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Abstract

Equivalence tests from the null hypothesis significance testing framework are appropriate alterna-

tives to difference tests for demonstrating lack of difference. For determining equivalence among

more than two repeated measurements, recently developed equivalence tests include the omnibus

Hotelling T 2, the pairwise standardized test, the pairwise unstandardized test, and the two one-

sided test for negligible trend. With Monte Carlo simulations, the current research evaluated Type

I error rates and power rates for these equivalence tests to inform an applied data analytic strategy.

Because results suggest that there is no one statistical test that is optimal across all situations, I

compare the tests’ statistical behaviours to provide guidance in test selection. Specifically, test

selection should be informed by the measurement level of the repeated outcome, correlation struc-

ture, and precision.
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Equivalence Tests for Repeated Measures

Beyond the hypotheses of change and difference that are prevalent in repeated measures studies

of psychology, hypotheses for lack of change also arise. For research questions of equivalence in

longitudinal settings, for example, Davidson et al. (2003) assessed the influence of meditation

on affect and immune functions, and they stringently hypothesized that the control group would

show no change over time; Graney and Engle (2000) sought to show that a single assessment of

daily living would be as accurate as intensively repeated assessments by providing evidence that

all responses were practically equivalent; and in a developmental study, Buist, Reitz, and Deković

(2004) used correlation analyses and tests of slope to demonstrate the stability of internalizing

behaviour scores over several years. Research questions of equivalence also appear in experimental

research, particularly when stimuli sets require validation. For example, the study of affect and

odour pleasantness requires that odour intensities be controlled, so ratings for perceived intensities

would need to be practically equivalent across odours in order to isolate the effect of pleasantness

(Winston, Gottfried, Kilner, & Dolan, 2005); similarly, the study of selective activation and letter

processing in the brain also requires that certain subsets of experimental conditions are statistically

equivalent in order to conclude that brain regions of study are equally recruited (Joseph, Cerullo,

Farley, Steinmetz, & Mier, 2006).
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To establish equivalence, all these aforementioned studies used inferential tests of difference.

However, the establishment of equivalence based on statistical non-significance from difference

tests is problematic. Logically, rejection of a null hypothesis implies that there is evidence against

it. Failure to reject the null hypothesis does not, however, imply that there is evidence for the null

hypothesis. Statistically, seeking equivalence via difference tests yields lower power with increased

sample size and increased power with lower sample size. Drawing the conclusion for equivalence

via difference tests that are designed to test for differences, particularly with small sample sizes, is

therefore both illogical and anathema to research ideals.

These issues are addressed by equivalence tests. Equivalence tests from the framework of

null hypothesis significance testing determine the strength of evidence against the null hypothe-

sis that population parameters are non-equivalent. With the null hypothesis stated as a form of

non-equivalence and the alternate hypothesis as a statement of equivalence, a Type I error event is

defined as an incorrect conclusion for equivalence. A power event is then defined as a correct con-

clusion for equivalence. Unlike the implementation of difference tests, usage of equivalence tests

requires the additional and substantive definition of ‘equivalence’. Generally, population parame-

ters are considered equivalent if their differences are so small that they are considered negligible.

The degree of this negligibility is defined by some equivalence interval, say ±ε, which is pre-

specified a priori by the researcher. For example, if a difference of two units is considered to be

the minimum effect deemed to indicate meaningful difference, then the equivalence interval may

be ±2. The equivalence interval then deems any difference that falls within the boundaries of ±ε

(e.g., > −2 or < 2 ) to be negligible, or essentially, practically equivalent.
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The majority of equivalence tests have been developed in the context of biopharmaceutical

studies, but their applications have steadily gained prominence in the behavioural sciences. Most

studies on equivalence tests for the behavioural sciences have focused on independent groups de-

signs (Gruman, Cribbie, & Arpin-Cribbie, 2007; Koh & Cribbie, 2013; Schuirmann, 1987; Sea-

man & Serlin, 1998). Fewer studies have examined equivalence tests for designs with repeated

measures. Within psychology, only equivalence tests for paired samples have been empirically

evaluated (Mara & Cribbie, 2012).

Currently, no clear recommendation has been made for testing the overall equivalence of more

than two repeated measures, either in experimental or longitudinal contexts of psychology. There

are three tests of mean equivalence and one test of negligible trend that invite evaluation and

discussion. Wellek (2010) introduced three tests of mean equivalence: an adapted Hotelling T 2

test and two pairwise-based procedures using the intersection-union principle (explicated later).

For longitudinal contexts, the test for negligible trend is an adapted equivalence test that exploits

model fitting procedures.

Equivalence Tests for More than Two Measurement Occasions

Omnibus Hotelling T 2

The Hotelling T 2 test is a multivariate approach that treats k repeated measurement occasions

as k separate dependent variables. Consequently, there are no assumptions made for correlational

structure or sphericity, which are inherent in univariate approaches like the traditional, repeated-

measures analysis of variance.
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The equivalence interval ε is specified in terms of Mahalanobis distance, which is a multivariate

measure of distance from a data set’s centroid that accounts for differences in scale among the

dependent variables. For k means, a contrast matrix C specifies comparisons for k − 1 adjacent

mean differences δ j such that

δ j = µ j+1 − µ j, j = 1, . . . , k − 1. (1)

Thus, the row vector of (k − 1) mean differences δ is calculated as δ = (CM)′, where M is a column

vector of k means. For the k × k covariance matrix Σ, the (k-1) × (k-1) covariance matrix of the

differences is ΣD = CΣC′. The equivalence hypotheses are thus expressed as follows:

H0 : δ(Σ−1
D )δ′ ≥ ε2 (2)

H1 : δ(Σ−1
D )δ′ < ε2. (3)

Taken together, δ(Σ−1
D )δ′ expresses the Mahalanobis distance for adjacent pairs of means. For the

set of sample means X̄ and sample covariance matrix for the differences SD, the sample T 2 statistic,

then, is

T 2 = n
(
CX̄

)′
S−1

D CX̄. (4)

The null hypothesis is rejected if T 2 falls in the critical region, which is given by

4



T 2 < ((n − 1) (k − 1) / (n − k + 1)) Fk−1,n−k+1;α

(
nε2

)
, (5)

where n is the sample size and α is the nominal Type I error probability. The term Fk−1,n−k+1;α

(
nε2

)
denotes the lower 100α% point of the F-distribution with the noncentrality parameter of nε2 and

the degrees of freedom of k − 1 and n − k + 1.

It would be expected that, in the context of an equivalence testing problem, an omnibus proce-

dure should have greater power over pairwise procedures, as was demonstrated in the independent

groups case (Cribbie, Arpin-Cribbie, & Gruman, 2009). Despite this expected power advantage, it

should be noted that the shape of the theoretical equivalence region — the region which contains

the set of mean difference vectors that are considered practically equivalent — depends on the

correlation structure of intraindividual differences. Suppose that the equivalence interval ε is 0.50

(or equivalently, ε2 = 0.25). When intraindividual differences are uncorrelated, the equivalence

region is spherical (Figure 1). Within this region is the set of adjacent mean difference vectors that

are considered practically equivalent. As the magnitude of the correlation of the difference scores

increases, however, the equivalence region shape becomes increasingly elongated and elliptic (Fig-

ure 2). At the narrow ends of these ellipses, seemingly similar sets of adjacent mean differences

may be associated with different results; one vector of adjacent mean differences may lie within

the region while a similar vector lies outside.

It is arguable that that this test should not be recommended because the dependency of the

equivalence region on correlation structures can make for problematic interpretations, especially

if highly correlated differences do occur frequently in practice. However, it is possible that such
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Figure 1: Equivalence region for uncorrelated difference scores. The correlation for the set of two

adjacent mean difference scores is - .08.
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Figure 2: Equivalence region for highly correlated difference scores.The correlation for the set of

two adjacent mean difference scores is - .97.
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correlation structures rarely appear in practice and that applied researchers would be able to iden-

tify whether the Hotelling T 2 is appropriate for their data by computing the correlation structure

of adjacent mean differences. The slight computational inconvenience could be arguably justified

by any substantial power advantage. Of course, any argumentative justification must come af-

ter evidence. Thus, an empirical demonstration for highlighting consistent relationships between

repeated measures data and corresponding correlations among intraindividual differences would

elucidate, at least to the extent that simulation conditions provide, just how prevalent elongated

equivalence regions may be in actual practice.

Pairwise Procedures using the Intersection-Union Principle

For k measurement occasions, the pairwise approach — which includes the standardized and

unstandardized forms — involves the comparison of all possible pairs among j and l, where j and

l each index some measurement occasion, 1 ≤ j ≤ k , 1 ≤ l ≤ k , and j , l, totaling k(k − 1)/2

pairwise comparisons. This set of comparisons is embedded within a composite hypothesis test

consisting of k (k − 1) /2 sub-hypotheses.

The composite hypothesis test is constructed as an intersection-union test, which expresses the

null hypothesis as a union of subsets and the alternative hypothesis as an intersection of subsets. In

other words, the null hypothesis states that at least one sub-hypothesis is true, while the alternative

hypothesis states that all sub-hypotheses are true (Berger, 1982). Thus, in the context of the current

equivalence problem, the composite null hypothesis states that at least one pair of means, out of all

pairwise comparisons, is not equivalent. Thus, if all sub-hypotheses stating the null condition are
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rejected in favour of pairwise equivalence, then the composite null hypothesis of non-equivalence

is also rejected. If even one sub-hypothesis stating the null condition fails to be rejected, then the

composite null hypothesis also fails to be rejected.

It would seem that multiplicity control is required, for an increase in tests typically leads to

an increase in familywise Type I error rate, the probability of falsely rejecting at least one null

hypothesis in a family of hypotheses. The composite null hypothesis can be considered as a fam-

ily of hypotheses; intuitively, it would seem that as the number of sub-hypotheses increases, the

familywise error rate would also increase. This would only be the case if one were to conclude

on equivalence for only a subset of all the null hypotheses instead of all possible null hypotheses.

Thus, to maintain the familywise error rate at or below the α, the test result must conclude on

either the equivalence of all possible pairs or on non-equivalence, but not the equivalence of only

a subset smaller than the set of all possible pairs.

Overall, for procedures that are constructed as intersection-union tests, the global procedure

does not require multiplicity control (Berger & Hsu, 1996). To show this more formally, Berger

(1982) proved the theorem that if all sub-hypotheses of the null hypothesis are tested at the α-level,

for which the rejection region is size α, then the intersection-union test for all sub-hypotheses will

have a rejection region that is an intersection of the rejection regions of all those sub-hypotheses. In

other words, the rejection region does not contain more than α% of test statistics that are incorrectly

rejected.

Intersection-union tests are considered exactly valid, in that the risk of a Type I error is main-

tained below α. With multiple sub-hypotheses, they are suggested to be prone to conservatism
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(Berger & Hsu, 1996). However, there are conditions under which the intersection-union hypothe-

sis tests do have accurate Type I error rates (Berger, 1982) and adequate power (Laska & Meisner,

1989). For the present problem of equivalence for multiple repeated measures, empirical work has

not yet described the extent of this conservatism and the pattern in which this conservatism may

exhibit itself.

Standardized Pairwise

One variant of the pairwise procedure is the standardized pairwise test. The hypothesis test

is framed in terms of the standardized mean difference and uses the paired t-test of equivalence

for each comparison. The population mean difference is standardized by the standard deviation

of the pair’s population difference scores. Thus, the equivalence interval ε can be specified by

the researcher in two ways: as some arbitrary constant greater than 0 involving no other unknown

parameter or as multiples of the theoretical standard deviations of the differences, σ( j,l) (Wellek,

2010). The hypotheses are the following:

H0:
|µ j − µl|

σ( j,l)
≥ ε, for at least one pairwise comparison (6)

H1 :
|µ j − µl|

σ( j,l)
< ε, for all pairwise comparisons (7)

where σ( j,l) is the population standard deviation of the differences for measurement occasions j and

l. σ( j,l) also relates to the two marginal population variances, σ2
j and σ2

l , and the covariance, σ jl,
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as,

σ( j,l) =

√
σ2

j + σ2
l − 2σ jl. (8)

The null hypothesis is rejected if, for all pairwise comparisons,

√
n|X̄ j − X̄l|

S ( j,l)
<

√
F1,n−1;α(nε2). (9)

The critical region is based on the noncentral F-distribution, with 1 and n − 1 as the degrees of

freedom and nε2 as the noncentrality parameter. Because the square root of a random variable

following the F-distribution with a noncentrality parameter of ε2 gives a random variable that fol-

lows the noncentral t-distribution with n − 1 degrees of freedom and a noncentrality parameter of

ε (Johnson et al., 1995), the critical value in Equation 9 can be equivalently written as tn−1, α(
√

nε).

It should be noted that the distribution used is the noncentral F-distribution (or similarly, the non-

central t-distribution) because the parameter of interest is a standardized mean difference instead

of a raw difference.

The standardized pairwise test should be invariant to differences in correlation structure. Loosely

translated from mathematical theory, the distribution of each standardized mean difference is equal

in distribution to σ0
√

1 − r( j,l)

(
Z ji − Zli

)
, where all Zs are standard normally distributed variates

that are mutually independent, σ0 is the standard deviation for each measurement occasion, and

r( j,l) is the correlation of two measurement occasions; this implies that the joint distribution of the

k (k − 1) /2 vector of pairwise t-statistics from the sample is of the same distribution as those cal-

culated from unit normal vectors. Because unit normal test statistics do not depend on correlation

structure, neither does the standardized test depend on it (Wellek, 2010).
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Unstandardized Pairwise

The second pairwise procedure frames the hypothesis test with a parameter for the raw mean

difference, as opposed to the standardized mean difference. The hypotheses are the following:

H0 : |µ j − µl| ≥ ε, for at least one pairwise comparison (10)

H1 : |µ j − µl| < ε, for all pairwise comparisons. (11)

Each pairwise comparison is conducted with the two one-sided test (TOST) procedure, orig-

inally popularized by Schuirmann (1987) and recently adapted for paired samples by Mara and

Cribbie (2012). The TOST approach for establishing equivalence of two related means tests two

sub-hypotheses in relation to the equivalence interval ε. The hypotheses are the following:

HTOST01 : µ2 − µ1 ≥ ε, HTOST02 : µ2 − µ1 ≤ −ε (12)

HTOST11 : µ2 − µ1 < ε, HTOST12 : µ2 − µ1 > −ε. (13)

Denoting SD as the sample standard deviation of the difference, two sample t-statistics are com-

puted as
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tTOST1 =
X̄2 − X̄1 − ε

SD/√n
(14)

tTOST2 =
X̄2 − X̄1 − (−ε)

SD/√n
. (15)

Equivalence for the paired sample is established when both HTOS T11and HTOS T12 are rejected, which

occurs when both test statistics fall in their critical regions,

tTOST1 ≤ −tα,n−1, and tTOST2 ≥ t1−α,n−1. (16)

Because the TOST is a simple form of the intersection-union test (Berger & Hsu, 1996), the

composite hypothesis test of the TOST has accurate Type I error rates, even when both sub-

hypotheses are tested at α level. This becomes more intuitive when it is seen that HTOST01 and

HTOST02 cannot be simultaneously true, so the effective critical region is of size α and not 2α (Blair

& Cole, 2002).

The paired TOST is applied for every pairwise comparison. By the intersection-union princi-

ple, the null hypotheses for each and every one of the pairwise comparisons must be rejected to

conclude in favour of equivalence for all k occasions. The decision rule can also be written as

ε − |X̄ j − X̄l|

s(j,l)/√n
> t1−α,n−1, for all pairwise comparisons. (17)

where s( j,l) is the standard deviation of the differences for some pair.

Using an unstandardized mean difference, the test statistic is distributed as a central t-distribution.

Because the parameter of interest is in unstandardized scale, the test should have properties that
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vary by the spread of each repeated measurement and by the correlation structures (Wellek, 2010).

This behaviour is similar to that of difference tests using unstandardized parameters and is quite

unlike the aforementioned standardized test. The variation in its statistical behaviours across cor-

relation structures can be explained by an alternative expression of the rejection region. Consider

the population variance of the difference scores σ2
( j,l), given as

σ2
( j,l) = σ2

j + σ2
l − 2σ jσlρ( j,l) (18)

where the correlation coefficient of the two dependent measurements is ρ( j,l). It is seen here that

σ2
( j,l) decreases as the correlation ρ( j,l) increases. More specifically in the case where all variances of

the measurement occasions are one, the rejection region of Equation 17 can be expressed asymp-

totically as

ε − |X̄ j − X̄l|
√

2(1−r( j,l))/√n
> u1−α. (19)

where u1−α is the critical value at α level for the standard normal distribution. It can be seen once

again that as r( j,l), the sample correlation coefficient of two dependent measurements, increases,

the standard error decreases, thus yielding a test statistic that is more likely to fall past the critical

value. Indeed, Mara and Cribbie’s (2012) comparison of the standardized and unstandardized

paired samples tests showed that the power of the unstandardized form increases with stronger

correlations.
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Two One-Sided Test (TOST) for Negligible Trend

In longitudinal analyses for linear trends, a phenomenon of change can be quantified as some

change in outcome over a unit of time — essentially, a slope. To determine if the change over time

is statistically significant, one tests whether the estimate of the mean of the slope is significantly

different from zero. To determine if the change over time is only negligibly different, it is still the

case that statistical non-significance on a difference test is inadequate evidence for demonstration

of lack of change.

Dixon and Pechmann (2005) recognized the applicability of negligible trends in ecology; in

time-series studies for population trends of species, it is sometimes the case that population growth

is hypothesized to be negligible or that growth is not substantively meaningful. Reframing the

TOST for the context of trends, the TOST for negligible trend differs from the previous tests in

that the equivalency of aggregate means is not tested; rather, this test determines whether the rate

of change, from one measurement occasion to the next, is small enough to be considered negligible.

Thus, the bounds of the equivalence interval no longer pertain to mean differences but rather to the

rate of change across some ordered predictor, such as time.

Following the logic of the intersection-union TOST, the set of null hypotheses for the test of

negligible trend states that the population slope is or exceeds the minimum rate of change consid-

ered to be meaningful, while the alternate hypotheses states that the population slope falls within

the range of negligible values, as follows:
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H01 : β ≥ ε, H02 : β ≤ −ε (20)

H11 : β > −ε, H12 : β < ε. (21)

The two test statistics are computed as

t1 =
b − ε
SEb

(22)

t2 =
b − (−ε)

SEb
(23)

where b is the estimated model slope and SEb is the associated standard error with the slope. The

overall null hypothesis that the slope falls outside the equivalence interval is rejected if both test

statistics are rejected,

t1 ≤ −tα, d f , and t2 ≥ t1−α, d f (24)

where df refers to the appropriate degrees of freedom from some model.

The TOST for negligible trend is proposed to be conducted after fitting an appropriate model,

which should provide the slope, standard error, and the degrees of freedom for inference. In their

paper, Dixon and Pechmann (2005) fitted autoregressive time-series models and simply incorpo-

rated the estimated slopes, standard errors, and Kenward-Roger approximations for degrees of
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freedom (Kenward & Roger, 1997) into the TOST framework. They also suggested that with other

types of data, standard errors and degrees of freedom could be obtained from whichever model

may be most suitable, such as linear mixed models (Dixon & Pechmann, 2005).

Because mixed models have gained popularity for longitudinal studies in psychology, it would

seem advantageous to couple the flexibility of alternative modeling approaches with the intuitive

implementation of the TOST. However, there have been few applied examples of coupling mixed

models with the TOST and no simulation that has demonstrated the statistical properties of this

procedure. To ensure that the TOST for negligible trend is useful, it would be necessary to ascertain

that the TOST behaves as expected when using fixed effects estimates and degrees of freedom from

external models. Specifically, one must ascertain that the degrees of freedom for the test of slope

is applicable in the TOST framework, as was initially proposed.

Current Study

The aforementioned tests are potential avenues for the problem of testing equivalence in lon-

gitudinal or repeated-measures research, but it is unclear as to how behavioural researchers should

choose from among the options given some of the issues discussed earlier (e.g., the Hotelling

T 2’s equivalence region shape, the pairwise procedures’ conservatism). Beyond the exposition of

theoretical properties from the perspective of mathematical statistics, there has been no empirical

comparison for the power of the equivalence tests for repeated measures under a common set of

conditions, no description of the conservatism of the pairwise procedures, and no clear recommen-

dation for analysis. In particular, the Hotelling T 2 is an omnibus procedure that should optimize
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power, but it has an equivalence region that is dependent upon the correlational structure of the

data; and, although the pairwise procedures are not afflicted with any dependence on correlation

structure, conservative Type I error rates could be associated with diminished power. It is quite

possible that there is no one optimal solution, but empirical demonstrations of these procedures’

statistical behaviours may provide insight into the conditions in which each test may be most use-

ful.

The current research aims to empirically evaluate the following: Type I error rates for each test

of mean equivalence (Hotelling T 2, standardized pairwise, and unstandardized pairwise), power

rates for the tests of mean equivalence under a common set of conditions, Type I error and power

rates for the test of negligible trend using linear mixed models (random intercept model), and

the extent to which the problem of the theoretical equivalence region arises in practice. With the

criteria that the recommended solution is valid in Type I error rate, adequate in power, and relatively

invariant across data situations, this study is expected to provide insight as to how researchers

should choose among the existing equivalence tests for repeated measures.
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Method

R Software (R Development Core Team, 2015) was used for programming each statistical test

and for running Monte Carlo simulations. Two major sets of simulations were conducted: One

set of separate simulations determined the Type I error rate of each hypothesis test; the second set

compared power rates among the tests of mean equivalence and calculated the power rate for the

test of negligible trend. Type I error rates were considered acceptable with liberal bounds of ±.50α

(Bradley, 1978), yielding bounds of .025 and .075 for α = .05. Conditions for calculating Type I

error and power rates were replicated 2000 times.

To determine the extent to which the problem of the Hotelling T 2’s equivalence region arises

in practice, a supplementary simulation also examined the correlation of difference scores corre-

sponding to a variety of correlation structures.

Data Generation

Tests of Mean Equivalence

Conditions for the tests of mean equivalence were manipulated by the number of repeated

measurements (3, 5, 7), sample size (10, 50, 90), equivalence interval width (0.25, 0.50, 0.75),
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equal standard deviations across the repeated measurements (denoted as σ0; 0.70, 1.00, 1.30), and

correlation structures. Three different sets of correlation structures were created: autocorrelated,

equicorrelated, and mixed. The autocorrelated structure had a starting correlation of .50 (code

obtained from Rizopoulos, 2007). Equicorrelated structures had matrices with equal off-diagonals

(.25, .50, .90), while two mixed correlation structures differed in off-diagonals. Inter-sample cor-

relations for mixed structures are detailed in Table 1. Together, the defined conditions yielded

486 unique scenarios. For every replication, a population correlation structure was defined and

unstandardized into a population variance-covariance matrix by σ0. With the variance-covariance

matrix and all other attributes of the condition, data were simulated as multivariate normal with

equal variances for each of the repeated points.

The Type I error simulation for the Hotelling T 2 differed slightly in that there was no manipu-

lation for either σ0 (held constant at one) or variants of mixed correlation structures because of the

way in which the Type I error conditions were simulated (detailed later).
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Three measurement occasions

Matrix r12 r13 r23

Mixed A .15 .25 .55

Mixed B .70 .65 .60

Five measurement occasions

Matrix r12 r13 r14 r15 r23 r24 r25 r34 r35 r45

Mixed A .15 .25 .30 .50 .55 .40 .30 .45 .25 .70

Mixed B .70 .65 .60 .55 .60 .55 .50 .65 .65 .85

Seven measurement occasions

Matrix r12 r13 r14 r15 r16 r17 r23 r24 r25 r26 r27 r34 r35 r36 r37 r45 r46 r47 r56 r57 r67

Mixed A .15 .25 .20 .25 .30 .45 40 .45 .35 .25 .10 .45 .25 .20 .15 .50 .35 .25 .40 .45 .35

Mixed B .70 .65 .60 .55 .50 .45 .60 .55 .50 .45 .40 .75 .65 .50 .35 .85 .70 .40 .60 .55 .40

Table 1: Elements of the population mixed correlation matrices
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TOST for Negligible Trend

Manipulations included the number of repeated measurements (3, 5, 7), sample size (10, 50,

90), and equivalence interval width (0.25, 0.50, 0.75); unlike simulations for the tests of mean

equivalence, this simulation manipulated neither σ0 nor correlation structure. Data were simulated

exactly from the following random intercept model (code obtained from Center for Statistical

Consultation and Research 2011):

Yi j = π0i + π1i(time) + εi j (25)

π0i = γ00 + ζ0i (26)

π1i = γ10 (27)

π0i and π1i are individual-level intercepts and slopes, respectively. γ00 is the population average

intercept, and γ10 is the population average slope. εi j is the individual-level error term, and ζ0i is

the error term for the varying intercepts; both error terms are distributed as N(0, 0.25). To ensure

correct data generation for the true model, Type I error for the test of difference on the slope was

checked for accuracy.

To conduct the actual TOST for negligible trend, a random intercept model was fit to these

data using restricted maximum likelihood with ‘time’ as a predictor and with Satterthwaite ap-

proximated degrees of freedom. From the model, the fixed effect slope, its standard error, and the
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associated degrees of freedom for inference on the slope were submitted to the TOST for negligible

trend.

Population Mean Configurations

Tests of Mean Equivalence

The power condition was set such that all population means were 0. For the Type I error

rate conditions of each test, the population mean configuration was set such that the parameter of

interest lies at the boundary of the equivalence interval.

For Hotelling T 2, the Type I error condition is such that the Mahalanobis distance, δ
(
Σ−1

D

)
δ′,

is equal to ε2. To satisfy this criterion, a set of adjacent mean differences was iteratively found

for some combination of ε and a variance-covariance matrix of differences. For any such com-

bination, a mean difference — say d — was found such that each k occasion’s mean (for k > 1)

was d units away from the previous mean. The Type I error configuration can be generalized as

0, d, 2d, . . . , kd. Table 2 lists the differences in each adjacent mean required to create a Maha-

lanobis distance equal to ε2 for particular combinations of the standardized variance-covariance

matrix and ε values. As correlations increase, the adjacent mean difference d decreases.

For both pairwise procedures, the null condition states that at least one pairwise comparison

yields some mean difference that falls at or beyond the equivalence interval; thus, for both pairwise

procedures, exactly one pair, µ1 and µ2, had a population mean difference at a boundary. For

the standardized pairwise test, the mean difference was to be standardized, and so the population

standard deviation of the difference for this pair of means was calculated from the population
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Table 2: Type I error conditions for the Hotelling T 2. The distance between adjacent means results

in a Mahalanobis distance equal to ε2.

Equivalence Interval = 0.50

k Correlation Matrix Distance Between Adjacent Means, d

3 Equi .25 0.3061862

Equi .50 0.2500000

Equi .90 0.1118034

5 Equi .25 0.1369306

Equi .50 0.1118034

Equi .90 0.0500000

7 Equi .25 0.08183171

Equi .50 0.06681531

Equi .90 0.02988072

24



Test Type I Error Configuration

Hotelling T 2 0, d, 2d, . . . , kd

Standardized Pairwise 0, εσ(1,2), εσ(1,2)/2, . . . , εσ(1,2)/2

Unstandardized Pairwise 0, ε, ε/2, . . . , ε/2

TOST for Negligible Trend 0, ε, 2ε, . . . , (k − 1) ε

Table 3: Mean configurations for Type I error conditions

variance-covariance matrix by Equation 8. For the null hypothesis to be true then, the difference

between µ1 and µ2 is εσD while all other mean differences are smaller than that of ε. Thus, the mean

configuration is generalized as 0,
(
εσD,

)
, (0.5εσD) ,. . ., (0.5εσD). For the unstandardized pairwise

test, the mean configuration was 0, ε, ε/2, . . . , ε/2.

A summary of Type I error mean configurations for the tests of equivalence is found in Table

3.

TOST for Negligible Trend

The power condition was set such that the population fixed slope parameter was 0. For the

Type I error condition, the null hypothesis states that the slope parameter falls at the boundary of

the equivalence interval. For some rate of negligible change, ε, the mean configuration would be

0, ε, 2ε, . . . , (k − 1) ε.
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Correlation of Difference Scores

This supplementary simulation explored the relation between the correlation of observed values

and the correlation of their adjacent difference scores. Generally, from population correlation

matrices, adjacent difference scores were calculated along with the correlations of these difference

scores (i.e., the correlation between the first intraindividual difference and the second), resulting in

empirical sampling distributions of correlations for intraindividual differences.

Multivariate normal data were simulated as observed scores for three measurement occasions,

each with a population mean of 0, standard deviation of 1, and sample size of 1000. Three pop-

ulation correlations were chosen: the low correlation of .10, the medium correlation of .50, and

the high correlation of .90. Given three measurement occasions, all possible permutations of these

three base correlation magnitudes resulted in 27 conditions. Each condition was replicated 5000

times. For each dataset of observed scores, difference scores between adjacent vectors were com-

puted; that is, for 1 < i < n observations on three measurement occasions, the two difference

scores were x3i − x2i and x2i − x1i. The correlational magnitude of these intraindividual differences

(|r(x3−x2,x2−x1)|=|rdi f f |) was extracted on each replication; thus, for every condition (i.e., every tested

correlation structure for observed data) with 5000 replicates, a distribution of |rdi f f |s was obtained,

and the mean magnitude of these correlations was calculated.

Based on a visual appraisal of the rejection region as detailed in Wellek (2010), it seems

that correlations of intraindividual differences well beyond .50 would yield problematic interpre-

tations. To describe the expected |rdi f f | associated with each tested correlation structure, pro-

portions were obtained for the |rdi f f |s falling into each of the following intervals:
(
|rdi f f | ≤ .30

)
,
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(
.30 < |rdi f f | ≤ .50

)
,
(
.50 < |rdi f f | ≤ .70

)
, and

(
|rdi f f | > .70

)
. Thus, if some particular condition

yielded a distribution that was centrally located either between .50 and .70 or beyond .70, the cor-

relation structure of that condition could be said to frequently yield intraindividual correlations that

are problematic for the Hotelling T 2.
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Results

Tests of Mean Equivalence

Empirical Type I Error Rates

The Hotelling T 2 maintained adequate Type I error rates (.033 - .063) across all conditions (Ta-

ble 4). As expected, the two pairwise procedures were prone to conservatism. For both procedures,

the degree of conservatism was exacerbated as k increased. For both, the empirical Type I error rate

approached α at higher sample sizes and with wider equivalence intervals (Figure 3). Generally,

the conditions with adequate Type I error rates (.025 to .075) were characterized by equivalence in-

terval widths of at least .50 and sample sizes of at least 50. For the unstandardized pairwise, higher

standard deviations were associated with more conservatism; for the equicorrelated structure with

0.90 off-diagonals, nominal rates were achieved with three measurement occasions.

Empirical Power Rates

For all tests of mean equivalence, higher sample sizes increased power (Figure 4), more mea-

surement occasions slightly decreased power (Figure 5), and wider equivalence intervals increased

power (Figure 5). Generally, the Hotelling T 2 had the power advantage, followed by the standard-
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Rejection Rates

Measurement Occasions Off-diagonal Correlations n = 10 n = 50 n = 90

3 0.25 0.045 0.051 0.043

3 0.50 0.046 0.045 0.045

3 0.90 0.063 0.048 0.051

5 0.25 0.052 0.051 0.041

5 0.50 0.052 0.049 0.045

5 0.90 0.033 0.055 0.050

7 0.25 0.061 0.055 0.045

7 0.50 0.053 0.049 0.055

7 0.90 0.052 0.049 0.049

Table 4: Type I error rates for the Hotelling T 2. Results belong to conditions with the equivalence

interval width of 0.50. Off-diagonal values pertain to the identical elements of the population

correlation matrix.
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Figure 3: Type I error rates for the pairwise procedures. Vertical panels show conditions for the

equivalence intervals of 0.25, 0.50, and 0.75. Data points belong to conditions with equal standard

deviations of one and the equicorrelated structure with .50 off-diagonals. STD-PW: Standardized

pairwise test. UNSTD-PW: Unstandardized pairwise test.
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ized pairwise and unstandardized pairwise.

The tests that had power rates that were invariant to correlation structure and standard devia-

tions were the Hotelling T 2 and standardized pairwise tests. Figure 4 shows that with increased

σ0, power for the unstandardized pairwise dropped dramatically; only with the lowest standard de-

viation did the unstandardized pairwise procedure yield comparable power to the Hotelling T 2 and

standardized pairwise tests. The unstandardized pairwise was also sensitive to correlation struc-

ture. Among the equicorrelated structures, the starkest differences in power for the unstandardized

test are equicorrelated at .25 and at .90. For non-equicorrelated structures, power rates also tended

to be higher for Mixed B, which generally had stronger associations between the measurement

occasions.

Notable cases included the equicorrelated structure with off-diagonals of .90 and cases in which

measurement occasions had σ0 of 0.70. With the equicorrelated 0.90 structure, the unstandardized

pairwise test had optimal power compared to the others. As well, though narrower equivalence

intervals tended to yield low power for all other tests, the unstandardized pairwise test maintained

adequate power and outperformed the others when applied under this particular correlation struc-

ture. With low standard deviations of 0.7, the unstandardized pairwise test has better power relative

to the other tests. In these cases, the test maintained high power across the tested sample sizes,

number of measurement occasions, standard deviations, and equivalence interval width — even in

spite of the test’s conservatism.
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Figure 4: Effects of σ0, sample size, and correlation structure on power rates. Vertical panels

show the conditions for sample sizes of 10, 50, and 90. Data points belong to conditions with

five measurement occasions and an equivalence interval of 0.50. HT: Hotelling T 2. STD-PW:

standardized pairwise test. UNSTD-PW: unstandardized pairwise test.
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Figure 5: Effects of measurement occasions, equivalence interval width, and correlation structure

on power rates. Vertical panels show conditions for the equivalence intervals of 0.25, 0.50, and

0.75. Data points belong to conditions with sample size of 50 and equal standard deviations of

1. HT: Hotelling T 2. STD-PW: standardized pairwise test. UNSTD-PW: unstandardized pairwise

test.
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TOST for Negligible Trend

Empirical Type I Error Rates

The TOST for negligible trend had Type I error rates that were approximately accurate. For n

= 10, Type I error reached a maximum of .031; for n = 50, .056; for n = 90, .063, all of which are

below the acceptable upper bound (Figure 6). Although Figure 6 seems to suggest that rates are

higher with a wider equivalence interval and a higher sample size, an ad hoc simulation using n =

200, an equivalence width of 0.75, and k = 3 did not show inflated rates.

Empirical Power Rates

Similar to the tests for mean equivalence, the test of negligible trend has higher power with

higher sample sizes and wider equivalence interval widths. Further, with more measurement occa-

sions, the TOST for trend had increased power (Figure 7).

Correlation of Difference Scores

For each of the 27 tested conditions of correlation structures, an empirical sampling distribu-

tion of the intraindividual correlations, |rdiff|, was obtained. To summarize these empirical distri-

butions, proportions of |rdiff| were calculated for the following ranges of correlational magnitude:(
|rdiff| ≤ .30

)
,
(
.30 < |rdiff| ≤ .50

)
,
(
.50 < |rdiff| ≤ .70

)
, and

(
|rdiff| > .70

)
. It was noted earlier that

those intraindividual correlations with high magnitude could be considered problematic.

Across the 27 tested correlation structures, the mean difference score correlations ranged from
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Figure 6: Type I error rates of TOST for negligible trend. Vertical panels show conditions for the

equivalence intervals of 0.25, 0.50, and 0.75.
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Figure 7: Power rates of TOST for negligible trend. Vertical panels show the conditions for sample

sizes of 10, 50, and 90.
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.06 to .97. Of the 27 tested conditions, four yielded distributions of intraindividual correlations

that centered around relatively high magnitudes, from .50 to .70, and 11 conditions yielded centers

greater than .70.

Tables 5 and 6 show the population correlation elements and a descriptive analysis of the re-

sulting sampling distributions for the sample intraindividual correlations, sorted by the maximum

and mean values of |rdiff|.
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ρ12 ρ13 ρ23 0 ≤ |rdiff| ≤ .30 .30 < |rdiff| ≤ 50 .50 < |rdiff| ≤ 70 .70 < |rdiff| ≤ 1.00 Maximum |rdiff| Mean |rdiff|

.10 .90 .50 1.00 .98 .97

.50 .90 .10 1.00 .98 .97

.10 .90 .10 1.00 .96 .94

.50 .90 .50 1.00 .93 .90

.90 .90 .50 1.00 .89 .86

.50 .90 .90 1.00 .89 .86

.10 .50 .90 1.00 .88 .83

.90 .50 .10 1.00 .88 .83

.10 .90 .90 .12 .88 .80 .72

.10 .50 .10 .16 .84 .80 .72

.90 .90 .10 .13 .87 .79 .72

.50 .50 .10 .89 .11 .76 .67

.90 .10 .50 .89 .11 .75 .67

.10 .50 .50 .89 .11 .75 .67

.50 .10 .90 .89 .11 .75 .67

Table 5: Distribution for correlation of difference scores (Part i). ρs are population correlations.

|rdiff| is the sample correlation magnitude of the difference scores. Blank space refer to proportions

of zero. This table is continued on Table 6.
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ρ12 ρ13 ρ23 0 ≤ |rdiff| ≤ .30 .30 < |rdiff| ≤ 50 .50 < |rdiff| ≤ 70 .70 < |rdiff| ≤ 1.00 Maximum |rdiff| Mean |rdiff|

.50 .50 .50 .49 .51 .63 .50

.90 .90 .90 .49 .51 .62 .50

.10 .10 .10 .50 .50 .61 .50

.90 .50 .90 .83 .17 .60 .47

.50 .10 .10 .03 .97 .50 .37

.10 .10 .50 .04 .96 .50 .37

.90 .50 .50 .96 .04 .37 .22

.50 .50 .90 .96 .04 .37 .22

.10 .10 .90 1.00 .34 .17

.90 .10 .10 1.00 .30 .17

.50 .10 .50 1.00 .24 .10

.90 .10 .90 1.00 .24 .06

Table 6: Distribution for correlation of difference scores (Part ii). ρs are population correlations.

|rdiff| is the sample correlation magnitude of the difference scores. Blank space refer to proportions

of zero.
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Discussion

Equivalence tests address the logical and statistical issues of the inappropriate application of

tests of differences, and the presence of several psychology studies which test for stability or lack

of change indicates that potential solutions require explication. With the criteria that the ideal

test has nominal Type I error, adequate power, and relative invariance across data situations, the

current study empirically evaluated three tests of mean equivalence and one test of negligible trend

under the same set of data characteristics. An interpretation of the results provides preliminary

suggestions as to how researchers can use the presently available methods.

Comparing the Tests

Out of all the evaluated tests, the TOST for negligible trend satisfies all criteria reasonably

well, provided that an appropriate model is fitted. The simulation, using the linear mixed model in

tandem with the test, showed that the Type I error rate for the null hypothesis of non-equivalence

is conservative for lower sample sizes. This may not be overly concerning, though, because mixed

models are asymptotic procedures that do require high sample sizes for sensible inferential tests.

Overall, results from the current study support Dixon and Pechmann’s (2005) assertion that esti-

mates of slopes, standard errors, and the approximated degrees of freedom from the mixed model,
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as well as time-series models, are appropriate for the TOST.

The trend test has, unlike the tests of mean equivalence, higher power with more measurement

occasions, though the effect is modest. This aspect aligns with the usual desire for more mea-

surement occasions in longitudinal studies (Singer & Willett, 2003). In modeling change, more

repeated measures allows for better reliability in assessing change; if one were interested in a re-

liable statement of stability over time, then more measures would both allow for higher reliability

and greater power for detecting equivalence. Further, there is greater flexibility in the types of lon-

gitudinal questions that may be addressed. Because the procedure’s tested parameter of the slope

may be obtained through the linear mixed model, additional research questions about individual-

level variability and stability can be addressed. With a random intercept model, as was presented in

the simulation, the TOST for negligible trend addresses the question of whether there is aggregate-

level stability of some response variable. However, if one were to implement a random intercept

and random slope, as is commonly done in practice, then one could determine both the presence of

aggregate-level stability and of individual-level stability. For aggregate-level stability, one could

still use the mean slope from the random intercept and random slope model; for individual-level

stability, one could examine individual-level coefficients (i.e., individual-level, random slopes) to

determine the proportion of the sample that had individual slopes falling within the equivalence

interval.

Although linear mixed models are applicable for within-subject variables that are unordered

factors, such as experimental conditions, the goal for overall equivalence renders the TOST for

negligible trend inapplicable. For k unordered, categorical conditions, there would be k − 1 slope

41



estimates, corresponding to k− 1 mean differences between conditions. To establish overall equiv-

alence, all pairwise mean differences would need to be established; if it were to become a pairwise

problem, then there would be issues regarding conservatism or multiplicity control. Thus, when

one is interested in the equivalence of unordered groups for a factor, an analysis on aggregate

means would be more intuitively applied.

Of the tests of mean equivalence, the Hotelling T 2 test is the only one that has nominal Type I

error and adequate power rates that are invariant across correlation structures and σ0. Its general

advantage in power over the pairwise procedures is also in line with previous studies about the

equivalence of k independent measurements, showing that omnibus procedures have more power

over pairwise procedures in equivalence testing settings.

The limitation of the Hotelling T 2’s theoretical equivalence region requires discussion. As

the magnitudes of intraindividual correlations increase, the equivalence region becomes increasing

elongated, making interpretations problematic. From the supplementary simulation for the correla-

tion of difference scores, the observed patterns in even this small subset of conditions indicates that

this problem of the elongated equivalence region would likely be prevalent in the applied setting.

Further, there appears to be no clear, systematic pattern for which one would observe or predict the

pattern of intraindividual correlations from the correlation matrix itself.

Despite its Type I error and power rates, the Hotelling T 2 cannot be wholly recommended as the

default solution because its equivalence region depends upon the correlation of the intraindividual

differences. This caveat has the consequence that conditions yielding highly correlated differences

scores may involve less intuitive interpretations. Still, it is possible that the correlation structures
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seen in practice do yield correlations of differences that are unproblematic; indeed, results for the

tested subset of conditions do show intraindividual correlations of less than .50. In application,

one may consider trade-offs to harness the Type I and power rates of the Hotelling T 2 while also

being cautious of intraindividual difference correlations. For example, with an equivalence interval

of .50 and three measurement occasions, one may accept intraindividual difference correlations of

.50, for its equivalence region is not considered strongly elliptic. Having observed whether the

correlations of intraindividual differences from the observed correlation matrix are acceptable, one

may then decide to proceed with the Hotelling T 2. For this, it would be possible to calculate the

difference scores for adjacent means and to obtain the intraindividual correlation matrix. However,

with more than three measurement occasions, the nature of the equivalence region is not obvious.

If one decides that the advantages of Type I error and power of the Hotelling T 2 do not su-

percede the interpretative limitations of its equivalence region, then researchers could consider the

pairwise procedures. The choice between these two pairwise procedures may be made on the basis

of comparing their Type I error rates, power rates, and choice of distributional parameter.

The extent of conservatism differed little for the two pairwise procedures, as both have Type

I error rates that do approach nominal levels at higher sample sizes. However, it should be noted

that this occurs only in the best case scenario, in which only one pairwise mean difference falls

at the equivalence boundary (i.e., all other pairwise mean differences are, by themselves, power

conditions); if more than one pairwise mean difference falls outside the boundary (which also

yield Type I error conditions), then conservatism increases dramatically.

Power rates differ markedly between the standardized and unstandardized forms. Generally
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higher powered than the unstandardized, the standardized test also has the additional advantage

that power rates are invariant to the standard deviations of each measurement occasion and corre-

lation structures. In contrast, the sensitivity of the unstandardized test to standard deviations and

correlation structures makes for less predictable power estimation.

However, the unstandardized test does have some advantage for certain conditions. Compar-

isons within the sets of equicorrelated conditions (particularly those with diagonals of .25 and .90)

and non-equicorrelated conditions (AR, Mixed A, Mixed B) suggest that conditions for highly

related measurement occasions allow for higher power. This is even more pronounced when oc-

casions are measured to have low spread in which the standard deviation is small. In these con-

ditions, the unstandardized test has much higher power and is comparable to the Hotelling T 2 —

even the diminishing effects of low sample sizes, narrow equivalence intervals, more measure-

ment occasions, and high standard deviations no longer pose limitations. With highly correlated

measurement occasions, the unstandardized test is highly powered in almost all scenarios.

The effects of the magnitude of correlation can be explained. With a strong pairwise associ-

ation, the standard error decreases, which makes it easier for each pairwise test statistic to fall in

the appropriate critical region. Indeed, Equation 19 indicates that an increase in r corresponds to a

larger rejection region. This finding for the unstandardized pairwise test is thus a generalization of

Mara and Cribbie’s (2012) finding that the TOST-based paired samples test holds advantage over

the standardized pairwise test when scores are highly correlated. In practice, however, it is highly

unlikely to observe equicorrelated structures. Mixed correlation structures, whose dimensions and

elements also vary with the number of measurement occasions, do not have the same predictability
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in power as compared to the equicorrelated structures. Nevertheless, it is useful to be aware of the

general situation in which the unstandardized would be most advantageous.

The stark differences between the two pairwise procedures can be related back to the choice

of test parameter. From a theoretical perspective, Wellek (2010) has argued that the standardized

difference is a more useful metric in equivalence testing. For some large, raw mean difference

between two population distributions, the distributions are well distinguished when the variance

of these distributions decrease; but, when the variances of these distribution increases, the two

populations become increasingly indistinguishable (Lehmann & Romano, 2005; Wellek, 2010).

On the other hand, it would seem more intuitive, particularly in the behavioural sciences, to choose

an equivalence interval based on raw mean differences, especially when such a metric may be more

interpretable in a practical context (Wilkinson, 1999). The choice, then, relates to the parameter

that one chooses to make inference to and to the statistical properties one prefers to gain when

choosing one test over the other.

Generally, when considering power for detecting equivalence, researchers should consider the

factors of sample size, measurement occasions, precision, correlation structure, and equivalence in-

terval width. A cautionary note must be made about the equivalence interval. Unlike the other fac-

tors studied here, the equivalence interval width is a characteristic not of the data nor the research

design but is rather a decision to be made by the researcher and the context of his field. Equiv-

alence intervals are often more well-defined (e.g., the difference in drug efficacy that is deemed

negligible) outside the social sciences but less so in psychology; psychologists must be careful to

examine previous literature for effect sizes particular to their scales in use. Because there is some
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subjectivity inherent in the process of choosing an equivalence interval in psychology, one must be

careful not to let the promise of higher power influence the choice of equivalence interval.

Recommendations

Based on empirical results, suggestions may be made about test selection. Overall, the re-

searcher should consider the nature of the data (particularly regarding whether the predictor is

ordered), the data’s spread, and the correlation structure. When the nature of the within-subject

variable is ordered (such as time), the TOST for negligible trend would be best, particularly be-

cause it can be used in conjunction with other flexible modeling procedures (at least with linear

mixed models and time-series models). When the within-subject variable is unordered, such as

with experimental conditions, tests of mean equivalence should be applied.

An initial examination of the correlation structure for the tests of mean equivalence would be

helpful. For the case of three measurement occasions, the Hotelling T 2 may be used after de-

termining that intraindividual correlations of differences imply relatively little elongation of the

equivalence region. For a rough guideline, a low magnitude for the intraindividual difference cor-

relation (|rdi f f | < .50) should be acceptable for the use of the Hotelling T 2, but for magnitudes that

exceed .50 (or some higher cut-off), one should be wary of the Hotelling T 2. If the Hotelling T 2

is unsound, then one may consider pairwise procedures. Generally, the standardized test is rec-

ommended over the unstandardized test for its general advantage in power and for its invariance

to data situations. However, if one observes that values for the measurement occasions are highly

correlated, then the unstandardized test would be optimal. In any of these cases, the choice of
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equivalence interval should not be influenced by the desire for higher power. Overall, the choice of

test depends on the measurement level of the repeated outcome, precision, and correlation struc-

ture.
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