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Abstract 

Mitochondrial membranes have a diverse structure composed of numerous 

phospholipids, including cardiolipin (CL). Several processes are required to synthesize· 

and remodel CL. We previously demonstrated that CL content increases with chronic 

muscle use, and decreases with denervation. To investigate the mechanisms underlying 

these effects, we measured the m.RNA expression of CL metabolism enzymes, including 

1) CL synthesis enzymes Cardiolipin synthase (CLS) and CTP:PA-cytidylyltransferase-1 

(CDS-1 ); 2) remodelling enzymes Tafazzin (Taz) and Acyl-CoA:lysocardiolipin 

acyltransferase-1 (ALCATl); and 3) outer membrane CL enzymes, Mitochondrial 

phospholipase D (MitoPLD) and phospholipid scramblase 3 (Plscr3). We found that the 

transcriptional coactivator PGC-la regulates them.RNA levels of CDS-1 and ALCATl, 

thus playing a role in both CL synthesis and remodelling. We found that all three enzyme 

categories were altered by our conditions, but unaffected by age, suggesting that chronic 

muscle use and disuse have divergent influences on the expression of mRNAs encoding 

enzymes involved in CL metabolism. 
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1.1 The Phospholipid Cardiolipin 

1.1.1 Introduction 

Since the time of Singer and Nicholson in the 1960s, the fluid mosaic model of 

membranes has drawn scientists to explore the dynamic world of proteins and 

phospholipids that encapsulate the cell, as well as the organelles within it. The 

phospholipid cardiolipin (CL) was first discovered during World War II by a female 

scientist named Mary Pangborn (100). She initially isolated it from bovine heart tissue, 

hence the name's cardio- prefix. In mammals, CL is present in all mitochondria­

containing tissues, and is most abundantly expressed in the heart. CL is exclusive to both 

the inner (IMM) and outer mitochondrial membranes (OMM) and has often been called 

"the glue that holds the electron transport chain (ETC) together" (120). Since then, the 

phospholipid has been found to play numerous other roles within the cell, including the 

optimization of ETC function and the execution of mitochondrially-mediated apoptosis. 

1.1.2 Structure 

CL is a dimeric molecule held together by a glycerol bridge, and is composed of 

two phosphate heads, four fatty acid (FA) tails and a total of three glycerol groups (66). 

Due to its dimeric structure and mainly unsaturated FA composition, the molecular 

structure of CL takes on a cone-like, rather than cylindrical shape, often seen in 

monomeric phospholipids (Fig. lA and lB). It is therefore non-bilayer forming and helps 

to create the peaks and troughs of mitochondrial cristae (101; 113). It is also important to 
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A B 

Figure 1. Cardiolipin (CL) structure and localization. 
(A) Bilayer forming, monomeric phospholipids, such as phosphatidylcholine and 
phosphatidylserine. (B) Non-bilayer forming, dimeric phospholipid CL. (C) The 
localization of CL and its metabolism enzymes. CL de novo biosynthesis enzymes are 
rectangular, while CL transport and remodelling enzymes are oval. MitoPLD, 
mitochondrial phospholipase D; Plscr3, phospholipid scramblase 3; CDS-I, CTP:PA 
cytidylyltransferase; POPS, phosphatidylglycerol-phosphate synthase; CLS, cardiolipin 
synthase; ALCAT-1, lysocardiolipin acyltransferase; Taz, tafazzin; MLCL AT, 
monolysocardiolipin acetyltransferase; TOM, translocase of the outer mitochondrial 
membrane; MAM, mitochondrial-associated membranes. 
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note that the FA composition of CL varies across different species and tissue types. In 

bacteria and yeast, the CL FA composition varies from 14-18 carbons in length, while 

oxidative tissue cells in mammals almost exclusively express 18-carbon FA, either the 

oleic (18:1) or linoleic (18:2) type (44). A prime example of this trend is found in bovine 

cardiac muscle, where 80% of CL is tetralinoleic (61). The kinks in the unsaturated FAs 

of tetralinoleic CL contribute to its non-bilayer structure (7). This is particularly 

beneficial for tissues that contain mitochondria with condensed cristae, such as muscle, 

which have been shown to have a higher proportion of tetralinoleic CL when compared to 

non-condensed cristae tissues, such as liver (100). It is also important to note that rats· 

exposed to altered FA diets revealed that CL is most ·resistant to FA composition 

alterations, relative to other phospholipids (118). This tightly controlled FA makeup is 

also crucial for allowing CL to bind to membrane-embedded structures, such as those of 

the ETC, which helps maintain their structure, alignment and function (100). CL FA 

alterations have been shown to inhibit CL from enhancing the enzymatic activity of the 

proteins it binds, thus resulting in a detrimental effect on the cell's function (69; 100). 

1.1.3 Function 

To call CL the "glue" of the ETC is only appropriate when it is located in the 

IMM. As we will see, the role that this phospholipid plays in the cell is highly dependent 

on its location within it. 
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1.1.3 .1 Electron Transport Chain Stabilization 

In the IMM, CL ionically.binds to, and stabilizes complexes that make up the ETC, 

including cytochrome c and complexes I, III, IV and V (22). Not only does CL help keep 

the ETC components aligned fo ensure proper electron transfer, it also aids in the stability 

of dimetjc secondary structures found often in the ETC (94; 120). The fourth complex of 

the ETC is called cytochrome c oxidase (COX), and it binds four CL molecules. COX 

and CL s~em to have a symbiotic relationship; CL increases the enzymatic activity of 

COX, while COX stabilizes CL's orientation within the membrane (32; 94). CL does not 

exclusively bind to enzymes present in the ETC. For example, it binds to· the adenine 

nucleotide translocator (ANT), the dimeric structure of which binds six CL molecules so 

tightly that only denaturing conditions can pry them apart, which results in the complete 

loss of ANT function (10). Despite the fact that the CL molecules bound to these 

structures are tetralinoleic, it was shown that nei~er the hydrogenation of the double 

bonds, nor the removal of one FA by phospholipase Az, is able to dissociate CL from 

ANT, although a reduction in the enzymatic activity of ANT was observed (11). 

1.1.3 .2 Role in Apoptosis 

The location of multiple phospholipids has been found to be crucial for apoptotic 

signalling within the cell (34; 72). For instance, phosphatidylserine (PS) is found within 

the plasma membrane, and is transported from the inner to the outer surface of the 

membrane during apoptosis. Macrophages are then able to· recognize the externalized PS, 

5 



1' 

leading to the consumption of that apoptotic cell via phagocytosis (34 ). Within the 

mitochondria, CL is transferred from the IMM to the OMM to act as a binding site for 

truncated B-cell lymphoma 2 interacting domain (tBid), a proapoptotic protein (81 ). This 

interaction allows tBid to localize to the mitochondria and release cytochrome c to induce 

mitochondrially-mediated apoptosis (22; 37; 81). More specifically, tBid activates the 

proteins Bax and Bak to form channels on the OMM, through which cytochrome c can be 

released (81 ). CL on the IMM also takes part in this process, as CL-cytochrome c bonds 

must first be broken to release cytochrome c into the intermembrane space (23 ). This 

dissociation occurs via the remodelling of CL' s F As. During apoptotic conditions, oleic 

and linoleic FAs are replaced by longer, more unsaturated F As (69). This FA composition 

not only inhibits CL-protein interaction directly, but makes CL more susceptible to 

damage by reactive oxygen species (ROS), in a process called peroxidation which 

contributes further to CL-protein dissociation (23; 59; 84). It is therefore not surprising 

that CL is the only phospholipid that experiences early peroxidation during apoptosis (59). 

1.1.4 Localization 

1.1.4.1 Inner and Outer Mitochondrial Membranes 

While CL is found only in mitochondria, its distribution within the organelle is 

tightly regulated (Fig. 1 C). Originally thought to be exclusive to the IMM, CL has been 

found to cluster at the mitochondrial contact point regions, where the IMM and OMMs 

meet, as well as in the OMM itself (7; 60). In studies that split the two membranes, --90% 

of CL was found in the IM~, with the remaining --10% residing in the OMM (39). 
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1.1 A.2 Phospholipid scramblase 3 

The protein family of scrambl~es is responsible for the bidirectional transport of 

phospholipids (29). An important member of this protein family, phospholipid scramblase 

3 (Plscr3), is embedded within the mitochondrial contact sites and acts to transfer CL 

between the IMM and OMMs (41; 72). Plscr3 is ATP-independent and is activated both 

by phosphorylation via Protein Kinase C-o as well as the binding of calcium (72; 73). As 

discussed above, the transport of CL to the OMM is an integral part of mitochondrially­

mediated apoptosis, making the transpot;ter Plscr3 central to this process ( 41 ). While if is 

known Plscr3 transfers CL in a bidirectional manner, what factors influence the direction 

of the enzyme's function have been disputed. This d~bate was brought about when the 

overexpression of Plscr3 led to increased levels of OMM CL, along with an increased 

apoptotic susceptibility, while Plscr3 knockdown led to decreased OMM CL and reduced 

apoptotic susceptibility (73; 114 ). Which conditions determine the direction of Plscr3 's 

transport of CL remains to be determined. It is also noteworthy that the overexpression of 

Plscr3 led to decreased mitochondrial respiration and ATP levels, perhaps due to a drop 

in CL levels in the IMM (73). 

1.1.4.3 Mitochondrial Phospholipase D 

Mitochondrial phospholipase D (MitoPLD) is the sixth member of the 

Phospholipase D family (24 ). It is a dimeric ~nzyme found on the outer surface of the 

OMM that acts on adjacent mitochondria to cleave CL into phosphatidic acid (PA), the 

monomeric form of CL (14; 52). PA on the OMM has been shown to play a role in 
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mitochondrial fission and fusion, either by enhancing fusion via the stabilization of 

mitofusin-2 (Mfn-2, an OMM fusion protein), or by being converted to diacylglycerol 

(DAG) by the phosphatase Lipinl, which promotes fission (18; 24; 52). Thus, MitoPLD 

and Lipinl have opposing effects on mitochondrial dynamics, and both work through 

phospholipid messengers (52). MitoPLD's influence on mitochondrial dynamics was first 

discovered when its overexpression was shown to lead to aggregated mitochondria, while 

MitoPLD knockdown cells experienced mitochondrial fragmentation. It is important to 

note that Mfn-2 is necessary to anchor two mitochondria together, only then can 

MitoPLD exert its effects (24). 

1.1.5 Synthesis 

Mitochondria contain a mosaic of different phospholipids. Phosphatidylcholine' 

(PC) and phosphatidylethanolamine (PE) are the most abundant. They make up 40% and 

30% of the organelle's total phospholipid content, respectively (26). The endoplasmic 

reticulum (ER, or sarcoplasmic in muscle, SR) is responsible for the production of these 

two major phospholipids, along with PA (33). The synthesis of CL, however, occurs in 

the mitochondria and begins like all phospholipid production; through the Kennedy 

pathway ( 62). The mitochondria' s source of PA comes from two pools: from the ER and 

from direct production on the OMM ( 42). The transfer of phospholipids from the ER to 

the mitochondria is facilitated by structures called mitochondrial-associated membranes, 

or MAMs (mitochondrial-associated membranes; Fig.1 C). Once PA is available, all of the 

downstream enzymes necessary for its conversion into CL are found in the IMM (35; 50). 
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1.1.5 .1 CDS-1, The Rate Limiting Enzyme 

~e use of pulse-chase analyses in isolated rat hearts has led to the discovery that 

CTP:PA cytidylyltransferase (CDS) is the rate-limiting enzyme of de novo CL 

biosynthesis (39). It is responsible for facilitating a reaction that converts PA into 

cytidine 5'-diphosphate 1,2-diacyl-sn-glycerol (CDP-DG) (100). The mRNA levels ·of this 

gene are most abundant in mammalian testes, with relatively low levels in cardiac and 

skeletal muscle (53; 82). CDS is found on both the matrix side of the IMM, where it 

contributes to CL production, as well as on the cytoplasmic side of the ER, where it helps 

produces phosphatidylinositol. There are two known genes that encode CDS in mammals, 

CDS-1 and CDS-2, but it is important to note that only the mRNA levels of the former 

match the enzymatic activity of CDS in isolated mitochondrial fractions (53; 82; 96). 

CDS-1 is therefore thought to play a larger role in the production of CL within the 

mito,chondria, relative to CDS-2 (96). 

1.1.5.2 Cardiolipin Synthase, The Final Synthesis Enzyme 

The terminal step in the CL de novo biosynthesis pathway involves the fusion of 

phosphatidylglycerol (PG) and CDP-DG, and is executed by the matrix protein 

cardiolipin synthase (CLS). CLS is located on the inner leaflet of the IMM and its mRNA 

expression in mammals is most abundant in heart and skeletal muscle (20; 79; 98). It has 

been shown that the FA composition of the CL precursors PG and CDP-DG are different 

from those of functional CL molecules (95). This is because CLS has been shown to lack 

specificity for the FA chains attached to its phospholipid substrates ( 49). Thus, it was 
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later discovered that CL FA remodelling follows the production of CL. This dynamic 

pro~ess will be discussed later in more detail. The enzymatic activity of CLS has been 

shown to be upregulated by thyroid hormone, as well as the presence of the CL molecule 

itself (17; 99). It was f~und that the mRNA expression of CLS does not correlate with its 

enzymatic activity in models of inflammation (80). In striated muscle, however, a 

correlation was found between CLS mRNA and enzymatic activity (96). It is. also 

noteworthy that increases in CLS activity were shown to upregulate CL content in 

bacteria (43). 

1.1.6 Cardiolipin Remodelling 

Since PG and CDP-DG, the precursors of CL, have different FA compositions 

than CL, post-synthesis remodelling of CL must occur (Fig.2). Like many phospholipids, 

CL undergoes processes that are part of the Lands' Cycle, a pathway that specifically 

remodels FA structures on phospholipids (65; 95). A single FA is initially removed from 

CL to produce monolyso-CL (MLCL), via phospholipase A2 (14). FAs of desired 

confirmation are then attached to the MLCL molecule, and this is repeated for all four 

F As until optimal FA configuration i.s achieved (100). As previously stated, CL FA 

composition is species- and tissue-specific, and mammalian cardiac tissue predominantly 

expresses tetralinoleic CL, which is optimal for protein-CL binding (63). In mammalian 

neurons, however, over 100 different CL species exist, perhaps due to less dependence on 

aerobic respiration in neuronal cells relative to striated muscle (21 ). The FA composition 

of CL, and thus its remodelling mechanisms, are crucial determinants of whether CL will 

be able to bind to, and improve the activities of, the enzymes to which it is bound (11). 
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CLdel&OVO 
biosynthesis ., ... 

CL remodelling 

Figure 2. The cardiolipin (CL) metabolism pathway. 

MitoPLD 

MitoPLD, mitochondrial phospholipase D; PA, phosphatidic acid; CDS-112, CTP:PA 
cytidylyltransferase; CDP-DG, cytidine 5'-diphosphate 1,2-diacyl-sn-glycerol; PGPS, 
phosphatidylglycerol-phosphate synthase; PGP, phosphatidylglycerol phosphate; PGPP, 
phosphatidylglycerol-phosphate phqsphatase; PG, phosphatidylglycerol; CLS, cardiolipin 
synthase; ALCAT-1, lysocardiolipin acyltransferase; MLCL, monolysocardiolipin; Taz, 
tafazzin; MLCL AT, monolysocardiolipin acetyltransferase 
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1.1.6.1 Fatty Acid Peroxidation 

The FA composition of CL tends to be unsaturated, which leaves its double bonds 

vulnerable to damage by ROS via peroxidation_ (88). CL is at an elevated risk of this 

damage due to its proximity to the ETC, a major producer of ROS (39). Is has been 

shown that mitochondrially-mediated production of ROS significantly decreases the 

enzymatic activities of complexes I, III and IV of the ETC via the peroxidation of CL 

(86-88). The peroxidation process becomes more likely, and more damaging, as the 

number of double bonds within the F As increase. Docosahexaenoic acid (DHA) is a ·22 

carbon loi;ig FA with six double bonds, and is a prime example of a highly peroxidation-

sensitive FA that binds to CL. Thus, numerous remodelling enzymes exist to ensure that 

-. 
the CL FA configuration allows optimal enzyme binding as well as maximal peroxidation 

resistance. Two examples are tafazzin (Taz) and acyl-CoA:lysocardiolipin 

acyltransferase-1 (ALCATl ). 

· 1.1.6.2 Tafazzin (Taz) 

Taz was first identified by an Italian group Bione et al. in 1996 (12). In light of 

their struggle to discover this protein, the group decided to name it after a masochistic, 

yet lovable, television character called Tafazzi. Taz is perhaps the most studied CL 

remodelling enzyme in humans, likely because its absence is known to cause Barth 

Syndrome, an x-linked human disease that is characterized by several myopathies (l; 9; 

12). At the molecular level, Taz is located in the intermembrane space and acts as a 

unique CL remodeler (13). Taz preferentially transfers linoleic FAs onto MLCL in a 
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CoA-independent manner. That is, it relies on other phospholipids (mainly PC) as FA 

donors/acceptors, which allow it to create the optimally functioning tetralinoleic CL (119). 

Taz-deficient neonatal ventricular myocytes have been shown to express decreased levels 

of CL, as well as lower ATP production ( 40). Taz KO mice have been generated and 

found to express increased levels of MLCL among a reduced CL pool, the remainder of 

which completely lacked tetralinoleic CL and had a higher degree of saturation (1; 51; 

106). In addition, these mice mimicked Barth Syndrome patients by exhibiting muscle 

weakness and cardiomyopathy (9; 106) 

1.1.6.3 Acyl-CoA:lysocardiolipin acyltransferase-1 (ALCATl) 

ALCATl is responsible for the acyl-CoA-dependent acetylation of MLCL and 

does not interact with other PLs such as lyso-PC, -PE or -PS (16). The expression of 

ALCATl is most abundant in heart and liver, where it is localized within the ER, MAMs, 

as well as the mitochondria (16; 69). This localization suggests that ALCATl acts on CL 

residing on the outer surface of the OMM. Unlike Taz, ALCATl lacks exclusivity to 

linoleic FA donor molecules (16). Alas, it is able to replace CL FAs with DHA, which is 

highly susceptible to peroxidation, and is found to be increasingly bound to CL in 

pathological conditions (69). DHA CL has been shown to significantly increase during 

pathological conditions such as heart failure in both humans and rats (96). 

Overexpression of ALCA Tl has been shown to increase the Jevels of DHA CL and 

reduce mitochondrial function, exhibited by increased ROS production, proton leakage 

and reduced mitochondrial DNA content and Complex I activity (69). The lack of 
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ALCATI has been shown to be beneficial for mitochondrial function, which was 

demonstrated by the use of ALCATI KO mice. These mice exhibited significantly more 

tetralinoleic-CL and -PG, CL's immediate biosynthetic precursor (58; 69). Accordingly, 

higher Complex I activity and reduced lipid _peroxidation were observed (69). These 

results, which point to ALCATI as a "bad" regulator of CL, are further corroborated by 

the ability of ALCATI to downregulate a monolysocardiolipin acyltransferase (MLCL 

AT), a "good" CL remodeler that adds only linoleic FA to MLCL (69; 110). ALCATI 

has also been found to be upregulated by ROS, a discovery that is helping elucidate the 

link between ROS production and mitochondrial dysfunction (69). 

I. I. 7 Current Research Trends in Cardiolipin 

Researchers have generated a Chinese Hamster Ovary cell line that has impaired 

PGP synthase activity, which leads to significantly decreased levels of CL. As a result of 

this intervention, mitochondrial swelling, cristae disruption, reduced ATP levels and 

lower oxygen consumption occurred (85). Complete CL ablation, however, has only been 

successful in organisms that can survive via anaerobic pathways, such as yeast. Yeast 

strains with a CLS (CrdI it?- yeast) null allele completely lack CL, while PGP synthase 

(PgsI in yeast) null allele cells lack both CL and PG. Crdt"-null yeast exhibited defective 

growth, impaired mitochondrial membrane potential as well as reduced ETC activity and 

protein import (19; 57; 111). The import of nuclear-encoded proteins into the 

mitochondria requires translocases of the IMM (TIM) and OMM {TOM) (I 02). The loss 

of mitochondrial import in CL-deficient cells has previously been attributed to. altered 
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membrane potential across the IMM. More recently, however, reduced assembly and 

function _of the TIM and TOM complexes have been observed under CL-deficient 

conditions, hinting that CL may directly influence the integrity of the mitochondrial 

protein import machinery (64; 109). The production of these cell lines has allowed 

researchers to explore the effects of CL deficiency, and continues to contribute to the 

growing body of knowledge on this unique phospholipid. 

1.2 Mitochondrial Biogenesis 

The plasticity of skeletal muscle is demonstrated by its ability to adapt to 

conditions of increased metabolic demand, such as exercise. One way that muscle adapts 

to such stimuli is through mitochondrial biogenesis, or the formation of new mitochondria. 

This process of organelle biosynthesis requires the coordination of nuclear, cytosolic and 

mitochondrial functions ( 47). There are multiple models used in laboratories that induce 

mitochondrial biogenesis, including treadmill running, overexpression of biogenesis­

inducing factors, the use of hormones such as thyroid hormone, as well as the activation 

of AMP-activated protein kinase (AMPK). It is important to note that there are two 

subpopulations of mitochondria, both of which adapt to exercise. These are the 

subsarcolemmal (SS) mitochondria, which are located underneath the muscle's 

sarcolemma, and the intermyofibrillar (IMF) mitochondria, which are nestled between the 

myofibrils (25). While 80% of the mitochondrial population is made up of the IMF 

subfraction, the SS population has been shown to adapt more readily to stimuli such as 

exercise and states of disease (27; 93). 
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1.2.1 Signalling pathways overview 

Contractile activity in skeletal muscle leads to mitochondrial biogenesis through a 

senes of molecular pathways. One major pathway involved in this process is 

implemented by intracellular calcium. During muscle contraction, calcium is released 

from the SR and leads to the increased expression of calcium.-induced genes, such as 

calcium/calmodulin-dependent protein kinases. Another signalling molecule that is 

activated by exercise is AMPK. Contractile activity in skeletal muscle reduces the ratio of 

ATP:ADP, and increases the levels of AMP, which allosterically activates AMPK (54). 

AMPK then translocates into the myonuclei and upregulates the gene expression of 

proteins involved in mitochondrial biogenesis (56). A third signalling molecule involved 

in this process is ROS, described below. 

1.2.1.1 ROS 

Mitochondria are the major producers of ROS in the cell, but ROS can also come 

from non-mitochondrial sources, such as the flavoprotein oxireductase system, located on 

the plasma membrane (89). Mitochondrially-produced ROS is generated when an electron 

is prematurely donated to an oxygen molecule at the ETC. In skeletal muscle, glycolytic 

muscle fibres have more ROS, relative to their oxidative counterparts and this, in part, is. 

due to the lower expression of ROS scavengers in glycolytic muscles (6). Within these 

different fibres types, the. SS mitochondrial subfraction has been shown to produce more 

ROS than the IMF fraction (3). Interestingly, ROS molecules were once considered to be 

solely detrimental, causing damage to mitochondrial DNA and resulting in the 
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peroxidation of phospholipids such as CL (30; 78). However, moderate levels of ROS, 

which are produced during exercise, have been shown to have adaptive effects (36; 92). 

This moderate level of ROS production increases mitochondrial DNA copy number, 

mitochondrial mass and produces elongation of the mitochondrial reticulum ( 46; 90). In 

an effort to elucidate the mechanisms behind these findings, ROS has also been shown to 

increase peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-la) 

promoter activity as well as the expression of PGC-1 a and nuclear respiratory factor- I 

(NRF-1) (55; 107). 

1.2.2 Transcriptional Coactivator PGC-1 a 

PGC-1 a has often been called the master regulator of mitochondrial biogenesis. 

The protein expression of PGC-1 a was shown to increase with exercise training, as well 

as with acute exercise followed by recovery, while it decreased with muscle disuse (4; 8; 

54 ). At the molecular level, PGC-1 a is a transcriptional coactivator that binds to nuclear 

transcription factors and influences their interaction with DNA. 

1.2.2.1 PGC-1 a Overexpression 

Muscle-specific overexpression of PGC-1 a of an in vivo murine model exhibits 

increased mitochondrial content and improved endurance performance (15). The muscles 

of these mice also display a switch from glycolytic to more oxidative fibre types and are 

protected _against denervation-induced atrophy (97). This latter effect is likely due to the 

inhibitory action of PGC-la on Fox03, a protein involved in muscle atrophy (70; 97). 
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1.2.2.2 PGC-1 a Knockout Mice 

The generation of whole-body PGC-1 a knockout mice has helped elucidate the 

effects of this coactiv~tor in an intact physiological setting (71; 112). These mutant mice 

experience decreased endurance performance and reduced fatigue resistance (38; 68). A 

decrease in mitochondrial content and respiration was also observed, while the respiration 

deficit was able to be rescued with training ( 5). Some exercise physiologists might argue 

that one of the most intriguing characteristics discovered in the PGC-1 a knockout animals 

is their ability to adapt to exercise training (67; 112). It has been suggested that a 

compensatory mechanism performed by closely related coactivators, such as PGC-1 ~' 

may be at work tp induce this effect. 

1.3 Chronic Muscle Use 

Since the 1960s, it has been known that exercise is able to elicit mitochondrial 

adaptations in skeletal muscle ( 45). Each bout of contractile activity leads to the 

transcriptional activation of both nuclear- and mitochondrially-encoded genes ( 4 7). This 

exercise stimulus leads to the expansion of the mitochondrial network and to the 

alteration of mitochondrial composition ( 46). There are multiple rodent models used in 

research that simulate exercise, including treadmill and voluntary wheel running and 

chronic contractile activity (CCA). 
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1.3 .1 Endurance Exercise Training 

Endurance exercise with progressively increasing intensity has been found to 

result in mitochondrial biogenesis within 6-8 weeks of training (2; 47; 48). In rodent 

models, exercise can be administered via voluntary wheel running. This method allows 

animals to run at their own accord, which means that the exercise duration, frequency the 

running speed are all intrinsically determined. What is also under independent control is 

the time of day during which the exercise occurs. This is of particular importance due to 

the nocturnal activity patterns of rodents. Due to this intrinsic regulation, voluntary wheel 

running has been proven to elicit less of a stress response when compared to other 

approaches (31; 103 ). Two disadvantages of this method include the fact that it results in 

a lower exercise intensity, and it cannot control for variable exercise performances across 

animals. 

Another common method of exercise involves motorized treadmills, which are 

known to be of greater intensity when compared to wheel running. The treadmill exposes 

rodents to a forced running protocol in which the time of day, frequency, duration and 

progressively increasing intensity of exercise are all predetermined by the researcher ( 45). 

The use of air or electrical shocks is often administered to keep animals on track, which 

has been shown to further increase the stress response (83). A week-long conditioning 

period is usually used to help animals become accustomed to the treadmills, in an effort to 

reduce stress levels. Despite this effort, the use of treadmills elicits a greater stress 

response than the voluntary wheel running approach, one marker of which is increased 
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adrenal weight (83; 103). The advantage of this technique is that greater adaptations to 

exercise are observed than with the voluntary running wheel approaches. 

1.3 .2 Chronic Contractile Activity 

CCA is a method used to simulate the repeated contractions performed by skeletal 

muscle during endurance exercise. This protocol can be used with an animal model, as 

well as in cell culture (28; 108). In vivo, two electrodes are implanted on either side of a 

nerve, such as the common peroneal nerve, and electrical impulses are sent across the 

nerve, causing the innervated muscles to contract. In this case, the contracting muscles 

would be the tibialis anterior (TA) and the extensor digitorum longs (EDL). CCA is of 

particular benefit because it allows for a comparison to be made between an exercised and 

non-exercised muscle within the same animal, thus accounting for individual variability 

(108). Low-frequency stimulation has been shown to induce a training effect within just 

one week, thus it is also more time-efficient relative to treadmill and voluntary wheel 

running. CL content has also been shown to increase following just five days of CCA 

(108). A disadvantage of this protocol is the surgical invasiveness invol~ed with the 

implantation of the stimulator (108). Jn vitro, the same concept is applied in a cell culture 

model using skeletal muscle. cells (28; 112). A platinum wire electrode is placed on either 

side of the cell dish and is attached to a stimulator which causes the cells to contract (116). 

While this protocol induces similar increases in mitochondrial content compared to the in 

vivo model, it is somewhat disadvantageous because these isolated cells cannot 

experience the whole-body effects that a contracting muscle within an intact organism 

would (108; 112). 
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1.4 Chronic Muscle Disuse 

The effects of chronic muscle disuse are detrimental to the structure and function 

of skeletal muscle. The numerous models used in research that simulate muscle disuse 

include physical inactivity, bed rest, casting, exposure to microgravity, hindlimb 

suspension in rodents, as well as denervation and aging which are discussed in greater 

detail below. 

1.4.1 Denervation 

A denervation protocol involves the removal of a portion of a motor neuron, such 

as the common peroneal nerve, followed by subsequent analysis of the muscles it once 

innervated, again the TA and EDL in this case (117). Denervation is known to elicit a 

condition called sarcopenia, which is characterized by muscle fatigability and atrophy, or 

muscle fibre loss ( 4 ). This process occurs through an upregulation of apoptosis, an 

increase in protein degradation, and a decrease in the synthesis of newly formed proteins 

(91 ). Three days following common peroneal nerve denervation proved to be sufficient in 

reducing TA muscle mass, mitochondrial content, protein import and respiration levels in 

both SS and IMF subfractions ( 4; 104; 117). Following seven days of denervation, ROS 

production was significantly elevated, while CL levels were shown to decrease within 

five (104; 117). 
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1.4.2 Aging 

The skeletal muscle of aged mammals exhibits a decreased ability to develop 

force as well as a reduced muscle mass. Aged muscle is also more susceptible to the 

development of sarcopenia and has been shown to be less able to adapt to exercise­

induced changes, relative to their young counterparts (75). This decreased level of 

plasticity, however, has been debated. One group found that chronic, low-frequency CCA 

in rat skeletal muscle elicited the same mitochondrial adaptations in young and aged 

animals (105). On the other hand, different groups of research~rs have found that chronic 

exercise elicited increased muscle plasticity and fatigue resistance in young, but not aged 

skeletal muscle (75; 115). It was also found that the activation of exercise-induced 

kinases was attenuated in aged skeletal muscle and that endurance performance was 

significantly greater in the young, compared to the old (74; 75). These conflicting 

findings may be due to different protocol parameters, including rodent age, intensity of 

exercise and muscle fibres used for analyses (76). Regardless of these discrepancies, 

rodent models over the age of 26 months have consistently demonstrated attenuated 

exercise-induced muscle adaptations (74-77; 90; 115). This decreased adaptability of 

aged skeletal muscle suggests that a larger contractile stimulus is required to elicit the 

same adaptations (75; 76). 
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Abstract 

Cardiolipin (CL) is a phospholipid that maintains the integrity of mitochondrial 

membranes. We previously demonstrated that CL content increases with chronic muscle 

use, and decreases with denervation-induced disuse. To investigate the underlying 

mechffi1:isms, we measured the mRNA expression of 1) CL synthesis enzymes cardiolipin 

synthase (CLS) and CTP:PA-cytidylyltransferase-1 (CDS-1 ), 2) remodelling enzymes 

tafazzin (Taz) and acyl-CoA:lysocardiolipin acyltransferase-1 (ALCATl ), and 3) outer 

membrane CL enzymes, mitochondrial phospholipase D (MitoPLD) and phospholipid 

scramblase 3 (Plscr3), during chronic contractile activity (CCA)-induced mitochondrial 

biogenesis and denervation. With CCA, CDS-1 expression increased by 128%, 

parelleling CL levels. Surprisingly, denervation also led to large increases in CDS-1 and 

CLS, despite a decrease in mitochondria, possibly due to a compensatory mechanism to 

restore lost CL. ALCATl decreased by 32% with CCA, but increased by 290% following 

denervation, indicating that both CCA and denervation alter CL remodelling. CCA and 

denervation also elicited 60-90% increases in Plscr3, likely to facilitate CL movement to 

the outer membrane. The expression of these genes was not affected by aging, but 

changes due to CCA and denervation were attenuated compared to young animals. The 

absence of PGC-1 a in knockout animals led to a decrease in CDS-1 and an increase in 

ALCATl mRNA levels, implicating PGC-1 a in regulating both CL synthesis and 

remodelling. These data suggest that chronic muscle use and disuse modify the 

expression of mRNAs encoding CL metabolism enzymes. Our data also illustrate, for the 

first time, that PGC-1 a regulates the CL metabolism pathway in muscle. 
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Introduction 

The membranes of mitochondria have a diverse structure consisting of many 

molecules including cholesterol, proteins and phospholipids. The most abundant 

structures are the phospholipids, which further contribute to the diversity of membranes 

through their varied forms. Cardiolipin (CL) is a phospholipid exclusive to the 

mitochondria, with 90% of it localizing in the inner mitochondrial membrane (IMM), 

with the remaining 10% on the outer mitochondrial membrane (OMM) (13). CL exists as 

a dimer and .is composed of four fatty acid (FA) chains which must be dynamically 

transferred and remodelled to ensure proper membrane configuration (18). The majority 

of these FA molecules are unsaturated, making them highly susceptible to peroxidation 

via reactive oxygen species (ROS). CL also binds to components of the electron transport 

chain (ETC), a major producer of ROS, and is therefore at even greater risk of 

peroxidation (19). When CL is peroxidized, proton leak is increased across the IMM, thus 

inhibiting energy production and leading to pathology (14). 

A complex molecular pathway is involved in synthesizing and ensuring proper CL 

structure. Cardiolipin synthase (CLS) is a key enzyme involved in the de novo 

biosynthesis of immature CL, which occurs on the inner leaflet of the IMM (6). Another 

crucial enzyme involved in this pathway is CTP:PA cytidylyltransferase (CDS-I), the rate 
;-" 

limiting step of this biosynthesis process (13). In order to function optimally, immature 

CL must have its F As remodelled into a mature form. Two key enzymes involved in this 

are tafazzin (Ta2) and acyl-CoA:lysocardiolipin acyltransferase-1 (ALCATl ). Taz 

remodels the FAs of CL to create a mature CL molecule (4), while ALCATI converts the 
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FAs back to the immature form (14). CL can also be transferred between the IMM and 

OMM by the membrane-embedded enzyme phospholipid scramblase-3 (Plscr3) (21 ). This 

is critical, as the location of CL has been found to influence its cellular role (12). IMM 

CL that is bound to the ETC complexes helps to stabilize and align them to ensure proper 

electron transfer (7), while CL that is located on the OMM aids in the assembly of import 

_machinery, and acts as a binding site for tBid, which triggers apoptosis (11; 12). OMM 

Ct is also at risk of being cleaved and converted to phosphatidic acid (PA) by 

mitochondrial phospholipase D (MitoPLD), which acts only on adjacent mitochondria 

(8). MitoPLD, therefore, is of particular importance, as it has the ability to mediate the 

amount of CL that resides on the OMM. 

The synthesis and remodelling of CL is crucial for the integrity of the 

mitochondrial membrane and overall functioning of the organelle. We have previously 

shown that chronic contractile activity (CCA), a_ form of muscle use, elicits a significant 

increase in CL content (20). In contrast, denervation, a form of muscle disuse, 

significantly decreases CL concentration within muscle (22). The mechanisms underlying 

these changes have yet to be examined. Thus, the purpose of this study is to examine the 

adaptations of the enzymes of the CL metabolism pathway during changes in 

mitochondrial biogenesis. We set out to analyze the expression of the six aforementioned 

enzymes in response to conditions of chronic muscle use and disuse, and the effect of 

aging. Further, since many mitochondrial proteins are regulated by the transcriptional 

coactivator PGC-1 a, we also evaluated the role of this protein in the regulation of CL 

metabolism enzymes. We hypothesized that the gene expressions of the enzymes 
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involved in CL biosynthesis and remodelling would increase with CCA and decrease with 

denervation and PCG-1 a knockout conditions. We also predicted that the expression of 

enzymes that reduce CL content or function would be downregulated with CCA and 

increased with denervation and PCG-1 a knockdown. The combined effects of these 

changes would result in increased CL content with CCA, and decreased content in 

denervated and PCG-1 a knockout rodents. This could contribute to the expansion and 

degradation of mitochondrial membranes as alterations in mitochondrial content occur. 
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Methods 

Animals. Male Sprague-Dawley (SD; Charles River, St. Constant, QC, Canada) 

rats were purchased at six-months of age. Male Fischer 344 X Brown Norway 

(F344XBN; National Institute on Aging, Bethesda, MD, USA) Fl hybrid rats were 

divided into one of two groups depending on age: six-months (young) or 33-months old 

(aged). One set of young and aged rats were designated for our CCA protocol (n=lO for 

both young and, aged), while a separate set was used for denervation (n=8 for both young 

and aged). The generation of PGC-1 a knockout mice used were as was previously 

described (15), and are bred in our facility. Offspring were genotyped by crude DNA 

extraction from ear clippi:rigs. DNA was combined with DNA Taq polymerase (Jumpstart 

REDtaq Ready Mix PCR Reaction Mix, Sigma, Oakville, ON, Canada) and primers 

specific for wildtype or knockout genes, and were detected using traditional PCR 

methods. Mice were used at 10 months of age. All animals were housed individually 

under a 12-12h light-dark cycle in a temperature controlled room (20-21°C) and were 

given food and water ad libitum. Animal usage in this study followed protocols that were 

approved by the York University Animal Care Committee, in accordance with the , 

Canadian Council on Animal Care. 

In vivo stimulation protocol. Portable stimulation devices were unilaterally 

implanted into the animals as previously described (20). In brief, rats were anesthetized 

with a ketamine-xylazine cocktail (0.2 mL/100 g body weight). Electrodes (Medwire, 

Leico Industries, New York, NY, USA) located unilaterally at either side of the common 

peroneal nerve caused palpable contractions in the tibialis anterior (TA) and extensor 
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digitorum longus (EDL) muscles. All implantations were followed by a week-long 

recovery period, upon which stimulation began. The CCA protocol lasted for 3 hours a 

day, for 7 days, with 21 hour recovery periods in between. The stimulation frequency was 

10 Hz. Stimulation units were externalized for the SD rats (20), while the F344XBN rats 

had silicone-encased stimulators inserted into the intraperitoneal cavity, and sutured to the 

musculature of the abdomen (16). All other surgical procedures and stimulation protocols 

were identical between the two rat strains. The rats were then anesthetized and the 

stimulated TA and EDL muscles were removed. The non-stimulated, contralateral 

muscles served as internal controls. Upon_ removal, half of the TA muscles were used 

immediately for mitochondrial isolation. The remaining half of the TA, as well as the 

EDL muscles, were frozen in liquid nitrogen and pulverized into a fine powder for 

subsequent experiments. The animals were sacrificed by removal of the heart. 

· In vivo denervation protocol. Male, 6-month old, SD rats underwent unilateral 

common peroneal denervation as previously described (10). Briefly, rats were 

' 
anesthetized with a ketamine-xylazine mix (0.2 ml/100 g body weight). The common 

pert:meal nerve was exposed ·and a 0.5 cm long segment was removed. Following 7 days, 

both EDL muscles were removed and the non-denervated, contralateral muscles were 

used as internal controls. The tissues were then frozen in liquid nitrogen, and then 

pulverized into a fine powder. 

Cytochrome c oxidase (COX) activity. COX activity was used as a marker of 

mitochondrial biogenesis. Pulverized whole muscle homogenates were prepared and 

sonicated for 10 son ice at a power output of 20-30%. A buffered test solution was also 
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prepared, containing fully reduced horse heart cytochrome c (C-2506, Sigma, Oakville, 

ON, Canada). Using a multipipette, 250 µL oftest solution were added to 20 µL of whole 

muscle homogenate in a 96-well plate. The enzyme activities of the homogenates were 

analyzed by measuring the maximal oxidation rate of cytochrome c. This was done via 

the absorbance change at 550 nm at 30 °C in a Synergy HT (Bio-tek Instruments, 

Winooski, VT, USA) microplate reader. For each sample, the COX activity measurement 

was calculated as an average of three trials. 

In vitro RNA isolation and reverse transcription. Total RNA was isolated from 

frozen, whole muscle EDL powders. Tissue powder (·.,90 mg) was added to 1 mL of 

TRlzol® Reagent (lnvitrogen, Carlsbad, CA, USA) and homogenized for 30 s at a power 

output of 30%. Upon 5 min of incubation at room temperature, 200 µL of chloroform was 

added and tissues were shaken for 15 s. Following another 3 min of room temperature 

incubation, samples were centrifuged at 4°C at 16 000 g for 15 min. Next, the upper 

aqueous phase of the sample was transferred into a new tube along with 500 µL of 

isopropanol, shaken for 15 sand left overnight at -20°C to precipitate. Samples were then 

centrifuged at 4 °C at 16 000 g for 10 min. The resultant supernatant was discarded, and 

the pe.llet was washed with 700 µL of 75% ethanol. Following a centrifugation (10 min, 

4 °C), the supernatant was discarded and the pellet was resuspended in 100 µL of sterile 

water. The concentration and purity of the RNA were measured at 260 nm and 280 nm, 

respectively (Ultrospec 2100 Pro, Biochrom, Cambridge, UK). The quality of the RNA 

was determined by observing the 28S and 18S bands on a 1 % formaldehyde-agarose gel. 

Following the manufacturer's recommendations, SuperScript® III reverse transcriptase 

45 



(Invitrogen, Carlsbad, CA, USA) was used to reverse transcribe 1.5 µg of total RNA into 

cDNA. 

Real-time PCR. Using sequences from GenBank, primers were designed with 

Primer 3 v. 0.4.0 software (Massachusetts Institute of Technology, Cambridge, MA, USA) 

for genes of interest: CDS-1, CLS, Taz, ALCATl, MitoPLD and PlscrJ (Tables 1-2). 

Primer specificity was confirmed by OligoAnalyzer 3.1 (Integrated DNA Technologies, 

Toronto, ON, Canada). mRNA expression was measured with SYBR® Green chemistry 

(PerfeCTa SYBR® Green SuperMix, ROX, Quanta BioSciences, Gaithersburg, MD, 

USA). Each well contained: SYBR® Green SuperMix, forward and reverse primers (20 

µM), sterile water and 10 ng of cDNA. In cases where functioning primers could not be 

designed, 1.25 µL of TaqMan probes was used along with 12.5 µL TaqMan Universal 

Master Mix (4304437, Life Technologies, Carlsbad, CA, USA; Table 1) with 10 ng of 

cDNA and 7 .25 µL of water per well. The detection of all real-time PCR amplification 

took place in a 96-well plate using a StepOnePlus® Real-Time PCR System (Applied 

Biosystems Inc., Foster City, CA, USA). The final reaction volume of each well was 25 

µL. Samples were run in duplicates to ensure accuracy. The PCR program consisted of an 

initial holding stage (95°C for 10 min), followed by 40 amplification cycles (60°C for 1 

min, 95°C for 15 s ), and was completed with a final melting stage (95°C for 15 s, 60°C 

for 1 min, 95°C for 15 s). Nonspecific amplification and primer dimers were controlled 

for by the analysis of melt curves generated by the instrument for SYBR® Green analyses. 

Negative control wells contained water in place of cDNA. 
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Real-time PCR quantification. First, the threshold cycle (CT) number of the 

endogenous reference gene was subtracted from the CT number of the target gene 

(~CT=CT(target)-CT(reference)). Next, the ~CT value of the control tissue was subtracted from 

the ~CT value of the experimental tissue (~~CT=~CT{experimental)-~CT(control)). Results 

were reported as fold-changes using the ~~CT method, calculated as 2-McT_ Different 

endogenous control genes were tested and selected based on the highest p-value 

computed in a t-test comparing control· and experimental muscles. The CT values of 

selected control genes were averaged using RT2 Profiler PCR Array Data Analysis 

software(http://pcrdataanalysis.sabiosciences.com/pcr/arrayanalysis.php, SABiosciences, 

QIAGEN Inc., Toronto, ON, Canada). For CCA, myelocytomatosis oncogene (Myc) and 

ribosomal protein Rps12 were chosen, whiltr primers detecting glyceraldehyde-3-

phosphate dehydrogenase (Gapdh) and P-Actin were used as·endogenous controls for the 

denervated samples. Rps 12 was used as an endogenous control for the aged CCA 

samples, while Rps12 and P-Actin were averag~d for aged denervated samples. For PGC-

1 a mouse tissues, P2-microglobulin, P-Actin and Gapdh were averaged (Table 2). 

Subsarcolemmal (SS) mitochondria isolation. TA muscles were excised and 

tissues were immediately submerged in I 0-20 mL of buffer. The TA muscles were then 

patted dry, cut away from any excess connective tissue or fat, minced and homogenized. 

The mitochondrial SS isolation procedure has been previously described (9). The 

mitochondria were suspended in resuspension medium and were then used in flow 

cytometry. The amount of mitochondrial protein was determined using the Bradford 

protein assay. 

47 



Mitochondrial cardiolipin content. Flow cytometry was used to measure CL 

content in isolated SS mitochondria using a four-Golour F ACSCalibur flow cytometer 

equipped with a 488 nm argon laser (Becton Dickinson, San Jose, CA, USA). 

Mitochondrial CL content was measured using the fluorescent probe 10-N-Nonyl-3,6-

bis(dimethylamino) acridine orange (NAO) as previously described (5). Measurements 

were made on taken from 50 µg of SS mitochondria isolated from rat or mouse TA 

muscles. Data were collected from the forward-scatter and side:.scatter light detectors. 

The flow cytometry data were obtained following a minimum of 20 000 gated events. 

Statistical Analyses. To compare between control vs. stimulated and control vs. 

denervated muscles, paired t-tests were performed, while wildtype vs. knockout muscles 

were compared using unpaired t-tests. A split-plot ANOV A calculation was used to 

analyze results from the CCA and denervated tissues within the aging muscles, followed 

by a Bonferroni post hoc test. To analyze the relative expression of the different 

transcripts, a one-way ANOV A was performed with a Bonferroni post hoc test. All 

statistical analyses were performed using GraphPad Prism 4.0 software. The critical p­

value was set atp<0.05. All error bars represent the standard error of the mean. 
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Table 1. List of enzyme names, abbreviations and functions. 
Enzyme Name Abbreviation Function 
CTP:P A cytidylyltransferase CDS-1 Rate-limiting step of CL de novo biosynthesis 
Cardiolipin synthase CLS Final enzyme in CL de novo ~iosynthesis 
Tafazzin Taz Remodels CL fatty acid to m~ture form 
Acyl-CoA:lysocardiol~pin ALCATI Remodels CL fatty acid to immature form 
acyltransferase-1 
Mitochondrial phospholipase D MitoPLD Cleaves CL present on outer membrane to 

phosphatidic acid 
Phospholipid scramblase-3 Plscr3 Transfers CL to the outer membrane 
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Table 2. List of primer sequences and probes used in qPCR analyses. Alternative names 
use d. h' . . th m t is paper are wntten m paren eses. 

Gene, Type Accession Forward Primer Reverse Primer 
Size (bp) Number 
CDS-1 Rat NM_ Applied Biosystems TaqMan Probe Assay JD Rn00579942_ml 

031242.2 

Lclatl Rat XM_ Applied Biosystems TaqMan Probe Assay ID Rn01468447 _ml 
(ALCATI) 343020.4 

Rpsl2 Rat NM_ Applied Biosystems TaqMan Probe Assay ID Rn01789993_ul 
031709.3 

Myc Rat NM_ Applied Biosystems Ta~Man Probe Assay ID Rp0056~507_ml 
012603.2 

Gapdh Rat NM_ Applied Biosystems TaqMan Probe Assay JD RnOJ 775763_gl 
017008.13 

P-Actin Rat NM_ Applied Biosystems TaqMan Probe Assay JD Rn00667869 _ml 
031144.2 

Crist Rat NM_ 5'-AAT GIT GAT CGC TGC TGT GIT T-3' 5'-ITA GCT AGT GIT CGC GGT GTT G-3' 
(CLS), 66 00!014258.1 

Taz, Rat NM_ 5'-CGG CTG AIT GCT GAG TGT CA-3' 5'-TCA ITCAITCCAACA TGCCAT AG-3' 
63 00!025748.l 

Pld6 Rat XM_ 5'-TCA TCA CGG ACT GCG ACT A-3' 5'-GGC AAA CTT ATG GTG CAT GT-3' 
(MitoPLD) 220517.3 
116 

Plscr3, Rat NM_ 5'-GCA CCA AAG ATG GCA GAT A-3' 5'-TAA TAG CTG TAG GGT TGG GAC C-3' 
120 00!012139.2 

Myc, Rat NM 5'-GCT CTG CTC TCC GTC CTA TGT-3' 5'-ATG ACC GAG CTA CIT GGA GG-3' 
123 0126o3.2 

Rps12, Rat NM_ 5'-ATG GAC GTC AAC ACT GCT CT-3' 5'-ATC TCTGCG TGC ITG CAT-3' 
127 031709.3 

Gapdh, Rat NM_ 5'-CTC TCT GCT CCT CCC TGT TCT A-3' 5'-GGT AAC CAGGCG TCC GAT AC-3' 
122 017008.3 

P-Actin, Rat NM_ 5' -CCC CAT TGA ACA CGG CAT T-3' 5'-GCC AAC CGT GAA AAG ATG ACC-3' 
154 031144.2 

CDS-I Mouse NM_ Applied Biosystems TaqMan Probe Assay ID Mm01208328_ml 
173370.3 

B2M Mouse NM_ Applied Biosystems TaqMan Probe Assay ID Mm00437762_ml 
009735.3 

P-Actin Mouse NM_ Applied Biosystems TaqMan Probe Assay ID Mm00607939 _sl 
007393.3 

Gapdh Mouse NM_ Applied Biosystems TaqMan Probe Assay ID Mm99999915_gl 
008084.2 

Crist, Mouse NM_ 5'-GGT GIT GCACAGCAITCA-3' 5'-GCT GGA TCT GGG TGC ITC T-3' 
I07 00!024385.1 

Taz, Mouse NM_ 5'-CCC TCC ATG TGA AGT GGC CAT TCC-3' 5' -TGG TGG TTG GAG ACG GTG AT A AGG-3' 
205 001173547.l 

Lclatl Mouse NM 5'-AGC TGT ITG ACT CCC TAG T-3' 5'-TGA rec A TC AGA GAA ACT TA-3' 
(ALCATI) 00108 !07 l.2 
111 
Pld6, Mouse NM_ 5'-CAC AAG TIT GCC ATC GIT GA-3' 5'-GGA ACA GCC GCA CAT ACT-3' 
(MitoPLD) 183139.2 
127 

Plscr3, Mouse NM_ 5'-CTG ATC GCC AAC CTG TTC TA-3' 5'-CTT CGC GAT TCA TCC TIA GT-3' 
IOO 023564.4 

B2M, Mouse NM_ 5'-GGT CIT TCT GGT GCT TGT CT-3' 5'-TAT GIT CGG CIT CCC ATT CT-3" 
106 009735.3 

P-Actin, Mouse NM_ 5'-TGT GAC GTT GAC ATC CG TAA-3" 5'- GCT AGG AGC CAG AGC AGT AA-3" 
117 007393.3 

Gapdh, Mouse NM_ 5' -AAC ACT GAG CAT ere CCT CA-3" 5'-GTG GGT GCA GCG AAC TIT AT-3" 
113 008084.2 
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Results 

Chronic muscle use. We elicited the effects of chronic muscle use by employing 

the chronic contractile activity (CCA) model. COX activity was used as a marker of 

mitochondrial content. CCA resulted in a 40% increase (p<0.05) in COX activity per 

gram of muscle compared to the contralateral.control muscles (Fig.IA). Previous work in 

our laboratory has shown that seven days of CCA increases CL content by 48% (20), 

reflecting changes in mitochondrial content, since the levels closely paralleled COX 

activity, as well as possible changes in organelle composi~ion. We also measured the 

mRNA expression of CDS-1, CLS, Taz, ALCATl, MitoPLD and Plscr3. With CCA, the 

mRNA levels of CDS-1 and Plscr3 increased significantly by 128% and 90%, 

respectively. In contrast, CCA led to decreases in ALCATl and MitoPLD mRNA levels 

of 32% and 40%, respectively (p<0.05; Fig. 1 C). 

Chronic muscle disuse. To contrast with chronic muscle use, we employed 

denervation, a.model of muscle disuse. Seven days of denervation lead to a significant 

33% decrease in COX activity (p<0.05; Fig. 2A). Previous work has shown that a similar 

period of denervation decreases CL content by 40% (22), thus matching the observed 

. change in COX activity. Following denervation, the mRNA expression of CDS-1, CLS, 

ALCATl and Plscr3 all increased by 280%, 58%, 290% and 59%, respectively (p<0.05; 

Fig. 2B), while the expression ofTaz and MitoPLD remained unaltered. 

Chronic muscle use and aging. In aged animals, muscle COX activity was 

diminished by 15-20%. CCA resulted in a 50% increase in COX activity in young 

animals, but only in a 40% augmentation in the aged animals (p<0.05; Fig.3A). 
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Mitochondrial CL content was increased by 26% with CCA (p<O.OS), but only in young 

animals as this response was eliminated with age (Fig.3B). This reflects a change in 

organelle composition with CCA, since CL was measured in the mitochondrial fraction. 

With respect to CL metabolism enzymes, CDS- I expression increased significantly by 

240% in young, and by 88% in aged animals following CCA, while CLS remained 

unaltered (p<0.05; Fig.3C-D). With respect to the CL remodelling enzymes, Taz mRNA 

levels were not altered by CCA, or aging. The mRNA levels of ALCATI and MitoPLD 

both decreased by 30% as a result of CCA in young animals, while Plscr3 increased by 

178%. These three effects were all attenuated with age (p<O.OS; Figs.4B-D). 

Chronic muscle disuse and aging. A separate set of aged animals was used to 

investigate the combined effect of aging and chronic muscle disuse produced by 

denervation. In these animals, a 30% difference in COX activity was observed between 

muscles of young and old animals. Denervation resulted in a 50% and 34% decrease in 

mitochondrial content in both the young and aged muscles, respectively (p<O.OS; Fig.SA). · 

CDS-1 mRNA expression increased by 100% following denervation in young animals 

only (p<0.05; Fig.SB), while CLS increased by 56% and 38% in the young and aged 

animals, respectively (p<O.OS; Fig.SC). When we measured CL remodelling enzyme 

expression, there was no effect of denervation or agi~g on Taz (Fig.6A) or MitoPLD 

(Fig.6C) mRNA levels. ALCATI, however, increased with denervation by 208%. While 

ALCATI did not change with aging in control muscle, it decreased by 67% in aged, 

denervated muscle (Fig.6B). For Plscr3, we observed 33% and 20% increases following 

denervation in young and aged animals, respectively (p<0.05; Fig.6D). 
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PGC-la knockout conditions. To investigate a role for the transcriptional 

. coactivator PGC-1 a in the regulation of CL metabolism, we used PGC-1 a knockout 

animals. Muscle from the ariimals exhibited a 42% decrease in COX activity relative to 

wildtype animals, reflecting a decline in organelle content per gram of muscle. CL 

content in the SS mitochondrial fraction remained unaltered (p<0.05; Figs.7A-B). The 

lack of PGC-1 a resulted in a significant decrease in CDS-1 ( 61 % ) while ALCA T 1 

significantly increased by 97% (p<0.05; Fig.7C). 

Relative gene ex.pression levels in rats and mice. We also sought to use a 

comparative approach to analyze the relative mRNA expression levels of CL metabolism 

enzymes in rat and mouse muscle. Of the CL de novo biosynthesis enzymes, CDS-1 had 

the lowest level of expression in both the rat and mouse. This is consistent with CDS-1 as 

the rate-limiting enzyme in the CL synthesis pathway. Of the remodelling enzymes, the 

expression of Taz and ALCATl was similar in the rat, however, Taz was significantly 

higher than ALCATl in mouse. When we compared the expression levels of the OMM 

enzymes MitoPLD and Plscr3, we found Plscr3 to be significantly higher th~ MitoPLD 

in both species (Fig.8A-B; p<0.05). 
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Discussion 

The objective of this study was to investigate the underlying basis for previously 

discovered findings that CL concentration increases with muscle use, and decreases with 

muscle disuse. To do this, we used similar conditions of muscle use and disuse as 

previously reported, and measured COX activity to confirm that we were successful at 

altering mitochondrial content. We next set out to compare the CL content in muscle 

under these conditions, with the expression of the enzymes involved in the CL 

metabolism pathway. We chose to examine the mRNA levels of these enzymes I) due to 

the lack of suitable antibodies and 2) to provide a comprehensive analysis of the trends in 

gene expression within the pathway as produced by stimuli which alter mitochondrial 

biogenesis. 

We analyzed enzymes of the CL de novo biosynthesis, remodelling and outer 

mitochondrial membrane pathways following CCA, denervation, and another from of 

muscle disuse, aging. Our . expectation was that the expression of the biosynthesis 

enzymes CDS-I and CLS would increase with CCA and decrease with denervation, thus 

paralleling mitochondrial and CL content. We found that CCA induced an increase in 

CDS-I, while CLS remained unaltered. Thus, the increase in CL content measured with 

muscle use is accompanied by the up-regulation of certain, but not all CL biosynthesis 

genes. Since CDS-I is the rate-limiting enzyme in CL biosynthesis (13), the augmented 

expression_ of CDS-I correlates well with the increase of CL in CCA-treated muscle~ Our 

comparative approach to analyze the relative mRNA levels of these enzymes confirmed 

the probable rate-limiting function of CDS-I, since CDS- I mRNA ·levels were among the 
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lowest of the genes measured in both rat and mouse muscle. However, we were surprised 

to find that denervation also elicited increases in the mRNAs encoding these biosynthesis 

enzymes. Our observations are suggestive of a secondary, compensatory response which 

occurs during chronic muscle disuse to restore the lost organelle CL content during this 

condition (22). 

Taz and ALCATI are enzymes responsible for the remodelling of CL F As. Taz 

has been shown to transfer linoleic F As onto CL, thus creating mature, functional 

tetralinoleic CL. A loss of function mutation in the Taz gene in humans has been shown 

to lead to Barth syndrome, which is characterized by numerous myopathies (3). Iri 

contrast, ALCATI has been shown to add polyunsaturated FAs onto CL, creating an 

immature form of the molecule which is elevated during pathological conditions (14). 

Based on this, we hypothesized that Taz and ALCATI expression would change in 

opposite directions with chronic muscle use, and also with muscle disuse conditions. 

Surprisingly, Taz was completely unresponsive to the treatments. However, ALCATI 

decreased with CCA, and became elevated following denervation. This suggests that 

chronic muscle use not· only elevates CL levels, but also serves to induce a more 

functional form of the phospholipid. Interestingly, the higher level of Taz relative to 

ALCATI in the mouse, compared to the rat, suggests that CL in mouse muscle may have 

a greater ratio of functional to nonfunctional CL than in rat muscle. 

MitoPLD and Plscr3 both interact with CL on the outer mitochondrial membrane. 

Plscr3 serves to transport CL from the inner to the outer mitochondrial membrane, 

thereby dispersing CL within the organelle. MitoPLD, on the other hand, cleaves outer 
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membrane CL into PA, thereby reducing total CL content. We hypothesized that CCA 

would induce Plscr3 to help redistribute the increase in CL content, while MitoPLD 

would decline to facilitate this process. We found that CCA elicited this response in both 

of these enzymes, supporting our hypothesis. To our surprise, denervation elicited a 

similar effect. We speculate that this alteration may serve a very different purpose during 

chronic mu~cle disuse. The increase in outer mitochondrial membrane CL may act as a 

binding site for tBid, which triggers cytochrome c release and leads to mitochondrially­

mediated apoptosis. Thus, the effect may be a contributing factor to the previously 

reported increased apoptotic susceptibility following denervation (1 ) .. Our comparative 

analyses of mRNA levels showed the existence of high ratios of Plscr3 relative to 

MitoPLD in both mouse and rat. This suggests that the need for CL transport to the outer 

membrane is greater than that for CL cleavage under steady state conditions. 

When we analyzed the CL levels within mitochondria of young and aged animals, 

we found no difference between the two age groups. This finding was in parallel with the 

lack of difference exhibited for the measured mRNAs~ In general, the response of aging 

animals to either CCA or denervation was attenuated compared to the responses observed 

in young animals. Notably, both the protective CCA-, and the detrimental denervation­

induced changes of ALCATl were lost with age. CCA-induced changes of MitoPLD and 

Plscr3 were also both reduced with aging. These findings are consistent with the 

observation that aging muscle can adapt to variations in chronic muscle use or disuse, but 

that the response is attenuated compared to that in young muscle ( 17). 
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In an effort to elucidate the transcriptional underpinnings behind our observations, 

we examined the possible role of PGC-1 a. PGC-1 a is an established nuclear coactivator, 

often referred to as the master regulator of mitochondrial biogenesis because its activation 

or overexpression promotes the transcription of a wide variety of nuclear gene products 

that are destined for the mitochondria. However, its function is currently unknown 

regarding its regulation of the transcripts of genes encoding enzymes of CL. PGC-1 a has 

been shown to be elevated by CCA (2), while chronic muscle disuse via denervation 

downregulates PGC-la levels (1). Thus, we used PGC-la knockout animals to determine 

whether this transcriptional coactivator is involved in mediating the mRNA changes 

observed. We found that CDS-1 was suppressed by the absence of PGC-1 a, suggesting 

that the coactivator directly regulates CL expression of this rate-limiting enzyme, and 

therefore the flux through the CL biosynthesis pathway. Indeed, inspection of the CDS-1 

promoter reveals binding sites for MyoD, USF-1, NF-kappa B, PPAR-gamma, CREB and 

MEF-2, all transcription factors through which PGC-1 a may be acting. Considerable 

further work is required to verify the possible functional nature of these binding sites 

within the CDS-1 promoter region. With respect to the remodelling enzymes, ALCATl 

levels were increased in the absence of PGC-la. This suggests that PGC-la normally 

suppresses ALCATl, thereby exhibiting a protective role on the fatty acid composition of 

CL. In contrast, neither of the outer membrane CL remodelling genes was affected by the 

absence of PGC-1 a. Thus, PGC-1 a has a selective role in regulating the transcription of 

CL metabolism enzymes. 
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This study provides the first detailed analysis of the expression of CL synthesis 

and remodelling enzymes in skeletal muscle. Our results set the stage for further 

exploration of this complex network of mitochondrial membrane regulators, particularly 

when suitable antibodies become available. Both protein level measurements, as well as 

the localization of these enzymes will be crucial for the expansion of our knowledge 

regarding this molecular pathway. All CL biosynthetic enzymes are nuclear-encoded 

proteins. Thus, they rely on the mitochondrial import machinery in order to ~e transported 

into the mitochondria to manufacture or modify CL. It would therefore be of great 

interest to analyze the trafficking, localization and possible post-translational 

modifications of many of these enzymes following chronic muscle use or disuse, or in 

diseases of phospholipid metabolism. Our data suggest that the transcriptional activation 

of certain genes responsible for CL synthesis is upregulated during muscle use, perhaps to 

produce more CL, and also during muscle disuse as part of a possible compensatory 

mechanism. Many of these observed effects are lost with aging. Finally, it was notable 

that some CL metabolism genes are regulated by PGC-1 a, documenting a role for this 

coactivator in mitochondrial phospholipid synthesis, alongs~de its well established 

function in the regulation of typical nuclear genes encoding mitochondrial proteins. 
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Figure Legend 

Figure 1. Effects of CCA on mitochondrial content, CL levels and mRNA expression in 

skeletal muscle. (A) Average COX activity in CCA and control muscles (n=8); (B) Tissue 

CL content in control and 7-day CCA muscles (data from Takahashi & Hood, 1993; 

n=7); (C) mRNA levels of CDS-I, CLS, Taz, ALCATI, MitoPLD and Plscr3 in 

chronically stimulated muscles (n=8). Graph represents fold-changes relative to control 

muscles. Values are representative of means+/-SEM; p<0.05; *vs. control. 

Figure 2. Effects of denervation on mitochondrial content, CL levels and mRNA 

expression in skeletal muscle. (A) Average COX activity in denervated and control 

muscles (n=8); (B) Tissue CL content in control and 8-day denervated muscles (data from 

Wicks & Hood, 1991; n=7); (C) mRNA levels ofCDS-1, CLS, Taz, ALCATl, MitoPLD 

and Plscr3 in denervated muscles (n=8). Graph represents fold-changes relative to ~ontrol 

muscles. Values are representative of means+/..:.SEM; p<0.05; *vs. control. 

Figure 3. Effects of CCA and age on mitochondrial content, mitochondrial CL levels and 

mRNA expression in skeletal muscle. (A) Average COX activity in young and aged, 

control and CCA muscles (n=lO); (B) CL content of isolated SS mitochondria from 

young and aged, control and CCA muscles (n=9). mRNA levels of cardiolipin de novo 

biosynthesis enzymes (C) CDS-l; and (D) CLS in control and stimulated muscles of 6-

month and 36-month old rats (n=6 for each group). Empty bars represent control muscles, 

filled bars represent CCA muscles. Values are representative of means+/-SEM; p<0.05; * 

vs. control; ** main effect of aging. 
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Figure 4. mRNA levels of cardiolipin remodelling and outer membrane enzymes. (A) Taz; 

(B) ALCATl; (C) MitoPLD; and (D) Plscr3 in control and stimulated muscles of 6-

month and 36-month old rats. Empty bars represent control muscles, filled bars represent 

CCA muscles. Values are representative of means+/-SEM; n=6 for each group; p<0.05; * 

vs. control; ** main effect of aging. 

Figure 5. Effects of denervation and age on mitochondrial content and mRNA expression 

in skeletal muscle. (A) Average COX activity in young and aged, control and denervated 

muscles (n=8). mRNA levels of cardiolipin de novo biosynthesis enzymes (B) CDS-1; 

and (C) CLS in control and denervated muscles of 6-month and 36-month old rats (n=6 

for each group). Empty bars represent control muscles, filled bars represent denervated 

muscles. Values are representative of means+/-SEM; p<0.05; *vs. control;** main effect 

of aging. 

Figure 6. mRNA levels of cardiolipin remodelling and outer membrane enzymes. (A) Taz; 

(B) ALCATl; (C) MitoPLD; and (D) Plscr3 in control and denervated 6-month and 36-

month old rats. Empty bars represent control muscles, filled bars represent denervated 

muscles. Values are representative of means+/-SEM; n=6 for each group; p<0.05; * vs. 

control;** main effect of aging. 

Figure 7. Effects of PGC-la knockOut on mitochondrial content, mitochondrial CL levels 

and mRNA expression in skeletal muscle. (A) Average COX activity of PGC-1 a knockout 

and wildtype mice (n=4); (B) CL content in isolated SS mitochondria of wildtype and 

PGC-la knockout muscles (n=6); (C) mRNA levels of CDS-1, CLS, Taz, ALCATl, 

MitoPLD and Plscr3 in muscles of wildtype and PGC-1 a knockout mice (n=7). Graph 
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represents fold-changes relative to wildtype mice. Values are representative of means+/­

SEM; p<0.05; * vs. control or wildtype. 

Figure 8. Relative mRNA levels of CL metabolisms enzymes. CL synthesis enzymes CDS-

1 and CLS; CL remodelling enzymes Taz and ALCATl; and OMM CL proteins 

MitoPLD and Plscr3 in (A) young rats (n=12); and (B) wildtype mice (n=7); *vs. CDS-1, 

p<0.05; p<0.05; D vs ALCATl, p<0.05; # vs MitoPLD, p<0.05. Values are 

representative of means+/-SEM. 
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Fig. 2 
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Fig. 4 
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Fig. 6 

A 
5 

B_ 
~6 c:::J Control 

~ u * • Denervated 
U4 "Cl -"Cl 

~4 -<3 

~2 e 
..... 2 

N ~ ~1 u 
~ 

0 <o 
Young Aged Young Aged 

c D 
~5 4 -u ~ 

* :S-4 ~3 < 
Z3 < 
~· ~2 
=2 
~ ~ 

~l 
CJ 1 
~ 
~ 

0 0 
Young Aged Young Aged 

71 



Fig. 7 
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Future Work 

1) We found that the conditions we placed upon the observed skeletal muscles to 

result in altered CL content. It would also be of interest to explore the 

peroxidation levels within these tissues, by isolating CL and utilizing a lipid 

peroxidation measurement, such as the TBARs assay. 

2) Our data revealed that the transcriptional coactivator PGC-1 a is involved in the 

regulation of two CL metabolism transcripts: CDS-1 and ALCATl. Alas, we are 

un.able to comment through which transcriptional machinery the coactivator is 

acting, based on our current results. To explore this, we will measure the effect of 

PGCl-a.-mediated transcriptional alteration of CDS-1 or ALCATl promoter 

activity on different truncations of their respective promoters. 

3) The generation of ALCATl knockout mice has piqued our interest regarding 

future work. More specifically, measuring the levels of other CL remodelling 

genes in the absence of ALCAT 1 will shed light on whether these genes regulate 

the expression of one another. It would also be intriguing to examine whether any 

improvements in exercise performance occur, without the presence of the 

pathological CL remodeller. 

4) Analyses of Taz knockout mice have ~covered similar maladies as those in 

Barth Syndrome patients, such as malfunctioning mitochondria within cardiac and 

skeletal muscles. It would be of interest to explore whether chronic muscle use is 

able to rescue the functional deficits within skeletal muscle lacking Taz. 
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Table lA: COX Activi following 7 days of CCA 
Cytochrome c Oxidase acthity 

(U/g muscle) 

n 
7 day 7 day 

control CCA 

5.83 9.82 

2 6.71 8.49 

3 7.87 12.24 

4 10.49 14.34 

5 9.27 13.89 Paired t test 

6 11.43 13.64 Control w. 7 day CCA 

7 18.94 Two-tailed P value < 0.0001 

8 11.00 t = 8.87 

df=7 

Table lB: COX Activi following 7 days of denervation 

Cytochrome c Oxidase activity 
(U/g muscle) 

n 
7 day 7 day 

control denenated 
1 7.37 6.15 

2 8.95 6.87 

3 8.26 5.18 

4 11.26 8.44 

5 7.84 5.34 Paired t test 

6 9.83 5.36 Control w. 7 day denenated 

7 10.76 6.02 Two-tailed P value = 0.0002 

8 7.45 4.21 t = 7.31 

df=7 

Table lC: COX Activi ~f PGC-la Knockout mice 

Cytochrome c Oxidase activity 
(U/g muscle) 

n Wildtype Knockout 

1 11.08 4.91 

2 8.61 5.17 

3 4.86 3.14 

4 9.04 6.95 

Unpaired t test 

Wildtype w. Knockout 

Two-tailed P value = 0.04 

t = 3.325 

df=3 

l' 
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Table lD: COX Activi 

Cytochrome c Oxidase activity (U/g muscle) 

n 
Young 

YoungCCA 
Aged 

AgedCCA 
Control Control 

1 12.00 18.04 10.75 13.41 

2 9.20 ·11.10 13.48 19.36 

3 16.55 18.04 12.01 16.14 

4 19.37 21.69 12.41 18.77 

5 9.69 22.70 13.69 20.24 

6 14.39 18.77 12.86 16.44 

7 10.37 19.17 9.31 15.15 

8 11.06 18.84 8.13 12.46 

9 12.83 19.37 11.56 13.68 

10 13.33 18.26 7.26 10.96 

llx!±!slll 

Two-Way ANOVA-Young vs. Aged 

Source of Variation P value summary Significant? 

Interaction ns No 

Age * Yes 

Stimulation *** Yes 

Bonferroni posttests- Young vs. Aged 

Aee Difference t P value Summary 

Young 6.379 7.656 P<0.001 *** 
Aged 4.515 5.419 P<0.001 *** 
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Table 2A: Cardioli in content following 7 days of CCA 
Cardiolipin Content 

(µmol/g muscle) 

n 
7 day 7 day 

control CCA 

1 0.4188 0.6792 

2 0.492 0.5248 

3 0.428 0.426 

4 0.223 0.697 Paired t test 

5 0.259 0.416 Control w. 7 day CCA 

6 0.502 0.469 Two-tailed P value = 0.053 

7 0.4898 0.942 t= 2.405 

df=6 

Table 2B: Cardioli in content following 7 days of denervation 
Cardiolipin Content 

(µmol/g muscle) 

n 
8 day 8 day 

control denerwted 

1 1.05 0.55 

2 0.56 0.4 

3 0.73 0.35 

4 0.53 0.45 Paired t test 

5 0.84 0.51 Control w. 8 day denerwte 

6 1.14 0.43 Two-tailed P value = 0.0079 

7 0.66 0.51 t =3.907 

loE/.6!±lotm~I df=6 

Table 2C: Cardioli in content of PGC-la knockout mice 
Cardiolipin Content 

AO Fluorescence 

PGC-la PGC-la 
n 

Wil Knockout 

1 78.82 76.19 

2 72.05 71.8 

3 78.69 89.68 Unpaired t test 

4 80.83 72.85 Wildtype w. Knockout 

5 58.43 61.44 Two-tailed P value = 0.6607 

6 41.41 59.36 t = 0.4522 

~ft±!sJi f4sltl±tisl df= 10 
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Table 3: mRNA ex ression of CL metabolism enzymes following CCA 
CDS-1 mRNA expression (dCI) 

n 
7 day 7 day 

control CCA 

1.11 1.59 

2 0.66 2.25 

3 1.04 2.75 

4 1.01 2.46 

5 1.80 4.91 Paired t test 

6 0.54 1.23 Control vs. 7 day CCA 

7 0.69 1.12 Two-tailed P value = 0.0083 

8 0.41 0.70 t =3.638 

tol9)1i:joiifiJ flliilf±iof4tJ df=7 

CIS mRNA expression (dCI) 

n 
7 day 7 day 

control CCA 
1 10.24 11.07 

2 9.03 . 9.06 

3 12.76 7.92 

4 22.34 23.12 

5 52.86 49.69 Paired t test 

6 19.44 21.40 Control vs. 7 day CCA 

7 25.80 13.21 Two-tailed P value = 0.42 

8 11.30 15.48 t =0.86 

lifsisqi\tsJ1i df=7 

Taz mRNA expression (dCI) 

n 
7 day 7 day 

control CCA 
1 77.43 35.30 

2 37.71 31.21 

3 70.81 24.46 

4 91.50 70.14 

5 213.92 105.49 Paired t test 

6 76.19 139.97 Control vs. 7 day CCA 

7 59.61 105.50 Two-tailed P value = 0.50 

8 10.86 16.79 t =0.71 

. f4>j1ioM1f6\iJii df=7 
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ALCATl mRNA expression (dC1) 

n 
7 day 7 day 

control CCA 

1 5.00 6.48 

2 7.66 3.49 

3 9.50 6.26 

4 5.92 5.26 

5 6.87 1.33 Paired t test 

6 5.71 6.24 Control w. 7 day CCA 

7 4.77 3.43 Two-tailed P value= 0.0472 

8 11.48 5.55 t =2.403 

df=7 

MitoPLD mRNA expression (dC1) 

n 
7day 7 day 

control CCA 

1.32 0.87 

2 4.28 2.55 

3 0.83 1.04 

4 11.97 3.49 

5 Paired t test 

6 3.87 1.13 Control w. 7 day CCA 

7 2.74 1.26 Two-tailed P value = 0.049 

8 14.49 9.79 t =2.46 

df=6 

Plscr3 mRNA expression (dCf) 

n 
7 day 7day 

control CCA 
1 148.30 165.12 

2 31.95 78.39 

3 77.31 221.78 

4 112.45 195.13 

5 170.24 275.00 Paired t test 

6 121.15 136.28 Control w. 7 day CCA 

7 89.96 243.90 Two-tailed P value = 0.006 

8 52.38 88.40 t = 3.85 

df=7 
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Table 4: mRNA ex ression of CL metabolism enzymes following denervation 
CDS-1 mRNA expression (dCI) 

n 
7 day 7 day 

control denervated 
0.004 0.008 

2 0.005 0.016 

3 0.003 0.015 

4 

5 0.002 0.010 Paired t test 

6 0.003 0.014 Control w. 7 daydenerwted 

7 0.005 0.013 Two-tailed P value = 0.0002 

8 0.004 0.015 t = 8.329 

df=6 

CLS mRNA expression (dCT) 

n 
7 day 7 day 

control denervated 
1.60 2.58 

2 1.18 1.13 

3 0.45 1.05 

4 0.60 0.87 

5 0.35 0.62 Paired t test 

6• 0.88 1.98 Control w. 7 day denervated 

7 Two-tailed P value = 0.049 

8 3.83 6.47 t =2.449 

df=6 

Taz mRNA expression (dCI) 

n 
7 day 7 day 

control denervated 
1 6.70 6.14 

2 3.94 3.13 

3 2.33 2.08 

4 1.20 1.33 

5 0.95 1.16 Paired t test 

6 2.31 4.33 Control w. 7 day denervated 

7 6.38 6.64 Two-tailed P value = 0.42 

8 12.92 14.25 t =0.86 

llx!±!s!41 ltl~9lftE41 £41s·sl±l•l~I df=7 

81 



ALCATl mRNA expression (dCI) 

n 
7 day 7 day 

control denervated 

9.37 49.24 

2 32.44 83.99 

3 3.77 14.12 

4 4.13 15.13 

5 25.09 52.26 Paired t test 

6 4.19 15.40 Control w. 7 day denervated 

7 10.49 49.06 Two-tailed P value = 0.0036 

8 15.03 82.92 t=4.3 

llit±!s)ill df=7 

MitoPLD mRNA expression (dCI) 

n 
7 day 7day 

control denervated 

0.15 0.06 

2 0.06 0.07 

3 0.02 0.03 

4 0.02 0.01 

5 0.00 0.02 · Paired t test 

6 0.04 0.12 Control w. 7 day denervated 

7 0.58 0.12 Two-tailed P value = 0.39 

8 t = 0.91 

df=7 

Plscr3 mRNA expression (dC1) 

n 
7 day 7 day 

control denervated 

1 7.37 6.15 

2 8.95 6.87 

3 8.26 5.18 

4 11.26 8.44 

5 7.84 5.34 Paired t test 

6 9.83 5.36 Control w. 7 day denervated 

7 10.76 6.02 Two-tailed P value = 0.046 

8 7.45 t = 2.42 

df=7 
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Table 5: mRNA ex ression of CL metabolism e mes following CCA and aging 
.--~~~~~~--~~~~~~~~~~~~-----. 

CDS-1 mRNA expression (dCI) 

n 
Young Young Aged Aged 

Control CCA Control CCA 

1 0.007 0.030 0.006 0.022 

2 0.004 0.011 0.009 0.011 

3 0.006 0.026 0.012 0.011 Two-Way ANOVA- Young vs. Aged 

4 0.004 0.010 .0.003. 0.002 Source of Variation P~lue Significant? 

5 0.005 0.006 0.006 0.008 Interaction ns No 

6 0.004 0.019 0.024 Age ns No 

Stimulation ** Yes 

Bonferroni posttests- Young vs. Aged 

Age Difference t P value Summary 

Young 0.01208 3.502 P<0.05 * 
Aged 0.005804 1.683 P>0~05 ns 

~ mRNAexpression (dCI) 

n 
Young Young Aged Aged 

Control CCA Control CCA 
1 4.09 2.62 3.67 5.52 

2 1.47 1.37 0.88 0.93 

3 1.27 0.94 l.03 0.85 Two-Way ANOVA- Young vs. Aged 
4 1.30 1.14 0.58 0.90 Source of Variation Pwlu Significant? 
5 2.57 5.02 3.32 2.73 Interaction ns No 
6 l.05 0.72 0.82 0.82 Age ns No 

Stin1.1lation ns No 

Bonferroni posttests- Young vs. Aged 

Age Difference t P value Summary 

Young 0.008615 0.01929 P>0.05 ns 

Aged 0.2416 0.541 P>0.05 ns 
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Taz mRNA expression (dCI) 

Young Young Aged Aged 
n 

Control CCA Control CCA 

1 11.61 6.70 4.23 6.52 

2 10.39 7.14 4.57 4.41 

3 Two-Way ANOVA- Young vs. Aged 

4 2.85 3.37 1.90 2.28 Source of Variation PwluE Significant? 

5 6.55 15.68 1.82 1.95 Interaction ns No 

6 3.23 4.32 0.66 0.79 Age * Yes 

Stirrulation ns No 

Bonferroni posttests- Young vs. Aged 

Age Difference t Pwlue Summary. 

Young 0.5154 0.295 P>0.05 ns 

Aged 0.5558 0.3182 P>0.05 ns 

AI.CATI mRNA expression (dCI) 

n 
Young Young Aged Aged 

Control CCA Control CCA 

4.43 2.88 5.83 3.85 

2 6.01 2.21 3.91 3.14 

3 3.24 2.84 3.40 5.51 Two-Way ANOVA- Young vs. Aged 

4 3.27 2.70 3.34 3.39 Source of Variation Pwlu~ Significant? 

5 4.05 2.73 3.68 2.64 Interaction ns No 

6 4.08 2.34 2.69 3.03 Age ns No 

Stimllation * Yes 

Bonferroni posttests- Young vs. Aged 

Age Difference t Pwlue Summary 

Young -1.565 2.918 P<0.05 * 
Aged -0.2146 0.3999 P>0.05 ns 
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MitoPLD mRNA expression (dCI) 

Young Young Aged Aged 
n 

Control CCA Control CCA 

1 0.20 0.09 0.28 0.20 

2 O.()<) 0.07 0.o7 0.()<) 

3 0.06 0.03 0.04. 0.03 Two-Way ANOVA- Young vs. Aged 

4 0.11 0.10 0.07 0.10 Source of Vari:ation P~lue Significant? 
5 0.15 0.09 0.()<) 0.()<) Interaction * Yes 

6 0.18 0.09 0.07 0.14 Age ns No 

Stimulation ns No 

Bonferroni posttests- Young vs. Aged 

Age Difference t Pwlue Summary 

Young -0.05628 3.052 P<0.05 * 
Aged 0.004078 0.2211 P>0.05 OS 

Plscr3 mRNA expression (dC1) 

n 
Young Young Aged Aged 

Control CCA Control CCA 

l 1.21 2.39 3.04 3.02 

2 2.74 4.19 2.33 2.07 

3 1.01 1.38 1.31 0.97 Two-Way ANOVA- Young vs. Aged. 

4 1.21 2.38 1.38 1.53 Source of Variation Pwlue Significant? 

5 Interaction * Yes 

6 0.68 4.08 0.75 0.85 Age OS No 

Stinulation ns No 

Bonferroni posttests- Young vs. Aged 

Age Difference t Pwlue Summary 

Young 1.601 3.462 P<0.05 * 
Aged -0.08365 "0.1809 P>0.05 OS 

85 



Table 6: mRNA expression of CL enzymes following denervation and aging 

CDS-1 mRNA expression (dC1) 

Young Young Aged Aged 
n 

Control Denenated Control Denenated 

0.12 0.22 0.15 0.12 

2 0.22 0.46 0.11 0.08 

3 0.12 0.22 0.11 0.13 Two-Way ANOVA 

4 0.05 0.16 0.14 0.11 Source of Variation Pvalue Significant? 

5 0.09 0.18 0.30 0.36 Interaction ** Yes 

6 0.06 0.09 0.10 0.27 Age ns No 

Denervation ** Yes 

Bonferroni posttests- Young vs. Aged 

Age Difference t Pwlue Summary 

Young 0.1119 3.627 P<0.01 ** 
Aged 0.02655 0.8607 P>0.05 ns 

CIS mRNA expression (dCI) 

n 
Young Young Aged Aged 

Control Denenated Control Denenated 
1 1.51 2.45 1.12 2.05 

2 0.95 1.81 1.29 1.60 

3 0.71 1.02 0.71 0.92 Two-Way ANOVA 
4 0.55 0.82 0.88 1.39 Source of Variation Pvalue Significant? 
5 1.22 1.63 1.00 1.31 Interaction ns ·No 
6 1.39 2.17 1.22 1.26 Age ns No 

X±SE 1.05 ± 0.15 1.65 ±2.59 1.03 ±0.88 1.42 ±0.15 Denervation *** Yes 

Bonferroni posttests- Young vs. Aged 

Age Difference t Pwlue Summary 

Young 0.5975 4.821 P<0.01 **' 

Aged 0.3826 3.087 P<0.05 * 

86 



Taz mRNA expression (dCI) 

n 
Young Young Aged Aged 

Control Denenated Control Denenated 
1 5.92 4.95 4.12 4.10 

2 2.79 3.07 3.14 2.99 

3 2.94 2.28 2.76 2.65 Two-Way ANOVA 

4 2.73 3.29 3.56 4.11 Source of Variation P value Significant? 

5 3.52 4.59 2.86 2.71 Interaction ns No 

6 Age ns No 

llx!±!sil !1'518f~ B!6~'1'±,0:l4~~ l§f'lt'J~±,0"2~ l§~llr±~01§10] Denervation ns No 

Bonferroni posttests- Young vs. Aged 

Age Difference t Pwlue Summary 

Young 0.05587 0.1966 P>0.05 ns 

Aged 0.02729 0.09605 P>0.05 ns 

ALCATl mRNA expression (dC1) 

n 
Young Young Aged Aged 

Control Denenated Control Denenated 
1 1.55 4.01 1.87 1.75 

2 1.84 4.09 2.03 2.14 

3 1.21 6.51 1.51 1.76 Two-Way ANOVA 

4 0.42 3.54 0.95 1.39 Source of Variation Pvalue Significant? 

5 0.49 2.11 0.71 1.20 Interaction *** Yes 

6 3.35 7.02 0.76 0.65 Age * Yes 

Denervation *** Yes 

Bonferroni posttests- Young vs. Aged 

Age Difference t Pwlue Summary 

Young 3.071 7.992 P<0.001 *** 
Aged 0.1762 0.4585 P>0.05 ns 
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MitoPLD mRNA expression (dC1) 

Young Young Aged Aged 
n 

Control Denenated Control Denenated 

1 0.027 0.031 0.016 0.027 

2 0.013 0.017 0.031 0.009 

3 0.009 O.Q22 0.004 0.013 

4 0.017 0.019 0.011 0.018 Two-Way ANOVA 

5 0.007 0.011 0.008 0.005 Source of Variation P vailue Significant? 

6 0.014 0.013 0.008 0.009 Interaction ns No 

Age ns No 

Denervation ns No 

Bonferroni posttests- Young vs. Aged 

Age Difference t Pwlue Summary 

Young 0.004509 1.211 P>0.05 ns 

Aged 0.0004705 0.1263 P>0.05 ns 

Plscr3 mRNA expression (dCI) 

n 
Young Young Aged Aged 

Control Denenated Control Denenated 
1 4.092173 4.675187 3.926263 4.591325 

2 2.005295 2.131153 2.574178 2.710416 

3 2.14033 3.281365 2.010223 2.517745 Two-Way ANOVA 

4 1.723421 2.302112 2.392681 3.142764 Source of Variation Pvalue Significant? 
5 1.405274 1.750704 1.057099 1.389272 Interaction ns No 
6 1.035019 1.166221 1.28445 Age ns No 

lit±l14 t!o~J±loltiJ Denervation *** Yes 

Bonferroni posttests- Young vs. Aged 

Age Difference t Pwlue Summary 

Young 0.005796 4.613 P<0.01 ** 
Aged 0.004182 3.328 P<0.05 * 
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Table 7: mRNA ex ression of CL metabolism enzymes in PGC-la knockout mice. 

CDS-1 mRNA expression (dCI) 

n Wildtype Knockout 

0.16 0.10 

2 0.23 0.09 

3 0.51 0.16 

4 0.46 0.15 Unpaired t test 

5 0.39 0.13 Wildtype w. Knockout 

6 0.27 0.10 Two-tailed P value = 0.0023 

7· 0.20 0.08 t=5.053 

df=6 

CI.S mRNA expression (dCI) 

n Wildtype Knockout 

5.20 8.11 

2 8.72 7.12 

3 9.78 11.45 

4 11.79 11.08 Unpaired t test 

5 9.07 10.90 Wildtype w. Knockout 

6 11.59 8.40 Two-tailed P value = 0.58 

7 10.58 14.85 t =0.5666 

df= 12 

Taz mRNA expression (dC1) 

n Wildtype Knockout 

12.43 13.21 

2 13.79 12.56 

3 27.35 29.28 

4 35.38 32.79 Unpaired t test 

5 139.48. 160.00 Wildtype w. Knockout 

6 167.98 117.55 Two-tailed P value = 0.90 

7 26.24 28.36 t =0.1254 

rot!s!±l~E41 ~6!z~l±l~!ol df=12 
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ALCATl mRNA expression (dCI) 

n Wildtype Knockout 

1 1.11 3.26 

2 ' 1.03 2.39 

3 1.20 1.56 

4 1.55 3.90 Unpaired t test 

5 2.84 4.31 Wildtype w. Knockout 

6 2.90 3.47 Two-tailed P value = 0.009 

7 1.77 3.59 t =3.098 

df= 12 

MitoPLD mRNA exf>ression (dCI) 

n Wildtype Knockout 

1 0.06 0.07 

2 0.19 0.14 

3 0.85 0.47 

0.60 0.44 4 Unpaired t test 

1.18 1.44 5 Wildtype w. Knockout 

6 2.26 1.67 Two-tailed P value= 0.70 

7 1.10 1.01 t = 0.3889 

Xi~(S,E> .. : .. ·. o,.~'.~f#h~j;~:~··::, '·i1:g;1~'#!'9:~·~~;'~·; df = 12 

Plscr3 mRNA expression (dCI) 

n Wildtype Knockout 

1 6.93 7.48 

2 9.54 7.15 

3 22.22 24.64 

4 27.33 23.98 Unpaired t test 

5 17.08 20.73 Wildtype w. Knockout 

6 19.61 17.49 Two-tailed P value = 0.99 

7 10.28 11.36 t =0.005 

df= 12 
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Table 8: Relative mRNA levels of CL metabolism enzymes in rat. 

n CDS-1 

I 0.007 

2 0.004 

3 0.006 

4 0.004 

5 0.005 

6 0.004 

7 0.015 

8 0.035 

9 0.184 

10 0.040 

11 0.069 

12 0.015 

lft±!sll 

One way analysis of variance 

Control w. 7 day CCA 

P value < 0.0001 

mRNA levels in rat muscle (dCT) 

CLS Taz ALCATl 
2.565 4.588 4.429 

1.387 8.529 6.007 

1.472 9.875 3.244 

1.055 1.706 3.415 

1.272 1.908 3.050 

1.298 2.733 3.084 

1.105 5.472 2.001 

1.189 3.422 2.311 

0.764 2.443 1.689 

0.859. 2.749 0.406 

1.261 1.499 0.384 

0.858 1.164 0.880 

ANOVATable SS df 

Between 282 6 

Within 206.2 77 

Total 488.2 83 

Tukey's Multiple Comparison Test Mean DifT. q Pwlue 

CDS-1 w CLS -1.225 2.592 P>0.05 

CDS-1 w Taz -3.808 8.062 P<0.001 

CDS-1 w ALCATl -2.543 5.382 P<0.01 

CDS-1 w. MitoPLD -0.1114 0.2359 P>0.05 

CDS-1 w Plscr3 -2.365 5.007 P<0.05 

CLS w Taz -2.584 5.469 p <0.01 

CLSwALCATl -1.318 2.79 P>0.05 

CLS w MitoPLD 1.113 2.357 P>0.05 

CLS w Plscr3 -1.14 2.414 P>0.05 

Tazw ALCATl 1.266 2.679 P>0.05 

Taz w MitoPLD 3.697 7.826 P<0.001 

Taz w Plscr3 1.443 3.055 P>0.05 

ALCATl w MitoPLD 2.431 5.146 p <0.01 

ALCATl w Plscr3 0.1775 0.3756 P>0.05 

MitoPLD w Plscr3 -2.254 4.771 P<0.05 

MitoPLD 
0.104 

0.174 

0.081 

0.094 

0.468 

0.105 

0.020 

0.165 

0~094 

0.265 

0.069 

0.086 

MS 

47.01 

2.678 

Plscr3 
3.606 

4.243 

3.916 

1.299 

1.730 

1.340 

2.999 

2.522 

2.314 

2.711 

1.452 

0.640 
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Table 9: Relative m,RNA levels of CL metabolism enzymes in mouse. 

mRNA levels in mouse muscle (dCT) 

n CDS-1 CIS 

1 4.814 48.475 

2 7.233 74.283 

3 13.263 171.218 

4 15.622 175.923 

5 16.311 109.352 

6 9.583 114.074 

7 10.597 178.577 

lx!±!sJEj 

One way analysis of variance 

Control w. 7 day CCA 

P value< 0.0001 

Tukey's Multiple Compirison Test 

CDS-1 w CIS 

CDS-1 w TAZ 

CDS-1 w ALCATl 

CDS-1 w .MitoPLD 

CDS-1 w Plscr3 

CISwTAZ 

CIS w ALCATl 

CIS w .MitoPLD 

CIS w Plscr3 

TAZwALCATl 

TAZ w .MitoPLD 

TAZw Plscr3 

ALCATl w .MitoPLD 

ALCATl w Plscr3 

MitoPLD w Plscr3 

Taz 

115.955 

102.278 

478.599 

527.762 

1680.761 

1653.444 

442.776 

ANOVATable 

Bemeen 

Within 

Total 

Mean DitT. q 

-0.1135 0.9955 

-0.7442 6.528 

-0.01122 0.09839 

-0.0005018 0.004401 

-0.2053 1.801 

-0.6307 5.532 

0.1023 0.8971 

0.113 0.9911 

-0.09182 0.8054 

0.733 6.429 

0.7437 6.523 

0.5389 4.727 

0.01072 0.09399 

-0.1941 1.703 

-0.2048 1.796 

ALCATl MitoPLD 

10.321 0.527 

8.806 1.578 

21.001 14.826 

23.177 8.948 

34.224 14.164 

28.525 22.260 

29.890 18.633 

Rif±jill 

SS elf MS 

0.2381 5 0.04761 

0.1384 36 0.003846 

0.3765 41 

Pwlue 

P>0.05 

P<0.001 

P>0.05 

P>0.05 

P>0.05 

P<O.ot 

P>0.05 

P>0.05 

P>0.05 

P<0.001 

P<0.001 

P<0.05 

P>0.05 

P>0.05 

P>0.05 

Plscr3 

64.610 

81.287 

388.729 

407.765 

205.838 

193.018 

173.390 
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Appendix B 

·Experimental protocols 

---- --.-
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Implantable stimulation unit-surgical procedure 

Sterilize all surgical tools prior to commencing the surgical procedures outlined below 
and also keep lab bench as sterile as possible by wiping it down thoroughly with ethanol. 

1. Shave the skin over the left flank (between the last rib and the pelvis) and over the left 
hindlimb and wipe with iodine. 

Shave 
i l'. 

Imp1aatable 
! • i• '. ~ 'I . . 
Stnmmla~Jrc.~;nt TT mt 

I ·:y 

! . lUectro 
T 

'\ 

2. Make a skin incision midway between the most distal rib and the pelvic girdle with the 
rat lying on its side in a vertical direction that extends from approximately 30-40% (10-
20mm) of the circumferential distance from the ·umbilicus to the spine (the strategy is to 
make the incision far enough from the spine to penetrate the less complex musculature 
but to try to minimize the extent of the incision on the ventral surface of the animal to 

, avoid post-surgery dragging of the wound during locomotion). 

---------~~--
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3. Tunnel a subcutaneous passage from the left hindlimb to the left flank using the 
tunneler. 

Tunnele 

4. Once the skin incision has been made on the left flank tunneling has been performed, 
lift the abdominal wall (with forceps) and snip horizontally through the abdominal 
musculature. This incision only needs to be large enough for the stimulation· unit to be 
squeezed through but keep the Dacron mesh upwards, so that it can be incorporated into 
the suture line that closes the abdominal musculature. 
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5. Suture the abdominal wall With 5.0 silk and incorporate the Dacron mesh into the 
suture line (about 3-4 independent sutures). Keep the electrodes to one side of the suture 
line. 

6. Affix the electrodes to the tunneler by folding over the end-piece (one with the slot) of 
the tunneler and carefully tunnel the electrodes from the left flank to the left hindlimb 
being sure not to damage the electrodes. 

7. Make small horizontal cut into the underlying left hindlimb muscle (biceps femoris) 
and blunt through the muscle to expose the peroneal nerve (exactly the same as our 
external stimulation protocol). Once the nerve has been exposed, use 4 retractors gain a 
larger exposure of the nerve and underlying musculature. 

8. Electrodes contain a loop on the end of the lead. Place needle of suture through the_ 
loop and tie a knot that attaches the suture to the loop of the electrode. 

8. Using forceps (with sharp teeth), pinch a small amount (between 0.5-1.0 mm) of 
muscle that is flanking the peroneal nerve. Place needle through the pinched muscle 
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section and proceed to tie down the loop section of the electrode to the underlying 
muscle. Once the loop section has been tied down, tie down a proximal section (3-4mm 
from the electrode loop) of the electrode to another thin section of muscle that is 3-4mm 
away from the loop portion. 

9. Repeat steps 7 and 8 for the other electrode lead but suture this electrode on the other 
side of the peroneal nerve. Test the sJimulation unit by turning the unit on with the digital 
stroboscope (ON-2 Flashes, OFF-1 Flash). Palpate the muscle to ensure adequate 
stimulation. 

10. Once both electrodes are sutured to the underlying muscle, the incision is closed with 
3-5 independent sutures (5.0 silk) and the skin closure is stapled. 
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I I 

. Surgery for denervation of skeletal muscle 

1. Sterilize surgical instruments in autoclave machine for 20 minutes. 
2. Anaesthetize rat with 0.2 mls/1 OOg body weight of Ketamine/Xylazine. 
3. Shave animal's right hindlimb close to the skin. 
4. Wipe the shaved area with 1 % topical iodine antiseptic solution. 
5. Make a 2 cm incision in the skin approximately 1 cm posterior and 1 cm inferiior 

to the knee. 
6. Carefully blunt dissect through the exposed superficial muscle until the common 

peroneal nerve is visualized. This nerve innervates the tibialis anterior (TA) and 
extensor digitorum longus (EDL) muscles. 

7. Cut out a small 5mm section of the nerve. This ensures that the nerve endings 
will not regenerate during the experiment and thus effectively denervates the TA 
and EDL muscles. 

8. Inject a small volume (-0.lmls) of sterile ampicillin in the local incision site. 
9. Using the 5 .0 surgical silk, suture close the superficial muscle tear. Seal the 

overlying skin on the hindlimb using s_urgical staples. 
10. Monitor the animal over the next 24 hours to ensure recovery. The animal is foee 

to move about the cage and feed/drink ad libitum. 
11. Recovering animals are given amoxicillin in their drinking water (0.025% w/v) 

for 1 week after surgery. 

Peroneal nerve sectioned 
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Cytochrome c oxidase (COX) assay for microplate reader 

Theory 

Cell extract containing cytochrome c oxidase is added to the test solution containing fully 
reduced cytochrome c-. The rate of cytochrome c oxidation is measured over time as a 
reduction in: absorbance at 550 nm. The reaction is carried out at 30° C. 

Reagents 

1. Horse Heart Cytochrome c (Sigma, C-2506) 
2. Sodium Dithionite 
3. 100 mM K-Phosphate Buffer (KP04;pH to 7.0) 

-make and mix equal proportions of 0.1 M KH2P04 and 0.1 M K1HP04.3H20 
4. 10 mM K-Phosphate Buffer 

-dilute 100 mM K-Phosphate Buffer 1 :10 with ddH20 

Procedure 

1. Immediately following the completion of the enzyme extraction protocol from 
cells, proceed to making Test Solution. Add the following to a scintillation vial: 

- weigh out 20 mg of horses heart cytochrome c 
- add 1 ml of 10 mM KP04 buffer and fully dissolve cytochrome c 
- make up a small volume of 10 mg/ ml sodium dithionite- 10 mM KP04 stock 
solution (Note: make fresh each experiment and use within 20 minutes) 
- add 40 µl of dithionite stock solution to the Test Solution and observe the red to 
orange colour change 
- add 8 ml of ddH20 
- add 1 ml of 100 mM KP04 buffer (Note: the Test Solution becomes light sensitive at 
this step; make sure to the cover vial with aluminum foil). 

2. Add 300 µl of Test Solution into 4-8 wells of a 96-weJl microplate and incubate at 
30°C fot 10 minutes to stabilize the temperature and absorbance. 

1. Open KC4 plate reader program. Select CONTROL icon, then PRE-HEATING 
tab, enter 30°C and select ON (Do not run assay until KC4 temperature has 
reached 30°C). 

2. Set-up of COX activity protocol on computer. 

3. Select WIZARD icon, then READING PARAMETERS icon. 
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1- ----- --.,rr-

• Select Kinetic for Reading Type. 
• Select Absorbance for Reader and 550 nm for wavelength (drop-down). 
• Select Sweep for Read Mode. 
• Select 96 Well Plate (default) for Plate Type. 
• Enter first and last well to be read (eg. Al and A4 if reading 4 samples 

simultaneously). 
• · Select Yes and Pre-heating and enter 30 for Temperature Control. 
• For Shaking enter 0 for both intensity and duration (shaking 1s not 

necessary and it will delay the first reading). 
• Do not select either of the two options for Pre-reading. 
• Click on the KINETIC ... rectangular tile to open the Kinetic window. 
• Enter run time (1 minute is recommended) and select MINIMUM for 

Interval time (under these conditions the minimum Interval time should be 
3 seconds). 

• Select Allow Well Zoom During Read to see data in real time (optional). 
• Under Scales, checkmarks should appear for both Auto check boxes. Do 

not select Individual Well Auto Scaling. 
• Press OK to return to Reading Parameters window. Press OK to return to 

Wizard window. Press OK. Do not save the protocol. 

4. Set the micropipette to 225 µland secure 4-8 tips on the white projections (make 
sure they are on tight and all the same height). 

5. In a second, clean 96 well plate, pipette samples into 4-8 empty wells. (start with 
Al). Recommended volumes: 65 µl of enzyme extract from C2Cl2 cells. 

6. Remove microplate with Test Solution from the incubator (as long as it has been 
incubating for 10 minutes). Place this plate beside the plate with the sample 
extracts in it. 

7. On KC4 program, select the READ icon and press the START READING icoltl, 
then press the READ PLATE button. A box will appear that says, "Insert plaite 
and start reading". Do not press OK yet, but move the mouse so that the cursor 
hovers over the OK button. 

8. Using the micropipette (set to 225 µl) carefully draw up the Test Solution. Make 
sure the volume is equal in all the pipette tips, and that no significant air bubbl<::s 
have entered any of the tips. 

9. Pipette the Test Solution into the wells with the sample extracts (the second plate). 
As soon as all the Test Solution has been expelled from the tips (do not wait for 
the second push from the multi pipette), place the plate onto the tray of the plate 

100 



reader and with the other hand on the mouse, press the OK button. (Speed at thJs 
point is paramount, as there is an unavoidable latency period between the time of 
pressing the OK button and the time of the firs~ reading.) 

10. If desired, add 5 µl KCN to one of the wells to measure any absorbance changes in 
the presen~e of the CYTOX inhibitor. 

11. Once reading is complete, hold the CTRL key on the keyboard, and use the mouse 
to click once on each of the squares corresponding to a well that had sample in it. 
Once all the desired wells have been highlighted by a black sqt1are (up to a 
maximum of 8 wells), let go of the CTRL key and a large graph will appear with 
lines on it representing each sample. 

12. To obtain the rate of change of absorbance over different time periods, select 
Options and enter the amount of time for which you would like a rate of change of 
absorbance to be calculated. The graph, along with one rate (at whichever time 
interval is selected) for each sample can be printed on a single sheet of paper, and 
the results can be saved. 

13. The delta absorbance will appear in units of mOD/min and the number given will 
be negative. Convert this to OD/min by dividing by 1000 and omit the negative 
sign in the calculation. ( eg. if Mean V: -3.94.8 mOD/mn, then use 0.395 OD/min) 

CALCULATION: 

CYTOX activity= mean dealta absorbance/ minute x total volume (ml) x 1000 
18.5 (µmol/ml extinction coeff.) x sample volume (ml) x total µg/ well 

Example Calculation: 

55 µl of enzyme extraction 
230 µl of Test Solution 
Mean V: -584.30 mOD/mn 
Protein concentration: 3.023 µg/ µl 
Total µg/ well: 151.15 

COX activity= (0.5843)(0.285)(1000) 
(18.5)(0.055)(3.023 x 55) 

COX activity= 0.967 nmol/min/µg protein 
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Mitochondrial isolation 

Reagents 
All buffers are set to pH 7.4 and stored at 4 °C 

- Buffer 1 +ATP - Buffer 1 
lOOmMKCl 
5mMMgS04 
5mMEDTA 

Add 1 mM ATP to Buffer 1 

50 mM Tris base 

- Buffer 2 
lOOmMKCl 
5mMMgS04 
5mMEGTA 
50 mM Tris base 
1 mMATP 

- Nagarse protease (Sigma, P-4789) 
10 mg/ml in Buffer 2 
Make fresh for each isolation, keep on ice 

Procedure 

- Resuspension medium 
lOOmMKCl 
lOmMMOPS 
0.2%BSA 

1. Remove the tibialis anterior (TA) muscle from the rat, and put it in a beaker 
containing 5 ml Buffer 1, on ice immediately. 

2. Place TA on a watch glass that is also on ice and trim away fat and connective 
tissue. Proceed to thoroughly mince the muscle sample with forceps and scissors, 
until no large pieces are remaining. 

3. Place the minced tissue in a plastic centrifuge tube and record the exact weight of 
tissue. 

4. Add a 10-fold dilution of Buffer 1 +ATP to the tube. 
5. Homogenize the samples using the Ultra-Turrax polytron with 40% power output 

and 10 s exposure time. Rinse the shaft with 0.5 ml of Buffer 1 + ATP to help 
minimize sample loss. 

6. Using a Beckman JA 25.50 rotor, spin the homogenate at a centrifuge setting of 
800 g for 10 min. This step divides the IMF and SS mitochondrial subfractions. 
The supemate will contain the SS mitochondria and the pellet will contain the 
IMF mitochondria. 
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SS mitochondrial isolation: 
7. Filter the supemate through a single layer of cheesecloth into a second set of 50 

ml plastic centrifuge tubes. · 
8. Spin tubes at 9000 g for 10 min. Upon completion of the spin· ·discard the 

supemate and gently resuspend the pellet in 3.5 ml of Buffer 1 +ATP. Since the 
mitochondria are easily damaged, it is important that the resuspension of the pellet 
is done carefully. 

9. Repeat the centifugation of the previous step (9000 g for 10 min) and discard the 
supemate. 

10. Resuspend the pellet in 200 µl of Resuspension medium, being gentle so as to 
prevent damage to the SS mitochondria. Some extra time is needed during this 
final resuspension to ensure the SS pellet is completely resuspended. 

11. Keep the SS samples on ice while proceeding to islolate the IMF subfraction. 

IMF mitochondrial isolation: 
7. Gently resuspend the pellet (from step 6) in a IO-fold dilution of Buffer 1 +ATP 

using a. teflon pestle. 
8. Using the Ultra-Turrax polytron set at 40% power output, polytron the 

resuspended pellet for 10 s. Rinse the shaft with 0.5 ml of Buffer 1 + ATP. 
9. Spin at 800 g for 10 min and discard the resulting supemate. 
10. Resuspend the pellet in a 10-fold dilution of Buffer 2 using a teflon pestle. 
11. Add the appropriate amount of nagarse. The calculation for the appropriate 

volume is 0.025 mVg of tissue. Mix gently and let stand exactly 5 min. 
12. Dilute the nagarse by adding 20 ml of Buffer 2. 
13. Spin the diluted samples at 5000 g for 5 min and discard the resulting supernate. 
14. Resuspend the pellet in a 10-fold dilution of Buffer 2. Gentle resuspension is with 

a teflon pestle. 
15. Spin the samples at 800 g for 10 min. Upon the completion of the spin, the 

supemate is poured into another set of 50 ml plastic tubes (on ice), and the pellet 
is discarded. 

16. Spin the supemate at 9000 g for 10 min. The supemate is discarded and the pellet 
is resuspended in 3.5 ml of Buffer 2. 

17. Spin samples at 9000 g for 10 min and discard the supemate. 
18. Gently resuspend the pellet in 300 µl of Resuspension medium. 
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Reagents · 

- Extraction buffer 
100 mM Na/K P04 
2mMEDTA 
pH to 7.2 

- 5 X Bradford dye . 

Bradford protein ass8:y 

250 ml 85% Phosphoric acid 
250 ml 100% Ethanol 
500ml ddH20 
0.235 g Coomassie Brilliant Blue 0250 

- Bovine Serum Albumin (BSA) 
2 mg/ml in ddH20 

Procedure 

1. Prepare the test tubes allowing for duplicates of each sample. 
2. Add 95 µl of extraction buffer .to each tube. 
3. Add 5 µl of sample to each tube containing the extraction buffer. 
4. To generate the standard curve, add the following volumes (in µl) of extraction 

buffer: BSA, each in separate tubes- 100:0, 95:5, 90:1.0, 85:15, 80:20, 75:25. 
5. Pipette 5 ml of 1 X Bradford reagent into each tube and mix by gentle vortexing. 
6. In duplicate, add 0.2 ml of each test tube to 96 well plate wells. 
7. Measure absorbance of wells at 595 nm with a microplate reader. 
8. Calculate the protein concentration of each sample using the standard curve. 
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Flow cytometry 
Reagents 

Resuspension Buffer 
lOOmMKCl 
lOmMMOPS 
0.2%BSA 

5 µM NAO solution 
2.5 µL of 1 mM NAO 
500 µL of resuspension buffer 

Procedure 

1. Obtain 100 mg of isolated mitochondria 
a. Spin down at 9000 g for 3 minutes at room temperature 
b. Dump supernatant fraction 
c. Resuspend in 500 µL of 5 µNAO 
d. Leave at room temperature for 15 minutes 

2. Wash 
a. Spin down at 9000 g for 3 minutes at room temperature 
b. Dump supernatant fraction 
c. Resuspend in 300 µL of resuspension buffer 

Samples now ready for Flow Cytometer, observed at 50 000 events. 

Gating: Histogram: 
Mitochondrial population Fluorescence ofNAO stain 
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The mitochondrial dye Mi to Tracker Green FM was used to discriminate between 
mitochondria and debris, and thus gate the R2 region. 
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RNA Isolation 

Procedure 

1) Homogenize (approximately 30 sec.@ 30-40% power) tissues (200 mg) at 
30% in 2 ml Tri-reagent in a 13 ml Sarstedt tube; 

OR 
Homogenize (approximately 30 sec.@ 30-40% power) tissues (200 mg) at 
30% in 1.25 ml solution D + 1.25 ml phenol+ 0.125 ml 2M sodium acetate 
(pH 4.0) in a 13 ml Sarstedt tube 

**Note: The homogenizer must be sterilized in O. lM NaOH and rinsed in 
sterile water prior to use. Rinse in sterile water between samples. 

2) Let stand for 5 min at room temperature; 

3) Add 0.4 ml chloroform and shake vigorously for 15 sec, let stand for 2-3 min at 
room temperature; 

4) Spin at 12,000 g for 15 min at 4°C; 

5) Transfer aqueous phase to 13 ml Sarstedt tube; 

6) Add 1 ml isopropanol, gently shake, and allow precipitation of RNA for 5-10 min 
at room temperature; 

7) Spin at 12,000 g for 10 min at 4°C; 

8) Remove supernatant fraction and add 0.7 ml 75% ethanol; 

9) Transfer RNA to eppendorf tube; 

10) Rinse 13 ml Sarstedt tube with 0.3 ml 70% ethanol, add to eppendorftube and 
mix by vortexing; 

11) Spin 5 min in eppendorf centrifuge at 4 °C; 

12) Discard supernatant fraction; 

13) Dry pellet under a vacuum in dessicator (DO NOT DRY PELLET WITH 
CENTRIFUGATION UNDER A VACUUM); 
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14) Dissolve pellet in 50-200 µl sterile distilled DEPC water and measure absorbance: 
at 260 nm and 280 nm. 

Reagents 

1. Solution D (Denaturing solution) 
4 M Guanidinium Thiocyanate 
25mM of 1 M stock NaCitrate (pH 7.0) 
N-Lauroyl Sarcosine;Sigma L-5125 (0.5% Sarcosyl) 
ddH20 

125 g 
6.6ml 
1.32 g 
160ml 

**Note: make up solution D and store at RT for up tq 3 months. On the 
day of the experiment, mix 50 ml of Solution D with 0.36 ml ofbeta­
Mercaptoethanol (0.1 M b-MEtOH) 

2. Phenol (Nucleic acid grade) 
a) Melt solid phenol at 68 ° C (cap loose) in HiO; 
b) Add 0.25 g 8-hydroxyquinoline to 250 ml of phenol, mix; 
c) Add 250 ml 1.0 M Tris HCl (pH 8.0) and stir overnight at 4 °C covered in foil 
d) Remove supernatant fraction; 
e) Add 250 ml 0.1 M Tris-HCl containing 0.2 % b-MEtOH (0.178 ml/100 ml for 

S.G. = 1.12) and mix thoroughly; 
f) Allow solution to settle and remove supernatant fraction; 
g) Repeat 2 more times as above or until pH of phenol is> 7.6 (test with pH paper). 
h) Store in 25-50 ml aliquots at -20 ° C. 

3. 2. 0 M Na Acetate (pH 4.0) 
10.88 g/l 00 ml s_terile H20 

4. 75% ethanol in sterile H20 
(75 ml ethanol+ 25 ml dH20) 
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RNA formaldehyde gel 

Reagents 

1. 0.1% SDS (Sodium Dodecyl Sulfate) 

2. 1 Ox MOPS (Morpholinepropanesulfonic acid) 
41.86 g MOPS 
3.72 gEDTA 
900 ml dH20, pH to 7.4 

* make up to 1 L, autoclave 
3. Agarose 

4. Sterile ddH20 

5. 0. 5 mg/ml EtBr (Ethidium Bromide) 

6. RNA Sample Buffer 
100% deionized formamide 
3 7% formaldehyde 
lM MOPS (pH 7.4) 
0.5MEDTA 
100% glycerol 
1 % dyes (10 mg bromphenol blue, lOmg Xylene Cyanol) 
10% SDS 
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Procedure 

1. Prepare the gel and electrophoresis chamber after overnight or 1 hr sterilization 
with 0.1 % SDS; 

2. Rinse the gel plates, electrophoresis chamber, and comb with sterile ddH20, and 
wipe dry; 

Running buffer: 

Small Chamber Large Chamber 

30 ml lOX MOPS 200 ml lOX MOPS 

270 ml Sterile 1800 ml Sterile 
ddH20 ddH20 

1 % Agarose gel: 

Small Gel Large Gel 

0.4 g Agarose 1. 7 g Agarose 

4ml lOXMOPS 17ml lOXMOPS 

34ml Sterile ddH20 
144 ml Sterile 

ddH20 
Weigh, melt, make up volume with 

sterile ddH20 wei2ht and add: 
2 ml 37% 8.5 ml 37% 

Formaldehyde Formaldehyde 

3. Allow gel to cool for 15 minutes, pour, and let gel set for 30 min. Transfer the 
plate with, the gel to an electrophoresis chamber, and place the end with the wells 
at the negative electrode; 

4. Calculate the volumes of RNA and sample buffer required for desired amount of 
RNA; 

Combine in sterile eppendorf tubes: 
RNA.................................................. x µl 
EtBr................................................... 4 µl 
Sample buffer.................................... x µl 
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*Note: use at least a 1: 1 ratio of buffer to RNA volume. (max. volume of 30 µl). 

5. Mix the samples by tapping; 

6. Denature the samples for 65°C for 10 min, quick cool; 

7. Spin down volume briefly in microfuge; 

8. Pipette the entire volume into each well of the gel. 

9. Run the gel ("'80 V) until second dye band, Xylene Cyanol, is 2/3 from the end; 

10. Visualize and photograph the gel under UV light. 
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Reverse transcription: first strand cDNA synthesis 

First-strand cDNA synthesis is performed following the manufacturer's recommendations 
that are outlined below: 

Reagents 

1. total RNA (isolated as described) 
2. Oligo( dT)12-1s 
3. 10 mM dNTPs (dATP, dTTP, dCTP, dGTP; 10 mM each) 
4. Sterile ddH20 
5. RN Ase OUT ( 40 units/ µl) 
6. 0.1 MDTT 
7. 5X First-strand Buffer 
8. SuperScript II RT 
*Note: All reagents except RNA are supplied with the SSII kit from Invitrogen. 

Procedure 

1. Add following components to a nuclease/ RNA-free 500 µl eppendorf: 

Oligo( dT)12-1s 
1 µgofRNA 
dNTPmix 
Sterile ddH20 

lµl 
x µl 
1 µl 
to 20 µl 

2. Heat mixture to 65°C for 5 minutes and quick chill on ice. Collect the contents with a 
quick spin in a tabletop microcentrifuge and then add: 

5X First-strand buffer 4 µl 
O.lMDTT 2·µ1 
RNAse OUT 1 µl 

3. Mix contents of tube gently and incubate at 42°C for 2 minutes. 
4. Add 1 µl (200 units) of Superscript II RT and mix by pipetting gently up and down. 
5. Incubate at 42°C for 50 minutes. 
6. Inactivate the reaction by heating at 70°C for 15 minutes~ 
7. cDNA is ready for use in PCR amplification. 
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Real-time polymerase chain reaction (PCR) 

1. Convert 2 ug of RNA to 2 ug of cDNA {STOCK cDNA) 
2. Diluted STOCK cDNA to 1 :30 (WORKING cDNA) 

-2 uL STOCK cDNA + 58 uL nuclease-free ddH20 
3. Add 10 µg cDNA per well (4 µL of WORKING cDNA) 

For SYBR Green analyses 
1. Primers were diluted to 300 µM (STOCK primers), 
2. Diluted further to 20 µM (WORKING primers) in a separate tube; 
3. In each well, add 

2.5 µL of both forward and reverse primers; 
12.5 µL Quanta PerfeCTa SYBR® Green SuperMix, ROX Master M~x; 
3.5 µL nuclease-free ddH20; 
4 µL of WORKING cDNA. 

For TaqMan analyses 
1. In each well, add 

12.5 µL TaqMan Universal Master Mix; 
1.25 µL the appropriate TaqMan probes; 
7.25 µL nuclease-free ddH20; 
4 µL of WORKING cDNA. 

Total reaction volumes is 25 µL per well. 

Duplicated samples to ensure accuracy. 

Use negative wells to monitor contamination (nuclease-free ddH20 in place of cDNA). 

Check for nonspecific amplification and primer dimers by analyzing melt curves 
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Gene, Type Accession Forward Primer Reverse Primer 
Size(bp) Number 
CDS-I Rat NM Applied Biosystems TaqMan Probe Assay ID Rn00579942_ml 

031242.2 

Lclatl Rat XM Applied Biosystems TaqMan Probe Assay ID Rn01468447_ml 
(ALCATI) 34l>20.4 

Rps12 Rat NM Applied Biosystems TaqMan Probe Assay ID Rn01789993_ul 
0317o9.3 

Myc Rat NM Applied Biosystems TaqMan Probe Assay ID Rn00561507_ml 
011.603.2 

Gapdh Rat NM Applied Biosystems TaqMan Probe Assay ID Rn01775763_gl 
01Jf08.13 

~Actin Rat NM App lied Biosystems TaqMan Probe Assay ID Rn00667869 _ml 
03ll44.2 

Cris I Rat NM 5'-MT GfTGAT CGC me lGTGTI T-3' 5'-Tf AGCT AGTGTI CGC GGTGTI G-3' 
(CI.S), 66 001014258.1 

Taz, Rat NM_ 5'-CGGCTG A TI GCTGAG lGTCA-3' 5'-lCA TTC ATTCCAACA TGC CAT AG-3' 
63 001025748.1 
Pld6 Rat XM 5'-lCATCACGGACTGCG ACT A-3' 5'-GGCAMCTT AlGGfGCATGf-3' 
(MitoPLD) 22<1517.3 
116 

Plscr3, Rat NM 5'-GCACCA MG ATGGCAGATA-3' 5'-TAA TAGCTGTAGGGf TGGGAC C-3' 
120 001012139.2 

Myc, Rat NM 5'-GCTCTG CTC lCC GlC CT A TGf-3' 5'-ATG ACC GAGCTACTTGGAGG-3' 
123 011.603.2 

Rpsl2, Rat NM 5'-ATG GAC GfCAAC ACTGCT CT-3' 5'-ATCTCTGCGTGC TTG CAT-3' 
127 031709.3 

Gapdl\ Rat NM 5'-ClC TCTGCTCCTCCC TGf 1CT A-3' 5'-GGT MC CAG GCG TCCGAT AC-3' 
122 01Jf08.3 

f}-Actin, Rat NM 5'-CCCCATTGA ACACGGCAT T-3' 5'-GCC MC CGfGM MG ATG ACC-3' 
154 03ll44.2 

CDS-I M>use NM Applied Biosystems TaqMan Probe Assay ID Mm01208328_ml 
173370.3 

B2M M>use NM_ Applied Biosystems TaqMan Probe Assay ID Mm00437762_ml 
009735.3 

~Actin M>use NM_ Applied Biosystems TaqMan Probe Assay ID Mm00607939_sl 
007393.3 

Gapdh M>use NM_ Applied Biosystems TaqMan ProbeAssay ID Mm99999915_gl 
OOID84.2 

Crlsl, M>use NM_ 5'-GGT GfTGCACAGCATTCA-3' 5'-GCTGGA 1CT OOG TGC TIC T-3' 
107 001024385.1 
Taz, M>use NM_ 5'-CCX:: TCCATGTGAAGTGGC CATTCG3' 5'-TGG TGG TTGGAG ACG GTG ATAAGG-3' 
205 001173547.1 
Lclatl M>use NM_ 5'-AGC TGTTTG ACT <re TAG T-3' 5'-TGA TCC ATC AGA GAA ACT TA-3' 
(ALCATI) 001081071.2 
111 
Pld6, M>use NM_ 5'-CAC MG TTI GCC ATC GfT GA-3' 5'-GGA ACAGCC GCACATACT-3' 
(MitoPLD) 183139.2 
127 
Plsa-3, M>use NM_ 5'-ClG ATCGCC MC CTGTlC TA-3' 5'-CTI CGC GA T TCA TCC TI A GT-3' 
100 023564.4 
B2M, M>use NM_ 5'-GGf CTT TCT GGT GCT TGf CT-3' 5'-TATGTI CGGCTTCCC ATI CT-3'' 
106 009735.3 
~Actin, M>use NM_ 5'-TGTGAC GfTGAC ATC CGTM-3" 5'-GCT AGG AGCCAGAGCAGI' M-3'' 
117 007393.3 
Gapdl\ M>use NM_ 5'-MC ACTGAGCATCTC CCTCA-3" 5'-GfGGGTGCAGCG MC TTT AT-3'' 
113 OOID84.2 
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