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Abstract 

About half of the human genome consists of transposable elements (TE's), sequences 

that have many copies of themselves distributed throughout the genome. All genomes, 

from bacterial to human, contain TE's. TE's affect genome function by either creating 

proteins directly or affecting genome regulation. They serve as molecular fossils, giving 

clues to the evolutionary history of the organism. TE's are often challenging to identify 

because they are fragmentary or heavily mutated. In this thesis, novel features for the 

detection and study of TE's are developed. These features are of two types. The first 

type are statistical features based on the Fourier transform used to assess reading frame 

use. These features measure how different the reading frame use is from that of a ran­

dom sequence, which reading frames the sequence is using, and the proportion of use of 

the active reading frames. The second type of feature, called side effect machine (SEM) 

features, are generated by finite state machines augmented with counters that track the 

number of times the state is visited. These counters then become features of the sequence. 

The number of possible SEM features is super-exponential in the number of states. New 
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methods for selecting useful feature subsets that incorporate a genetic algorithm and a 

novel clustering method are introduced. The features produced reveal structural charac­

teristics of the sequences of potential interest to biologists. ~ detailed analysis of the 

genetic algorithm, its fitness functions, and its fitness landscapes is performed. The fea­

tures are used, together with features used in existing exon finding algorithms, to build 

classifiers that distinguish TE's from other genomic sequences in humans, fruit flies, and 

ciliates. The classifiers achieve high accuracy (> 853) on a variety of TE classifica­

tion problems. The classifiers are used to scan large genomes for TE's. In addition, the 

features are used to describe the TE's in the newly sequenced ciliate, Tetrahymena ther­

mophila to provide information for biologists useful to them in forming hypotheses to 

test experimentally concerning the role of these TE's and the mechanisms that govern 

them. 
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1 Introduction 

New technologies have led to an explosion of DNA sequence data in recent years. The 

number of sequences in GenBank (the definitive genetic database) has grown from a few 

hundred in 1982 when it was founded to more than 100 million at the writing of this 

thesis. Generating this data was an enormous accomplishment, but it is only the begin­

ning. Interpreting genomes is akin to debugging a computer program written in machine 

code for a processor for which you have no manual. The quantity of data makes manual 

interpretation impractical, necessitating the development of automatic techniques. 

The obvious first challenge is to identify genes. Before the human genome project 

was completed, it was believed that this was the major challenge. But, to everyone's 

surprise, it turned out that less than 2% of the human genome consists of genes. Initially, 

the other 98% was labeled 'junk DNA'' and all efforts were focused on genes. Iden­

tifying genes and determining their functions is a formidable enough problem in itself. 

Increasingly, the importance of the so-called junk DNA (now renamed non-coding DNA) 

is becoming clear. 
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The central dogma of molecular biology is a principle about how genes work: DNA 

is transcribed into RNA that is translated into protein. But, there is more to running a 

cell than making protein. It is important when the protein is made, how much is made, 

when the process is stopped, which proteins are made at the same time, etc. Non-coding 

DNA plays an important, but not yet completely understood, regulatory role. Non-coding 

DNA also affects the structure of the DNA and the way it changes over evolutionary time. 

Because of this, it contains clues to what the genome was like in the past and its relation­

ships to the genomes of creatures of other species as well as the relationships between 

two individuals of the same species. Thus, non-coding DNA affects both genome func­

tion and genome evolution. 

What is stored in genetic databases are long alphabetic sequences using the alphabet 

{A, C, G, T}. These represent sequences of nucleotides consisting of a sugar/phosphate 

backbone and four types of bases: adenine (A), cytosine (C), guanine (G), and thymine 

(T). Genomes are assembled from shorter sequence reads (see Section 2.2.7). These­

quence reads are publicly available as are many other short sequences from various re­

search projects. 

An important task towards the goal of understanding how genomes work is to la­

bel their various parts. This is called genome annotation. A good description of how 

genome annotation is performed for genes can be found in [ 149]. As more biological re­

search focuses on non-coding DNA, annotations beyond gene annotations have become 
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increasingly important. The quality of annotations for genomes varies widely with the 

highest quality annotations existing for genes for those organisms which were sequenced 

earliest and which have been studied the most. Among the first organisms sequenced 

were: Saccharomyces cerevisiae (baker's yeast), Caenorhabditis elegans (roundworm), 

Drosophila melanogaster (fruit fly), Homo sapiens (human beings), and Arabidopsis 

thaliana (thale cress, a small flowering plant). Given the rate at which new genomes are 

being sequenced, it is no longer possible to take the time and care that was given to the 

annotation of these genomes: automation is necessary. Existing annotations can be used 

as starting points for annotating other sequenced genomes. The first step in annotation is 

to look for genes that have sequence homology with genes in already annotated genomes. 

Previous annotation projects are used to generate training data for the machine learning 

in this thesis. 

The focus is on the task of annotating an important component of non-coding DNA, 

transposable elements (TEs ). These are also sometimes called transposons. TEs are mo­

bile portions of genomes. They were first discovered by Barbara McClintock [ 46] who 

called them "jumping genes." She was studying the colouration of the kernels of maize 

(also sometimes called Indian com). She found that the position of TEs could block 

the production of pigment. The mottled pattern of the kernels is caused by the differ­

ent patterns of movement of the TEs in different cells during development. TEs affect 

the function of genes in other organisms in a similar way. Their impact on oncogenes 
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(genes that cause tumours) has been a focus of study. They also can impact genome 

structure. For example, sometimes they carry a portion of the surrounding DNA along 

with them when they move. TEs create many copies of themselves within the genome, 

making it much longer than it would otherwise be. They can also shorten the genome. 

This happens when the fact that there are identical copies disrupts the DNA duplication 

machinery causing it to make errors. TEs can cause horizontal gene transfer (the ex­

change of genetic information between species). For more information about how TEs 

affect genome structure, function, and evolution see [97, 138, 83]. Biologists have only 

scratched to surface in learning about TEs in genomes. 

Annotating TEs in genomes of closely related species can lead to insight into speci­

ation, and annotating TEs in genomes of individuals of the same species can lead both 

to insight into how TEs work and insight into individual genetic differences and genetic 

diseases. Also of interest to biologists is study of the organism's policing methods for 

removing or silencing unwanted insertions into their genomes. 

All genomes, from bacterial to human, contain TEs. Primate genomes are about 

half TEs; other mammalian genomes are about one-third TEs. Some genomes have 

less (for example insect genomes are about 20% TEs) and others have more (plants -

more than 60%). Although TEs originate from viral insertions, and thus have genes, 

they are classified as non-coding DNA and are hard to identify because they are often 

fragmentary or heavily mutated, making it difficult to pinpoint characteristic genes or 
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other chara~teristic subsequences. They evolve quickly, meaning that they have little 
'._/ 

sequence identity with each other, making it difficult to identify them using sequence 

homology. Identifying even fragments of TEs is useful because TEs can share genes with 

each other, meaning that a fragmentary TE is often functional. Despite their importance 

and abundance, few reference genomes have good (meaning mostly correct and nearly 

complete) annotations. 

In this thesis, novel features for the detection of TEs, for distinguishing different 

types of TEs, and for learning about the character and function of TEs are developed. 

These features are of two types. The first type are based on signal processing tech-

niques and include measures of randomness and ways of detecting the distinctive reading 

frame structure of retroviruses. The second type of feature uses a computational intel-

ligence technique (genetic algorithm) to discover unique qualities of different types of 

TEs. These features are used to classify different types of TEs and to scan the human and 

fruit fly genomes for TEs. In addition, these techniques are applied to the study of TEs 

in a recently sequenced organism with unique characteristics, Tetrahymena thermophila. 

Use of these features provides insight into its unique and little understood TEs. 

1.1 Approach 

This thesis presents novels methods for generating DNA sequence features. Millions 

of potential features are generated and then a selection process extracts those that are 
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Figure 1.1: Approach used in this thesis for improving understanding of TEs in genomes. 

interesting and comprehensible for various problems involving identifying TEs and dis-

tinguishing different types of TEs. These features are used to annotate genomes, classify 

sequences, and also to provide descriptions of the sequences intended to inspire biol-

ogists to form hypotheses for experimentation. This process is summarized in Figure 

1.1. 
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1.1.1 Features Based On Signal Processing 

Useful sequence features can be developed based on statistical properties inherent in 

particular regions of the genome. For example, when DNA codes for proteins, it uses a 

genetic code (see Table 1.1) consisting of groups of three bases (codons). Each codon 

codes for an amino acid or a start or stop signal. (In the table, amino acids are represented 

by their one-letter abbreviation.) Strings of amino acids make up proteins. Most of life 

is thought to use a standard genetic code, but a few variant codes are also used. (Tetrahy­

mena was the first organism discovered to use a variant code in its nuclear genome.) The 

genetic code is degenerate - multiple codons code for the same amino acid since, with 

four nucleotides, there are 64 combinations possible to code for only twenty amino acids. 

This degeneracy leads to detectable statistical properties in the genome or regions of the 

genome. For example, in regions that use this genetic code (protein coding regions), the 

third position of the codon is more variable than the other two positions. In addition, 

sometimes a particular choice of codon for a given amino acid is preferred. This "codon 

usage" bias can be detected with statistical techniques. 

Regions that do not use the genetic. code also often have statistical features that can 

be detected. Some regions have biases for particular bases. This is characterized in 

terms of AT-richness (percentage of bases which are A or T). A C base directly followed 

by a G base is written CpG. These pairs are rare in most of the genome because their 
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chemistry encourages mutation. There are, however, regions of the genome where they 

are common. These regions are called CpG islands and can be detected statistically. It 

is also common to have short sequences repeated many times. These are called tandem 

repeats and are also statistically detectable. 

These bioinformatic approaches inspired the development of the features described 

in Chapter 3. Converting the sequences into numeric values enables the use of signal 

processing techniques designed to discover periodicities in time series. This allows the 

incorporation of biological knowledge of the sequence structure into useful features. 

1.1.2 Side Effect Machines 

Another approach to developing useful features results in those described in Chapter 

4. This approach uses a genetic algorithm to evolve finite state machines augmented 

with one counter per state, called side effect machines (SEMs), that produce sequence 

features. Side effect machine features are the values of the counters after running the 

sequence through the machine, normalized by sequence length. The counter values are 

side effects of running the string through the finite state machine. After the SEM is 

created, its features can be used with a classifier, like a support vector machine (Section 

6.27) or a random forest (Section 6.1.2). SEMs were introduced in [13] and [10] where 

they were used for classifying synthetic and biological DNA strings. They have also been 

used in [10, 12, 11, 14, 117, 28, 9, 17, 96, 18]. 
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T c A G 
TTT F TCT s TAT y TGT c 

T 
TTC F TCC s TAC y TGC c 
TIA L TCA s TAA STOP TGA STOP 
TTG L TCG s TAG STOP TGG w 
CTI L CCT p CAT H CGT R 

c CTC L CCC p CAC H CGC R 
CTA L CCA p CAA Q CGA R 
CTG L CCG p CAG Q CGG R 
ATT I ACT T AAT N AGT s 

A 
ATC I ACC T AAC N AGC s 
ATA I ACA T AAA K AGA R 
ATG START ACG T AAG K AGG R 
GTT v GCT A GAT D GGT G 

G 
GTC v GCC A GAC D GGC G 
GTA v GCA A GAA E GGA G 
GTG v GCG A GAG E GGG G 

Abbreviation amino acid Abbreviation amino acid 
A Alanine L Leu cine 
R Arginine K Lysine 
N Asparagine M Methionine 
D Aspartate F Phenylalanine 
c Cysteine p Pro line 

Q Glutamine s Serine 
E Glutamate T Threonine 
G Glycine w Tryptophan 
H Histidine y Tyrosine 
I Isoleucine v Valine 

Table 1.1: Standard Genetic Code 
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The finite state machines have n states each with m transitions. Each transition corre­

sponds to a member of the string alphabet. So, for example, a SEM operating on a DNA 

string using the alphabet {A,C,G,T}, as in [13, 10], has four transitions for each state. 

When a string is fed through the machine, a count is kept for each state of how many 

times the string passes through that state. After the entire string has been run through, 

these counts are normalized by dividing by the string length. These n counts constitute a 

vector in IRn. 

SEMs are selected using a genetic algorithm. The genetic algorithm evolves a popu­

lation of SEMs for a particular set of training data, evaluating fitness based on how well 

each SEMs feature set performs in a classifier trained and tested using different portions 

of the training data. The most fit member of the population is chosen to generate the final 

feature set. The genetic algorithm can be run many times to produce different SEMs and 

thus many sets of features. 

1.2 Types Of Sequences 

Figure 1.2 shows the different types of TEs. This thesis focuses on four important types 

of TEs: LTR retrotransposons, solitary LTRs, short interspersed elements (SINEs), and 

internal eliminated sequences (IESs ). IESs are thought to be degraded DNA transposons. 

The first three were chosen because of their importance in the human genome and the 

last because of the superior quality of the data due to the unique properties of ciliate 
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Figure 1.2: Types of TEs. 
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genomes. Retrotransposons are TEs that reproduce via an RNA intermediate, i.e., their 

DNA is copied to RNA that is then used to create a DNA copy that is inserted in a new 

place in the genome. Autonomous retrotransposons (those that encode reverse transcrip-

tase, the protein guiding the RNA to DNA copying process) include LTR retrotrans-

posons and endogenous retroviruses (ERVs). These elements have a repeated sequence, 

called a long terminal repeat (LTR) at their ends. They play a role in gene expression, 

the creation of new genes, the arrangement of genes in the genome, and genetic diversity 

within a species. Solitary LTRs form when the internal region is deleted due to homolo-

gous recombination of the matching LTRs at either end of the retrotransposon [58, 140]. 

They are more abundant than complete LTR retrotransposons in the human genome. 
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Since solitary LTRs contain regulatory elements, they can have a functional role in the 

genome. Identifying solitary LTRs is important to biologists interested in the evolution­

ary history of LTR retrotransposon insertions [85], in their role in health and disease 

[31, 37, 80, 112], in their role in gene function [128, 31, 103], in genomic mechanisms 

for suppressing their expression [37], and in their role in evolution and speciation [80]. 

SINEs have many characteristics in common with solitary LTRs and, thus, are easily 

confused with them. SINEs are the most common TE in the human genome, making up 

about 11 % of it. Since insertions of TEs are often disruptive to the organism, all organ­

isms have some method of deleting at least some of them. Ciliates, a type of protozoan, 

have a unique way of excising their TEs: they have two genomes, one with (the micronu­

clear or MIC genome) and one without TEs (the macronuclear or MAC genome). Both 

the MAC and MIC genomes of the ciliate Tetrahymena thermophila has recently been 

sequenced, enabling study of these TEs (called internal eliminated sequences or IES). 

Comparison of the two genomes allows nearly exact identification of IESs. 

1.2.1 Genes 

Dectection of genes is complicated by the fact that they contain both regions that code 

for proteins, called exons, and regions that do not, called intrans and UTRs (untranslated 

regions). Figure 1.3 illustrates this. Genes function by first being transcribed from DNA 

into RNA and then being translated into protein. The UTRs occur at the beginning and 
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Figure 1.3: Structure of genome and gene. 

end of the gene, and, as their name suggests are not translated into protein. The introns 

also are not translated into protein. They are transcribed into RNA, but they are spliced 

out of the RNA transcript prior to translation. 

1.2.2 Retroviruses 

Many TEs originate from viral insertion, so viral sequences are included in the study, and, 

in particular, retroviral sequences. Viruses are genetic parasites that can only replicate 

using the cellular systems of a host. They are similar to living organisms in many ways: 

they can die; they evolve by natural selection, and virus species can become extinct. The 

most studied viruses are associated with disease (examples include the HlNl influenza 

virus, the herpes virus, and the HIV virus), but the majority of known viruses do not cause 
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disease, and some are even beneficial to their hosts. Viruses infect cells from all types 

of life. There are viruses that infect animals, plants, bacteria, fungi, algae, even other 

viruses. Some viruses are species specific; they only infect cells from a particular species. 

Many others invade cells from a broad range of species. Viruses are ancient. They have 

been part of life and part of evolution for hundreds of millions of years. Virus particles 

are simple. They have only two or three parts: genes made of RNA or DNA, a protein 

coat protecting the genes, and, sometimes, an envelope made of lipids surrounding the 

entire particle. 

Viruses have two possible life strategies: some are acute, and some are persistent. 

Acute viruses kill their host cells. Persistent viruses integrate into their host cells, be­

coming a permanent part of them. Retroviruses are persistent RNA viruses. When they 

enter a cell, their RNA is converted to DNA and inserted into the DNA of their host. New 

viruses are created using the host cell's transcription and replication machinery. These 

are the viruses of interest in this thesis. Retroviruses encode reverse transcriptase, an 

enzyme that converts RNA into DNA (backwards from the RNA to DNA process used 

with genes), so they can copy and paste their sequences in many locations in the genome 

of the host cell. Retroviruses are studied because of their role in diseases like HIV, and 

their potential for use in gene therapy. For more information about viruses and their role 

in evolution, see [138]. 
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1.2.3 Endogenous Retroviruses 

When a retrovirus inserts into a germ cell (a sperm or egg cell), the retroviral DNA is 

inherited. This DNA is an endogenous retrovirus (ERV). Viruses are particular as to the 

type of cell they can insert into, so not all retroviruses can insert into germ cells. HIV, for 

example, can insert only into cells in the immune system and cells in the central nervous 

system. Thus, HIV is unlikely to become an ERV. RNA retroviruses are referred to as 

exogenous or wild viruses to distinguish them from ERV s. ERV s are also sometimes 

referred to as proviruses, and sequences that appear to derive from retroviral insertions 

but are not related to a known retrovirus are called LTR retrotransposons. Human ERV s 

are referred to as HERVs, cow ERVs as BERVs (bovine ERVs), sheep ERVs as OERVs 

(ovine ERVs), etc. 

In addition to the original insertion, copies of the retrovirus are made and inserted 

elsewhere in the genome. It is estimated that about 8% of the human genome is made 

up of ERVs [144]. The ERV will, of course, only become a permanent feature in the 

species's population if it is not harmful to the host, or, at least, not too harmful. If it 

is beneficial, it will undergo positive selection. Some ERV s become defective or non­

functional due to mutation. Some are found in similar locations in distantly related 

species, implying they have been part of the genome for a very long time. A retrovirus 

named Phoenix was estimated to have been part of the human genome for five million 
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years (41]. To put this in perspective: modem humans have only existed for 50,000 -

100,000 years. Phoenix was shown to be still capable of producing infectious particles. 

ERV s like Phoenix are useful to evolutionary biologists as living molecular fossils which 

help them determine the relationships among species. 

Although the complete biological significance of ERV s is still not fully understood, 

they have been shown to be important in many ways. They affect the structure of our 

DNA; they are associated with cancer and other diseases; they perform useful functions 

like producing the protein which causes immunosuppression in the human placenta; and, 

they may protect us from infection by exogenous retroviruses. Our immune system ap­

pears to have arisen from a retrovirus, although the viral ancestor of adaptive immunity 

remains to be found [ 138]. In addition, ERV s can be found in the same locations in 

the chromosomes of related species. Information about when the species diverged can 

be gleaned from calculating the time since insertion based on the number of mutations. 

Some retroviruses integrated into the genome hundreds of millions of years ago. For 

reviews, see (23, 84, 136, 60, 50]. 

In addition to the original insertion, copies of transposons are made and inserted 

elsewhere in the genome (retrotransposition). This is why they comprise so much of 

the genome. Some retroviruses are repeated only a few times; others are repeated hun­

dreds of times (84]. Sometimes these copies carry part of the cellular DNA with them, 

rearranging the genome. Sometimes they affect the function of neighbouring genes just 
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through their presence. For example, they can interfere with regulatory sequences. Retro­

viruses can cause cancer in this way (78]. An example is feline leukaemia virus which 

causes cancer by activating an inactive cancer-causing gene (oncogene) in the cell. Some 

cancer-causing retroviruses carry oncogenes. The Rous sarcoma virus is an example of 

this [145]. 

1.2.4 Solitary LTRs 

Solitary LTRs are common in the human genome. We know they are functional because 

they are conserved and transcribed [60, 102, 95], but their function is not well understood. 

They are related to promoter regions for genes. Because they insert copies of themselves 

in multiple locations in the genome, they impact genome size and structure. Identifying 

families of solitary LTRs is important to the study of genome evolution as they serve as 

biological markers. 

A diagram of an LTR retrotransposon can be seen in Figure 1.4a; a solitary LTR in 

Figure 1.4b. A solitary LTR is created when the internal region of the LTR retrotrans­

poson is deleted through homologous recombination [58, 140] as shown in Figure 1.6. 

This means that the two nearly identical LTR sequences bind together causing the region 

between them to be deleted. 

The basic solitary LTR structure consists of regions copied from three different parts 

of the retroviral RNA genome: the R region, the U3 region, and part of the U5 region. 
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LTR retrotransposon 

solitary LTR 

b) ·--------------· 

Figure 1.4: LTR retrotransposon and solitary LTR - rectangles represent LTRs; solid line repre­
sents viral genes; dotted line represents genomic DNA. 

Exogenous retrovirus 

gag pol env 

Endog_enous retrovirus 

gag pol env 

LTR LTR 

Figure 1.5: Comparison of structure of exogenous and endogenous retroviruses. The three 

genes, gag, pol, and env, are labeled, as are the regions of the exogenous retrovirus that make up 

the LTR of the endogenous retrovirus. 

These regions are shown in the diagram in Figure 1.5. Solitary LTRs rarely contain 

coding segments. 

The problem of identifying solitary LTRs is more challenging than that of identify-

ing LTR retrotransposons, because many of the methods for identifying LTR retrotrans-

posons rely on the existence of the LTRs at either end of the sequence. However, solitary 

LTRs are more common than complete LTR retrotransposons and more likely to be tran-

scribed [102]. An LTR retrotransposon called HERV-K(HML-2) is estimated to have 

18 



2 ·-~-· 3 ___ .... __ , 

Figure 1.6: Formation of solitary LTR. 1 shows the original LTR retrotransposon; 2 shows 
homologous recombination; 3 shows the resulting solitary LTR. 

ten times as many solitary LTRs as complete copies in the human genome (126]. All 

techniques that rely on LTRs occurring in pairs fail to find solitary LTRs. 

1.2.5 Non-LTR Retrotransposons 

Like ERVs, SINEs (short interspersed elements) are a type of TE that use reverse tran-

scriptase to transcribe. Sequences with this property are called retrotransposons. They 

are members of a different class of retrotransposon than LTR retrotransposons, usually 

referred to as non-LTR-retrotransposons. SINEs are related to another type of retrotrans-

poson, called a LINE (long interspersed elements). LINEs range from 900-6000 base 

pairs (bps); SINEs from 200-400 bps. LINEs have a gene for reverse transcriptase, but 

SINEs do not. It is believed that SINEs coopt the LINE gene in order to make copies of 

themselves. SINEs and LINEs are derived from RNA polymerase transcripts. RNA poly-

merase is the enzyme that catalyses RNA synthesis from DNA. LINEs make up about 

21 % of the human genome; SINEs about 11 % [ 104]. The most common transposon in 

humans is the SINE family Alu. Our genome has about 300,000 copies of Alu, one for 

every 6K of DNA. LINEs and SINEs differ from ERV s in that they do not have long 
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terminal repeats (LTRs ), identical sequences at their beginnings and ends. 

SINEs have a trinary structure and contain no coding segments. They consist of a 

head, a body, and a tail. They are GC rich and rich in CG dinucleonides and have A rich 

tails and T rich heads. Their tails often consist of repeated sequences of length 1-8 bp. 

They often have poly-A tails, and their RNA transcripts have a conserved hairpin loop 

secondary structure [127]. See [42] for more information about SINEs. 

1.2.6 Tetrahymena TEs 

Tetrahymena thermophila is a single-celled animal that has been much studied as a model 

organism. Research on it has led to Nobel prize winning discoveries about telomeres and 

catalytic RNA. It has many genes in common with human beings and is easily cultured 

in the laboratory making it important in medical research. It is a type of protozoan called 

a ciliate, so called because it moves around using hairlike structures called cilia. 

Ciliates have the unique and interesting property that they have two nuclei, called 

the micronucleus (MIC)and the macronucleus (MAC). The MAC, though larger than the 

MIC, actually has less genetic information. It is larger because it has many copies of all 

its genetic material (i.e., it is polyploid). The MIC genome, like the human genome, is 

diploid with only two copies of all its genetic material. All the genetic information in 

the MAC is also contained in the MIC. Sequences that occur in both the MIC and the 

MAC are referred to as MDSs (macronuclear destined sequences). The MIC is used by 
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Figure 1. 7: Relationship between the MIC and MAC genomes. MDSs are represented by filled 
blue rectangles and IESs by unfilled rectangles. The horizontal red line represents a chromosome 
breakage site and the shaded green rectangles represent the telomeres that are added to the ends 
of each chromosome-like sequence in the MAC. 

the organism solely for sexual reproduction. The MAC is used to run the cell. During 

the sexual phase of the life cycle, a new MAC develops from a diploid MIC zygotic 

fertilization product, and thousands of internal eliminated sequences (IESs) are removed 

from the developing MAC. These MIC-limited IESs comprise over 30% of the MIC 

genome. 

The relationship between the sequences in the MIC and MAC are shown in Figure 

1.7. The MIC has five diploid (two copies) chromosomes. The MAC has hundreds 

of chromosome-like pseudomolecules with about 45 copies of each. Short sequences 

called chromosome breakage sites (CBS) in the MIC indicate where to create a new 

chromosome-like pseudomolecule in the developing MAC. Such a sequence is repre-

sented with a red line in Figure 1. 7. When a breakage occurs, telemeric repeats (repeats 

of the sequence GGGGTT) are added to the ends of the new molecule. For more infor-

mation, see [39, 34]. 

The complete MAC genome sequence of Tetrahymena thermophila is available1 and 

1http://www.ciliate.org 
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the MIC sequence was recently completed2
. It is believed that IESs are remnants of 

DNA transposon insertions. DNA transposons are transposons that do not transcribe 

using reverse transcriptase; they copy using a cut-and-paste rather than a copy-and-paste 

mechanism. They are common in bacteria and protists; less common but still present in 

eukaryotic organisms including humans. The IES elimination pathway is similar to the 

silencing of transposons in metazoans, just more extreme, as they are entirely eliminated, 

not just silenced. 

Having the sequences of both the MIC [27] and MAC [ 45] of Tetrahymena ther-

mophila enables detailed bioinformatic study of the IESs. Formerly, their study was 

based on just a handful of identified sequences. This thesis uses a data set of nearly 6000 

IESs assembled by comparing the MIC genome with the MAC genome and extracting 

the sequences that exist only in the MAC (Algorithm 1). 

This is the first time this has been done for this organism. The techniques <level-

oped for the study of retroviruses are used to bioinformatically describe these sequences. 

Experimental biologists will be able to use this work to form hypotheses and perform 

experiments to further the study of this fascinating and important organism. 

Since TEs in ciliates can be identified with near certainty, they provide a unique 

opportunity to study structural characteristics of TEs. In addition, since ciliates share 

many genes with humans, there is substantial value in gaining an understanding of the 

2http://www.broadinstitute.org/annotation/genome/Tetrahymena/ 
MultiHome.html 
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Algorithm 1: Find IESs using BLAST 
Data: BLAST database of m MAC scaffolds MAC, MIC contigs MIC, minimum 

identity min/, maximum gap percentage maxgap, minimum match length 
minlen, minimum length of group of matches minmatch 

Result: IES sequences 
for each contig in MIC do 

BLAST against MAC using blastn with megablast, no filtering, and e < 0.001; 
for all BLAST hits do 

I 
Store sums of lengths of hits for each MAC scaffold in each orientation in 
array hitlen 

end 
Sort hitlen; 
for i f- 1 to m * 2 do 

if hitlen[i] > minmatch then 
Extract hits for scaf i that have identity > min/, gaps < maxgap, 
length > minlen; 
Arrange in order for both MIC and MAC; 
Trim ends so there is no gap bigger than 30000 and get rid of overlaps; 
Extract IESs (gaps in the match); 

end 
end 

end 
return IES sequences; 
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mechanisms involved in such things as IES excision. These mechanisms are likely to be 

basic to other processes occurring in "higher" eukaryotes. 

1..3 Resources 

Training data from several sources is used. Consensus sequences for TEs from a few 

dozen eukaryotic organisms (i.e. non-bacterial organisms) have been compiled in a 

database called RepBase [65]. Consensus sequences are built from multiple examples 

of a sequence. The number of examples can range from several to hundreds. The se­

quences are aligned (i.e., their corresponding bases are matched, with some sequences 

having insertions or deletions not in the other sequences, referred to as gaps). A new 

sequence, the consensus sequence, is built by taking a majority vote for the base in each 

position of the sequence. This is an inexact process. Judgement is involved in deciding 

that two sequences are the "same." Aligning the sequences quickly and correctly is an 

area of active research. The majority vote process is supposed to filter out mutations, but 

it could also be filtering out important sequence information. There may be no actual 

sequences that are exactly like a given consensus sequence. In Section 5.2.3 some prob­

lems with using consensus sequences for sequence analysis are discussed. However, they 

are generally considered to be useful and representative of a particular type of sequence. 

Some examples of sequences represented by their consensus sequence in RepBase are: 

the Harlequin LTR retrotransposon in humans, the MERV 1 ERV in mice, and the F524 
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SINE in rice. 

The organisms with sequences in RepBase include everything from phytoplankton to 

green plants to insects to domestic animals to humans. At the time of this writing, there 

are 31,022 sequences in RepBase. These include 14,568 LTR retrotransposons, 4098 

ERV s, and 641 SINEs. Also included are DNA transposons (7248), non-LTR retrotrans­

posons other than SINEs (3807), simple repeats (515), pseudogenes (117), and integrated 

virusus (28). There are no IESs in RepBase or any sequences from ciliates, and although 

RepBase contains sequences for DNA transposons, which are believed to be the type of 

TEs from which IESs originated, previous researchers have been unable to find any ho­

mology between Tetrahymena thermophila IESs and the sequences in RepBase. RepBase 

has been used to create partial annotations in many genomes using a program called Re­

peatMasker [121]. RepeatMasker uses homology with sequences in RepBase to identify 

fragments of TEs in sequenced genomes. Some TEs are represented by many fragments. 

In addition to these general purpose databases, there are organism specific databases. 

An organism with good annotations is Drosophila melanogaster. These annotations were 

created using a variety of bioinformatics tools together with hand annotations [ 107]. The 

human genome is complex and difficult to annotate, but much attention and funding has 

been given to its study, resulting in annotations generated from multiple sources without 

much coordination or oversight. The dual genome structure of Tetrahymena thermophila 

makes identifying IESs a matter of comparing the two genomes using BLAST and ex-
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tracting the sequences that exist in the MIC but not in the MAC. Due to the smallness of 

the ciliate research community and the newness of the sequencing, other annotations to 

the genome (like where the genes are) are incomplete and in a state of constant update. 

This work concentrates on sequences from these three organisms. 

Two sources used for identifying ERV s in the Homo sapiens genome are RetroSearch 

[139] and Retrotector [124]. RetroSearch uses a method similar to RepeatMasker's with 

an additional step to string together the fragments. Retrotector scans the genome for 

"motifs," structural features of various kinds, and then assembles complete ERV s. Both 

of these approaches result in annotations that are very likely to be correct, but are also 

likely to be incomplete. The LTRs in the RetroTector sequences are annotated, enabling 

their use for generating training data for solitary LTRs as well. 

For fruit fly sequences, the annotated genome from FlyBase [134] is used. For 

Tetrahymena JES and MDS sequences, the sequences are generated using BLAST (Basic 

Local Alignment Search Tool) [6] with the sequenced MIC and MAC geneomes. BLAST 

is a heuristic algorithm for determining whether sequences are similar. It is widely used 

by biologists. 

1.4 Thesis Organization 

This thesis starts with a review of related work (Chapter 2). Chapter 3 presents statistical 

features developed for sequence classification and identification, and Chapter 4 presents 
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side effect machine features. Chapter 5 presents an extensive analysis of the SEM fitness 

landscape and demonstrates how feature selection can be used to find features that pro­

vide biological insight. Chapter 6 presents the results of classification using both sorts 

of features. The use of these features in a scanner for TEs is described in Chapter 7. 

Finally, a discussion of how the features presented in this thesis can be used to do un­

supervised learning is provided in Chapter 8. This demonstrates how SEM features can 

be used to learn about the sequences and help biologists formulate hypotheses for future 

experimentation. Much of the material in this thesis has been published in two journal 

papers, [17] and [18], and three conference papers [14, 16, 15]. 
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2 Related Work 

As an interdisciplinary thesis, this thesis makes contributions both to computer science 

and biology. The computer science contribution is in developing bioinformatic tech­

niques for DNA sequence analysis. The biological contribution is in applying these 

techniques to the problem of detecting and classifying TEs. This chapter summarizes 

the work done by previous researchers from these two areas. 

2ol Related Work For Analyzing DNA Sequence§ UsiIIlg Signal Pro .. 

cessing And Machine Learning 

Digital signal processing techniques have been applied to various problems in genomics. 

One of the most important is gene finding [89, 73, 118]. Before the Human Genome 

Project was completed in 2003, it was believed that chromosomes were strings of genes. 

In fact, it turns out that only a small percentage of the human genome (about 2%) consists 

of genes. In addition, a gene is not a straightforward sequence beginning with a start code 

and ending with a stop code. Instead, it is a complex mixture of regions that code for 

protein (exons) and regions containing regulatory and other elements (introns). Thus, the 
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problem of identifying genes and the exons within them is a non-trivial one. Overviews 

of how signal processing has been used in gene finding and in other genomics problems 

can be found in [82, 137, 7, 4]. 

2.1.1 Numerical Representations Of DNA Sequences 

In order to apply signal processing techniques to DNA sequences, it is necessary to turn 

them into numeric sequences. There are many ways to do this. One common way is to 

use binary indicator sequences: four sequences, one for each nucleotide: A, C, G, or T. 

The A-sequence, for example, would have a 1 everywhere the sequence had an A and a 

zero elsewhere. This method was first used by Voss [ 141] and is referred to as the Voss 

representation. It has since been used by many others including [ 131, 40, 72]. 

There is some concern that results based on these sequences could be an artifact of the 

representation. In [113], Rushdi and Tuqan compare the Voss representation to four other 

numeric representations and show that they all yield the same DNA Fourier spectrum 

(explained in Section 2.1.2). The four representations they examine are: tetrahedral 

mappings, quaternions, simplex mappings, and Z-curve mappings. 

Tetrahedral mappings map {A, C, G, T} onto {1 + j, -1 + j, -1- j, 1-j}, where j = 

A. These values represent the comers of a tetrahedron projected onto the complex 

plane. Quaternions, a generalization of the tetrahedral mapping, map {A, C, G, T} --+ 

{ i + j + k, i- j -k, -i- j + k, -i + j -k} where these are hypercomplex numbers such 
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that i 2 = j 2 = k2 = ij k = -1. Simplex mappings are a transformation of tetrahedral 

mappings from four sequences to three sequences. 

Z-curve mappings create three sequences based on pairings of bases: AG/CT, AC/GT, 

and AT/GC. These pairings are used because they have biological meaning: AG/CT 

distinguish purines and pyrimidines; AC/GT distinguish amino and keto bases; AT/GC 

distinguish bases with weak and strong hydrogen bonds. The sequence has a 1 if the base 

is one of the first pair, -1 if the base is one of the second pair. The name is derived from 

Z-curves [152], a method used to create a graphical representation of DNA. 

Wang and Schonfeld further develop the theory needed for comparing representations 

in [143]. They use their theory to compare the Voss representation to the representation 

that uses two sequences such that in one sequence there is a -1 for A, a 1 for T, and zeros 

for C and G, and in the other sequence there is a -1 for C, a 1 for G, and zeros for A 

and T. They show that these different representations do not produce equivalent results. 

They also compare the Voss representation to a mapping that creates four sequences: one 

sequence maps A to ~ and G to - ~ and C and T to O; one maps T to ~ and C to 

- ~ and A and G to O; one maps A and G to ~ and C and T to zero; the last maps C 

and T to ~ and A and G to zero. They show that this representation produces the same 

Fourier spectral results as the Voss representation. They show that rotation is the unique 

equivalent transformation from one mapping to another that leads to consistent results, 

and that, when there is inconsistency, it increases as the window size of the analyzed 
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DNA sequences increases. 

Real number mappings are used as well, particularly with AR models (see Section 

2.1.3). A common one is A = -1.5; T = 1.5; C = 0.5; G = -0.5. This is used, 

for example, in [33]. This mapping has the nice property that it is easy to calculate the 

sequence on the opposite strand: just multiply by -1 and reverse the sequence. For a 

comparison of the use of different mappings on a particular problem, see [ 109]. 

2.1.2 Discrete Fourier Transform 

The discrete Fou_rier transform (DFT) of a sequence X[n] of length N is defined as: 

N-1 

X[k] = L X[n]e_i2;z,kn (2.1) 
n=O 

It is known to be useful in finding periodicities, so this was its first application in ge-

nomics. In [132], Trifonov found periodicities of 3, 10.5, 200, and 400 bases. He 

explained the 10.5-periodicity based on the need for the DNA to deform and fold in 

the nucleus and based on the coiled structure of some of the proteins coded for by the 

DNA. The 200- and 400-periodicities were explained by the segmented prganization of 

the genome. The 3-periodicity was found only in protein coding regions (exons), which 

led to the use of the DFT in gene finding. 

The reason for the 3-periodicity in protein coding regions is that the identity of the 

third base of a codon matters less than the identities of the other two bases due to the way 

the genetic code is constructed. This generates a 3-periodicity in the DFT, making the 
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Figure 2.1: Histogram of phase values computed with a sliding window on a sequence from a 
coding region from the human genome. 

value of the DFf at~ particularly useful for analyzing DNA sequences. The DFf pro-

duces a complex number that has a magnitude and a phase (rand fJ in polar coordinates). 

Both the magnitude and phase have been used to distinguish between protein coding and 

non-protein coding regions of the genome [40, 72, 133]. High magnitudes at ~ signify 

coding regions. 

The phase value is used in [72] by Kotlar as part of his so-called Spectral Rotation 

Measure. This measure relies on the fact that histograms of phase values computed for 

a sliding window on a region of a genome look considerably different depending on 

whether the region is protein coding or not. Figure 2.1 shows an example histogram for 

a coding region of the human genome; Figure 2.2 shows a histogram for a non-coding 

region. These phase values were calculated using a 240 bp sliding window on the DNA 

sequence, sliding 3 bp between calculations. 
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Figure 2.2: Histogram of phase values computed with a sliding window on a sequence from a 
non-coding region from the human genome (reprinted from [ 16]). 

Kotlar' s spectral rotation measure is given by: 

(2.2) 

where A(s), T(s), C(s), and G(s) are complex numbers representing the values of the 

DFf at frequency one-third for the Voss representation of DNA sequences; µA, µr, µc, 

and µc are the approximated average phase values for coding regions, and a A, ar, a c, 

and a c are the standard deviations of the phases for coding regions. The µ and a values 

are species specific. This measure has higher value for coding regions than for non-

coding regions, because it selects out the parts of A( s), T( s), C( s), and G( s) pointing 

in the direction of the peak value of the histogram similar to that shown in Figure 2.1. 

Kotlar also defines a G Rotation Measure based only on the binary sequence defined by 
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G bases: 

(2.3) 

whereµ is the value of{µ,µ+ 2
;, µ - 2

;} which is maximal (an adjustment for reading 

frame). Kotlar finds that both the Spectral Rotation Measure and the G Rotation Measure 

are effective for finding coding regions in yeast, and, in fact, perform similarly. 

In addition to being useful for detecting coding regions, the phase histogram gives 

information about which reading frame is being used (which is why Kotlar needs to 

make theµ adjustment). An insertion or deletion (i.e., a shift in reading frame) in exons 

in coding regions shifts the reading frame by - 2
; and 2

; respectively. Figure 2.3 shows 

the impact of deleting one base from the middle of the sequence generating the histogram 

in Figure 2.1. The two reading frames in the sequence are represented as two groups in 

the histogram shifted 2
; from each other. Similarly, Figure 2.4 shows the three reading 

frames created when a second base is deleted. 

Fourier magnitude and phase values at frequency one-third are quick and easy to 

calculate. In [90], the following formula is derived from the position count functions, Ci, 

where i E 1, 2, 3. The value of Ci is the number of ones in the ith position of each group 

of three scanning across the sequence. The Fourier phase value at frequency 1/3 is: 

(2.4) 
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Figure 2.3: Histogram of phase values computed with a sliding window on the sequence from 
Figure 2.1 with one base deleted creating two reading frames. 
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Figure 2.4: Histogram of phase values computed with a sliding window on the sequence from 
Figure 2.1 with two bases deleted creating three reading frames. 
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The Fourier magnitude value is: 

(2.5) 

A disadvantage of using the DFT to analyze DNA sequences is that, in order for it 

to work well, it is necessary to use a window with length of at least a few hundred base 

pairs. This means that it is not useful for characterizing short sequences. 

2.1.3 Autoregressive Models 

A technique that works well for short sequences is an autoregressive model [55]. Au-

toregressive models are used for analysis of genomic sequences in (33]. They have the 

advantage over the DFT in that they work with smaller window sizes and, thus, shorter 

sequences. The idea of a forward predictive autoregressive model is that, given a number 

p of previous values in a sequence x, the value of x( n) can be predicted using: 

p 

x(n) =I: akx(n - k) - e(n) (2.6) 
k=l 

where ai, a 2 , ... , aP are prediction coefficients, e(n) is the prediction error, and pis the 

order of the model. Likewise, a backward predictive AR model predicts the value of x(n) 

based on following values in the sequence. The prediction coefficients are calculated 

by minimizing the mean squared forward prediction error by solving the Yule-Walker 

equations or by using the Burg Method. 
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The Yule-Walker equations are: 

p 

L akrxx(i - k) = rxx(i), i = 1, 2, ... ,p (2.7) 
k=l 

where r xx is the autocorrelation function. Since the sequences are not infinite, an estima-

tor must be used for evaluating the autocorrelation. Reference [33] uses: 

N-lil-1 

f xx(i) = ~ L x(k + lil)x(k) (2.8) 
k=O 

where N is the length of the window. 

The Burg Method is based on the Levinson-Durbin recursion algorithm for solving 

the Yule-Walker equations. In order to get a more stable solution, Burg's Method min-

imizes not just the forward prediction error, but the sum of the forward and backward 

prediction errors. 

Once the prediction coefficients have been calculated, they can be used in various 

ways. One way is for comparing sequences. A model for one sequence (for example, 

a gene) can be computed and then used to calculate the error for another sequence (one 

being tested to see if it is a gene) using that model. This gives a measure of "goodness 

of fit." In [33] it was found that the "goodness of fit" test did not work well for gene 

prediction and that it was highly specific for particular genes, especially as the model 

order increased. An alternative is to use the prediction coefficients as features of the 

sequence. This is more useful. In [33] it produced good results for gene finding, looking 

for repeated sequences, and identifying sequences with similar chemical structures. 
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Autoregressive models were also used for finding tandem repeats (short sequences 

repeated many times in a row) in [154] and for classifying HIV-1 subtypes in [150]. In 

[154], peaks in the power spectral density function P(w) calculated from the prediction 

coefficients for the model using: 

(2.9) 

indicated period m repeats, where the peak value w = ~. In [ 150] an artificial neural 

network trained on prediction coefficients was used for classification. 

2.1.4 String Kernel 

Instead of converting DNA sequences to numerical values, some researchers study them 

using kernel methods, such as Support Vector Machines (SVMs). A kernel provides a 

method for mapping data from one space to another in order to perform the "kernel trick" 

of separating data that is unseparable in the original space. For more information about 

SVMs, see Section 6.27. 

To perform the kernel trick, it is necessary to define a kernel that operates on strings. 

One way to do this is by using k-mers. A k-mer is a string of length k generated from an 

alphabet. For DNA sequences either the alphabet {A, C, G, T} or the alphabet containing 

the 20 amino acids can be used. Typically, sequences are counted from all possible 

starting points in the sequel).ce, so that, for example, the sequence AGGT contains the 

2-mers: AG, GG, and, GT. To form a string kernel, one calculates the frequency of 
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occurrence of all k-mers for a given k, for example all 3-mers. Sometimes all k-mers 

for k = 1 .. n for some particular n are used. Some examples of successful applications 

of k-mers to bioinformatics classification problems include [76, 69, 5, 2]. String kernels 

(using different alphabets) are also used for classification problems, for example text 

classification. 

String kernel features have the advantage that they require no biological knowledge 

to construct, and they yield a large set of features, some of which are often effective. 

They have the disadvantage that, as k increases, the number of features increases ex­

ponentially. Also, for large k, many of the features have a value of zero. For exam­

ple, if k is six, the expected value of the 6-mer feature, AACGGT, in a random se­

quence of length 200 is 0.05. Also, insertions and deletions are common in DNA se­

quences. The string "TTTTTTTT" often has the same biological significance as the 

string "TTTTTTTTTITfTTT," but the 4-mer "TfTT" occurs five times in one and 

twelve times in the other. 

The string kernel features supplement the other statistical features in the classifiers. 

They are also used as a basis for comparison of for the SEM features (Chapter 4), since 

SEM features also have the property of creating a large set of potentially useful features. 

They can be used with or without feature selection. 
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2.1.5 Entropy 

A measure from information theory that has been useful in gene finding is Shannon 

entropy [ 119]. It is useful because of the fact that in protein coding regions not all codons 

(groups of three nucleotides coding for an amino acid) are used uniformly, while in non-

protein coding regions they are. In [22] Bernaola-Galvan et al. compute the entropy of 

The letters A, C, G, and T represent the four possible bases; the subscripts represent 

their position in the sequence mod 3, i.e. their position in their codon. Other alphabets 

are possible: the 4-symbol alphabet of bases, the 16-symbol alphabet of dinucleotides 

(pairs of bases occurring in a row), the 64-symbol alphabet of trinucleotides. For each 

sequence in [22], the frequency vector F = {f1 , ... ,f 12 } was computed for the 12 

symbols. Shannon entropy H ( F) was calculated using the formula: 

H(F) = - L fj log2 fj 
j 

(2.10) 

To compare two sequences, the Jensen-Shannon divergence C(F1 , F2 ) was calculated 

using the frequency vectors (F1 for the first sequence, F2 for the second sequence, and 

F for the concatenated sequence), lengths (n1 for the first sequence, n 2 for the second 

sequence and N for the concatenated sequence), and the formula: 

(2.11) 
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Two sequences are considered to be of different types if their Jensen-Shannon divergence 

is greater than that of two random sequences. 

This method was used to find the boundaries between protein coding and non-protein 

coding regions in the following way. A sliding pointer was moved through the genome 

and the Jensen-Shannon divergence was calculated for the sequences on either side of 

it. The point of maximum divergence was calculated. If that divergence was greater 

than for random sequences, a cut was made. Next, the procedure was repeated on the 

subsequences created. There resulted in a segmentation of the genome that was a good 

match for coding/non-coding boundaries. 

Another way to use Shannon entropy is to calculate based on the string kernel. It can 

be calculated, for example, for dinucleotides, trinucleotides, or both grouped together. In 

this way, it acts as a sort of summary feature for the string kernel features, thus reducing 

the number of features while retaining much of the information. For example, the single 

6-mer entropy feature summarizes the 4096 6-mer features in the string kernel. 

2.1.6 Hidden Markov Model 

Another way of modelling a DNA sequence type is with a Hidden Markov Model_ (HMM) 

[63]. HMM are used in many other applications as well, such as musical score following 

and handwriting recognition. A HMM looks like a probabilistic finite state machine. 

There is a state for each base in the sequence and four transitions out of that state, one 
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0.99 

A A T 

A 0.40 

c 0.10 

G 0.10 

T 0.40 

A 0.05 

c 0.50 

G0.40 

T 0.05 

Sequence (input) 

G T C C C 

0.90 

G A T 

0.40 0.40 0.40 0.10 0.40 0.50 0.50 0.50 0.40 0.40 0.40 

States (hidden) 

1 1 1 1 1 2 2 2 2 1 1 

1.00 0.99 0.99 0.99 0.99 0.01 0.90 0.90 0.90 0.10 0.99 

Figure 2.5: Example of a Hidden Markov Model. 
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for each possible base, labelled with the probability that base will occur. An example 

is shown in Figure 2.5. The probabilities of the possible paths are used to calculate a 

score for a sequence based on the probability the model has of generating that sequence. 

The word "hidden" refers to the sequence of states followed to generate the sequence. In 

contrast to simpler Markov models, like Markov chains, these are unknown and have to 

be determined. An expectation-maximization algorithm is used to find the sequence of 

hidden states for a given input. It has complexity 0( L * 8 2 ) where L is the length of the 

sequence and S is the number of states. Thus, for detecting long, complicated sequences 

its use is impractical. It has, however, been used successfully for gene finding [56]. 

A variation on a HMM is a profile Hidden Markov Model (pHMM) [63]. An example 

is shown in Figure 2.6. This model is used to identify a particular sequence that has been 

modified by mutation with insertions, deletions, and substitutions. It has three types of 

states: match states, insert states, and delete states. A score is calculated for a sequence 

based on the best path through the pHMM. For a review of the use of various types of 

HMM in bioinformatics, see [151]. An example of its use detecting a type of TEs is 

described in Section 2.2.3. 

2.2 Related Work Detecting And Classifying TEs 

Current annotations of TEs are based on a variety of bioinformatic tools and are con­

sidered to be works in progress. RepBase contains a library of known TEs. A ge.neral 
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A 10 A 10 

c -5 c -5 
... _.... 

G -5 G -5 --
T -1 T -1 

Sequence: G A G G A 

Score: -4 +10 - 2 - 2 +10 = 12 

A 10 

c -5 

G -5 
T -1 

Figure 2.6: Example of a profile Hidden Markov Model. Green squares represent the start and 
end; green rectangles are states representing each position in the sequence; the yellow diamond 
is an insert state; the red circle is a delete state. 
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purpose tool for identifying TEs is RepeatMasker [ 121]. It works for all types of TEs 

and a variety of species, any that have TEs in the RepBase library. Tools specifically 

developed for finding HERVs include HERVd [98, 99], RetroSearch [139, 1, 70], and 

RetroTector (124, 123]. There are also a variety of tools designed to detect TEs in non­

human species. These are of value to this work both for creating data sets for machine 

learning and for providing ground truth for testing. Fewer previous works have focused 

on distinguishing different types of TEs. The work in this thesis supplements that done 

by TEclass [2] and REPCLASS [ 47]. 

2.2.1 RepeatMasker 

RepeatMasker [121] is a progra.QJ. designed to screen DNA sequences for repeated ele­

ments (including ERV s) and for low complexity sequences (like a 100 base pair sequence 

that is mostly As and Ts). About half the human genome falls into these categories. Users 

of RepeatMasker have to identify the species of the input sequence. It operates based on 

sequence homology with reference consensus sequences. Best results are obtained for 

human and mouse sequences since these currently have the best collections of reference 

consensus sequences. RepeatMasker's primary purpose is to mask parts of a DNA se­

quence whose presence could result in false positive matches in another search. Since it 

categorizes the type of repeats it finds, it is also useful for those interested in a particular 

type of repeat, like all ERV s or all occurrances of a specific type of ERV. 
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RepeatMasker starts with a database of consensus sequences for each repeat type 

taken from RepBase. A dynamic programming algorithm, called the Smith-Waterman­

Gotoh algorithm [ 122, 51] is used to align the consensus sequences to the input sequence. 

Sequence alignment is challenging, because mutations can cause substitutions, inser­

tions, and deletions in sequences. In order to get the best match, it is necessary to decide 

where to put gaps and how big to make them. Also, if the sequences are different lengths, 

there can be many choices of where to start the alignment. The Smith-Waterman-Gotoh 

algorithm finds the optimal alignment by constructing a matrix with scores for possible 

alignments. Scores for alignments are based on a weighting system. designed so that 

matches improve the score, mismatches detract from it, and there is a penalty for gaps. 

The score at position ( i, j) in the matrix represents the best possible score for the first i 

bases in sequence 1 and the first j bases in sequence 2. The optimal alignment can be 

constructed by backtracking from the highest score in the matrix. 

2.2.2 HERVd 

HERVd3 was a database of HERVs. It was last updated in 2003, was operational when 

this research was begun, but is no longer being maintained. It is based on the build 

of the human genome current in 2003. The user can search the database for a specific 

HERV (using its ID number), for HERVs with a specified range of lengths, for HERVs 

3http://herv.img.cas.cz/ 
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in a particular family, for HERV s on a particular chromosome or in a particular sec­

tion of a chromosome, for HERVs with a given orientation (sense or antisense), or for 

HERVs with a specified GC content (proportion of G and C bases), or for any combina­

tion of these. The original database included 39 HERV families and identified about a 

third of HERV s. The number of HERV s identified was increased when more consensus 

sequences were identified, doubling the number of HERV families included. 

The database was assembled starting with the consensus sequences for various fam­

ilies of HERV s in Rep Base. RepeatMasker was used to screen for non-retroviral trans­

posons that would confuse the search and to search for matches to the consensus se­

quences. To cope with identification problems caused by mutations resulting in insertions 

and deletions (including retroviruses inserted into other retroviruses), HERVd employs a 

defragmentation algorithm. The creators of HERV d do not provide complete details of 

how this algorithm is implemented. All that is said is that it uses profile Hidden Markov 

Models [ 44] to define HERV families and to assign HERV sequences to these families. 

The defragmentation algorithm pieces together the sequence fragments identified by Re­

peatMasker. In addition, the flanking DNA is examined in an attempt to identify target 

site duplications (TSDs). TSDs are copies of a small number of bases at the insertion site 

of a transposon. 

Advantages of this method include having the identified retroviruses classified by 

family and being able to find retroviruses that are heavily mutated and fragmented. The 
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major disadvantage is that the process must be repeated every time a new build of the 

genome is done and that it must be custom designed for a particular species (in this 

case, human beings). Another disadvantage is that it is only able to find retroviruses that 

belong to known families. 

The HERV d database has been used in various ways by researchers. Some of the au­

thors of the database, together with some other researchers, used it to study the HERV-W 

family [ 100]. The HERV-W family is important, because of its possible role in multiple 

sclerosis, rheumatoid arthritis, and schizophrenia. Their studies suggested that scien­

tists studying these diseases should focus on a particular subset of HERV-Ws. In [29], 

the HERV d database was used to study the sequence CCTGTT, a sequence that occurs 

unusually often in the human genome. The authors used HERV d to discover that this 

sequence occurs even more often in HERV s. Belshaw et. al. [ 19] used HERV d to study 

mutations in the env gene of various HERV families. Since the env gene is only needed 

if the retrovirus leaves the cell, the types of mutations found in it are a clue to whether 

copies of the retrovirus were created by infection from exogenous viruses or from retro­

transposition (copying and pasting the new copies in the genome). 
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2.2.3 RetroSearch 

Another database of HERV s is called RetroSearch4
. RetroSearch lets users search for 

HERVs in the 2003 Human Genome Assembly by ID number, HERV family, location (a 

range can be specified), minimum length, minimum ORF length, minimum number of 

ORFs, minimum identity to a known retroviral protein, minimum LTR length, a speci­

fied range of distances between LTRs, and minimum identity of LTRs to known LTRs. 

ORFs (open reading frames) are regions coding for particular proteins. When referring 

to retroviruses, the terms "gene" and "ORF' are often used interchangeably (although 

many biologists consider this incorrect). 

The RetroSearch database was built starting with a query database of 237 endoge­

nous and exogenous retroviruses from a variety of host organisms. These sequences 

were edited so that they contained only the part of the retrovirus that codes for genes. 

This was to avoid finding solitary LTRs. A BLAST search of the human genome from 

the query database was done. The BLAST algorithm is similar to the Smith-Waterman­

Gotoh algorithm used by RepeatMasker, except that it uses a heuristic instead of an 

exhaustive search. This allows it to run about 50 times faster at the cost of some accu­

racy. It identifies matches (hits) between the query and the input sequence and assigns 

scores. Overlapping hits were clustered together and assigned a region score based on 

the BLAST scores of the sequences. If the score was high enough, the flanking DNA 

4www.retrosearch.dk 
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on either side was examined for LTRs. The results were called "putative HERV s". The 

next step was to find ORFs in the putative HERVs. This was done by searching for 

stop codons within the putative HERV s. Regions between two stop codons that were 

long enough (> 62 nucleotides) were compared to a database of over 6000 retroviral 

and non-retroviral proteins using a PASTA search [81, 101]. A PASTA search is simi­

lar to a BLAST search, except that it is especially tuned for aligning proteins. Regions 

with retroviral ORFs were identified as HERV s. The original database using this method 

identified 1.1 % of the human genome as containing HERVs (about 14% of HERVs). 

This database was later updated and expanded. Data is displayed online together with 

data for the same regions from RepeatMasker. Often, there are noticeable differences. In 

the course of this research, RetroSearch was removed from the internet due to becoming 

outdated. 

Advantages of this method include having the HERV ORFs identified and search­

able. One can, for example, search for all HERV s that have an env ORF that is more 

than 200 nucleotides long. (It finds 493 of these.) This makes it possible to assemble 

custom databases for studying particular retroviral genes. This database is pickier about 

its choices than HERV d, identifying fewer, but doing more to verify that the retroviruses 

in it are actually retroviruses and not just sequences that resemble retroviruses. The 

disadvantages are similar to those of HERV d: the process must be repeated for every 

new build of the genome sequence, it only includes human ERV s, and only retroviruses 
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similar to known retroviruses are found. 

RetroSearch has been used primarily for studying intact retroviral genes. In partic­

ular, it was used to study a HERV envelope gene that is expressed in the placentas of 

monkeys and apes [70]. 

2.2.4 RetroTector 

The RetroTector algorithm5 takes as input a genomic sequence of length 5,000 to 10,000,000 

bps. It was originally designed only for human genomic sequences, but has been ex­

tended to accommodate primate, chicken, cow, dog, elephant, horse, lizard, mouse, and 

zebra fish genomes. However, the species must be given as input to the algorithm. Retro­

tector scans the input sequence, finds ERV s, identifies the LTRs and retroviral protein 

genes, and outputs them in an annotated format such as is found in textbooks. 

The algorithm has five parts: 

1. First, it "sweeps" the input sequence, masking out all Alu and Ll fragments, since 

these could be confused with ERV s. Alu is the most common SINE, and L 1 is the 

most common LINE. 

2. Next, it searches for LTR pairs and attempts to find solitary LTRs. Solitary LTRs 

are usually remnants of a cut-and-paste transposition in which the "cut" is incom­

plete. 

5http://www.kvir.uu.se/RetroTector/RetroTectorProject.html 
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3. Then, it searches for motifs (using a library of 275). Motif is defined loosely. From 

a programmer's point of view, a motif is a procedure for detecting a conserved ERV 

trait, taking into account the possibility of mutation. Most of the motifs are pro­

cedures that detect close matches to specified amino acid sequences, but they also 

use trained neural nets and some other procedures. The program is designed so 

that it is easy to add new motif modules. Each motif has constraints on its relation­

ship to other motif hits and the LTRs (distance from and relative position). Also, 

each motif is assigned to a particular retrovirus genera. Using this information, the 

algorithm puts together chains of motifs and LTRs, creating a putative ERV. This is 

the part of the algorithm that is species specific. New motifs and constraints have 

to be devised for each species. 

4. Given the putative ERV, the algorithm tries to identify the genes for gag, pro, pol, 

and env proteins. These are proteins common to all retroviruses. 

5. The last step is to look for other possible genes. 

Retrotector has been used to build a retroviral taxonomy [ 61], to study HERV gene 

expression in cancer [3], and to study the impact of retroviral defence mechanisms, 

known to disable exogenous retroviruses, against endogenous retroviruses [62]. 

Researchers associated with the Retrotector project use profile Hidden Markov Mod-
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els (pHMMs) to detect solitary LTRs in [20]. They use different models for HML 6, 

gamma, beta, and lenti retroviruses, as well as a general model. Their best model, which 

detects HML retrovirus solitary LTRs, achieves 87% sensitivity and 96% specificity 

(92% accuracy), and their combined models achieve 53% sensitivity and 74% speci-

ficity ( 64 % accuracy) on a scan of human chromosome 19 as compared to RepeatMasker 

annotations. Their actual accuracies could be much higher as the RepeatMasker annota-

tions are unlikely to be entirely correct and complete. From their models they identify 

seven conserved modules in solitary LTRs. 

2.2.5 ERV s In Non-human Species 

Researchers focusing on organisms other than human beings prefer different terminol-

ogy. Instead of "endogenous retroviruses" they say "LTR retrotransposons" (a somewhat 

broader category), and the focus is more often directed towards discovering how they 

affect the operation and evolution of the genome rather than on how they impact dis-

ease. The researchers are interested not in specifically finding ERV s, but in finding all 

repeated elements, all TEs, or all retrotransposons (SINEs, LINEs, and ERVs). Another 

distinction they make is between Class I and Class II transposable elements. Class 1 

TEs do not use an RNA intermediate when they replicate. Class II TEs do use RNA 

intermediates and are also called "retrotransposons" or "retroelements". Other common 

6HML retroviruses are beta retroviruses that have been well-studied in humans because they include 
the most recent insertions. They are families of HERV-K. HML stands for Human MMTV-like. 

53 



distinctions are "replicative" (copy-and-paste transposition) and "nonreplicative" (cut­

and-paste transposition) and "autonomous" (encode genes for replication) and "nonau­

tonomous" (use genes from other TEs to transpose). See a good genetics textbook, such 

as (77] or [ 104], for more information. 

There are many software tools designed to perform these tasks. For a partial list, see 

Table 2.1. For a review, see (21]. There are four different approaches: repeat finding 

methods, homology-based methods, structure-based methods, and comparative genomic 

methods. Table 2.1 lists some of the tools along with which methods they use. Repeat 

finding methods look for repeated sequences in the genome. They use computational 

strategies such as suffix trees and hashing. Homology-based methods take advantage of 

prior knowledge by comparing sequence fragments to a database of classified sequences. 

Some use a direct comparison with the sequences in the database; others compare the 

sequences using profile Hidden Markov Models. Structure-based methods use known 

characteristics of the structure of the elements to find them. They look for characteristic 

features of pieces of the ERV: LTRs, TSDs, PBSs, PPTs, and sequences that code for 

proteins found in the elements. LTRs are repeated regions at the beginning and end of 

the ERV. TSDs are short ( 4-6 bp) repeats in the region flanking the ERV on either end. 

PBSs are primer binding sites, the place on the ERV where transcription starts. PPTs are 

polypurine tracts, a section of the ERV rich in purines, A and G bases . (ERV structure 

is discussed in more detail in Section 3 .1.1.) They identify subsequences that have these 
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features spaced appropriately. Comparative genomic methods compare closely related 

genomes, either from the same species or closely related species. Regions that exist in 

one genome but not in others are likely transposons. After a new transposon family has 

been discovered, a consensus sequence is created and put in RepBase to be used in future 

searches using homology-based methods. 

It seems odd that so many tools have been created, especially since they are freely 

shared. Why not just develop one good tool and use it? The reason is that each tool has 

strengths and weaknesses, and the best results are obtained by using a combination of 

them. Saha et. al. [115] compared six de novo repeat finding algorithms using the same 

data from the rice genome and found that their results were profoundly different. De 

novo algorithms are algorithms that do not incorporate a database of known elements. In 

[64, 57, 107] there are examples of studies in which a combination of tools were used 

effectively in the rice, chicken, and fruit fly genomes. 

Quesneville et. al. [ 107] describe the process by which the transposons in the 

Drosophila genome were annotated. Since Drosophila was the first large genome se­

quenced, it is of particularly high quality and its assembly has been well verified, mak­

ing it a good choice for developing a model process. A pipeline for annotating the trans­

posons in Release 4 of the Drosophila genome was developed using the manually curated 

set of annotations from the Release 3 genome as a benchmark to test the technique. The 

results using four homology methods and four de novo methods were compiled and given 
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Table 2.1: Software tools for TE discovery. 
name method website 

SSA HA repeat finding www.sanger.ac.uk/resources/ 
(94] software/ssaha/ 

REPuter repeat finding bibiserv.techfak. 
(75, 74] uni-bielefeld.de/reputer/ 
Re AS repeat finding ftp.genomics.org.cn/pub/ReAS/ 
(79] software/ 

RepeatScout [ 106] repeat finding bix.ucsd.edu/repeatscout/ 
BLAST homology blast.ncbi.nlm.nih.gov/ 

[6] /Blast. cgi 
HMMER homology hmmer.janelia.org/ 

(43] 
MGEscan-LTR structure darwin.informatics.indiana.edu 

(111] /cgi-bin/evolution/ltr.pl 
LTR-8TRUC structure www.mcdonaldlab.biology. 

(91] gatech.edu/finalLTR.htm 
LTR_par structure www.eecs.wsu.edu 

[66] /-ananth/software.htm 
LTR_FINDER structure tlife.fudan.edu.cn 

(148] /ltr_finder I 
LTRdigest structure genometools.org 

(125] 
Capsi and Pachter comparative math.berkeley.edu 

(32] genolllic /-lpachter/software.html 

to five human curators, each working on a separate chromosome arm. A single human 

curator did a second pass to improve consistency. The fact that to get a high quality an-

notation eight methods were needed plus manual curators demonstrates the importance 

of developing new methods using novel approaches. 
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2.2.6 Related Work Classifying Different Types Of TEs 

Although there are many software packages designed to detect genomic repeats, there 

are few designed to classify already detected repeats. Two such are TEclass [2] and 

REPCLASS [47]. TEclass classifies based on k-mer statistics. Elements are classified as 

DNA transposons, LTR retrotransposons, SINEs, or LINEs. Three classification methods 

are used: SVMs, random forests, and learning vector quantization. 

REPCLASS classifies LTR retrotransposons, DNA transposons, SINEs, LINEs, and 

Helitron elements 7 using three modules: a Homology Module, a Structural Module, and a 

TSD (target site duplication) Module. Their Homology Module compares the sequences 

to the RepBase repeat library. Their Structural Module looks for structural features typ-

ical of particular types of repeats. REPCLASS's TSD Module examines the repeated 

elements in their genomic context, looking for target site duplications, which are short 

sequences repeated at the beginning and end of some types of repeats that are different 

for each instance of the repeat. The creators of REPCLASS do not test their method on 

solitary LTRs and say in [ 4 7] that they suspect it will not work well for them. 

7Helitron elements are DNA transposons that transpose by rolling-circle replication instead of the usual 
cut-and-paste replication. 
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2.2.7 Difficulties Created By Sequence Assembly Methods 

The retroviral detection methods described in the previous sections operate on assembled 

sequences. A limitation of their effectiveness results from the way sequence assembly 

is done. With current technology, the longest DNA strand whose sequence can be di­

rectly determined is 1000 bps long. The shortest human chromosome is 50,000,000 bps. 

In order to sequenc~ a chromosome, a process called shotgun sequencing is done. In 

shotgun sequencing, the DNA is randomly shattered into pieces using ultrasound, the 

pieces are inserted into cloning vectors (known sequences of DNA), the cloning vectors 

are inserted into a bacteria, multiplied until there are enough to sequence, sequenced, 

and then the pieces are put them together like a jigsaw puzzle. The putting together step 

is called sequence assembly. Typically, the genome is oversampled by 20-30 times so 

that little is missed. Sequence assembly is not a trivial task and the primary reason is 

the repeated regions, like SINEs, LINEs, and ERV s. It is like putting together a jigsaw 

puzzle in which large numbers of the pieces are identical. The assembled sequence also 

includes gaps, due to the fact that the sampling is not really random; the cloning vectors 

prefer some pieces over others. The assembly process is described in [93, 105, 116]. The 

consequences of using assembled sequences for detecting TEs are that the TEs are likely 

to be included in the unsequenced gaps (for example, if they are toxic to the bacteria in 

which they are grown), are likely to be put in the wrong place, and some copies are likely 
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to be left out entirely. 

2.3 Conclusion 

This chapter reviewed statistical and signal processing methods for analyzing DNA se­

quences: DFf, autoregressive models, string kernels, and entropy. The next chapter will 

present some novel statistical features based on the DFf designed specifically for detect­

ing TEs. The string kernel and entropy features in Chapters 6 and 7 will be used together 

with the features presented in Chapters 3 and 4 to build classifiers to identify TEs and 

distinguish TEs from other sequences. Autoregressive models will not be used because 

they proved to be ineffective with TEs due to their non-linear character. 

This chapter also reviews a machine learning method for DNA sequence analysis: 

pHMMs. String kernels are also used with machine learning. Chapters 4 and 5 will 

apply anther machine learning method, SEMs (Section 1.1.2), to the problem of DNA 

sequence analysis. The string kernel will be used as groundwork for understanding and 

analyzing the features produced by SEMs. The databases discussed in Section 2.2 will 

be used to create training sets and also to quantify the success of the methods. 
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3 Statistical Features 

Three novel sets of statistical features for the detection and classification of TE sequences 

are presented. The first set of features uses the fact that overlapping genes are often found 

in LTR retrotransposons and ERV s and these genes typically use more than one reading 

frame. The reading frame predictions made using the Fourier transform are used fto 

generate features that capture the reading frame structure of LTR retrotransposons and 

ERVs. The second set of features characterizes the non-randomness of the sequences 

based on their frameshifts. The final set was designed to find patterns in TEs that are 

regulatory rather than protein coding and to aid in interpretation of SEM features. This 

feature set is based on statistics of the bases in the sequences. 

3.1 Reading Frame Structure Features 

The first set of features were developed to identify TEs that are remnants of retroviral 

insertions, such as LTR retrotransposons, ERV s, and IESs. These features are based on 

the observation that retroviral DNA often has overlapping genes that use multiple reading 

frames. It is difficult to predict where and how these frameshifts occur. Even though all 
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retroviruses have the same three (gag, pol, env) genes always occurring in this order, the 

sequences of these genes vary so much that it is necessary to use a large library in order 

to identify them with sequence homology techniques. Even with a large library, many 

sequences are missed. Therefore, an indirect approach was used: estimate the frameshifts 

and then use machine learning to determine whether that pattern of frameshifts suggests 

the sequence is a retroviral-descended TE. Fourier analysis was used in a way similar to 

that done in [90], described in Section 2.1.2. 

3.1.1 Retroviral Genomic Structure 

Retroviral DNA is incredibly diverse. Retrovirusus have a mutation rate much higher 

than that of other DNA. Also, many ERV s that integrated into our genome millions 

of years ago are now in inactive portions of the genome. Hence, there is no selection 

pressure governing their mutations. This means that the task of finding the ERV s in 

a DNA strand is not trivial. Methods currently used to find them include looking for 

repeated elements [98], comparing to known retroviral genomes [139], and using biolog­

ical knowledge combined with machine learning [124]. None of these methods is perfect. 

Algorithms that search for repeated elements may miss ERV s that are not repeated often; 

algorithms that compare to known retroviral genomes may miss ERV s if the database 

is incomplete; and algorithms that use biological knowledge may miss ERV s with un­

usual characteristics and only work well if they are used on the genomes of organisms 

61 



for which they have been trained. Each method is hampered by the fact that many ERV s 

are heavily mutated, but the mutations affect each algorithm in a different way. 

One difference between retroviral genomes and genes of eukaryotes (plants and an­

imals) is that eukaryotic genes typically use only one open reading frame (ORF), while 

retroviruses typically use all three ORFs on a DNA strand. These ORFs sometimes over­

lap. Furthermore, all retroviral genomes have the same basic pattern with minor varia­

tions for different types. They begin and end with non-coding sequences, and they have 

three genes that always occur in the same order (gag, pol, and env). Some retroviruses 

have additional genes; in particular, lentiviruses (like HIV) have six additional genes. 

Retroviruses are difficult to detect using sequence homology, i.e., by looking for 

sequences similar to known retroviral sequences, because they are diverse, having only· 

small portions of their genomes in common. For example, it is estimated that there are 

1060 variants of HIV [138]. An analysis of HIV-1 copies within a single nucleus showed 

28% variation in the env gene [142], more than the average protein variation between 

birds and humans. One explanation for this variability is that when RNA is converted to 

DNA using reverse transcriptase, there is no error correction such as there is when DNA 

is copied. Also, due to a lack of selective pressure, many ERV s are heavily mutated to 

the point of being defective or even completely non-functional. These defective ERVs 

are still of interest, however, because of their past influence on the genome, their value as 

molecular fossils, and because some of them can function with the help of other ERV s. 
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TSO L TR PBS leader retroviral genes (gag, pol, env, +others) PPT LTR TSO 

Figure 3 .1: Retrovirus Structure 

An alternative to detection using sequence homology is detection based on structure. 

See Figure 3.1 for an illustration of the retroviral structure. They range in size from 5000 

to 20,000 nucleotides. An intact retrovirus begins and ends with a 18-250 bp LTR. An-

other short non-coding sequence follows. There is then an 18 nucleotide primer binding 

site (PBS). A somewhat longer (90-500 nucleotides) sequence, called a leader, follows. 

Then, come the genes. After the genes, there is a very short (about 10 nucleotides) se-

quence called the polypurine tract (PPT). Then there is a short non-coding sequence, 

followed by the LTR. In addition, the DNA flanking the ERV often includes a TSD con-

sisting of the 4-6 bases at the insertion point. Copies of these bases can be found on 

either side of the inserted retrovirus. 

Retroviral genes have an unusual structural feature - they use overlapping reading 

frames. Reading frames in DNA arise from the fact that the ·genetic code maps nu-

cleotides onto proteins in groups of three. This means that the code translates differently 

depending on whether decoding begins at position 0, position 1, or position 2. For an · 

illustration of this see Figure 3.2. Starting at position 3 will have the same result as 
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--7 
TCAGGTGCCAACGTGGA 
I I I I I I I I I I I I I I I I I 
AGTCCACGGTTGCACCT 

+----

Reading Frame 1: TCA GGT GCC AAC GTG GA?-+ SGANV .. . 
Reading Frame 2: CAG GTG CCA ACG TGG A??-+ QVPTW .. . 
Reading Frame 3: AGG TGC CAA CGT GGA ???-+ RCQRG .. . 
Reading Frame 4: TCC ACG TTG GCA CCT GA ?-+STLAP .. . 
Reading Frame 5: CCA CGT TGG CAC CTG A??-+PRWHL .. . 
Reading Frame 6: CAC GTT GGC ACC TGA ???-+HVGT{STOP} ... 

Figure 3.2: Decoding using different reading frames. The DNA strand is broken into codons on 
the left, and the symbols on the right represent amino acids. 

starting at position 0 (excluding the first protein), so the codes starting at position 0 and 

position 3 are said to be in the same reading frame. On any segment of DNA, there are 

six possible reading frames, three in each direction (sense and antisense). The genes in 

the cells that host the retroviruses mostly use a single reading frame. Retroviral genes, 

however, use all three rea~ing frames in a given direction with the end of one gene often 

overlapping the beginning of another. 

3.1.2 Fourier analysis 

To encode the DNA sequences so they can be used with the Fourier transform, binary in-

dicator sequences inspired by those used in Z-curves (see Section 2.1.1) were used. Three 

binary strings are created: the RY string has a value of one for R bases (purines) and zero 
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for Y bases (pyrimidines); the MK string has a value of one for M bases (aminos) and 

zero for K bases (ketos); the SW string has a value of one for S bases (strong H-bond) 

and zero for W bases (weak H-bond). 

The DFf produces a complex number which can be divided into a magnitude and a 

phase. For these feature, the phase values are used. In [90] it was shown that an insertion 

or deletion in coding regions shifts the reading frame by - 2
; and 2

; respectively. When 

a sequence uses more than one reading frame, the Fourier phase histogram shows three 

peaks spaced 2
; apart similar to those in Figure 2.4. Fourier phase values at relative 

frequency 1/3 are quick and easy to calculate using Equation 2.4, making features based 

on them computationally cheap. 

Once the Fourier phase histogram for a large region (i.e., the size of a typical ERV) 

has been calculated, the reading frame for any subsequence of that sequence can be es­

timated based on where its Fourier phase falls in the histogram. So, for example, if the 

Fourier phase histogram showed reading frame 1 to be between ~ and 7r, then a subse­

quence with Fourier phase ~ would be estimated to be in reading frame 1. This estimate 

would be meaningless if the subsequence was non-coding, and it might be wrong even for 

a coding subsequence because the subsequence had unusual statistical properties. This 

could happen, for example, in regions that code for overlapping reading frames. This 

technique, thus, as well as estimating the reading frame, detects regions with unusual 

statistical properties relating to the reading frame. 
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3.1.3 Fourier phase vectors 

Fourier phase vectors are strings created using combined reading frame information from 

some or all of the indicator sequences. For these features just the RY and SW strings are 

used. This is because, for this purpose, the MK string does not seem to contribute useful 

information. The reading frame with the most members is designated Reading Frame O; 

Reading Frame 1 is shifted one nucleotide from Reading Frame O; Reading Frame 2 is 

shifted two nucleotides. A sliding window estimates the reading frame value for each 

string and. combines them base 3. For example, a 3 (10 base 3) in the string means that 

the RY string reading frame estimate for that window is 0, and the SW estimate is 1. 

Mixed signals are common in non-coding or overlapping regions. The strings of reading 

frame integers created as described above are of lengths equal to the number of positions 

of the sliding window used to compute them. 

A small amount of crucial information is gathered from these Fourier phase vectors in 

the following way. Identical successive values indicate homogeneity in the sequence, at 

least in terms of reading frames. Disagreements signify putative changes, though not all 

putative changes are frameshifts. The relative frequency of these changes over sequences 

of a given length forms a key feature of the sequence. This property is encapsulated in 

terms of a short vector as follows. Given a sequence of phase vector values (encoded as 

integers), the positions in the sequence where successive values differ are computed -
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these are called change points. Then the distances between every two successive change 

points are computed. Let f (i) be the frequency of distance i observed in a sequence. 

Four values are used as features. These values correspond to the expressions f (1), f(2), 

J(3)+ f ( 4)+ f(5) and f (6)+ f (7)+ f (8)+ f(9). Non-coding sequences tend to have large 

values for small i, meaning the sequences switch reading frames often; coding sequences 

have smaller values, meaning the sequence usually stays in the same reading frame for 

stretches longer than i bp. In addition, sequences with overlapping coding regions (like 

ERV s) have short segments representing those overlaps. The average distance between 

change points is also computed and used as a feature. This value tends to be larger in 

sequences with coding regions, and is similar for sequences that have coding regions of 

similar size and placement. 

3.2 Frameshift Histogram Features 

The second set of features detects randomness in the sequence based on the Fourier 

phase histogram. The motivation for its use was to distinguish TEs with coding regions 

from non-coding intergenic sequence. Retroviruses (and thus retrovirus-descended TEs) 

typically use all three reading frames in a given direction; genes typically use just one 

reading frame; non-coding sequences have their own kind of distinctive Fourier phase 

histogram. An example of a phase histogram for a coding region is shown in Figure 

2.1, for a non-coding region in Figure 2.2 and for a retrovirus in Figure 3.3. Notice that 
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Figure 3.3: Histogram of phase values computed with a sliding window on the T sequence of 
the complete genome of the enzootic nasal tumour virus of goats (reprinted from [16]). 

the retrovirus histogram in Figure 3.3 has three identifiable regions of width 27r /3 that 

look similar to the histogram in Figure 2.1. Each region contains phase values for parts 

of the sequence that code for the same reading frame. The pattern is not always this 

clear. Figure 3.4 shows the phase histogram for another retrovirus for which the pattern 

is not so- clear. The pattern is often even less clear, but still somewhat apparent, in LTR 

retrotransposons and ERV s due to mutation. 

3.2.1 Frameshift Histograms for Random Sequences 

The Fourier phase histograms for random sequences are interesting and deserve some 

further discussion. Intergenic non-coding sequences sometimes consist of regulatory 

sequence and, so, are not random. When they are random, they are random in several 

distinct ways. In [72], speaking of Fourier phase values, the authors say the "distributions 
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Figure 3.4: Histogram of phase values computed with a sliding window on the T sequence of 
the complete genome of the human T-lymphotropic virus. 
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Figure 3 .5: Histogram of phase values computed with a sliding window on a randomly generated 
binary sequence with 50% ones (reprinted from [ 16]). 
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for noncoding regions seem to be close to uniform." That statement was likely made 

without checking closely. In fact, these distributions have much more structure than 

would be expected from a uniform distribution. Notice, for example, that the histogram in 

Figure 2.2 divides into six regions with spikes at 0, ~' 2
371", 7r, 4;, 5

;, and 27r. This pattern 

is commonly seen in other non-coding regions as well. It is similar to the pattern seen 

in the phase histogram of a completely random sequence. Figure 3.5 shows the phase 

histogram for a random binary sequence with an equal balance of ls and Os. Notice that 

in addition to having six spikes, the histogram repeats the same symmetric pattern three 

times in the intervals [o, 2
;] , [

2
;, 4;] , and [4;, 27r]. 

Phase histograms of random strings with different proportions of ls and Os maintain 

the same form, but the values of individual bins vary. As long as the proportions are not 

too skewed towards either 1 s or Os, phase distributions of distinct random sequences with 

the same proportions are similar. However, as Figure 3.6 demonstrates, when the pro­

portions are skewed, the distributions can be quite different. Note that the RY/MK/SW 

sequence group will tend to produce sequences that are close to half and half 1 s and Os, 

while the NC/Gff sequence group will tend to produce sequences that are one-fourth ls 

and three-fourths Os. 

Histograms from sequences in intergenic regions sometimes look like random se­

quences and sometimes do not. Figure 3. 7 shows two examples of Fourier phase his­

tograms from tandem repeats, one type of sequence appearing in intergenic regions. 
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Figure 3.6: Fourier phase histograms of two different random binary sequences that are 96% 
ones. 

Tandem repeats are regions in which sequences of two or more nucleotides are repeated 

many times in a row. They are used in genealogical tests. The histogram on the left 

resembles the histogram of a protein-coding region; the one on the right looks like a ran-

dom histogram. This difference results from the length of the repeat - if it is a multiple 

of three, the histogram looks like the histogram of a protein-coding region. 

Histograms from genes can also show aspects of randomness. This is due to the pres-

ence of introns, non-protein-coding regions, in them. Figure 3.8 shows two histograms 

from the same gene in human chromosome 14. The histogram on the left uses the RY 

sequence and resembles a histogram of a random sequence. Note the six characteristic 

spikes. The histogram on the right was built from the SW sequence. The grouping of win-

dows on the right side of the histogram is a result of the exons, protein-coding regions, 

that code in the reading frame associated with that part of the histogram. This demon-
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Figure 3. 7: Fourier phase histograms of two different tandem repeat sequences from the human 
genome. Fourier phases are computed using the RY sequence. 

strates the importance of combining information from multiple indicator sequences. 

Fourier phase histograms can be used to investigate randomness in sequences, but 

not in a simple way. A Fourier phase histograph of a random sequence does not create 

a well-known distribution like a uniform distribution. However, random sequences do 

have characteristic distributions, and different types of random sequences have different 

characteristic distributions. There is, therefore, nuanced information about randomness 

available from these histograms. 

3.2.2 x2 Features 

The Pearson x2 goodness-of-fit test is used to create DNA sequence features by com-

paring the Fourier phase histogram of the sequence to the Fourier phase histogram for a 

random sequence with the same frequency distribution of bases. The x2 test is intended 
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Figure 3.8: Fourier phase histograms from the same gene on human chromosome 14. The 
histogram on the left is built from the RY sequence; the histogram on the right is built from the 
SW sequence. 

as a statistical test to determine how likely it is that two distributions are the same. In 

this work, it is instead used to produce a number that is a feature of the sequence. A 

DNA sequence has three x2 features - one each for its RY, MK, and SW binary indicator 

sequences. 

It is calculated using the formula: 

(3.1) 

where Oi is the value of a bin in the Fourier phase histogram being evaluated, and Ei is 

the value of a bin in the Fourier phase histogram created for a random sequence, and n 

is the number of bins. 
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3.3 Sequence statistics 

The following sequence statistics were used as features: the length of the sequence, the 

content of base types (purine, amino, strong H-bond), the length of runs of particular 

bases, and statistics on distances between bases. 

The length of the sequence is an important feature for classifiers designed to distin­

guish different types of TEs. Many have characteristic lengths. Retrotransposons vary in 

length between 5000 and 20,000 bp, but other types of TEs have more distinctive lengths. 

SINEs range from 200 to 400 bp. Solitary LTRs vary in length between 100 and 3000 

bp. LINEs range from 900 to 6000 bp. The analysis of IESs revealed a hitherto unknown 

difference in lengths, with a large group of IESs having SINE-like lengths (100-500 bp), 

and another large group having lengths up to 10,000 bp. It is an open research question 

whether this length difference is associated with a difference in origin or function. 

While the values of the three divisions of bases into pairs, purine/ pyrimidine, amino/ 

keto, and strong/ weak H-bonds, can always be computed by combining two features 

from the string kernel, i.e, purine content is A-content plus G-content, it is often valu­

able to use such combined features in classifiers. Since these base combinations have 

biological meaning, it was hypothesized that these could be useful. For example, in 

Tetrahymena, it is known that coding and non-coding regions can be easily distinguished 

by looking at the AT-content (the value of strong/weak H-bond feature). 
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>ALU SINE1/7SL Primates 

ggccgggcgcggtggctcacgcctgtaatcccagcactttgggaggccgaggcgggagga 

ttgcttgagcccaggagttcgagaccagcctgggcaacatagcgagaccccgtctctaca 

aaaaatacaaaaattagccgggcgtggtggcgcgcgcctgtagtcccagctactcgggag 

gctgaggcaggaggatcgcttgagcccaggagttcgaggctgcagtgagctatgatcgcg 

ccactgcactccagcctgggcgacagagcgagaccctgtctcaaaaaaaaaaaaaaaaaa 

aaaaaaaaaaaa 

Figure 3.9: Sequence of the most common SINE element in humans, Alu. 

The idea of looking at the length of runs of bases as a feature was inspired by SINEs. 

An example of a SINE is shown in Figure 3.9. Notice that it ends with what biologists 

call a poly-A tail, i.e., a long run of As. This distinguishes SINEs from solitary LTRs of 

similar length. 

The final type of feature used was based on relationships between bases and what 

follows and precedes them. These are called gap features. For these the distance be­

tween pairs of dinucleotides is measured: for example the distance between GA and CC. 

There are 256 such pairs. Three sets of these features are used: the average distance, 

the maximum distance, and the minimum distance. This generates 768 features. Clearly, 

not all of these will be meaningful, so feature selection methods are employed to choose 

the meaningful ones. These feature selection methods are described in detail in Chap­

ter 4. Some examples of effective features for distinguishing SINEs from solitary LTRs 
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taken from this group include: the minimum distance between GC and CG; the average 

distance between AA and CT; the maximum distance between AA and GG. 

3.4 Conclusion 

This chapter presented three sets of DNA sequence features based on signal processing 

and statistical properties. They will be used together with some of the features discussed 

in Chapter 2 and the features presented in the next chapter to identify and classify TEs. 
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4 Side Effect Machine Features 

Side effect machines, introduced in Section 1.1.2, are finite state machines augmented 

with counters assigned to each state that are incremented each time the state is entered. 

A state in a SEM designed for DNA sequences has one transition for each base: A, 

C, G, and T. SEM features for a DNA sequence are calculated by running the sequence 

through the SEM. A DNA sequence is run through the SEM starting in State 0. The bases 

in the sequence control movement through the SEM. For example, suppose a sequence 

being run through the SEM in Figure 4.1 was in State 2 and the next base was a C. The 

transition to State 5 would be followed and the counter for State 5 would be incremented. 

The sequence would then stay in State 5 as all the State 5 transitions go to State 5, and 

the State 5 counter would be incremented for each subsequent base. The final values of 

the counters, normalized by dividing by the string length plus one, are SEM features of 

that DNA sequence. 

SEMs are a recently developed technology for DNA sequence analysis. This thesis 

helps establish a solid theoretical background for SEM features by studying the genetic 

algorithm used to select effective SEMs for a given problem, analyzing the SEM fitness 
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Figure 4.1: Example of an evolved 6-state SEM. Arrows are labelled with IUPAC codes (shown 
in Table 4.1) for DNA base transitions. States 3 and 4 form a transient communicating class. 
States 0, 1, and 2 are transient states, and State 5 is an attracting state. States 1 and 3 create 
highly effective features discussed in Section 5.2.4.1 (reprinted from [17]). 

Table 4.1: IUPAC Codes for DNA bases 
code type bases code type bases 

A adenine A M amino AorC 
c cytosine c K keto GorT 
G guanme G H notG A, T, orC 
T thymine T B not A C, G, orT 
R purine AorG v notT A, C, orG 
y pyrimidine Tore D note A, G, orT 
w weak H-bond AorT N any A,C,G,orT 
s strong H-bond CorG 
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landscape, developing new methods for using evolved SEM features, and developing 

techniques for SEM feature analysis, enabling their use in Knowledge Discovery. 

SEMs can operate using any alphabet, though it is best that it not be too large, since 

each member of the alphabet corresponds to a transition from each state. SEMs with too 

many transitions are difficult to analyze and easier to overtrain than SEMs with fewer 

transitions. For classifying DNA sequences, the natural alphabet to use is { A,C,G,T} 

with four transitions from each state. A 2-state SEM that calculates purine (A or G) and 

pyrimidine (Tor C) content of a sequence using { A,C,G,T} transitions is shown in Figure 

4.2. To enhance readability when drawing SEMs, multiple transitions that go to and from 

the same states are represented with a single arrow and, for { A,C,G,T} transitions, they 

are labeled with IUPAC codes (Table 4.1 ). 

Figure 4.3 shows an example of a SEM with nine transitions instead of four. This 

higher-order SEM is evolved in an experiment described in Section 6.4. For that ex­

periment, the transitions are based on reading frame data. Another obvious application 

for higher-order SEMs is to have transitions based on amino acids (of which there are 

twenty) instead of DNA bases. Using more transitions presents similar challenges to us­

ing more states. The search space becomes larger; the danger of overtraining increases; 

and, the SEMs become harder to interpret. The results of the experiments in Section 6.4 

are not as good as the results with SEMs with four transitions. These are not insoluble 

problems, and future work will study these higher-order machines on more problems. 
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There are a large number of possible SEMs. Effective SEMs are selected using a 

genetic algorithm. The genetic algorithm evolves a population of SEMs using a fitness 

function that measures how well the features in the SEM separate the given data cate­

gories. The original SEM fitness function clustered the data using the features generated 

by the SEM with k-means clustering and then compared the clustering to the known di­

vision using the RAND index. The RAND index is a measure of similarity between two 

data clusterings and is explained in detail in Section 4.2.1.1. In subsequent research, it 

was found that on many problems using k nearest neighbour clustering with the RAND 

index produces better results. In this thesis, two new fitness functions are introduced. 

One.is based on random forest classifiers (Section 6.1.2). Using this fitness function, the 

fitness of a SEM is the accuracy of a 20-tree random forest classifier built using its fea­

tures. It is unusual to build a random forest with only 20 trees. The more usual number 

is 100 or 200. The smaller number was used because in a genetic algorithm one can­

not afford the computational cost of a large number of trees. The other fitness function 

is based on the information theory concept of mutual information. It bases fitness on 

how much information the SEM-induced distance between two data objects gives about 

whether they are in the same or different classes. 

SEMs with many states can be difficult to interpret. Previous work took the approach 

of evolving individual machines with enough states to produce accurate classifiers for 

the problem in question. In order to better understand the features used in the classifiers, 
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Figure 4.2: A 2-state SEM that calculates purine (R) and pyrimidine (Y) content of a sequence 
(reprinted from [18]). Sequence starts in State 0. 

0,.4 

Figure 4.3: Side Effect Machine using 4 states and 9 transitions (reprinted from [14]). 
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an innovation is introduced in this thesis. A two-step approach is taken. First, good 

classifiers with a small number of states are evolved. Then, the results of many replicates 

are combined. Finally, an effective number of diverse features are selected from the 

combined set. 

Some important concepts for analysis of SEMs are transient states, attracting states, 

and communicating classes. Transient states are states that, once left, are never entered 

again. Attracting states are states that, once entered, are never left. Communicating 

classes are groups of states all of which are reachable from all of the others. One can 

also have transient communicating classes and attracting communicating classes. These 

enable the SEMs to divide the sequence into modules. When a sequence is run through 

a SEM, it always starts in State 0. 

4.1 Using Side Effect Machines 

Figure 4.4: A 4-state SEM that calculates the frequency of occurrence of the 3-mer ACG using 
State 3. Transitions involving the bases in the 3-mer are highlighted (reprinted from [18]). 

The set of all SEM features is a superset of the string kernel. Every k-mer feature can 
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Table 4.2: Counter values as DNA sequence "ACGACGACGACG" is run through the SEM in 
Figure 4.4. Columns represent the state counters. Rows represent the DNA bases. Last row is 
normalized counts. 

0 1 2 3 
A 1 0 0 0 
c 1 1 0 0 
G 1 1 1 0 
A 1 1 1 1 
c 1 2 1 1 
G 1 2 2 1 
A 1 2 2 2 
c 1 3 2 2 
G 1 3 3 2 
A 1 3 3 3 
c 1 4 3 3 
G 1 4 4 4 

0.08 0.31 0.31 0.31 

be generated using a SEM with k + 1 states. Figure 4.4 shows a SEM that computes the 

k-mer "ACG" using State 3. Suppose, for example, the DNA sequence, "ACGACGAC-

GACG" ( 4 repeats of ACG) is passed through this SEM. Table 4.2 shows the values the 

counters would have. State 1 is counting the number of As; State 2 is counting the num-

ber of ACs; State 3 is counting the number of ACGs. State 0 only counts the beginning 

of the sequence in this example, but, in a different sequence, it would count all bases that 

were not a part of ACG subsequences. 

Tables 4.3 and 4.4 were created to provide an example of what SEM and k-mer 

features can measure. These tables contain feature values for the SINE Alu sequence 

(Figure 3.9). Table 4.3 shows the features generated by the SEM shown in Figure 4.1, 

and Table 4.4 shows the 2-mer features for the same sequence. Note that the value of 
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Table 4.3: SEM feature counts and values for the SINE Alu sequence shown in Figure 3.9 using 
the 6-state SEM shown in Figure 4.1. 

state 0 1 2 3 4 5 
count 1 0 3 2 2 304 
value 0.003 0.000 0.010 0.006 0.006 0.974 

Table 4.4: 2-mer features for the SINE Alu sequence shown in Figure 3.9. 
AA CA GA TA AC CC GC TC 

0.129 0.058 0.074 0.026 0.039 0.074 0.106 0.042 

AG CG GG TG AT CT GT TT 
0.090 0.068 0.093 0.055 0.026 0.061 0.035 0.026 

SEM feature 5 is much larger than the values of the other features. This is because it 

forms its own communicating class. Once State 5 is entered, it is never left. Also note 

that the value of SEM feature 1 is zero. This sequence never enters State 1. Table 4.4 

shows the 2-mer features for this sequence. There are 16 2-mers. Note that the AA 

feature has a relatively high value. This is because of the poly-A tail at the end of Alu. 

GC is common in this sequence, but TA, AT, and TT are rarer. 

As well as k-mers, the SEM structure allows for the representation of a broad variety 

of other patterns in the sequence. In [67, 68] motifs, features that are short sequences 

represented using IUPAC codes (Table 4.1 ), are shown to improve performance over 

k-mer features. SEMs can represent these as well. 

SEMs can generate even more types of features. SEMs count the frequency of oc-

currence of patterns based on regular expressions. As well as representing patterns that 

can be built using wild cards, the patterns can depend on what came before or what did 
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Figure 4.5: A 4-state SEM, evolved using sLTR data, with multiple communicating classes 
(reprinted from [18]). 

not come before and can include variable size repeats or variable size gaps and those 

gaps can be restricted to specific patterns. Each of the n states in a SEM measures the 

frequency of occurrence of a pattern, or, more formally, the frequency of occurrence of 

strings of a regular language defined by the SEM finite state machine with that state as 

the sole accepting state. 

SEMs can divide the sequence into modules, by using multiple communicating classes 

in their finite state machine. This division enables them to find features in particular por-

tions of the sequence, such as features of the initial portion of the sequence. An example 

of this kind of SEM is shown in Figure 4.5. States 0 and 1 are transient (once left never re-

turned to) and calculate features of the starting portion of the sequence. State 0 calculates 

the proportion of the sequence consisting of initial Ts; State 1 is zero if the sequence does 

not start with T* G, non-zero otherwise. States 2 and 3 calculate the amino/keto content 

of the rest of the sequence (ignoring repeated amino bases). 

85 



Some examples of features easily modelled by SEMs: purine content, frequency of 

occurrence of As that follow sequences of the form CT*C, frequency of occurrence of 

runs of Ts. 

SEMs are reminiscent of profile hidden Markov models (pHMMs) [43], which are 

also built with finite state machines (though they use probabilistic rather than determin­

istic finite state machines). Instead of generating sequence features, pHMMs build a 

model of the sequence. The test sequence is run through the model from beginning to 

end. To increase the scores in a pHMM, a subsequence must both fit a pattern and be 

in the right place in the sequence. SEMs have a beginning (State 0), but no end. They 

count the number of occurrences of subsequences corresponding to patterns without re­

gard to their position. SEMs are computationally simpler than pHMMs. For scoring, 

pHMMS have time complexity 0 (NM) (where N is the length of the sequence and M 

is the number of states), while computing SEM features has time complexity 0 ( N). In 

order to be effective, pHMMs require that good multiple sequence alignments exist for 

the sequences being classified. As a rule of thumb, when sequences are better recognized 

through local correlations, SEMs will produce better classifiers. 

SEMs are more general versions of motif features based on regular expressions, since 

any finite state machine can be represented as a regular expression [ 120]. SEMs measure 

the presence or absence of a subsequence matching a particular regular expression. SEMs 

measure the frequency of occurrence of these subsequences. It is conceivable that more 
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expressive languages work better than regular expressions for regular expression motif 

features. This is because regular expressions are not robust to insertions and deletions, 

and insertions and deletions are common in biological sequences. The counters in SEMs 

protect them from this problem. While SEMs occasionally use transient states to detect 

the presence or absence of a regular expression motif, SEM states usually count members 

of a regular language that occur many times in the sequence. For these, a single insertion 

or deletion does not substantially disrupt their counts. 

The number of SEMs grows super-exponentially with the number of states. There are 

ntn n-state SEMs with t transitions. This means there are more than 4 billion 4-state 4-

transition SEMs, each of which contains 4 features. For a given problem, there are many 

diverse useful SEM features. This creates the possibility of many accurate classifiers 

with different sets of SEM features. 

Since the set of all SEM features is so large, it is necessary to use some mechanism 

for finding effective ones for the problem at hand. A genetic algorithm is used to do 

this. The genetic algorithm requires training data with known classes and evolves n­

state SEMs whose n features create good classifiers for that data. In the original SEM 

research, these n features were used as an end product. In this thesis, an innovation was 

introduced in which the best SEMs from multiple replicates of the genetic algorithm are 

saved, their features pooled, and feature selection used to select a set of good features for 

the problem. This allows the choice of features that are more comprehensible than those 
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used in the original method, since the SEMs have a smaller number of states, while still 

producing a high accuracy classifier. 

4.2 Genetic Algorithm 

A genetic algorithm is a population-based optimization technique. It is inspired by the 

biological theory of evolution. The structure of the genetic algorithm that is used to 

evolve SEMs is shown in Algorithm 2. This is a standard steady state genetic algorithm 

using double tournament selection. 

Algorithm 2: SEM Genetic Algorithm 
Data: Training data with labels D, fitness function f, population size n, 

tournament size ts, stop condition S 
Result: SEM 
Initialize a population of size n of SEMs 
Choose a subset of D at random for fitness assessment 
Assess fitness of all SEMs in initial population using f 
while S not met do 

Choose ts SEMs from the population at random (a tournament) 
Pick the two most fit from the tournament to be parents 
Apply crossover operator to create two children from the parents 
Apply the mutation operator to the children 
Assess fitness of the children 
Replace the two least fit from the tournament with the children 

end 
return SEM with highest fitness 

In order to understand Algorithm 2, it is necessary to know how the SEMs are repre-

sented, the crossover operator, the mutation operator, and the fitness function. SEMs are 

represented in the genetic algorithm as an n x t array with each row representing one of 
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State A C G T 
0 3 2 1 0 
1 3 3 3 3 
2 3 3 3 3 
3 2 2 3 3 

Figure 4.6: Representation of SEM shown in Figure 4.5 used in the genetic algorithm (reprinted 
from [ 17]). A number in the matrix is the state transitioned to from the state in its row upon 
encountering the base in its column. 

State ACGT 

0 3 2 1 0 
1 3 1 3 1 Child 1 

State ACGT State ACGT 

0 3 2 1 0 + 0 2 3 2 0 
1 3 3 3 3 1 3 1 3 1 
2 3 3 3 3 2 1 1 3 1 

2 1 1 3 1 
3 2 2 3 3 

3 2 2 3 3 3 3 0 3 3 State A C GT 

0 2 3 2 0 

Parent 1 Parent 2 1 3 3 3 3 Child 2 
2 3 3 3 3 
3 3 0 3 3 

Figure 4.7:' Example of crossover in 4-state SEMs. 

the n states and each column one of the t transitions to other states. Figure 4.6 shows an 

example. In this example, there are four states and four transitions, one for each of the 

bases, A, C, G, and T. 

Two-point crossover on the vector of states is used. This means two numbers are 

picked at random, p1 and p2 in ( 1, n), where n is the number of states, and the rows are 

exchanged in [p1 , p2] in the parents to create the children. An example of this on 4-state 

SEMs is shown in Figure 4. 7. Point mutation is used, which picks an array element at 

random and changes its value to another valid value. 
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The genetic algorithm is performed off-line so computational time can be and, in fact, 

is long. The number of mating events needed to get good results is determined by doing 

a few preliminary tests. For the experiments in this thesis, it is found that between 2000 

and 6000 mating events are needed. This is a small number. Many genetic algorithms 

run for many more mating events. Each replicate of the algorithm takes 5-10 minutes to 

complete. 

4.2.1 Fitness Functions 

The use of four different fitness functions for the SEM genetic algorithm are investigated. 

The first two, k-means fitness and k nearest neighbour fitness have been used in previous 

work. Two others are introduced: random forest fitness and information gain fitness. 

4.2.1.1 K-means Fitness Function 

The k-means fitness function was used in the original SEM research [ 13, 10]. With this 

fitness function, the fitness of a SEM is calculated by clustering the data using k-means 

clustering [86] based on the n features in the n-state SEM on a set of training data and 

then computing the RAND index with the division based on the known classes. The 

fitness is the value of the RAND index. 

The RAND index is a method for comparing two clusterings. It is defined as follows 

[110]: 
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Definition 1 Let X be the set of N objects to be clustered, {X1, X2 , ... , XN }. 

Let Y be a specific partitioning of X into K disjoint sets (a clustering). 

Write Y as a set of clusters Y = {Yi, Y2 , ... , YK} where each cluster is a set of the given 

points yk = { xk1' xk21 ... 'xknk} with Lk nk = N and nk 2:: lfor k = 1, 2, ... 'K. 

Let Y' be another clustering of X into K clusters. 

Let nij be the number of points simultaneously in Yi and Yj. 

Then the RAND index ofY and Y' = 

(~) - ( ! ( Li(Lj nij)2 + Lj(Li nij)2
) - Li Lj n;j) 

(~) 
(4.1) 

In plain language, the RAND index is the proportion of pairs of points that are either 

both in the same cluster in the two clusterings or both in different clusters in the two 

clusterings. It is a number between zero and one. Therefore, a fitness of one means that 

k-means clustering divides the data into exactly the groups designated by the training 

labels. 

4.2.1.2 K Nearest Neighbour Fitness Function 

A similar fitness function, the k nearest neighbour fitness function was designed to work 

with k nearest neighbour clustering instead of k-means clustering. For this fitness func-

tion, it is required that a subset of the training data be designated as neighbours. The 

features created by the SEM make it possible to determine the distance between data 

points. Thus each point in the test set can be given a class designation based on its k 

nearest neighbours. The set of neighbours and the test set are changed at intervals during 
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evolution in order to avoid overfitting. And, again, the fitness value is the value of the 

RAND index comparing the k nearest neighbour clustering with the known clustering. 

4.2.1.3 Random Forest Fitness Function 

The random forest fitness function is a new fitness function for SEMs. The random forest 

fitness is the out-of-the-bag (OOB) error of a random forest created using the SEM and 

the training data. A smaller number of trees than usual is used (20 instead of the more 

usual 100 or 500) to reduce the time needed to build the random forest. For the purpose 

of measuring fitness this is acceptable, because all that is needed is a way to compare 

two different feature sets, not an optimal classifier. 

4.2.1.4 Information Gain Fitness Function 

Another fitness function introduced here is the information gain (JG) fitness function. 

Information gain is measured using mutual information. Mutual information is a measure 

of how much information one random variable X gives about another random variable Y. 

In the case of this fitness function, X is a set of bins with the distances between pairs of 

members of the training data set based on the SEM features created by a particular SEM, 

and Y is information about whether each pair has the same label or different labels. 

Mutual information (Ml) is defined as: 

H(X) + H(Y) - H(X, Y) 
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H(X) and H(Y) are entropies defined by 

H(X) = - LP(x)lnP(x) (4.3) 
xEX 

where P(x) is the frequency of occurrence of x in X. H(X, Y) is the joint entropy of X 

and Y and is defined by: 

H(x,y) = - LLP(x,y)lnP(x,y) (4.4) 
xEX yEY 

where P(x, y) is the frequency of x and y occurring together. In this case, Y = {O, 1} 

with y = 0 meaning that a pair of data elements has two different labels, and y = 

1 meaning that a pair of data elements has two identical labels. P(x, 0) is thus the 

frequency that a pair of data elements separated by a distance in bin x has different 

labels. Algorithm 3 shows how the IG fitness function is calculated. 

Algorithm 3: IG Fitness Function 
input : S f- SEM, D f- training data with labels, Hy +-- entropy of pairs in D 

based on labels, BIN f- number of bins 
output: fitness 

Calculate features for D using S 
DIST f- the distances between all pairs in D calculated with the SEM features 
SAME +--the distances between all pairs in D with identical labels 
DIF +--the distances between all pairs in D with different labels 
HIST f- histogram for DIST with BIN bins of equal width 
HISTs +-- histogram for SAME with BIN bins of equal width 
HISTn +--histogram for DIF with BIN bins of equal width 
H x +-- entropy of HIST 
Hx,Y f- joint entropy calculated from HISTs and HISTn 
JG +-- Hx +Hy - Hx,Y 
return JG 
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These four fitness functions, k-means fitness, k nearest neighbour fitness, random 

forest fitness, and IG fitness, create distinct fitness landscapes that direct the search of 

the genetic algorithm differently. This results in different features located. Therefore, it 

is important to study the fitness landscape. 

4.3 SEM Fitness Landscape 

A fitness landscape is defined to be the combinatorial graph with each possible solution 

as a vertex, edges connecting vertices that differ by a distance defined appropriately for 

the problem, and a fitness value assigned to each vertex. A SEM fitness landscape will 

depend on: the number of states in the SEM, the fitness function used, the data set used 

by the fitness function, and some sort of distance measure between the SEMs. SEMs 

with the number of states n = 4 are analyzed. This choice of n produces effective and 

comprehensible SEM features. The analysis is started using the random forest fitness 

function, and later aspects of the fitness landscapes of all four fitness functions are com-

pared. The analysis is done based on three different data sets: 

• sLTR/SINE problem This data set uses solitary LTR sequences extracted from 

ERV s found by Retrotector and SINEs identified by RepeatMasker. Only Repeat-

Masker sequences that are identified as complete matches are used. This data set 

has 289 solitary LTR sequences and 499 SINEs. The sequences are of average 

length 389 bases. Sequences identified by Retrotector were chosen because they 
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are the best representatives of ERV s in the human genome available, since they are 

identified based on biological characteristics instead of just sequence homology. 

In Chapter 5 the sLTR/SINE problem is explored with different data sets. 

• RT problem This data set uses three types of sequence from the Drosophila 

melanogaster genome: 104 complete LTR retrotransposons, 118 exons, and 186 

intergenic sequences. These were collected using annotations in FlyBase [134]. 

The average length of these sequences is 7 468 bases. 

• IES problem 218 IES and 222 MDS sequences were extracted using BLAST with 

sequences taken from the Tetrahymena Comparative Sequencing Project. The MIC 

genome was blasted against the MAC genome and common sequences were desig­

nated as MDSs, while sequences found only in the MIC were designated as IESs. 

The average length of these sequences is 5609 bases. 

These data sets were chosen because they have both commonalities and differences. 

They all involve transposable elements, so there should be sequence features in common. 

They come from different organisms. The RT problem is a three-way classification; the 

others are two-way classifications. The IES problem involves heavily mutated sequences. 

The sLTR/SINE problem distinguishes two types of transposable elements, while the 

other two problems distinguish transposable elements from other types of sequences. 

The solitary LTRs and SINEs are much shorter than the sequences in the other data 
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sets and have been shown to have modular structures [20, 42] involving differences in 

sequence composition. 

4.3.1 Genotypic Fitness Landscape 

The natural distance measure to use to analyze the fitness landscape is the variation op­

erator used during evolution, in this case crossover together with mutation. However, the 

crossover-based fitness landscape is intractable, since its analysis requires computing for 

each pair of SEMs which SEMs can be reached with one crossover operation. It is easier, 

and still useful, to analyze the mutation fitness landscape created by connecting vertices 

whose SEMs differ by one mutation. 

For n-state SEMs the fitness landscape graph is always the same, but the fitness values 

vary depending on what training data is used. Fitness landscapes are often described in 

analogy to a natural landscape with hills and valleys. The graph represents the ground 

and the fitness its height. This analogy does not work well for SEM fitness landscapes. 

A single mutation can cause a large change in fitness, in either direction, so there is not 

a smooth gradient in analogy to a hillside. Since there are more than 4 billion 4-state 

SEMs, it is not possible to completely describe or visualize the fitness landscape. It is 

only possible to analyze crucial properties of it. 

Figures 4.8-4.10 show visualizations of a portion of the fitness landscapes for the 

three data sets. The figures all use the same randomly generated 500 SEMs, but are 
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Figure 4.8: Visualization of a portion of 
the fitness landscape for the IES problem 
based on 500 randomly generated 4-state 
SEMs. Darker circles have better random 
forest fitness (reprinted from [ 18]). 

• 
• • 

Figure 4.9: Visualization of a portion of 
the fitness landscape for the RT problem 
based on 500 randomly generated 4-state 
SEMs. Darker circles have better random 
forest fitness (reprinted from [18]). 

coloured differently based on the fitness values for the three different problems. The 

points are spaced based on a multi-dimensional scaling calculated from their mutation 

distance matrix, where mutation distance is the minimum number of mutations needed to 

get from one SEM to the other. Multi-dimensional scaling allows the visualization of a 

multi-dimensional space in two dimensions. The SEMs represented by dots are the same 

in all three figures, but are coloured differently based on their fitness for that problem. 

Note that, in all cases, low and high fitness SEMs appear close together. Also, note 

that the highest fitness points are scattered throughout the space and are different for the 

different problems. They are non-existent in the IES sample, common in the RT sample, 

and sparse in the sLTR/SINE sample. 
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Figure 4.10: Visualization of a portion of the fitness landscape for the sLTR/SINE problem 
based on 500 randomly generated 4-state SEMs. Darker circles have better random forest fitness 
(reprinted from [18]). 

Figures 4.8-4.10 show the fitness landscapes for randomly selected SEMs. For SEMs 

found by evolution, the neighbourhoods (SEMs one mutation away) differ in character 

by problem. The SEMs evolved to solve the IES problem have the sharpest "peaks." 

Twenty-two percent of the evolved SEMs have no neighbours with the same or higher 

fitness, and the median value is 4% of neighbours have the same or higher fitness. Almost 

as many of the SEMs evolved to solve the RT problem have no neighbours with the same 

or same or higher fitness ( 19% ), but these SEMs have a higher median proportion of 

same or higher fitness neighbours, 8%. The SEMs evolved to solve the sLTR/SINE 

problem have the flattest "hilltops", with a median proportion of 16% same or higher 

fitness neighbours, and only 6% of SEMs having no same or higher fitness neighbours. 

For all the problems, there were a few SEMs found that had more than 40% same or 
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higher fitness neighbours. This analysis suggests that the IES optima are the hardest of 

the three to find, and that the sLTR/SINE optima are the easiest. 

4.3.2 Comparison Of Genetic Algorithm To Random Search 

For many problems to which SEMs have been applied, including these, the initial pop­

ulation has good average fitness. This means that "sea level" in the fitness landscape is 

pretty high. This explains why relatively few mating events are needed in the genetic 

algorithm - there is not far to climb. Figure 4.11 shows the distribution of random forest 

fitnesses for the three problems studied for 10,000 random 4-state SEMs. Also shown 

are the fitnesses of SEMs found by evolution. This figure shows that random search finds 

good features, but that evolution finds better ones. Excellent SEMs are rarer than one in 

ten thousand, i.e. there are less than 400,000 of them. Most 4-state SEMs have fitnesses 

that vary only through· a range of less than ±5 % accuracy with a small proportion being 

exceptional and a small proportion being useless. 

4.3.3 Comparison Of Genetic Algorithm To Greedy Hillclimber 

As an alternative to the genetic algorithm, a greedy hillclimber with random restart was 

tried. The greedy hillclimber selects a SEM at random, examines all its neighbours one 

mutation away, selects the one with best fitness (if better than its own fitness), and repeats 

the process with that SEM, continuing to climb the hill until none of its neighbours have 
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Figure 4.11: Distribution of random forest fitness for random selection of 10,000 machines. 
Dots represent the fitness of machines found by evolution (reprinted from [18]). 

100 



Figure 4.12: Comparison of distributions of fitnesses for SEMs found by the genetic algorithm 
and SEMs found by the greedy hillclimber using the same number of fitness evaluations. Genetic 
algorithm distribution is shown with the filled red boxplots. Greedy hillclimber distribution is 
shown with the open black boxplots with the blue horizontal line indicating the cutoff for the best 
100 SEMs produced by the hillclimber. 
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better fitness than it does. The current SEM is saved and its fitness is recorded. Then, an­

other random SEM is chosen. This process continues until a specified number of fitness 

evaluations have been done. In this case, the number of fitness evaluations specified was 

the same as the number used in one hundred replicates of the genetic algorithm. Thus, 

both algorithms were run for the same amount of time (many hours). 

Figure 4.12 shows the results compared to those of the genetic algorithm. While 

the genetic algorithm produced 100 SEMs, the greedy hillclimber produced 1358 SEMs 

for the sLTR/SINE problem, 6200 for the RT problem, and 5212 for the JES problem. 

So, for the purpose of finding quality features, only the best 100 produced by the greedy 

hillclimber should be considered. The blue lines in the figure indicate the worst fitness for 

these groups. The figure shows that this method produces SEM features of similar quality 

to those produced by the genetic algorithm. It is not done in this thesis, but it would be 

reasonable to use these instead of the features generated by the genetic algorithm or to 

pool both sorts of features. The genetic algorithm is more likely to find features with 

small basins of attraction, while the greedy hillclimber will find features on broader 

hilltops, so, for many problems, the algorithms will find different SEM features. 

The hillclimber also gives insight into the shape of the fitness landscape. For all three 

problems, it found SEMs exhibiting a wide range of fitness values. This indicates that 

the hills in the landscape have a variety of heights. For all three problems, the low fitness 

random SEMs proved to be connected to higher fitness SEMs. The larger number of 
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SEMs found by the hillclimber for the RT problem indicates that it has many short hills. 

The number of upward steps for this problem ranged from 1 to 10 with an average of 

4.0. The hillclimber found a smaller number of hills for the sLTR/SINE problem in part 

because it is easier to find high quality SEMs for this problem and so both the genetic 

algorithm and the hillclimber were run for as one-third as long. Even so, the results of the 

hillclimber indicate that its hills are taller with the number of upward steps ranging from 

2 to 14 with an average of 6.1. This suggests that this landscape has fewer taller hills. 

The IES landscape seems to have both short and tall hills with the number of upward 

steps ranging from 1 to 14 with an average of 4.8. 

4.3.4 Phenotypic Fitness Landscape 

Mutation distance gives one a sense of how evolution explores the fitness landscape. 

However, it is possible for two SEMs that create identical features to be far apart in that 

fitness landscape. Consider two SEMs with the same State 0 and the other states identical 

except for their numbering. These two SEMs produce the same features, but can be many 

mutations apart. Another way to create a fitness landscape is using a distance measure 

based on the difference in behaviour of the generated features. This is called a phenotypic 

fitness landscape. To distinguish the two fitness landscapes, the fitness landscape based 

on mutation distance is referred to as the genotypic fitness landscape. 

The phenotypic fitness landscape is created using correlation distance. Correlation 
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distance is 1 - lrl, where r is the Pearson correlation between two SEM features. Corre-

lation distance varies from zero to one. 

Definition 2 Pearson correlationfor samples X = {x1 , x2, ... , Xm} andY = {y1 , Y2, ... , Ym} 

with means x and y, respectively, is 

r = ------------- (4.5) 
JL::1(xi - x)2 JL::1(Yi -Y)2 

The phenotypic fitness landscape gives information about the diversity of the features 

found. While the density of optima in the genotypic fitness landscape determines the 

difficulty of search, the density of evolved features in the phenotypic fitness landscape 

determines how many functionally different features have been found. Note that this 

fitness landscape is based on SEM features, not complete SEMs. This landscape includes 

n features for every n-state SEM. 

Figure 4.13 shows the number of near neighbours for each of the evolved features in 

this fitness landscape. Near neighbours are other evolved features within a distance of 

0.2. These are displayed in sorted order. For all three problems, some evolved features 

have few other evolved features close to them. The RT problem has a large group, con-

taining about half the evolved features, that are close to more than a third of the other 

evolved features. Slightly more than half of the sLTR/SINE features have less than 30 

near neighbours, while the others are close to as many as a fourth of the other features. 

The IES features have a range of densities, with some features having no near neighbours 

and others having 28% of the other features as near neighbours. 
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Figure 4.13: Number of other evolved features within a distance of 0.2 of 400 evolved features in 
the phenotypic fitness landscape. Features sorted based on increasing number of near neighbours 
(reprinted from [18]). 

The phenotypic fitness landscape is examined for the string kernel with k = 1 ... 4 

for comparison. There are 4k k-mers. So, fork = 1 ... 4 there are 340 k-mer features. 

String kernel features are packed much less densely in the space. Most (58% for the RT 

problem; 84% for the IES and sLTR/SINE problems) have no other string kernel features 

within a distance of 0.2. Even those which do have other string kernel features nearby 

have few of them - a maximum of 24 for the RT problem and maximums of 6 for the 

IES and sLTR/SINE problems. 

Figures 4.14-4.16 show multi-dimensional scalings of the portion of the phenotypic 

fitness landscape occupied by the evolved features· of each problem together with the 
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Figure 4.14: Visualization of portion of 
the phenotypic fitness landscape for the RT 
problem. SEM features are shown as black 
circles; string kernel features as grey dia­
monds (reprinted from [ 18]). 

Figure 4.15: Visualization of portion of 
the phenotypic fitness landscape for the 
sLTR/SINE problem. SEM features are 
shown as black circles; string kernel fea­
tures as grey diamonds (reprinted from 
[18]). 

string kernel features that have the best mutual information scores with the sequence 

classification, i.e. those that are most useful for the problem. These figures provide 

intuition into how diverse the evolved features are and how similar they are to the k-mer 

features. 

Figure 4.14 shows the evolved and k-mer features for the RT problem. A large group 

of features that are similar to each other are on the right side of the figure. Of the three 

problems studied, this one distributes the k-mer and evolved features together the most. 

About a quarter of the k-mer features (28%) have evolved features as near neighbours 

(within a distance of 0.2), and some have as many as half the evolved features as near 
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Figure 4.16: Visualization of portion of the phenotypic fitness landscape for the IES problem. 
SEM features are shown as black circles; string kernel features as grey diamonds (reprinted from 
[18]). 

neighbours. 90% of the SEM features have k-mer features as near neighbours, though a 

small group, average size 12. 

Figure 4.15 shows the evolved and k-mer features for the sLTR/SINE problem. The 

evolved features for this problem form groups of varying sizes with scattered isolated 

features. The k-mer features are distributed differently from the SEM features. Most 

k-mer features (97%) have no SEM features as near neighbours, and most SEM features 

(92%) have no k-mer features as near neighbours. 

Figure 4.16 shows the evolved and k-mer features for the IES problem. The SEM 

features can be roughly divided into three groups - the largest at the far right, one in the 

upper left, and the other in the lower left. The k-mer features are closest to the group at 
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the far right. As in the sLTR/SINE problem, the k-mer and SEM features are differently 

distributed. Most k-mers (91 % ) have no SEM features as near neighbours. However, 

unlike in the sLTR/SINE landscape, a few have as many as 100 SEM feature near neigh­

bours. Most SEM features (62%) have a few k-mer near neighbours (maximum group 

size 7). 

Figure 4.17 shows a visualization of the portion of the phenotypic fitness landscape 

containing all the evolved features for the three problems. Correlation distance was cal­

culated using the three data sets combined. In this figure, it appears that the evolved 

SEMs for the IES problem and the RT problem are similar, while the evolved SEMs for 

the sLTR/SINE problem are different. The similarity supports the belief held by biol­

ogists that IESs are mutated· retrotransposons. Further evidence for this can be found 

in Section 4.3.6. It makes sense that useful features for the sLTR/SINE problem would 

be different, because, those features need to distinguish between two different types of 

transposons instead of between transposons and non-transposons. 
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Figure 4.17: Projection onto two dimensions of machines found by evolution. Circles represent 
machines evolved to solve the LTR problem; squares the RT problem; diamonds the IES problem 
(reprinted from [18]). 

4.3.5 Evolving With Different Fitness Functions 

The IES problem was used to test the impact of changing the fitness function on the 

features found. Figure 4.18 shows a visualization in the phenotypic fitness landscape of 

the features from the best SEMs found by each fitness function for 25 replicates. The 

different fitness functions explore the search space differently. The random forest (rF) 

fitness function and the k nearest neighbour (knn) fitness function find SEM features 

covering a larger range of the landscape than the other fitness functions do. Perhaps this 

is because they are stochastic fitness functions. Because they train using subsets of the 

training data, they are able to find a greater range of features. The information gain (IG) 
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and k-means fitness functions find a similar range of features, which are in the same part 

of the fitness landscape for which the SEM features evolved with the rF and knn fitness 

functions are most dense. Outside the region that contains the IG and k-means features, 

the rF and knn fitness functions find features far apart from each other. 

Because all these fitness functions are based on classifiers and classifiers sometimes 

overfit the data, the questions arise of whether that is happening during the course of 

evolution and of how that effects the results of the genetic algorithm. Remember that it 

is features that are evolved, not classifiers. Features are harder to over fit than classifiers 

are. An overfitted classifier in the fitness function might misdirect evolution, but would 

not necessarily produce an overfitted feature. Of the four classifiers used in the fitness 

functions, random forests are least likely to over fit. The knn fitness function changes the 

data points used as neighbours periodically, a quality that should reduce overfitting. The 

IG and k-means fitness functions have no design features to prevent overfitting. However, 

Figure 4.18 suggests that the features found using the IG and k-means fitness functions 

are mostly similar to features found by the knn and random forest fitness functions. So, 

for this problem, overfitting of the fitness function does not seem to be a problem. 

Figure 4.19 shows a comparison of the quality of features found by the different 

fitness functions. The measure of quality is information gain. In this case, information 

gain is calculated for individual features using the feature values, as opposed to how 

it is used in the fitness function for n-state SEMs. Features found using the IG and 
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Figure 4.18: Projection onto two dimensions of machines found by different fitness functions. 
Circles represent SEMs evolved using the random forest fitness function; squares the IG fitness 
function; diamonds the knn fitness function; triangles the k-means fitness function (reprinted 
from [18]). 
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Figure 4.19: Distributions of information gain for features evolved with various fitness functions 
and fork-mer features. Not shown are outliers of the k-mer features with negative information 
gain (reprinted from [18]). 

k-means fitness functions have the highest mean information gain, but the feature with 

the maximum information gain was found using the rF fitness function. The features 

found using the knn fitness function have both the lowest mean and the lowest maximum 

information gain. 

However, the fact that the individual features are more informative does not mean 

that the end product classifier will be better. Table 4.5 shows the error on test data for 

classifiers built from the SEM features generated by the various fitness functions. The 
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Table 4.5: Error on test data for random forests trained using various feature sets. 

fitness function all rF IG DC 

rF 8% 8% 8% 9% 

IG 11% 12% 17% 12% 

knn 13% 14% 13% 13% 

k-means 11% 12% 15% 11% 

features produced by the rF fitness function produce the most accurate classifiers for this 

problem, and those produced by the knn fitness function the worst. The feature selection 

methods produce comparable classifiers, except for the information gain method, which 

produces worse classifiers for the features evolved with the IG and k-means fitness func-

tions. This is likely because these fitness functions produce many similar highly effective 

features. 

Which fitness function is best is almost certainly problem specific. More study is 

needed, but from this study, one can conclude that the rF fitness function is best for this 

problem; that the IG and k-means fitness functions are cheapest to compute and so are 

best when many mating events are needed; and that the knn fitness function is best when 

the priority is finding diverse optima of comparable quality. The knn fitness function has 

parameters: number of neighbours, k, portion of training data used, how often training 

data and neighbour set are changed. These parameters could affect which features are 

found. 
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4.3.6 General Utility Of Evolved Features 

String kernels have the nice property that they work pretty well for almost any DNA se­

quence classification problem. SEM features are more specialized. This is an advantage 

because it means that a smaller number of features can be used and that analysis of the 

features can lead to biological insight. It is also a disadvantage because it means that you 

have to re-run the genetic algorithm for every problem. Therefore, the question of how 

useful the features evolved to solve one problem were for solving the other, somewhat 

related, problems was asked. Figures 4.20-4.22 show the distribution of information 

gain of each set of evolved features together with the distribution of information gain for 

k-mer features for each problem. 

For the sLTR/SINE problem (Figure 4.20) the features evolved to solve the other two 

problems have similar information gain to the k-mer features. Their classifier perfor­

mance was also similar with a test error of 1 % for a classifier using all the IES features 

and 0% for a classifier using all the RT features. Their features are less diverse than the 

string kernel features with a median correlation of 0.3 for the IES features and 0.4 for the 

RT features, while the string kernel features have a median correlation of 0.1. 

The features evolved to solve the other two problems are somewhat more informative 

than the string kernel features for the IES problem (Figure 4.21 ). They also do not suffer 

from the overfitting problem that the classifier made using all the string kernel features 
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Figure 4.20: Distributions of informa­
tion gain for the sLTR/SINE data set using 
string kernel features and features evolved 
to solve other problems (reprinted from 
[18]). 
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Figure 4.21: Distributions of information 
gain for the IES data set using string kernel 
features and features evolved to solve other 
problems (reprinted from [18]). 
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Figure 4.22: Distributions of information gain for the RT data set using string kernel features 
and features evolved to solve other problems (reprinted from [18]). 
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had. A classifier created with all the RT features had a 10% test error, only slightly 

worse than the 8% test error that the classifier made with the features evolved for the 

problem had. A classifier created with all the sLTR/SINE features had a 16% test error. 

It is unsurprising that these features were less effective, as they evolved to capture the 

modular character of the sLTRs. 

Figure 4.22 shows the information gain distributions for the features applied to the 

RT problem. All feature sets have a few really good features. In particular, the features 

evolved for the IES problem are almost as informative as those evolved specifically to 

solve this problem. Recall that in Figure 4.17 the IES and RT features appeared to group 

together when visualized using mutation distance. This result is further evidence that 

IESs and retrotransposons have similar sequence features, supporting the theory that 

IESs are mutated transposons. Classifiers built from these features perform comparably 

to those built from features specifically evolved for the purpose,which have a 6% test 

error. The classifier built with IES features has 6% test error; the classifier built using 

sLTR/SINE features has 5% test error. The sLTR/SINE features work better on this 

problem than they did on the IES problem, because the RTs in this data set contain 

sLTRs, while the IESs do not. 
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Figure 4.23: Distributions of averages over all sequences in data set of average distances be­
tween SEM vector created using original data and SEM vectors created using sequences with an 
indel mutation. The averages are computed from 100 different indel mutations for each sequence 
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the 100 machines evolved for each problem. 
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4.3. 7 Robustness Of Features To Indel Mutations 

Insertion and deletion mutations (indels) are common in biological sequences. Some 

SEMs can be sensitive to such mutations, such as SEMs that have multiple communi­

cating classes or transient states. A misplaced insertion or deletion in these SEMs could 

cause a transition that resulted in quite different feature values. Other SEMs are robust 

to such mutations, making no changes or only small changes to the counts of only a few 

states. The SEM in Figure 4.2 is an example of this. This is the SEM that calculates 

purine (A or G bases) and pyrimindine (C or T bases) content of a sequence. Adding or 

deleting a base would make a small change in one of the counts that would result in an 

insignificant change in the SEM features for a long sequence. 

The impact of indel mutations on SEM features depends not only on the SEMs but 

also on the character of the sequences on which features are being calculated. A sequence 

with many repetitive elements, for example, does not change its character much after an 

insertion or a deletion. A sequence that is best characterized based on a particular motif 

at a particular position, on the other hand, could become unrecognizable after an unlucky 

indel. Thus, it is possible to learn about both the behaviour of the SEMs and the character 

of the classification problem by analyzing the robustness of the SEM features to indel 

mutation. 

Figure 4.23 compares the robustness of the SEM features evolved for the three prob-
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lems studied to indel mutation. For each evolved problem, it shows the distribution over 

the evolved machines of the expected distance between a vector of SEM features based 

on a sequence in the data set and a vector of SEM features based on that sequence with 

an indel mutation. The data displayed in this figure was created by first creating a SEM 

vector for each sequence; then, creating SEM vectors for 100 sequences that differ from 

that sequence by an indel mutation; then, calculating the distance between each of those 

vectors and the vector for the original sequence and taking the average; and finally, aver­

aging over all the sequences in the data set. 

Notice that the numbers on the y-axis are small. The machine learning classifiers 

can easily compensate for changes like these and classify the sequences together with 

their mutated sequences. It is interesting, however, to note the differences between the 

SEMs evolved for the different problems in this regard. The SEMs evolved to solve the 

sLTR/SINE problem have both the greatest variation and the largest distances. This is 

because of the modular character of the sequences in this data set. The SEMs evolved to 

solve the RT problem are most robust to indel mutations. This is consistent with what 

is shown in its phenotypic fitness landscape in Figure 4.14. The evolved SEMs for this 

problem create features similar to k-mer features. K-mer features are also robust to indel 

mutation. 
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4.4 Feature Selection 

The original approach to SEMs was to use the product of evolution, an individual n­

state SEM, in a classifier with n features. This makes it necessary to evolve SEMs with 

enough states to create classifiers with the desired level of accuracy but with few enough 

states to avoid overfitting. In [11] it is claimed that the research suggests that SEMs with 

12-30 states will produce classifiers with good results on biological data and that SEMs 

with 36-48 states will overtrain. Working within this range of number of states has two 

disadvantages. First, SEMs with 12-30 states are difficult to interpret, so the chance to 

obtain biological insight based on the features is lost. Secondly, it is not possible to 

add more features in order to get higher accuracies because of the overtraining ceiling. 

Furthermore, some tests of these classifiers on new data sets suggested that they did not 

always generalize well. 

The analysis in Section 4.3 demonstrates that the SEM fitness landscape is highly 

multi-medal. This means that the set of effective SEMs produced by evolution in differ­

ent replicates is diverse. Also, just because a classifier based on an individual SEM is 

accurate does not mean that all its features are important. The accuracy of the classifier 

could be driven by just a few of the features, the others just extra baggage. Therefore, 

features from different replicates were pooled feature selection was done to select the 

most effective in order to create classifiers with a tuneable number of comprehensible 
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features. 

Standard methods of feature selection did not work well with SEM features. It was 

hypothesized that this was due to correlation of the features and two alternative feature 

selection methods chosen to minimize correlation between the selected features were 

used. The first, called dissimilarity selection, is a method used by chemists to select 

a subset of compounds that is both representative and diverse. The second, called dis­

similarity clustering, is a novel technique. For comparison, feature selection using es­

tablished methods is done: the importance measure for random forests and information 

gain. 

Even when there is a multimodal fitness landscape such as exists here, there is no 

guarantee that different replicates of a genetic algorithm will find different optima. It is 

possible t~at every replicate will find the same solution simply because it is the easiest 

to find. To determine whether diverse features were being found, a correlation matrix 

was built. Examination of this matrix shows that most pairs of features are correlated, 

but not strongly correlated. Let ri,j be the Pearson correlation of features i and j. Using 

consensus sequence data, 99.3% of the pairs of features are correlated (95% confidence 

using a t-test) with lri,j I ranging from 0 to 1 with a mean of 0.24. Figure 4.24 shows 

the distribution of correlations. Notice that low correlations are more common than high 

correlations. Define highly correlated to be lri,jl > 0.7. Then, 5.61% of the pairs are 

highly correlated. This demonstrates that the features are diverse, albeit correlated. If 
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Figure 4.24: Histogram of absolute values of correlations of pairs of features. Filled bars repre­
sent highly correlated pairs (reprinted from (17]). 

a diverse set of features had not been found, a technique such as niching [88] could 

have been used to ensure diversity. The existence of a set of diverse quality features is 

unsurprising because of the large size of the search space and its multimodal character. 

4.4.1 Feature Selection Methods In Bioinformatics 

Feature selection is an important topic in bioinformatics due to the large number of pos-

sible features for many bioinformatics tasks. Feature selection is important to avoid 

overfitting and eliminate noise, to make classifiers more efficient, and to provide better 

understanding of the data. There· are three basic categories of feature selection tech-

niques: filter methods, wrapper methods, and embedded methods. Filter methods rate 
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Figure 4.25: Classification accuracy predicted by rfcv using different numbers of variables cal­
culated using a data set combining RB, RM, and RT data (reprinted from [17]). 

each feature according to some standard, and then choose the best ones. Wrapper meth-

ods test the classifier using possible subsets of features. Since the number of subsets is 

exponential in the number of features, it is necessary to have some method of choosing 

viable feature subsets. Embedded methods use some property of the classifier to rank 

features, such as the weight vector in support vector machines. A good review of feature 

selection methods in bioinformatics can be found in [ 114]. 

Important things to consider when choosing a feature selection method include: the 

computational complexity of the method, whether it takes into account the interactions 

between the features, whether it takes into account the interactions between the features 

and the classification method, whether it produces overfitted models, and whether it gen-
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erates features which give insight into the data. In general, filter methods have the lowest 

computational complexity and wrapper methods have the most, with embedded methods 

intermediate. Filter methods do not take into account the interaction between the fea­

tures and the classification method and sacrifice their computational simplicity if they 

take into account the interactions between features. Wrapper and embedded methods 

take into account the interactions between the features and the classification method, and 

wrapper methods take into account the interactions between the features. In this thesis, 

a wrapper method is presented with low computational complexity and compared to an 

embedded method. Testing for overfitting is done with the use of data sets generated by 

different methods. 

The goal was to use the features to train a random forest classifier. A random forest 

classifier was chosen because of its ability to avoid overfitting and its insensitivity to 

noise. Other types of classifiers, such as SVM or AdaBoost, would also work, and the 

same feature selection techniques could be applied to their use. A common embedded 

method of feature selection for random forests is to rank the variables according to im­

portance to the classifier and choose a subset containing the most important variables. 

A technique for determining the correct number of variables to choose was developed 

in [129]. The function rfcv in the R randomForest package implements this technique. 

Figure 4.25 shows the classification error using various numbers of features with this 

method of feature selection. The figure suggests that the lowest error, 8%, would be 
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achieved using~ of the data or 343 features. However, experimentation showed that, in 

fact, carefully chosen sets with 4-46 variables actually had lower error (data in Section 

6.3.5). Therefore, a different technique was needed. 

The failure of the ifcv technique is likely due to the fact that most of the features 

are correlated. When several correlated features are used in the same classifier, their im­

portance is underestimated. The idea, therefore, was to create feature subsets containing 

features as uncorrelated with each other as possible. Two techniques were used to do 

this, both involving hierarchical clustering: dissimilarity selection {DS) and dissimilar­

ity clustering (DC). Dissimilarity Selection (Algorithm 4) involves creating clusters of 

correlated (or anti-correlated) features and then selecting one feature from each cluster. 

Dissimilarity Clustering (Algorithm 5) involves creating clusters of features with low 

correlation. 

4.4.2 Dissimilary Selection 

The algorithm for Dissimilarity Selection is Algorithm 4. Dissimilary selection uses hi­

erarchical clustering. Hierarchical clustering works by partitioning the data in a series of 

steps which create clusters varying from each object in its own cluster to all objects in 

a single cluster. These can be represented by a tree with each single object cluster rep­

resented by a leaf, and the nodes at each level of the tree representing different possible 

clusterings. There are different types of hierarchical clustering .which do this partitioning 
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Algorithm 4: Dissimilarity Selection 
Data: Dissimilarity matrix D, number of desired features n, selection method, 

dataset d 
Result: Subset feat of n features 
Create n clusters, K 1, ... , Kn using Ward's method with D; 
For each Ki, create a submatrix Ei of D; 
feat+:--{}; 
for i +:-- 1 to n do 

ifmethod = random then 
I feat +:-- feat U k E Ki chosen at random 

end 
else if method = center then 

I 

feat +:-- feat U k E Ki whose column in Ei. is closest to the mean of the 
columns of Ei 

end 
ellse if method = best then 

I 

Vk E Ki, Ck +:--random forest classifier using feature k on dataset d; 
feat +:--feat Uk E Ki with smallest error(Ck) 

end 
end 
return feat 
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in various ways. They all work from a matrix with numerical values relating each pair of 

objects. The hclust function in R [108] with Ward's method was used. 

A visualization of the data in two dimensions using multi-dimensional scaling (Fig­

ure 6.3) suggested that it does not naturally separate into clear, well-separated clusters. 

There are features that group together, but without separation between them. Clustering 

with single-link clustering confirmed this. Single-link clustering is designed to find sep­

arations in the data, and, using the data looking for n clusters, it created n - 1 singleton 

clusters and one cluster containing the remainder of the data. This means it was unable 

to find separations. This is why Ward's method [92] was chosen. Ward's method is bi­

ased towards finding clusters of approximately equal size, and it minimizes the variance 

between members of a cluster. These are both desirable properties here. The object is not 

to find "true" clusters (as they do not exist), just to partition the data into similar groups 

of roughly equal size. A different clustering method with these properties (for exam­

ple, complete link clustering) would not produce identical clusters to the ones used here, 

though, because are some features that group together, they would not be altogether dis­

similar either. It is left for future work to compare the efficacy of applying the techniques 

used here with different clustering methods. 

Usually the matrix used for hierarchical clustering is a distance matrix or a dissimi­

larity matrix in which smaller numbers represent more similar objects. This means that 

the clusters formed consist of similar objects. Such a matrix was used for DS. The dis-
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similarity matrix used the absolute correlation distance, 1 - lri,j I calculated using the 

values of the features in the RM data set. Thus, features related by 0 are either perfectly 

correlated or perfectly anticorrelated. n clusters (n = 20 or 50) were created, and an 

exemplar was chosen from each cluster to create a diverse and representative feature set. 

Three methods were used to chose the exemplar: random, center, and best. The random 

method is to select one member of each cluster at random. The center method chooses 

the center by averaging the values in each row of the matrix and then selecting the row 

most similar to the average. The best method is to choose based on classifiers built using 

individual features, choosing the one with the highest accuracy on a given test set. All 

three types of data set were used to choose the "best." 

4.4.3 Dissimilarity Clustering 

Algorithm 5: Dissimilarity Clustering 
Data: Similarity matrix S, number of features n, approx. number of features 

desired m, training data set train, testing data set test 
Result: Subset of features 
k +--- L:iJ //number of clusters; 
//use a similarity matrix rather than the usual dissimilarity matrix; 
Create k clusters K 1 , ... , Kk using Ward's method with S; 
for i +--- 1 to k do 

I 

Ci +---random forest classifier using Ki on data set train; 
test Ci on data set test; 

end 
return Ki such that error(Ci) is minimal 

For DC, a similarity matrix was used instead of a dissimilarity matrix for clustering. 
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This means smaller numbers represent more dissimilar objects. Thus, the clusters consist 

of objects dissimilar to each other. Each cluster is an instance of the desired dissimilar 

set. The similarity matrices consist of lri,j I for each pair of features i and j. These 

values range from 0 to 1, with features related by 0 being completely uncorrelated, i.e., 

maximally dissimilar. 13 7 clusters were created with an average of 20 features each. 

4.5 Conclusion 

This chapter described how effective SEM features can be selected for identifying and 

classifying DNA sequences, first by using a genetic algorithm and then by using feature 

selection on the features from the best SEMs of many replicates of the genetic algorithm. 

It also examined the fitness landscapes explored by the genetic algorithm using various 

fitness function and compared the SEM features to string kernel features. The next chap­

ter will show how these selected SEM features can be used for Knowledge Discovery. In 

Chapter 6 they will be used together with the features from Chapter 3 to solve various 

classification problems involving TEs. 
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5 Knowledge Discovery With SEMs 

A great advantage of using SEM features for classification is the potential for Knowledge 

Discovery. Hitherto unknown features of the sequences in question can be discovered by 

selecting effective features and then analyzing them. Analyzing SEMs, however, is chal­

lenging. Finite state machines, especially ones with more than a handful of states, do 

not convey an intuitive understanding. This is addressed, in part, through developing a 

method for building effective classifiers with SEMs with a small number of states (Chap­

ter 4). But even with a small number of states, it is necessary to develop further analysis 

techniques. The first approach used is to relate the SEM features to the more intuitive 

k-mer features. This approach is tested on the three problems discussed in Chapter 4. 

Then, more extensive analysis is done on the sLTR/SINE problem. 

5.1 Comparison With The String Kernel 

For comparison with SEM features, effective k-mer features, k = 1 ... 4, are examined 

for the three problems described in Chapter 4: sLTR/SINE, RT, and IES. The features 

are selected using three different feature selection techniques: random forest importance 
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Table 5.1: K-mer features selected by different feature selection methods 

problem k-mers accuracy 

rF for RT T, TT, TTT, TTTT, CTTT, ATTT, 

TTTC,TTA,TATT,TTAT 90% 

IG for RT T, TT, TTT, TTTT, CTTT, ATTT, 

TTTC, TIA, GTTT, ATT 89% 

DC forRT A, ACA, AGGA, CCTA, TGTA, 

TGGC, GTAG,GAAT, GTAT, 

ATCT, TTCT, AAGT, CAGT, ATTT 69% 

rF for IES AATT, GCT, AAA, AAAA, TTT, 

TTTT,AGC~G~AC,GCTT 88% 

IG for IES AATT, GCT, AAA, AAAA, TTT, 

TTTT, AGCT, GT, GC, AAAT 88% 

DC for IES TAG, GCT, ACAA, CGAA,·CACC, 

TGGG, CATG, AAAT 68% 

rF for sLTR/SINE CAGG, GGC, GC, AGGC, TTCC, 

CCTT, CCCT, TTT, GCC, GCCT 97% 

IG for sLTR/SINE CAGG, GGC, GC, AGGC, TTCC, 

CCTT, CCCT, TTAA, GGCT, GGCG 96% 

DC for sLTR/SINE A, TAC, ATG, CGAA, TAGA, 

AAAC, CCCC, CTTC, ACCG, 

AGCG,ACTG,TGTG,ACC~ 

AGCT,GTTT 94% 

Table 5 .2: Accuracy of classifiers on test data for random forests trained using various subsets 
of SEM features. 

problem rF IG DC 

RT 93% 93% 94% 

IES 92% 92% 91 % 

sLTR/SINE 96% 96% 98% 
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(rF), information gain (IG), and the novel technique, dissimilarity clustering (DC). Table 

5 .1 shows the features along with the accuracies of the classifiers created with them. 

Notice that the ten features selected as most important by the R randomForest function 

seem to follow a common theme and that the highest IG set is almost identical. For the RT 

problem repeated Ts seem to be a good distinguishing characteristic; for the IES problem 

both repeated As and repeated Ts are important. DC creates a more diverse set and also 

includes a larger proportion of the more complex 4-mers. However, the accuracies of the 

DC classifiers are lower. Having a diverse set of k-mer features does not create effective 

classifiers since many k-mer features are not appropriate for the tasks. 

SEM features are evolved to be effective for the specific problems, but are not nec­

essarily diverse. Table 5.2 shows the accuracies of classifiers created using the three 

different feature selection methods. The table shows that all feature selection methods 

produce classifiers with similar accuracies. The rF set and the IG set are more different 

than for the k-mer features. For the RT problem, 4 out of 10 are the same; for the IES 

problem, 5 out of 1 O; and for the sLTR/SINE problem 7 out of 10. This is evidence that, 

especially for the RT and IES problems, the best features (highest information gain) are 

also similar features. The similar accuracies for the DC classifiers suggest that using 

diverse features does not detract from performance. 

One way to automatically interpret SEMs is by the nearest k-mer feature and the 

absolute correlation distance to that feature. Table 5 .3 shows this information for the 
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SEMs selected by DC listed in decreasing order of distance. For the RT problem, all of 

the SEM features are within a distance of 0.21 of a k-mer. This makes sense, because the 

k-mer features are well distributed among the evolved SEMs (see Figure 4.14). Note that 

three k-mers (TG, TTA, and C) have two SEMs that are closest to them. This suggests 

that the nuances introduced by using SEMs are useful - it is not just C-content that 

distinguishes the sequence, it is a particular type of C-content. 

For the solitary LTR/SINE problem, none of the features are close to k-mers. Even 

though k-mer features are useful for this problem, evolution found different solutions. 

This is because of the modular structure of solitary LTRs and SINEs. All of the SEM 

features come from machines with multiple communicating classes. This means that 

SEM features are giving a different sort of biological insight into the sequences than 

k-mer features do. 

For the IES problem, about half the SEM features are close (distance less than 0.20) 

to k-mer features. For this problem, there are even more with the same closest k-mer, 

with seven close to the 1-mer T. Each of these SEM features are nuanced versions of the 

T-content of the sequence. Figure 5 .1 shows the SEM that generates one of these using 

State 1. States 1 and 3 resemble the 2-state SEM in Figure 4.2 that computes purine (C 

or T) and pyrimidine (A or G) content. However, when the sequence is in State 3 and 

the next base is a purine, it does not return directly to State 1. Instead it goes to State 

0 or State 2. Since this feature has a correlation of 0.92 with the 1-mer T, most of the 
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Table 5 .3: Closest k-mers and distance to them for SEMs selected by DC 

RT IES sLTR/SINE 

k-mer distance k-mer distance k-mer distance 

TG 0.21 AAT 0.68 TT 0.13 TAAG 0.79 

TG 0.18 AC 0.48 A 0.11 TAAG 0.76 

GAG 0.13 AAAA 0.44 T 0.09 AAAT 0.64 

T 0.10 AAA 0.42 T 0.08 GAG 0.60 

GA 0.09 AAAA 0.37 TT 0.07 TAAA 0.59 

ATT 0.08 AAAA 0.37 T 0.06 GT 0.48 

TIA 0.08 AAA 0.36 T 0.06 GCC 0.43 

TC 0.07 AAAA 0.34 T 0.06 TTT 0.32 

TIA 0.07 GT 0.25 T 0.06 TTT 0.32 

TA 0.06 GT 0.20 T 0.03 TTIT 0.31 

ATTT 0.05 AG 0.18 TTTT 0.24 

c 0.04 A 0.18 

c 0.02 AA 0.13 
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Figure 5.I: The 4-state SEM that generates, using State 1, the IES feature selected by DC that 
is a distance of 0.08 from the 1-mer T (reprinted from [ 18]). 

Cs in these sequences must occur when the sequences are in States 0 or 3 and most of 

the Ts must occur when they are in State I or 2. Examination of the sequence for the 

exceptional Cs and Ts could lead to insight into differences between the two types of 

sequence. 

Figure 5.2 shows another SEM that generates a feature closest to the I-mer T. Of the 

seven features closest to the I-mer T, this is the one with the highest information gain, 

0.15. The 1-mer T has an information gain of 0.08. State 0 in this SEM counts the T-

content of the sequence except when the sequence comes from State 2. In that case, it 

counts Cs and Gs rather than Ts. Examination of this subset of T-content could lead to 

biological insight. 
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Figure 5.2: The 4-state SEM that generates, using State 0, an IES feature selected by DC that 
has the highest information gain of the features closest to the I -mer T (reprinted from [ 18]). 

5.2 Detailed Analysis Of The sLTR/SINE Problem 

The sequences studied are solitary LTRs and SINEs. Both are common in the human 

genome: endogenous retroviral sequences (which include solitary LTRs) comprise 8-

10% of the genome [144], and SINEs comprise about 11 % [104]. SINEs and solitary 

LTRs are of similar length and have features in common, and, thus, are easily confused. 

We know they are functional because they are conserved and transcribed [60, 102, 95], 

but their function is not well understood. SINEs are related to small RNAs, while solitary 

LTRs are related to promoter regions for genes. Because they insert copies of themselves 

in multiple locations in the genome, both solitary LTRs and SINEs impact genome size 

and structure, but differently due to different insertion site preferences. Identifying fami-

lies of solitary LTRs and SINEs is important to the the study of genome evolution as they 

serve as biological markers. See Section 1.2.4 for more information about solitary LTRs 
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and Section 1.2.5 for more information about SINEs. 

Genomic data is constantly being updated and revised. There are often conflicting an­

notations for genomic structures, and annotations are frequently modified. For example, 

the RepeatMasker and RetroTector annotations extracted for solitary LTRs are mostly 

disjoint. On human chromosome 19 only 20% of the annotations overlap. The impact 

these different annotations had on the results for the sLTR/SINE problem was studied. 

Three different data sets were used for the solitary LTRs: the one used in Chapter 4 and 

Section 5.1 that uses RetroTector's annotation of LTRs from their identified LTR retro­

transposon sequences (RT data set); complete solitary LTRs identified by RepeatMasker 

(RM data set); and solitary LTRs catalogued in RepBase (RB data set). The RT and RM 

data set are comprised of sequences taken directly from genomes. They are sometimes 

referred to as genomic data sets. The RB data set consists of consensus sequences de­

rived from many instances of the same solitary LTR. This data set is sometimes referred 

to as the consensus data set. 

All consensus sequences in RepBase designated as human solitary LTRs or human 

SINEs are used. The sequences from RepeatMasker are taken from human chromosomes 

1 and 2 and include sequences annotated by RepeatMasker as being complete matches for 

solitary LTRs and SINEs (i.e., having no gaps at the beginning or end of the match). The 

sequences from Retrotector are taken from annotations of HERV s in the output from a 

search using their online tool on human chromosomes 19 and 21. Since Retrotector does 
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Table 5.4: Experiment Sets - Mis the machine number; sis the state number. 
Method States Reference 

non-looping 4 4sM ( s) 
non-looping 6 6sM ( s) 

looping 4 4sLM ( s) 
looping 6 6sLM ( s) 

not generate any annotations for SINEs, the Retrotector data sets combine Retrotector 

solitary LTRs with RepeatMasker SINEs. The RM and RT data sets are divided into 

training and test data sets. 

5.2.1 Experiments 

Four sets of experiments were performed with 100 replicates each. 4- and 6-state SEMs 

were used. For each number of states, two different methods of running the sequence 

through the SEM were used. The sequence always starts in State 0. For the first method 

(non-looping), the sequence is run through the machine from beginning to end. Since the 

sequences vary in length, it was hypothesized that this might create uneven results. So, 

the second method (looping) normalizes by always using 10,000 steps, looping from end 

to beginning of the sequence. For each replicate, the machine with best fitness is saved 

for analysis. The set of 100 best SEMs, one from each replicate, are used to generate 

either 400 or 600 (depending on whether 4 or 6 states are used) features. Subsets of 

these features are used to train random forest classifiers (see Section RFsection). One 

hundred replicates were done to maximize the diversity of the chosen features. The SEM 
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search space is large, and features taken from the same SEM are necessarily correlated. 

Using 100 replicates ensures that there will be subsets of features with small correlations. 

In addition, 100 non-looping replicates were done with 20-state machines in order to 

provide a comparison of the new method with the old method of creating a classifier 

based on a single machine. 

A somewhat arbitrary choice was made to use the RB data for the genetic algorithm. 

The rationale was that this would mean the features would be based on underlying fea­

tures rather than mutations. The results, which demonstrate that features based on mu­

tations can be important identifiers, suggest that it would be worthwhile to try evolving 

with the genomic data sets in the future. 

5.2.2 Non-SEM Features 

In addition to the features generated by the SEMs, the following features were included. 

These features are included because they have been shown to be useful for similar clas­

sification problems. Their use provides help in interpreting SEM features that are similar 

to them and serves as a basis of comparison for measuring the effectiveness of SEM 

features. More details about these features can be found in Chapter 3. 

• The length of the string (Section 3.3). 

• Dinucleotide frequencies (2-mers) (Section 2.1.4). 
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• Shannon entropy of 2-mers, 3-mers, and 6-mers (Section 2.1.5). 

• Purine (A or G) content, amino base (A or C) content, strong H-bond base (G or 

C) content (Section 3.3). 

• Gap features (Section 3.3). 

• Maximum length of runs for each base (Section 3.3). 

5.2.3 Impact Of Source Of Data 

Many researchers who use machine learning approaches to genomic analysis use consen­

sus sequence data for training, for example TEclass [2] and REPCLASS [47]. Prelim­

inary investigations of the features, however, indicated that training with the consensus 

sequences from RepBase was not optimal. A striking demonstration comes from exami­

nation of the entropy features. For the RB data set, th~se features appear to be excellent. 

Using just the three entropy features, the OOB training accuracy is 97%. However, the 

accuracy of this classifier on the solitary LTR sequences in the RT data set is little better 

than random guessing, 54 % . 

Figure 5.3 shows a projection of the solitary LTR data using four of the features 

(the selection of which is described in Section 6.3.5) into two dimensions using multi­

dimensional scaling. Notice that the consensus sequence solitary LTRs, shown as circles, 

group together in a line, while the genomic solitary LTRs, shown as triangles, pointing 
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Table 5.5: Accuracy of classifiers distinguishing sequences found by RepeatMasker from con­

sensus sequen_ce_s_. ----------------------
features 
20 cluster centers (Section 6.3.4.1) 
entropy features 
minGC .. CG, CG-content, CG freq. 
CG-content, 
freq. of AT, CG, GC, GG, and TA 

sLTR acc. 
73% 
93% 
95% 

99% 

SINE acc. 
.95% 
98% 
97% 

99% 

up for RM and down for RT data, are more scattered. Although a visualization like this 

does not prove anything, it suggests that the problem with using consensus sequences for 

training is that their feature values have much tighter distributions than those of genomic 

sequences. 

To further investigate this phenomenon, classifiers were built to distinguish consensus 

sequences from genomic sequences. ff consensus sequences are truly representative of 

genomic sequences, these classifiers should have low accuracy. Xn fact, they did not. 

Some of the features in the feature set can distinguish a consensus sequence from a 

genomic sequence with high accuracy. See Table 5 .5 for accuracy of classifiers built from 

these features. The fact that such classifiers exist demonstrates that consensus sequences 

are not always representative of genomic sequences. The results suggest that consensus 

sequences should be used with caution, and that a comparison should be made with 

classifiers built from genomic sequences. 

One possible explanation for the difference between consensus and genomic se-

quences involves the mechanism of mutation. Consensus sequences are built by aligning 
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Figure 5.3: Projection into two dimensions of solitary LTRs from the three different types of 
data represented using the four super-features (reprinted from [17]). 
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a set of genomic sequences and taking the majority vote at each location. The assump-

tion is that mutations occur in random locations. This means that the process of building 

a consensus sequence filters them out. The original base, not the mutation, will always 

be in the majority in a particular position. However, the mutations are not in fact ran-

dom. For example, it is known that G-to-A mutations targeting GA and GG dinucleotides 

are common in many human retroviruses and retroelements [8]. These would affect CG-

content and the frequency of GG dinucleotides, two features that were used to distinguish 

consensus from genomic sequences. As a result of this analysis it was decided to build 

classifiers using all three training data sets and to compare the results. 

5.2.4 Dissimilarity Selection 

The accuracy of classifiers built for this problem using DS will be discussed in Section 

6.3.4.1. In this section, it is shown how DS can be used to better understand the SEM 

features. Features that cluster together are likely to play a similar role in classifiers. Un-

derstanding each cluster provides understanding of the range of SEM features found by 

the genetic algorithm. Performing DS on evolved SEM features together with statistical 

features has a dual purpose: it pinpoints potentially valuable features that the genetic al-

gorithm.fails to find, and it helps with the analysis of SEM features that cluster together 
-------- ', 

with the more easily interpreted statistical features. 
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Table 5.6: Twenty clusters used for DS. For mixed types, the number in parentheses is the 
percentage of features that are evolved. Highlighted items are discuss.ed in the text. 

name size med. best cluster cluster type 
acc. acc. acc. RM acc. RB 

Starting Pyrimidines 169 90% 92% 92% 91% SEM looping 
Starting Seq. A 221 72% 96% 94% 80% SEM non-looping 
Starting Seq. B 140 71% 92% 94% 79% SEM non-looping 
Starting Seq. C 111 69% 92% 93% 79% SEM non-looping 
GGMaxGap 89 62% 79% 82% 78% non-evolved 
Length 108 62% 73% 79% 76% non-evolved 
Entropy 154 59% 69% 74% 75% SEM non-looping 
Assorted 247 58% 96% 84% 74% mixed (38%) 
A-rich 176 56% 75% 88% 74% SEM (all types) 
Max Gap Duds 60 56% 68% 79% 74% non-evolved 
Sequence Comp. 214 54% 69% 93% 73% mixed (81 %) 
GG Cluster 57 54% 75% 89% 72% non-evolved 
CTffC Cluster 56 54% 63% 88% 70% mixed (50%) 
GC-Content 309 53% 65% 93% 69% mixed (90%) 
Mutation Cluster 76 53% 93% 92% 60% SEM looping 
CC Cluster 55 52% 71% 90% 60% non-evolved 
GC Cluster 99 52% 65% 91% 58% mixed (74%) 
Mutated A-rich 160 52% 76% 85% 53% mixed (86%) 
Amino Cluster 164 52% 66% 88% 51% mixed (73%) 
CG Cluster 77 51% 63% 76% 42% non-evolved 

5.2.4.1 Analysis Of Clusters 

Table 5.6 lists some basic statistics about the clusters. The clusters are named so as to 

give some indication of the nature of the features they contain. They are listed in order 

from best to worst in terms of their accuracy when all their features are used in a classifier 

trained on RB data and tested on RT data (the hardest combination of training/test data). 

The clusters range in size from 50 to 309 features. Since there were more than twice 

as many evolved as non-evolved features, the clusters with non-evolved features tend to 
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be smaller. Large clusters with evolved features include similar features found by many 

replicates of the genetic algorithm. 

About a third of the clusters consist of 98% or more evolved features, a third of 98% 

or more non-evolved features, and a third are mixed. This means that the genetic algo­

rithm is finding features similar to some of the non-evolved features (those in the mixed 

clusters), features different from any of the non-evolved features (those in the evolved 

clusters), and failing to find features similar to some of non-evolved features (those in 

the non-evolved clusters). In addition, the different types of SEM experiments (looping 

and non-looping, 4-state and 6-state) distribute their features in different clusters. This 

demonstrates that doing the different experiments led to a greater range of features and 

suggests that new experiments with different parameters could find different effective 

features. 

Many of the sequences in the problems being studied have a modular sructure. Most 

of the evolved SEMs had one transient and one attracting communicating class. This 

enabled them to divide the sequence into two modules: the initial portion, and the rest. 

5.2.4.2 Effective Individual Features 

The median accuracy column in Table 5.6 demonstrates that most features create weak 

classifiers by themselves. Examination of the best accuracy column shows that excep­

tional features occur in six clusters: the four clusters that measure qualities of the starting 
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portion of the sequence (Starting Pyrimidines Cluster and Starting Sequences Clusters A, 

B, and C), the Assorted Cluster, and the Mutation Cluster. These features create classi­

fiers with better than 90% accuracy. They are shown in bold. All of these are evolved 

features. These six clusters have the property that better classification can be achieved 

by using the single best feature than by using a combination of their features. 

The four top clusters in Table 5.6 all measure qualities of the starting portion of the 

sequence. The large Starting Pyrimidines Cluster contains highly effective features very 

similar to each other. It essentially has two features that are found in many evolutionary 

replicates of looping SEMs. The larger of its feature groups contains features that mea­

sure the proportion of the sequence consisting of pyrimidines before the first purine; the 

other group has features that measure the proportion of the sequence consisting of initial 

Ts. For both types of features, a solitary LTR with a typical TG start has a small value, 

and the value for the T-rich 5' region of a SINE is larger. An outlier, distance 0.10 from 

the larger group, gets slightly higher accuracies. It also measures pyrimidine content in 

the starting part of the sequence, but it has a more complicated definition of "starting part 

of the sequence." It considers starting sequences with forms like: R*YC* R, R*Y R, and 

R*YTR*YR. 

The three clusters called Starting Sequences Clusters A, B, and C also measure qual­

ities of the starting portion of the sequence. They consist of SEM features created by 

non-looping SEMs that, in general, work better when trained with genomic sequences 
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than with consensus sequences. Starting Sequence Cluster A contains twelve of the top 

twenty individual features, all of which are highly correlated with each other. One of 

these counts the proportion of Ts in starting sequences. It considers starting sequences 

including: C, RS, TC, TM*G, TRT*S, and MT* AT* S. 

Most features in Starting Sequences Cluster B are highly correlated with the cluster 

centre, which counts various starting sequences including the typical TG start of soli-

tary LTRs and also sequences such as: CG, CTCG, TTCG, CATG, GA*CG, and 

AG*TA*CG. 

An exceptional feature in Starting Sequences Cluster B is on the edge of the clus-

ter. It is not close to any other feature in the feature set. This feature is 6s77 ( 1) 8 . The 

same SEM that produces it also produces 6s77(3), a highly effective feature in the As-

sorted Cluster. This SEM is shown in Figure 4.1. 6s77 ( 1) is unusual in part because it is 

derived from a transient state that can only be reached from a transient communicating 

class. This is an unusual SEM structure. Most evolved SEMs divide into a transient and 

an attracting communicating class without transient states between them. 6s77 (3) is non-

zero for starting sequences G(SY)*W, G(SY)*SR, TYW, T(YS)* R, and T(YS)*YW 

and zero otherwise. Its value is usually zero for solitary LTRs and usually non-zero and 

larger for SINEs, meaning that it is identifying distinctive starting sequences of SINEs. 

6s77 ( 1) counts the number of Cs between these starting sequences and the rest of the 

8Feature names are of the form N sM ( i) where N is the number of states; M is the machine number; 
i is the state number. Features from the looping experiments replace "s" with "sL''. 
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sequence. This feature is interesting because it is detecting an intermediate module in 

SINE elements. Its success suggests that it would be worthwhile to explore modifica­

tions to the genetic algorithm that would encourage discovery of multiple modules in the 

sequences. 

Starting Sequence Cluster C consists of a small but varied set of starting sequence 

features. The cluster centre, a highly effective feature, counts, for a sequence that begins 

with CA, CG, TA, or TG, the number of TAs, TGs, As and Gs until it reaches a C. 

The Assorted Cluster was given its name because its features are not highly corre­

lated with other features. This means it contains features infrequently discovered by the 

genetic algorithm. It is the second largest cluster and mixes evolved and non-evolved 

features. The best features in this cluster include 12 SEM features and the SINE motif 

CCTT found by a minimum gap feature. Although many of the non-evolved features 

contained in it are useful, the more nuanced SEM features similar to them are more 

useful. Interpretation of the SEM features is aided by their proximity to non-evolved 

features which include: entropy of 2-mers and 3-mers, maximum size run of Gs, and the 

average gap between GC and AG. 

5.2.4.3 Features Effective In Combination 

Some clusters create better classifiers when their features are used in combination, es­

pecially when trained using genomic data. Notable examples are shown in bold in the 
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cluster accuracy (trained on RM) column. The only one of these consisting entirely of 

evolved features is the A-rich Cluster. It seems to be identifying features of the A-rich 

modules of solitary LTRs identified by (20]. The CC Cluster and the GG Cluster contain 

average and minimum gap features involving the dinucleotides CC and GG that were 

not found by evolution, perhaps because they are only effective in combination. Five 

other clusters contain a mix of evolved and non-evolved features that are effective only 

in combination. These are: the Sequence Composition Cluster, the GC-Content Cluster, 

the GC Cluster, the CTffC Cluster, and the Amino Cluster. These clusters all contain 

average gap features, dinucleotide frequency features, and SEM features. Three of the 

five have primarily 6-state SEM features. This highlights a reason why features from 

SEMs with fewer states are more interpretable. Not only are the SEMs themselves easier 

to interpret, but also each individual feature contributes more to the classification. 

Examples of SEM features from these clusters: 

• A feature in the A-rich Cluster calculates the A-content of the sequence plus Cs 

and Gs that follow TT or GT and all bases following Cs that do not follow TT or 

GT. 

• A feature in the GC-Content Cluster counts runs of As that follow sequences of 

the forms: GY* A, DM*T, and CT*C. 

• A feature in the GC Cluster counts Ts that follow sequences of the forms: MG, 
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TW, A*G, CA, GR, and TC*W. 

• A feature in the CTffC Cluster counts runs of Cs that follow Ts. 

• A feature in the Amino Cluster that is difficult to analyze involves the base content 

in the final portion of the sequence, paying special attention to the number of Cs. 

5.2.4.4 Features That Work Only On Genomic Sequences 

The features in some clusters are more sensitive than others to whether they are trained 

using genomic or consensus sequence data. The clusters that are most sensitive to the 

type of training data are shown in bold in the cluster accuracy (trained on RB) column. 

Further study of the features in these clusters could lead to insight about mutation biases. 

Two of these clusters include only non-evolved features, the CC Cluster and the CG 

Cluster. These contain features related to the CC and CG dinucleotides. The Mutation 

Cluster consists entirely of evolved features. Four other clusters have a mix of evolved 

and non-evolved features: the GC-Content Cluster, the GC Cluster, the Mutated A-rich 

Cluster, and the Amino Cluster. 

The GC-Content Cluster is the largest cluster, meaning that its features are frequently 

rediscovered in replicates of the GA. It contains all the features in the classifier from 

Table 5 .5 that achieved 99% accuracy distinguishing consensus sequences from genomic 

sequences. The GC Cluster contains feature related to the GC dinucleotide. Their success 

suggests that GC dinucleotides occur more frequently and closer together in SINEs than 
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in solitary LTRs. Like the A-rich Cluster, the Mutated A-rich Cluster is likely detecting 

features in the A-rich regions of solitary LTRs. However, since it performs better when 

trained with genomic sequences, it is detecting aspects that occur only after mutation. 

5.2.4.5 Features That Genetic Algorithm Does Not Find 

While the average and minimum gap features sometimes cluster with evolved features, 

the maximum gap features never do, suggesting either that they measure qualities diffi­

cult to represent using SEMs or that SEMs are able to find better features. Since only 

10 out of 256 of these features create individual classifiers with accuracy 75% or above, 

the latter is probably the case. The maximum gap features are divided amongst four 

clusters: GG Maximum Gap Cluster (containing maximum gap features that contain the 

dinucleotide GG), Maximum Gap Duds Cluster (containing the least effective maximum 

gap features), Length Cluster (features correlated with the length of the sequence), and 

CG Cluster (features associated with the CG dinucleotide ). The most effective of them 

fall into the GG Maximum Gap Cluster. These all involve the dinucleotide GG and tend 

to be larger for solitary LTRs, indicating that GGs are more spread out in solitary LTRs 

than in SINEs. Interestingly, the frequency of GG is in Starting Sequence Cluster C 

and is an average distance of 0.42 from these features, suggesting that these features 

are measuring a quality unrelated to it. The Maximum Gap Duds Cluster contains the 

least effective of the maximum gap features. The Length Cluster contains about half the 
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maximum gap features along with the length of the sequence. The sequence length is 

a highly effective feature when trained with genomic sequences, less so with consensus 

sequences, suggesting that solitary LTRs are more likely than SINEs to have insert muta­

tions. The remainder of the maximum gap features are in the CG Cluster, which contains 

non-evolved features related to the CG dinucleotide. 

5.2.4.6 Randomness 

SINEs have lower entropy than solitary LTRs, because they often have short sequence 

repeats at one or the other end, such as GGCTGGCTGGCT. This reduces their entropy. 

They also end with poly-A tails, AAAAAAAAAA, that further reduce their entropy. 

The Entropy Cluster contains features that use this fact to distinguish the sequences. It 

consists almost entirely of SEM features, but also includes the 6-mer entropy feature. 

The cluster centre, for example, detects repeats of the subsequence T M*T S occurring at 

the beginning of SINEs. 

5.2.5 Dissimilarity Clustering 

The accuracies of classifiers built using dissimilarity clustering is ·discussed in Section 

6.3.5. DC is valuable for biological analysis because it selects a diverse set of effective 

features. The features in an effective DC classifier give insight into different distinguish­

ing qualities of the sequences. For this problem, both the best DC classifier trained on 
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consensus sequence data and the best DC classifier trained on genomic data contained 

the same four features. These are referred to as the four super-features. 

These four super-features are: 

1. 4s83(2): This feature is in the Assorted Cluster. It is on the edge of the cluster, 

with a correlation of 0.11 with the cluster centre. It is highly correlated only with 

another feature generated by the same SEM and two pairs of features from similar 

SEMs, meaning it is rarely found by evolution - only three times out of 400 repli­

cates. It is part of a transient class identifying a sequence start feature. Its value 

is zero if the sequence starts with TG or A (i.e. for most solitary LTRs). It adds 

together the lengths of some of the runs of amino bases in the starting sequence. 

For example, those following an initial C, G, or TT, and those following TIT, but 

not those following an initial Tor those following GT or a non-initial TT. This 

feature achieves 96% accuracy on RM training data and 95% accuracy on RT data 

when used alone. 

2. 4s63(2): This feature is a member of the Starting Sequences Cluster C. It is in 

the interior of the cluster with a correlation of -0.52 with the cluster centre, and, 

like the cluster centre, measures qualities of the start of the sequence. It is a unique 

feature, highly correlated only with two other features generated by the same SEM. 

It is a terminal state that counts the proportion of the sequence following certain 
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possible starting sequences. If the sequence does not start with T, its value is 

1. Most SINEs fall in this category. Starting sequences excluded from its count 

include: TT, TGS, TGT*S, TGAT, TM*T, and TM*GT*S. Solitary LTRs 

are more likely to have longer such starting sequences than SINEs. This feature 

achieves 90% accuracy on RM training data and 93% on RT training data when 

used alone. 

3. 6sL12(3): This feature is highly correlated with the frequency of TT (r = 0.95) as 

well as 69 other features. It is a member of the Sequence Composition Cluster and 

has a 0.59 correlation with the cluster centre, putting it in the interior of the cluster. 

It measures the frequency of runs of Ts together with CCs (i.e., sequences like 

TTITTCCTTCCCCTTTT, but not like TTTTCTTTC). About 8% of solitary LTRs 

consist of such sequences, while the amount in SINEs is variable. This feature 

achieves 75% accuracy on RM training data and 83% accuracy on RT training data 

when used alone. 

4. 4sL66(1): This feature is in the interior of the Mutation Cluster with a correlation 

of 0.43 with the cluster centre. It is nearly unique with high correlation only with 

features generated by two other 4-state looping SEMs. It has a 0.67 correlation 

with amino content and counts all amino bases except runs of Cs following a G 

or T. In addition, it counts Ts that follow a G or a T and Ts that follow KC*. 
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This feature achieves 70% accuracy on RM training data and 79% accuracy on RT 

training data when used alone. 

5.3 Conclusion 

This chapter compared the impact of feature selection on SEM features with that on 

string kernel features. It showed that, for SEM features but not for string kernel fea­

tures, a feature selection method that selects diverse features is effective. It introduced 

some methods for SEM feature analysis: finding the closest string kernel (or other more 

easily interpreted) feature, clustering the features, and direct analysis of the finite state 

machines that generate the SEM features. An important discovery made in the course 

of the analysis of SEMs selected for the sLTR/SINE problem was that consensus se­

quences may not always be a good choice for machine learning training sets for DNA 

sequence classification problems. Dissimilarity clustering was used to find a small set 

of highly effective diverse features for the sLTR/SINE problem. The next chapter will 

use the SEM features along with the statistical features from Chapter 3 in various DNA 

sequence classification problems involving TEs. 
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6 Classification Problems 

This project was started with the goal of building a scanner to detect ERV s. The first step 

towards building such a scanner is to build classifiers that distinguish ERV s from other 

genomic features. This includes intergenic non-coding sequences, genes, and other types 

of TEs. Both classifiers using the statistical features and classifiers using SEM features 

were built. In addition, the two types of features were combined by creating SEMs that 

are driven not by the {A,C,G,T} alphabet, but by the pattern of reading frames detected 

in the sequence. High accuracies were obtained with all of these classifiers. 

6.1 Types Of Classifiers Used 

Three types of machine learning classifiers were used: SVMs, random forests, and k 

nearest neighbour. These classifiers perform well with the data. Other types of classifiers 

might work as well or better. No attempt was made to optimize based on classifier type, 

comparing only the performance of SVM and k nearest neighbour classifiers in Section 

6.4. That comparison is done to make sure that there is no bias towards using the classifier 

that is part of the genetic algorithm's fitness function. In general, It is likely that only 
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small improvements could result from optimizing the classifier used since the accuracies 

are high. Given the noisiness of the data, these improvements would be unlikely to be 

meaningful. 

6.1.1 Support Vector Machines 

SVMs are supervised learning algorithms for classification and regression. They are use­

ful for dealing with data that is noisy and/or not linearly separable. They have become 

popular in many diverse applications where efficient and accurate classifiers are desir­

able. SVMs learn hyperplanes from training data that separate the classes and maximize 

the distance (margin) to the nearest training data points on either side of the hyperplane. 

Since SVMs maximize the geometric margin, they are also known as maximum margin 

classifiers. Since the data is not linearly separable, the hyperplane must be in a higher 

dimensional space than the data. This is achieved through use of a kernel function. The 

kernel function maps the data onto a feature space in which they are linearly separable. 

The support vectors are vectors taken from the training data set that lie on the margin. 

It can be shown that it is not necessary to calculate the maximum margin hyperplane it­

self. The classification can be done using a function of the support vectors. The number 

of support vectors required by the machine is some indication of the complexity of the 

model. Although a hyperplane divides space into two classes, SVMs are easily adapted to 

handle multi-class problems. More details on SVMs can be found in [30]. The LIBSVM 
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library in R [35] was used to train and test the classifiers. 

The choice of SVM for classification was based on several factors. SVMs are com­

monly used in bioinformatics because they work well in high dimensional spaces. This 

gives the flexibility being able to use many parameters without worrying about the "curse 

of dimensionality." The classes are not linearly separable, and the data is noisy. SVMs 

have a parameter, C, that allows one to compensate for noise. A disadvantage of SVMs 

is that they are not transparent. For this reason, random forest classifiers were used later, 

which have the same advantages as SVMs, but are easier to interpret and analyze. 

6.1.2 Random Forests 

A random forest is an ensemble classifier made of decision trees (26, 54]. The classifica­

tion is made by majority vote of the trees. Each tree is trained using a different subset of 

N% of the data. At each node, a subset of m features is chosen. The best cutoff value for 

each of the m features is determined, and the feature that splits most equally, measured 

using the Gini index, is chosen. The trees are not pruned. 

The Gini index is a measure of inequality, ranging from zero (completely equal) 

to one (completely unequal), often applied to income. Canada, for example, has a Gini 

index for income around 0.32, while the United States has one around 0.47, and humanity 

as a whole has one around 0.65. The Gini index is measured using the Lorenz curve. To 

create a Lorenz curve, you sort the feature values, x1 ~ x 2 ~ ... ~ Xn, and then plot the 
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points (h/n, I:7=i xd 2::::7=1 xi) where h = 1 ... n and join the values, together with the 

point (0,0), with a polygon. Let A be the area between the line of perfect equality (the 

diagonal) and the Lorenz curve and B be the area under the Lorenz curve. Then the Gini 

index is 

(6.1) 

The random forest yields an out of the bag (OOB) classification error, which is the 

percentage of misclassifications when the remainder of the data, not the data used for 

training, is classified by each tree. It is common to use between 50 and 500 trees. The 

random forests are created using code from alglib9 [25]. 

An advantage of random forests is that they are unlikely to over fit the data. The in-

ventors of the technique claimed that it could not over fit. Others have disputed this, but, 

in any case, it is not prone to overfitting. The software package used allows adjustment of 

a parameter to correct for possible overfitting. Experimenting with this parameter deter-

mined that overfitting was not a problem in this case. Random forest classifiers are also 

a good choice for noisy data. They are less sensitive to noise than other classifiers, since, 

if one tree fails to identify a sequence due to noisy data for one feature, another tree that 

relies on a different feature can spot it. Random forests are transparent classifiers. It is 

possible to analyze the trees and learn something about the sequences. 

A useful tool for sequence analysis is the random forest distance created using a 

9www.alglib.net 
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high accuracy random forest classifier. Each sequence that passes through a random 

forest ends up in a specific leaf of each decision tree. Each tree has many leaves that 

result in the same classification. The random forest distance between two sequences is 

the percentage of trees in which they end up in the different nodes. It is possible for 

two sequences with the same classification to have the maximum possible random forest 

distance. This happens when they follow a different path in each decision tree. It is 

not possible for sequences with different classifications to have the minimum random 

forest distance, but they can have a small distance if both sequences are misclassified 

on many of the trees and their misclassifications follow the same paths as the correct 

classifications for the other sequence. 

6.2 Classifiers Using Statistical Features 

Attention was first focused on the problem of detecting ERV s. A difficulty in detecting 

ERV s is that they are mutated and so may have lost some of their distinctive retroviral 

features. Thus, the presumably easier problem of distinguishing exogenous (wild) retro­

viral genomes from other genomic sequences was explored first. Since human ERV s 

(HERV s) are most commonly found in ~on-coding DNA, a classifier was built to distin­

guish exogenous retroviral genomes (RVs) from non-coding human sequences (NCSs). 

Next, an SVM classifier was built that distinguished HERVs from NCSs. As some 

HERV s are found in genes, an SVM classifier was built to distinguish HERV s from 
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human genes. Out of curiosity, it was then investigated whether distinctions could be 

made between different types of viruses. The algorithm's ability to distinguish HERVs 

from RVs, lentiviruses from other retroviruses, papilloma viruses from lentiviruses, and 

papilloma viruses from retroviruses was tested. In all cases, the SVM classifiers achieved 

high accuracy. 

6.2.1 Data Sets 

For this first set of classifiers four types of data were used: human endogenous retrovirus 

(HERV) data, viral genome data, non-coding sequence (NCS) data, and human genes 

(GENE). The viral genomes are divided into several data sets: retroviruses (RV), which 

are subdivided into lentiviruses (LENTI) and retroviruses that are not lentiviruses (NON­

LENTI), and papilloma viruses (PAP). Lentiviruses are a type of retrovirus (the type that 

includes HIV), and papilloma viruses are not retroviruses but have some genes in com­

mon with them. The HERV data set was created using RetroSearch and the viral genome 

data was obtained from NCBI10. The NCS and GENE data sets contain sequences taken 

from the human genome downloaded from NCBI. The NCSs were selected at random, 

excluding regions that are known to be genes or HERV s. The HERV regions that were 

excluded were taken from RepeatMasker. The GENE data was selected at random from 

genes mapped in NCBI that are at least 5000 and not more than 10,000 nucleotides long. 

10http://www.ncbi.nlm.nih.gov 
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They include both exons (coding regions) and introns (non-coding regions). The 356 

HERV s in the HERV data set were chosen to have minimum length 5000, minimum open 

reading frame (ORF) length 100, at least 3 ORFs, and a minimum identity with known 

retroviruses of 90%. The RV data set has 58 complete retroviral genomes. LENTI, NON­

LENTI, and PAP have 96 genomes each. NCS data sets for each experiment were chosen 

to have the same number of sequences as the other data set in the experiment with the 

same distribution of lengths. Gene data sets, also, were chosen to have the same number 

of sequences as their companion data set. 

6.2.2 Features 

For these experiments, Fourier transform based features derived from the RY, MK, and 

SW indicator sequences were used. These include Fourier magnitude features (Section 

2.1.2) to detect coding regions and Fourier phase vector features (Section 3.1.3) to detect 

the reading frame pattern. Entropy features (Section 2.1.5) were used to measure the 

randomness of the sequences. See Table 6.1 for a summary of the features used. 

6.2.3 Distinguishing Retroviruses From Non-coding DNA 

The problem expected to be easiest was studied first: distinguishing retroviruses (RV 

data set) from non-coding DNA (NCS data set). The results are shown in Table 6.2. The 

table shows the average of 200 iterations and best results for sensitivity, specificity and 
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Table 6.1: Features used for classification 
Abbrev. 
mRY 
mMK 
mSW 
f(l) 
f(2) 
f(3:5) 
f(6:9) 
avgblk 
el 
e2 
e3 
e6 

Description 
mag. of Fourier coeff. S ( j) in RY string 
mag. of Fourier coeff. S ( - ) in MK string 
mag. of Fourier coeff. S ( ~) in SW string 
freq. of distance 1 betw. change points 
freq. of distance 2 betw. change points 
sum of freq. of distances 3, 4, and 5 
sum of freq. of distances 6, 7, 8, and 9 
avg. distance betw. change points 
entropy of single bases 
entropy of dimers 
entropy of trimers 
entropy of hexamers 

Table 6.2: Results for RV-NCS classification 
Features Sensitivity Best Specificity Best Accuracy 
All features 0.98 1.00 LOO 1.00 0.99 
el,e2,e3,e6 0.99 1.00 0.98 1.00 0.99 
mRY, mMK, mSW 0.82 1.00 0.81 1.00 0.81 
f(l), f(2), f(3:5), 0.74 1.00 0.58 0.82 0.66 
f(6:9), and avgblk 
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Best SVs 
1.00 58% 
1.00 24% 
0.95 57% 
0.86 58% 



accuracy of 200 trials using random selections of the data for training and testing. These 

are calculated using the following equations: 

. . . tp 
sens1ttv1ty = f , 

tp+ n 
(6.2) 

.fi . tn 
spec1 city = f , 

tn+ p 
(6.3) 

and 

. . tp + tn 
prediction accuracy = f f 

tp+ n+ tn + p 
(6.4) 

where tp = number of true positives, tn = number of true negatives, f p = number of 

false positives, Jn= number of false negatives, and the first class (in this case RVs) are 

considered positives and the second class (in this case NCSs) are considered negatives. 

The last value in the table (SVs) is the average percentage of vectors from the training 

data used as support vectors. These are the vectors which lie on the margin of the SVM 

classifier. More support vectors mean a more complex model. 

The best classifiers used just the entropy features. These produced the simplest 

(fewest support vectors), most accurate models with nearly perfect sensitivity, speci-

ficity, and accuracy, regardless of the division of the data. The SVMs trained with all the 

features were also highly accurate, but they required a more complex model. The Fourier 

transform based features created less accurate classifiers whose accuracy depended much 

more on how the data was divided, particularly for the Fourier phase vector features. This 

suggests that there are anomalous data points in one or the other of these data sets, at least 
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Table 6.3: Results for HERV-NCS classification 
Features Sensitivity Best Specificity Best Accuracy Best SVs 
All features 0.99 1.00 0.98 1.00 0.98 1.00 12% 
el,e2,e3,e6 0.98 1.00 0.98 1.00 0.98 1.00 13% 
mRY, mMK, mSW 0.71 0.86 0.72 0.85 0.72 0.82 57% 
f(l), f(2), f(3:5), 0.62 0.76 0.73 0.86 0.68 0.77 57% 
f(6:9), and avgblk 

in respect to these features. 

6.2.4 Detecting HERV s 

The problem of detecting HERV s was then addressed. First, the problem of distinguish-

ing them from the NCSs was examined. The results are shown in Table 6.3. A multi-

dimensional scaling of the data onto two dimensions from the 12-dimensional space used 

for this problem is shown in Figure 6.1. The projection strongly suggests that the data 

are not linearly separable. However, the SVMs do nearly as good a job with this problem 

as with the RV-NCS problem. As with the RV-NCS classification, the entropy features 

produce simple, accurate classifiers. For this problem, using all 12 features results in 

classifiers that are just as good as the entropy classifiers. The classifiers built using the 

Fourier transform based features only are again more complex and less accurate. How-

ever, note that the impact of choosing different divisions of the data is less than it was 

for the RV-NCS problem, suggesting the HERV data set is more uniform with respect to 

these features than the RV data set. 

Then, the problem of distinguishing HERVs from genes (GENE data set) was ex-
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Figure 6.1: Multi-dimensional scaling of feature vectors representing HERVs and NCSs using 
all 12 features. HERVs are red triangles; NCSs are blue circles. 

Features 
All features 
el,e2,e3,e6 
mRY, mMK, mSW 
f(l), f(2), f(3:5), 
f(6:9), and avgblk 

Table 6.4: Results for HERV-GENE classification 
Sensitivity Best Specificity Best Accuracy 

0.92 0.99 0.93 1.00 0.92 
0.88 0.96 0.92 0.99 0.90 
0.31 0.48 0.81 0.96 0.56 
0.92 0.99 0.91 0.99 0.91 
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Best 
0.97 
0.96 
0.63 
0.96 

SVs 
22% 
24% 
70% 
30% 



amined. This problem is more difficult than distinguishing HERV s from NCSs, because 

the genes contain both introns and exons, a mixture of coding and non-coding regions. 

The HERV s consist of coding regions with many mutations surrounded by non-coding 

regions. The results (shown in Table 6.4) are excellent for all feature subsets except the 

set of Fourier magnitude features. The Fourier phase vector classifiers are effective for 

this problem, achieving higher sensitivity than the classifiers built with the entropy fea­

tures, although with a somewhat more complicated model. The classifiers using the three 

Fourier magnitude features have good specificity, but terrible sensitivity. This means 

these classifiers are good at identifying genes, but mistake retroviruses for genes more 

often than not. 

A multiclass SVM with all 12 features that distinguished HERVs from GENEs from 

NCSs was trained. This SVM used 13% of the data vectors as support vectors and did 

perfect classification in the best case with average recall and precision values for all three 

classes of 0.94. (Precision measures the percentage of sequences assigned to a class that 

actually belong to it; recall measures the percentage of sequences belonging to a class 

that are, in fact, assigned to it.) 

6.2.S Distinguishing Different Types Of Viruses 

The next group of experiments were done to see how well the features could distinguish 

different types of viruses. The first set of experiments distinguish HERV s from intact 
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Table 6.5: Results for HERV-RV classification 
Features Sensitivity Best Specificity Best Accuracy Best SVs 
All features 0.98 1.00 0.97 1.00 0.97 0.99 2% 
el,e2,e3,e6 0.92 1.00 0.92 1.00 0.92 1.00 49% 
mRY, mMK, mSW 0.73 1.00 0.63 0.91 0.68 0.91 76% 
f(l), f(2), f(3:5), 0.81 1.00 0.74 1.00 0.78 1.00 53% 
f(6:9), and avgblk 

retroviral genomes (RVs). The difference between these two groups is that HERVs are 

heavily mutated. The results of this experiment are shown in Table 6.5. All feature 

sets except the Fourier magnitude subset produce good classifiers for this problem. The 

simplest and most accurate classifier is produced using all the features. This suggests 

that all the features are contributing significantly to solving the problem. This makes 

sense as all the features would be affected by mutation in different ways. 

Figure 6.2 shows a visualization of the 12-feature vectors for the three data sets: 

HERV, RV, and NCS. The three data sets seem to fall into three natural groups. The 

black squares representing the non-coding NCSs are on the left of the figure; the blue 

circles representing the intact RVs are on the right, and the HERV s (red triangles) with 

mutated coding regions are in the middle. 

The next set of experiments tested classifiers trained to distinguish lentiviruses (LENTI 

data set) from other types of retroviruses (NONLENTI data set). In this case only intact 

retroviral genomes were used. Lentiviruses are the genus of retroviruses that includes 

HIV. The main difference between lentiviruses and other retroviruses is that they have 

168 



• 

• 

..... 
• ~#- ~ 

._ • ,.•1111!.,..it· ~;.' I • 
.......... "ti... . '" • • • ......... ,'. 4.'\. ~l .1. 

• -\'I• .... •• • • 
• • • • 

• 

Figure 6.2: Multi-dimensional scaling of feature vectors representing HERVs, RVs, and NCSs 
using all 12 features. HERVs are shown as red triangles; NCSs are black squares; RVs are blue 
circles. 
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Table 6.6: Results for LENTI-NONLENTI classification 
Features Sensitivity Best Specificity Best Accuracy Best SVs 
All features 0.99 1.00 0.98 1.00 0.99 1.00 20% 
el,e2,e3,e6 0.98 1.00 0.99 1.00 0.99 1.00 24% 
mRY, mMK, mSW 0.85 1.00 0.86 1.00 0.85 0.94 68% 
f(l), f(2), f(3:5), 0.99 1.00 1.00 1.00 0.99 1.00 18% 
f(6:9), and avgblk 

Table 6.7: Results for PAP-LENT! classification 
Features Sensitivity Best Specificity Best Accuracy Best SVs 
All features 1.00 1.00 1.00 1.00 1.00 1.00 8% 
el,e2,e3,e6 1.00 1.00 1.00 1.00 1.00 1.00 13% 
mRY, mMK, mSW 1.00 1.00 0.96 1.00 0.98 1.00 10% 
f(l), f(2), f(3:5), 1.00 1.00 0.99 1.00 0.99 1.00 4% 
f(6:9), and avgblk 

some extra genes. The results of this classification are shown in Table 6.6. The best 

classifiers use the five phase vector features. Those classifiers get an average of 99% 

accuracy. The classifiers using all the features and the classifiers using just the entropy 

features are nearly as good. The classifiers based on the Fourier magnitude features have 

a trade-off between getting good sensitivity or good specificity. They also require many 

more support vectors. 

The papilloma virus is not a retrovirus but is closely related. There are retroviruses 

Table 6.8: Results for PAP-RV classification 
Features Sensitivity Best Specificity Best Accuracy Best SVs 
All features 0.86 1.00 0.69 1.00 0.78 0.95 48% 
el,e2,e3,e6 0.84 1.00 0.88 1.00 0.86 1.00 52% 
mRY, mMK, mSW 0.81 1.00 0.91 1.00 0.86 1.00 76% 
f(l), f(2), f(3:5), 0.39 0.91 0.38 0.91 0.39 0.59 81% 
f(6:9), avgblk 
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that encode papilloma virus proteins. The papilloma virus structure [153] is different 

from that of a retrovirus. It is roughly the same length (8000 nucleotides) and consists 

of three regions: early (50%), late (40%), and a long control region (10%). The early 

region contains six ORFs; the late region contains two ORFs; the long control region 

does not encode proteins. Proteins are encoded using combinations of one or more ORFs. 

Like retroviruses, the ORFs in papilloma viruses lie in all three possible reading frames 

and sometimes overlap. The results for SVMs distinguishing papilloma viruses from 

lentiviruses are shown in Table 6. 7. All groups of features produced accurate classifiers 

using a small number of support vectors. The simplest models were obtained using 

the Fourier phase vector features. The results were less good separating PAP from RV, 

the data set containing assorted retroviruses. These are shown in Table 6.8. For this 

problem, the Fourier phase vector features produced the worst classifier, and the entropy 

feature classifiers and Fourier magnitude classifiers produce the best, with the entropy 

classifiers using fewer support vectors. It is likely that the difficulty here is that the 

RV data set includes sequences that encode papilloma virus proteins or proteins similar 

to them, making the detectable difference between the two classes the non-coding long 

control region. The entropy features detect the randomness of this region, and the Fourier 

magnitude features detect that it is non-coding. 
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6.2.6 Conclusions About Use Of Statistical Features 

In this section, twelve features were tested on various classification problems involving 

viral genomes, HERV s, and non-coding human genome sequences. All twelve features 

perform well, and they work well together. The results demonstrate that features de­

signed for exon finding are useful for making much finer distinctions between sequences 

than just protein coding/not protein coding. The entropy features seem to contribute the 

most in classification problems involving NCS data set. This is likely because the most 

important distinction being made involves the randomness of the sequences. The Fourier 

phase vector features seem to contribute the most towards distinguishing different types 

of functional sequences. The Fourier phase magnitude features taken as a group do not 

excel over the other features in any of the experiments. However, since in many cases 

using all twelve features produced the best results, they contribute. It could be that a 

subset containing one or two features from each set would beat the performance of the 

feature subsets tested. 

6.3 Classifiers Using SEMs Operating On ACGT Data 

As an alternative approach, classifiers were built using SEM features. The advantage 

of SEM features over statistical features is that they do not need to be designed based 

on biological knowledge. Instead they have the potential to give biological insight. The 
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Algorithm 6: Build a DNA Sequence Classifier 

Data: training data set train, test data set test, fitness function f, feature selection 
methodm 

Result: classifier, test result 
SEMset +- 0; 
for i +- 1 to 100 do 

I 
Execute genetic algorithm using fitness function f; 
SEMset +- SEMset U best SEM 

end 
SEMtrain +- feature values of train for SEMset; 
SEMtest +- feature values of test for SEMset; 
Select ten best features using method m and SEMtrain; 
Build random forest classifier using selected features from SEMtrain; 
Test on selected features from SEMtest; 
return classifier and test result 

classification problems studied using SEMs are described in Chapter 5: the sLTR/SINE 

problem (human sequences), the RT problem (fruit fly sequences), and the IES problem 

(Tetrahymena sequences). The disadvantage of using SEM features is that there are so 

many of them that feature selection becomes a central issue. Various different methods 

were explored for selecting good feature subsets. Since SEM features are a superset of 

k-mer features, classifiers were built based on k-mer features for comparison. 

For these experiments, random forest classifiers were used. Classifiers were built us-

ing various feature subsets and tested on new data sets following Algorithm 6. Typically 

when string kernels are used, they are built into classifiers as a complete set, so classi-

fiers built that way are included. The randomForest importance option in R scores the 

variables used according to how much the mean accuracy is decreased when that vari-

able is omitted. Classifiers were built using the 10 most important randomForest features 
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(results in column headed "rF") and also using the 10 features with the highest informa­

tion gain (results in column headed "IG"). Finally, classifiers were built using groups of 

approximately 10 features chosen with dissimilarity clustering (results in column headed 

DC - see Section 4.4.3). For the RT problem and the IES problem, the SEM classifiers 

all substantially outperformed the k-mer classifiers. For the sLTR/SINE problem, the 

two types of features produced classifiers of comparable quality, with the best classifier 

the complete string kernel. 

It is possible that these results could be improved through parameter tuning. The 

parameters of the evolutionary algorithm (population size, number of mating events, mu­

tation rate, number of states in SEMs, tournament size) could be changed, as could the 

feature selection parameters (number of replicates producing features, number of fea­

tures in subsets, clustering method). The optimal values for these parameters are likely 

to be problem specific. In this thesis, the focus is on understanding the SEM features 

through comparisons between problems and, thus, common parameters are used without 

attempting to optimize them. 

Each feature selection method has advantages independent of classification accuracy. 

The random forest importance method selects features that work best with the classifier; 

the information gain method selects features that are all individually good; DC selects a 

diverse set of features that classify well together. 
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Table 6.9: Accuracy of classifiers distinguishing solitary LTRs from SINEs on test data for 
random forests trained using SEM features with random forests trained using k-mer features 
using different types of feature selection. 

~~~~~~~~~~~~~~~-----~ 

features all rF IG DC 

SEM features 97% 96% 96% 98% 

k-mer features 100% 97% 96% 94% 

6.3.1 Distinguishing SINEs From Solitary LTRs: sLTR/SINE Problem 

The first classification problem is described in Section 4.3. It has two types of sequences: 

the long terminal repeat (LTR) portion of endogenous retroviruses (ERVs) and short 

interspersed nuclear elements (SINEs). 

Table 6.9 shows the classification results. All of the classifiers in the table have high 

accuracies. The k-mer classifier that uses all the features gets slightly better results, and 

the k-mer classifier that uses features chosen by DC gets slightly worse results. This 

suggests that all k-mer features contribute to the classification and that, if it is desirable 

to reduce the size of the feature set, choosing the most effective k-mer features is a 

better strategy than choosing a diverse set. For SEM features, on the other hand, the best 

option seems to be a diverse set, though the difference is small enough that the result is 

not conclusive. 
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Table 6.10: Accuracy of classifiers distinguishing LTR retrotransposons, exons, and intergenic 
sequences on test data for random forests trained using SEM features with random forests trained 
using k-mer features using different types of feature selection. 

features all rF IG DC 

SEM 94% 93% 93% 94% 

k-mer 88% 90% 89% 69% 

6.3.2 Distinguishing LTR Retrotransposons, Exons, And Intergenic Sequences In 

Drosophila: RT Problem 

Table 6.10 shows the classification results for the RT problem. For this problem, the 

SEM classifiers outperform the k-mer classifiers. All the SEM feature subsets produce 

classifiers with comparable performance. The k-mer classifiers for this problem using 

all the features, the randomForest features, and the information gain features are compa-

rable to each other. The classifier built from features chosen using DC has a high error 

due to overfitting. For the k-mer features, it is counterproductive to choose a diverse set. 

Some of these features do not generalize well. Note that while SEM features undergo se-

lection for quality in the genetic algorithm, k-mer features are generated with no quality 

selection. This means some are of poor quality. 

6.3.3 Distinguishing IES From MDS Sequences In Tetrahymena: IES Problem 

Table 6.11 shows the classification results for the JES problem. This classification prob-

lem is harder than either the sLTR/SINE classification problem or the RT problem. The 
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Table 6.11: Accuracy of classifiers distinguishing IESs from MDSs on test data for random 
forests trained using SEM features with random forests trained using k-mer features using differ­
ent types of feature selection. 

~~~~~~~~~~~~~~~~~ 

features all rF IG DC 

SEM features 92% 92% 92% 91 % 

k-mer features 56% 88% 88% 68% 

SEM classifiers all have comparable performance to each other. The k-mer classifiers 

using the features selected as best by either the randomForest importance function or the 

information gain function are effective and comparable to each other, but still less accu-

rate than the SEM classifiers. The k-mer classifiers using all the features or those chosen 

by DC have an overfitting problem. Again, some k-mer features do not generalize well. 

6.3.4 Feature Selection: Genomic vs. Consensus Sequences 

In Section 5.2 the sLTR/SINE problem is studied using different sources for the train-

ing/testing data in order to demonstrate how the effective features can be analyzed to ob-

tain biological insight about the sequences. Here, the effectiveness of the various feature 

selection techniques is examined. Three methods for choosing features are compared. 

The first method is that used in previous work on SEMs. Evolve SEMs with many states 

and use the features from those with best fitness. SEMs with 20 states are evolved and 

the best is chosen from 100 replicates. The other methods involve evolving SEMs with 

a small number of features (making them more interpretable), pooling the features from 

the best fitness SEMs, and then performing feature selection. Four-state and six-state 
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Table 6.12: Classification accuracy using all three types of data and feature sets generated by 
dissimilarity selection for training. 

RepeatMasker Sequences Retrotector Sequences 
Training Set Feature Set LTR SINE overall LTR SINE overall 
Consensus seq. 20 centres 96% 100% 98% 49% 100% 75% 
RepeatMasker seq. 20 centres 99% 100% 100% 71% 100% 85% 
Retrotector seq. 20 centres 100% 99% 100% 89% 99% 94% 
Consensus seq. 50 centres 95% 100% 97% 49% 100% 74% 
RepeatMasker seq. 50 centres 100% 100% 100% 45% 100% 73% 
Retrotector seq. 50 centres 100% 99% 100% 99% 99% 99% 

SEMs and evolved and two sorts of feature selection, dissimilarity selection and dissim-

ilarity clustering, are compared. Then, the classifiers are compared to classifiers created 

for the same purpose using other methods. 

6.3.4.1 Dissimilarity Selection 

Dissimilarity selection is useful both for feature selection and for getting a better under-

standing of the features and their properties. By clustering and selecting a representative 

from each cluster, a diverse set of features is obtained. The number of features that need 

to be analyzed in order to understand the feature set is reduced to the number of clusters. 

Figure 6.3 shows a visualization of the entire feature set with cluster centres marked with 

a © symbol. The figure shows some regions in which features close to each other are 

found by the genetic algorithm many times, but, on the whole, it demonstrates that a wide 

variety of features are being found. 

Figure 6.5 is a visualization of how the data is separated using the 20 cluster centres. 
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Figure 6.3: Depiction of feature absolute correlation distances using multi-dimensional scaling 
to display in two dimensions. Cluster centres are represented by red "©" symbols. 
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Table 6.13: Probability an evolved 20-state machine will create a classifier as good as these 
produced by DS. 

Repeatmasker Sequences Retrotector Sequences 
Training Set Feature Set probability probability 
Consensus seq. 20 centres 0.23 0.02 
RepeatMasker seq. 20 centres 0.57 0.16 
Retrotector seq. 20 centres 0.00 0.91 
Consensus seq. 50 centres 0.28 0.02 
RepeatMasker seq. 50 centres 0.14 0.51 
Retrotector seq. 50 centres 0.00 0.00 

Table 6.14: Classification accuracy using "best" representative from each cluster. 
Used to RepeatMasker Sequences Retrotector Sequences 

Training set choose LTR SINE overall LTR SINE overall 
Consensus seq. RT data 97% 100% 99% 52% 100% 76% 
RepeatMasker seq. RT data 100% 99% 99% 59% 99% 79% 
RetroTector seq. RT data 100% 98% 98% 100% 99% 99% 
Consensus seq. RMdata 99% 100% 99% 51% 100% 75% 
RepeatMasker seq. RM data 100% 100% 100% 53% 100% 76% 
RetroTector seq. RM data 100% 99% 99% 100% 100% 100% 
Consensus seq. RB data 99% 100% 99% 61% 100% 80% 
RepeatMasker seq. RB data 99% 100% 99% 79% 100% 89% 
RetroTector seq. RB data 100% 97% 99% 99% 99% 99% 

Table 6.15: Probability an evolved 20-state machine will create a classifier as good as these 
produced by DS choosing the "best" representative from each cluster. 

Training set 
Consensus seq. 
RepeatMasker seq. 
RetroTector seq. 
Consensus seq. 
RepeatMasker seq. 
RetroTector seq. 
Consensus seq. 
RepeatMasker seq. 
RetroTector seq. 

Used to RepeatMasker Sequences 
choose best probability 
RT data 0.05 
RT data 0.94 
RT data 0.67 
RM data 0.05 
RM data 0.06 
RM data 0.10 
RB data 0.05 
RB data 
RB data 

180 

0.94 
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Retrotector Sequences 
probability 

0.01 
0.27 
0.00 
0.02 
0.33 
0.00 
0.00 
0.10 
0.00 



0 
O> -
d 

U') 
Q) -I 
d 

0 
Q) _, 

d 

U') 
,..... -
d 

0 ,..... -
d 

U') 

CD -
d 

train with RB 

:x~ 
~ .......... 

I l 
: N 
I 
I 
I 

I 

I 

I 

I I 

"'T" 
I 
I 

I 
I 
I 
I 
I 

I 
I 

: x : 
I I 

i N~ 
I ......_ 

I 

oL 
I 
I 
I 
I 

.......... 

I I I 

train with RM 

I I 

"'T" 
I 

0 
I 

I 

N : 
~ 

• 

I 

I 

I 
I 
I 
I 
I 

.......... 

I 

train with RT 

6 x -<>­-:- ~ 
I IY I et ... 
I 

I 
I 
I 
I 
I 

.......... 

X all short SEMs 
L all 20-state SEMs 
N all non-SEM feature~ 
• 20 cluster centers 
c choose best w/ RB 
<> choose best w/ RM 
ll. choose best w/ RT 

I I I 

20s DS 20s DS 20s DS 20s DS 20s DS 20s DS 
RM IRT RM RT RM RT 

test data 

Figure 6.4: Accuracy of classifiers using different types of data sets for training and testing. Box 
plots represent the distribution of accuracies produced by classifiers created with individual 20-
state evolved machines and with groups of 20 SEM features chosen by DS with random selection. 
Between the boxplots are shown the accuracies of classifiers built using all the 4- and 6-state 
SEM features (X), all the 20-state SEM features (L), and all the non-evolved features (N). Also 
shown as impulses are the accuracies of four classifiers created using DS with "center" and "best" 
selection methods. 
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Figure 6.5: Projection into two dimensions of solitary LTRs and SINEs from all data sets rep­
resented using the 20 cluster centres. Notice that the SINEs, represented by the squares, group 
together. 

It displays solitary LTRs and SINEs from the combined data sets represented by the 20 

features generated by the cluster centres. This figure suggests that, although the classes 

are not linearly separable, the problem is doable, as the SINEs mostly cluster together in 

the upper right of the figure. 

Figure 6.4 shows the results of classification using DS (see Section 4.4.2) along with 

boxplots showing the distribution of results for the 100 best evolved 20-state individual 

classifiers and 100 classifiers built with DS with random selection from 20 clusters from 
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the 4- and 6-state SEM features. The 20-state machines were evolved using the same 

genetic algorithm as for the 4- and 6-state machines. Also shown in the figure are the 

results of DS on the 4- and 6-state machines using four other selection methods, and 

the results of building classifiers using all the features with no selection for three groups: 

20-state SEM features, 4- and 6-state SEM features, and the non-SEM features. All three 

types of data set are used for training and the two genomic data sets for testing. 

Six combinations of train/test data are used: RB/RM, RB/RT, RM/RM, RM/RT, 

RT/RM, and RT/RT. The consensus sequences (RB) were just used for training since 

the intended applications were for genomic sequences. For four of these combinations 

every selection method obtained greater than 97% accuracy. For these combinations, 

all but one of the 20-state SEM classifiers achieved better than 90% accuracy, and all 

three groups of features with no feature selection created classifiers with better than 95% 

accuracy. 

It is more challenging to create high accuracy classifiers for the other two problems, 

classifying RT sequences with classifiers trained on RB or RM sequences. Better classi­

fiers can be created when training is done with genomic sequences than when done with 

consensus sequences. Most of the DS classifiers perform better than most of the 20-state 

SEM classifiers. The best classifier trained with RB data achieves 83% accuracy and 

was created with DS selecting from each cluster at random. The best classifier trained 

with RM data achieves 93 % accuracy and was created using a 20-state SEM. For these 
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problems, the best selection method for DS is random selection, choosing the best of 100 

feature sets. This demonstrates that choosing features that work well together is more 

important than choosing the best features or features that are maximally diverse". For 

both these problems, feature selection is worthwhile, yielding better classifiers than the 

one built from all the features. 

The choice of 20 clusters was arbitrary, chosen to match the number of features in 

the 20-state SEMs. Increasing the number of clusters from 20 to 50 and performing DS 

with random selection does not change the median accuracy of classifiers trained on RM 

and tested on RT data, but decreasing the number of clusters to 10 reduces the median 

accuracy by 5%. Future work will examine this question in more detail to determine the 

optimal number of clusters. 

6.3.5 Dissimilarity Clustering 

137 classifiers were trained on diverse subsets of 2743 features that included the 4- and 

6-state looping and non-looping SEMs as well as the non-SEM features described in 

Section 5.2.2. The feature sets ranged in size from 4 to 46 with a mean of 20. The 

results are shown in Figure 6.6 along with results for individual 20-state SEMs. They 

are trained with all three types of data and tested on a data set combining RM and RT 

data. For both types of classifier, training with RT data yields results that are both better 

and more consistent. In all but one case, classifiers created using DC get better than 82% 
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Table 6.16: Classification accuracy using all three types of data and 137 feature sets generated 
by dissimilarity clustering for training. 

Training set LTR range LTR avg. SINE range SINE avg. 
RepeatMasker sequences 

Consensus Sequences 83% to 98% 92% 96% to 100% 100% 
RepeatMasker Sequences 99% to 100% 100% 98% to 100% 100% 
RetroTector Sequences 95% to 100% 99% 96% to 100% 99% 

Consensus Sequences 
RepeatMasker Sequences 
RetroTector Sequences 

Retrotector Sequences 
38% to 84% 47% 
43% to 90% 66% 
85% to 99% 93% 

80% to 94% 
98% to 100% 
95% to 99% 

91% 
100% 
98% 

accuracy. When trained on genomic sequences, they get better than 87% accuracy. The 

best classifiers get 95% accuracy trained on RB data, 98% accuracy trained on RM data, 

and 99% accuracy trained on RT data. For comparison with ifcv feature selection (see 

Section 4.4.1), The classifiers were retrained using data sets for training and testing that 

combined all three types of data. The best classifier had 99% accuracy with 10 features 

as compared to 92% accuracy with 343 features for ifcv. 

Although most feature sets created classifiers with accuracies less than 90% when 

trained on the consensus sequence data, the best achieved an overall accuracy of 95% 

using four features. The same set of four features produced the best classifier when 

trained on RM data with an overall accuracy of 98%. Figure 6.7 shows a projection from 

four into two dimensions of the data using these four features. 
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Figure 6.6: Classification accuracy of 137 feature sets generated by DC and 100 feature sets 
generated by individual evolved 20-state SEMs tested on mixed RM and RT data. 
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Figure 6.7: Projection into two dimensions of sLTRs and SINEs from all data sets represented 
using the four super-features. 
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Table 6.17: Comparison of results of the SEMclass classifier with TEclass, REPCLASS, and 
classifiers using k-mer features. Shown are percentages identified correctly (corr.), incorrectly 
(incorr.), or not identified(?). 

Classifier Retrotector sLTRs RepeatMasker sLTRs 
corr. incorr. ? corr. in corr. ? 

SEMclass-DS (best) 100% 0% 0% 100% 0% 0% 
SEMclass-DC (best) 99% 1% 0% 100% 0% 0% 
TEclass 76% 15% 9% 97% 2% 1% 
k-mer 89% 11% 0% 100% 0% 0% 
k-mer-DC 85% 15% 0% 94% 6% 0% 
SEMclass-DS .(consensus) 61% 39% 0% 99% 1% 0% 
SEMclass-DC (consensus) 84% 16% 0% 98% 2% 0% 
REPCLASS Structural 0% 3% 97% 0% 0% 100% 
REPCLASS Homology 61% 9% 30% 96% 0% 4% 

Classifier RepeatMasker SINES 
corr. in corr. ? 

SEMclass-DS (best) 100% 0% 0% 
SEMclass-DC (best) 100% 0% 0% 
TEclass 95% 3% 2% 
k-mer 100% 0% 0% 
k-mer-DC 99% 1% 0% 
SEMclass-DS (consensus) 100% 0% 0% 
SEMclass-DC (consensus) 100% 0% 0% 
REPCLASS Structural 41% 0% 59% 
REPCLASS Homology 1% 0% 99% 
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6.3.6 Using DS On Non-SEM Features 

Fig 6.4 shows the results of classifiers built with the entire set of non-SEM features on 

each of six problems with an "N ." For the four easier problems, these classifiers achieve 

accuracies > 95%. For the two harder problems, feature selection is of benefit. When 

trained on RB data, a classifier using all the non-SEM features achieves 73% accuracy 

on the RT data; the best classifier using DS on non-SEM features with random selection 

achieves 80% accuracy (best SEM classifier got 83% ). When trained on RM data, the 

all-feature non-SEM classifier gets 83% accuracy, and the best DS classifier achieves the 

same accuracy as the best DS SEM classifier, 93%. 

6.3. 7 Comparison With Other Methods 

Table 6.17 compares the performance of two classifiers created by other researchers, 

TEclass and REPCLASS (see Section 2.2.6), with the best classifiers based on DC and 

DS, referred to as SEMclass-DC (best) and SEMclass-DS (best) respectively. The algo­

rithms are tested on the solitary LTRs generated by Retrotector and Repeatmasker and 

the SINEs generated by Repeatmasker. 

TEclass performs comparably to both SEMclass classifiers on the RM data, but does 

less well on the RT data. This is probably due to the fact that TEclass uses consen­

sus sequences for training. To support this hypothesis the best results using consensus 

sequences for training are included, SEMclass-DS (consensus) and SEMclass-DC (con-
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sensus). Also included are the accuracies of random forest classifiers using the 4-mer and 

5-mer features used in TEclass but trained with RT sequences, one without any feature 

selection (k-mer) and one with features selected using DC (k-mer-DC). 

On the RT solitary LTRs, TEclass has performance intermediate between SEMclass­

DS (consensus) and SEMclass-DC (consensus). The k-mer classifiers using the TEclass 

features and trained on genomic features perform much better than TEclass, suggesting it 

could be improved by using genomic sequences for training. Note that feature selection 

degrades the performance of the k-mer classifier. This is consistent with the results in 

[2]. This means that k-mer features could not be used to fulfil the goal of creating a 

comprehensible classifier. 

As expected, since it was not designed for the purpose, the REPCLASS Structural 

module performs poorly on the solitary LTR data. It identifies about half the SINE ele­

ments correctly by detecting short sequence repeats or poly-A tails. 

The REPCLASS Homology module was expected to do better than it did on the data 

generated by RepeatMasker, as it was using the same database to identify the sequences 

as RepeatMasker did to generate them. The reason it performed poorly is that RepBase 

was designed to be human readable, not machine readable. REPCLASS found many 

matches that did not lead to a classification because RepBase did not include class infor­

mation in the data record. A biologist may know immediately that Alulo, for example, 

is a SINE element, but REPCLASS does not. This problem occurs more often for SINE 
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elements than for solitary LTRs. Note that nearly a third of the RT solitary LTRs are 

labelled "unsure" by the Homology module, meaning they are probably not in RepBase. 

This demonstrates that annotations of solitary LTRs in the human genome are far from 

complete. 

The REPCLASS TSD module is designed to run on "relatively small genomes." Be­

cause the computational power required to run it on the human genome was not readily 

available, it is not included in the comparison. SINE elements should have TSDs; soli­

tary LTRs should not, so it would be expected to do a good job of distinguishing the two 

classes. 

6.4 Classifiers Using SEMs Operating On Reading Frame Data 

Based on the good results obtained by the statistical feature classifiers using reading 

frame data, it was decided to train SEMs whose transitions were driven by reading frame 

data rather than by the { A,C,G,T} alphabet. The same Fourier phase histogram was used 

as for the Fourier phase vector features (Section 3.2.1). The reading frame with the most 

members is designated Reading Frame O; Reading Frame 1 is shifted one nucleotide 

from Reading Frame O; Reading Frame 2 is shifted two nucleotides. A single string is 

constructed from the reading frame information gleaned from sliding a window across 

each of the three binary strings, by combining them base 3. For example, 5 is 012 

base 3. A 5 in the string means that String 0 signals it is in Reading Frame 2, String 1 
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Figure 6.8: Projection from 10 dimensions onto 2 dimensions of clustering of HERV and NCS 
data sets using the original design, evolution with a changing neighbour set. HERV s are shown 
in black; NCSs in grey. 
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Figure 6.9: Projection from 10 dimensions onto 2 dimensions of clustering of HERV and NCS 
data sets using SEMs evolved with a coevolving neighbour set. HERV s are shown in black; NCSs 

·in grey. 

192 



Table 6.18: Results of experiments on HERV and NCS data sets using the original design and a 
changed design with a coevolving neighbour set. Results using k nearest neighbour classification 
(knn) and SVM classification for the best replicate and averages are shown. 

Sens. Spec. Acc. 
changing neighbours during training 
Knn Best 0.75 0.63 0.69 
Knn Best 0.52 0.85 0.69 
SVM Best 0.85 0.79 0.82 
KnnAvg. 0.58 0.73 0.66 
SVMAvg. 0.73 0.69 0.71 
coevolving neighbours 
Knn Best 0.76 0.84 0.80 
SVM Best 0.82 0.90 0.86 
Knn Avg. 0.66 0.77 0.72 
SVMAvg. 0.74 0.68 0.71 

signals it is in Reading Frame 1, and String 2 signals it is in Reading Frame 0. Mixed 

signals are common in non-coding or overlapping regions. SEMs can be driven using 

this information either with three transitions (using a single indicator sequence, such as 

RY), with nine transitions (using two indicator sequences), or 27 transitions (using all 

three indicator sequences). 

Ten-state SEMs were evolved using a knn fitness function. No feature selection was 

done. One hundred classifiers were created using the best SEM from each of 100 evolu-

tionary replicates. Knn classifiers were compared with SVM classifiers. 

The first experiment was done using the HERV and NCS data sets with k 60 

using the RY and SW strings to drive 9 transitions in the SEMs. For each replicate, 

calculations were done for sensitivity, specificity, and prediction accuracy. HERV s are 
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Table 6.19: Results of experiments using SEMs trained on individual strings and all together. 
Results using k nearest neighbour (knn) and SVM classification for the best replicate and averages 
are shown. 

Sens. Spec. Acc. 
RY string only 
Knn Best 0.75 0.66· 0.71 
SVM Best 0.86 0.62 0.74 
KnnAvg. 0.63 0.63 0.63 
SVMAvg. 0.74 0.51 0.62 
MK string only 
Knn Best 0.78 0.59 0.68 
SVM Best 0.70 0.75 0.73 
KnnAvg. 0.60 0.61 0.60 
SVMAvg. 0.67 0.52 0.60 
SW string only 
Knn Best 0.76 0.79 0.78 
SVM Best 0.76 0.86 0.81 

Sens. Spec. Acc. 
RY and SW strings 
Knn Best 0.76 0.84 0.80 
SVM Best 0.82 0.90 0.86 
KnnAvg. 0.66 0.77 0.72 
SVMAvg. 0.74 0.68 0.71 
all strings 
Knn Best 0.75 0.85 0.80 
SVMBest 0.85 0.75 0.80 
KnnAvg. 0.67 0.80 0.80 
SVMAvg. 0.74 0.63 0.69 

KnnAvg. 0.64 0.72 0.68 
SVMAvg. 0.74 0.61 0.68 
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Figure 6.10: Projection from 10 dimensions onto 2 dimensions of clustering of RV and NCS 
data sets. RVs are shown in black; NCSs in grey. 

considered positives and NCSs are considered negatives. The best of these and averages 

were determined for the best SEMs from each replicate using the complete data sets 

for k nearest neighbours and the test data from 5-fold cross validation for the SVMs. 

A visualization of the vectors produced can be seen in Figure 6.8. It shows a multi-

dimensional scaling of the 10-dimensional data generated by the SEM with the highest 

RAND index onto two dimensions. Examination of this figure shows that the SEM did 

not do a good job of producing vectors which separate the two categories. Using k 

nearest neighbours classification, the average prediction accuracy was only 66% and the 

best of the hundred replicates only achieved 69% accuracy. The SVM classifier was able 

to boost this to an average of 71 % accuracy with a best of 82%. 
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Table 6.20: Training Results for HERV and RV data sets. Results using k nearest neighbour 
(knn) and SVM classification for the best replicate and averages are shown. 

Sens. Spec. Acc. 
HERV data set 
Knn Best 0.76 0.84 0.80 
SVM Best 0.82 0.90 0.86 
Knn Avg. 0.66 0.77 0.72 
SVMAvg. 0.74 0.68 0.71 
RV data set 
Knn Best 1.00 1.00 1.00 
SVM Best 1.00 1.00 1.00 
Knn Avg. 0.95 0.98 0.97 
SVMAvg. 0.94 0.76 0.85 

Because of the poor performance of the k nearest neighbour classifier, the experimen-

tal design was modified to try to get better separation. Instead of changing the neighbour 

set randomly during evolution, a neighbour set was allowed to co-evolve with the SEM. 

Every hundred mating events, a point in the neighbour set was swapped with a point not 

currently being used for training. If the average fitness was unchanged or improved, this 

new neighbour set was used. Otherwise, the algorithm continued to use the old neighbour 

set. Also, k was reduced to 10. The neighbour set was then saved along with the SEM 

produced. The k nearest neighbour results of this experiment were better with an average 

prediction accuracy of 72% with the best replicate predicting with an accuracy of 80%. 

The SVM, however, got similar results with both experimental designs. The results of 

these two experiments are shown in Table 6.23. The table shows sensitivity, specificity, 

and prediction accuracy for the best replicate and the averages. Some replicates have a 
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Table 6.21: Results of experiments classifying HERV data with RV SEMs and RV data with 
HERV SEMs. Results using k nearest neighbour (knn) and SVM classification for the best repli­
cate and averages are shown. 

Sens. Spec. Acc. 
HERV with RV classifier 
Knn Best 0.54 0.79 0.67 
SVM Best 0.86 0.79 0.82 
Knn Avg. 0.46 0.79 0.62 
SVMAvg. 0.72 0.66 0.69 
RV with HERV classifier 
Knn Best 0.91 0.84 0.88 
SVM Best 1.00 1.00 1.00 
KnnAvg. 0.76 0.76 0.76 
SVMAvg. 0.89 0.75 0.83 

sensitivity value that is much higher than the specificity value or vice versa. For example, 

there was a tie for best k nearest neighbour classifier in the first experiment. Of the two 

replicates which achieved 69% accuracy, one replicate was better at identifying HERV s 

with a sensitivity of 75% and a specificity of 63%; the other was better at identifying 

NCSs with a specificity of 85% and a sensitivity of only 52%. The projection in Figure 

6.8 shows the vectors created by the SEM which is better at identifying HERVs (higher 

sensitivity). A multi-dimensional scaling of the vectors created by the best SEM in the 

second experiment is shown in Figure 6.9. The clusters are still not clearly defined, but it 

does appear that there is better separation in Figure 6.9 than in Figure 6.8. Since this is a 

projection from 10 dimensions to two, there could be better separation than there appears 

to be. 
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The next set of experiments were done to better understand the contributions of each 

of three strings (RY, MK, and SW). The RY and SW strings were used in the first set of 

experiments, because they usually carry the most biological meaning. The MK string was 

not used because using 27 transitions instead of 9 increases the risk of overtraining and 

also because it increases the risk that there will be transitions in the machine that were 

untested during the course of evolution and hence meaningless. The predictive value of 

each string was tested separately, and also the predictive value of all strings used together. 

The results are shown in Table 6.24. The string with the best predictive value alone using 

k nearest neighbour classification was the SW string. The best SEM was able to predict 

78% of the values correctly, and on average the SW SEMs had a predictive accuracy of 

68%. The RY string was next best with a best predictive accuracy of 71 % and an average 

of 63%. The MK string came in last, as expected, with a best predictive accuracy of 68% 

and an average of 60%. The SVMs were not able to significantly improve the results 

using single strings. There was less variation, and the best values were somewhat higher. 

When the strings were used all together, the k nearest neighbour classifier achieved a 

best predictive accuracy of 80% which equals the best achieved by the RY and SW string 

pair. In this case, the SVM performance was lower with an average prediction accuracy 

of 69% and a best of 82%. However, that the SVM results are reported only on test data 

while the k nearest neighbour results include the training data. The poor performance of 

the SVM in this case confirms the hypothesis that 27 transitions is too many. The results 
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Figure 6.11: Projection from 10 dimensions onto 2 dimensions of clustering of RV and NCS 
data sets using SEMs trained to distinguish HERVs from NCSs. RVs are shown in black; NCSs 
in grey. 

do not generalize well to unseen data. 

Note that, using k nearest neighbours, the average sensitivity and specificity values 

for the RY and MK string machines are similar, but the SW SEMs have significantly 

higher specificity. This suggests the SW phase information is more indicative of not be-

ing a HERV than of being a HERV. These values vary, of course, for individual machines. 

The best machines for both the RY SEMs and the MK SEMs have higher sensitivity than 

specificity, and the best machine for the SW SEMs has close to equal sensitivity and 

specificity. 

The next set of experiments was done using the RV data set of complete retroviral 

genomes using the RY and SW strings (9 transitions). These were much easier for the 
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Table 6.22: Results of experiments distinguishing lenti retroviruses from non-lenti retroviruses. 
Results using k nearest neighbour (knn) and SVM classification for the best replicate and averages 
are shown. 

Sens. Spec. Acc. 
HERV with RV classifier 
Knn Best 1.00 0.98 0.99 
SVM Best 1.00 1.00 1.00 
KnnAvg. 0.96 0.97 0.97 
SVMAvg. 0.90 0.96 0.93 

SEMs to classify than the HERVs were. A multi-dimensional scaling of the resulting 

vectors is shown in Figure 6.10 and the results in Table 6.25. It is clear that the data 

is well separated. The best SEM was able achieve perfect classification using k nearest 

neighbours, and the average machine predicted 97% correctly. The SVMs also achieved 

perfect classification with an average of 85%. 

The next set of experiments tested the ability of the classifiers to distinguish different 

types of retroviruses, lentiviruses and non-lentiviruses. The classifier was easily able to 

distinguish these two different sorts of retroviruses. A multi-dimensional scaling of the 

clustering is shown in Figure 6.12 and the classification results in Table 6.22. 

The final set of experiments tested the SEMs on data sets for which they were not 

trained. The original thought was that training the SEMs on complete genomes would cut 

out the "noise" caused by mutations and classify based on the essential character of the 

retroviruses. In fact, the results were similar to those for the SEMs trained on the HERV 

data set. k nearest neighbour classifiers using the RV SEMs that were used to predict 
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Figure 6.12: Multi-dimensional scaling from 10 dimensions onto 2 dimensions of clustering of 
LENTI and NLENTI data sets. LENTis are shown in black; NLENTis in grey. 

RVs with nearly perfect accuracy predicted HERVs with an average of 62% accuracy 

(best 67% ). The SVMs boosted this to an average of 69% with a best of 80%, very 

similar to their performance using the HERV classifiers. Classifiers using SEMs trained 

on the HERV data set also had similar performance predicting RVs to the classifiers 

using SEMs trained on the RV data set. Using k nearest neighbours, they predicted them 

with an average accuracy of 76% (best 88%), better than they did predicting the HERV 

they were trained on. The SVMs were able to achieve perfect classification in the best 

case with an average of 83% prediction accuracy. The results of these experiments are 

shown in Table 6.26, and a multi-dimensional scaling of the RV data vectors using the 

best HERV SEM is shown in Figure 6.11. 
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6.4.1 Interpreting The SEMs 

In the course of this work, a discovery was made that, even though the SEMs normalize 

for the length of the string, it is important that both data sets have the same distributions 

of lengths. If they do not, the SEMs use length as a distinguishing feature, something 

which was not wanted in this case. A transient state in the SEM that is accessed once 

and only once for every string can be used to measure length. Its value will always be ~ 

where n is the string length. 

The machine in Figure 4.3 is a 4 state machine evolved with the HERV data set. 

With nine transitions from each state, it is difficult to interpret. However, it is not utterly 

obscure. Note that self-loops function as counters of blocks of certain values. State 

0 has a self-loop for the values 0 and 4. Zero indicates both strings agree on reading 

frame O; four indicates both agree on reading frame 1. State 0 is counting blocks of 

reading frames 0 and 1. State 1 has a self-loop if one or both strings indicate reading 

frame 2. So, it is counting blocks in reading frame 2. States 2 and 3 self-loop when the 

two strings indicate different reading frames. They could be keeping track of sequences 

which indicate overlapping regions. 
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Table 6.23: Results of experiments on HERV and NCS data sets using original design and 
changed design which fixes the neighbours. 

RAND Sens. Spec. Acc. 
changing neighbours during training 
Best 0.57 0.75 0.63 0.69 
Best 0.57 0.52 0.85 0.69 
Average 0.55 0.58 0.73 0.66 
fixing neighbours 
Best 0.68 0.76 0.84 0.80 
Average 0.62 0.66 0.77 0.72 

Table 6.24: Results of experiments using SEMs trained on individual strings and all together. 
RAND Sens. Spec. Acc. 

RY string only 
Best 0.58 0.75 0.66 0.71 
Average 0.56 0.63 0.63 0.63 
MK string only 
Best 0.57 0.78 0.59 0.68 
Average 0.54 0.60 0.61 0.60 
SW string only 
Best 0.66 0.76 0.79 0.78 
Average 0.59 0.64 0.72 0.68 
RY and SW strings 
Best 0.68 0.76 0.84 0.80 
Average 0.62 0.66 0.77 0.72 
all strings 
Best 0.68 0.75 0.85 0.80 
Average 0.63 0.67 0.80 0.80 

Table 6.25: Training Results for HERV and RV data sets. 
RAND Sens. Spec. Acc. 

HERV data set 
Best 0.68 0.76 0.84 0.80 
Average 0.62 0.66 0.77 0.72 
RV data set 
Best 1.00 1.00 1.00 1.00 
Average 0.94 0.95 0.98 0.97 
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Table 6.26: Results of experiments classifying HERV data with RV SEMs and RV data with 
HERV SEMs. 

RAND Sens. Spec. Acc. 
HERV with RV classifier 
Best 0.56 0.54 0.79 0.67 
Average 0.53 0.46 0.79 0.62 
RV with HERV classifier 
Best 0.78 0.91 0.84 0.88 
Average 0.67 0.76 0.76 0.76 

Table 6.27: Classification results using SVMs. Averages are shown. 

Experiment Sens. Spec. Acc. 
HERV /NCS using RY and SW with original design 0.73 0.72 0.71 
Best 0.85 0.83 0.81 
HERV /NCS using RY and SW with fixed neighbours 0.74 0.73 0.71 
Best 0.86 0.83 0.79 
HERV /NCS using RY string only 0.74 0.67 0.62 
Best 0.94 0.89 0.73 
HERV /NCS using MK string only 0.67 0.63 0.59 
Best 0.96 0.88 0.67 
HERV /NCS using SW string only 0.74 0.71 0.68 
Best 0.92 0.87 0.80 
HERV/NCS using all strings 0.74 0.71 0.68 
Best 0.89 0.81 0.75 
RV /NCS using RY and SW with fixed neighbours 0.93 0.92 0.86 
Best 1.00 1.00 1.00 
RV /NCS using HERV /NCS classifier 0.89 0.88 0.83 
Best 1.00 1.00 1.00 
HERV /NCS using RV /NCS classifier 0.72 0.70 0.68 
Best 0.86 0.82 0.80 
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6.5 Conclusion 

In this chapter the use of the features described in Chapters 3 and 4 was demonstrated 

in classifiers. SVM, random forest and k nearest neighbour classifiers were used to 

distinguish HERV s, exogenous retroviruses, intergenic sequences, and genes, as well as 

to distinguish various types of viruses from each other. The sLTR/SINE problem from 

Chapters 4 and 5 was revisited, showing that SEM features could be used to distinguish 

solitary LTRs from SINEs with high accuracy. The feature selection techniques were 

demonstrated and compare to the method used in previous work of evolving a single SEM 

with many states to generate features for a classifier. This problem was studied using 

a variety of different data sets (both genomic and consensus) for training and testing. 

Finally, the use of SEMs other than with { A,C,G,T} transitions was explored, and it 

was demonstrated that they can be used to recognize patterns of reading frame use in 

retroviruses. 

The next chapter will incorporate some of these classifiers into a scanner that scans a 

genome and identifies the ERV sequences on it. 
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7 Scanning Genomes 

The topic of this chapter is the on-going development of a software tool called LTRsieve 

that scans genomes to identify LTR retrotransposons. LTRsieve is tested on the five major 

chromosomes of the Drosophila melanogaster (fruit fly) genome and on Homo sapiens 

chromosome 21. LTRsieve is not meant to replace other methods, like RepeatMasker and 

RetroTector, but rather to supplement them. For genome annotation, different approaches 

produce different results, and the best annotations result from using a variety of tools. 

LTRsieve uses the statistical features discussed in Chapter 3 together with a random 

forest classifier. 

The Drosophila melanogaster genome was used to test the accuracy and complete­

ness of the tool, since Drosophila melanogaster has annotations for LTR retrotransposons 

based on several bioinformatics tools as well as manual annotation and thus provides a 

baseline in which one can have some confidence. It was possible to identify LTR retro­

transposons on the Drosophila melanogaster genome with high accuracy. In addition, 

it was possible to check whether LTRsieve was sensitive to the choice of training data, 

in particular to whether the training data was based on data from Drosophila or on data 
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from other species. This is important for determining its usefulness as a generalized tool. 

To get an idea of how LTRsieve's functionality extended to other organisms, Chromo­

some 21 from the Homo sapiens reference genome was used for testing. The problem is 

more challenging for Homo sapiens than for Drosophila melanogaster, not only because 

the Homo sapiens genome is much larger, but also because the ERV s in Homo sapiens 

were inserted longer ago and thus have more mutations, making them harder to recog­

nize. It is also more difficult to evaluate results as the annotations are not as thorough or 

consistent as those for Drosophila melanogaster. Results are compared to the results of 

RepeatMasker, which uses sequence homology to ERVs in RepBase to find fragments of 

ERV s, and to the results of RetroTector, a program which finds complete ERV s based on 

various sequence motifs. There is agreement from both RepeatMasker and RetroTector 

on some of the sequences identified as LTR retrotransposons by LTRsieve. There are 

also some additional putative newly identified ERV s. 

7.1 Approach 

LTRsieve operates by extracting sequences from a long genomic sequence using a slid­

ing window together with a random forest classifier to determine whether the sequence is 

likely to be part of an LTR retrotransposon. When it finds many putative LTR retrotrans­

poson windows in a row, it tests for LTRs at the beginning and end of the group using 

sequence alignment. 
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Table 7 .1: Algorithm parameters with values used here. 
name use value 
Wmin minimum number of windows to test 3 
f amount of flanking DNA to examine 3000 
'lmin minimum identity for LTRs 70% 
dmin minimum length of LTR 50 
N 
s 

7.2 Methods 

window size 
slide length 

2400 
120 

LTRsieve operates on long genomic sequences (i.e. assembled chromosomes or contigs). 

It scans the sequence in both the sense and antisense directions using a sliding window 

of length N which slides by skipping ahead s base pairs, extracts features, and tests them 

using a random forest classifier for pieces of LTR retrotransposons. Whenever a group of 

more than Wmin sequential windows that are potentially pieces of LTR retrotransposons 

is found, f bp of flanking DNA is added to each end, and the first half is aligned with the 

second half using the Smith-Waterman algorithm in order to identify potential LTRs. If 

there is a match with greater than imin identity of at least length dmin, then the LTRs and 

the sequence between them is identified as a hit. 

The random forest algorithm for this study uses five types of features. These features 

are described in detail in Chapters 2 and 3. The features include the two feature sets 

inspired by work done in gene finding, entropy features (4 features listed in Table 7.2) 

and DFf magnitude features at frequency~ (3 features listed in Table 7.3), together with· 
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Table 7.2: Feature Set I used in LTRsieve 

name description 
e 1 entropy of single bases 
e2 entropy of dimers 
e3 entropy of trimers 
e6 entropy of hexamers 

Table 7.3: Feature Set II used in LTRsieve 

name 
mRY 
mMK 
mSW 

description 
mag. of Fourier coeff. S ( j) in RY string 
mag. of Fourier coeff. S( ~) in MK string 
mag. of Fourier coeff. S( 3 ) in SW string 

the three novel feature sets: the feature set that detects the use of overlapping reading 

frames (4 features listed in Table 7.4), the feature set that uses the distribution of DFT 

phase values to measure how the sequence differs from a random sequence (3 features 

listed in Table 7 .5), and the feature set that uses DFT phase values to detect the extent to 

which the sequence is using multiple reading frames (21 features listed in Table 7.6). All 

of these features are fast to calculate. Running under Ubuntu using a 2.00 GHz processor, 

LTRsieve takes about a minute to process a million base pairs. Other features could be 

added to or substituted for these in future work. The development of SEM features in 

Chapter 4 and the exploration of their properties in Chapter 5 was motivated by a desire 

to incorporate them into LTRsieve. 

The random forest classifier was chosen because it is a highly accurate classifier that 

can deal well with feature sets, such as mine, that have features with variable degrees 

of importance, because it does not require balanced data sets for training, because it can 
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Table 7.4: Feature Set III used in LTRsieve 
name description 
J(l) freq. of distance 1 between change points 
f (2 : 5) 
!(> 5) 
avgblk 

sum of freq. of distances 2, 3, 4, and 5 between change points 
freq. of distances> 5 between change points 
avg. distance betw. change points 

Table 7.5: Feature Set IV used in LTRsieve 
name description 
x2RY similarity to random histogram for RY 
x2MK similarity to random histogram for MK 
x2SW similarity to random histogram for SW 

name 
varRY-1,2,3 
varMK-1,2,3 
varSW-1,2,3 
varvarRY 
varvarMK 
varvarSW 
nRY-1,2,3 
nMK-1,2,3 
nSW-1,2,3 

Table 7 .6: Feature Set V used in LTRsieve 
description 
variance of RY histogram values for reading frame 1,2,3 
variance of MK histogram values for reading frame 1,2,3 
variance of SW histogram values for reading frame 1,2,3 
variance of variance of RY histogram values 
variance of variance of MK histogram values 
variance of variance of SW histogram values 
proportion of sequence in reading frame 1,2,3 for RY 
proportion of sequence in reading frame 1,2,3 for MK 
proportion of sequence in reading frame 1,2,3 for SW 
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easily do a three-way classification, and because of the potential that future analysis of 

the decision trees will result in greater understanding of the problem. 

Training sequences for the random forest classifier are the same length as the window 

size N. They are assigned to three classes: LTR retrotransposons, exons, and intergenic 

sequences. LTRsieve was tested with several different training sets. The random forest 

tags a sequence as a potential LTR retrotransposon if at least 40% of the decision trees 

so classify it. (Since there are three categories, anything greater than 33% is suggestive.) 

The random forest had an OOB error of 0.05 when--training. 

In order to evaluate the results, only annotated LTR retrotransposons with two LTRs 

were used. This means that some LTR retrotransposon annotations were ignored. The 

annotations include seque,nces that have sequence homology with reference sequences 

of LTR retrotransposons but are missing one or both LTRs. LTRsieve would not be 

able to identify those, as it only identifies sequences with both LTRs. Sensitivity and 

specificity were calculated based on the number of overlapping bases in the identified 

LTR retrotransposons and the comparison set. 

7.3 Drosophila melanogaster 

LTRsieve was tested on all the major chromosomes in Drosophila melanogaster. Re­

sults were compared using five different sets of training data. The results for the major 

Drosophila melanogaster chromosomes are shown in Table 7.7. Sensitivity and speci-
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ficity are calculated based on the number of overlapping base pairs in the annotated 

set of LTR retrotransposons and in the set of LTR retrotransposons identified by LTR­

sieve. Since LTRsieve only identifies complete LTR retrotransposons (those with two 

LTRs ), sensitivity and specificity were calculated comparing only to annotations with two 

LTRs. The specificity calculation assumes that all LTR retrotransposons in Drosophila 

melanogaster have been identified, which means it is likely an underestimate. 

The first training set was generated by scanning the X chromosome in the sense 

direction and generating features just as they are generated for testing. A sliding window 

was classified as a 

1. LTR retrotransposon, 

2. exon, or 

3. neither 

if at least 80% of the bases in the window fell into that category in the annotations 

downloaded on FlyBase, release 5.29 [134]. Three classes of sequence were used: LTR 

retrotransposons, exons, and other, meaning that 80% of the sequence was not annotated 

as an exon or as a TE (of any type). Only sense strand annotations were used for the 

LTR retrotransposon and exon classes, but annotations in both directions were used for 

the other class. Windows falling in each category were chosen at random to create 1894 

LTR retrotransopons samples, 2241 exon samples, and 1899 other samples. The random 
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Table 7.7: Results for Drosophila melanogaster using training data generated by scanning the X 
chromosome. 

chrom. size(Mbp) #annotated #found sensitivity specificity 
x 22 96 126 0.903 0.997 
2L 23 90 101 0.889 0.997 
2R 21 92 111 0.823 0.995 
3L 25 92 114 0.824 0.995 
3R 28 85 93 0.962 0.999 

Table 7 .8: Results for Drosophila melanogaster using a small set ( 1417) of training data gener­
ated by scanning the X chromosome. 

chrom. size(Mbp) # annotated # found sensitivity 
x 22 96 120 0.861 
2L 23 90 
2R 
3L 
3R 

21 
25 
28 

92 
92 
85 

104 
129 
141 
97 

0.880 
0.756 
0.780 
0.949 

forest classifier trained with these samples had an 5% OOB error. 

specificity 
0.996 
0.997 
0.993 
0.994 
0.999 

To test the sensitivity of the method to the training examples used, a smaller set of 

training examples was used - one quarter the size. This training set had 1417 training 

examples, selected at random from the original set: 475 LTR retrotransposons, 474 ex-

ons, and 4 7 5 other. This yielded a higher training error (7 % instead of 5 ~) and worse 

performance with an average sensitivity of 84.5%, down from 88.0%. Full results are 

shown in Table 7 .8. 

Since this method of gathering training data requires a genome as well annotated as 

Drosophila, which is· not usually available, another test was done using a training set 

generated from collected sequences of LTR retrotransposons and exons from FlyBase. 
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Table 7 .9: Results for Drosophila melanogaster using a set of 9203 training sequences from the 
X chromosome. 

chrom. size(Mbp) #annotated #found sensitivity specificity 
x 22 96 148 0.889 0.997 
2L 23 90 117 0.923 0.998 
2R 21 92 166 0.816 0.994 
3L 25 92 142 0.915 0.998 
3R 28 85 132 0.952 0.999 

A set of sequences not annotated as either TEs or exons was generated for the "other" 

category. All these sequences were taken from the Drosophila X chromosome, meaning 

it was similar information as that used in the first two training sets, just presented in a 

different form. 9203 training examples were used: 3873 LTR retrotransposons, 2447 

exons, and 2883 other. This model had a much lower training error (0.4%) and better 

performance with an average sensitivity of 89.9% (Table 7.9). This method was tried 

with a smaller set of examples (243: 112 LTR retrotransposons, 53 exons, and 78 other). 

Again there was a higher training error (8%) than with the smaller set, but this time the 

results were better. The average sensitivity went from 89.9% to 94.3% (see Table 7.10). 

It is interesting to note that with all these training sets, even though the training examples 

were taken from the X chromosome annotations, performance on the X chromosome was 

not better than on the other chromosomes. 

As many genomes do not have even this level of annotation, another training set was 

generated substituting consensus sequences from RepBase [65] for the chromosome X 

LTR retrotransposon examples. This training set used 9186 sequences and had an OOB 
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Table 7.10: Results for Drosophila melanogaster using a set of 243 training sequences from the 
X chromosome. 

chrom. size(Mbp) #annotated #found sensitivity specificity 
x 22 96 179 0.933 0.998 
2L 23 90 123 0.933 0.998 
2R 21 92 147 0.934 0.998 
3L 25 92 151 0.939 0.998 
3R 28 85 103 0.976 0.999 

Table 7 .11: Results for Drosophila melanogaster using training data from RepBase and annota-
tions of the X chromosome. 

chrom. size(Mbp) #annotated #found sensitivity specificity 
x 22 96 162 0.928 0.998 
2L 23 90 130 0.940 0.998 
2R 21 92 152 0.932 0.998 
3L 25 92 154 0.908 0.997 
3R 28 85 105 0.972 0.999 

Table 7.12: Results for Drosophila melanogaster using training data for Eukaryotic LTR retro­
transposons and endogenous retroviruses, human exons, and sequences from the Drosophila 
genome that are neither exons or LTR retrotransposons. 

chrom. size(Mbp) # annotated # found 
x 22 96 168 
2L 23 90 158 
2R 21 92 190 
3L 
3R 

25 
28 

92 
85 
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146 
152 

sensitivity 
0.922 
0.903 
0.848 
0.915 
0.960 

specificity 
0.998 
0.997 
0.995 
0.998. 
0.999 



error rate of 4%. The results are shown in Table 7.11. Comparison of Tables 7.7 and 7.11 

shows that using the RepBase files yields somewhat better results (average sensitivity of 

93.6%) and also tags more sequences. Tagging more sequences could be either an ad­

vantage or a disadvantage, depending on whether the goal is to discover new LTR retro­

transposons or to avoid excessive false positives. Most (95%) of the sequences tagged 

with the first training set were also tagged by the RepBase training set. A disadvantage of 

using the RepBase training set is that it takes longer to scan the genome. The slow part of 

the algorithm is looking for LTRs once a putative sequence is found. Using the original 

training set, the scanner finds LTRs for about 60% of the sequences it identifies; using 

the RepBase training set, LTRs are found for only about 10% of the putative sequences. 

In order to test how species-specific the training set needs to be, a training set based 

on all consensus sequences in RepBase for eukaryotic LTR retrotransposons and eukary­

otic ERVs was used, together with the set of human exons in CCDS 11 [52, 53] and· a 

set of sequences from the Drosophila genome that are neither LTR retrotransposons or 

exons. CCDS is a database of human and mouse genome annotations that is based on a 

consensus from information gathered by the European Bioinformatics Institute, NCBI, 

the Wellcome Trust Sanger Institute, and the University of California at Santa Cruz. 

This training set had 6758 training sequences and an OOB error of 10%. The results 

(Table 7.12) were slightly worse (average sensitivity of 91.0%) than the results using 

11 http://www.ncbi.nlm.nih.gov/CCDS/CcdsBrowse.cgi 
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only RepBase sequences for Drosophila and Drosophila exon sequences, but better than 

the results using the training data scanned from the X chromosome. 

7 .3.1 Analysis Of Errors 

One of the goals of LTRsieve is to discover new LTR retrotransposons. Documenting 

new discoveries requires the help of an experimental biologist and is beyond the scope 

of this thesis. The purpose now is to establish that LTRsieve has the potential to discover 

new LTR retrotransposons. To do this the false positives and false negatives found on 

chromosome 2L of Drosophila using the Repbase training set are analyzed. "False" 

positives have the potential to be new discoveries. Understanding false negatives helps 

to identify the weaknesses of LTRsieve. 

LTRsieve had three false negatives using the RepBase training set on Dmel 2L. These 

represent annotations of LTR retrotransposons that were not identified. Of these, two 

were LTR retrotransposons with other LTR retrotransposons nested inside them. The 

other was an LTR retrotransposon in the intron of a gene. They were three different 

types of LTR retrotransposon: 297, Quasimodo, and Max. Future work will address the 

problem of identifying nests and clusters of LTR retrotransposons. This is a particularly 

common phenomenon in Drosophila; less common in Homo sapiens. 

There were 45 "false" positives in this scan. They fall into five categories: those 

in intergenic regions with no annotations, those in genes in regions containing coding 
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segments, those in genes in regions with no coding segments, those in clusters or nests of 

SINEs and LINEs, and those which have been annotated as LTR retrotransposons since 

the data was assembled. 

Fourteen (31 % ) are in intergenic regions with no annotations. Seven ( 16%) are in 

non-coding regions of genes with no annotated function. These are potential discoveries 

as they are not identified as something else. Further investigation is needed to deter­

mine if they are indeed LTR retrotransposons, such as analysis of their structure and 

coding regions. Five of the forty-five (11 %) are actual LTR retrotransposons that were 

not annotated when data was assembled for testing, but have been annotated since. These 

represent discoveries relative to the system being tested. So, 58% of the false positives 

are either potential or actual discoveries. 

Fifteen of the forty-five (33%) were in portions of genes with coding regions. These 

are unlikely to be LTR retrotransposons. It is possible that these coding segments have 

some relationship to LTR retrotransposons. This is an area for future study, either to 

determine if these sequences have biological interest or to figure out how to avoid target­

ing them. The remaining five false positives ( 11 % ) were in regions containing clusters 

of SINEs and LINEs. The system misidentifies these as LTR retrotransposons, because 

SINEs are of similar length to LTRs and, in these clusters/nests, spaced similarly. This 

problem motivated the development of the sLTR/SINE classifier discussed in Chapter 6. 
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7.4 Homo sapiens 

The LTR retrotransposons in Homo sapiens differ from those in Drosophila in the fol­

lowing ways. Most of them fall in the category of ERV s. This means they have env 

genes as well as gag and pol genes. HERV s are thought to be inactive in the sense that 

they are not reinserting in the genome (although they are active in the sense that they 

are transcribed). This means that they are mutated and that many are partial. Some of 

the mutations involve insertions, creating gaps as large as lOK inside the HERV. The hu­

man genome has a large number of SINEs (about 11 % of the genome) which are easily 

mistaken for LTRs by the program. 

There are no complete annotations of HERV s. Two benchmarks for the results were 

used: RepeatMasker and RetroTector. RepeatMasker identifies about 4% of the human 

genome as ERV s. It tags any sequence with homology to a HERV sequence in RepBase. 

Some of the sequences it identifies are quite short. It often happens that a single HERV is 

identified by RepeatMasker in several pieces. No attempt is made to verify that an identi­

fied fragment is part of a HERV, and, in fact, it is quite likely that many are misidentified. 

RepeatMasker misses HERV s that have been mutated. It also misses any HERV that 

does not have a consensus sequence in RepBase. RetroTector uses motif search to iden­

tify intact HERV s. It makes no claim to be complete, identifying about half as many 

base pairs as RepeatMasker, but the HERV s it annotates are well documented. The sets 
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of HERV s identified by RepeatMasker and RetroTector are overlapping but different: for 

chromosome 19, 25% of the base pairs identified by RepeatMasker are also identified by 

RetroTector, and 47% of the base pairs identified by RetroTector are also identified by 

RepeatMasker; for chromosome 21, 11 % of the base pairs identified by RepeatMasker 

are also identified by RetroTector, and 41 % of the base pairs identified by RetroTector 

are also identified by RepeatMasker. 

7.4.1 Results 

Since a much smaller portion (about 1 % ) of the human genome is protein coding, a model 

based on two categories is used rather than the three categories used with Drosophila. 

The model used has 1334 samples: 774 sequences of length 4800 that are not annotated 

as either exons or HERV s, chosen at random from the human genome, and 560 sequences 

of length 4800 taken from the consensus sequence eukaryotic ERV s in RepBase. The 

random forest classifier generated from this training data had an OOB error of 8%. 

When a scan of chromosome 21 is done identifying potential HERV s, about 1 % of 

the genome is flagged as containing HERV s. Since, unlike Drosophila, HERV annota­

tions are unreliable, it is impossible to calculate sensitivity and specificity statistics. The 

best one can do is compare to results of other HERV finding algorithms. Figures 7 .1 and 

7 .2 show approximate proportional Venn diagrams of this comparison. This analysis is 

done on a sequence by sequence basis. A sequence is considered to be in the intersection 
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of the sets if there is overlap in the identification. The boundaries are not required to 

be identical. Two assessments are done because, although RetroTector, like LTRsieve, 

attempts to identify complete HERV s, RepeatMasker does not. Sequences identified by 

RepeatMasker include many partial HERV s. Therefore, one comparison is done with all 

sequences identified by RepeatMasker and another with only those long enough to pos­

sibly be complete HERVs. Notice that, in the comparison with all RepeatMasker HERVs 

(Figure 7 .1 ), the RepeatMasker group is by far the largest of the three: 4538 sequences, 

while RetroTector identifies 54 sequences and LTRsieve identifies 405 sequences. In 

the other comparison (Figure 7.2), the RepeatMasker group is the smallest with only 37 

sequences. 

It is clear from the figures that these algorithms are complementary, each identifying 

many sequences not found by the others. The fact that the identified HERV sets are also 

overlapping is suggestive that all the algorithms are also effective. RetroTector is the 

pickiest of the three algorithms, requiring verification by several different motif methods 

for each HERV it identifies. Thus, it is not surprising that almost all the sequences iden­

tified by RetroTector (89%) are also identified by the other two methods in Figure 7 .1. 

Two of the sequences identified by RetroTector (3.7%) are also identified by LTRsieve 

but not by RepeatMasker. LTRsieve identifies more HERVs than RetroTector does: 64% 

of its sequences are not identified by either RetroTector or RepeatMasker. These are ei­

ther false positives or new discoveries. Future work, in collaboration with biologists, will 
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Figure 7 .1: Comparison of which ERV 
sequences were identified by RetroTector, 
LTRsieve, and RepeatMasker. All se­
quences identified by RepeatMasker are in­
. eluded, irrespective of length. Note that its 
sequences constitute a much larger group 
than those identified by the other two pro­
grams. 

Figure 7 .2: Comparison of which ERV 
sequences were identified by RetroTector, 
LTRsieve, and RepeatMasker. Only these­
quences of length greater than 2880 identi­
fied by RepeatMasker are included. 

be needed to determine which they are. Figure 7 .2 shows that a much greater proportion 

of the long sequences identified by RepeatMasker correspond to sequences identified by 

both RetroTector and LTRsieve (54% as opposed to 11 %). This makes sense as many of 

the short sequences identified by RepeatMasker are likely either false positives or frag-

mentary HERV s. The fact that this is so, however, gives some support to the validity of 

the RetroTector and LTRsieve identifications. 
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7 .4.2 Conclusion 

LTRsieve was originally intended to be a general purpose tool for any genome. This is a 

challenging goal and there is more work to be done. Some differences can be compen­

sated for with the use of parameters. For example, genomes of different species vary sig­

nificantly in the number and character of their LTR retrotransposons. Plant genomes can 

be more than 60% LTR retrotransposons. Human genomes are about 8% ERV s. Fruit fly 

genomes are about 2% LTR retrotransposons. A parameter controlling the cutoff value 

for putative sequence identification could vary based on this knowledge. Recently in­

serted LTR retrotransposons are more easily detected than older ones, having preserved 

their original structure. More ancient LTR retrotransposons can be badly mutated, some­

times with many insertions and deletions. Knowledge of the age of LTR retrotransposons 

in the organism might also profitably be used to adjust the cutoff parameter. Species also 

vary in the gene content of their genomes. For example, Homo sapiens genomes are only 

about 2% genes; Drosophila genomes 50%. This affects the distribution of LTR retro­

transposons in these genomes: Drosophila LTR retrotransposons are equally likely to be 

found in intergenic regions and inside genes in introns, HERV s are much more likely to 

be found in intergenic regions. This knowledge should drive the decision of whether a 

2-way or 3-way random forest classifier is used. 

An important goal of future work is to modify LTRsieve to defl]. with the two prob-
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lems identified in the tests on these two genomes: the problem of clusters or nests of LTR 

retrotransposons and the problem of confusion of SINEs and LTRs. In organisms, like 

Drosophila, with known nests and clusters, the check for matching LTRs should be mod­

ified to accommodate the possibility. For organisms, like Homo sapiens, that are known 

to have many SINEs, the algorithm should incorporate the SEM feature based classifier 

developed in Chapter 6 to verify that identified LTRs are actually LTRs and not SINEs. 

There is also the issue of training data for the random forest classifier. The results 

of the experiments using different training sets with Drosophila are encouraging. They 

suggest that it should be possible to construct general purpose training sets that will 

work well on diverse organisms. Verification of the success of this awaits work in col­

laboration with a biologist who can verify that the identified sequences are actually LTR 

retrotransposons. 
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8 Unsupervised Learning On Tetrahymena IESs 

Previously only about a dozen IESs have been studied in detail. Now that the Tetrahy­

mena MIC genome has been sequenced, it is possible to study all the IESs, previously 

estimated to be about 6000. Biological collaborators say that descriptions based on bioin­

formatics will help them to formulate hypotheses and design experiments. To this end, 

ways to divide Tetrahymena IESs into groups are examined. 

It is hypothesized that IESs are remains of transposons that have been degraded by 

mutation (71]. In another ciliate, Paramecium, the_IESs have been shown to be related 

to the Tel/mariner transposons. These are DNA transposons that transpose in a cut­

and-paste manner using a DNA intermediate. Paramecium IESs are much shorter than 

Tetrahymena IESs. 

Not much is known about what sort of transposons could have been incorporated into 

the Tetrahymena genome. One family of DNA transposons, Tlr transposons, have been 

identified in Tetrahymena [ 14 7]. Thirty of these Tlr transposons have been identified, 

meaning that versions of them recognizable through biological experiments constitute 

less than 1 % of the IESs in Tetrahymena. In addition, a family of non-LTR retrotrans-
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posons, REP, has been identified [48]. No IESs in Tetrahymena have been found that 

resemble transposons found in other organisms. BLAST searches against REPBASE 

yield no matches. It would be valuable to biologists to know more about what sort of 

transposons invaded the Tetrahymena genome and when they invaded. 

The mechanism of IES excision has been studied. One result is that a domesticated 

transposase from a PiggyBac transposon is involved [36]. Transposase is the protein that 

transposons use to cut and paste themselves throughout a genome. The domesticated 

transposase from PiggyBac found in Tetrahymena and other ciliates cuts but does not 

paste. PiggyBac is a type of DNA transposon that was originally discovered in butterfly 

genomes and has subsequently been found to be common in the genomes of many insects 

and other organisms. It is of interest to biologists for many reasons: it is found in a 

diversity of species; it is useful for genetic engineering; it is important in the evolution 

of baculovirus, a type of virus that infects insects and that has been widely used as a 

biopesticide [24]; and it is thought to provide a means of horizontal transmission of 

genetic elements between species· [ 49]. There is a transposable element in the human 

genome, called LOOPER, that is related to PiggyBac. 

Another question of interest to biologists is whether there are transposable elements 

in Tetrahymena that are actively transposing. An approach to answering this question is 

to compare IESs in different strains. This was done in the case of the IES called the R 

element [59]. It was found that there is a short sequence (597 bp) in the R element that 
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exists in some strains but not others. This is called the R indel. This sequence could be 

an active transposon. 

With the entire MIC genome sequenced, it is possible to address these biological 

questions through computational means. Three approaches have been taken. First, a 

BLAST analysis of the sequences was done to get information about how often different 

sequences and subsequences are repeated. Then, an analysis was done based on edit 

distance between sequences to determine which sequences were similar to sequences 

already known to be important, such as Tlr and PiggyBac. Finally, unsupervised learning 

on SEM features was done in an attempt to categorize different types of IESs. 

8.1 BLAST Analysis 

8688 IESs were identified. Of these, 5922 had good sequence quality. Table 8.1 reports 

some basic statistics about the Tetrahymena genome. The number column for the MAC 

and MIC nuclei represents the number of chromosomes in the MIC and the number of 

chromosome-like pseudomolecules in the MAC. The MIC is diploid with two copies of 

each chromosome. The MAC is polyploid with about 45 copies of each pseudomolecule. 

Repeated sequences were sought amongst the set of 5922 IESs with good sequence 

quality by BLASTing them against themselves (e < 10-30). Subsequences were ex­

tracted that occurred more than once in the set of 5922 IESs. These ranged in length 

from 68 bp to 4227 bp. Figure 8.1 shows the distribution of lengths. The vast majority of 
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Table 8.1: Tetrahymena Genome Statistics 
number size %ofMAC % of MIC 

MAC 181 103Mb 100% 65% 
MIC 5 158Mb 153% 100% 
genes 26,997 65Mb 63% 41% 
MAC non-genie 38Mb 37% 24% 
identified IESs 8688 16Mb 10% 
other MIC only sequence 39Mb 25% 

repeated sequences are shorter than 600 bp. Copy numbers ranged from 2 to 733. About 

a third of these have copy number fifty or less. Figure 8.2 shows the distribution of copy 

numbers for the rest. While copy numbers greater than 450 are rare, copy numbers be-

tween 50 and 450 occur for hundreds of sequences. Figure 8.3 shows a scatter plot of 

copy number and length. It shows that it is common to have a sequence of 400 or 500 bp 

with copy number around 400. There are some sequences with length greater than 2000 

bp that have copy number as high as 400, and the sequences with highest copy number 

have lengths close to 1000 bp. Transposons create multiple copies of identical sequences 

in the genome. Figure 8.3 shows a large number of sequences with lengths close to 500 

bp that have many copies in the genome. Hence, Figure 8.3 supports the hypothesis that 

IESs are remnants of transposon insertions. 

8.1.1 R Indel 

The R indel [59] was the first example found of shared sequence between two IESs. It is 

found in both the RIES and the BIES, two of the ten IESs that were sequenced before 
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Figure 8.1: Length distribution of repeated sequences within IESs. 
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Figure 8.3: Scatter plot of copy number and length of repeated sequences within IESs. 
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the entire MIC genome was sequenced. It was also found to exist in the R IES in strains 

B3 and C2 of Tetrahymena thermophila, but not in other strains. Thus, its name. It must 

have been either inserted in a progenitor of B3 and C2 or deleted from the other strains. 

384 copies of the R indel were found in IESs, including two IESs that entirely consist of 

the R indel. The R indel was also found to exist outside of IESs with 171 copies in the 

MAC genome. 

In addition to the R indel, there are 27 IESs whose entire sequence exists in multiple 

copies in other IESs, though none with as many copies as the R indel. Copy numbers 

range from 2 to 58. These IESs are of similar length to the R indel (600 bp). 

8.1.2 IESs In Genes 

It is known that IESs in Tetrahymena are mostly in intergenic regions. Unlike the IESs 

in Paramecium, they are not precisely excised. This means there is selective pressure 

against having them in genes, since imprecise excision could affect the functioning of 

the genes. The IES locations were checked first against the gene annotations in the 

Tetrahymena Genome Database (TGD) 12 [135] and then against improved annotations 

provided by Robert S. Coyne at JCVI [38]. 1294 IESs were identified to be in genes, 

representing about 22% of the total number of IESs identified. One hundred and three 

(8%) were in coding regions in the genes. To put these numbers in context, the improved 

12www. ciliate. org 
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annotation includes 26,460 genes occupying 63% of the MAC genome. So, IESs are 

inserted into about 5% of genes, and so only about a third as many are being found in 

genes as would be expected if they were inserting randomly. Furthermore, 78% of the 

genes consist of coding regions, so one would expect many more IESs to be in coding 

regions than were found if there were no selection pressure against it. This means there 

is selection against IESs in genes and even stronger selection against IESs in coding 

region.s. 

Figure 8.4 shows size distributions for all IESs identified, IESs in genes, and IESs in 

coding regions. All of these categories have the same distribution, but there are fewer 

really long IESs in genes (more than 8000 bp) and only one really long IES in a coding 

region. Coding regions have proportionally more short IESs (less than 2000 bp) and a 

slightly lower median size. The median length for all IESs is 2477 bp; for IESs in genes, 

2425 bp; and, for IESs in coding regions, 2279 bp. 

Using the improved annotation resulted in a substantial change in which IESs were 

identified as inside or outside of genes. Forty percent of the IESs found to be within 

genes using the TGD annotation were excluded using the improved annotation, and thirty 

percent of the IESs found to be within genes using the improved annotation were not 

included as in genes under the TGD annotation. This is much more than one would 

expect given the amount of modification made to the annotation. This suggests that JES 

insertions complicate gene annotation. It also suggests that the data should be analyzed 

233 



0 
0 
0-

l I 
0 

0 

8- ,--
CX) -,--

0 
0 c: 8- I 

I 0 e <O I 
I I ..c 0 - I 0 CJ) 

0 g 
I c 

8- 0 
~ g g g ~ 

0 

8-
C\1 

I I 

0.., -L.. __,__ -I!..-

I I T 

all IES IES in genes IES in CDS 

Figure 8.4: Length Distributions for IESs in genes and coding regions (CDS) 

with caution, keeping in mind that gene annotation is always a work in progress. 

801.3 Genes That Have Sequence Matches To IESs 

Genes were sought that had sequence homology to multiple IESs, since these could be 

domesticated genes from transposons. One that seemed to be of particular interest was 

ITHERM_00934410, described in TGD as a GIY-YIG catalytic domain. The region des-

ignated in Figure 8.5 occurs in 28 IESs. It is not known what this gene's function is, but 

the GIY-YIG domain is associated in other organisms with excinucleases and endonucle-
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Figure 8.5: TTHERM_00934410 shown in the Genome Browser in TGD with the region dupli­
cated in IESs marked with a rectangle. 

ases, including some encoded by group I introns. Endonucleases and excinucleases are 

enzymes involved in DNA excision, and group I introns are introns that are self-splicing 

and mobile, like transposons. This makes TTHERM_009344 l 0 a good candidate for 

further analysis and experimentation. 

There are 686 other genes that have sequence homology (e < 10-15) with multiple 

IESs. If a transposon with high copy number was domesticated, the resulting gene would 

have matches in a large number of IESs. Table 8.2 lists genes with this property. These 

genes all have sequence homology with more than 70 IESs. Another selection criterion 

could be the length of the IES match. Table 8.3 lists the twenty genes with the longest 

average match lengths. These genes are chosen from those with at least four matches to 

IESs and have match lengths ranging from 4 7 bp to 549 bp with averages ranging from 

196 bp to 443 bp. Notice that the GIY-YIG catalytic domain gene is in this group. 
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Table 8.2: Genes with sequence homology to more than 70 IESs 
gene name TGD gene description #of IESs avg. length 
TTHERM_00904060A hypothetical protein 316 125.25 bp 
TTHERM_Ol 120610A hypothetical protein 250 111.25 bp 
TTHERM_01356370A hypothetical protein 227 92.54 bp 
TTHERM_00865150A WGRdomain 216 133.78 bp 
TTHE~_00543690A hypothetical protein 190 96.65 bp 
ITHERM_O l330050A hypothetical protein 162 118.37 bp 
TIHER:lVLOl211820A Protein kinase domain 154 81.54 bp 
TTHERM~00125670A hypothetical protein 129 104.69 bp 
TTHERM-01141650A hypothetical protein 121 97.93 bp 
TTHERM·_00053750A hypothetical protein 118 81.59 bp 
TTHERM_00721920A hypothetical protein 116 91.66 bp 
TTHERM_00954160A hypothetical protein 116 83.22 bp 
TTHERM_00584760A hypothetical protein 112 78.67 bp 
TTHERM_Ol 130800A hypothetical protein 109 114.06 bp 
TTHERM_0093541 OA hypothetical protein 80 104.65 bp 
TTHERM_00242640A hypothetical protein 80 62.20 bp 
TTHERM_00490780A hypothetical protein 76 84.00 bp 
TTHERM_00399270A Transmembrane amino acid 

transporter protein 74 74.96 bp 
TTHERM_00681770A Ras family protein 74 68.35 bp 
TTHERM_00188530A hypothetical protein 72 89.90 bp 
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Table 8.3: Long IES matches: genes with sequence homology to at least 4 IESs and the longest 
average lengths for the matches. 

gene name TGD gene description #of IESs avg. length 
TTHERM_00131170A hypothetical protein 5 443.40 bp 
TTHERM_00298460A hypothetical protein 5 340.40 bp 
TTHERM_0093441 OA GIY-YIG catalytic domain 28 303.21 bp 
TTHERM_Ol 154660A hypothetical protein 32 237.50 bp 
TTHERM..;.00197685A hypothetical protein 33 230.52 bp 
TTHERM_00959800A hypothetical protein 34 224.56 bp 
TTHERM_O 1929220A hypothetical protein 29 215.24 bp 
TTHERM_00737560A hypothetical protein 30 214.90 bp 
TTiiERM_O 1062860A hypothetical protein 38 213.03 bp 
TTHERM_Ol253450A hypothetical protein 36 211.61 bp 
TTHERM_O 1350000A Protein kinase domain 5 208.60 bp 
TTHERM_O 1256620A hypothetical protein 43 207.16 bp 
TTHERM_Ol471400A hypothetical protein 30 206.60 bp 
TTHERM_Ol605680A hypothetical protein 31 201.71 bp 
TTHERM_Ol681240A hypothetical protein 31 201.71 bp 
TTHERM_Ol382990A hypothetical protein 45 201.04 bp 
TTHERM_Ol453050A hypothetical protein 44 200.89 bp 
TTHERM_O 1590530A hypothetical protein 44 198.66 bp 
TTHERM_O 1222460A hypothetical protein 46 198.54 bp 
TTHERM_Ol465230A hypothetical protein 45 195.71 bp 
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8.2 Edit Distance Analysis 

A useful tool for sequence analysis is edit distance. This is a way of measuring how 

different two sequences are from each other. 

Definition 3 Edit distance is the number of substitutions, insertions, and deletions needed 

to transform one sequence into another. Edit distance is the same as the global alignment 

score with scores: mismatch = 1; match = O; gap = 1; extend gap = 1. 

Definition 4 Alignment length is the number of bases between the first and last bases 

of the shorter sequence in the global alignment. This excludes insertions required to 

equalize the lengths of the two sequences, i.e., insertions before the first base of the 

shorter sequence or after the last base. 

Definition 5 Normalized edit distance is the edit distance between two sequences di­

vided by the alignment length. 

To illustrate relationships between IESs in the hope of finding ways to categorize 

them, multi-dimensional scaling based on edit distance was used. Figures 8.6-8.10 show 

visualizations of IES data with IESs with various different properties highlighted. 

If IESs are evolutionary remnants of transposons, there should be some sequence sim­

ilarity to transposase genes. All the annotated IESs were BLASTed against a database 

created from all the transposase genes in NCBI. Figure 8.6 highlights IESs with sequence 

similarity to those genes. Note that the vast majority of IESs appear to be close to se­

quences with sequence similarity to transposase genes. 
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Figure 8.6: Multidimensional scaling of IESs based on normalized edit distance. Highlighted 
elements are those with sequence similarity (e-value < 10-30) to transposase genes. 

In [36] it was demonstrated that a homolog of the piggyBac. transposase gene pro-

duces a protein (Tpb2p) that is likely responsible for the DNA cleavage step of IES 

deletion. IESs that had sequence similarity to piggyBac genes were sought. Figure 8.7 

highlights these. In [147] a family of transposons unique to Tetrahymena, called Tlr el-

ements, is characterized. Figure 8.8 highlights IESs with sequence similarity to these. 

Note that the piggyBac-like IESs and the Tlr-like seem to occupy different regions of the 

diagram. 

Figure 8.9 highlights the IESs with sequence similarity to the R indel. These are 

distributed throughout the entire diagram. This is consistent with the notion that the R 

indel inserts preferentially in IES s as they provide a safe haven. Examples of the R indel 
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Figure 8. 7: Multidimensional scaling of IESs based on normalized edit distance. Highlighted 
elements are those with sequence similarity (e-value < 10-30) to piggyBac genes. 

Figure 8.8: Multidimensional scaling of IESs based on normalized edit distance. Highlighted 
elements are those with sequence similarity (e-value < 10-30) to Tlr genes. 
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Figure 8.9: Multidimensional scaling of IESs based on normalized edit distance. Highlighted 
elements are those with sequence similarity (e-value < 10-30 ) to the R indel. 

in [59] are all portions of other IESs. Two of the IESs identified are complete R indel 

matches that are not a part of other IESs. 

To identify other sequences that behave like the R indel, sequences that had many 

copies within other IESs were sought. These are highlighted in Figure 8.10. This group 

of sequences is in the region of the diagram that does not include any IESs with sequence 

similarity to transposase genes. 

Inspired by the edit distance analysis of sequences similar to the R indel, IESs were 

divided into two categories: short IESs (like the R indel) and long IESs. Short IESs vary 

in length from 200-1000 bp, averaging around 500 bp. Long IESs range in length from 

1-20K. Short ~Ss can appear inside other IESs. Short IESs have an average AT content 
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Figure 8.10: Multidimensional scaling of IESs based on normalized edit distance. Highlighted 
elements are those with multiple copies of their complete sequence in other IESs. This group 
includes two copies of the R indel. These are the IESs are referred to as short IESs. 

of 83%, while long IESs have an average AT content of 80%. Short IESs tend to have 

higher copy number than long IESs. IES copy numbers vary from 1-733. Short IESs 

have a median copy number of 18, while long IESs have a median copy number of 11. 

For long IESs, copy number is based on any portion of the JES that exists in multiple 

copies ( e < 10-15); for short IESs only complete copies are counted. 

A hypothesis arising from this analysis is that long IESs are evolutionary remnants 

of transposons like piggyBac or Tel/mariner relatives and that short IESs are related to 

the R indel and are SINE-like, possibly active transposons. The R indel has features 

in common to SINEs (similar length, no terminal repeats, no ORFs), though it has no 
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sequence similarity to any of the SINEs catalogued in RepBase. This is an example of 

the type of hypothesis that can be generated by this sort of bioinformatic analysis to be 

tested in future work in collaboration with an experimental biologist. 

8.3 Unsupervised Learning 

Most of this thesis has focused on supervised learning in which training data contains 

class labels. This is the way that SEM features have been used in past research. These 

have the potential for use in unsupervised learning in which the categories are unknown, 

and the SEM features are used to figure out what they are. This section explores that 

potential. 

8.3.1 Clustering IESs 

The SEM features that were evolved to distinguish IESs from MDSs are not optimized 

for distinguishing different types of IESs from each other. Therefore, there is a need for a 

method of creating features that are. In order to do this, the assumption is made that IESs 

in genes would be different from IESs that were in intergenic regions far from genes. 

This is a plausible assumption because IESs are selected against in genes. Study of the 

excision process of IESs in Tetrahymena demonstrates that they are imperfectly excised, 

with multiple possible boundaries. Imperfect excision would likely have an impact on 

gene functionality. It is possible that there are multiple different excision methods for 
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different types of IESs and that the IESs in genes are precisely excised. If this is the case, 

IESs in genes would likely have sequence features that distinguished them from other 

IESs. 

Working from this assumption, a data set was created that contained IESs in an­

notated genes and IESs at least lK from any annotated genes, and evolved features to 

distinguish them. 4-state SEMs were used with the random forest fitness function. The 

evolved SEMs were able to distinguish the sequences with 57% accuracy. This suggests 

that although two clearly different classes have not been found, the assumption was not 

entirely incorrect. If the classes had been assigned at random, one would expect close to 

50% accuracy. The results suggest only that one set is biased towards a particular type 

(or types) of IESs and the other class is biased differently. These features, however, are 

evolved to distinguish different types of IESs as opposed to the SEM features used in 

Chapters 4 and 5 that were evolved to distinguish IESs from MDSs. 

The next step was to cluster the data based on the new features. Three different 

clustering methods were tried. The first used the pam function from the R package 

cluster [87]. Pam stands for partitioning around mediods and is a robust form of k-means 

clustering. This method was applied to a diverse subset of 20 of the evolved features 

selected using dissimilarity clustering. The features were normalized so that they all had 

a mean of zero and a standard deviation of one. The pam clustering was done based on 

euclidean distance. The second clustering method also used pam and the same diverse 
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set of 20 features, but it used random forest distance for the clustering. Random forest 

distance is calculated based on a proximity matrix. The proximity of two data items is 

the percentage of times they end up in the same terminal node when used as ooh data 

for training a random forest classifier. Random forest distance is 1 minus the proximity. 

The third method used the KMeansSparseClustering function from the R package sparcl 

[146] to create two clusters using the entire set of normalized features. K-means sparse 

clustering simultaneously does feature selection and clustering by assigning weights to 

the features (some get a weight of zero) and optimizing the clusters and weights so as to 

maximize the sum of the between cluster sum of squares for each feature. 

Figures 8.11, 8.12, and 8.13 show visualizations of the clusters using 10% of the data. 

Table 8.4 shows cluster statistics for the different methods. The WB and Dunn statistics 

measure how compact and well-separated the clusters are. The WB statistic is the ratio 

of the average within cluster distance and the average between cluster distance, while the 

Dunn statistic is the ratio of the minimum between cluster distance and the maximum 

within cluster distance. Thus, lower values of WB are better, and higher values of Dunn 

are better. The pearson r statistic measures the correlation between how close data points 

are to each other and whether they are in the same cluster. Thus, values close to one are 

best. Entropy measures how evenly divided the clusters are. Table 8.5 compares the 

clusterings using the adjusted RAND index. The adjusted RAND index is a variation 

on the RAND.index described in Section 4.2.1. It corrects for the similarity one would 
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Table 8.4: Cluster Statistics 
cluster type WB Dunn pearson r 
pam 0.74 0.02 0.31 
random forest 1.00 0.4 7 0.07 
sparse 0.64 0.06 0.44 

Table 8.5: Adjusted RAND Index 

entropy 
0.68 
0.44 
0.68 

pam random forest sparse 
pam 1.00 0.00 0.49 
random forest 0.00 1.00 0.12 
sparse 0.49 0.12 1.00 

expect to occur from random chance and ranges from -1 to 1. Values near zero mean 

no similarity; values near one mean very similar; values near negative one mean very 

different. 

It is clear from the WB and Dunn statistics and from the visualizations that the clus-

ters are not compact and well-separated. This is not unexpected. Biological collaborators 

expected to find spectrums rather than distinct clusters. One reason for this is that each 

IES potentially contains many transposon insertions. If, as is likely, there were different 

types of insertions, there may well be many IESs that contain both types. For this reason, 

the Dunn statistic is the least reliable as it can be most easily skewed by a few atypical 

data points. There is no way of knowing which entropy value is best as there is no way to 

know how evenly divided the classes found actually are, so that value is merely descrip-

tive. Hence, based on the WB and pearson r statistics, the K-means sparse clustering was 
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Figure 8.11: Visualization using 10% of the data of the clusters created using pam on a diverse 
set of 20 evolved features and euclidean distance. 
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Figure 8.12: Visualization using 10% of the data of the clusters created using KMeansSpar­
seCluster. 
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Figure 8.13: Visualization using 10% of the data of the clusters created using pam on a diverse 
set of 20 evolved features and random forest distance. 

chosen as the best. The adjusted RAND index indicates that it is not too different from 

the pam clustering. In fact, they agree on 85% of the cluster assignments. Figure 8.14 

shows a visualization of the data points on which these clusterings agree. In this figure, 

the clusters appear to be well separated. This suggests that the disagreements between 

the clustering methods are mostly on points near the cluster boundary. When calculated 

on these points only, the WB and pearson r statistics are substantially improved (WB 

= 0.43; pearson r = 0.51), and the Dunn and entropy statistics are unchanged. This is 

strong evidence that two classes of IESs have been identified. 

Once a clustering had been chosen, new SEM features were evolved to distinguish 

the clusters. This time the SEM features were able to distinguish the classes with 97% 
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Figure 8.14: Visualization using 10% of the data points on which the k-means cluster method 
and the k-means sparse cluster method agree. 

accuracy. A random forest classifier was also built with k-mer features with k = 1 ... 3. 

This classifier was able to distinguish the two classes with 95% accuracy. This suggests 

that two distinguishable classes of IESs had been found. The next step was to attempt to 

describe the differences between the two classes in a way that is meaningful to biologists. 

The process followed is summarized in Figure 8.15. 

8.3.2 Cluster Analysis 

It is possible that the distinction is not biologically meaningful. It is possible, for exam-
, 

ple, to distinguish people based on hair colour with high accuracy, but the distinction is 

not useful if your goal is to determine disease risk. To determine whether the distinction 
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EvolveSEM 
f ea tu res using 
in gene/far from 
gene dataset. 

57 % accuracy ,, 

wb = 0.43 

Evolve a second 
set ofSEM 
features on 
cluster data. i 97 % accuracy 

97 % accuracy 

Analyse effective features 

Figure 8.15: Process followed to find descriptive features for two classes of IESs. 
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is useful, the help of a biologist is needed. However, it is necessary to give the biologist 

meaningful information with which to work. It is unlikely that even an expert glance at 

two sets of thousands of sequences will lead to any result. Wet lab experiments on the 

sequences could lead to insight, but the biologist needs some sort of hypothesis to work 

with about what is different between the two types of IESs. 

Understanding the features that best separate the two clusters could lead to under­

standing the differences between the sequences. To determine which features these are, 

decision trees were built to separate the sequences in the two clusters using the features. 

The decision trees were built using recursive partitioning with the R package rpart [ 130]. 

Figure 8.16 shows the decision tree built from the SEM features evolved to separate IESs 

in genes from IESs far from genes; Figure 8.17 shows the decision tree built from the 

SEM features evolved to separate the two clusters, and Figure 8.18 shows the decision 

tree built from k-mer features. The SEM features in the trees are named based on their 

absolute correlation distance to k-mer features. The name is of the form sem.XX_n.nn. 

The XX refers to the closest k-mer feature. If the correlation of the SEM feature with 

it is positive, the name of the k-mer feature is given in uppercase; otherwise, in lower 

case. The number at the end of the name is the absolute correlation distance between the 

features. 

For the tree in Figure 8.16, the classification of 97% or more of the points is deter­

mined by the root node of the decision tree. The second level of the tree affects only a 
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few IESs near the boundary between the two clusters. Furthermore, the features in the 

trees are correlated with each other. The three features in the tree have Pearson correla­

tions with absolute value greater than 0. 70. Thus, the focus is on the SEM feature at the 

tree root. 

In order to have some more SEM features to analyze and because of the knowledge 

that the evolved features had diverse effective features, two more decision trees with 

evolved SEM features were built. These decision trees were built excluding all SEM 

features with high correlation (absolute correlation distance less than 0.2) to the features 

in the roots of the trees in Figures 8.16 and 8.17. One tree was built using the features 

from the first evolution excluding all features with absolute correlation distance less to 

or equal to 0.20 from the feature at the root of the tree in Figure 8.16. The other tree was 

built using the features from the second evolution with absolute correlation distance less 

than or equal to the feature at the root of the tree in Figure 8 .17. 

8.3.2.1 SEM Features 

The feature at the root of the decision tree in Figure 8.16 is sem_tL0.48. The SEM that 

generates it is shown in Figure 8.21. It is generated by the state in the upper right comer 

of this SEM. This feature counts Cs and Gs. It counts all Cs except those counted by the 

state in the upper left. The Cs that are excluded mostly follow Ts (sometimes As). This 

feature also counts some Gs. The Gs that it includes mostly follow As. 
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sem_tt_0.48<0.096 ~ 

\ 
sem_tt_0.53<0.19 

I 
sem_tt_0.49<0.20 

Figure 8.16: Decision tree built using the features generated by evolution distinguishing data 
sets containing IESs in genes and IESs more than 1 K from genes. This decision tree was built 
to distinguish cluster one from cluster two, reserving 20% of the data for testing. It gets 97% 
accuracy on the test data. 
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lresl s_ATT_0.12>=0.51 ~ 

Figure 8.17: Decision tree built using the features generated by evolution distinguishing cluster 
one from cluster two. This decision tree was built to distinguish cluster one from cluster two, 
reserving 20% of the data for testing. It gets 97% accuracy on the test data. 
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/TI>=0.06~ 

TT>=0.19 TTT>=0.09 

\ I 
C<0.099 C<0.10 

\ 
TT>=0.21 

Figure 8.18: Decision tree built using the k-mer features fork= 1 ... 3. This decision tree was 
built to distinguish cluster one from cluster two, reserving 20% of the data for testing. It gets 
91 % accuracy on the test data. 
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sem_tt_0.53<0.20 

sem_tt_0.56<0.14 sem_U_I0.5fk0l.13 

\ I 
sem_AG_0.64<0.21 sem_tt_0.53<0.2 

Figure 8.19: Decision tree using SEM features from first evolution excluding all features with 
absolute correlation distance less than 0.20 from sem_tL0.48. This tree achieves 97% accuracy 
on test data. 

256 



sem_AG_0.14<0.028 sem_t_0.08<0.32 

\ I 
sem_C_0.06.5<0.14 sem_ C _0.06.5<0.18 

\ 
sem_t_0.08<0.3 

Figure 8.20: Decision tree using SEM features from second evolution excluding all features with 
absolute correlation distance less than 0.20 from s...ATT _0.12. This tree achieves 93% accuracy 
on test data. 
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Figure 8.21: SEM at root node of the first tree built from the first evolution (sem_tL0.48). 

The feature in the decision tree in Figure 8.17 is sem_ATT _0.12. The SEM that 

generates it is shown in Figure 8.22. Its value is counted by the state in. the upper right. 

It counts Ts and As. It counts all the Ts in the sequence except those counted by the state 

in the lower right. The excluded Ts always follow Cs or Gs. The As that are counted 

never follow Ts. Thus, this SEM feature is excluding TAs from its count. 

The feature at the root of the decision tree in Figure 8.19 is sem_tL0.53. It is gener­

ated by the SEM in Figure 8.23. It is counted by the state in the upper right. The feature 

counts TAs and non-T bases that follow TACT* or TGT* or HST*. In this case, T* 

means some number of Ts (could be zero). 

The feature at the root of the decision tree in Figure 8.20 is sem_C_0.06. It is calcu­

lated by the SEM in Figure 8.24 using the state in the upper left. This feature counts all 

Cs except those counted by the state in the upper right. Those excluded Cs always follow 
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Figure 8.22: SEM at root node of the first tree built from the second evolution (sem_ATL0.12). 

Figure 8.23: SEM at root node of the second tree built from the first evolution (sem_tt_0.53). 
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Figure 8.24: SEM at root node of the second tree built from the second evolution (sem_C_0.06). 

Gs. So, some GCs are excluded. There are also some Gs included in the count. These 

often follow Ts, but never Cs. So, TGs are included, but not CGs. 

8.3.2.2 Best K-mer Features 

The tree built using k-mer features in Figure 8.18 achieves 91 % accuracy distinguishing 

cluster one from cluster two, while the trees in Figures 8 .16 and 8 .17 built using SEM 

features both achieve 97 % accuracy. This suggests that, although the differences between 

the two classes can be described using k-mer features, the added descriptive ability of 

SEM features yields a meaningful improvement. Note that the k-mers selected are close 

to the SEM features selected. ATT is at the root of the k-mer tree, and a SEM feature 

close to it is at the root of the tree in Figure 8.17; a feature close to IT appears at the root 

of the trees in Figures 8.16 and 8.19, and TT appears in the second level of the k-mer 

tree; and a feature close to C appears in the root of SEM2notV78 and in the third level 

260 



of the k-mer tree. 

8.3.3 Representative Sequences 

Based on the pam clustering using the best features in the second evolution, the medoids 

were selected as representative sequences of the two classes. These sequences are close 

to the same length, around 3K. The representative of class one (sequence shown in Fig­

ure 8.25) is found in an intron of TTHERM_Ol081810. This gene has a homolog in 

Paramecium (GSPATP00001695001). It is described in TGD as a "chlamydia! polymor­

phic outer membrane protein repeat containing protein." This suggests a similarity to a 

gene in the bacteria Chlamydia that is believed to provide protection to the bacteria from 

the immune system of its host. This IES has a subsequence of length 312 bp near its be­

ginning that matches subsequences in two other IESs and a subsequence of length 364 bp 

near its end that matches subsequences in three other IESs. The representative sequence 

of class two is shown in Figure 8.26. It is a distance of 1788 bp from any known genes. 

It is found on supercontig2.126: 161617 .. 165045 in the MIC genome, and.is deleted from 

between TTHERM_00527150 and TTHERM_00527160 in the MAC genome on scaffold 

8253811:387757. This sequence has a 366 bp subsequence that matches subsequences 

in 106 other IESs, a 1329 bp subsequence that matches subsequences in 143 other IESs, 

and a 534 bp subsequence that matches a subsequence in one other IES. 

Figures 8.27 and 8.28 show the bases that are counted to calculate sem_tL0.48 for 
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AATTTCTAGATAATATTGTAAAAATTTTTTAAACTTTTATTAAAAATTCTTCCAAAATAAAGCACTTCAATGTTCTAAATTATTATGGAA 
GCAGAAATAAAAAAATTTAATTCTTTAATTTGCTATAAAGTAGATTAAATAAATAAATAATTTTATTTTAAAATCAATGCCTTATGATTT 
TTAATTTGAGTATGAAATTTCAAATAGTAAATTTAATATTCATAATAATTTTTTTATTTTATGATAAAATATGCTTAATCCTTTGAAATA 
AAGTATCAATAATTTGAAAAAATAAATAACTACCAAATTATATTAGCAAATAAATAATTATATAATTTGGATTATGATGTAATGGAGCTT 
TTTAAAGTAAAGACCTTCATGCAAAAATAAAATTATTCTGATTATTAGTTAATATAGGGATCCTATTAAAATTTTAAGTTCATGAAAGGA 
AGTGATCTTCCATATTTTTAATCTTTTATCGCAATAATATTATATCAATTGATCAAGATAATAGAAGTCATATTTTTCTCAAGAAAAAAA 
GTATGTTTTCACATTTCATTCTCATCTTAATGAAAATCTTAAAAAATTAATAAATAGAAAATTCTACCCCACTATGAGAATTACAAGTAA 
ATCCTGTTGTCCTAAATCAAAATTCAGGATTTGGAAACTAAAATTTTTTTAAAAAGCTAAAATAAATAAAAAATTGAATGTATTCAATTA 
ATTTAAAATTAATAATATTATAATTCAAAATCTATTATAAATATTTTCATGCTTTAAAAAATTATTTAAAGGTAAATTAGTGATGCCTCT 
TCACTAGATTTTAGAAAGGCATTTAGTTATATTTAATTGATTTAAAATTCATAAAATTCTATTATTAAAATTTTTAAAATAGAAAAATAT 
GATTTATAAATAAACCAAAAATAGTAATGCCATATTATTAGATTTTTTTAAGCATTTTACATTACAAAAATTCAAAAATAAAATTTTTGA 
TTCAGTATACACAAAAATTGATTTTCTGGAAGTGCATATTAAAAACCATAAAAATTATAAAGCTAAAAAATTATTAATTACAACTAAATA 
CTTGCTTATTAATAAATGATATATGTTTTAGTTTAGCTTATATATACTAATGTAATATTTCAGTCAGTAATTAGAGATTAATACAAAATT 
TAGTTTATAGACACTTTAGCCATATTTTATTTATGTTTACTTAATTCATTTAAAAATTTATTAACACATATCTTTAATTGTTCAAACTTT 
AAATATAAATAAAATGCTAAAATATATTTTCTCAATTTTAGAAATTTTCTGTAAGTATTTAGGATATATGAAATTATATACATCTAATTG 
TGATTATTTATTTTTTTTCTTTTATCCATTGAATTTTAATATTACTCTGAATAATTTCAGTTATTTAGTTAGAAAATTTTGAGATATTTT 
TTTCAAAATTATAAGCTAATATATACTCATATTTTTAATTTTAATGTTCAGTATTATTCTAATTTTATTGATTGTTTTCCATAAATTTTA 
TTTTGAGATAAGTGGTCATAAAATATTAAATGAAAAAAATTTTCAAAAAAGTAAAATTTTGTATTAGTCTTCATAAAATATTATATTAGT 
TTCTATAAATTATACCCTAACCAAAGTGTAAAAATTTTCATTTGAAATAAAAAATAAATTTTTTATAAATATTTTTAAATGATATTATAT 
AAGTAAGGGATAAAGCAACTAATTCCCCACCCATGCAAAATTAAATCATATTTTTAAAATTTATATTAAATTGGTTATTATTATCTACGA 
AATAAATTTTATTTTATTAATTTTAAAATTCAAAAAAAAGGTTTATAAAAATATTTTTAAAAATAATATTTTTTTTATTTAGTTAATATA 
AGATAAAAACCAATAATAAATACGATTTAAAAAAATATAAATAGCATGATTTTAACATTTTAAATAATAAATAATCAATCAATGAATTAG 
TTTAAAAGCCTCAATCATAAATAAATTTGACATTTATTGAATGATAAAAAAATATTTTTAATAAAAAAATAAGAATAGTTTTTTAAACTA 
TAATCCTTATCTAACAATAATTATCATATTAATAAATATATAAAATACCATAAATCCATCATCGTATATTAGAGCTCGATTATATTAAAA 
CCAAAAATTTATTTTGTTTTTATTTAGATAACATTAATACCCTTTTTAAAAAATACTTATAAAATTCCATAACAAATTTATAAAATTTGA 
AATAAATAAATAATTTTAAATCTTATATTGTGATTTAAATTATTTTTTAATTATATATTTTCAATTTAAAATAATTTAACAAAAAACTTC 
ATTCATTATTTAATATTAAGAAAGAAGAGAAAGGGAAGAGTTAGTGTTAATGTATGAGGATTTAATATACCTTAAAAGAAAACTATGATT 
AATTAAATTTTTTGAATAAATTGAATATACTTATACTCCTCACATTTTTTACAAGCCCTACCATTTATGTTTAACGAATAATATATGTAG 
AAATAAAAATAAATTATGGATTAAAGATATTCTGGAATTATTCTATGAATCAAAAAAATAAAATAGGGAGCTGGCCTTTTTTTGATTGAT 
TAAGAATAAAAATTTAGAGATTAAATTAAAAGGAAGGTATTTGTTTCTTTTAAAATTTTGCAAAATATTAAAATTATTTGATATTACATT 
CATTTTCAGCTAGAAAATACAATGAATTTGAAATTTTTATCAAAATTTGAAAATAAATAAATACCTTCCTTTTAATTTAATTTCTTTATT 
TTTATATTTTTAATTAATAGAAAAATATCAGATGTTTTTAATGTATTATTGTATAGAAAAATTATTGGAAAAAATGAATTGAAAAATATC 
TACCTTCAGAAAATAACTTAAAATATTTTCTGCAAGGAAATTAATTTGGTAGAAAAAAAACTCAAAAATAAT 

Figure 8.25: Representative sequence for Class 1. This sequence is 2952 bp long. 

the two representative sequences. This feature has a negative correlation with the k-mer 

feature TT. As expected, no TTs are counted. It is smaller for sequences in class one than 

for those in class two. Note that among the bases counted are runs of Cs and instances 

of the dinucleotides CC and GC. 

Figures 8.29 and 8.30 show the bases counted to calculate the feature s_ATT _0.12, 

which was determined to be the most effective feature resulting from the second evolution 

of SEMs. This feature has a small absolute correlation distance from the k-mer feature 

262 



ATT, and, as expected, many ATTs are counted in the sequences. Also counted are many 

runs of Ts and instances of the dinucleotide AT. Notably absent is the dinucleotide TA. 

This feature is larger in class one than in class two. 

Figures 8.31 and 8.32 show the bases counted by the SEM feature sem_tL0.53. This 

feature, like most from the first SEM evolution, has a negative correlation with the k­

mer feature TT. Thus, there are no TTs included in its count. The absolute correlation 

distance from sem_tt_0.48 is 0.23, meaning that it is not all that different, despite the fact 

that it is mostly counting As rather than Cs. Its value is lower for class one than for class 

two. 

Figures 8.33 and 8.34 show the bases counted in the representative sequences for 

SEM feature sem_C_0.06. This feature is highly correlated with C-content. However, 

note that many Gs are also counted. Its value is lower for class one than for class two. It 

has absolute correlation distance of 0.21 from s__ATT _0.12. 

8.3.4 Conclusion 

This chapter demonstrated how bioinfonnatic analysis and, in particular, bioinfonnatic 

analysis of SEM features can be used. to provide information for biologists which can in­

spire them to develop hypotheses that can be tested experimentally. There is much more 

work to be done describing the Tetrahymena genome bioinforrnatically. This work is 

best done collaboratively with biologists. Several directions suggest themselves immedi-
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ately, however. In this work, two types of features have been used to cluster and describe 

different types of IESs. It could be valuable to explore other types of features. In partic­

ular, features that involve finding motifs are likely to be useful. The IES classes created 

using unsupervised learning were based on features evolved with a somewhat arbitrarily 

chosen subset of IESs. Repeating the process on different sets of IESs, for example those 

with small edit distance to transposase, Tlr, or PiggyBac genes or maybe even randomly 

chosen sets, could lead to different insights. Also, it is possible that IESs have an orien­

tation. Transposons certainly do. If that is the case, then evolution is being performed 

on sequences with both orientations. Since both k-mer and SEM features are sensitive to 

orientation, this affects the quality of the features. Finding a way to determine the correct 

orientation could significantly enhance the results. 

Once sets of representative sequences have been found for different types of IESs, 

consensus sequences can be built for them. Previous researchers have had no luck find­

ing transposon sequences with homology to IESs [59]. This could be because the trans­

posons that inserted into Tetrahymena are not included in Repbase (the database of trans­

poson sequences), perhaps because they are unique to Tetrahymena. However, it could 

also be because the sequences have been mutated beyond recognition. In this case, it 

might be possible to find a related sequence in another organism based on a BLAST 

search with the consensus sequences. 
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TTTGCAGAAAATCTTATTTTTCGATTTAATAAAAAATTATTTCCTAATTTTGATCGAAAATTATTTTTTTTACATTTTATCCAAAAACGA 
ATAAATTTTTTTTAAACTTTTTCGAAAACAAACATTCATTCTTAGCTCAAATAGAAGGTTTTGCTGTTCATTTATATTTGAAAATAAATA 
TGAAGTTAAACCTTCTTTTTGTTTCTATTTTTTCAATTCGAATACTTTAATTAAATTTTAAGAATTTACAGCAAAAATTCAATTTTTTGC 
ACCAAAAATATAAATACTCTGCTTGATTTTTAAGTAAAGGTATATCTGTCAGATAAATTCTGATTTAAAAATGAAAAAAAAATACATAAA 
CTGCTATTTAGTCATTTATATATTAATATTTTTACAAACTCTGCTGATTATATGTATCCAATGTGCGGAATTTTAAAACCAGTAACTGCT 
ATATTAAAAAATTTTCAAAAAAATGATTGTCTTCTTTTTATGAAAGTAGCATTATTCGATTTTATTATAATTTAAAATTTTTTTAATCTT 
TAAAATATTTTTAAATATATTTTATACTACTTATAATTAAAAATATCTGGTCAAATTCATAGATTTCGACACCATAACCTAATTATTGTT 
TTTTGACATCTGTTCCTAATTCATTTATTTAGACACTGCCCCTCTATATTAATTTTTGACACTAAGACTTAAATTATAGTTATTAACACT 
ATATCCAATTATTTAATATCGATACCAGCATCAAAGAGCATGTATCAACACTAATTTCGAATTTTAAAATCCTTCTAATTTTGATGTTTA 
TAAGGTTTATCTGAAAGAAATATTTAAATTAAAATAATGAAATAAATTATGAAATTAATTAAAAAAGTATATCTAAAGACAATAGACCCT 
ATTTTTAATAATACCAAACTCTATTTATCATATTTAATAAAGCTATTTATTTAATTGCTTCTTTCTTAAATAAATATTGCAACTATTATT 
TAAATTATTAATATAAATCATTTATAATTATCTAAACCAAGAAAACATTTATAGAGTGTTATAAAATTTTACGTATAACGATTTGCACTG 
ATGAATGGAAGGGTTATAGTAATCTAAAAAAATTATAATATCAACACCACCCAATCATAAAAAAAATTTTGTTGCACCATCAACTAACTT 
AGATTAAAAAAAAAAAGAAAGAATTATACTAAATCAAATAGAAATAAACCATAAGAATAAAAAAAATAGTTTAACCTATTAAAAAAAACA 
AAAATTATTTAATGGTCATATATTACATACCCAAGGAATAGAAAATAAATGGAGTCATTTTAAAAATAGTCTCCATCAGCTAAAGGGGTA 
AAGAACAGACTTCATTATAGATATTTTAGTTTCATTATTCCTTTTAAGTTTTAGGAATGAAATTGAATAAAAAAGCTTTATAAGCTTAAA 
ATTAATATATTAAATAAAAAATAAATAGTAACTTGGAAAATGATGATGAACAGTAAATTTAAGAAAATAAGCAAATTGAAGATTAAGAAG 
AAGAAAAAGATCATACTCGTATGAACTCCAAGCTTCTAATCTAATAAATACAAAAATATTCTAGTAAGGATTATATGGCTGTACTGTTAT 
AGATAACTTAAACAGGCATATAATACTAAGAATCGTACAAAATTATTAAAAATCATAATATATAGCTGTTCCTACATTTGAAATATCACG 
GATCATGATATCATGAATTGTGATAATCTCAAATAGTTTTTATATTACTAATGATTTTTTTTTTTTTCTAAATCTTAATTATTTTCTTTA 
TAAAGTGAAATGCCTATTTAATTTACAAAAGGCGAAATGTAATAJACCTTAATAACATAATAAATACAGCTAAATAAGCTTAAAACAGCT 
TTATTTTTGAGTTTTTAGAAAGCTTTAAATTCGCAAAATGTAAAATTTGAAATAATAGATACCGTATATTCTTATAATATGTCATTTTTT 
TGAAAAAAATAAATTTTGAAAATTTTTTCGAACTCAAAAATTAAATTTTTTTAAAGCTTTTTCGAAAACAAACATTCTTAGGTAAAATAG 
AAGGTTTTGCAGTTCATATATATTTGAATGAAATATTAACTTAAACCTTCTTTTTCTTTCTATTTTTTCAATTCGAATATTTTAATTAAA 
TTTTAAGAATTTACAGCATAAATTAAAATGCTCTGATTGATTTTTAAGTAAAGGTATATCTGATAAATTCTGATTTAAAAAAGAAAAAAA 
AATACATAAACTGTCATTTAGTCATTTATATATTAATATTTTTACAAACTCCGCTGATTACTTACATATATCCAATCAGCAGAATTTTAA 
AACCAGGAACGGCTATACTTTCAAAAGATGAAGCCTCATTTTTAGAATAACTTTATAATAGTTTATACTTTGAATCATCTAAAGGTAAAC 
ACCATTACATGAAAAATGGAGTACAATAAAGCTCCGCTCTCTCCAATTTTATTTAATATCTATATGAATGAAATAATTCTAAAAATTAAA 
TAAAAATTTGTCAATGAACTATTTGAATTAATTTTTAATAATCTAAAATCATAAATTAAGATTTTAGGTAAAAGATTACCAAAAAATATT 
TTATTTAAATTAAAACTTTGAACTAAGTAACTCAAACTTACAATTACTTAGGAATAAACATAAACAGTAGCAGAAACTTAATGCCTCATT 
TTAAATTTTGAAAATAAAAAATAAACTTCCTCTAAAATAGTACTCTATTTTATTTAAAACATTTGCAAATTTATAATAGATTTCTCTTTT 
GTATTATATACATTAGCCTAATGTATTGCATGCCATTGCTAAAGGCACTTAGAAAAACCACCAAATCCAAATTTTAAACTTACTTTCCAC 
AAAGGAAGCTTTAAAAAACTCATATGTAAATGCCTTCTAATTCTTCTATTAGATATAATTCTGTTTTCACAAGTAGATAAATGGAAATAA 
AAGACTGACTTCTAAATTATATACATTTAGAAATTAATAAAACATATTGTTATTTTTGTTTGGTTATTTTACAATATTTATGTTCTTGAA 
ATTTCTTTACCCCATACAAATTTATACGTTTAGGTTATTAATAAATTTACATTAACTAAATTTTCACCTAATTATATTACTTCGACACTA 
AAGTTAATTTATGATTAGTCAACAACACTAAATTTTGTTGTGTCAATAACTATTATTTTAGCCATAGTGCCGAAAATTAATAATAGCGGG 
ATAGTGTCAAAATATATAAATTGGGAACAGATGTCGAAAACCATTAATAAGGTTCTGGTGATGAAATCTATGAAGTTGACCAAATATCTA 
TATTTAATATTTATTTTTGCCTTATTATTCGGTATATCACCTAGCTTTTTTTAAGTTTGCTGAATTTGAATTTTTTAAATTTTAAACAAA 
CCAAATATA 

Figure 8.26: Representative sequence for Class 2. This sequence is 3429 bp long. 
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•••••••• G •••••••••••••••••••••••• C •••••••••••••••••• C •••••••• GC ••••••••••••••••••••••••••• 

GC •••••••••••••••••••••••••••••• c-...... G •••••••••••••••••••••••••••••••••• C •••• CC ••••••••• 

• • • • • • • • • G •••••••••••••••• G •••••••••••••••••••••••••••••••••••••••••••••• C ••••• CC ••••••••. 

• • G •••••••••••••••••••••••••• C •• CC •••••••••••• C ••••••••••••••••••••••••••••••••••••• G •• C •• 

• • • • • • G •••• G •• C •••••• C •••••••••••••••••••••••••••••••••• G •••• CC •••••••••••••• G ••••••••• G •• 

• G •••• C ••• C ••••••••••• C ••••••• GC ••••••••••••••••••••• C ••••••••• G •••• C •••••••••• C •••••••••• 

G •••••••••• C •••••••••• C .••••.•••••••• C •••••••••••••••••• G ••••••••• CCCC ••••••• G ••••• C •••••• 

• • CC ••••••• C ••••• C •••••••• G •••••••••• C ••••••••••••••••• GC ••••••••••••••••••••••••••••••••• 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • C ••••••••••••••••••• C •••••••••••••••••• G •••••••••••••• CC ••• 

• • • C ••••••••••••• G.C ••••••••••••••••.•••••••••••••••••••••••••••••••••••••••••••• G •••••••• 

• • • • • • • • • • • • • • CC ••••.•• G ••••• CC •••••••••••••••••••• GC •••••• C •••• C ••••••••••••••••••••••••• 

• • • • G •••• C •••••.•.•.•••••••• G ••••• C •••••••••• CC •••••••••••••• GC ••••••••••••••••• C •• C •••••• 

C ••• C ••••••••••••••••••••••••••••••• C ••••••••• C ••••••••••••••• G ••• G •••••••• G ••••••• C •••••• 

. . . . . . . . . . . c ....... cc .................. c ........................ c ...... c .............. c .. . 
• • • • • • • • • • . • • • . • C .••.••••....••• C .••.•••.•••••••••.••• G .••••.. G ••••..•••••••••.• C ...••••.. 
• • . • • • • . . . . • • . • • . . • • . • • . . . C ••••••••••.•.•••. C ••.••.•.•.•..• G .•••.•••••••.••••••••• G .•••••• 

• • • • • • • • • • • • • • GC ••••••••• C •••••••••••••••••••••••• G •••••••••••••••••••••••••••• C •••••••••• 

• • • • • • G •••• G •••• C ••••••••••••••••••••••••••••••••• G ••••••••••••••••• C ••••••••••••••••••••• 

• • • • • • • • • • • • • • CCC ••• CC ••• G •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

• • G ••• G ••••••• GC •• C •••••• CCC •• CC ••• C •••••••••• C •••••••••••••••••••••••••••••••••••••••• C •• 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • G •••••••••••••••••••••••••••••••••••••••••••••••••• 

• G ••••••• CC ••••••••••• C •••••••••••••••••••• GC •••••••••• C ••••••••••••••••••• C •••••••••••••• 

• • • • • • • GCC •••.• C •••••••••••••• C ••••••••••••••••••••••••••••••••••••••••• G •••••••••••••• C •• 

• • • • CC •••••••• C .••••••••••••••••••••••••••••••• CC •••••• CC ••••• C •••••••••• GC •• G •••••••••••• 

CC ••••••••••••••••••••••••••••• C ••••••• CCC ••••••••••••• C ••••••••••• C •••• C ••••••••••••••••• 

. . . . . . . . . . . . . . . . . . . . . c ......................................................... c ...... c .. . 
• • • • • • • • • • • • • • • • -••• G ••• G •••• G ••• G •••• G ••••••••••••••••••• G ••••••••••• CC •••••• G •••• C ••••••• 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • C ••••• C •• C ••• C •••••••• C ••• CCC •• CC •••••••••••• C •••••••••••••• G 

••••••••••••••••••••••••• G •••••••• G ••••••••••••••• C •••••••••••••• G ••• GC ••• CC •••••••••••••• 

• • • G •••••••••••••• G •••••••••••• G ••• G •••••••••••••••••••••••• C ••••••••••••••••••••••••• C ••• 

• • • • • • • • GC ••••••••• C ••••••••••••••••••••••••••••••••••••••••••• CC ••• C ••••••••••••••••••••• 

• • • • • • • • • • • • • • •.• • • • G •••••••• C •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• C 
•• CC •••• G ••••••• C ••••••••••••••• C ••• G •••••••••••••• G •••••••• C ••••••••••• 

Figure 8.27: Bases counted for feature sem_tL0.48 for sequence representative of Class 1. These 
represent 8.0% of the sequence. 
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•••• C ••••••• C ••••••••• G •••••••••••••••••••• C •••••••••• C ••••••••••••••••• C •••••••• C ••••• C •• 

• • . • • • • . • • • • • • • • C •••••• G •••• C ••• C •••••••••••• C ••••••• G ••• G ••••• C •••••••••••••••••••••••••• 

• • • • G ••••• CC ••••••••••••••••••••••••••• G •••• C •••••••••••••••• G •••••• C •• C ••••••••••••••••• C 
•• C •..•..••••••• C •••• C ••.•••••••• G •••• G •••••••••• C •••••••••••••••••••••••••••••••••• C ••••• 

c .. c ........ c ............. · ........ c ... c .... c .............. c ...... c ............ cc ..... c .. c . 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • G ••• C ••••••• G ••••••••••••••••••••••••••••• C •• 

• • • • • • . . • • • • • • • • • • • • • • • • • • C •• C •••••••••••••••• C •••• C ••••••••• G ••••• G ••• CC •••• CC ••••••••••• 

• • • • • • C •••••••• C ••••••••••••••••• C •••• CCCC ••••••••••••••••• C ••••• G •••••••••••.•••••••• C ••• 
• • • • CC •••••••.••••• C •••• CC •• C •••••• G •• C ••••••••• C ••••••••• G ••••••••••• CC •••••••••••••••••• 

• • • G •••••••••.•• G •••••••.••••••••••••••••••••••••••••••••••••••••• G •••••••••• G •••••• G •• CC • 
• • • • • • • • • • • • • CC ••• C •••••••••••••••••••••• GC •••••••••••.•• C ••••••••••••••••••••• C •• C ••••••• 

• • • • • . . . . • • • . • • . • . C .••••...••••.•••• CC .•••••• C ••••••••• G ••••••••••••••• C •••••• C •••••• C •••• 

• • • • • • • G ••• G ••....••••• C ••••••••••••••••• C •• C •• C •• CC •••••••••••••••••••••• C •• C ••••• C ••• C •• 

• • • • • • . . • • • • • • • • G ••• G ••••••• C ••••• C ••••• G ••••••• CC •••• G ••••••••••••• G ••••• CC ••••••••.••• C • 
• • • • • • • • • • • • • • G •••••••••• C ••• CCC ••• G ••••••••••••••• G •••••••••••••••• G ••• CC •••• GC •••• G •• G •• 
• • G •• C ••• C •••••••••••••••••••••••••••••• C •••••• G •.•••• G ••••••••••••••••••• GC ••••••• GC ••••• 

• • • • • • • • • • • • • • • • • • • • • • • • • • • G ••• C •••••••••••••••••• C ••••••••••• G ••••••• GC •••••••• G ••••• G ••• 
• • G ••••• G •••••• C •• G •••••• C •• C ••• C ••••••• C ••••••••• C •••••••••••• G ••• G •••••••••• C •••• C •••••• 

• • • • • • C ••••• C ••• C •••••••• C ••• G •••• G •• C ••••••••••••••• C ••••••.••• GC ••••• C •• C ••••••••••• C •• G 
••• C ••••••• C ••••••••••••••• C ••••••• G ••••••••••• C ••••••••••••••••••••••••• C •••••••••••••••• 

• • • • G ••••••• CC ••••••••••• C •••• G. C ••••••••••••• CC ••••••• C •••••••••• C •• C ••••••• GC •••••• C •• C • 
• • • • • • • • • • G •••••••••• GC ••••••••• GC ••••••••••••••••••••••• G ••• CC ••••••••••••••••••• C ••••••• 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • G •• C •••••••••••••••••••••• GC •••••• G •••• C ••• C •••••••• G ••••••• G 

••• G •••.• C •••••••••••••••••.••••••••••• C ••••• CC ••••••••••••••••••••••••••• G ••••••••••••••• 
• • • • • • G .••••• C •• C ••••••••••••• C •••••••••••••••• G •••• G ••••••••••••••••••.•••••••••• G ••••••• 
• • • • C ••••• C ••••••••••• C ••••••••••••••••••••• C ••• C •• C. C •••••• C ••• C ••••••• C ••••• GC •••••••••• 

• • CC ••••• C •• C •••• C •••••••• G ••••• GCC ••••••••••••••• C ••••••••• G •••••• C ••••••• C ••••••• G ••••• C 
•• C •••• C •••••••••• G •••• C •••••• GC •• C. C ••• C •• C ••••••••••••••• C •••••••••••••••••••••••••••••• 

• • • • • • • • • • • • • • • • • • C ••••••••••••••••••••••• C •••••• C ••••••••• G ••••••• G ••••• G •••• CC •••••••••• 

• • • • • • • . • • • • • • • C •••••• C ••• G ••• C ••••• C ••• C ••••• C •••• G •••••• C ••••• C ••••• C ••••• C •••••• CC ••••• 

• • • • • • • . • • • • • • • • • • • • • • • • • C ••• C ••••••••• G •• C •••••••••••••••• C ••••• C •••••••••••• G •••••• C •••• 

• • • • • • • • • • C ••••• CC •••••••••• C ••• CC •••• C •••• G. C ••••••••••• CC •• C •••• CC •••••••••• C ••• C •••• C •• 
• • • G ••• GC ••••••••• C ••••••••••••• CC ••••••••••••••••••••••••••••••••••• C ••••• G ••••••• G •••••• 

• • G ••••• C •••••••••••••• C ...•••••••••.••..• C •••••.•••.••••••..•••••••••• C •••••••••••••••••• 
• • • • • • • • • CCCC ••• C ••••••••• C •••••• G ••••••••••••••• C ••••• C •••••••••• CC ••••••••••• C ••• G ••• C •• 

• • G •••••••••••••••• C •• C •• C ••••••••••••••••••••••• C ••••••••••• CC •••••• CC •••••••••••••• GC •• G 

••••••• C •••••••••••••••• G •• C •••••• C ••••• CC •••••••• G •••••• G ••••••••• C •••••• G •••• CC •••••• C •• 
• • • • • • • • • • • • • • • • • • • CC ••••••••• G •••••••• CC ••• C ••••••••• G •••• C •••••••••••••••••••••••••• C ••• 

cc ...... . 

Figure 8.28: Bases counted for feature sem_tL0.48 for sequence representative of Class 2. These 
represent 11.3% of the sequence. 
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A.TTT.T ... T.AT.TT.T.A.A.TTTTTT.A ... TTT.TT.A.A.TT.TT .... A.T.A ..... TT.A.T.TT.T.A.TT.TT.T ... A 
.. A .. A.T.A.A.A.TTT.ATT.TTT.ATTT .. T.T.A ...... TT.A.T.A.T.A.T.ATTTT.TTTT.A.AT.A.T .... T.T .. TTT 
TT.ATTT ..... T .. A.TTT.A.AT .... A.TTT.AT.TT.AT.AT.ATTTTTTT.TTTT.T .. T.A.AT.T .. TT.AT ... TT .. A.T. 
A .... T.A.T.ATTT .. A.A.AT.A.T.A.T ..... ATT.T.TT ..... AT.A.T.ATT.T.T.ATTT ... TT.T .. T.T.AT ...... T 
TTT.A .... A ...... T.AT .. A.A.AT.A.ATT.TT.T .. TT.TT ... T.AT.T ..... T .... TT.A.ATTTT.A.TT.AT .. A ... A 
..... T.TT ... T.TTTTT.AT.TTTT.T ..... T.AT.TT.T.T.A.TT .. T.A ... T.AT ....... AT.TTTTT.T.A .... A.A.A 
.T.T.TTTT.A.ATTT.ATT.T.AT.TT.AT .. A.AT.TT.A.A.ATT.AT.A.T .... A.TT.T ....... T.T ..... TT ....... A 
.T .... TT.T .... A.T.A.A.TT.A ... TTT ... A .... A.ATTTTTTT.A.A ..... A.AT.A.T.A.A.ATT .. AT.T.TT.A.TT. 
ATTT.A.ATT.AT.AT.TT.T.ATT.A.A.T.T.TT.T.A.T.TTTT.AT .. TTT.A.A.ATT.TTT.A ... T.A.TT ..... T ..... T 
T.A.T ... TTTT .... A ... ATTT ... T.T.TTT.ATT .. TTT.A.ATT.AT.A.ATT.T.TT.TT.A.ATTTTT.A.AT .... A.AT.T 
.. TTT.T.A.T.A ..... A.AT .... AT .... T.TT.TT ... TTTTTTT.A .. ATTTT ... TT .... A.ATT.A.A.AT.A.ATTTTT .. 
TT.A.T.T .... A.A.ATT .. TTTT.T ... A.T .. AT.TT.A.A .... T.A.A.TT.T.A ..... A.A.ATT.TT.ATT ....... A.T . 
. . T .. TT.TT.AT.A.T .. T.T.T.TTTT ... TT .... T.T.T.T .... AT.T.AT.TTT.A.T.A.T.ATT ..... TT.AT .... A.TT 
T ... TT.T .... A.TTT ..... T.TTTT.TTT.T.TTT ... T.ATT.ATTT.A.A.TTT.TT.A.A.AT.T.TTT.ATT.TT.A.A.TTT 
.A.T.T.A.T.A.AT .. T.A.AT.T.TTTT.T.A.TTTT .... ATTTT.T.T.A.T.TTT ... AT.T.T .. A.TT.T.T ... T.T.ATT. 
T .. TT.TTT.TTTTTTTT.TTTT.T ... TT .. ATTTT.AT.TT .... T .. AT.ATTT.A.TT.TTT ... T .... A.TTTT .... T.TTTT 
TTT.A.A.TT.T.A .. T.AT.T.T .... AT.TTTTT.ATTTT.AT.TT.A.T.TT.TT.T.ATTTT.TT .. TT.TTTT ... T.A.TTTT. 
TTTT .... T.A.T .. T.AT.A.AT.TT.A.T .. A.A.A.TTTT.A.A.A .... A.ATTTT.T.TT .... TT.AT.A.AT.TT.T.TT ... 
TT.T.T.A.TT.T ...... A .... A.T.T.A.A.TTTT.ATTT .. A.T.A.A.AT.A.TTTTTT.T.A.T.TTTTT.A.T .. T.TT.T.T 
.A.T.A .... T.A ........ ATT ......... T .. A.A.TT.A.T.AT.TTTTT.A.ATTT.T.TT.A.TT .. TT.TT.TT.T.T ... A 
.AT.A.TTTT.TTTT.TT.ATTTT.A.ATT.A.A.A.A ... TTT.T.A.A.T.TTTTT.A.A.T.AT.TTTTTTTT.TTT ... T.AT.T. 
A .. T.A.A ..... T.AT.A.T ... ATTT.A.A.A.T.T.A.T .... T .. TTTT.A.ATTTT.A.T.AT.A.T.AT.A.T.A.T .. ATT .. 
. TT.A.A ..... A.T.AT.A.T.A.TTT .... TTT.TT .. AT .. T.A.A.A.T.TTTTT.AT.A.A.A.T.A .. AT ... TTTTT.A .... 
T.AT ... T.T.T.A.A.T.ATT.T.AT.TT.AT.A.T.T.T.A.AT .... T.A.T ... T.AT .... T.TT ..... T ... TT.T.TT.A.A 
.... A.ATTT.TTTT.TTTTT.TTT ... T.A.ATT.AT ..... TTTT.A.A.AT ... T.T.A.ATT ... T.A.A.ATTT.T.A.ATTT .. 
A.T.A.T.A.T.ATTTT.A.T.TT.T.TT.T .. TTT.A.TT.TTTTTT.ATT.T.T.TTTT.A.TTT.A.AT.ATTT.A.A.A.A ... T. 
ATT.ATT.TTT.AT.TT.A .. A ........ A ......... TT .... TT.AT.T.T .... ATTT.AT.T .... T.A.A .. A.A.T.T .. TT 
.ATT.A.TTTTTT .. AT.A.TT .. AT.T ... T.T ....... A.ATTTTTT ............. TTT.T.TTT.A .... T.AT.T.T.T .. 
.. AT.A.A.T.A.TT.T ... TT.A ... T.TT.T ... ATT.TT.T.T .. AT.A.A.A.AT.A.AT ....... T ..... TTTTTT .. TT .. T 
T.A .. AT.A.A.TTT ..... TT.A.TT.A.A ... A .. T.TTT.TTT.TTTT.A.ATTTT .. A.A.T.TT.A.ATT.TTT .. T.TT ... TT 
.ATTTT.A .. T .... A.T .... T .. ATTT .. A.TTTTT.T.A.A.TTT .. A.AT.A.T.A.T .... T ... TTT.ATTT.ATTT.TTT.TT 
TTT.T.TTTTT.ATT.AT .... A.AT.T.A .. T.TTTTT.AT.T.TT.TT.T.T .... A.ATT.TT ... A.A.AT .. ATT .. A.A.T.T. 
T .... T.A .. A.AT.A.TT.A.AT.TTTT.T .. A ... A.ATT.ATTT .. T .... A.A.A .... A.A.AT.AT 

Figure 8.29: Bases counted for feature s_ATT _0.12 for sequence representative of Class 1. These 
represent 53.1 % of the sequence. 
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TTT .. A .. A.AT.TT.TTTTT ... TTT.AT.A.A.ATT.TTT .... ATTTT .. T .... A.TT.TTTTTTTT ... TTTT.T .... A.A ... 
. T.A.TTTTTTTT.A ... TTTT .... A .... A.ATT.ATT.TT ..... A.AT ...... TTTT .. T.TT.ATTT.T.TTT .. A.AT.A.T. 
T .. A.TT.A .... T.TTTTT.TTT.T.TTTTTT.A.TT .... T ... TT.ATT.A.TTTT.A .. ATTT ..... A.A.ATT.A.TTTTTT .. 
A .... A.AT.T.A.T .... T .. TT .. TTTTT.A.T.A ... T.T.T.T.T.A .. T.A.TT.T .. TTT.A.A.T .. A.A.A.A.T ... T.A . 
.... T.TTT .... ATTT.T.T.TT.AT.TTTTT .... A.T.T .. T .. TT.T.T.T.T .... T.T .... A.TTTT.A.A .... T.A.T .. T 
.T.TT.A.A.ATTTT.A.A.A.AT .. TT.T.TT.TTTTT.T .. A ....... TT.TT ... TTTT.TT.T.ATTT.A.ATTTTTTT.AT.TT 
T.A.AT.TTTTT.A.T.T.TTTT.T ...... T.T.ATT.A.A.T.T.T .. T.A.ATT.AT ... TTT .... A ... T.A .... ATT.TT.TT 
TTTT .... T.T.TT .... ATT.ATTT.TTT .... A.T ....... T.T.TT.ATTTTT ..... T.A .... T.A.TT.T ... T.TT.A.A.T 
.T.T .... TT.TTT.AT.T ... T ...... AT.A.A ..... T.T.T.A .... T.ATTT .... TTTT.A.AT ... T.T.ATTTT .. T.TTT. 
T.A .. TTT.T.T .. A .... AT.TTT.A.TT.A.AT.AT .. A.T.A.TT.T .. A.TT.ATT.A.A.A.T.T.T.T.A .... A.T ...... . 
. TTTTT.AT.AT ..... A.T.T.TTT.T.AT.TTT.AT.A ..... TTT.TTT.ATT .. TT.TTT.TT.A.T.A.T.TT .. A .... TT.TT 
T.A.TT.TT.AT.T.A.T.ATTT.T.ATT.T.T.A ........ A ... TTT.T .... T.TT.T.A.ATTTT ... T.T.A ... TTT .. A.T . 
. T .. AT ... A ... TT.T .... AT.T.A.A.A.TT.T.AT.T.A ........... T.AT.A.A.A.ATTTT.TT .. A ... T.A .... A.TT 
... TT.A.A.A.A.A .... A .. ATT.T .... A.T.A.AT .... AT.A .... T.A .. AT.A.A.A.AT ... TT.A .... TT.A.A.A.A.A 
.A.ATT.TTT.AT .. T.AT.T.TT ... T ........ A.T .... A.T.A.T ...... ATTTT.A.A.T .... T ... T.A .. T.A ..... T. 
A .......... T.ATT.T ... T.TTTT ... TT.ATT.TT ... TTT.A.TTTT ... A.T .. A.TT .. AT.A.A.A .. TTT.T.A .. TT.A. 
ATT.AT.T.TT.A.T.A.A.AT.A.T .... A.TT ... A.AT .. T .. T .. A.A.T.A.TTT.A .. A.AT.A .. A.ATT .. A .. TT.A .. A . 
. A .. A.A ... T.AT ....... T .. A.T ....... T.T.AT.T.AT.A.T .... A.AT.TT.T .... A ... TT.T.T ... T.T .... TT.T 
... T.A.TT.A ...... AT.T.AT .... A .. AT ....... A.TT.TT.A.A.T.AT.AT.T.T ..... TT ...... TTT .. A.T.T.A .. 
. AT.AT .. T.T.AT .. ATT.T .. T.AT.T.A.AT ... TTTT.T.TT .... AT .. TTTTTTTTTTTTT.T.A.T.TT.ATT.TTTT.TTT. 
T.A ..... A.T ..... TTT.ATTT .... A ..... A.AT.T.AT.T .... T.AT.A.AT.AT.A.T ..... T.A.T.A .. TT.A.A.A .. T 
TT.TTTTT .... TTTT .... A .. TTT.A.TT ..... A.T.T.A.ATTT .. A.T.AT ... T .... T.T.TT.TT.T.AT.T.T.ATTTTTT 
T .. A.A.A.T.A.TTTT .. A.ATTTTTT ....... A.A.ATT.A.TTTTTTT.A .... TTTT .... A .... A.ATT.TT ... T.A.AT .. 
. . .. TTTT .. A.TT.AT.T.T.TTT .. AT .. A.T.TT.A.TT.A .... T.TTTTT.TTT.T.TTTTTT.A.TT .... T.TTTT.ATT.A. 
TTTT.A .. ATTT ..... AT.A.TT.A.AT .. T.T .. TT .. TTTTT.A.T.A ... T.T.T.T .. T.A.TT.T .. TTT.A.A.A .. A.A.A. 
A.T ... T.A .... T.ATTT .... ATTT.T.T.TT.AT.TTTTT .... A.T ....... TT ... T ... T.T.T .... T.A .. A .. ATTTT.A 
.A ...... A ...... T ... TT.A.A ... T .. A ..... ATTTTT .... T.A.TTT.T.AT ... TT.T ... TT .. AT.AT.T.A ... T.A .. 
. . . . TT ... T .. A.A. T ......... T .A .......... T. T .... TTTT. TTT .AT. T. T. T. T .. AT .. A. T .ATT. T .A.A. TT .A. 
T.A.A.TTT.T.A.T .. A.T.TTT .. ATT.ATTTTT.AT.AT.T.A.AT.AT.A.TT.A .. TTTT ... T.A.A .. TT ..... A.A.T.TT 
TT. TTT .A. TT .A.A. TTT .. A. T .A. T .A. T .A.A. TT .... TT ... T ... A. T .A ... T .A .... T ...... A ... T .AT ..... ATT 
TT.A.TTTT .. A.AT.A.A.AT.A ... T .... T.A.AT ....... T.TTTT.TTT.A.A.ATTT .. A.ATTT.T.AT ... TTT.T.TTTT 
. T. TT. T. T ... TT ...... AT. T. TT .. AT .... TT .. T.A ...... TT .... A.A ....... AT .... ATTTT .A ... T ... TT ... . 
A.A ... A .. TTT.A.A.A.T.AT.T.T.A.T .... T.T.ATT.TT.T.TT ... T.T.ATT.T.TTTT.A.A ...... T.A.T ... A.T.A 
.A ........ T.T.A.TT.T.T ... TTT .... ATT.AT.A.A.AT.TT.TT.TTTTT.TTT .. TT.TTTT .... T.TTT.T.TT.TT .. A. 
TTT.TTT ...... T .... ATTT.T ... TTT ... TT.TT.AT.A.TTT ... TT.A.T.A.TTTT.A .... ATT.T.TT ... T .... A.T.A 
... T.ATTT.T .. TT .... A ....... T.A.TTTT.TT.T.T.A.T.A.T.TT.TTTT ..... T ....... A.A.TT.AT.AT ...... A 
T .... T.A.A.T.T.T.A.TT .... A.A .. T.T .... A .... TT.AT.A .. TT.T .. T .. T .. A.T.T.T .. A.TT ...... AT.T.T.T 
.TTT.AT.TTT.TTTTT .... T.TT.TT ... T.T.T.A ....... TTTTTT.A.TTT .. T .. ATTT .. ATTTTTT.A.TTTT.A .... A . 
. . . AT. T. 

Figure 8.30: Bases counted for feature s.ATT _0.12 for sequence representative of Class 2. These 
represent 48.9% of the sequence. 
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A •••••• A.A ••.. A •••• A ••..••••.• A .•••••• A •. A .•••••••.•• A .... A ••• C •... C •••••• C •••••• A .• A •. G •• 

. C •. A ..• A ••••...•. A •••.••• A •.••• C ••• A .•.• A.A •• A .•• A .•. A •.• A ...•• A .••. A ••••..••. C ••• A .• A ••. 

. . A •.•.. A .• A .. A ••.•....•. A .. A •••.• A .. A •..•. A •. A ..•..... A .... A .• A •.•.•• A •• C •• A ••....• G .•.. A 

•••• A •• A .. A ••••• A •..••• A ••• A ••. A .• A .••• A •••. A. C ••.. A ••. A .•• A ••• A .•••• G ••• A •. A ••• A ••. G •• C •• 

• • • A •••. A ••• A .•.. C ••• C •••••. A ••.•• A •.••. A •• A •. A ••• A .• A ... G.A •• C •••. A ••••••. A •••. C ... A ••• G • 

• • • G ••••••• A •••.•.. A ••••••• A •. G •••• A .• A .• A ••••..••• A .• A •. A •.•• A.A ••• C •• A ••••••••••• A •••••• 

• • A ..•••• C •• A .•••••••••.••.• A ••• A ••..••. A ••••..• A •• A ••• A. A ••••••. A •. C •••• A •. A. A ••• A •..•• A • 

. • . • . G •••. C .• A •.••..•••.... G ••••• G •.••• A ••....•... A ..... C ••.... A ••• A •••••••• A •.•. A ••••..• A 

•••. A .•.•• A .. A •• A •• A .••••..••••.• A •• A ••.•• A ..••••.• C ..• A ••....• A ••• A ••• G •••••• A •• G •.. C ..•• 

. • • • . A .A ..•. A .A •.. G •..•• A ... A ..•.• A ..•. A ... A ..•....• A ...•... A .. A •• A •••.•.•. A •.•. A. A •.••. A . 

• A ••. A ••••• A •.. C ..••.• A •• A ... C.: .A •• A .. A.A ••....• A .. C •.... A •.•. A •...••••••••••• A .•.•••••. A 

••••.• A ••• A .•.•••.•• A .••...• G ••.. G •.• A .. A •...• C •. A ...... A ..... C .••••.... A •• A ... A •.••• A •.• A 

•.•• C •• A •• A •• A ..•• A ••• A •.•••• A •.•• A. C •• A ••. A •••• A .•.• A •• A •.•...• C ••• A .•• A.A.A •• A •• A ••••.•• 

• A •.•• A .•• A ••••.• A.C ••• A .•.• A ••. A ••... A ..• A •..•.•.. A •.....• A .. A •. A ••• A •..•. A .••••. C ••.•.•• 

A ••. A .•••• A .•••• C ••..•• A ...••••..••..•. A.A •.....•.•. A ... A ..• A.G •. A •.•• A •••. A .•• A .•.•• A ...• 

. G ... A ••• A •••.•••••••.• A .• C •••• A ••.•• A •• A •• A ••.•• A .. A ••.•.•••• A ••• A ••• A.A •••••••• A .A ••••.• 

. • • • . • . . • • A ••.. C •••• A ••• A ••••• A ••••• A .•••• A ••..• C •.. A •. A ••.. A ....• A ••• A .•••••• C ••• A .••••• A 

••••• A. A •.... G •• C •• A •••• A •. A .••. A •..•••••••..•..•.•. A •••..•.•• A •• A •• C ••••• A •••• A .• A •••. A .. 

• • C ••• A •••• A •.. C •• A •. C •..•• G •••••••.•••.•••. A ••• A .••••• A ••.••••• A ••••• A ••••• A •••• A .••• A .•• 

A ••. A •• G.A ••.•• C ••.. A ••.•• C ••• C •••• C .•..•• A ••••.. A ..••• A •.••.• A •••• A ••••• G •• A •• A .. A ••. A •. A 

•.• A •••••• A ...• A •• A ••••• A •••••..••.••••. G •.• A ••••.•. A •••.. A ••••• A •• A •••••••• A ••• A ••• A .• A •• 

• • A ••••.•. C .•• A •• A ••• A •• A ••• A .•••.•• A •...• A. C .•. A ••.• A .• A .••• A .•• A •• A ••• A ••••.•••••. A ••• A . 

• . • A •... C .......•• A ..• A •••••. A •.••. A ••• A ••• A •..•..•.. A •••.• A •• A •••..•• A •• A •• A ••.•.•• A •..• A 

•••••••• A ••• A .• A •• A ••• A •• A •••• A •• A ••• A ••• A •••• A •• A •.••••• A •• A •• G ••• A •• A.A. C •• G ••• A •••• A ••• 

• C •••••••. A ..•••••.•• A •.• A. A ••.• A •• A .• A •• C ••.•• A .••.•. A •.. A •••...••• A ••.• A .•••• A •••.••••• A 

••• A ••• A ••. A ••••• A •••••• A •.••.• G •••• A •••• A ••••.• A ••• A ••. A •••••.•••• A •••• A •••. A •• A •....••• C 

•••.••. A ••• A •• A •• A •• A ••• A •• A .A ••• G .A •• A ••• A •• G •• A .••. A •• A.G •••• A •• A ••• C •• A •••• A ••••• A •• A •• 

A ••• A ...•••••• A .• A ••••• A .• A ••••• A •••• C ••••• A •••••• A •••• C •.. A •• A ••• A ••••• A .• G ••• A •• A ••••• A. 

A ••• A ••••• A •••• A •• G ••• A ••• A ••••••• G •••. A •••• A •• A •••••..•••• A .••• A. G.A. C •• G ••••••••• G •••• A • 

• A •• A .• A •••••.• A.A.A •• A •••• A •••• G ••• G ••••••••• C •••. A •.•••••• C .•••• A •• A ••••• A •••• A •••• A ••.• 

• • • • • • • • . C .•• A •••• A •••.• A ••••• A ••••••• A •. A ••••••• A ••.• A ••. A ••• A •••• C ••••• A .••• A ••••••.• A •• 

. • • A ••..••• A .•• A •• A.A •••.• A •• A.A •••••.• A .••• A •• A .••• A ••• A .••••• A ••• G ••••.••• A •••• A ••••• A •• 

. A •••• C •• A ••.. A •••• A •••. A ••••••. C •.• G ••.•• A ••••• G ••. A •••••••.• C •••••• A •• 

Figure 8 .31: Bases counted for feature sem_tL0.53 for sequence representative of Class 1. These 
represent 19 .4% of the sequence. 
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.••. C •• A •..•••• A ••••••• A .•• A .. A .•••••. A .•..•• A ...... A .. G ...••. A ••.••••• A ••••.• A •• C ••••.• G . 

. . A ..•..••.•• A •.•••.•• C .A •••• A ••• A •••.•.••. A. C •• A ..• A. A •• G ••.•. C •••• C •••• A •••••• A ..•• A .•• A 

.• A •••• A •.. C .•••••••••.. C ••••...•••.•.•• A •. A ..•. A ••. A •••..• A .. A ••.. A ••• C •••.•••••.••.••.. C 

•• C ••.••. A •.... A ••••• C ••. A •••.• A ••• A .•• G .•. A ... G •• A.A ••••••••. A ••. A •.•••• A ••••••••• A ••• A •. 

• . G •• A ... A .. C •... A .•. A .• A .• A ..••. A ...... C .• C .• A .. A ..... A •• C •.... G •. G ••••.• A .•.. C •.• A ... G •. 

A .•.. A •...•......•...•••. A .••• C •..•...• A •. A •••. A. C .•. A ••.. A •••• A •• A ••••.. A .•.•.....• A .•••• 

. A .•.. A ••••. A ••• A ••.••. A .••. A •.• A •.•.. A •.... A ... G .. C ..•....• A. A .•.•• A ••• C •• A .• C ••••• A •...• 

. . . . G .• A •.. G ..•.• A .••••••• A .•• A.A •••. G •. C •..• A .••. A •..•.•• A •••• A •• A ••• A •••. A •.•.. A .• A •. A •• 

A .•.•• A •.. A ••. A •• A .• G .• A •. A. C •.••... A.C •... A •• A .. A .. A .••••. A ..•.. A •••••••• C •.•••••. A .•.•• A 

..•. G ... A •.• G .•.• A ••• A ••• A •••• A ••.• A ••• A ••• A •..• A .• A •••• A ••• A ••••••• A ••••• A ••. A •••• A.A •• C • 

. . • . • . A .. A .. A •. A •••• C ••••. A •. A ...•• A .. A .•• C ..... A .•• A .•.. C .•.•••••• A •.. A .•. A ••• C .•.• A •• A .• 

• A •••• A •. A .. A ••.••••••. A ••••. A .•• A ••. C ••. A •..• A ... A .•• A .. G •• A .....•••• A ••• A •••• G ••••• C .•. G 

.•• A ••• G ••• G ••• A .•.. A •••. A ..••••.• A ••.. A .. A •• A •• A .. C •..••• A •••••••••••••. G .•• C ••••••• A •••• 

A. A •. A ...•....••. A ..• A ••• A .••. A •.••••.. A. A ••. A ... C •• A •• A .• A •..••••• A .••• A .• C •••• A ••••••.. A 

.•..•. A •.• A •.• G •. A ... A •. A ..• A •. C .•. G .•. A.A .... A .•.. G ... C .•..• A •••.• A .. C •• C .•..• C .•..• G. G •. 

• • • A •. A .A •...•.• A ... A .••••• A .... C ... A •....•.. A ...... A.G .... A ...•• A .• A •••••. C •.. A .••• C •• A •. 

• . • A .. A ...• A ••• A •••••• A .•• A •. A ..•• G. A ••.•• A .. A •• A •• A .. A ..••• A .• A •••• A •• C •••••• A •• A •. A .• A •• 

A •• A •••.. A •. A •••. C •. A .• A ••. C .••• C .••• A ..•• A .• A ..• A ..•.••• A ••.• A •. A .• G .•• A •••• G •••• A ••.•• A . 

• • A .••..• A ••• A.G ••• A •••• A •. A .• A ••..• A •..•.•• A .• A ...••••. A •• A ••• A. C •••. C •• A •••••. A ••• A •• A .. 

G •••••• A ..••••• A •••.• G •• A ••.•••••• A •••..• A ••.. A •. A .•• A .••••••••••.•.. A •••••• A ••• A •••.•••. A 

•••••• G ••••• C •• A ..• A •••• A •••••• G •• A •...• A .. A •.• C .. A •. A •. A .••• A .•. A ••• C ••••• A •. C .. A .•.. A. C • 

• • A ••.••. A •.•••. A.A ••• C ••• A •••••• C ••..••• A ...•••• A ..• A .. A.A •.• C •• A ••••••• A •••. A ••• C •••••.• 

• • A ••••..• A ••••••• A ••••.••••.• A ••• C •..••.. A •.••••... A ... C ..••••• A •••• A ••• A ••.•• A.G .••••• A. 

A •• G .•••• C ••.• C •. A ..• A •••• A ••• A •.. A .• A .••• A •.. C ..•..••....••• A ••.••.••••••• A •. A •.•. A ••• A •. 

• . • • A .• A •••• A ••• C •• A •••• A ••••• C ••• G •••. A ••••• A ••. A ••• G ••. A ••• G •• A ••••••• A ••• A •••••• A •••••• 

. • • A ..• A .... G •• A ••• A •• C .••. A ... A •• A •• A ....• A .....• C .. C .• A .• A .•• A .•• A ••••. A •.•.. C .. A ••••. A • 

. . • C •. G ••. G.C; •• A ••••.••••• A •. A •• C •.••....• A.A .. A ..••• A ••.• A •.•• A .••••• G •••••••• A .•• G ••••• 

A •• A •• A •••• A •••.•• G ••• A •••• A ••• C •• C. C ••• C •• C •••••• A ••• A •• A ••• A •••• A •• ·.A ••• A ••••• A •••••• A •• 

. A ..••••••• C .•.. A •.• A .••• A .•• A •.•••. A •• A •.•. A •.••.•• A ..•• A •• A •••• A.G •••••• A .• A •. A •••... A .. 

• • A ••• A •••• A ••••••• G •••• A ••• A ••• C •••••• A •••.• A ••• A.G •.• A ••• A ••••• A •• A. C •• A ••••• A ••• C •••••• 

• • A ..••••. A •••• A •••••. A ••••• C •••• A •••• A .. A •••• A ...• A ••• A .••• A •••• C •••••• A •••• A .A •••••••••• 

• • A •• A ••• A •.•• A. C •• A •••• A ••. C ••• C ••••• C ••••• G •..•• A.A ••••• C •• C •••••• A •••••• A ••••• A •••••• A • 

. • • • G ••• C ••• A •••.••• C •• A ••• A ••.• C ••••• A •••••••• A •• A.A ..• A •••••••••• C •• A ••• A. A •••••• G •••• A • 

• • • A ••• A ••••• A •••• A ••• A ••••• A.A •••• A •• A •••• A •..•••• A .•••••••• G •••. A •••• A •••• A ••• A •••• C ••• A • 

• • • • • • • • A •• C ••• A ••••••• A ••• G ••• A.G •• A •• A •• A ••... A •••• A ••• A .•••••••• C ••••• A •••• A ••••• A •••• A 

•••.. A •••• A .• A •. A •• C ••• A •• A .• A •••••••.• G ••• C •.. A ••• A .. A .••• A.C ••• A •• G •• G ••.••• A •• A •• A.C .G. 

A •••• G •• A •••• A •.• A ••••• G. A •• A.A ••• C .A •.•• C ••• A •• A •• G ••••• G •• A •• A ••••• A •• A •••• G •• C •••• A ..• A 

•.••• A •• A ••• A •••••• C ••• A •• A •••• G ••• A •• A ••• A.C .••••.• A ••••• G ••• A ••••• A ••••••• A •••••• A ••• A •• 

• C •••• A •• 

Figure 8.32: Bases counted for feature sem_tt_0.53 for sequence representative of Class 2. These 
represent 20.5% of the sequence. 
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..••• C ..•...••.•• G •.••••••••.•... C •..•.•.•..•••. C .. CC ....••••••• C .• C .•• G •• C ••...•.••.• G ••• 
GC . G ......•...•..••.•• C ••••...• GC .••......•..•••.•......••...•.••••••••••• C ••• GCC .••• G .•.. 
• . . . . . . G. G •.• G .••••• C .....•.••.••••..•.• C ...•.....•.•••.•••••• G ••••••••• GC .•... CC .•• G ..•.• 
. . • . • • C ...••••• G •••.•••••••.. C •• CC ••••••••..•••••••.•..••••••••••••• G •••••• G •• G •••. G •••••• 
• • • • • . . . . . • . • CC •• C •. GC •.•••.•..•..... C . G •••...•..•••••.•••.•• CC •••••••••••••• G •• C •• G •.• G •• 
• G . G .• C •• CC •••...••••• C •••••• C • C ••••...•.•.•• C •..• G .• C ••.••••••••• G. C •••••••• C • C .•••.•••.• 
. . . . G •.•. C .C •••• C ••. C. C •. C •.••. G .••.. C ...••..••....••.••••••••• C •• CCCC .C ••• G .G ••••• C ••.••• 
• . CC . G •• G. CC .•••• C ...... C • G .••.• G .•.. C ...•...••.••..•••••••••••••••••••••.. G ... G ••.• C •••.• 
. . . . . • • • • . • • . . • . • • • . • . • . . C ••••. C .••....••••..•• C .. GC .••••••••••••••••••••.•••.•.• G •• GCC • C • 
• C. C ••••.•••••••..• C ••.•...••..••.••.. G .....•••.. C ........ C ••••••••.•••••••••...•••••••••• 
G .....••...... CC ••....•.•.•. GCC ..•..•.......••....• GC ...... C .•.. C .•...•. C •••••.••....••• G . 
. . C . G ••.. C • C •...••• G •.... C . G ..• G. GC ...•...... CC ...••.•.•.••...•••.•.••..•....... C •. C ..•••. 
C •. GC .•••..••.••. G •..•.. G •.••.•..•...•.•.....• C .... G .....•.. C . G . C. G •.•••.••••...•.. C •••••. 
. • . . • • • • . • . C.C •••••• C •...•••...•.• G •.•• C .....• C .•.........•...•. C.C •••• C ••••• .".G .• C .•• C ••• 
. . . . . . • • . . • • • . • GC ••••••••..••• C . C •••..•..••..••. C . G ••• G •••••.•.•.•••• G •••••••••• C .. C ••••. G 
. G ...•••.••.•••••• C •••••• CC ••• G .••..•••....• C . C . G ..•••••• C • G ••••••••••••...••••• G. G ...••.• 
• . . C ..•••••••• GC ••••••••• C .C ••••••••..•.••••• G •. C. G ••.•••• C ••.•••••.• G ••• G •••• CC •••••••••• 
. . • . G. G •••. G. G •• C ••••••••.••••• G ••.••.•.••• C ..•.•.•.•....•.. G •.••.•. C •• C •••••..•..••••••.• 
• • C .•••••••••• CCC ••• CC ••• G. G .•••••.••• C .••• G ••.••.•.•••••••••••••.•••.••.••••••. G ....••••• 
. • G ••• G • G •••.••.•• C ••••• CCCC • CCC •• GC ••••••..•• C ••.....•.•••••••••••••••• G ••••••••••• C •• C •• 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c .......................................................... . 
• G ••••.•• CC •••••••.••• C .•••••••••••••..••••.•.• G .•••••• C ••••..••••••••••••• C .•• C .•• G ••••.• 
. . . . • • . GCC .C ••• C •••••••••••• G.C •..•••• G •.• G •••..•.••.•••••..•••••••.•••• G •••.•••••••••. C .• 
. . . . cc .... c ... i;:: ••••••••• c ...................... cc ...... cc .. c .. c ............. c ............ . 
CC ••.•••.•••••• G •••••••••.•••.• C ••••.•• CCC •.••••..•..•. C .••••••••• CC •••• C •••••••••••..•• G . 
• • • • • . . . . • • . • • • • • • • . • C •.••.•• G.G .•••••.•.•••••••••••••••••••• C •••••••••••••••.• C •••••• C •• C 
••• C •.....•.••••••• G ••. G ••••••••.•••• G .G ••••• G •••.• G ••. G .G •.••••••••• CC •••••• G •••• C ••• G ••• 

• • • • • • • • • • • • • G •••••••• G •••••• C ••••• C .CC. C .C •••..••• C •••• CC •• CC •••••• G ••••• C ••••••••••• G ••• 
• • • • • • • • • • • • • • • . • G •••••••••••.• C. G .•.•.••• C ••• G •.• C .•.•..••••••••••••••• G.CC ••••••• G .•• G •• 
• . • G ••••••••••••••••••••••••••• G ••• G •••••• G .•• C ••••..•••••• GC •••••••••••••••••• G •••••• C ••• 
C ....• C • GC ••.•••..• C .•. G •.••• G .••••.•.•• C •••.••. G ••.....•.••••• CC •• CC ••••••.•••••.• C •••••• 
• • • • . • • • • • . • • • • • • • • • • • . • • • • • C .G •• G •••••.•. G ••.•••• G ••.•••••••••••• G •••••••. G •••• G •••••••• C 
•• CC .• C . G ••••••• C .••••••••••• C • GC •••..••••••••• G •••.•••••••• C • C ••••••••• 

Figure 8.33: lBases counted for feature sem_C_0.06 for sequence representative of Class 1. These 
represent 12.8% of the sequence. 
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••• GC • G .•••• C •••••••• C •••••••••••••••••••• CC ••••••• G •• C •••• ." •••••••••••• C ••••••• CC ••••• C •• 

• • • • . • • • • • • • • • • • C ••••• C ••••• C ••• C ••• C ••• C •••••• C •••.•••• G ••••• GC • G •• C •••••••••• G •••••••••• 

• G •••••.•• CC •• C ••••• G ••• C •••••••• C •••• C ••••• C •••••••••••••••• G •••••• C • GC ••••••• C •••••••• GC 

• CC ••••••••••••• C • C • GC •• G •••••••. G ••••••••••• C • G • C • G ••••••• C • G •••••••••• G ••••••••••• C ••••• 

C • GC •••.•••• C ••••••••••••••••.••.• C ••. C • C • GC • G ••••••• G ••• CC ••• G • GC • G •••••••••• CC • G ••• C • GC • 

• • • • • • • • • • • • • • • C •••••••• G ••• G .C •• C ••••••• G ••• G •••••••••• C •••••••••••••••••••••••••••••• C •• 

• • • • • • • • • • • • • • • • • • • • • • • • • • C •• C •••••••..••••••. C . G .• C ••.•• C •••••••• C •• C • CC •••• CC •••••••• G •• 

• • • • G • C •• C • G •• CC ••••• C ••••••••••• C • C • GCCCC • C ••••••••••••• G. C • C ••• G. C •••••••••••••••••• C • C • 

• • • • CC ••••••••••••• C •••• CC • GC •• C ••• G. GC •• G ••• C •• C • C •••••• C •••••••••••• CC •• C ••••••• G •• G •••• 

• • • G •••••• C. G ••• G ••••••••••••••••••••• G ••••••••••• G ••••••••••••••• G ••••• C •••••• C •••••• CCC • 

• • • • • • • • • • • • • CC ••• C.C ••••••• C ••••••••••••••••••••••••••• GC •• C ••• C ••••••••••••• GC •• C ••••••• 

• • • • • • • • • • • • • • • • • • C •••••••••••• C •••• CC .•••••• C ••••••••••• G ••••••••••••• C •••••• C ••••• GC • C • G 

•• G ••• G ••• G. G •••••••••• C ••••••••••••••••• C •• C • CC • CCC ••• C •••••••••••••• G •• GC. CC •• C •• C ••• C •• 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • C ••••• C ••.••.••••••• CC •••• G ••••••••••••••••••• CC •••••••••••• C • 

• • • • • . • • • • • • • G •• C •••••••• C ••• CCC •••••••••••••••••• G •••• C •••••••••••••• C .CC •• C. GC ••••.••••• 

• • • • • C • G • C •• C ••••••••••••••••••• C •••••• CC •••••• G •••••••••• G ••••• G ••••••••• GC ••••••• GC ••••• 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • C •• G •••••• G •• G •• G •. C • G ••••••••• G ••••••• GC ••••• G •••••••• G ••• 

• • G ••••• G •• C ••• C • C •••• G •• C • CC •••••• C •••. C ••••••••• C ••••••••• C •••••• G •••••••• G. C • G •• C • G •••• 

• • • • • • C ••••• C • G. C •••••••• C ••• G ••• C ••• C •.••••••••••••• C ••••••••••••• G •• CC •• C •••• G •••••• C • C • 

G •• C •• G •••• C •• G •••• G .G ••••• C. C ••••••••••••••••• C •••• G •••••••••••••• C ••••• C ••••••••••• C •••• 

• • • • • • G •••• GCC ••••••••••• C •••••• C ••••• G ••••••• CC .•••••• C •••••••••• C • GC ••••••• GC •••••• C • GC • 

• • • • • • • • G • G •••••••••••••••••••• C • C ••••• G •••••••• G •••••••••••• CC ••••••• C ••••••••• G. C ••••••• 

• G •••••.••••••••• G •••••••••• C ••• C. C ••••••••••••••••••••••••••• C ••••• C ••• C ••• C ••••••••••••• 

• • G ••••• GC • G •• C •••••••••• G ••• G ••••••••• C ••••• CC •• C ••••• C ••• C •••••••• C •••• C •••••••••••••••• 

• • • • • • G •••••• C .GC •••••••••••• GC. C. G ••• G •••••••• G ••••••••••• C .G ••••••• C .G •••••••••• G ••••••• 

• • • • C ••••• C • G • C ••••••• C ••••••••••••••••••••• C ••• C • CC. C. G •••• C ••• C •••••• CC ••• C • GC • G •••••••• 

• • CC~ G ••• C • GC •••• C ••• C ••••••• G •••• C. C ••••••••••••• C •••••••••••••••• C ••• G ••• C •• C •••••••••• C 

• CC •••• C •• G •••••• G ••••• C ••••••••• CC • C • C • C • CC ••••••••••••••• C ••••• G ••• G •••••••• C ••••••••••• 

• • • • • • • • • G.C ••• G •• C ••••• G ••••••••••••••••• C •••••• C ••••••••• G ••••••••••••• G •••• CC •••••••••• 

• • • • • • • • • •.• •••• c ••• G •• c ••• G ••• c. c ••• c ••• c ••••• c ••••••••••• c ••••• C.G ••••• G ••• c ••••• Gee .c ••• 

• • • • • • • • • G ••••••••••••••• C •• CC • C •••••••••• C • C •••••••••••••• C •••• GC ••••••••••••••••• C • C •••• 

G ••••••••• C •••••• C •••• G •••• GC •• GCC ••• GC •••••• C .C ••••••••• CC .CC •••• CC •••••••••• C ••• C ••• CC .C 

••• G ••• GC ••••••••• C • C •••• G ••••• GCC •• C ••••• C •• C •••••••••••••• C • G •••• C • C •••••••••••• G ••••••• 

• • G .C. G. C •• C ••••••••••• C •••••••••••••••••• C ••••• G •••••••• G ••• G ••••••••• C ••••••••• G •• C •• G •• 

• • • • c •••• cc cc ••• c ••••••••• c •••••••••••••••••••••• c ••••• c •••••••• c • cc ••••••••••• c •• c •• c . c .. 
• • • • • • • • • • • • G •••••• C •• C •• C • C •••••••• G •• G. G. C ••••• C •••••••••••• C ••••• GCC ••••••••••••••••••• 

• • • • • G. C •••••••••••••• G • G •• C • G •• G • C ••••• CC •••••••• G ••• C • G •• G_ •• G •••• C ••• G ••••• G. CC •••••• C •• 

• • • • • • • • • • • • • • • • • • GCC •••••••• C • G ••••• C • CC ••••••••••••• G ••• GC • G • ~ ••• G •••••••••••••••••• C ••• 

cc ••••••• 

Figure 8.34: Bases counted for feature sem_C_0.06 for sequence representative of Class 2. These 
represent 17 .0% of the sequence. 
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9 Conclusion 

The greatest challenge in applying machine learning techniques to bioinformatics is the 

reliability of the data. Genome annotations are in a state of flux. Both the sequence and 

the annotations are constantly being refined and adjusted. This means that training data 

is always, in some sense, noisy. It also means that there is no dependable way of testing 

results. The original goal for this research was to build a software tool that would scan for 

ERV s with adjustable parameters to accommodate peculiarities of different organisms. 

That goal had to be scaled down, however, due to the unreliability of the data. What 

was possible to achieve is described in Chapter 7. The excellent annotations for the 

Drosophila genome allowed for some progress. 

A substantial impediment to progress was the lack of standards for genome annota­

tion. Biologists tend to specialize on individual organisms: different terminology, dif­

ferent standards, and different methods are used for different types of organisms. As 

genome assemblies are constantly being updated, genome annotations must be as well. 

The current system requires a great deal of manual effort for this. This results in situa­

tions in which previously assembled databases go off line, as HERVd and RetroSearch 
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did in the course of this work. There needs to be both more automation and more stan­

dardization. This is critical given the massive explosion of genomic data and requires 

contributions by both biologists and computer scientists. This thesis is such a contribu­

tion. 

The majority of this thesis is focused on designing sequence features that can be used 

to refine biological understanding of genomic elements. The statistical features described 

in Chapter 3 demonstrate how knowledge of computational techniques can be paired with 

biological knowledge to create new useful tools. In particular the features described in 

Sections 3.1 and 3.2 combine knowledge of the usefulness_ of the Fourier transform in 

detecting changes in patterns with the biological knowledge that ERVs make an unusual 

use of reading frames. 

In Chapter 4 the new technology of side effect machine features is studied, their 

fitness landscape analyzed, and innovations to their use are introduced. These include 

new fitness functions and a new method for incorporating SEM features into effective 

classifiers. This new method involves a novel type of feature selection, dissimilarity 

clustering, that could be applied to other problems that require feature selection from a 

set of features, already selected for quality, that are correlated with each other. Another 

SEM innovation, introduced in Section 6.4, explores the use of SEMs with transitions 

other than the previously used A-C-G-T transitions. 

Chapter 6 uses the features from Chapters 3 and 4 to build classifiers for various 
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classification problems involving TEs. These are effective for distinguishing retroviruses 

from genes and from non-coding sequences, for distinguishing different types of viruses 

from each other, for distinguishing different types of TEs from each other (solitary LTRs 

and SINEs ), and for distinguishing IESs from MDSs in Tetrahymena sequences. 

Side effect machines provide a computational tool that can be used to create an envi­

ronment conducive to developing hypotheses about sequences to be later tested experi­

mentally. Chapters 5 and 8 explain how this could work with SEM features. Future work 

will expand the ideas in these chapters through collaboration with biologists. 

The greatest flaw in this thesis is its lack of coherence and unity. All the research 

in it· is related to the problem of genome annotation, but the connections between the 

pieces is, at times, tenuous. This was due to a lack of understanding when the project was 

begun of the difficulties to be encountered. The research was started with little biological 

knowledge of the issues involved and with an assumption that data quality would be 

better than it actually was. As the research proceeded, the need to fill in details became 

clear. For example, when false positives were encountered in the scan of the human 

genome resulting from confusion between solitary LTRs and SINEs, it was necessary to 

find some way to distinguish the two. Surprisingly, existing methods were inadequate 

and the problem was both challenging and interesting. 

An important contribution computational scientists can make towards solving the 

difficult problems encountered by biologists is to provide improved description. The 
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features introduced in this thesis do just that. It is also important to be able to take that 

description and translate it into something biologically meaningful. The development 

of techniques for using and interpreting side effect machines increases their value as 

descriptive tools. The work of annotating and understanding the function of genomes is 

the type of scientific problem that fits Alfred Lord Tennyson's description in his poem 

Ulysses: "that untraveled world whose margin fades forever and forever as we move." 

The more we learn, the more we discover there is to learn. 
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