v4(t), 

dv~?) = aN(t)v4(t) - dN(t)v5(t) - (1 - E)µJn(O)v5(t) + DNFJL2V5(t), 

dv:?) = dN(t)v5(t) - (aA(t) + µqa)v6(t) + DAQµ2v5(t), 

dv~?) = aA(t)v5(t) - (1 - E)µJa(O)v1(t) + D ApJL2V1(t). 

(4.4.24) 

Since -µ1i(x)x ('i = l, n, a) is subhomogeneous in x on ~+, it follows from [108, 

Lemma 2.3.2] that -µ1i(x)x ~ -JLJi(O)x, i = l, n, a, x 2:: 0. Then for any EE (0, 1), 
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there is a Xe > 0 such that 

-µJi(x)x ;:::: -(1 - E)µJi(O)x, \Ix E [O, Xe], i = l, n, a. 

We rewrite ( 4.4.23) as 

at'u(t, :r) = G(t, E)u(t, :r) + [Jb,.'u(t, x), (4.4.25) 

and note that for any EE (0, 1), there exists b > 0 such that G(t, 'U) > G(t, E)'u, for 

any (t,u) E lR+ x [0,'5]. Moreover, there exists rJ = rJ(b) such that for any <.p EC.,,, 

we have 

0::; Qt['P](x) ::; Qt[rJ] « 8, \Ix E JR, t E [O, 6w]. 

Then the comparison principle implies 

(4.4.26) 

In particular, Mfu,[cp] ::; Q6w[cp], for all <.p EC.,,. Define 

<I> ( ) 
·= lnpe (JJ,) 

€ µ . ' 
µ 

\/µ > 0. 

By an analysis for 1\,fte similar to that of 1\-ft, we conclude by [49, Theorem 3.10] 

that c~ ;:::: inf
0 

<I>e(µ), VE E (0, 1). Combining c~ ::; inf <I>(J.t) and letting E 4' 0, we 
µ> µ>0 

obtain c~ = inf <I>(µ). 
µ>0 

D 

Then the following results shows that c* is the spreading speed of thew-periodic 

system (4.2.1) and that this c* is also the minimum wave speed for thew-periodic 

traveling waves with initial functions having compact support. 
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Theorem 4.4.6. Let u(t, x, r.p) = u(t, <p)(x) be the solution of system (4.2.1} with 

initial function r.p. Then c* := ~ = ~ and the following two statements are valid: 

{i} For any c > c*, if <.p E C1j•(o) with 0 ~ <p « u*(O) and <.p(x) = 0 for x outside 

a bounded interval, then 

lim u(t, x, <.p) = 0. 
t--?oo, lxl ~tc 

{ii) For any c < c*, if <.p E Cu•(o) with r.p 1= 0, then 

lim [u(t, x, <p) - u*(t)] = 0. 
t--?oo,lxl9c 

Proof. Conclusion (i) follows from Lemma 4.4.3 and [48, Theorem 2.1]. Moreover, 

both ~ and ~ are the spreading speeds for the system (4.2.1) and both are also 

the minimum wave speeds for the system (4.2.1). Then, c* := %- = 1b-· By Lemma 

4.4.3 and (48, Theorem 2.1], for any c < c* := c2 = 1b-, there is a positive number 

a such that if r.p E Cu• (O) and <.p( x) > 0 for x on an interval of length 2a, then 

limHoo,lxl~tc['u(t, x;r.p) - 'U*(t)] = 0. For any <.p E Cu•(o) with r.p 1= 0, there exists 

rjJ E [O, u*(O)] with <j; 1= 0, Qt(<P) » 0 for all t 2: 6w. We fix t 0 2: 6w and take 

Qt
0

(cp) as a new initial value for u(t, x, <p). Then by the above analysis, conclusion 

(ii) is valid. D 

By [48, Theorems 2.2 and 2.3], we have the following result about traveling 

waves of system (4.2.1). 
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Theorem 4.4.7. Let c* := ~ = ~· Then for any c ;::: c*, system (4.2.1) has 

an w-periodic traveling wave solution U(t, :r - tc) connecting u*(t) to 0 such that 

U(t, s) is continuous and nonincreasing ins E JR, and lims-+-oo U(t, s) = u*(t) and 

lims-+oo U(t, s) = 0. Moreover, for any c < c*: (4.2.1} has now-periodic traveling 

wave U(t, x - tc) connecting 1t*(t) to 0. 

Proof Following Theorem 2.2-2.3 in [48], when c ;::: c*, { Qt}t~o has a 6w-periodic 

(w-periodic too) traveling wave which connects -u*(t) to O; when c < c\ { Qth~o 

has now-periodic traveling wave which connects 1t*(t) to 0. D 
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5 Lyme disease pathogen transmission in 

seasonal tick populations with multiple host 

. species 

5.1 Introduction 

Lyme disease can be transmitted to humans or animals during B.burgd01feri-infected 

blacklegged ticks (I. scapularis) feeding. The pathogen has a complex life history 

because it must colonize both hosts and vectors for successful transmission, involv-

ing three ecological and epidemiological processes: nymphal ticks infected in the 

previous year appear first; these ticks transmit the pathogen to their susceptible 

vertebrate hosts during feeding period; the next generation larvae acquire infection 

by sucking recently infected hosts' blood later in the same year and these larvae 

develop into nymphs in the next year, which completes the transmission cycle. 

Understanding the transmission cycle that regulates the abundance and distribu-

tion of the Lyme pathogen is crucial for the effective control and prevention of the 
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infection. 

Among many factors for Lyme risk [77] are host diversity [83, 66, 69, 82], stage 

structure of ticks [16, 81, 80, 68, 69, 65, 3, 105] and climate effects [80, 68, 69, 31, 4]. 

Modelling disease transmission incorporating multiple life stages, tick seasonality 

and host community composition is crucial to understanding the pathogen trans­

mission. There have been some modeling efforts (e.g., [4, 68, 104, 105, 83, 82, 31]), 

but many of these modeling studies incorporating some of the aforementioned facts 

do not permit analytic investigation rather than simulations. 

Host diversity affects the dilution and/or amplification of the Lyme disease 

risk. Dilution effect is defined as "the pathogen population becomes less abun­

dant or less likely to persist than in the present of one highly competent reservoir 

host species alone when one or more host species are added to a community" [11]. 

The opposite side of dilution is amplification. Many efforts for measuring dilu­

tion/amplification effect of Lyme disease have been made [53, 85, 14, 73]. Some 

researchers considered the nymphal infection prevalence (NIP) as an index to 1den­

tify the dilution/amplification effect (e.g., [53]); some used the actual number of 

infected host-seeking nymphal I. scapularis per unit area of habitat (the density of 

infected nymphs or DIN) as another index (e.g., [73)). However, these frequency­

dependent and density-dependent indexes have not been widely adapted by the 

public health community so far, moreover "cast-iron support of a dilution effect in 
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nature is still not clear" [11). Here, we suggest that the basic reproduction ratio of 

pathogen combined with NIP and DIN can provide an effective joint measure of the 

potential risk of Lyme disease. The basic reproduction ratio is the most important 

and useful measure in the field of ecology and infectious disease epidemiology. In 

epidemiology, it is defined as the average number of secondary cases produced by 

one infectious primary case in a totally susceptible population [2, 21] and in ecol­

ogy it is defined as the total number of new borne females produced by a female 

member. For complex disease systems described by ordinary differential equations 

with constant coefficients, the construction of next generation matrix is an efficient 

way to define the basic reproductive ratio and overcome the complex transmission 

process [98, 36, 22]. In this study we use extended ideas proposed in [8, 99] to 

define the basic reproduction ratio by formulating a next generation operator [22] 

for the ordinary differential systems with periodic coefficients. 

In this chapter, we develop a modeling framework to investigate the impact of 

multiple tick life stages, tick seasonality and host diversity on the infection cycle 

of the Lyme disease agent, and this model seems to be mathematically tractable. 

In this study, we follow the framework proposed by Randolph and Rogers [81], and 

we divide the vector population into 7 stages with 12 subclasses, as illustrated in 

Figure 5.1. This scheme can account for the following key features in tick devel­

opment and the pathogen transmission: (1) temperature-dependent/temperature-
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independent development rate; (2) temperature-dependent host seeking rates; (3) 

density-dependent mortality, caused by the hosts' responses during the feeding pe­

riod; (4) density-independent/constant mortality induced by the influence of abiotic 

factors acting on the off-host development stages. Our aim in this modeling study 

is to answer the following two questions on Lyme transmission from a theoreti­

cal point of view: Could climate change distribute the disease pathogen? Could 

the change of host diversity by adding alternative host species into the community 

dilute/amplify the Lyme pathogen? 

5.2 Mathematical models and analysis 

Our model uses periodic differential equations to account for the effects of tem­

perature variations on tick development and pathogen transmission. The ticks, 

I. scapularis, pass through four stages which are labeled as E, L, N, A for the 

eggs, larvae, nymphs and adults, respectively. Each postegg stage is subdivided 

into questing and feeding phases according to the activity. We use E to denote 

the number of eggs, ·ips/in denote the number of susceptible/infected ticks of 

feeding phase in the i stage (i = L, N, A), and iQs/iQ1 be the number of suscepti­

ble/infected ticks of questing phase in the ·i stage ('i = L, N, A), respectively. The 

host population is considered as two types: hosts for immature ticks (which include 

the white-footed mouse H1 and an alternative host H2 ) and host for adult ticks 
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(deer D). The host death rates are µHI and /LH2 respectively. We assume that the 

total number of each host species (susceptible plus infected) in the isolated habi­

tat is constant. To consider Lyme disease transmission between I. scapularis and 

rodents, we denote Hll and H21 the number of infected mice and the number of 

infected alternative host individuals. Eggs hatch to larvae at a development rate 

dE(t), while feeding larvae and nymphs will go through to the next stage (nymphs 

and adults, respectively) at the development rates dL(t) and dN(t). Host-finding 

rates FL(t), FN(t) and FA(t) between questing ticks and hosts of each class are re­

ported in (68), as described in section 2.2 of Chapter 2. Due to the host resistance 

to the feeding ticks, we also consider density-dependent mortality of each feeding 

stage as a quadratic function with coefficient Di(t) (i = L, N, A) respectively. We 

use µQi and µFi (-i = L, N, A) to denote the natural death rates of larvae, nymphs 

and adults at respective questing and feeding phases. vVe also suppose eggs are 

produced by feeding adult ticks at a rate b(t) and die at a rate µE(t). 

For the host-pathogen-tick transmission cycle, susceptible larvae can be infected 

by sucking blood from the infected hosts, after a duration of developmental delay, 

the infected nymphs developed from infected larvae then transmit the pathogen 

to their new host in the nymphal feeding period. In order to identify the different 

biting rates on two host species for immature ticks, we use the biting bias coefficients 

[40, 43] to describe the competence of different host species. We assume p1 (p2) 

111 



represents larval (nymphal) ticks biting bias for the alternative host. The biting 

bias coefficient P1 > 1 (p2 > 1) indicates larvae (nymphs) bias for the alternative 

host; on the other hand, 0 < p1 < 1 (0 < p2 < 1) means larvae (nymphs) bias for 

the main immature host (Peromyscus leucopus). Using the method as described 

in [12], FL(t) H
1
.:;

1
H

2 
H~?) is the average rate at which a susceptible questing larva 

finds and attaches successfully onto the infected mice, and f3mLFL(t) H : 1 H HH11 (t) 
· 1 PI 2 1 

is the average infection rate a.t which a susceptible larva gets infected from mice, 

where f3mL is the transmission probability per bite from infectious mice (H1) to 

susceptible larvae. Using the same idea to account the infection rate of larvae from 

the infected alternative host (H2 ), the larval infection rate is given by 

Similarly the newly infected feeding nymphs which come from the contact of quest-

ing susceptible nymphs and infectious hosts are given by 

(/3 H11(t) + f3 P2H21(t) )F (t) N. (t) 
HlN Hi +P2H2 H2N Hi +P2H2 N ' ~ QS · 

The susceptible hosts can get infected when they are bitten by infected questing 

nymphs. The conservation of bites requires that the numbers of bites made by ticks 

and received by hosts should be conserved. The disease incidence rate for mice 
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Peromyscus leucopus is therefore given by 

F (t) R (N (t) N. (t)) NQ1(t) H 1 H1-Hu(t) 
N JJNHI QI + QS NQi(t)+NQs(t) H1+JJ2H2 H1 

Similarly, the alternative host is infected by the infectious nymphal biting at a rate 

Therefore, the disease transmission process between ticks and their hosts can 
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Infection 

·- ---------

Figure 5.1: A diagram for the Lyme disease transmission. To describe the tick 

development and biting activities, the tick population is divided into 7 stages, with 

the uninfected or infected epidemiological classes for postegg stages. Immature 

ticks can feed on two host species, the mice (H1) and an alternative host (H2), 

while adult ticks mainly feed on deer. 
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be described by the following system 

~~ = b(t)(Aps(t) + An(t)) - µE(t)E(t) - dE(t)E(t), 

~ = dE(t)E(t) - µQL(t)LQ(t) - FL(t)LQ(t), 

~ (1 ({3 H11(t) + B . P1H21(t) ))F (t)L (t) dt = - HlL H1 +p1H2 . H2L H1 +p1H2 L Q 

1:f.E.L ((3 H11(t) + f3 p1H21(t) )F (t)L (t) dt = HlL H1 +p1H2 H2L H1 +p1H2 L . Q . 

-µFL(t)LFJ(t) - DL(t)(LFs(t) + LFJ(t))Ln(t) - dL(t)LFJ(t), 

d~ys = dL(t)LFs(t) - µ.QN(t)NQs(t) - FN(t)NQs(t), 

d~~1 dL(t)Ln(t) - µQN(t)NQ1(t) - FN(t)NQ1(t), 

~ 
dt 

~ 
dt 

dAqs 
dt 

dAq1 
dt 

~ dt 

dAFJ 
dt 

dH11 
dt 

dH21 
dt 

= 

= 

= 

= 

= 

= 

(5.2.1) 

-µFN(t)NFs(t) - DN(t)(NFs(t) + NFI(t))NFs(t) - dN(t)NFs(t), 

-µFN(t)NFI(t) - DN(t)(NFs(t) + Nn(t))NFI(t) - dN(t)NFI(t), 

dN(t)NFs(t) - µ.QA(t)AQs(t) - FA(t)AQs(t), 

dN(t)Nn(t) - JLQA(t)AQ1(t) - F\(t)AQ1(t), 

FA(t).AcJs(t) - µFA(t)AFs(t) - DA(t)(AFs(t) + AFI(t))AFs(t), 

_r4(t)AQ1(t) - µFA(t)AFI(t) - D_4(t)(AFs(t) + AFI(t))AFI(t), 

FN(t)f3NmNQ1(t) 1:;1~1::i~!) - µmHu(t), 

F ( )B TV. (t)P2(H2-H21(t)) H (t) N t . NH21 QI Hi+P2H2 - µ112 21 • 
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We assume all the coefficients in the system are nonnegative and w-periodic 

with period w = 365 days and the detailed parameter definitions are surnmerized 

in Table 5.1. 

5.2.1 Positivity and boundedness of solutions 

Our first task is to show that the mathematical model is biologically meaningful. 

Theoretically, we have the following theorem to ensure that all solutions through 

nonnegative initial values remain nonnegative and bounded. 

Theorem 5.2.1. System (5.2.1} has a unique nonnegative and bounded solution 

with the initial value 

Moreover, the solution x(t, x0 ) through x0 EX remains in X for any t 2: 0. 

Proof It follows from [92, Theorem 5.2.l] that for any initial value x0 EX, system 

(5.2.4) admits a unique nonnegative solution x(t, x0 ) through this initial value with 

the maximal interval of existence [O, a) for some a > 0. 

Let Lp = Lps + LFI, NQ = NQs + NQ1, Np = Nps + NFI, AQ = AQs + AQ1 

and AF = AFs + AFJ. Then we can see that the tick growth is governed by the 
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Table 5.1: Model parameter definitions and values (all rates are per day unless 

otherwise stated). 

Parameter 

Ji·QN 

Jl·QA 

p 

b(t) 

dE(l) 

D 

Pl 

P2 

FL(t) 

FN(t) 

FA(t) 

DL(t) 

DN(t) 

DA(t) 

Meaning 

basal mortality rate of an egg 

basal mortality rate of questing larvae 

basal mortality rate of questing nymphs 

basal mortality rate of questing adults 

basal mortality rate of feeding larvae 

basal mortality rate of feeding nymphs 

basal mortality rate of feeding adults 

death rate of white-footed mice 

death rate of the alternative host H2 

maximum number of eggs produced by per feeding adult female 

time-dependent birth rate of eggs produced by feeding adult females 

time-dependent development rate of eggs 

time-dependent development rate of larvae 

time-dependent development rate of nymphs 

number of white-footed mice 

number of alternative host H2 

number of deer 

larval biting bias for host 2 

nymphal biting bias for host 2 

time and density dependent host-finding rate of larvae 

time and density dependent host-finding rate of nymphs 

time and density dependent host-finding rate of adults 

dcnRity-dependent mortality rate of feeding larvae on hosts 

density-dependent mortality rate of feeding nymphs on hosts 

density-dependent mortality rate of feeding adults on hosts 

transmission probability from 

infected host species Hi to susceptible larvae 

transmission probability from 

infected nymphs to susceptible host species Hi 

transmission probability from 

infected host species H2 to susccpt.iblc larvae 

transmission probability from 

infected nymphs to susceptible host species H2 

E: Estimated from published data in [47]. 
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Value 

0.002 

0.0365 

0.015 

0.00625 

0.0365 

0.015 

0.00625 

0.0075 

variable 

3000 

0.5•p•~ 
~+10 

:z;::;r:r:rn:+3 

1 

?il'hITT+s 

200 

variable 

20 

sec table 2 

sec table 2 

0.0013(H1 + P1H2)0.s1s9i(t) 

0.0013(H1 + P2H2)0.5159i(t) 

0.?86(D)o.s1s 9a (t) 

...!LQ.Q!Q§L 
H1+P1H2 

~ 
~ 

0.914 

see table 2 

sec table 2 

Resource 

(68] 

(82] 

(82] 

(82] 

(82] 

(82] 

[82] 

[1] 

[1] 

[68] 

[104] 

[104] 

(104] 

(104] 

[68] 

N/A 

[68] 

N/A 

N/A 

[68] 

[68] 

[68] 

E 

E 

E 

[13] 

(13] 

(13] 

[13] 



following system: 

~1; b(t)AF(t) - µE(t)E(t) - de(t)E(t), 

~ = dE(t)E(t) - µQL(t)LQ(t) - FL(t)LQ(t), 

d~: FL(t)LQ(t) - /lFL(t)LF(t) - DL(t)L}(t) - dL(t)LF(t), 

d.4p 
dt 

dL(t)LF(t) - µ·QN(t)NQ(t) - FN(t)NQ(t), 

Fiv(t)NQ(t) - µFN(t)NF(t) - DN(t)NJ(t) - dN(t)NF(t), 

dN(t)Np(t) - Jl·FA(t)AQ(t) - FA(t)AQ(t), 

_p4(t)AQ(t) - µFA(t)AF(t) - DA(t)A}(t). 

(5.2.2) 

For any periodic nonnegative function f (t) with period w, denote j = maxtE[O,w] f(t) 

and f = mintE[O,wJ f(t). It is easy to see that system (5.2.2) can be controlled by 

the following cooperative system: 

~ bu1(t) - µE·u1 (t), 

d:/t2 = ~U1(t) - µQLU2(t), 

W F;,'u2(t) - fiiiu3(t), 

du4 = d;,u3(t) - µQNU4(t), 
dt 

d:;,,s ~U4(t) - µFNU5(t), 

~ d;us(t) - f0Au6(t), 

~ F:iu6(t) - µpAU1(t) - DA'u~(t). 

(5.2.3) 

Clearly, there is only one nonnegative equilibrium zero for system (5.2.3) when 



If F:i dN FN dr. ..EL._k !. > µFA, system (5.2.3) admits another positive equilib­
µQA µFN /iQN µFL /iQL µE 

rium. It then follows from (109, Corollary 3.2) that either zero is globally asymp-

totically stable or the positive equilibrium is globally asymptotically stable for all 

nonzero solutions. Hence the comparison principle implies that (E(t), LQ(t), LF(t), 

NQ(t), NF(t), AQ(t), AF(t)) is bounded for any t E [O, a). Thus, we see that a= oo 

and the solution for model (5.2.3) is eventually bounded and exists globally for any 

nonnegative initial value. D 

Using change of variables LF = LFs+LFI, NQ = NQs+NQ1 , NF= NFs+NFI, 
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AQ = AQs + AQ1 and Ap = Aps + AFI, system (5.2.1) can be reduced into 

dE = b(t)Ap(t) - (µE(t) + dE(t))E(t), dt 

dLQ dE(t)E(t) - (µQL(t) + FL(t))LQ(t), ~ 

!ll:.£ FL(t)LQ(t) - DL(t)L}(t) - (/tFL(t) + dL(t))Lp(t), dt 

dNQ 
= dL(t)Lp(t) - (µQN(t) + FN(t))NQ(t), dt"" 

dNp 
= FN(t)NQ(t) - DN(t)NJ(t) - (µFN(t) + dN(t))Np(t), dt 

dAQ dN (t)N p(t) - (llQA (t) + _p4 (t) )AQ( t), <it 
(5.2.4) 

dAp FA(t)AQ(t) - µFA(t)Ap(t) - DA(t)A}(t), dt 

~ ((3 H11(t) {3 P1H21(t) )F (t)L (t) 
dt HIL H1+p1H2 + H2L H1+p1H2 L Q 

-DL(t)Lp(t)LFI(t) - (µFL(t) + dL(t))LFI(t), 

dNQ1 dL(t)LFI(t) - (µQN(t) + FN(t))NQ1(t), dt 

dH11 FN(t)f3NHINQ1(t)7f1~~~~!) - /tHIHu(t), dt 

dH21 = FN(t)f3NH2NQ1(t)P2<:2;::;x;tn - µH2H21(t). (it 

In fact, we have three other equations for infected feeding nymphs (NF 1), questing 

adults (AQ1 ) and feeding adults (An), which can be decoupled from the above 

system. Biologically, we are more concerned about the population size of infected 

questing nymphs whose bites are the main courses of human Lyme disease. \Ve will 

then focus on system (5.2.4) in the remaining part of the chapter . 
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5.2.2 Tick population dynamics 

We first consider the following stage-structured system for the tick population 

growth: 

dE 
dt = b(t)Ap(t) - (µE(t) + dE(t))E(t), 

dLQ = dE(t)E(t) - (µQL(t) + FL(t))LQ(t), <It 

dLF FL(t)LQ(t) - DL(t)L~(t) - (JlFL(t) + rh(t))Lp(t), <It 

dNQ 
= dL(t)Lp(t) - (µQN(t) + FN(t))NQ(t), (5.2.5) 

dt 

dNp ~v(t)NQ(t) - DN(t)NJ(t) - (JLF1v(t) + dN(t))Np(t), dt 

dAg 
dt = dN(t)N p(t) - (µQA (t) + F,4(t))AQ(t), 

d.4F ~4(t)AQ(t) - µFA(t)Ap(t) - DA(t)A~(t). <It 

Linearization of system (5.2.5) at zero leads to the following linear system 

dE 
dt = b(t)Ap(t) - (µE(t) + dE(t))E(t), 

dLQ dE(t)E(t) - (µQL(t) + FL(t))LQ(t), <It 

~ = FL(t)LQ(t) - (µFL(t) + dL(t))Lp(t), dt 

dNg 
= dL(t)Lp(t) - (llQN(t) + FN(t))NQ(t), (5.2.6) 

dt 

dNF = FN(t)NQ(t) - (µFN(t) + dN(t))Np(t), dt 

dAQ 
dt = dN(t)Np(t) - (µQA(t) + FA(t))AQ(t), 

dAF = FA(t)AQ(t) - µFA(t)Ap(t). dt 

Following ideas proposed in [8, 99], we can define basic reproduction ratio for the 
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ticks. We introduce 

(5.2.7) 

where !i,1(t) = b(t) and fi,j(t) = 0 if (i, j) =I- (1, 7). Denote V(t) = 

µE(t) + dE(t) 0 0 0 0 0 0 

-dE(t) ftQL(t) + FL(t) 0 0 0 0 0 

0 -FL(t) µFL(t) + dL(t) 0 0 0 0 

0 0 -dL(t) µqN(t) + FN(t) 0 0 0 

0 0 0 -FN(t) /.l.FN(t) + dN(t) 0 0 

0 0 0 0 -dN(t) l'·QA (t) + FA(t) 0 

0 0 0 0 0 -FA(t) µpA(t) 

and assume the evolutionary process Y ( t, s) satisfying 

d 
dt Y(t, s) = -V(t)Y(t, s) Vt 2: s, Y(s, s) =I, s E ~' 

where I is the 7 x 7 identity matrix. 

Let Cw be the Banach space of all w-periodic functions from R to R7
, equipped 

with the supremum norm. Suppose </> E Cw is the initial distribution of tick individ-

uals in this periodic environment. We then define the linear operator G : Cw --+ Cw 

by 

(G</>)(t) = l~ Y(t, t - a)F(t - a)<f>(t - a)da Vt E JR, </> E Cw· (5.2.8) 

Following [99] G is the next generation operator, and the basic reproduction ratio 

for ticks, denoted by n~v,p, is the spectral radius of G, i.e., n~11'P := p(G). 
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Note that the Poincare map associated with system (5.2.5) is not strongly mono-

tone as observed in Chapter 4, but it is eventually strongly monotone after taking 

a few cycles as the same idea in Theorem 4.3.2 of Chapter 4. Using [99, Theorem 

2.2], [108, Theorem 2.3.4], we have 

Theorem 5.2.2. The following statements are valid: 

(1) If R~v,p ~ 1, then zero is globally asymptotically stable for system (5.2.5} in 

(2) If R~v,p > 1, then system (5.2.5) admits a 'lJ,nique w-positive periodic solution 

and it is globally asymptotically stable for system (5.2.5} with initial values 

in JR~\ {O}. 

5.2.3 Global dynamics of the model 

If the basic reproduction ratio for ticks R~v,p > 1, then there exists a positive pe-

riodic solution, (E*(t), L(;/t), LF(t), NQ(t), NF(t), Aq(t), Aj;.(t)), for system (5.2.5) 

such that 

lim ((E(t), LQ(t), Lp(t), NQ(t), Np(t), AQ(t), Ap(t)) 
t~oo 

-(E*(t), Lo(t), L;.,(t), NQ(t), N;,(t), Ao(t), A;,(t))) = 0. 
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In this case, equations for the infected populations in system (5.2.4) give rise to the 

following limiting system: 

-DL(t)LF(t)LFJ(t) - (dL(t) + µ.FL(t))LFJ(t), 

dL(t)Lp1(t) - (µQN(t) + F N(t) )NQ1(t), 

d~f 1 = FN(t)f3NmNQ1(t)~;1~~~~;:) - µmHu(t), 

dH21 F (t)B N. (t) P2(H2-H21(t)) H (t) 
~ N . I NH2 QI H1+112H2 - µH2 2J . 

(5.2.9) 

As proceed in the definition of n~v,p in the previous section, we can define the 

basic reproduction ratio for the pathogen denoted by ng,p. Let 

F(t) = 

0 0 
,8 HlL FL ( t )LQ_ ( t) P1f3n2LFL(t)Lg(t) 

H1+p1H2 H1+v1H2 

0 0 0 0 

0 Fr.r(t~f3NH1H1 0 0 Hi+P2lf2 

0 p2FN(t~f3NH2H2 0 0 H1+p2H2 

and V(t) = 

DL(t)Lj.,(t) + dL(t) + µFL(t) 0 0 0 

-dL(t) JLQN(t) + FN(t) 0 0 

0 0 µHl 0 

0 0 0 /tH2 

Introduction of evolutionary process Y(t, s) satisfying 

d- - - -dt Y(t, s) = -V(t)Y(t, s) Vt~ s, Y(s, s) =I, s E IR 
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where I is the 4 x 4 identity matrix. 

Let Cw be the Banach space of all w-periodic functions from JR to 1R4
, equipped 

with the supremum norm. Suppose </> E Cw is the initial distribution of infectious 

tick and host individuals in this periodic environment. 

We define the linear operator G : Cw --+ Cw by 

(8(¢>))(t) = l'' Y(t, t - a)F(t - a)¢>(t - a)da Vt E JR, ¢> E Cw. (5.2.10} 

is the distribution of accumulative infectious ticks and hosts at time t produced 

by all those infectious individuals ¢( s) introduced at the previous time s. G is the 

next generation operator by [99], and the basic reproduction ratio for pathogen is 

R~,p := p(G), the spectral radius of G. 

Using the same argument as in the previous section, we have the following 

results: 

Theorem 5.2.3. The following statements are valid: 

{1} If Rg·P ~ 1, then zero is globally asymptotically stable for system (5.2.9} in 

(2) If Rg.P > 1, then system (5.2.9} admits a unique positive periodic solution 

and it is globally asymptotically stable for system ( 5. 2. 9). 
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Based on two reproduction ratios, the ratio for ticks (R~v,p) and ratio for the 

pathogen (ng'P), we can completely determine the global dynamics of the model 

system (5.2.4). 

Theorem 5.2.4. Let x(t, x0 ) be the solution of system {5.2.4} through x0 • Then 

the following statements are valid: 

{1} If n~'l.',P::::; 1, then zero is globally attmctive for system (5.2.4); 

(2 l Jf nsv,p > 1 and nd,p < 1 then 
J J 0 0 - ' 

(E*(t), Lo(t), Lf.(t), Na(t), N;(t), Ao(t), Af.(t))) = 0, 

and limt-too Xi(t) = 0 for i E [8, 11]; 

(3) If R~v,p > 1 and R~,p > 1, then there eiists a positive periodic solution 

x*(t), and it is globally attractive for system {5.2.4} with respect to all positive 

solutions. 

Proof We first consider thew-periodic system as a llw-periodic system. Let P be 

the Poincare map of system (5.2.4), that is, 

P(x0
) = x(llw, x0

) 
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where x(t, x0 ) is the solution of system (5.2.4) through x0 • Then Pis compact. Let 

w =w(x0 ) be the omega limit set of P(x0 ). It then follows from [38, Lemma 2.1] 

(see also [108, Lemma 1.2.1]) that w is an internally chain transitive set for P. 

(1) In the case where n~v,p :::; 1, we have limHoo Xi(t) = 0 for ·i E [l, 9]. Hence, 

w = {(O, 0, 0, 0, 0, 0, 0, 0, O)} x w1 for some w1 c 1R2
. It is easy to see that 

Plw(O, 0, 0, 0, 0, 0, 0, 0, 0, H11(0), H21(0)) = (0, 0, 0, 0, 0, 0, 0, 0, 0, Pi(H11(0), Hu(O)) ), 

where P 1 is the Poincare map associated with the following equation: 

dHu 
dt -JLH1H11, 

(5.2.11) 

Since w is an internally chain transitive set for P, it easily follows that w1 is an 

internally chain transitive set for Pi. Since {O} is globally asymptotically stable 

for system (5.2.11), [38, Theorem 3.2] implies that w1 = {(O, 0)}. Thus, we have 

w = {O}, which proves that every solution converges to zero. 

(2) In the case where ngv,p > 1, then there exists a positive periodic solution, 

(E*(t), L0(t), LF(t), NQ(t), NF(t), AQ(t), AF(t)), for system (5.2.5) such that for 

any x0 with L::;=l x? > 0, we have 

-(E*(t), LQ(t), L;,(t), N0(t), N;,(t), AQ(t), A;,(t))) = 0. 

Thus, w = { (E*(O), Lo(O), Lj;.(O), NQ(O), N;,(o), Ab(O), AF(O))} x W2 for some W2 c 
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JR4 , and 

Plw(E*(O), Lo(O), LF(O), N(;(O), NF(O), AQ(O), AF(O), Xs, Xg, X10, X11) 

= (E*(O), L0(o), LF(o), N(;(O), N;.(o), AQ(o), A;,(o), P2(xs, xg, x10, xu)), 

where P2 is the Poincare map associated with system (5.2.9). Since w is an internally 

chain transitive set for P, then w2 is an internally chain transitive set for P2 . Since 

R~,p ::; 1, then { (0, 0, 0, 0)} is globally asymptotically stable for system (5.2.9) 

according to Theorem 5.2.3. It then follows from (38, Theorem 3.2] that w2 = {O}. 

This proves 

w = {(E*(O), Lo(O), L;,(o), NQ(O), N;(o), Ao(O), A;,(o), 0, 0, 0, O)}. 

Therefore, statement (2) holds. 

(3) In the case where R~v,p > 1 and ng,p > 1, then there exists a positive periodic 

solution, (E*(t), LQ(t), LF(t), N(;(t), N;(t), AQ(t), AF(t)), for system (5.2.5) such 

that for any x0 with I:;=l x? > 0, we have 

lim ( (x1 (t), X2(t), xa(t), X4(t), X5(t), X5(t), X1(t)) 
t-+oo 

It then follows that w = {(E*(O), LQ(O), L}(O), N(;(O), N;(o), Ao(O), A}(O)))} x W3 

for some w3 C lR4
, and 

Plw(E*(O), Lo(O), L}(O), N(;(O), N;.(o), AQ(O), AF(O), ~Cs, Xg, X10, X11) 

'(E*(O), Lo(O), LF(O), NQ(O), N;.(O), Ao(O), AF(O), P2(Xs, Xg, X10, Xu)), 
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where P2 is the solution semiflow of system (5.2.9). Since w is an internally chain 

transitive set for P, it follows that w3 is an internally chain transitive set for P2• 

We claim that w3 -1- {O} for any (xg, xg, x~0 , x~1 ) > 0. 

Assume that, by contradiction, w3 = {O}. That is 

w = {(E*(O), Lo(O), LP,(O), NQ(O), Np(O), Ao(O), AF(O), 0, 0, 0, O)} 

for some (x~, xg, x?0 , x~1 ) > 0. Then, we have 

lim (:r:(t) - (E*(t), LQ(t), L}(t), NQ(t), N;(t), AQ(t), AF(t), 0, 0, 0, 0)) = 0. 
l-*00 

(5.2.12) 

Since ng,p > 1, there exists some 8 > 0 such that the spectral radius of the Poincare 

map associated with the linearized system of the following one is greater than unity: 

dN91 
dt 

dH11 
~ 

dH21 
dt 

-DL(t)(L}(t) + <5)LF1 (t) - (dL(t) + µFL(t) )LF1(t), 

ch(t)LFJ(t) - (µQN(t) + FN(t))NQ1(t), 

FN(t),BNHINQ1(t) 1;:1-_/!:i~!) - µ,HIHu(t), 

F (t){3 7\T (t)P2(H2-H21(t)) H (t) 
N NH2iVQJ Ht+P2H2 - µH2 21 · 

(5.2.13) 

It then follows from the same argument as in the proof of Theorem 5.2.2 that the 
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following system 

-DL(t)(L'}(t) + c5)u1(t) - (dL(t) + µFL(t)}u1(t), 

d:i2 ch(t)'u1(t) - (µQN(t) + F.1V(t))u2(t), 

~ FN(t)f3NHI'U2(t) z:~;:t; -µHflL3(t), 

~ = F (t){3 . (t)P2(H2-u4(t)) (t) 
dt N NJJ2U2 H1+P2H2 - µJI2U4 . 

admits a positive periodic u*(t) such that 

lim (u(t) - u*(t)) = 0, V'u(t) # 0. 
t~oo 

Since there exists some w0 > 0 such that 

we have 

-(E*(t), L~i(t), L~(t), N~J(t), N;.,(t), Ao(t), A~(t))ll ~ c5, V't > Wo, 

dxg = 
dt 

-DL(t)(LF(t) + £5)x8(t) - (dL(t) + µ.p£(t))x8(t), 

dL(t)xs(t) - (tLQN(t) + F,'V(t))x9(t), 

~~° FN(t)f3NH1X9(t) 1:;1~~0J:: - µHlx10(t), 

~ = F (t){3 (t) P2(H2-x11 (t}) (t) 
dt N NH2X9 Hi+P2H2 - µJI2X11 · 

for all t > w0 . By the comparison principle, we have 

lim inf ( (xs(t), X9(t), X10( t), Xu (t)) - u* (t)) ~ 0, 
t~oo 
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a contradiction to (5.2.12). 

Since W3 =I {O} and the positive periodic solution (Lf,1 (t), NQ1(t), H;1(t), H21 (t)) 

is globally asymptotically stable for system (5.2.9) in Rt\ {O}, it follows that 

where 

W 8 ((LFJ(O), NQJ(O), H;1(0), H;1 (0))) 

is the stable set for (Lf,1(0), NQ1 (0): H;1 (0), H21 (0)) with respect to the Poincare 

map P2 • By [38, Theorem 3.1], we then get 

Thus, 

and hence, statement (3) is valid. 

At last, using a similar argument as in the proof of Theorem 5.2.2, we can show 

that the globally attractive llw-periodic solution in each case is also w-periodic 

solution. D 
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5.3 Numerical simulation and sensitivity analysis 

We now conduct some simulations to examine the influences of climate warming and 

host diversity on tick population abundance and disease invasion. The parameter 

values are estimated from the literatures and experiment reports. vVe simulate 

the model until the tick population and pathogen level stabilize at an annual cycle. 

The simulation results show that every solution attains the same stable annual cycle 

with different initial conditions, which is consistent with the theoretical results in 

Section 5.2. 

We compare various indexes to measure the disease risk to humans: the repro­

duction ratios for the tick population (R~v,p), for the Lyme pathogen (R.g'P); the 

total number of questing nymphs (for short, TQN) at equilibrium (which gives the 

precise description of questing nymphal abundance and seasonality); and the abun­

dance and seasonality of all actually active infected questing nymphs (for short, 

AIQN) at equilibrium. Here the number of AIQN is the multiplication of the 

nymphal tick activity proportion and the number of all infected questing nymphs. 

Actually, the active number of infected questing nymphs is a real risk measure for 

Lyme disease of public health concern. Finally, we use the infection prevalence in 

questing nymphs (INP), defined as the quotient of infected questing nymphs di­

vided by questing nymphs at stable state. We adopt the same Floquet-dichotomy 

132 



approach outlined in Bacaer 2007 [5] and \'Vang and Zhao 2008 [99] to calculate the 

basic reproduction ratios. 

5.3.1 Climate warming effects 

We firstly investigate the effect of climate change on the seasonal tick abundance 

and disease risk. Here, we alter the mean monthly temperature data from the 1961-

1990 period to 2000-2009 period, collected individually from the two meteorological 

stations near a tick endemic area in Canada. For both two periods, we numerically 

compute the reproduction ratios. The reproduction ratio for ticks n~v,p increases 

from 1.6996 for the 1961-1990 period to 2.1915 for the 2000-2009 period, while the 

basic reproduction ratio for the pathogen ng,p also increases, from 0.7585 to 1.0867. 

Our mathematical results (Theorem 5.2.4) predict that the tick population can 

succes..5fully invade into the habitat m1der these two temperatures since ngv,p > 1. 

However, the transmission cycle fails to establish under the 1961-1990 temperature 

data while the cycle establishes for the 2000-2009 temperature data since n~,p 

is increased from below one to be greater than one. Figure 5.2 shows both the 

abundance of TQN and infected questing nymphs (for short, IQN) increase with 

increased temperatures. Figure 5.2(a) shows that the size of TQN is growing when 

surrounding temperatures rise. Interestingly, Figure 5.2(b) shows that the size of 

IQN changes substantially, from dying out to remaining endemic in the habitat 
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solely due to the temperature rising. Moreover, we can show that climate warming 

could greatly increase the size of infected tick population and influence the potential 

risk of Lyme disease as well in the regions. Therefore, climate warming would 

facilitate the invasion of both ticks and the pathogen. 

5.3.2 Host diversity effects 

In this subsection, we study the impact of host diversity on the risk of Lyme dis­

ease with/without interspecific host competition. The temperature data in the 

2000-2009 period is used with other parameters listed in Table 5.1, 5.2, 5.3, then 

the development rates EAdel(t) (development for pre-oviposition period), Edel(t) 

(development from eggs to larvae), Ldel ( t) (development from engorged larvae to 

questing nymphs), N del ( t) (development from engorged nymphs to questing adults) 

and activity proportions ei(t), ea(t) are estimated using methodology introduced in 

[104]. All the possible alternative species listed in [53] are tested in our simulations 

with the exception of deer, which are incompetent exclusive hosts for adult ticks in 

our model. 
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Figure 5.2: The abundance variation of total questing nymphs and infected questing nymphs 

with increased temperatures. (a): Variations in number of total questing nymphs under two 

different temperature datasets; (b): Variations in the number of infected questing nymphs under 

two different temperature scenarios. Red solid lines represent the results by seeding the model 

with 1961 - 1990 temperature data (R~v,p = 1.6996 and ng.P = 0.7585 in this case) while the 

blue dash lines represent the results by seeding the model with 2000 - 2009 temperature data 

(R~v,p = 2.1915 and ng·P = 1.0867 in this case). 
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5.3.2.1 Effects of adding alternative hosts without interspecific host 

competition 

As the first step, we assume that only one species of alternative hosts (H2) is added 

into the host community while the abundance of the competent host P. leucopus 

population is set as a constant. When 10/20 alternative hosts (Eastern chipmunk) 

are added, both basic reproductive ratios n~v,p for I. scapularis (from 2.1915 to 

2.3511/2.4978) and ng,p for pathogen (from 1.0867 to 1.1777 /1.2579) increase. Fig­

ure 5.3 shows that all the numbers of (active) questing ny~11phs, (active) infected 

questing nymphs become larger and larger as well. From Figure 5.3( d), Eastern 

chipmunk would amplify the number of active infected questing nymphal ticks, a 

real concern to public, moreover the peak timing of infected questing nymphs hap­

pens in summer times (July and August) which is consistent with the peak hw1ian 

outdoor activity, and thus contributes to a high risk of getting Lyme disease. 

Table 5.2 summarizes the results examining the effects of adding some chosen 

alternative host species on the risk of the disease without interspecific host compe­

tition. From the computations for reproduction ratios, adding an alternative host 

always increases the reproduction ratios for ticks n~v,p' which is due to that the 

alternative host serves as a food supply and promotes tick development. However, 

adding an alternative host may increase or decrease the reproduction ratio for the 
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Figure 5.3: Variations of the abundance of total questing nymphal ticks and infected questing 

nymphal ticks without/with an alternative host Eastern chipmunk, where p1 = 0.4, p2 = 3.5. 

Blue solid lines represent the scenario without any alternative hosts; black dash lines represent the 

scenario when alternative host Eastern chipmunk is 10; red dot-dash lines represent the scenario 

when alternative host Eastern chipmunk is 20. Where H 1 200, H 2 0, n~v,p = 2.1915, 

ng,p = 1.0867; H1 200, H2 10, ngv,p = 2.3511, ng·P = 1.1777; H1 = 200, H2 = 20, 

nzv,p = 2.4978 and ng•P = 1.2579. 
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pathogen ~,p since this value is affected by the tick development and the reservoir 

competence of the adding host. According to Table 5.2, some host species may am­

plify the disease risk while others may dilute the disease risk. However, this result 

largely depends on the host's pathogen-reservoir competence, as well as their den­

sities and tick biting bias coefficients. Moreover, two indexes, the active infected 

questing nymphs (AIQN) and infected nymphal proportion (INP) may generate 

conflicting predictions in determining the amplification and dilution effects. For 

example, adding 20 raccoons into the existing host community may increase the 

AIQN while decrease the INP. Therefore, different indexes, instead of a single index, 

should be used to measure the disease risk. 

5.3.2.2 Effects of adding alternative hosts with interspecific host com­

petition 

In this subsection, we investigate whether the addition of alternative hosts will 

reduce the abundance of P. leucopus through interspecific competition on a one-for­

one basis, that is, the total number of hosts (including mice and alternative hosts) 

in the community remains a constant. This scenario is based on the assU1I1ption 

that the environment can only support a saturated number of rodents. When the 

reduced number of P. leucopus is replaced by an equal 11U1I1ber of alternative hosts 

in the model, dilution/ amplification effect will occur for all the simulations (Table 
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Table 5.2: Effect of adding an alternative hosts without interspecific host competi-

ti on. 

Species f3H2L f3NH2 J.iH2 Pl P2 Density AIQN INP nsv,p 
0 

nd,p 
0 

Eastern chipmunk 0.569 0.971 0.00274 0.4 3.5 20 A A 2.4978 1.2579 

Raccoon 0.017 1.0 0.0005 8.5 5.3 20 A D 3.3775 1.9705 

18.5 5.6 20 A D 4.0814 2.6701 

1.3 11.1 20 A D 3.0456 1.3899 

Virginia opossum 0.004 0.261 0.0018 8.6 3.9 10 A D 2.7542 1.1217 

7.6 8.0 10 A D 2.8775 1.1184 

7.2 :36.9 20 D D 4.7264 1.0601 

Striped skunk 0.191 0.530 0.00274 10.9 8.0 10 A A 3.0230 1.8792 

Short-tailed shrew 0.505 0.831 0.001 2· 1 • 20 A A 2.4612 1.6240 

Sorex shrews 0.537 0.701 0.0018 2· 1· 20 A A 2.4612 1.3724 

Red and grey squirrel 0.061 0.831 0.0002 1.8 6.9 10 A A 2.5475 1.9863 

1.3 4.4 10 A A 2.4285 1.5788 

Resources [13] [13] [1] [76] [76] 

The table summarizes the results of dilution/amplification effect and two basic reproductive ratios. Here, A means 

amplification effect; D means dilution effect. The mean monthly temperatures are adapted from 2000-2009 period, 

and all other parameter values are the same as those in Table 5.1 in this study. 
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5.3), which is slightly different from the results induced by ignoring the interspecific 

competition between different host species. 

Figure 5.4 shows that the size of (active) questing nymphs is increasing while 

that of the (active) infected questing nymphs is contrarily decreasing when we in­

crease the density of the alternative host Virginia opossum. The basic reproductive 

ratio R~v,p for I. scapularis increases from 2.1915 to 3.5788/4.1041when10/15 Vir­

ginia opossums are added, but in the meanwhile ng,v for pathogen decreases form 

1.0867 to 1.0643/1.0405, on the contrary. In this case, Virginia opossum, serving 

as a blood source for the ticks, can dilute the pathogen of Lyme disease and thus 

decrease the risk to Lyme disease. 

5.3.3 Sensitivity analysis 

The Lyme disease transmission model is quite complex due to the complexity of the 

vector's (I. scapularis) life cycle, the broad host species and variable reservoir com­

petence of different host species. Estimating the values of the input variables has 

a high degree of uncertainty. We now use the Latin Hypercube Sampling Method 

(LHS) and partial rank correlation coefficient (PRCC) (58) to identify the effect 

of the uncertainty in estimating the values of input parameters on the prediction 

imprecision of our outcome variable: the basic reproduction ratio of pathogen ng·P. 

All parameters in this study are changed by 20% from their start values and then 
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Figure 5.4: Variations of the abundance of (active) total questing nymphal ticks and (active) 

total infected questing nymphal ticks without/with an alternative host Virginia opossum when 

P1 = 7.2, P2 = 36.9. Blue solid lines represent the scenario without any alternative host; black 

dash lines represent the scenario when alternative host Virginia opossum is 10; red dot-dash lines 

represent the scenario when alternative host Virginia opossum is 15. Where H 1 = 200, H 2 = 0, 

ngv,p = 2.1915, ng,p = 1.0867; H 1 = 190, H 2 = 10, ngv,p = 3.5788, ng,p = 1.0643; H 1 = 185 

and H2 = 15, ngv,p = 4.1041, ng,p = 1.0405. 
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Table 5.3: Effects of adding alternative hosts with interspecific host competition. 

Species f3H2L f3NH2 /iH2 PI P2 Density AIQN INP nsv,p 
0 

nd,p 
0 

Eastern chipmunk 0.569 0.971 0.00274 0.4 3.5 20 A A 2.3221 1.2014 

Raccoon 0.017 1.0 0.0005 8.5 5.3 10 A A 2.7244 1.9461 

18.5 5.6 10 A D 3.1340 2.6626 

1.:3 11.l 10 A D 2.5719 1.3454 

Virginia opossum 0.004 0.261 0.0018 8.6 3.9 10 A D 2.6668 1.0919 

7.6 8.0 10 A D 2.7916 1.0894 

7.2 36.9 10 D D 3.5788 1.0643 

Striped skunk 0.191 0.530 0.00274 10.9 8.0 10 A A 2.9407 1.8630 

Short-tailed shrew 0.505 0.831 0.001 2• 1• 20 A A 2.2843 1.5733 

Sorex shrews 0.537 0.701 0.0018 2• 1• 20 A A 2.2843 1.3164 

Red and grey squirrel 0.061 0.831 0.0002 1.8 6.9 10 A A 2.4587 1.9656 

1.3 4.4 10 A A 2.3428 1.5527 

Resources (13] (13] [1] [76] (76] 

The table sununarizes the results of dilution/amplification effect and two basic reproductive ratios. Here, A means 

amplification effect; D means dilution effect. The mean monthly temperatures are adapted from 2000-2009 period, 

and all other parameter values are the same as those in Table 5.1 in this study. 
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400 simulations are run. Figure 5.5 shows that 7?.,~·P is particularly sensitive to the 

variation of warm temperatures (June/July/August); all parameters related to the 

main host (white-footed mice), including the density, mortality, transmission prob­

abilities from hosts to ticks or from ticks to hosts, are moderately important to 1?.,~,p; 

alternative hosts are not negligible components in determining 1?.,~,p, thus the risk 

of Lyme disease. Table 5.4 lists parameters in a descending order of importance. 

143 



Egg produdion (p) 

Transmission probabi~ty (lbeta_{NH2}) 

Transmission probability (\bela_{NH1}) 

Transmission probability (lbeta_{H2L}) 

Transmission probablllty (lbeta_{H1 L}) 

Deer density (0) 

Alternative host density (H_2) 

White-looted mice density (H_ 1) 

Nymphal biting bias for host 2 (p_2) 

Larval biting bias for host 2 (p _ 1) 

Alternative host mortaMty (\mu_{H_2}) 

Whtte-footed mice mortality (\mu_{H_ 1}) 

Feeding adults mortality (\mu_{FA}) 

Questing adults mortality (\mu_{OA}) 

Feeding nymphs mortality (\mu_{FN}) 

Questing nymphs mortality (\mu_{QN}) 

Feeding larvae mortality (lmu_{FL}) 

Questing larvae mortality (\mu_{QL}) 

Eggs mortality (\mu_E) 

November mean temperature 
October mean temperature 

September mean temperature 

August mean temperature 

July mean temperature 

June mean temperature 

May mean temperature 

April mean temperature 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 
PRCC: Partial Rank Correlation Coefficient 

Figure 5.5: Global sensitivity of basic reproductive ratio of pathogen ng.v to a 20% changes 

in the values of in the chosen different parameters. Here H 2 represents the species of Eastern, 

chipmunk. The start mean monthly temperature values are taking from 2000-2009 period, H2 = 

10, Pl = 0.4, P2 = 3.5, /3H2 L = 0.569, f3NH2 = 0.971, µH2 = 0.00274, and other parameter values 

are the same as listed in Table 5.1. 
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Table 5.4: PRCC results in the LHS /PRCC sensitivity analysis. 

Parameter description PRCC p-value Significant (p < 0.01) 

July mean monthly temperature 0.9169 l.8863e - 150 * 
June mean monthly temperature 0.8597 l.3856e - 110 * 
August mean monthly temperature 0.8067 5.5197e - 087 * 
Eggs production (p) 0.4650 l.8223e - 021 * 
September mean monthly temperature 0.4001 8.2466e - 016 * 
White-footed mice mortality (p,H1 ) -0.3750 6.2373e - 014 * 
White-footed density ( H 1) 0.3276 8.386e - 011 * 
Questing nymph mortality (ILQN) -0.3027 2.2952e - 009 * 
Transmission probability (f3NH1 ) 0.2760 5. 767le - 008 * 
May mean monthly temperature 0.2737 7.499e - 008 * 
Questing larvae mortality (ltQL) -0.2707 l.0553e-007 * 
Transmission probability (f3H1 L) 0.2659 109784e - 007 * 
Feeding larvae mortality (1w L) -0.2328 5.3747e - 006 * 
Feeding nymphs mortality (µFN) -0.2247 l.1519e - 005 * 
Feeding adults mortality (11F A) -0.1527 0.00307 * 
White-tailed deer density (D) 0.1488 0.00503 * 
Eggs mortality (11, E) -0.1398 0.0068 * 

Continued on next page 
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Table 5.4 - continued from previous page 

Parameter description PRCC p-value Sig. (p < 0.01) 

November mean monthly temperature 0.1344 0.0093 * 
Nymphal biting bias for host H2 (.P2) 0.1060 0.0405 

October mean monthly temperature 0.1045 0.0434 

April mean monthly temperature 0.0961 0.0633 

Alternative host H2 mortality (µH 2 ) -0.0896 0.0836 

Larval biting bias for host H2 (p1 ) 0.0310 0.0903 

Questing adults mortality (J.tQA) -0.0660 0.2030 

Transmission probability (f3H2 L) 0.0384 0.4588 

Alternative host density (H2) 0.0310 0.5503 

Transmission probability (f3N H2 ) 0.0291 0.5748 

This table summarizes results in terms of PRCC and irvalue when changing model parameter 

values by 20% from their start values. Here H2 represents the species of Ea.stern chipmunk. 

2000 - 2009 period temperature data is considered, H2 = 10, p1 = 0.4, P2 = 3.5, f3H2 L = 0.569, 

f3NH2 = 0.971, JlH2 = 0.00274, and all other parameters are the same as those in Table 5.1 in 

this study. The sign of PRCC represents the positive ( +) or negative (-) response of ng.P to the 

changed parameter values. The parameters are listed in descending order of the magnitude of the 

sensitivity of ng·P to changes in their values. *= Significant at the p < 0.01. 
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5.4 Discussions 

We now summarize our findings, based on a temperature-driven Lyme disease 

model, on how climate and host community composition jointly affect the tick 

distribution and pathogen invasion. Form this model, we derived two reproduction 

ratios simultaneously, the ecological reproduction ratio n~v,p for the ticks (which 

predicts the tick persistence) and the epidemiological reproduction ratio n~,p for 

the pathogen transmission. These ratios can predict successful pathogen invasion, 

and both ratios are affected by the abiotic factors (such as temperatures) and biotic 

factors (such as the host community composition). The model is calibrated by two 

temperature datasets corresponding to 1961-1990 and 2000-2009 periods from some 

tick endemic areas in Canada. 

We calculated the reproduction ratios for two different periods, 1961-1990 and 

2000-2009. The model predicted that the reproduction ratio for ticks n~v,p = 

1.6996 and the reproduction ratio for the pathogen is ng,p = 0.7585 for the 1961-

1990 period, while ~v,p = 2.1915 and n~,p = 1.0867 for the 2000-2009 period. 

Therefore, the reproduction ratios for 2000-2009 are larger than those for 1961-

1990. In both periods, ngv,p is larger than 1, and therefore, the tick can successfully 

survive in the habitat. Since ng.P is smaller than 1 for the 1961-1990 period, 

the pathogen transmission cycle can not successfully establish. However, ng,p is 
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brought to be larger than one for the 2000-2009 period, which ensures that the 

pathogen will remain endemic in the habitat. We can also see, from the numerical 

simulations (Figure 5.2), that the tick population size at the stabilized states for 

2000-2009 is larger than that for the 1961-1990 period. The different predictions of 

the model come from the seeded temperatures, which affect the tick development 

rates and tick biting rates. Our findings demonstrate that the vector-transmitted 

pathogen is more likely to response to climate change, and climate warming may 

facilitate pathogen transmission and persistence. Because the dynamics of the 

pathogen is dominated by the dynamics of the vector population, many evidences 

[68, 104, 105] have shown that climate change, in particular temperature, is a 

decisive parameter to predict the distribution and establishment of tick populations. 

Sensitivity analysis (Figure 5.5) further proved that significant emphasis should be 

placed on the possible role of climate in determining the reproduction ratio of the 

pathogen. 

We also conducted simulations to demonstrate that host community diversity 

may trigger the dilution or amplification effect [73]. The dilution or amplifica­

tion effect has been observed in our model simulations with adding competent or 

incompetent hosts. Interestingly, both the dilution and amplification effects are 

observed by adding an incompetent reservoir. However we have noticed that the 

predicting results largely depend on the chosen parameters. Our prediction results 
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of adding an alternative host into the white-footed mouse/white-tailed deer com­

munity illustrate the importance of considering the detail of alternative host species 

and emphasize the importance of the underlying ecological mechanisms of the host 

diversity. 
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6 Basic reproductive ratio of a periodic system 

of delay differential equations with periodic delay 

6.1 Introduction 

The first model for Lyme disease dynamics in Canada developed by Ogden [68] 

formulated development times as time lags, and hence this first model becomes a 

system of delay differential equations. The simulations based on this model were 

performed season-by-season, and hence constant coefficients and delays were used. 

In reality, as pointed out in previous chapters, due to seasonality, these constant 

coefficients and delays should really be time-dependent, and periodicity may offer 

a reasonable approximation [52, 71, 68]. 

In the work of [86], Schuhmacher and Thieme developed a general model in terms 

of distributed delay to model temperature-driven development of insects. However, 

the maturation rate and development delay from previous stage to the next are 

still not clear. One of our goals in this chapter is to derive a stage-structured 
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tick population growth model in a seasonally varying environment. Following the 

standard argument for structured population dynamics [101], we derive a system 

of delay differential equations (DDEs) with temporally periodically varying delays 

and coefficients. 

A natural and important problem associated with the system of DDEs with pe­

riodic delay is to define and compute the basic reproductive ratio, denoted by R~,pd. 

We will follow the work of Bacaer and Guernaoui [8] that suggested a definition of 

the basic reproductive ratio in a periodic environment, using the renewal equation 

satisfied by the birth rate f3(t) [96]: 

[3(t) = [" IC(t, x)f3(t - x) dx, (6.1.1) 

where kernel K(t, x) is w-periodic with respect to t. In this work, the basic re­

productive ratio was defined as the spectral radius of the next generation integral 

operator 

£ : u(t) H 1"" JC(t, x)u(t - x) dx (6.1.2) 

on the function space consisting of w-periodic continuous functions. There have 

been a number of studies since then on the basic reproductive ratio in time-periodic 

environment: ordinary differential equations [5, 99, 7] (with specific applications [30, 

78, 41]), delay differential equations with discrete constant delay [9, 6]. However, 

to the best of our knowledge, there is neither a formal definition nor algorithm for 

151 



the basic reproductive ratio of a system of delay differential equations with periodic 

delay. Our second goal in this chapter is to define and derive the basic reproductive 

ratio n~·pd, and to provide a numerical algorithm of computing n~·pd. 

The remaining parts of this chapter are organized as follows. In the next section, 

we derive a stage-structured model of delay differential equations with periodic 

delay and verify the well-posedness of the model. Section 6.3 gives a detailed 

derivation of the basic reproductive ratio of the tick population and develops a 

numerical method of ~,pd. In section 6.4, we carry out some numerical simulations 

to illustrate the numerical method. 

6.2 Model derivation 

Here, we develop a dynamic population model of I. scapularis involving time-varying 

delay due to seasonality. The same notations are reused to embody the tick life cy­

cle, namely egg-laying adult females (x1), eggs (x2), hardening larvae (x3), questing 

larvae (x4), feeding larvae (x5), engorged larvae (x6 ), questing nymphs (x7 ), feeding 

nymphs (xs), engorged nymphs (xg), questing adults (x10), feeding adult females 

(x11 ) and engorged adult females (x12). In our model formulation, we consider a 

transition process from one specific stage to the next as time-varying delay rather 

than development rate, namely we will replace di/di(T) by Ti(t) in Figure 2.1 of 

Chapter 2. Here Ti(t) is the positive time-periodic delay so that the new developed 
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tick stage xi+1 at time tis evolved from the previous tick stage Xi at time t - Ti(t). 

In order to appropriately formulate the mathematical model, we make the fol-

lowing assumptions: 

(Hl). The seasonal temperature varies periodically with the periodicity (w = 365 

days), each Ti(t) (i = 2, · · · , 12) is a nonnegative periodic function oft (with period 

w = 365 days). \Ve also assume 1 - T'(t) ~ 0, which excludes the possibility of the 

ith stage of the tick going back to the previous ( i - 1 )th stage except by birth. 

(H2). Each stage-wise tick has its typical density-dependent or density-independent 

death rate. In particular, following [68], we use the following death rates of the tick 

at time t and age a: 

1At, a, P(t, a))= a E [Ai-1(t), Ai(t)], i =I- 1, 5, 8, 11, 

a E [A-1(t), A(t)], 'i = 5, 8, 11, 

(6.2.3) 

where Ai_1(t) and Ai(t) are the minimum and maximum ages of ixodid ticks de­

veloping within the specific ith stage. 

(H3). The birth function of eggs is given by 

(6.2.4) 

where pis the maximum number of eggs produced by per egg-laying adult female, 

sr measures the strength of density-dependence. The assumption reflects the eco­

logical consideration that the reproduction is linear in x1 only for small densities, 
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decreases as a consequence of intraspecific competition, and then drops significantly 

at very large densities due to the available resources being utilized by the adults 

only for their own physiological maintenance. 

We now introduce the tick age variable a and denote by p(t, a) the density of the 

tick population at time t age a. Following the standard argument for population 

dynamics with age structure [101], we have 

8 8 (&t + aa)p(t, a) = -µ(t, a, P(t, a))p(t, a), 

p(O, a) = ¢(a), a ~ 0, (6.2.5) 

p(t, 0) = b(x1 (t) ), t ~ 0, 

where P(t, a) = J~2 p(t, 0) d(} is the total number of tick population at time t 

between age a1 ~ 0 and age a2 ~ 0 (note that a1 and a2 can be time-dependent, 

namely, a1 = a1 (t) and a2 = a2(t) can be functions oft). An integration of (6.2.5) 

along characteristics yields 

{ 

p(O, a - t)e- I~ Jl(r,a-t+r,P(r,a-t+r)) dr' 0 ::;; t ::;; a, 
p(t, a) = 

p( t - a, O)e- J; 1i(t-a+r,r,P(t-a+r,r)) dr' a < t. 
(6.2.6) 

In order to evaluate the rate of change of the specific tick state xi at time t, we 

introduce a new variable Pi(t, ai), which represents the density of the tick in the 

ith stage at time t and age ai· In other words, a.i is the stage-specific age and a 

is tick age. For example, a1 is the egg-laying adult age. Therefore, the total tick 
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population at the specific stage at time t is given by 

x1(t) = J; P1(t, ai) da1 = J;:
2

(t) ~p(t, a) da 

x.i(t) = J;i(t) Pi(t, ai) dai = J~~~~t) p(t, a) da, i = 2, · · · , 10, (6.2.7) 

xi(t) J;i(t) p.i(t, ai) dai = J~~:)(t) ~p(t, a) da, i = 11, 12. 

Recall that Ai-I (t) and Ai(t) are the minimum and maJcimum ages of ticks who are 

developing in the specific ith stage. 

In order to proceed further, we need to know the relationship between tick age 

a and specific-stage age ai at time t. Note that tick density p(t, a) at time t and 

age a is developed from density of ticks p(t - a, 0) at time t - a age 0. We depict 

this as, 

p(t - a, 0) --+ p(t, a). 

It is obvious that a = a2, A1(t) = 0 and A2(t) = T2(t). The hardening larvae 

p3(t, a3 ) are developed from themselves at time t - a3 and age 0, and then the 

hardening larvae PJ(t - a3 , 0) are developed from tick population at time t - a3 -

T2(t - a3 ) and the tick age 0. Namely, we have 

Therefore, the hardening larva age a3 and the tick age a are related by 

(6.2.8) 
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In particular, 

Then 

Similarly, for each i = 2, · · · , 12, we obtain 

A,(t) = t Tj (t - t Tk (t - t ri(t - · · · T;-1(t - T;(t))))) . (6.2.9) 
j=2 k=j+l l=k+l 

Differentiating (6.2.7), we obtain 

x~(t) ~ { f
00 

!p(t, a) da - p(t, A12(t))A~2 (t)} J Ai2(t) 

-
2

1 
{ (XJ [-

8
° p(t, a) - µ(t, a, P(t, a))p(t, a)] da - p(t, A12 (t))A~2 (t)} J Ai2(t) a 

1 
"2 { -p(t, oo) + p(t, A12(t)) 

- ('° µ(t, a, P(t, a))p(t, a) da - p(t, A12(t))A~2 (t)} j Ai2(t) 

1 1oc 1 = -p(t, A12(t))(l - A~2 (t)) - µ(t, a, P(t, a))-p(t, a) da, (6.2.10) 
2 Ai2(t) 2 
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and 

1
A;(t) 8 

x~(t) = al(t, a) da + p(t, Ai(t))A~(t) - p(t, Ai-I (t))A~-I (t) 
Ai-1(t) 

x~(t) 

= 1Ai(t) [-
8
8 

p(t, a) - µ(t, a, P(t, a))p(t, a)] da 
A;-1(t) a 

+p(t, Ai(t))A~(t) - p(t, A·i-I(t))A~_I(t) 

-p(t,Ai(t)) + p(t,Ai-I(t)) 

1
Ai(t) 

- µ(t, a, P(t, a))p(t, a) da + p(t, Ai(t))A~(t) - p(t, A-I(t))A~-I (t) 
Ai-1(t) 

= p(t, Ai-I (t) )(1 - A~-I ( t)) - p( t, Ai( t))( 1 - A~( t)) 

1
Ai(t) 

- µ(t, a, P(t, a))p(t, a) da, 'i = 2, .. · , 10, 
Ai-1(t) 

~ { r;(t) !p(t, a) da + p(t, A,(t) )A;(t) - p(t, A;-1 (t) )A;_1 (t)} 
}Ai-l(t) 

= ~p(t,Ai-I(t))(l -A~_I(t))- ~p(t,Ai(t))(l -A~(t)) 

(6.2.11) 

1
A;(t) l 

- µ(t, a, P(t, a))2.p(t, a) da, i = 11, 12, (6.2.12) 
A;-1 (t) 

where we have made the biologically realistic assumption 

p(t, oo) = 0. 
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Along with the assumption (H2), equations (6.2.10-6.2.12) become 

Xi(t) = ~p(t,A12(t))(l -A~2 (t)) - µ1x1(t), 

~(t) = p(t, 0) - p(t, A2 (t))(l - A~(t)) - µ2x2(t), 

~(t) = p(t, A2(t))(l - A~(t)) - p(t, A3(t))(l - A;(t)) - µ3x:1(t), 

:i;(t) = p(t, A3(t) )(1 - A;(t)) - p(t, A4(t))(I - A~(t)) - µ4x4 (t), 

x'5 (t) = p(t, A4(t))(l - A~(t)) - p(t, A5(t))(l - A~(t)) - /ts(x5(t))xs(t), 

~(t) = p(t, A5(t))(l - A~(t)) - p(t, A6 (t))(l - A~(t)) - µ6x6 (t), 

x'7 (t) = p(t, A6(t))(l - A~(t)) - p(t, A1(t))(l - A~(t)) - /t1X1(t), 

:.ifs(t) = p(t,A7(t))(l -A~(t))-p(t,As(t))(l-A8(t))- µs(:i:s(t))xs(t), 

x~(t) = p(t,A8 (t))(l -A~(t)) - p(t,A9 (t))(l -A~(t)) - /t9x9 (t), 

%i0(t) = p(t, Ag(t))(l - A~(t)) - p(t, A10(t))(l - A~0 (t)) - µ10X10(t), 

(6.2.13) 

Xi1 (t) = ~p(t,A10(t))(l-A~0(t))-!p(t,A11(t))(l -A~1 (t)) -µ11(x11(t))x11(t), 

To obtain the equation of x~(t), we then need to evaluate p(t, Ai(t)), this can be 

done by the method of integration along characteristic. Set t = t0 + s, a= a0 + s, 

and V(s) = p(t0 + s, a0 + s). Then 

dV(s) 
dS = (ltp(t, a) + !p(t, a)) 't=to+s; 

a=ao+s 

= -µ(to+ s, a0 + s, P(to + s, ao + s))p(t, a)lt=to+s; 
a=ao+s 

-µ(to+ s, ao + s, P(t0 + s, ao + s))V(s). 
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Note that (6.2.14) is a linear first-order ordinary differential equation, we easily 

obtain 

V( ) _ V( ) - J:2 µ(to+r,ao+r,P(to+r,ao+r))dr 
82 - 8 1 e 1 . (6.2.15) 

Fort > Ai(t), setting 82 = Ai(t), 81 = 0, to = t - A.i(t), and ao = 0, we have 

V(A(t)) 
rAi(t) p(t, Ai(t)) = p(t - Ai(t), O)e- Jo µ(t-Ai(t)+r,r,P(t-Ai(t)+r,r))dr 

where ai(t, ·) = e- foAi(t) µ(t-Ai(t)+r,r,P(r+t-Ai(t).r))dr is the survival probability of eggs 

who were born at time t - Ai(t) and can live until time t. Note that a(t, ·) can be 

density-dependent. 

With some straightforward calculations, we obtain 
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Similarly, we have 

p(t, A4(t)) = p(t - A4(t); O)a4(t) = p(t - A4(t), O)e-JL4•4 (t)a3 (t - T4 (t) ), 

p(t, As(t)) = p(t - As(t), O)as(t, Xs) = p(t - As(t), O)e- 1Lrs(t)µs(xs(O))de a 4 (t - Ts(t)), 

and so on. Then we obtain the following relationship of ai ( t, ·): 

a3(t) = e-ii3• 3 (t)a2(t - T3(t)); 

a4(t) = e-µ4• 4 (t)a3(t - T4(t)); 

(t ) -t ()1i11(x11(r))dr (t () ) an , X5, Xs, Xu = e t-ru t a10 - Tu t , X5, Xs ; 

(6.2.16) 

Obviously, each ai(t; ·) (i = 2, · · ·, 12) represents the survival probability of tick 

population from eggs who are born at time t - Ai(t) to one specific stage Xi+i at 
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time t age zero. Then when t > A 12 ( t), the full model becomes 

x'1 (t) = ~a12(t,x5,Xs,x11)b(x1(t- Ai2(t)))(l -A~2 (t)) - µix1(t), 

:4(t) = b(x1(t)) - a2(t)b(x1(t - A2(t)))(l - A;(t)) - 112x2(t), 

;z;(t) = ai-1(t)b(x1(t - Ai-1(t)))(l - A~_ 1 (t)) 

-ai(t)b(x1(t - Ai(t)))(l -A~(t)) - JliX·i(t), 'i = 3,4, 

~(t) 0:4 ( t) b( xi ( t - A4 ( t))) ( 1 - A~ ( t)) 

-a5(t,X5)b(x1(t -A5(t)))(l -A~(t)) - J115(X5(t))x5(t), 

;z; ( t) = O:i-1(t,x5)b(x1(t-A-1(t)))(l -A~_1 (t)) 

-ai(t,x5)b(x1(t -Ai(t)))(l -A~(t)) - µi:.r.i(t), i = 6, 7, 
(6.2.17) 

x's(t) = a1(t,x5)b(x1(t-A1(t)))(l -A~(t)) 

-a8 (t,x5 ,x8 )b(x1(t -A8(t)))(l -A~(t)) - µs(xs(t))x8 (t), 

;z;(t) O:i-1(t,X5,Xs)b(x1(t-A-1(t)))(l -A~_1 (t)) 

-ai(t, X5, xs)b(x1(t - Ai(t)))(l - A~(t)) - µix·i(t), i = 9, 10, 

al.ii ( t) = ~a1o(t, X5, xs)b(x1 (t - A10(t)) )(1 - A;0 (t)) 

-~au(t,x5,Xs,x11)b(:r1(t -Au(t)))(l -A~1 (t)) - 1111(x11(t))xu(t), 

al.i2(t) = ~a11(t,xs,xs,x11)b(x1(t-A11(t))))(l -A~1 (t)) 

-~a12(t, X5, Xs, x11)b(x1 (t - A12(t))) )(1 - A~2 (t)) - µi2X12(t). 

The rest of this chapter will focus on (6.2.17). We will consider solutions to system 

(6.2.17) for all t ~ 0, our focus is on long-term dynamics for which we need only 

consider the system t ~ A12 (t). The following lemma establishes the fact that the 
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ith stage of the tick will not go back to the previous ( i - 1 )th stage except by birth. 

Lemma 6.2.1. With the assumption {H1}, we have 

{ii) 1 - A~(t) 2:: 0 and 1 - A~(t) = (1 - T.f(t))(l - A~_ 1 (t - Ti(t))), for all t 2:: 0, 

i = 2, ... '12. 

Proof We prove Ai(t) 2:: Ai-1 (t) by induction. Since t - T3(t) < t, t - T2(t) is an 

increasing function, we have t - T3 ( t) - T2 ( t - T3 ( t)) ~ t - T2 ( t). This is equivalent 

to A3(t) 2:: A2(t). Again t - T4(t) < t, t - T3 (t) is an increasing function, we have 

t - T4(t) - T3(t - T4(t)) ~ t - T3(t). Since t - T2(t) is increasing, we have 

That is, A4 (t) 2:: A3(t). By the same argument, we obtain Ai(t) 2:: Ai_1(t), i = 

2, · · ·, 12. From equation (6.2.9), we can easily obtain Ai(t) = Ti(t) +A-i(t-Ti(t)) 

and 1 - A~(t) = (1- T.f(t))(l - A~_ 1 (t - Ti(t))) 2:: 0. D 

6.2.1 Nonnegativity and boundedness 

The initial data for the system (6.2.17) is not arbitrary. For biological reason the 

initial data must satisfy several constraints and we only consider solutions that 

satisfy these constraints. Define Tm = min A12 (t), TM = max A12 (t). For the sake 
tE[O,w] tE[O,w] 
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of convenience, we denote <ii(t) := ai(t, ·). It is easy to see that each exponential 

function ai(t) is always positive and b(x1(t)) is nonnegative provided that x1(t) is 

nonnegative. 

Theorem 6.2.2. With the initial data x1(0) 2'.: 0, x5(B) 2'.: 0, x8 (0) 2'.: 0, x 11 (B) 2'.: 0 

for -TM::;(}< 0, and 

xi(O) = f~ri(o) eµis&i-1(s)b(x1(s - Ai-1(s)))(l - A~_ 1 (s)) ds, i # 1, 5,8, 11, 12, 

Xi(O) = J~ ·(O) e- fs
0 

/ti(xi(r)) dr ai-1 (s )b(x1 ( s - Ai-I (s)) )(1 - A~-1 (s)) ds, i = 5, 8, 
Ti (6.2.18) 

x11 (0) = ~ J~TJ.i(O) e-f~µu(xn(r))dr&10(s)b(x1(s - A10(s)))(l -A~0 (s)) ds, 

X12(0) = ~ f~ri2 (o) e1
J
128611(s)b(x1(s - An(s)))(l - A~ 1 (s)) ds, 

each component xi(t) of the solution of the system (6.2.17} remains nonnegative 

for all t 2'.: 0, i = 1, · · · , 12. Furthermore, each component of the solution is also 

bounded for all t > 0. 

Proof First we claim that x 1(t) 2'.: 0 for all t 2'.: -TM when :r;1((}) 2'.: 0 for -TM ::; 

(}::; 0. We prove the theorem (6.2.2) by showing that xi(t, c) is the solution of the 

modified system obtained from system (6.2.17) by adding c to each right hand side 

with c being arbitrarily small. To show that x1(t,c) 2'.: 0 for all t > 0, we suppose 

that :r;1(t,c) < 0 for some t > 0. Lett*= inf{t: t > 0 and x1(t,c:) < O}. Then 

t* 2'.: 0, x1 (t*, c-) = 0 and x~ (t*, c) ::; 0. But, from the first equation of the modified 
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system 

x~(t*,.s) = ~&12(t*)b(x1(t* -A12(t*),.s))(l -A~2 (t*))- Jt1X1(t*,c;) +.s, 

= ~&12(t*)b(x1(t* - Ai2(t*), c-))(1 - A~2 (t*)) + c. 

Moreover, A12 (t*) > 0 ensures t* -A12 (t*) < t*, implying that x1 (t* -A12 (t*), c) 2'.: 0 

by the definition oft*. This, in turn, implies that x~ (t*, c:) 2'.: c: > 0, giving rise to 

a contradiction. Therefore, x1 ( t, c) 2'.: 0 for each t > 0. This is true for arbitrary 

small€> 0. Letting c ~ 0 gives 

as a solution of system (6.2.17). 

Then we claim the nonnegativity of :ri(t) for all t 2'.: 0, i = 2, · · · , 12. We start 

to prove nonnegativity of x2(t) for all t 2'.: 0. We move the term µ2x2(t) to the left 

side of the second equation of system (6.2.17) and multiply e1i2 t at both sides to 

obtain 

eµ2tb(x1 (t)) - eµ 2(t-T2(t)b(x1 (t -T2(t)))(l - r~(t)) 

= (it eµ28b(x1(s)) ds)' 
t-12(t) 
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Then we have 

(6.2.19) 

which is non-negative because of nonnegativity of x1 (t) and the initial data (6.2.18) 

constraints. This expression is, ecologically reasonable, as it accounts for the total 

number of eggs at time t. Where b(x1 (s)) represents the number of eggs who were 

born at some times E [t - T2 (t), t]; e-µ. 2 (t-s) is the survival probability of eggs who 

were born at time s and were able to survive until time t in egg stage. Here the 

variable T2 (t) is the maturation time from eggs to the next stage at time t, the 

lower limit on the integral is t - T2(t) because any tick born before that time will 

have matured to next stage before time t. 

Similarly, from the third equation of system (6.2.17) we have 

-T2(t - 73(t))))(l - T~(t - 73(t)))(l - T~(t)) 

( t eµ.3se-µ2 A2 (s)b(x1(s - A2(s)))(l - A;(s)) ds)
1 

lt-TJ(t) 
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Then we obtain 

(6.2.20) 

where x3(t) accounts for the total number of hardening larvae at time t. The 

quantity &2 (s)b(x1 (s-A2 (s)))(l - A~(s)) is the number of hardening larvae whose 

stage-specific age is zero at times and evolved from eggs born at times - A2 (s). 

Using similar calculations, we obtain the unfed tick stage as follows 

xi(t) = fLri(t) e-µi(t-s)0;i-1(s)b(x1(s - Ai-1(s)))(l - A~_1 (s)) ds, (·i = 2, 3, 4, 6, 7, 9, 10), 

x.i(t) = ft~ri(t)e-f:µi(xi(r))dr&i-i(s)b(x1(s -Ai-i(s)))(l -A~_1 (s))ds, i = 5,8, 

x11 (t) = ~ fLrn (t) e- I: iin(xn(r)) dr&10 ( s )b( s - A10(s) )(1 - A~0 (s)) ds, 

X12(t) = ~ fLr
12

(t) e-µi 2 (t-s)&11(s)b(x1(s - A11(s)))(l - A~1 (s)) ds. 

From the above equations, each component of the solution is nonnegative. 

The boundedness of the solution of the system (6.2.17) can be easily obtained. 

Denote by N(t) = L:i!1 :i:i(t) the total number of ticks. It is easy to see that the 

birth function is bounded when the size of egg-laying females is nonnegative since 

Adding all equations of system (6.2.17) yields 

(6.2.21) 
#5,8,11 i=5,8,11 

~ bmax - µN(t), 
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where 

From (6.2.21), it follows that 

limsupN(t):::; bmax/µ, (6.2.22) 
t-+cx:i 

which implies the boundedness of all solutions of system (6.2.17) subject to the 

initial condition constraints. This completes the proof. D 
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6.3 Basic reproductive ratio (R~,pd) 

System (6.2.17) has a tick-free equilibrium. Linearizing the system (6.2.17) at the 

tick-free equilibrium yields 

x~ (t) ~0:12(t, 0, 0, O)px1(t - A12(t)))(l - Ai2(t)) - µ1x1(t), 

:r;(t) = PX1(t) - 0:2(t)px1(t - A2(t))(l - A~(t)) - Jl.2X2(t), 

x~(t) = a·i-1(t)px1(t - Ai-1(t))(l - A~_1 (t)) 

-ai(t)px1(t -A(t))(l -A~(t)) - µixi(t), 'i = 3,4, 

x's(t) = 0:4(t)px1(t - A4(t))(l - A~(t)) 

-a5(t, O)px1(t - A5(t))(l - A~(t)) - µ5(0)x5(t), 

~(t) = n·i-1(t, O)pxi(t - Ai-1(t))(l - A~_ 1 (t)) 

-a.i(t, O)pxi(t - Ai(t))(l - A~(t)) - µ.ixi(t), 'i = 6, 7 

:ifs(t) n1(t, O)px1(t - A1(t))(l - A~(t)) 

-a8(t, 0, O)px1(t - As(t))(l - A~(t)) - µs(O)xs(t), 

~(t) = n·i-i(t, 0, O)px1(t - Ai-1(t))(l - A~_1 (t)) 

-a.i(t, 0, O)px1(t - Ai(t))(l - A~(t)) - µixi(t), i = 9, 10, 

Ti1(t) = ~0:10(t,O,O)px1(t-A9(t))(l-Ai0 (t)) 

(6.3.23) 

-~an (t, 0, 0, O)px1(t - An (t) )(1 - Ai1 (t)) - µn (O)xn (t), 

x'12 (t) = ~an(t,O,O,O)px1(t - An(t)))(l - Ai1(t)) 

-!0:12(t, 0, 0, O)px1(t - A12(t)))(l - Ai2(t)) - µ12X12(t). 
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The system ha a I-dimensional decoupled subsystem 

where 

x~ (t) = ~P0'.12(t, 0, 0, 0)(1 - A~2 (t))x1(t - Ai2(t)) - µix1(t) 

a(t)x1(t - Ai2(t)) - µix1(t), 

a(t) = ~P0'.12(t, 0, 0, 0)(1 - A~2 (t)). 

(6.3.24) 

(6.3.25) 

The change rate of egg-laying adult females at time t depends on the number of 

egg-laying adults females at time t-A12(t). It is important to examine the number 

of newly generated egg-laying adult females per unit time at time t. We assume 

h(t) := t - A12 (t) is a strictly increasing function oft. Then at time t, the egg-

laying adult female population (with its size denoted by x1 (t)) will produce some 

new-horns who will eventually become egg-laying adult females at the future time 

h-1 (t) := t, where h(t) = f - A12 (i) is a strictly increasing function of i. We note 

that 

(6.3.26) 

That is, the number of newly generated egg-laying adult females per m1it time at 

time tis y(t) = c(t)x1(t) with c(t) := a(h-1(t))/(l - A~2 (h- 1 (t))). 
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Note that 

Integrating from -oo to t which yields 

This gives (note c(s - A12(s)) = l-~~~(s)) 

y(t) = c(t) e-µi(t-s) y(s - A12(s)) ds j t a(s) 
-oo c(s-A12(s)) 

where 

j~ c(t)(l - A;2(s))e-µi(•-•>y(s - A12 (s)) ds 

{°o c(t)e-µ1(t-h-1(t-r))y(t - r) dr 
j Ai2(t) 

l"' JC(t, r)y(t - r) dr, 

-- { ~pa12(h-1(t), 0, 00, O)e-µ1(t-h-1(t-r)) 
K(t, r) 

Note that K,(t, r) = k(t + w, r). 

(6.3.27) 

r ~ A12 (t), 
(6.3.28) 

In [96, 42], the solution y(t) of (6.3.27) of the form eAtu(t) is considered, where 

'lt(t) is a periodic function with period wand satisfies 

u(t) = l" JC(t, r)e-A'u(t - r) dr. (6.3.29) 
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Let Cw:= {u: 'R ~ 'R, u(t + w) = u(t)} and£: Cw~ Cw such that 

£.u(t) = [
0 

JC(t, r)u(t - r) dr. (6.3.30) 

Following [8, 5, 99], we define the basic reproductive ratio as the spectral radius 

of the linear integral operator acting on the same space of w-periodic continuous 

functions, i.e., 

n~·pd = p(£). (6.3.31) 

In what follows, we derive a numerical algorithm to compute 'R~,pd as defined 

in (6.3.28, 6.3.30, 6.3.31). Changing the variable()= t - r of (6.3.30), we obtain 

£.u(t) = l" JC(t, r)u(t - r) dr 

where 

~pa12(h- 1 (t), 0, 0, O)e-iiit f,00 

e1iih-i(t-r),u(t - r) dr 
A12(t) 

1
t-A12(t) 

p(t) -oo eµ11i-i(o)u(B) dB 

P(t) [1'-A12(tl eµih-'(Blu(IJ)dlJ + 1~ e"'h-'(Blu(IJ) dlJ] ' 

Since u(t) is w-periodic, we have 

(6.3.32) 



So the eigenvalue problem (6.3.32) is equivalent to 

with 
00 

H(O) = L eµ1h-l(O-nw). 

n=O 

In the previous equation, u(t) is aw-periodic function. To compute the 'R~,pd 

numerically, we partition the interval [O, w] into N (enough large integer) subinterval 

of equal length. Set ti = (i - l)w/N for i = 1, 2, · · · , N. Then at the point ti, 

Equation (6.3.33) becomes 

For each t.;, E (0, w), there is a unique integer k.i such that ti+ kiw -A12 (ti) E (0, w). 

Denote li := [t;+k;w~Ai2 (t;) + 1] E {1, 2, · · · , N}, i.e., the nearest integer less than or 
N 
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equal to 4 +kiw:A12
(ti) + 1. Replacing ti+ kiw by ti in Equation (6.3.34), we obtain 

N 

.Cu(ti) = p(ti + kiw) [ ti+kiw-Ai
2
(ti) H(B)u(e) de+ iw H(e - w)u(e) de] 

lo ti+kiw-A12(ti) 

= p(ti + kiw) [ ri H(e)'u(O) d() + 1ti+kiw-Ai
2
(ti) H(O)u(O) d() 

lo tii 

+ lt'i+i H(e - w)u(e) de+ lw H(e - w)u(e) de] . (6.3.35) 
ti+kiw-A12(ti) t1i+1 

In the case where tli =ti+ kiw - A12(ti), equation (6.3.35) becomes 

.Cu(t;) = p(ti + k;w) [t, H(t;)u(t;) ~ + ;z:i H(t; - w)u(t;) ~] 

[ 

Li W N W 

= p(ti + kiw) ~ H(tj)u(ti) N + _L H(tj - w)u(ti) N 
1=2 J=li+l 

+H(tN+l - w)u(tN+l) ~] 

= p(ti + kiw) [t H(t;)u(t;) ~ + t H(t; -w)u(t;) ~ + H(t1 )u(t1 ~)] 
1-2 1-~+l 

= p(ti + kiw) [t H(t;)u(t;) ~ + f, H(t; -w)u(t;) ~] . 
J=l 1=~+1 

In the case where tli < ti+ kiw - A12(ti), equation (6.3.35) becomes 

L'U(t.i) = p(ti + kiw) [I: H(t;)u(t;) ~ + 1"+k,w-A12

(t;) H(B)u(B) d() 
J=l t,i 
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Let Wi = u(ti)· Then the problem of estimating of R~,pd of (6.3.31) reduces to 

the calculation of the spectral radius of a given matrix. Namely we have the matrix 

eigenvalue problem of the form 'k~·pdw = XW, where W = (Wi, W2 , • • ·, WNf, 

and R~,pd is the spectral radius of a N x N positive matrix X. In this matrix, the 

(i, j) element is given by 

{ 

~P0:12(h-1(ti), 0, 0, O)N f: e-µ1(ti-h-1(tj-kiw-nw))' 1 ~ j ~ li, 
Xij = ~O ( 6.3.36) 

~JJ0:12(h-l(ti), 0, 0, 0)-N I: e-µ1(ti-h-1(trkiw-(n+l)w))' li + 1 :S j :S N. 
n=O 

Remark 6.3.1. Since h(t) = t - A12 (t) is a strictly increasing function with respect 

tot, we have the existence of h-1
, and it can be easily verified that h-1(t + nw) = 

h-1(t) + nw, n E Z. 

It is useful to rewrite X in the following form: 

X= 

TNSN,N 

where ri = ~P0:12(h-1 (ti), 0, 0, 0) ('i = 1, · · · , N) is the number of newly generated 

egg-laying adults females per unit time produced by the per egg-laying adult female 

at time ti· li = [ti+kiw~A12 <ti) +1] E {1, 2, · · ·, N} (i = 1, · · · , N), the nearest integer 
N 

less than or equal to t,+k,w~A12(ti) + 1, where ki is a unique integer ki such that 
N 
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(6.3.37) 

is the survival probability of egg-laying adult females at time ti who developed from 

eggs at time tj - kiw or tj - k.iw - w, will become egg-laying adult females at the 

future time h-1(tj - kiw) or h-1(tj - kiw -w), and have survived until the time k 

implies 

t· - A12(t·) - (l· - 1·)~ < t· - A12(t·) i 1. i N _ ·i .,, , J. = 1 ... l·· 
. ' ' i, 

and 

= tl· - (l· -1·) w - k·w -w < t· + k·w-A12(t·) - k·w - (l· -1·)~ -w 
• i Ni _ii i i .,, JV 

X·ii is the total number of newly generated egg-laying adult females per -%--unit time 

at time ti caused by the eggs at time tj - kiw - nw (j = 1, 2, · · · , li; n = 0, 1, 2, · · ·) 

or ti - (k.i + l)w - nw (j = li + 1, · · · , N; n = 0, 1, 2, · · · ). 

Leslie Matrix was invented by Patrick Holt Leslie in 1945 to model the growth 

of the number of female rats population over a period of time [10]. He divided 

the female rats population into n groups based on age, and each ( i, j)th cell of the 
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matrix represents how many individuals of female rats will be in the age group i 

at the next time step for each individuals from group j. Compared to the classical 

Leslie matrix, we divide the population of egg-laying adult females into n groups 

based on time in a period [O, w], then each (-i, j)th cell of our matrix X indicates 

how many egg-laying adult females will be in the class i at the next time period for 

each individual in group j from all previous time period. Therefore in the classical 

demographic models, this Xis nothing but the Leslie matrix. Note that the initial 

and end age of a specific stage is time-dependent. 

6.4 Simulation tests 

In this section, we conduct some numerical simulations using our proposed nu-

merical algorithm for R~·Pd. We will conduct our simulations using the following 

I-periodic function: 

27f 
r(t) =a+ bcos(

365 
(t + ¢)), 

where a> b > 0 and 0 < b < ~6;. For this parameter set, I - r'(t) > 0 is satisfied. 

We choose Ti(t) (i = 2, 4, 6, 7, 9, 10, I2) as I-periodic functions given by 

27r 
Ti(t) = Tio(I + C:i cos(

365 
(t + </>i))). 

All other time delays are considered as constants. 

In what follows, we fix some parameter values as listed below: 
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T20 = 100, T40 = 120, 760 = 90, T70 = 120, T90 = 90, T100 = 20, T120 = 60, T3 = 21, 

T5 = 3, Tg = 5, 711 = 10, p = 3000, µ2 = 0.002, µ3 = 0.006, µ4 = 0.006, µ5 = 0.4, 

µ6 = 0.003, µ1 = 0.006, JLg = 0.3, µg = 0.002, JL10 = 0.006, Jl•ll = 0.35, Jl•I2 = 0.0001. 

Other parameters will be varied in our simulations. In what follows, we let [n~·pd] be 

the basic reproductive ratio of the corresponding time-averaged autonomous delay 

differential system of (6.3.24). Such a system is obtained by replacing the periodic 

delay Ti(t) with its corresponding time-averaged delay fi = ~ J0w Ti(t) dt = TiQ for 

the original system of (6.3.24). This allows us to compare the basic reproductive 

ratio ~,pd in the periodic environment with [R~,pd] in the time-averaged constant 

environment. 

We first discuss the convergence of the proposed numerical method. We set 

Ei = 0.4 and </Ji = 270 for all i = 2, 4, 6, 7, 9, 10, 12. We show in Table 6.1 the 

approximation of n~·pd and [R~·pd] (in fact, the dominant eigenvalue of matrix X) 

when we increase the nwnber N of partitions 365 to 365 x 13 with µ1 = 1, 0.5, 0.1, 

respectively. The simulations are summarized in Table 6.1 and illustrated in Figure 

6.1. 

\Ve now conduct some numerical simulations to gain insights about the rela­

tionship between our basic reproductive ratio and the amplitudes and phases of the 

periodic delays. In what follows, we fix the number of equal partition N = 3650. 

We firstly assume only one periodic delay T2(t) = T20(l + c2cos(i~(t + ¢2))) is 
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Table 6.1: Convergence of the proposed numerical algorithm \Vith increasing num-

ber N of points equally discretizing the interval [O; w ), which represents 365 days. 

N 365 365x 3 365x 5 365x 7 365x 9 365x 11 365x 13 

(µ.1 = 1) R~,pd 0.3361 0.3278 0.3266 0.3239 0.3242 0.3233 0.3233 

(µ1 = 1) [R~'pd] 0.4630 0.3178 0.3022 0.3003 0.3000 0.2958 0.2943 

(µ1 = 0.5) R~·pd 0.6513 0.6519 0.6505 0.6496 0.6494 0.6494 0.6494 

(µ1 = 0.5) [R~'pd] 0.7438 0.6087 0.5930 0.5925 0.5923 0.5882 0.5867 

) v.pd (µ1 = 0.1 R 0- 3.2107 3.2164 3.2174 3.2169 3.2170 3.2172 3.2172 

(µ1 = 0.1) [R~·Pd] 3.0753 2.9487 2.9327 2.9333 2.9333 2.9292 2.9277 

involved in the system (6.3.24) and all other six periodic (delay) functions are con-

stants, i.e., Ci = cP-i = 0 for i = 4, 6, 7, 9, 10, 12. We test how n~,pd changes when c2 

and </>2 change separately. 

We first fix ci = 0 ('i = 4, 6, 7, 9, 10, 12) and µ 1 = 0.1, and we vary </>2 E [O, w]. 

The dependence of R~,pd on </>2 is given in Figure 6.2, which shows that the basic 

reproductive ratio n~·pd remains at a constant value with varying ¢2, means that 

R~·pd is independent of the phase difference. 

Next we choose ¢2 = 270 and vary c2 in the interval [O, 0.4]. We obtain the 

relations of the basic reproductive ratio R~·pd and ['R.~'pd] with time-averaged to 
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Figure 6.1: The convergence of the numerical simulation of the basic reproductive 

ratio R~,pd or the average basic reproductive ratio [R~,pd] as N is increased. 

c-2 (Figure 6.3). This figure shows increasing the amplitude of the periodic delay 

reduces the basic reproductive ratio ~,pd, and that using the corresponding time-

averaged delay differential system tends to overestimate the ratio ([R~·pd] > R~·pd). 

Figures 6.4 and 6.5 report the simulations involving two periodic delays. We 

assume that T2 (t) and T4 (t) are periodic delays, all other delays are constants. i.e., 

Ei = 0 for i = 6, 7, 9, 10, 12. Figure 6.4 shows that the increase of the amplitude (c4 ) 

of T4(t) while keeping T2 (t) and ¢4 unchanged can change the basic reproductive 

ratio n~,pd of system (6.3.24) from below the time-averaged basic reproductive 

ratio [R~,pd] to above. Hence, using the time-averaged delay differential system can 

underestimate and overestimate the basic reproductive ratio of the corresponding 

179 



4 I I I 

3.5 

3~ R~·~2.8748 

'& 
~o 

2.5~ 

2-

1.5 . 
0 50 100 150 200 250 300 350 

•2 
Figure 6.2: The basic reproductive ratio R~,pd versus ¢2 . Where T2(t) = T20(l + 

£2 cos(;;~ (t + </>2))), Ti(t) = TiQ ('i = 4, 6, 7, 9, 10, 12), t:2 = 0.4, µ1 = 0.1, </>2 varies in 

the interval [O, 365]. 

period system of DDEs. 

In Figure 6.5, we change phase </>4 over the interval [O, 365 x 2] while keeping 

T 2 (t) and c-4 unchanged. We noticed the I-year periodicity of R~·pd as a function 

of </>4 . Moreover, an increase of phase of ¢2 yields the shift of R~,pd to the right. 

For instance, the blue curve of R~,pd corresponds to ¢2 = 0 while the red one 

corresponds to </>2 = 100. Therefore, difference in peak timings of the two periodic 

delays can change the value of the basic reproductive ratio ~,pd. 
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Figure 6.3: The graph of the basic reproductive ratio n~,pd and the time-averaged 

basic reproductive ratio [n~,pd] versus c2. Here T2(t) = T20 (1 + c2cos(~(t + ¢2))), 

Ti(t) = TiQ (i = 4, 6, 7, 9, 10, 12), ¢2 = 270, µ 1 = 0.1, c-2 varies to [O, 0.4]. 

6.5 Discussion 

In summary, we have derived a stage-structured population model with both peri-

odic coefficients and delays, and we have derived the basic reproductive ratio n~,pd 

for the scalar linearized periodic system (linearized at the trivial solution). We have 
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Figure 6.4: The graph of the basic reproductive ratio n~,pd and the time-averaged 

basic reproductive ratio [n~,pd] versus <f>4. Here, Ti(t) = Tio(l + c:.i cos(J;5 (t + 

</>i))) (i=2,4), and Ti(t) =Tio (i=6,7,9,10,12); c2 = 0.4, </>2 = <f>4 = 270, tt1 = 0.1, c4 

varies in the interval (0, 0.4]. 

proposed a discretization-based method, where the periodic coefficients and the de-

lays are both approximated by constants over a short time interval. This method 

then reduces the problem of calculating the spectral radius of a linear integral op-

erator (defined as the basic reproductive ratio n~·pd) to that of the spectral radius 

of a matrix (the dominant eigenvalue of X). Our numerical simulations indicate 

that this method is quite effective. 

We then performed some simulations to gain insights how the basic reproductive 
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Figure 6.5: The graph of the basic reproductive ratio 'R~,pd versus ¢4 when ¢2 = 

0, 100, 200, 300. Here Ti(t) = TiO(l + Ei cos(i:S (t +</Ji))) (i = 2, 4), and Ti(t) = TiQ for 

i = 6, 7, 9, 10, 12. c2 = c4 = 0.4, µ 1 = 0.1, ¢4 varies in (0, 730]. Blue line represents 

the basic reproductive ratio 'R~,pd versus ¢4 with ¢2 = O; Red line represents the 

basic reproductive ratio 'R~,pd versus cp4 with ¢2 = 100; Magenta line represents the 

basic reproductive ratio 'R~,pd versus ¢4 with ¢2 = 200; Dark green line represents 

the basic reproductive ratio 'R~,pd versus ¢4 with ¢2 = 300. 

ratio 'R~,pd depends on the parameters. With a single periodic delay (while all other 

fixed to constants), we noticed that the basic reproductive ratio 'R~,pd may increase 

or decrease as the amplitude of the periodic delay is increased (see Figure 6.3, 

Figure 6.4). However, we observed that the value of 'R~,pd is independent of the 
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phase change of the periodic delay (see Figure 6.2). We then have focused on the 

issue how phase differences can influence the basic reproductive ratio R~,pd if two 

time-periodic delays are involved in a periodic system. In particular, Figure 6.5 

shows that change of peak timings of two periodic delays can change the value of 

the basic reproductive ratio. The study in Ogden et al (2006) [74] showed that 

seasonal activities of different tick instars changed clue to the projected increased 

temperatures, from the current pattern "nymphal activities are ahead of larvae in a 

year" to the one "larvae become active earlier than nymphs in a year" in the future. 

Therefore, the result in [68] and our simulations combined indicate that switch of 

peak timings of larvae and nymphs may alter the basic reproductive ratio for the 

tick population, hence influence the risk of Lyme disease. 
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7 Conclusion and Discussions 

In this thesis, we focus on modelling the impact of climate change on the spread 

of one of the important infectious vector-borne diseases in Canada-Lyme disease. 

We have gone through a few iterative cycles of modeling and analysis: mathemat­

ical formulation, parameterization and analysis, comparison, validation and tests. 

From different angles of complexity and relevance to public health, we study the 

spatial-temporal interaction, climate change and host diversity integrating indi­

vidual tick physiological activity and evolution on the tick population dynamics 

and the Lyme disease spread. This is a part of the NCE center GEOIDE project 

"CODIGEOSIM-Geosimulation Tools for Simulating Spatial-Temporal Spread Pat­

terns and Evaluating Health Outcomes of Communicable Diseases", and this thesis 

work has involved close collaboration with the Center for Food-borne, Environ­

mental and Zoonotic Infectious Diseases, Zoonoses Division of the Public Health 

Agency of Canada. 

In order to identify the threshold conditions to inform the risk analysis of the 
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tick population establishment and Lyme disease spread, we employ the techniques 

of dynamical systems with aid of population-based models of ordinary different 

equations, partial differential equations and delay differential equations with sea­

sonal forcing. By utilizing some recently developed results about the qualitative 

theory of epidemic models with periodic coefficients and the qualitative theory of 

monotone dynamic systems, we successfully calculated key thresholds (including 

basic reproductive ratios) for the establishment of tick population and persistence 

of disease spread, and we are able to obtain some important information (such 

as the minimal wave speed) for tick population range expansion. Some statistical 

methods are also used to identify environmental threshold conditions (such as cu­

mulative annual degree-days) of establishment of tick population in Canada. \Ve 

believe these results are useful to the public health policy makers for their consider­

ation of the prevention and control of Lyme disease spread in Canadian landscape 

under varying environmental conditions. 

We develop complex models for a systematic study of parasite/pathogen pop­

ulation while maintaining a certain degree balance between the mathematical fea­

sibility and ecological/epidemiological reality. In Chapter 2, a model of ordinary 

differential equations with temperature-dependent (time-independent) development 

rates is used to study tick population dynamics in a spatially homogeneous habitat. 

We show that the basic reproductive ratio determines the survival or extinction of 
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the tick population depends on temperature and host densities. We identify that 

lower or higher temperatures can limit the northward expansion of ticks by directly 

killing the ticks as studied in [71, 68], prohibiting or shortening time available 

of host-seeking activities, and potentially causing the increase of their mortality 

rate. We dedicate Chapter 3 to the qualitative assessment of the tick population 

establishment risk in the Canadian landscape using a deterministic model with 

seasonality. The predictor, basic reproductive ratio R~,p of the tick population, 

is derived in the presence of seasonal variation in temperature. The value is ob­

tained by parameterizing the model and utilizing mathematical techniques such 

as spectral analysis, and then we validate model using some existing surveillance 

data, including cumulative annual degree-days in comparison with our calculated 

basic reproductive ratios by rwming model simulations in 30 locations of Canada. 

Our finding suggests climate warming would increase the basic reproductive ratio, 

and thereby accelerate the range expansion of tick population northward. The rea­

son maybe that climate warming would give rise to accelerate the accumulation 

of degree-days for tick development, which underlying leads to come earlier of egg 

deposition and larval hatch, and more nymphs molted in the same year and more 

time available for host-seeking activities. This work can be extended to predict 

future tick population range expansion of Ixodes scapularis in Canada or other 

countries. In Chapter 4, we explore the relative importance of local connectivity 

187 



in driving the patterns of tick range expansion by a reaction-diffusion model with 

seasonality. Using the qualitative theory of strongly order-preserving periodic pro­

cess, we obtain the existence of minimal wave speed due to tick seasonal on-or-off 

activities. In order to assess the real risk of Lyme disease, in Chapter 5, we use a 

periodic system of ordinary differential equations to study the disease transmission 

involving stage-structured tick population, seasonal forcing and host diversity. Our 

findings indicate that climate warming will promote the spread of the disease and 

increasing the level of host diversity may dilute or amplify the Lyme disease risk 

to public health, depending on the model parameters and reservoir competence of 

the alternative host. Sensitivity analysis is conducted to identify key climate and 

environmental conditions which have great impact on disease spread. In Chapter 

6, motivated by the tick ecological activity, we derive a periodic system of delay 

differential equations with multiple time-periodic delays following the standard age­

structured argument. vVe define the basic reproductive ratio for this type of DDEs 

with time-periodic terms and introduce a numerical algorithm to calculate the ba­

sic reproductive ratio. One of the particular observations is that switch of peak 

timings of different time-periodic delays may have significant impact on the basic 

reproductive ratio. 

This thesis seems to be the first systematic study of Lyme disease and its vector 

in a periodically varying environment. The developed approach and techniques 
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could and should be expended to other vector-borne disease. To better understand 

the range expansion and accurately predict the distribution of the tick population, 

we need to examine the future trends of lxodes scapularis population with different 

scenarios of climate changes. Furthermore, more realistic models accounting for the 

effects of landscape heterogeneity on the movement of mammals and resident birds 

needs to be studied since species are affected differently by landscape fragmentation 

because of their specific range size, dispersal ability, habitat and food requirements, 

and behaviors. In order to better understand the spread of Lyme disease, we will 

need to model spirochete dispersal as a complex function of tick dispersal, host 

competency to incubate bacterium, bacterial virulence, duration of infection and 

potential effect of infection on migratory behavior. 

The calculation of the basic reproduction ratio, and hence the potential persis­

tence/ extinction of tick populations is affected by the sex ratio of ticks, which we 

have assumed as 1:1 in our thesis. However there have been studies which indicate 

that this ratio may be different, for example, female-to-male sex ratio of 1.6:1 was 

determined in the work of [18]. Therefore it is more reasonable to consider sex 

ratio as a parameter rather than a fixed constant. It is possible to extend our sen­

sitivity analysis to express how the basic reproduction ratio changed on this ratio 

and deserves future study. In our thesis, we have assumed the deer and rodents 

populations be fixed constants. How the basic reproduction ratio depends on these 
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numbers should be further studied to inform the effectiveness of any intervention 

involving the control and dynamics of deer and rodents populations. 

190 



8 Appendix A 

Fourier series analysis 

In our model, there are seven periodic coefficients to be determined for the given 

meteorological stations for the 1971-2000 period: d12 (t), d2 (t), d6 (t), d9 (t) (<level-

opment rates of POP, PEP, larva-to-nymph and nymph-to-adult, respectively) and 

d4 (t), ch(t) and d10(t) (host attaching rates of larvae, nymphs and adults, respec-

tively). The host attaching rates are given by the following relationship 

(8.0.1) 

with ()i(t), ea(t) being the respective activity proportions of immature and adult 

ticks which depend on temperature. 

The following "7th order Fourier series" was employed to estimate the seven pe-

riodic coefficients of the tick stage and seasonally specific development and activity, 

~ . 27fit 27fit 
f(t) = C() + L.)ai sm 

365 
+bi cos 

365 
). 

i=l 

(8.0.2) 

MATLAB (R2010a) was used for the Fourier series analysis by fitting the tick 

data into the equation (8.0.2). For instance, Figure 8.1 presents the fitted devel-
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opment rates of POP, PEP, larva-to-nymph and nymph-to-adult at Delhi CDA 

meteorological station for the 1971-2000 periods, the detailed periodic functions 

are presented in the following subsection. 

Figure 8.1: Fourier series projected development rates of POP (d12 (t)), PEP 

(d2(t)), larva-to-nymph (d6(t)) and nymph-to-adult (d9(t)) from the 1971-2000 

mean monthly normal temperature at Delhi CDA meteorological station. 
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Periodic functions at Delhi CDA meteorological station for the 1971-

2000 periods 

In what follows, we used t(m365) to denote the modular after division (t/365). 
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The periodic developmental rate of POP is given by: 

d ( ) 
_ sign[(t(m365) - 47.8683)(358.9047 - t(m365))] + 1 f ( ) 

12 t - 2 x 1 t ' 

where 

Co = 0.02139, a1 = -0.01048, b1 = -0.02676, a2 = 0.004188, 

b2 = 0.005002, a3 = 0.0007 49, b3 = 0.00054, a4 = 0.000213, 

b4 = -0.000291, a5 = -0.000038, b5 = -0.000159, a6 = -0.000188, 

b6 = 0.000140, a7 = -0.000088, b7 = 0.0000139; 

the periodic developmental rate of PEP is given by: 

d ( ) 
= sign[(t(m365) - 35.8068)(355.5969 - t(m365))] + 1 f ( ) 

2t 2 x 2t, 

where 

~ 2i7rt 2i1rt 
h(t) = c0 + L.)ai sin 

365 
+bi cos 

365 
), 

i=l 

c0 = 0.009975, a1 = -0.005363, b1 = -0.01394, a2 = 0.003866, 

~ = 0.004296, a3 = -0.000659, b3 = -0.000245, a4 = -0.000099, 

b4 = -0.000123, a5 = 0.000031, b5 = 0.000007, a6 = -0.000023, 

b6 = 0.000091, a7 = -0.000004, b1 = -0.000079; 

the periodic developmental rate of larva-t~nymph is given by: 

d ( ) 
sign[(t(m365) - 53.3081)(351.8854 - t(m365))] + 1 f ( ) 

6t = 2 x 3t, 
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where 

Co = 0.006907, ai = 0.001712, b1 = -0.008659, a2 = -0.003768, 

b2 = 0.002882, a3 = 0.000717, b3 = -0.00127, a4 = 0.000972, 

b4 = 0.00057, a5 = -0.000064, ~ = -0.00115, CL5 = -0.000041, 

b6 = 0.000036, a7 = 0.000079, b7 = 0.000655; 

the periodic developmental rate of nymph-to-adult is given by: 

d ( ) 
_ sign[(t(m365) - 51.2829)(347.2452 - t(m365))] + 1 f ( ) 

gt - 2 x 4t, 

where 

Co = 0.005122, a1 = 0.001326, bi = -0.00574, a2 = -0.004511, 

~ = 0.001516, a3 = 0.002741, b3 = -0.0006858, a4 = -0.001363, 

b4 = -0.0003076, a5 = 0.00155, b5 = -0.0004824, a6 = -0.0009726, 

b6 = 0.0001277, a7 = 0.001129, b7 = 8.877e - 005; 

the periodic host attaching rate of immature (larva, nymph)d4 (t) (or d7(t)) is 

given by: 

d ( ) 
_ sign[(t(m365) - 106.9692)(315.0422 - t(m365))] + 1 / ( ) 

4 t - 2 x J5 t ' 

where 



Co = 0.002924, ai = -0.001779, bi = -0.004538, a2 = 0.001854, 

b2 = 0.002125, a3 = -0.001022, b3 = -0.000588, a4 = 0.000431, 

b4 = -0.000036, a5 = -0.000065, b5 = 0.000173, a5 = -0.000079, 

b6 = 0.000043, a1 = -0.000063, b1 = -0.0001740; 

and the periodic host finding rate of adults is given by: 

d10 (t) = { sign[(t(m365) - 74.2957)(t(m365) - 175.3725)· 

(t(rn365) - 254.2905)(356.5154 - t(m365))] + 1}/2 x f 6 (t) 1 

where 
7 2· 2· ~ . iJrt ·mt 

f5(t) =Co+ L..,.(CLi Sill 
365 

+bi COS 
365 

), 
·i=i 

Co= 0.1077, ai = -0.008856, bi = 0.007085, a2 = -0.1382, 

b2 = -0.1115, a3 = -0.006589, b3 = -0.005471, a4 = 0.09107, 

b4 = -0.01059, a5 = 0.006597, b5 = -0.007067, a6 = -0.02838, 

b6 = -0.002206, a7 = 0.001399, b7 = 0.005272. 
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9 Appendix B 

Proof: the continuity of Qt(cp) in (t, cp) E [O, oo) x Cu*(O) with respect to the 

compact open topology and the compactness of Qt[Cu•(o)] in Cu•(o) (Lemma 

4.4.2) 

Firstly, we have to show that T(t) = {7i(t)}l=1 is compact for each t > 0. Let 

VM := { </> E V : 0 ::::; </J(x) ::::; M, x E IR}. It is easy to check 1i(t)VM C VM for 

every t > 0. Since for any </> E VM, x E JR 

Moreover, for any</> E VM, Xi, X2 E JR, we have 

(HY)2 L 
where g(e) =~~le- 4v,, - e- 4vitldy. Clearly, limg(e) = 0. Therefore, 

~JR ~~o 
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{Ti(t)VM }I=1 is an equicontinuous family of functions for every t > 0. It then fol­

lows from the Arzela-Ascoli Theorem and a standard diagonal argument, {Ti(t)VM }l=1 

is precompact with respect to the compact topology for every t > 0. Thus, 

{'.Ii(t)}I=i is compact for every t > 0. So, we have {T(t)}t~o is compact. 

We suppose that each 0 < v < oo and { <pn}r' is a sequence in Cu•(o) with 

<pn--+ <pas n--+ oo. Set 'Un(t) = Qt(<pn) for all t E [O,v]. Since for any <pn E C.u•(o), 

i.e., 0 ::; <pn(x) ::; u*(O), by monotonicity, we have 0 = Qt(O) ::; Qt('Pn) = un(t) ::; 

Qt('u*(O)) = u*(O), this means Un(t) E Cu•(o)· Then there exist Mi, M2 > 0 such 

that llT(s)ll :::; k/i, IG(s, un(s))I :::; M2 for alls E [O, v] and n 2: 1. Now let t E (0, v] 

and f > 0. Choose 8, p > 0 such that p < t, 8 < t - p, (t + 8 - p)A111Vl2 :::; c/4 and 

IT(t)<pn - T(s)'Pnl ::; E/4 whenever n 2: 1 and It - sl ::; 8. In particular, s ::; t + 8. 
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Then if n 2'.: 1 and It - sl ::; o, it follows that 

lun(t) - Un(s)I 

IT(t)ipn + l T(t - r)G(r, u,.(r}}dr - T(s)ipn - l T(s - r)G(r, Un(r}}drl 

= IT(t)<pn -T(s)<pn + 1P T(t - r)G(r, u,.(r}}dr -1P T(s - r}G(r, Un(r}}dr 

+ lt T(t - r)G(r, un(r))dr -18 

T(s - r)G(r, 'Un(r))drl 
p p 

< IT(t}'Pn - T(s)'Pnl + 1P llT(t - r) - T(s - r}llM2dr 

+ l llT(t- r)lllG(r,u,.(r))ldr + [ llT(s - r)lllG(r,un(r)}ldr 

< IT(t)<pn - T(s)'Pnl + ( + M1M2[(t - p) + (s - p)] 

< IT(t)<pn -T(s)ipnl + ( + M1M2[(t + 8 - p) + (t + 0 - p)] 

= 3€/4 + (, 

where ( = Jcf llT(t - r) - T(s - r) llM2dr. Since T(t) is compact for every t > 0, 

from (59, Proposition 7.5.1), the map t ~ T(t) is continuous in the uniform operator 

topology on (0, oo). Then we can also assume that 8 is sufficiently small so that 

llT(t - r) -T(s - r)ll ::; E/(4pM2) for all r E [O, p], and hence (::; 4p~f2 pM2 = E/4. 

Therefore l'un(t) - 'Un(s)I ::; E holds whenever It - sl ::; 8 and n 2'.: l. Then Qt('P) 

is continuous on [O, oo) for each <p E Cu*(O)· 1vioreover, {Un}! is equicontinuous 

on [O, v] and we have from Ascoli-Arzela Theorem that fun : n 2'.: 1} is relatively 

compact in C([O, v], Cu•(o))· H 'lt is any limit point of {'ltn}f, then u(t) satisfies the 
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integral equation ( 4.4.16). This means that u is a solution to ( 4.4.16) on [O, v], 

and hence 'U(t) = Qt('P) for all t E [O,v] by uniqueness of solutions. Since each 

limit point of {'ltn}1 is the map t ~ Qt('P) of [O, v] into Cu•(o), one concludes that 

limn-too Qt('Pn) = Qt('P) uniformly in [O, v]. Therefore, llQt('Pn) - Qt('P)llc ~ 0 as 

n ~ oo for any t E [O, v] and 1.fJn E Cu•(O)· Since v > 0 is arbitrary, we conclude that 

Qt('P) in (t, t.p) E [O, oo) x Cu•(o) is continuous with respect to the compact open 

topology and Qt[Cu•(o)] is precompact in Cu•(o). 
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