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Abstract 

Communications systems designed with application-specific integrated circuit (ASIC) 

technology suffer from one very significant disadvantage - the integrated circuits do not 

possess the ability of programmability. However, Software Defined Radio’s (SDR’s) 

integrated with Field Programmable Gate Arrays (FPGA) provide an opportunity to 

update the communication system on nanosatellites (which are physically difficult to 

access) due to their capability of performing signal processing in software. SDR signal 

processing is performed in software on reprogrammable elements such as FPGA’s. 

Applying this technique to nanosatellite communications systems will optimize the 

operations of the hardware, and increase the flexibility of the system. 

In this research a transceiver algorithm for a nanosatellite software defined radio 

communications is designed. The developed design is capable of modulation of data to 

transmit information and demodulation of data to receive information. The transceiver 

algorithm also works at different baud rates. The design implementation was successfully 

tested with FPGA-based hardware to demonstrate feasibility of the transceiver design 

with a hardware platform suitable for SDR implementation.  
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1 Introduction 

 A Software Defined Radio (SDR) is a radio in which the signal is processed entirely on 

reprogrammable elements (Oliveri, 2011). An SDR integrated with a Field Programmable 

Gate Array (FPGA) provides an opportunity to update the communication system on 

nanosatellites, which traditionally are physically difficult to access. Applying this 

technique to nanosatellites communication system will optimize the operations of the 

hardware, and increase the flexibility of the system. This thesis will begin with an 

overview of past nanosatellite missions. Then the motivation and objectives for this 

research is explained. Last, a thesis outline is provided. 

1.1 Nanosatellite Missions 

Traditionally, the majority of satellites launched in the past decade have mass greater 

than 1000 kg. Due to the size and weight of these satellites, the structure and the 

development of the nanosatellite will be more complex than the small satellites, which 

increase the development period and manufacturing cost (Rogers et al., 2010). Due to 

such long development periods and high expenses, space-tested technologies were 

preferred to mitigate the risk of failure. Therefore the missions with the large satellites 

limited the scope for research of new technologies.  

In the space industry, mass of a satellite is used to distinguish them. Satellites with mass 

greater than 1000 kg are large satellites; medium satellites have mass from 500 to 1000 

kg; mini satellites with mass from 100 to 500 kg; micro satellites have mass from 10 to 
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100 kg; nanosatellites with mass from 1 to 10 kg; picosatellites have mass from 0.1 – 1 

kg;  and femto satellites have mass < 100 g (Konecny, 2004). 

In recent years, technologies have been advanced in the direction of making smaller and 

lighter hardware components with higher capabilities. With advances in highly reliable 

commercial electronics and miniaturization techniques, nanosatellites are becoming 

popular (Rogers et al., 2010). Their main advantages over traditional satellites are much 

lower budgets, their modular nature and flexible launch structures. They also have 

significantly faster development cycles as compared to traditional satellites. The 

technology provides miniature and reliable satellites conducting single purpose missions 

(Rogers et al., 2010).  Government and private sectors are showing interest in 

nanosatellite technology. Nanosatellites provide a suitable platform for universities and 

small companies to develop new space technology and demonstrate in the space field 

(Rogers et al., 2010).  Nanosatellites are suitable for Earth observation and near- Earth 

missions (Trusculescu, 2012).  

Larger satellites are still required for the outer space missions and other targeted missions 

that require large payloads however the new nanosatellite technology is allowing further 

research to be conducted for cost effective and commercial off the shelf (COTS) space 

tools. Figure 1 illustrates an example of a nanosatellite. AAUSAT3 (AAUSAT3, 2012) is 

the third CubeSat (a class of nanosatellites that conforms to CubeSat specifications 

published by California Polytechnic State University of 10 X 10 X 10 cm(Oliveri, 2011) 

built and operated by students from Aalborg University in Denmark. It was launched on 

25 February 2013 from Satish Dhawan Space Centre in India on a PSLV rocket. 

http://en.wikipedia.org/wiki/CubeSat
http://en.wikipedia.org/wiki/University_of_Aalborg
http://en.wikipedia.org/wiki/Denmark
http://en.wikipedia.org/wiki/Satish_Dhawan_Space_Centre
http://en.wikipedia.org/wiki/India
http://en.wikipedia.org/wiki/PSLV
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AAUSAT3 carries two Automatic Identification System (AIS) receivers as the main 

payload. 

     

     Figure 1 : AAUSAT 3 CubeSat (AAUSAT3, 2012)  

Since nanosatellite missions have very constrained budgets, COTS components are used 

for development. Nanosatellites are used by universities to introduce the space systems 

engineering process to students and provide hands on training. The training includes 

constructing different space missions and developing hardware specializations (Rogers et 

al., 2010).  For example Figure 2 illustrates the Sigma (Scientific CubeSat with 

Instrument for Global Magnetic field and Radiation) CubeSat being developed by the 

School of Space Research at Kyung Hee University (KHU), Korea in cooperation with 

the Korea Astronomy and Space Science Institute, York University and the University of 

New Hampshire to provide their students with training on building nanosatellite 

subsystems. The payloads include the Tissue Equivalent Proportional Counter (TEPC) 

and a magnetometer. SIGMA is a 3-unit CubeSat with a mass of 3.2 kg. 

 

http://en.wikipedia.org/wiki/Automatic_Identification_System
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Figure 2 : Proposed SIGMA CubeSat 

Nanosatellites provide the opportunity to enable missions which large satellites are 

unable to accomplish because of their bulk nature. An example is for hardware tested on 

nanosatellites before being used for future missions. XI-IV developed by University of 

Tokyo was built for the purpose of testing a working satellite bus for future satellite 

missions (Klofas, 2008).  Nanosatellites can provide a platform for missions which 

require constellations of satellites for low data rate communications that use low power 

for operations. Nanosatellites can present a platform for formation flying satellites so that 

data can be gathered for missions at several points around Earth (Yoon et al., 2014). 

Nanosatellites also provide the opportunity to be used for inspection of larger satellites 

and are also used for near-Earth space monitoring and Earth observation missions.  

1.2 Challenges of Nanosatellite Missions 

Nanosatellite missions face a number of challenges in their development cycle. The 

constraint of limited mass of less than 10 kg is a major challenge as it limits the hardware 

that can be used for of satellite subsystems such as power, attitude control and 

communications. Most nanosatellites are CubeSats whose limited size of 10 cm x 10 cm 
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x 10 cm and mass of less than 10 kg limits the options for payload designed for research 

purposes. The low cost of the mission also limits the type of hardware that is feasible. 

Small satellites especially nanosatellites also face the problem of limited power on a 

board which is small enough to fit on the satellite and capable enough to provide power 

to the satellite. Desktop computers and microprocessors cannot fit on small satellites, 

hence the computing and control of the satellite is a challenge. There is a need to use 

boards which will do the multiple designated functions and also fit on the satellite. The 

other challenges faced by nanosatellites are attitude pointing and control, propulsion and 

communications. This thesis is primarily focussed on the communication challenge of 

nanosatellites and will be discussed in the rest of the thesis. 

1.2.1 Challenges of Nanosatellite Communications System 

 The two important challenges that are faced by the communications system are structure 

and power. Structurally, the transceiver which consists of a transmitter and receiver needs 

to be reduced in size and should not be very heavy. Antennas need to be miniaturized to 

fit on a nanosatellite. Power is a scarce resource on a nanosatellite. Higher data rates 

require higher power for the communication system (Homan, 2008). Apart from 

structural and power constraints, the communications system needs to have a reliable link 

between the satellite and the ground station and the launch vehicle along with relaying 

the information efficiently. The communication system also requires higher data rates for 

effective communication at various frequency bands. 
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1.3 Research Motivation 

 A successful nanosatellite mission requires an effective communication system. 

Historically, communication systems on nanosatellites have been built using Application-

Specific Integrated Circuits (ASIC) that are designed to perform the sole function of 

communications. An example of a communications system built on ASIC is the ISIS Full 

Duplex Transceiver shown in Figure 3. The ISIS Full Duplex Transceiver 

(CubeSatShop.com, 2006) is designed for a CubeSat or small satellite, adds telemetry and 

telecommand capability and can relay data at 1200 bits per second and 9600 bits per 

second downlink and uses Audio Frequency Shift Keying (AFSK) for uplink. However, 

with the ever-growing need to use the limited space and mass on nanosatellite as 

effectively as possible; the motivation for this research thesis is to build a system which 

can aid in building more flexibility into a nanosatellite communication system in future. 

 

      Figure 3 : ISIS Full Duplex Transceiver (CubeSatShop.com, 2006) 

This research motivation is realistic and achievable today because of the technology 

advancement accomplished as part of the software defined everything technology trend 

(Riveria, 2013), namely Software Defined Radio systems.   
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1.3.1 Flexibility Afforded by SDR 

SDR systems rely significantly on software for their functionality, including baseband 

functionality, and are known to use encoders, modulators, filters and other such 

components of a communications system defined and designed in software (Oliveri, 

2011). 

The main function of an SDR is to provide increased flexibility by implementing a 

maximum of the communications system code on reprogrammable hardware. Different 

functionalities of communications system are implemented through software 

implementation of numerous signal processing elements. SDR’s are low-cost and low-

mass as there is no requirement of large and expensive hardware due to the use of 

software for processing (Oliveri, 2011). The radio can be reconfigured for various 

applications other than communications such as remote sensing, radio occultation, sensor 

data gathering (Davis et al., 2011) through software implementation of the functions, 

without having to redesign the entire hardware system. 

1.3.2 Benefits of SDR based Nanosatellite Communication System 

An SDR-based single hardware unit can receive multiple signals over a large frequency 

band and process these signals in software and also allows for software-generated signals 

to be transmitted. These multiple functions can be implemented by changing specific 

software modules. Signal processing systems are developed and tested easily; and 

modifications and upgrades are done much more readily on the system, since it is a 

software module. Moreover, flexible communications protocols are developed to adapt to 
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the system user. Hardware radios are unable to conform to new standards or protocols, 

but an SDR can be reconfigured to support new standards which are developing or which 

may develop in the future. Other advantages of SDR’s include the simplicity of quickly 

testing new technology, and testing individual hardware components by simulating the 

surrounding components in software (Oliveri, 2011). 

The research presented in this thesis is an incremental contribution towards the 

development of a nanosatellite SDR- based communications system. Oliveri(2011) in his 

thesis titled ―Modular FPGA Based software defined radio for CubeSats‖ developed a 

SDR hardware platform called the Configurable Space Microsystem Innovations and 

Applications Centre (COSMIAC) CubeSat FPGA board which can be fitted on 1U 

CubeSat(Oliveri,2011). The research in this thesis takes the next step to develop the 

software design, which does the signal processing for the communication system and 

presents the research objectives discussed in section 1.4.  

1.4 Research Objectives 

The research objectives are as follows: 

1. To examine available technologies for nanosatellite communications system and 

consider SDR design as a cost-effective, flexible alternative. 

2. To design the software implementation of SDR as a nanosatellite communications 

system. The proposed design is to perform signal processing for generic 

communication purpose. This research is an incremental contribution towards the 

development of a nanosatellite SDR-based communication system, as the 
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previous work in this field was based on COSMIAC system and tested only with 

GnuRadio. The proposed design eliminates the use of GnuRadio by implementing 

in Simulink to allow for easy porting onto the FPGA-based system 

3. To implement both receiving and transmission functions of SDR. The proposed 

design uses software for baseband functionality in signal processing. This 

research implements a singular modulation scheme to demonstrate the feasibility 

of an SDR system for nanosatellite communications. The design is implemented 

on a hardware development platform which is commercial off the shelf, meets the 

budget constraints and can be enhanced for nanosatellites.  

The research is an incremental step in the process of a developing a nanosatellite software 

defined radio communications system making it unique in the use of SDR for 

nanosatellite application.  

1.5 Thesis Outline 

The thesis outline is as follows. The second chapter discusses the background of SDR 

technology. It also describes the various design options and which design option is 

suitable for the research objectives to be achieved. The third chapter discusses the 

nanosatellite communications and link budget analysis. The fourth chapter discusses the 

hardware platform options. It also talks about which option is chosen and the reasons for 

picking this option. It describes in detail the hardware platform. The fifth chapter 

discusses the communications algorithm implemented on the hardware. The sixth chapter 

discusses the experimental tests and evaluates the performance of the system. The 
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seventh chapter discusses the conclusions from the research and the contributions 

provided by this thesis. It also discusses the future work required to make this research 

efficient and ready to be implemented on a nanosatellite. 
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2  Software Defined Radio Technology  

In this chapter, a background on SDR is provided. A literature survey of existing 

technology is presented as well. In addition, a number of design options are explored. 

And a brief background on digital communications is provided. 

2.1 Software Defined Radio  

An SDR is a radio in which the signal is processed entirely on reprogrammable elements.  

The basic architecture of SDR is shown in Figure 4 attached with the front end and 

antenna. In this system, all the baseband processing of signals is done in software. As 

seen in the architecture, the signal is received through the antenna and then converted to 

the digital form in the front end. These digitized complex baseband data are then 

processed in the processing engine to extract data frames, which are further sent for 

processing for the specific application. This process can be implemented for the 

transmitter as well in reverse order (Oliveri, 2011). 

 

       Figure 4: SDR architecture (Oliveri, 2011) 
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2.1.1 Survey of the Existing SDR Technology 

A survey of the existing SDR Technology is presented in this section. 

JPL SDR: The SDR has been developed for the Connect project on board the 

International Space Station (ISS) (Johnson, 2012). This Radio uses S- Band for 

communication purposes; however, it has the ability to receive L-Band signals as well. 

The SDR was developed   by NASA and JPL. 

Table 1 below lists the physical characteristic of the JPL SDR. 

Physical Characteristics  

Mass 6.6 Kg 

Power 15 W Rx(Typical) + 2W (GPS) + 65 W Tx S 

Band 

Frequencies S-band, L1 ,L2 and L5 

Digital Processing 66 MHz SPARC V8 

128 Mbyte SDRAM + 512 MByte Flash 

2x Xilinx Virtex II 3Mgate FPGAs 

SDRAM and Flash on each FPGA 

Table 1: Physical Characteristics of JPL SDR (Johnson, 2012) 
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  Figure 5: JPL SDR (Johnson, 2012) 

Harris SDR: The Harris SDR has been developed by Harris Engineering Corporation in 

collaboration with NASA for communication purposes on board the International Space 

Station (ISS). The Harris SDR is a part of the Connect project and utilizes the Ka-band 

for communication (Johnson, 2012). 

Table 2 lists the Physical characteristic of the Harris SDR, 

Physical Characteristics  

Mass 19.2 Kg 

Power 100 W 

Frequencies Ka-band 

Digital Processing 700 MIP Power PC processor and 4 Xilinx 

Virtex IV FPGAs 

  Table 2: Physical Characteristics of Harris SDR (Johnson, 2012) 
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   Figure 6: Harris SDR (Johnson, 2012) 

Namuru Software Receiver Platform: The Namuru Software Receiver platform is 

being developed by the University of New South Wales in Sydney, Australia 

(Grillenberger, 2008). There have been three versions of the receiver which have been 

developed so far. Namuru V1, Namuru V2 and Namuru V3. They are being developed 

for research purposes and have not been flown in any mission so far. 

Table 3 lists the Physical characteristic of Namuru V1 and Namuru V2. Table 4 lists the 

Physical characteristic of Namuru V3. 

Physical Characteristics  

Mass 105 grams 

Power 7-9 V 

Channels 12 channels 
Frequencies L1 RF front ends, L2 up converter 

Digital Processing NiosII soft-core CPU  ,  FPGA Altera 

Cyclone II EP2C50F484C8 , EPCS64 64-

Mbit flash serial 

Zarlink GP2015 RF chip for GPS L1 

upconverter circuit used to configure 

second front end  to GPS L2. 
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1 USB 2.0 and 2 RS232 interfaces, 

64 MB SDRAM and 8 MB flash memory. 

Table 3: Physical Characteristics of Namuru V1 and V2 (Grillenberger, 2008) 

Physical Characteristics  

Mass 105 grams 

Power 7-9 V 

Channels 12 channels 

Frequencies L1 C/A 

Digital Processing Zarlink GP2015 RF FE, 

Actel ProASIC FPGA, Actel Smart Fusion 

A2F500 

upconverter circuit used to configure 

second front end  to GPS L2. 

1 USB 2.0 and 2 RS232 interfaces, 

64MB SDRAM and 8MB flash memory. 

Table 4: Physical Characteristics of Namuru V3 (Grillenberger, 2008) 

 

              Figure 7: NamuruV1 receiver (Grillenberger, 2008) 
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Gemini Alpha: This SDR is being developed by the Microsatellites and Space 

Microsystems Lab of University of Bologna for the ALMASat Earth Observation (EO) 

mission. The applications of this SDR are for orbit determination and images geo-

referencing for both GPS and Galileo constellations (Avanzi and Tortora, 2010). Table 5 

lists the Physical characteristic of Gemini Alpha. 

Physical Characteristics  

Mass  

Power 5 W 

Channels 12 channels 

Frequencies Dual Frequency L1/E5 or E1/L2 

Digital Processing Xilinx Virtex5 FPGA FXT series with a 

32-bit PowerPC PPC440 in form of hard 

processor. External soft FPU can be 

attached. 64 MB of 200 MHz DDR2 

SDRAM ,  16 MB of Flash memory, front-

ends are based on the Maxim MAX2769 IC 

Front-end for GPS L1 or Galileo E1 signal, 

while the second is designed for 

the L2 signal trough up-conversion from 

1227.6 MHz to 1575.42 MHz. 

       Table 5: Physical Characteristics of Gemini Alpha (Avanzi and Tortora, 2010) 
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GNSS Software Receiver for MICROSCOPE: This SDR is being developed by 

Syrlinks of Bruz, France, to be tested on board the scientific satellite MICROSCOPE.  It 

will be utilized for navigation and tracking applications (Grondin et al., 2010). Table 6 

lists the Physical characteristic of GNSS Software Receiver for MICROSCOPE. 

Physical Characteristics  

Mass 0.9 kg 

Power 8 W 

Frequencies L1/E1 

Channels 9 

Digital Processing The signal processing functions are split 

into two main  components : an FPGA and 

a DSP 

Table 6: Physical Characteristics of GNSS Software Receiver for MICROSCOPE 

(Grondin et al., 2010). 

2.1.2 Historical Overview of Software Defined Radio for Nanosatellites 

Some of SDR’s developed are also presented here. These were developed specifically for 

CubeSat missions, but do not use open source hardware and software and therefore 

cannot be enhanced for added applications like remote sensing, etc. 

CubeSat Software Defined radio by Vulcan Wireless is a UHF transceiver designed for 

communications with the following specifications: direct to war fighter Communications; 

¼ CubeSat form factor; half duplex/full duplex configurations; and on orbit flight 
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heritage (Vulcan Wireless, 2010). Vulcan Wireless also offers Micro Blackbox 

Transponder which works with fewer protocols and supports S-Band frequencies (Vulcan 

Wireless, 2010). 

2.1.2.1 Configurable Space Microsystem Innovations and Applications Center 

(COSMIAC) 

An SDR for nanosatellites is being developed by Configurable Space Microsystem 

Innovations and Applications Center (COSMIAC) CubeSat SDR system. COSMIAC 

operates at University of New Mexico in Albuquerque, NM.  The SDR is developed for 

1U CubeSat. It is based on the Universal Software Radio Peripheral (USRP) hardware as 

seen in Figure 8. The system uses the Space Plug and play Avionics (SPA) 

communication protocol (Oliveri, 2011). The SDR uses open source hardware and 

software. This system is still under development and will be flown on missions in future. 

This radio is of interest in this research as it shares the same hardware platform. 

 

        Figure 8:  COSMIAC SDR board (Oliveri, 2011) 
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2.2 Hardware Design Options for Software Defined Radio 

SDRs are implemented on a number of hardware platforms, general purpose 

microprocessors (GPP), digital signal processors(DSP), graphics processing units (GPU), 

and field programmable gate arrays (FPGAs). In this section a short description of each 

of these platforms is given and their applicability for SDR. 

 General purpose Microprocessors (GPP): These are processors which are found in 

computers. Intel and AMD devices are common Microprocessors. These devices 

are optimized to handle the widest possible range of applications. GPP are 

designed for general purpose applications and therefore are flexible. GPP’s 

processors are designed for speed and multi-purpose usefulness (Oliveri, 2011). 

An SDR system containing a GPP has fixed hardware computing services and 

peripheral interfaces. High-level languages are implemented for operations which 

process incoming and outgoing data (Guo et al., 2012). 

 

       Figure 9: AMD General Purpose Microprocessor (X86 CPUS’ GUIDE,2010) 
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 Graphics processing units (GPU): These processors are designed especially for 

parallel architecture so that they can run vector manipulations and graphical 

operations. These units are excellent to create images in a frame buffer for 

display. The parallel structures are efficient for signal processing. The power 

consumption for GPU is higher than the other platforms for SDR. GPUs are 

manufactured by AMD and nVIDIA. SDR applications use the multi-core 

acceleration provided by GPUs along with the abundant parallelism functionality. 

The application of SDR to GPU’s come with many difficulties including 

architectural complexity, new programming languages and different style of 

parallelism (Plishker et al., 2011). SDR’s use GPUs for high-speed floating-point 

parallel arithmetic operations (Ahn et al, 2011). 

          

Figure 10: nVIDIA GPU(TECHPOWERUP, 2015) 

 Field programmable gate arrays (FPGA): FPGAs are chips that can be configured 

by the user after manufacture. FPGAs comprise of programmable logic 

components called ―logic blocks‖ (Oliveri, 2011). FPGAs are configured using 
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hardware description language like VHDL, verilog. Companies that manufacture 

FPGA’s are Xilinx and Altera. 

          

Figure 11: Xilinx FPGA (AL Electronics, 2011) 

 Digital Signal processors (DSP): These processors are designed for specialized 

operations. They are efficient for mathematical operations and we optimized for 

narrower set of applications than compared to general purpose microprocessors. 

Their architecture is specially designed to support the operational needs of digital 

signal processing. DSPs provide coding flexibility for signal processing functions 

and a development environment but the arithmetic operation capability does not 

completely support all the real-time communications operation (Ahn et al., 2011). 

      

Figure 12: Texas Instruments DSP (AL Electronics, 2011) 
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 FPGA + DSP: FPGAs are important for SDR applications owing to their 

flexibility and real-time processing capabilities. Increasing number of DSP 

operations are being implemented on FPGAs including operations such as digital 

down and up converter, FFT correlators, pulse compressions (for radar 

processing). FPGAs are suitable for high-speed parallel operation. However, all 

DSP capabilities cannot be easily implemented on FPGAs. Floating point 

operations are difficult to implement on FPGAs due to the large amount of 

memory space needed in the device. DSP and GPP platforms are better for matrix 

inversion (Rudra, 2004). Therefore a platform with FPGA and DSP or GPP 

provides a flexible platform for SDR applications. 

2.2.1 Comparison between Design Options  

Several features of microelectronic platforms are examined to determine a feasible 

hardware solution for the implementation of SDR with a focus on nanosatellite 

communications. Table 7 compares the different hardware platforms for SDR. 
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 GPP DSP GPU FPGA FPGA+ 

DSP 

Mass 94g (ISIS 

on-board 

computer) 

Varied 

depending 

on type of 

DSP 

930g 

(Nvidia 

GTX 480) 

0.19 kg 0.20kg 

(Spartan- 

3A DSP 

FPGA) 

Digital-

Signal 

Processing 

Operations 

N/A Efficient  Efficient  Reprogrammable 

for specialized 

operations 

 Efficient 

Operations Efficient Not very 

efficient  

Not very 

efficient 

Moderate Moderate 

Size 96 x 90 x 

12.4 mm 

Small (on  

Integrated 

circuit) 

Large Large Large 

Power Moderate Good Poor Moderate Moderate 

Programming 

Language 

C, C++, 

Java 

C, 

Assembly 

CUDA, C Verilog, VHDL C, C++, 

Verliog 

and 

VHDL 

Flexibility High Low Moderate High High 

Cost $6042.20 $600 $500 

(Nvidia 

GTX 480) 

$295 $300 

(Spartan-

3A DSP 

FPGA) 

 Table 7: Comparison of hardware platforms for SDR (Oliveri, 2011) 

The graph below shows the comparison of the different platforms in terms of processing 

power and flexibility. The ideal platform for SDR is a combination of the FPGA and 
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DSP. DSP part of the board is efficient to perform digital signal processing tasks and the 

FPGA allows the flexibility of performing other operations and tasks. The power 

consumption of the system is also moderate. 

 

 

 

 

Processing power  

 

 

 Flexibility 

Figure 13: Comparison of Hardware solutions based on power and flexibility (Dovis 

et al, 2005) 

For the purpose of this research communication algorithm will be designed to implement 

on an FPGA only. This option is chosen so as to take advantage of the flexibility of the 

FPGA for DSP operations required for signal processing. 

 

 

ASIC 

FPGA 

FPGA + DSP 

Microprocessor 
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2.2.2 Software Defined Radio on FPGA platform 

As per the definition of SDR, the signal processing is done on a software 

reprogrammable element, i.e., in software. From the literature survey, it is seen that the 

most commonly adopted design software programmable platform is the Field 

Programmable Gate Array (FPGA).  ASIC does have a higher processing speed and uses 

less power. But FPGAs have various advantages over ASIC (Application-Specific 

Integrated Circuit). FPGAs are reconfigurable devices which suits the main characteristic 

of SDR. FPGAs can be reprogrammed multiple times and allow users to define system 

capability as well as implement parallelization of operations.  FPGAs are programmed 

with a hardware description language, such as Verilog or VHDL.  An FPGA-based SDR 

use more power, but it has the advantage of flexibility and parallel operations to run 

simultaneously. The system is capable of parallel processing of data, multi-threaded 

operations and distributed computations of DSP operations. SDR applications on FPGA 

provide an opportunity to access and update communication system on satellites which 

are physically difficult to access (Oliveri, 2011). More than one digital signal processing 

block can be supported by the satellite with the use of an FPGA. Remote access to the 

firmware of the FPGA on orbit is available to upgrade or make modifications on the 

signal processing blocks. 

There are some concepts of digital communication systems and analog communication 

systems which are vital to understand the design of the system discussed in Chapter 5. 

These concepts are discussed in section 2.3. 
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2.3 Digital Communications System 

 Digital communication is the process by which digital symbols are changed into 

transmittable waveforms. The key aspect of a digital communications system is 

modulation/demodulation system (MODEM) (Wong and Lok, 2004). Modulation is the 

process by which the signal carrying the digital information is converted to analog 

waveform before being transmitted (Wong and Lok, 2004). Demodulation is the process 

in which the analog signal received is converted to a digital format before being 

processed (Wong and Lok, 2004). 

The digital modulation/demodulation techniques available are amplitude shift keying, 

frequency shift keying, and phase shift keying, continuous phase shift keying and the 

trellis-coded modulation. Figure 14 shows the different methods to modulate digital data 

and the variations of each of these methods.  

1. ASK: Amplitude modulation of a digital data is called Amplitude Shift Keying 

(ASK). In this method the variation in amplitude of carrier wave is based on two 

or more discrete levels. In a binary message there are two levels, zero and one. 

The modulated binary message has bursts of sinusoid waves. The forms of ASK 

are Pulse Amplitude Modulation (PAM) and Quadrature Amplitude Modulation 

(QAM). PAM involves communication using a train of recurring pulses. The 

message is encoded in the form of amplitude of pulses. QAM involves the 

modulation of the amplitude of two waves, 90 degrees out of phase with each 

other (Schwartz, 1990). 
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2. PSK: Phase modulation of digital data is called Phase Shift Keying (PSK). In this 

method the phase of the carrier wave is varied. Binary phase shift keying (BPSK) 

is a form of PSK in which every phase used is assigned a particular binary 

number. Differential Phase Shift keying (DPSK) varies from basic PSK in that the 

change in the phases is the important factor here used to modulate / demodulate 

binary data. High state of PSK contains only one cycle whereas that of DPSK 

contains one and half cycle. Offset phase-shift keying, also called Offset 

quadrature phase-shift keying (OQPSK), uses four different values of the phase to 

transmit. The four values of the phase (two bits) at a time are used to construct a 

QPSK symbol  which allows the phase of the signal to jump by about 180 degrees 

at a time (NI, 2007).  

3.  CPM: Continuous phase modulation (CPM) differs from coherent digital phase 

modulation, because the carrier phase is modulated in a continuous manner as 

opposed to the carrier phase resetting to zero at the start of every symbol. CPM is 

applied as a constant-envelope waveform (Wong and Lok, 2004). 

4. Trellis-coded Modulation: Coding is a digital function and modulation is an 

analog function. Typically, most modulation schemes perform these functions 

separately. In trellis-coded modulation, modulation and coding are combined. The 

word trellis stands for the use of trellis (also called convolutional) codes 

(Benedetto et al., 1992).  

5. FSK: Frequency shift keying (FSK) modulation scheme is when different 

frequencies are assigned to the signal (digital symbols). FSK has various 
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categories depending on the number of digital signals, relation between 

frequencies and the phase of frequencies (Wong and Lok, 2004). They are as 

shown in the Figure 21.  

  

Figure 14: Modulation methods for digital data 
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FSK is divided into two types Binary Frequency Shift Keying (BFSK) and M-ary 

Frequency Shift Keying (M-FSK). In M-FSK, the binary data stream is divided into n-

tuples of n=log2M bits, i.e., we can send n bits or more than one bits at a time using one 

of the M signals that are possible.  More than two frequencies can be considered in the 

particular modulation scheme. M-FSK is an orthogonal type of modulation. 

In BFSK modulation, the frequency of a continuous carrier wave is shifted to one or two 

of discrete frequencies called ―mark‖ frequency and the ―space‖ frequency. The mark and 

space frequencies correspond to binary one and zero, respectively. Mark is the higher 

radio frequency corresponding to one. In frequency-shift keying, the signals transmitted 

are represented by: 

Marks frequency (binary ones)       (t) =Acos(2π  t +   ), 0 < t ≤ T          (1) 

Spaces (binary zeros)      (t) =Acos(2π  t +   ), 0 < t ≤ T          (2) 

where A is the amplitude,   and    are discrete frequencies,    and    are initial phases.  

This particular system is of discontinuous phase or non-coherent, because the phase of 

the signal is discontinuous at the switching times and not same at any time. The signal is 

not continuous at bit transitions (Broendum, 1994).   

BFSK can be transmitted coherently as well, which implies phase of each mark or space 

tone has a fixed phase relationship with respect to a reference signal phase.  In this case 

the initial phases are the same. Non-coherent FSK is easier to generate and independent 

of phase changes or transitions since the two phases are different, but coherent FSK is 
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capable of superior error performance. In the coherent case, the phase of the transmitted 

signal remains continuous because the phase of the tones of each symbol is based on the 

previous symbol phase. Coherent and non-coherent BFSK can be divided into orthogonal 

and non-orthogonal. Orthogonal signalling is when the inner product of the two signals 

  (t) and   (t) is zero (Broendum, 1994).   

 

                  Figure 15: Types of Frequency Shift Keying (Broendum, 1994)   

 

2.3.1 Frequency Baseband Modulation/Demodulation 

Digital communication gives us transmittable waveforms which need to be transmitted or 

received. For this purpose analog transmission is required.  For SDR, the theory of analog 

communications is used to get a complex baseband signal while transmitting and 

receiving a baseband signal from a complex signal. 
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2.3.2 Analog Communication System 

In analog transmissions, angle and amplitude modulation are used to transmit data or 

voice over wire cable, fibre or the atmosphere. By definition, angle modulation involves 

varying carrier wave angle by an amount proportional to the message signal. Therefore 

there are two types of angle modulation: frequency modulation and phase modulation 

(Swiggan, 1998). 

Phase modulation: The phase of the carrier signal is varied to match the instantaneous 

phase deviation, which is the difference between the instantaneous phase and that of the 

carrier signal and is linearly related to the size of the modulating signal at a given time 

(Swiggan, 1998). 

Frequency modulation: The frequency of the carrier signal is varied to match the 

instantaneous frequency deviation, which is the difference between the instantaneous 

frequency and the carrier frequency and is linearly related to the size of the modulating 

signal at a given time. The FM theory illustrated in Figure 22 can be explained as follows 

(Swiggan, 1998): 

A sinusoidal carrier is represented by:  

   =   cos(2π  t)     (3) 

where,    is the instantaneous frequency and     is the amplitude of carrier wave. 

A baseband signal m(t) is  modulated by first integrating the message m(t) with respect to 

time to get phase θ(t). This can be represented as: 
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θ(t) = 2π  t + 2π  ∫    
 

 
)dτ   (4) 

   – Frequency sensitivity, this indicates how much of the carrier spectrum the input 

signal should fill out.  The frequency sensitivity is related to the frequency deviation by 

the following equation: 

    = 
  

 
             (5) 

where, FD is the frequency deviation, A is amplitude of the modulating signal and Ts is 

the sampling period. Phase modulation is required after integrating the signal which 

consists of a quadrature modulator, which gives out a complex baseband signal (NI, 

2014). 

 

    Figure 16: FM Modulation theory 

In Figure 17 of the Quadrature Modulator, the I and Q components of the real signal are 

mixed with carrier signal and carrier signal with a 90 degrees phase offset to give an up-
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converted signal. The up-converted signal is a complex signal in the baseband form (NI 

2014). 

 

             Figure 17: Quadrature modulator 

2.3.3 Non-coherent BFSK modulator: 

The Figure 18 shows a non-coherent FSK modulator. Conceptually, the FSK scheme 

involves generating the FSK signal by switching between mark    and space    

frequencies. The initial phases of mark and space frequencies are    and    which are 

different from each other. Two oscillators generate the two frequency signals    and   . 

The binary data input controls the multiplexer. The amplitude A of the signals is same for 

both signals (Broendum,1994). 



34 

 

 

                         Figure 18: Non-Coherent BFSK Modulator  

2.3.4 Non-coherent BFSK demodulator: Correlator Implementation 

Theoretically, in a correlator implementation as shown in Figure 19 of a non-coherent 

BFSK demodulator receiver, the received signal r(t) is divided into in-phase and 

quadrature components for each frequency component by passing it through the envelope 

detector. The envelope detector consists of the in-phase and quadrature correlators, 

integrators and the squarers. Figure 24 depicts a typical non-coherent demodulator where 

the upper two branches are implemented to detect    and the lower two to detect     

(Broendum, 1994).   

Ideally the received signal r(t)  can be written as  

   (t,θ) = Acos(2π  t + θ),  i=1,2   (6) 

= Acosθcos2π  t (In-phase Component)- Asinθsin2π  t (Quadrature Component)   
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If the received signal is Acos(2π  t + θ) has a phase of zero then referring to Figure 25 

the first multiplication and correlation would produce an output with the highest weight 

and the second one would yield zero as sin(2π  t) is orthogonal to the signal. The third 

and fourth branches would also produce near-zero outputs, since their reference signals    

are also orthogonal to the signal component (Broendum, 1994).   

Similarly, if the signal Acos(2π  t + θ) has an unknown phase component then, referring 

to Figure 25, the in-phase component the signal is partially correlated with cos(2π  t) and 

for the quadrature component the signal is partially correlated with sin(2π  t). The third 

and fourth signals will return near-zero outputs due to orthogonality (Broendum, 1994).   

After correlation and integration, the output of in-phase correlator is  
  

 
 cosθ and 

  

 
sinθ 

for quadrature correlators. The output is squared in each branch. The outputs of the first 

two branches are added and then compared with the sum of the squares of the outputs 

from the lower two branches (Broendum, 1994).   

The received signal corresponds to    or     which is evaluated by the judging unit. If we 

consider   
  as the output from the first two branches and   

  as the output from the last 

two branches then the decision is based on the following criteria (Broendum, 1994).   

If   
  >   

  then the decision is binary bit 1(mark frequency) and if   
  >  

   the decision is 0 

(space frequency). This type of receiver is called quadrature receiver. In the case of the 

above case where received signal is considered to be Acos(2π  t + θ) ,    
  >   

  and hence 
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the judging unit which compares the outputs of the two correlators  will decide that 

binary bit 1 is the output (Broendum, 1994).   

 

Figure 19: Non-Coherent BFSK Demodulator - Correlator Implementation  
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3 Nanosatellite Communications and Link 

Budget Analysis 

In this chapter, a background on nanosatellite communications is provided. In addition, a 

survey on the antennas is performed and the process of data rate selection is also 

discussed. The various configuration aspects of nanosatellite communications system 

including the communication protocol and the frequency determination are discussed. 

The hardware trade-off study for nanosatellite communications system is also provided. 

The link budget analysis is performed and discussed as well. The benefits of using SDR 

for nanosatellites are also highlighted in brief in this chapter. 

3.1 Nanosatellite Communications 

A satellite communications system can be separated in two parts as shown in Figure 20; 

the space segment and the ground segment. Each segment has three design components; 

the antenna design, transceiver development, and the communication algorithm design 

(Crawford et al., 2009).  

The ground segment for a typical nanosatellite communications system consists of the 

computing station to send commands to satellites and to receive data from satellites. The 

station is connected to the Terminal Node Controller (TNC), which is primarily a device 

used for radio networks that use the AX.25 Packet protocol. It consists of a 

microprocessor, a modem, flash memory and software to implement the protocol and also 

has a command line user interface. A TNC interfaces between a computer and a radio 
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transceiver. The task of the transceiver is to modulate and transmit the analog radio signal 

containing the data. It also receives the signal and demodulates it. The transceiver is 

connected to an antenna which transmits and receives the data to and from the 

nanosatellite (Crawford et al., 2009). The space segment consists of the OBC (On Board 

computer) which processes data and receives and sends commands. Similar to the ground 

segment, the computer is connected to a TNC which in turn is connected to a radio 

transceiver. The transceiver is connected to the antenna (Crawford et al., 2009). 

 

  Figure 20: Communication system (Crawford et al., 2009) 

The figure below is an example of a communication network for the space segment of the 

satellite. As mentioned earlier, a successful satellite communication system is capable of 

receiving information from the ground station and transmitting information to the ground 

station, to other satellites and also to the launch vehicle. In satellite communications, the 

uplink refers to the information from the ground station to the satellite and the downlink 

is vice-versa. 
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Figure 21: Satellite Communication Network (Crawford et al., 2009) 

3.2 Antenna Configuration 

A survey of the antenna designs used on previous nanosatellite missions is presented in 

Table 8. The most suitable configuration is chosen based on factors such as frequency 

band, impedance mismatch, antenna gain, and radiation pattern. For this research a 

monopole antenna is used. The monopole antenna is shorter in length, has less weight and 

the space for mounting the monopole is less.  
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Monopole, Monopole Patch 

Short length, low weight, less space required, 

nearly omni-directional, can only transmit linear 

polarized waves (Mandeep, 2013) 

 

Dipole , Crossed dipoles, End fed dipole 

Omnidirectional radiation patter, built by two 

monopole antennas (Klofas, 2008) 

 

Turnstile , Canned Turnstile 

Also known as crossed dipole antenna, two dipole 

antennas in crossed configuration, transmit 

circular polarized signal, is an omni-directional 

antenna. (Klofas, 2008)  

Patch antenna ,Monopole patch 

Mounted on a flat surface, linearly polarized 

fields, can be circularly polarized, can be used as 

arrays of antenna. (Klofas, 2008) 

 

Helical(cellphone) antenna 

A conducting wire wound in the form of helix, 

circular polarization, currently being explored and 

researched 

 

Table 8: Antenna Designs (Klofas, 2008) 
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3.3 Communication System Configuration Aspects 

Before describing SDR in detail, other aspects of a communications system that need to 

be considered and determined are discussed in this section. These include communication 

protocols, antenna configurations and frequency determination. 

3.3.1 Determination of Communication Protocol 

Effective communication system entails that the satellite and the ground station must use 

the same communication protocol. The communication packet protocol which the 

nanosatellite community often uses is the AX.25 Packet protocol. The protocol is 

particularly designed for amateur radio operators and is used in amateur radio networks. 

The protocol conforms to the HDLC and ANSI X3.66 (AX.25, 1998). 

The small blocks of data that are sent by the data link layer are referred to as frames. 

There are three types of frames: information frames carry the data that has to be 

communicated; supervisory frames supervise the requests for retransmission of lost or 

corrupted data; and unnumbered frames are used to establish and terminate link 

connections. Each frame has several fields. We will be focussing on the information 

frame in the current study. The structure of the information frame is shown in Table 9 

(AX.25, 1998). 

Flag Address Control PID Info FCS Flag 

01111110 112/224 Bits 8/16 Bits 8 Bits N*8 Bits 16 Bits 01111110 

      Table 9- Structure of information frame (AX.25, 1998) 
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 A flag is used to identify the start and the end of the frames. The flag sequence is 

0111111 in binary, which is 7E in hexadecimal. This sequence cannot appear anywhere 

else inside the frames. The address consists of the source of the frame, i.e., the source call 

number and the destination of the frame, i.e., the destination call number.  The control 

field of the frame identifies the type of frame. PID Protocol Identifier (PID) is only for 

the information and unnumbered information frames. It identifies the type of layer 3 

protocol. The information field is used to hold the data that have to be communicated and 

the size is 256 octets long. FCS (Frame-check sequence) is the field calculated by both 

the transmitting and receiving stations to insure that the frame was not altered during 

transmission. Bit stuffing is applied to the frames while transmitting. Bit stuffing is the 

process in which the transmitting station monitors the bit sequence for consecutive five 

bits to check whether the bits are ones. If five consecutive bits are found then a zero is 

inserted after the fifth bit. When the frame is received, any zero that follows five 

consecutive ones is discarded (AX.25, 1998). All fields are sent with the least significant 

bit first except for the FCS, which sends the most significant bit first. 

3.3.2 Frequency Band Determination   

Frequency bands are very important for satellite communication architecture. Different 

frequency bands available have different licensing requirements and applications and are 

listed in Table 10. 
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Frequency Band Range Applications 

UHF(Ultra-high frequency) 

/VHF(Very-high frequency) 

300 MHz to 3000 MHz 

30 MHz to 300 MHz 

Extensively used for small 

satellites, for links that 

requires lower data rates 

L-Band 1 GHz to 2 GHz GNSS satellite systems, 

telecommunication systems, 

military 

S-Band 2 to 4 GHz Deep space applications, 

geostationary orbit, LEO- 

applications 

C-Band 4 to 8 GHZ Terrestrial microwave radio 

communications, weather 

radars, WIFI devices 

X-Band 8 to 12 GHz Military use, coverage of 

remote areas of world, 

government and defence 

use 

Ku-Band 12-18 GHz Satellite communications, 

handle higher data rates 

Ka-Band 23 to 27 GHz Future missions 

     Table 10: Frequency Bands 

Ultra-high frequency (UHF) / Very–high frequency (VHF), the amateur radio frequency 

bands do not require permission from the International Telecommunications Union for 

use. The stations that are utilising the UHF/VHF amateur bands should have a fully 

licensed amateur radio operator. The UHF band ranges from 300 MHz to 3000 MHz and 

the VHF band ranges from 30 MHz to 300 MHz. These frequency ranges handle low data 

rates. UHF can be implemented using low power which requires larger antennas, a 

disadvantage for small satellites (Elbert, 2008). 

L-Band ranges from 1 to 2 GHz. This band is particularly used for GNSS (Global 

Navigation Satellite System), telecommunication systems and military (Seifu 2008). 



44 

 

S-Band ranges between 2 to 4 GHz. Many satellites use this frequency band for 

transmission, especially for deep space applications and geostationary orbit missions. 

Signals are transmitted with low power and therefore reception requires large antennas.  

The difference between S-band and the amateur frequency bands is that S-band can 

handle higher data rates (Seifu 2008). 

C-Band ranges between 4 to 8 GHz. It was the first band established for satellite 

communication systems. The C-Band is the frequency range in which there is also 

terrestrial microwave radio communications assigned. There are a number of similar 

systems which are located around the world, therefore a chance of interference in this 

range may arise (Seifu 2008). This range is also used for WI-FI devices and some 

weather radars (Elbert, 2008). 

X-Band ranges between 8 to 12 GHz. The band is used by military due to its advantages 

of being resistant to rain and interference. It handles higher data rates as compared to- 

UHF, VHF, L- and S-bands. It can also provide coverage to remote areas of the world. 

This band is specifically reserved for government and defence use. A section of the X-

band is allocated for deep space communications by NASA between ground stations and 

deep space (Seifu, 2008).  

Ku-Band band ranges between 12 to 18 GHz. It is suitable for satellite communications. 

It uses smaller antennas and can handle higher data rates. However, the power 

consumption is high and the equipment required for Ku band is expensive (Seifu, 2008). 
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Ka-Band ranges between 23 to 27 GHz. This band will be used in future missions as it 

can provide more bandwidth as compared to the other bands. The primary disadvantage 

of this band is the attenuation caused due to rain and moisture (Seifu, 2008).  

UHF/VHF is the band which requires the least power. But it is able to handle only lower 

data rates. The band selected at this point for the current project is UHF due to minimum 

restrictions on licensing requirements, power and data rate. 

3.3.3 Data Rate Selection   

 The data rate or baud rate is the definition of the speed of the data which is sent over a 

serial link. The unit of baud rate is bits-per-second (bps). Standard baud rates are 1200, 

2400, 4800, 19200, 38400, 57600, 115200 and specifically 9600 bps as common baud 

rates for where speed is not important for the link (Bouwmeester, 2010). The data rates 

considered in this work are 200, 1200 and 1600 bps for testing and performance 

evaluation purposes. The 9600 bps data rate is the most common data rate used for 

nanosatellites in the UHF/VHF frequency range (Bouwmeester, 2010) and is therefore 

the targeted data rate for this work. 

3.4 Link Budget 

The link budget is a process used to establish whether a communication link is possible 

by considering parameters including frequency, transmitter signal power, and bandwidth 

and data rate. The link budget calculates the Signal-to-Noise Ratio (SNR), which is the 

ration of signal power and noise power (Ps/Pn) at the receiver input (Traussnig, 

2007).The link budget includes all gains and losses from baseband input to baseband 
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output. The link margin is a measure of the robustness of the link. As one moves to 

higher frequencies and one moves from fixed to mobile satellite systems the more 

difficult the challenge becomes and the higher the link margin must be set to provide 

reliable service. The link budget analysis is performed using a tool called AMSAT-IARU 

Link Budget calculator. 

This link budget considers the desired bit rate of the system as 9600 bps and uses non 

coherent FSK modulation. The frequency band used is the UHF frequency band 

specifically the 437.475 MHz. 

3.4.1 Uplink Command Budget 

 In the uplink command budget shown in table 11, the uplink path is from the ground 

station to the spacecraft. The value used for the power of the ground station transmitter is 

a typical value used by ground stations for nanosatellite communications systems 

working at amateur radio frequency bands. The value is based on specifications given for 

QB50 a nanosatellite mission currently in the development process.  

With the increasing distance between the transmitter and receiver, the power of the signal 

decreases (all else being equal). The received signal power will be less than the noise that 

is received / generated by the receiver at some point and a communication link will not be 

possible. The major reason for the decrease in signal power received is the loss due to the 

propagation distance known as the path loss or free space loss. In the uplink path from 

the ground station to the spacecraft the different losses considered are pointing loss, 

polarization loss, path loss, atmospheric losses, ionospheric losses, rain losses. At the 
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receiver level in the spacecraft, the antenna pointing loss, the antenna gain and the 

antenna transmission line losses are also taken into account. The values considered in this 

analysis are typical for a monopole antenna. Also at the transmitter level at the ground 

station, the transmission line losses and the antenna gain of the transmitter is considered. 

The ground station antenna considered for this analysis is a Yagi antenna. The link 

budget calculator provides the values for the losses pertaining to Yagi antenna.  

For a desired system data rate of 9600 bps the Energy per bit to Noise Power Density 

Ratio which is equivalent to the ―Signal-to-Noise Ratio is calculated to be 35.. The 

parameter is the measure of performance for the Uplink from the ground station. The 

system link margin is calculated to be 20.7 db from the Signal to noise ratio for the 

uplink. Typically for a low cost system the link margin should be around 10 db  

Parameter Value Units 

                     Ground Station 

Ground Station Transmitter Power Output 40.0 

16.0 

46.0 

Watts 

dBW 

dBm 

Ground Station Total Transmission Line Losses 3.4 dB 

Antenna Gain 21.4 dBi 

Ground Station EIRP 34.0 dBW 

            Uplink Path 

Ground Station Antenna Pointing Loss 1.0 dB 
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Gnd-to-S/C Antenna Polarization Losses 0.2 dB 

Path Loss: 154.8 dB 

Atmospheric Losses 2.1 dB 

Ionospheric Losses 0.4 dB 

Rain Losses 0.0 dB 

Isotropic Signal Level at Spacecraft -124.5 dBW 

      Spacecraft (Eb/No Method):--------------Eb/No Method----------------------- 

Spacecraft Antenna Pointing Loss 4.7 dB 

Space Antenna Gain 2.2 dBi 

Spacecraft Total Transmission Line Losses 1.9 dB 

Spacecraft Effective Noise Temperature 268 K 

Spacecraft Figure of Merit (G/T) -24.1 dB/K 

S/C Signal-to-Noise Power Density (S/No) 75.3 dBHz 

System Desired Data Rate 9600 

39.8 

Bps 

dBHz 

Command System Eb/No 35.5 dB 

Demodulation Method Selected Non-Coherent FSK 

Forward Error Correction Coding Used None 

System Allowed or Specified Bit-error-rate 1.0E-05  

Demodulator implementation Loss 1.0 dB 

Telemetry Systerm Required Eb/N0 13.8 dB 
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Eb/No Threshold 14.8 dB 

System Link Margin 20.7 dB 

Table 11: Uplink Command Budget 

3.4.2 Downlink Telemetry Budget 

In the downlink telemetry budget shown in table 12, the downlink path is from the 

spacecraft to the ground station. The value used for the power of the transmitter of the 

communications system is of the USRP which is used for this research. Here it is 

specified at 9.0 W.  In the downlink path, the losses considered are similar to the uplink 

path which includes pointing loss, polarization loss, path loss, atmospheric losses, 

Ionospheric losses, rain losses. At the receiver level in the ground station the antenna 

pointing loss, the antenna and the antenna transmission line losses are for an Yagi 

antenna. For the Transmitter the antenna for the pointing and polarized losses is specified 

as the monopole antenna which is the antenna selected for this research.  

For a desired system data rate of 9600 bps the Energy per bit to Noise Power Density 

Ratio which is equivalent to the ―Signal-to-Noise Ratio is calculated to be 24.5. The 

parameter is the measure of performance for the downlink from the spacecraft. The 

system link margin is calculated to be 10.7 db from the Signal to noise ratio for the 

downlink which is very close to the 10 db margin for a low cost system. 
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Parameter Value Units 

                     Spacecraft 

Spacecraft Transmitter Power Output 9.0 

9.5 

39.5 

Watts 

dBW 

dBm 

Spacecraft Total Transmission Line Losses 2.2 dB 

Spacecraft Antenna Gain 2.2 dBi 

Spacecraft EIRP 34.0 dBW 

            Downlink Path 

Spacecraft  Antenna Pointing Loss 6.8 dB 

Gnd-to-S/C Antenna Polarization Losses 0.2 dB 

Path Loss: 154.8 dB 

Atmospheric Losses 2.1 dB 

Ionospheric Losses 0.4 dB 

Rain Losses 0.0 dB 

Isotropic Signal Level at Ground Station -154.7 dBW 

      Ground Station (Eb/No Method):--------------Eb/No Method----------------------- 

Ground Station Antenna Pointing Loss 0.5 dB 

Ground Station Antenna Gain 21.4 dBi 

Ground Station Total Transmission Line Losses 3.7 dB 

Ground Station Effective Noise Temperature 466 K 
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Ground Station Figure of Merit (G/T) -9.1 dB/K 

G.S. Signal-to-Noise Power Density (S/No) 64.4 dBHz 

System Desired Data Rate 9600 

39.8 

Bps 

dBHz 

Telemetry System Eb/No for the Downlink 24.5 dB 

Demodulation Method Selected Non-Coherent FSK 

Forward Error Correction Coding Used None 

System Allowed or Specified Bit-error-rate 1.0E-05  

Demodulator implementation Loss 0 dB 

Telemetry Systerm Required Eb/N0 13.8 dB 

Eb/No Threshold 13.8 dB 

System Link Margin 10.7 dB 

Table 12: Downlink Command Budget 

3.5 Nanosatellite Communications Hardware Trade-off Study  

In considering a communication system for nanosatellite, there are three possibilities to 

be examined, Commercial-of-the-shelf transceivers, modified commercial options/ 

customized transceivers (Klofas, 2008) and SDR. 

3.5.1 Commercial Options  

A number of manufacturers have space rated transceivers available for satellite 

communication applications. These are usually too big for nanosatellites and are very 

expensive. Due to the popularity of nanosatellites with universities and small scale 

missions, some companies have started manufacturing communication transceivers 
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especially for nanosatellites. These systems require specialized hardware to implement 

specific functions. Systems are built with only the hardware necessary for the defined 

tasks that they are designed for (Klofas, 2008). Hence they are hard to modify or upgrade. 

Example transceivers include KatySat (PC/104), NanoCom U482C UHF Half-duplex 

Transceiver, MHX2420 and ISIS Full duplex transceiver; the last two are shown in 

Figure 22 and 23. These transceivers tend to be expensive for low budget nanosatellite 

missions. For example, the NanoCom U482C UHF Half-duplex transceiver costs 

€ 8,000.00 and the MHX2420 from Microhard Systems costs $10,000. 

 

        Figure 22: NanoCom U482C      Figure 23:MHX 2420 

         (CubeSatShop.com,2006)           (CubeSatShop.com,2006)   

3.5.2 Modified Commercial Options / Customized Transceivers  

Some COTS systems are unsuitable for use in space since they are designed for use on 

Earth. These systems could experience problems such as active thermal dissipation since 

there is no air for the cooling fans in space for the amplifier (Klofas, 2008). Some 

modifications are made to these transceivers to function in space, for example, removing 

the packaging to reduce mass and size, increasing transmit power, etc. 
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Some missions, usually developed by universities build transceivers out of individual 

components. Such customized systems allow for low development costs, gives hands on 

experience to students, and allows for control of specifications and requirements. These 

systems usually consist of a simple TNC combined with a small hand held transceiver 

(Crawford, 2009). A research group at York University considered a PacComm 

PicoPAcket TNC shown in Figure 24 and the Yaesu VX-3R handheld transceiver which 

had its package removed for the communication system, which was assembled to operate 

in the UHF/VHF frequency. Initial testing of the system showed that the data link was 

severally limited and thermal control was required for long term functionality in vacuum. 

The QuakeSat-1 group assembled a custom built-in communications system with a Tekk 

KS-960 and BayPac BP-96A TNC, which achieved a 422 MB download at 2 W.  But the 

KS-960 appears to be no longer available for purchase and the power consumption is too 

high for a nanosatellite mission (Crawford, 2009). 

 

Figure 24: PacComm PicoPacket TNC (Crawford, 2009) 
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3.5.3 Software Defined Radios (SDRs) 

The third option is an SDR. A background of how SDR technology works was given in 

the section 2.2. These receivers implement all their baseband processing in software. 

SDR receivers are gaining popularity due to their low cost, flexible functionality, and 

adaptability to nanosatellites due to reduced size. There are some commercial SDR’s 

which have been optimized for nanosatellite applications. Vulcan Wireless has developed 

the CubeSat Software Defined Radio (Vulcan wireless, 2010) illustrated in figure 25, 

which gives access to a number of communication protocols and a data rate of up to 10 

Mbps for S-Band and also the Micro Blackbox Transponder (Vulcan wireless, 2010) with 

similar features. However, these receivers do not use open source hardware and software, 

therefore they are not modifiable by researchers for different applications (Oliveri, 2011). 

           

Figure 25: CubeSat Software Defined Radio (Vulcan Wireless Inc) 

3.6 SDR for Nanosatellite Communications System 

SDR concept provides nanosatellite communications the potential for replacing the bulky 

and expensive hardware required in an ASIC based system. This characteristic is of 

advantage to a nanosatellite missions since it faces structural challenges as discussed in 
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section 1.2. Albeit being slower in processing capability and consuming more power as 

compared to an ASIC based system, an SDR system allows nanosatellites to customize 

the system to adapt to the needs of the user. Different modulation schemes and different 

protocols can also be implemented. SDR can also be used for different subsystems on a 

nanosatellite to eliminate the use of certain hardware thus addressing the structural 

challenge as mentioned earlier. These subsystems include power, camera interface, 

attitude control systems, sensor interface and also as a processing unit. 

This research implements a singular modulation scheme to test the feasibility of an SDR 

system for nanosatellite communications. It is implemented on a hardware which can be 

further enhanced to work on a nanosatellite. The research is a secondary step in the whole 

process of a developing a nanosatellite software defined radio communication system 

making it unique in the use of SDR for this application.  
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4 Hardware Test Platform for Implementation of 

Software Defined Transceiver Algorithm 

In Chapter 2, a background on the several platforms available for the implementation of 

SDR is described. In Chapter 4, the various FPGA platforms are examined to select a 

feasible hardware platform for the development of SDR for nanosatellites.  

 A number of hardware options have been developed for the implementation of SDRs by 

universities and researchers.  The most significant ones are listed below. 

 USRP1: USRP is one of the most popular platforms for SDR. The first USRP system, 

released in 2004, was a USB connected to a computer with a low-performance 

FPGA.  USRP1 released in 2005 uses the Cyclone EPIC12 FPGA GPP. USRPs are 

developed by Ettus Research LTD. Newer USRPs with advanced technologies have 

been developed and are introduced in a later section. 

 Lyrtech SFF SDR:  This development platform shown in Figure 26,  released in 

2006,  uses advanced FPGA technology (Xilinx Virtex-4), a low-power general-

purpose processor (TI MSP430), and multiple RF frontends to create an advanced 

development platform but at a high cost of  $9900 (MOUSER ELECTRONICS, 

2006) 
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Figure 4: Lyrtech SFF SDR (MOUSER ELECTRONICS, 2006) 

 Berkeley BEE2: The Berkeley BEE2 platform released in 2007 is based on the 

Berkeley Emulation Engine. The platform contains five high-powered Xilinx Virtex2 

FPGAs and connects up to eighteen daughter-boards (Oliveri, 2011). BEE2 was 

released in 2007.  

 Kansas U.Agile Radio: The KUAR platform is designed to be a low-cost 

experimental platform targeted at the frequency range 5.25 to 5.85 GHz. The 

platform includes an embedded 1.4 GHz general purpose processor and Xilinx 

Virtex2 FPGA (Minden et al., 2007) as illustrated in Figure 27. All the processing is 

implemented on the platform. It was released in 2007. 
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  Figure 5: KUAR Radio (Minden et al., 2007) 

  Rice University WARP: The developmental platform released in 2008 and 

developed by Rice University is called the Wireless Open-Access Research Platform 

(WARP). Figure 28 shows that a Xilinx Virtex 2 FPGA is incorporated in the 

platform. 

 

Figure 6: PCB built around a Xilinx XC2VP70 Virtex-II Pro FPGA 

 NICT: The Japanese National Institute of Information and Communications 

Technology (NICT) constructed a SDR platform to test next generation mobile 
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networks in 2011. The platform has two embedded processors, four Xilinx Virtex2 

FPGA’s as shown in Figure 29. The signal processing is partitioned between the 

CPU and the FPGA, with the CPU taking responsibility for the higher layers 

(Harada, 2005). 

 

   Figure 7: Platform from NICT (Harada, 2005) 

Table 13 contains the comparison of FPGA hardware platforms available for SDR 

implementation. 

System Processor Released 

USRP1 Cyclone EPIC12 FPGA GPP (off 

board) 

2005 

Lyrtech SFF SDR Virtex-4 FPGA MSP430 

Microprocessor TI DM6446 DSP 

2006 

Berkely BEE2 5 Virtex-2 Pro FPGA  2007 

Kansas U. Agile Radio Virtex-2 Pro FPGA Pentium M 

Microprocessor 

2007 

Rice University WARP Virtex-2 Pro FPGA 2008 

USRP N210 Spartan 3A-DSP 2400 FPGA 2010 

NICT 4 Xilinx Virtex2 FPGA  2011 

    Table 13: Comparison of FPGA hardware platforms for SDR 
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4.1  FPGA-Based Hardware 

Different FPGA-based platforms examined are: FPGAs, FPGA + DSP, FPGA 

Development Board and FPGA + hard processors. These platforms are compared based 

on their physical specifications, cost, adaptability and feasibility for development of a 

nanosatellite based communication system. 

4.1.1 FPGA 

Currently, the FPGAs available in the market are from Xilinx, Altera, Lattice and Actel. 

Xilinx and Altera occupy majority of the market for FPGAs. The different FPGAs are 

compared based on certain criteria, which are important to researchers developing FPGA 

based platforms. 

4.1.1.1 Digital Signal Processing (DSP) capabilities 

Most applications requiring an FPGA use digital signal processing. DSP applications 

require faster computations. In order to reduce the computation time and to increase 

efficiency, computations are executed in parallel. Due to flexibility of FPGA structures 

DSP operations are suitable to be implemented on them. Currently, specially designed 

DSP processors have been developed and integrated with FPGAs to provide an excellent 

platform for signal processing applications like Global Navigation Satellite System 

(GNSS) software receivers. The DSP processors on FPGAs efficiently host algorithms 

like filtering, compression, FFT and modulation / demodulation. Both Altera and Xilinx 

provide FPGAs which aid in DSP operations (Šćekić, 2005). 
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4.1.1.2 Design Implementation 

Design implementation allows the Place and Route stage which comprises taking the 

design using Register-transfer level (RTL) netlist. A netlist describes circuit connectivity. 

A single netlist consists of a list of connectors; instance, a list of signals for each instance, 

and also contains the information about attribute; and mapping the logic on the FPGA 

architecture like LCs (Liquid crystal) and I/O blocks, etc. Once a suitable location is 

found, the pins are assigned. The tools required for this process are manufactured by the 

FPGA manufacturers.  A configuration file is generated from this process which is then 

loaded onto the FPGA (Šćekić, 2005). Xilinx, as well as Altera, provide integrated 

software development tools. Altera’s development tool is called Quartus II, and that from 

Xilinx is called ISE. 

4.1.1.3 Development Purpose 

Developers are providing development boards with different units installed on it for 

development purposes. Both Altera and Xilinx provide these boards. Advantages and 

disadvantages of these boards are discussed in the section 4.1.2. 

4.1.1.4 Processors on FPGA  

Xilinx offers its own IP microprocessors: 8-bit PicoBlaze, and 32-bit MicroBlaze. Altera 

offers embedded soft-core RISC 16/32-bit processors Nios/NiosII. These are classified as 

soft processors embedded in the FPGA. Soft processors are built using FPGAs general-

purpose logic (Fletcher, 2005). It is described in a Hardware Description Language or 

netlist. A soft processor must be synthesized and fit into the FPGA fabric. Other criteria 



62 

 

that are considered for comparison between FPGA platforms are fabrication process, 

logic density, clock management, On-chip memory, I/O compatibility. 

4.1.2 FPGA Development Board 

FPGA development boards provide a high quality and easy to implement design 

environment for research and design purposes. A number of kits and software are 

provided to simplify the design process and reduce time to market. They are easier to 

interface with PCs and workstations; once the design process has been completed it is 

easy to port the code to a standalone FPGA. FPGA development boards allow beginners 

to adapt to FPGA environments as well. FPGA development boards can have FPGAs 

with its embedded soft processor only, FPGA + DSP or FPGA + an exclusive hard 

processor. Altera and Xilinx provide several development boards. Some Altera boards 

Cyclone V SoC Development Kit Cyclone III LS FPGA Development Kit Arria II GX 

FPGA Development Kit, 6G Edition PROC2S Small Form Factor Prototyping System, 

Cyclone III FPGA Starter Kit, etc. Examples of Xilinx Development Boards are Avnet 

Spartan-6 LX9 MicroBoard, Atlys Spartan-6 FPGA Development Kit, Spartan-6 FPGA 

SP605 Evaluation Kit as illustrated in Figure 30, Spartan-6 FPGA Connectivity Kit, etc. 

http://www.altera.com/products/devkits/altera/kit-cyclone-v-soc.html
http://www.altera.com/products/devkits/altera/kit-cyc3-ls.html
http://www.altera.com/products/devkits/altera/kit-arria-ii-gx-6-gbps.html
http://www.altera.com/products/devkits/altera/kit-arria-ii-gx-6-gbps.html
http://gidel.com/PROC2S.htm
http://www.altera.com/products/devkits/altera/kit-cyc3-starter.html
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Figure 8: Atlys Spartan-6 FPGA Development Kit (Digilent) 

4.1.3 FPGA + DSP 

As mentioned in the previous sections, manufacturers are developing DSP units 

integrated on FPGA boards. Specialized FPGA boards and development boards are 

available for this purpose. Some of the hardware available are Xtreme DSP Development 

Platform — Spartan-3A DSP 3400A Edition, Avnet Spartan-6 FPGA DSP Kit, Avnet 

Kintex-7 FPGA DSP Kit with High-Speed Analog. These boards are efficient to carry out 

applications that require DSP operations and also allow the added flexibility of 

implementing any other application on the FPGA. For example, communication system 

which requires DSP operations along with, e.g., radio occultation or remote sensing 

operations. 
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                 Figure 9: Spartan-3A DSP 3400A Edition (Xilinx) 

4.1.4 FPGA + hard processor 

Xilinx and Altera also produce FPGA families that have hard processors embedded in the 

FPGA. Hard processors are physical processors built from dedicated silicon. These 

processors have faster processing speeds since they are not limited by fabric speed 

(Fletcher, 2005). Therefore they are suitable for applications which require higher 

processing speeds like GNSS software receivers. Hard processors are fixed and cannot be 

modified. It can still take advantage of custom logic in FPGA by fabric speed (Fletcher, 

2005). Examples of such processors are ARM922T
TM

 inside the Altera Excalibur family 

and the PowerPC
TM

 405 inside the Xilinx Virtex-II Pro and Virtex-4 families. 

4.1.5 Universal Software Radio Peripheral (USRP) 

Ettus Research LLC produces the USRP series which include USRPE (Embedded 

Series), USRPB (Bus series), USRPX (X series) and the USRPN (Networked Series) 

series (Ettus Research, 2014). These platforms use cheaper hardware at low power. 
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USRPB series replaces the first USRP1 series. It uses the Spartan6 FPGA as illustrated in 

Figure 32. It is apt for experimentation of basic low cost SDR applications. It uses USB 

to interface with a PC. This series consists of the USRP B210 and USRP B200 boards. 

 

Figure 10: USRP B210 (Ettus Research, 2014) 

USRPX series has improved on the USRP N series. It uses faster Xilinx Kintex-7 FPGA 

as illustrated in Figure 33, for high performance DSP unit. It is a high performance SDR 

platform and is compatible with a large number of supported development frameworks, 

reference architectures and open source projects. 

 

Figure 11: USRP X300 (Ettus Research, 2014) 

USRPN and USRP E series are the second generation platform released in September 

2008. Both series includes a Xilinx Spartan 3A-DSP 3400 FPGA device. The USRP uses 

open source hardware and software licenses, making them ideal for academic 

environments. They allow for the implementation of flexible and powerful software 
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radios.  USRP N210 as illustrated in Figure 34, allows for custom FPGA functionality to 

implement baseband signal processing modules. USRPN210 can be used with host PC to 

develop the software radio. Developing with a host-based platform typically involves less 

risk and will require less effort to optimize various pieces of the software radio. The code 

can be then ported easily to USRP E100/E100, which is appropriate as a standalone 

system. 

  

      Figure 12: USRP N210 (Ettus Research, 2014) 

The USRP E100/E110 as illustrated in Figure 35 is ideal for applications that require 

mobile transceivers. The next step would also be to use the processor on the FPGA to act 

as a host, therefore, making the system a modular and standalone without the requirement 

of any other host.  

 

    Figure 13: USRP E100 (Ettus Research, 2014) 
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4.1.6 Hardware options for Nanosatellites Communication System 

Table 14 contains the comparison between different FPGA based development platforms 

for SDR applications. The comparison is between FPGA, FPGA Development Board and 

USRP. 

 FPGA (Spartan-3A 

DSP FPGA) 

Development Board 

(Atlys Spartan-FPGA 

Development Board) 

USRP 

Size 95.89 mm x 90.17 mm 

x 15.24 mm 

27.94 cm x 22.86 cm 

x 2 cm 

22x16x5 (with 

outer box) 

14 cm x 14 cm 

X 5cm (FPGA 

+ daughter 

board) 

Mass Approximately 0.20 

kg 

Quite heavy 1.2 kg with 

outer box) 

Power 1.5W @ 5 VDC 19 W Maximum of 9 

W 

Cost $300 $419 $2140 

Integration 

with RF front 

end 

Have to connect to a 

different front end 

Need a  front end integrated with 

front end 

Open Ended 

software 

Xilinx ISE 

development 

Xilinx ISE 

development, 

Webpack, Chipscope. 

GnuRadio, 

Matlab 

Simulink 

Development 

purposes 

Slightly harder. Easier for 

development 

Easier for 

development 

Standalone 

System. 

Yes No Yes 

  Table 14: Comparison between different development platforms for SDR 

development 

Considering the size 95.89 mm x 90.17 mm x 15.24 mm of the FPGA; it is also able to fit 

on the small satellite. The size development board is quite big with a size of 27.94 cm x 
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22.86 cm x 2 cm, since it has various features which aid in development of a design. 

Therefore this cannot be flown on a nanosatellite. The USRP albeit not being as small as 

the FPGA can still fit on the nanosatellite. Similarly, for the mass the development board 

is too large, but the FPGA and USRP are able to fit on nanosatellite.  A front end has to 

be purchased and then integrated with the FPGA and the development board, but the 

USRP already has a front integrated, connected and working with the code making it 

easier for the developer to focus on the design. For development purposes, testing the 

FPGA is harder. Development boards provide features such as LCD displays, audio 

inputs and outputs to test operations. USRP is good for development purposes as well as 

it uses open source tools like Simulink, etc; which also aid in testing. An FPGA by itself 

and an USRP can be a standalone system, i.e., it does not require a PC or host connected 

to it all the time. A development board requires to be connected to the host at all times. 

The USRP N210 is chosen as a platform for this research as it is an excellent platform to 

develop a SDR based communication algorithm. 

4.2 Universal Software Radio Peripheral (USRP) 

The architecture of USRPN210 is illustrated in Figure 36. This architecture is typical for 

a second generation platform. The USRP N210 consists of a motherboard which contains 

four Analog to Digital Converters (ADCs), Digital to Analog Converters (DACs), a 

Spartan 3A-DSP 3400 FPGA from Xilinx. It supports four daughter boards, two for 

receiving and two for transmitting, on which the RF front ends are implemented. The 

Gigabit Ethernet interface serves as the connection between the USRPN210 and the host 

computer.
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Figure 14: Architecture of USRP N210 (Malsbury and Ettus, 2013)
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The USRP Hardware Driver™ is the official driver for all Ettus Research products. The 

RF front-ends convert the analog signal to digital and vice versa. The FPGA has digital 

signal processing modules already programmed on the USRP N210. Figure 37 illustrates 

the modules implemented on USRP N210. On the receiver side, the FPGA section has the 

frequency translation from Intermediate Frequency (IF) to baseband of the digitized 

signal. The FPGA also has the digital down-converter module, which allows for the 

samples to be down-sampled, so that they can be sent to the host PC over the Ethernet 

interface. The receiver control module adds timing information to the samples and checks 

them against the sampling rate. The samples are then packed in frames which are then 

send to the host via the packet router. Similarly, on the transmitter side, the data are sent 

from the host to the transmitter control via the packet router. The transmitter control uses 

a FIFO buffer which is placed in an external RAM chips. The packets are decoded from 

here and also checked to ensure that the frames sample data and timing is correct. These 

samples are then sent to the digital up converter where up-sampling occurs. The 

frequency translation module implements the conversion from baseband to intermediate 

frequency. This module sends the data to the front end where the signal is converted to 

analog and then transmitted through the antenna (Enevoldsen et al., 2011) 
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    Figure 15: Modules of USRP N210 

4.2.1 Hardware Platform Configuration using GnuRadio 

The USRPN210 platform also consists of the GNU Radio software and the RF front ends.  

The USRP is integrated with the GNU radio which runs on Windows and Linux to be 

used as a Radio. The GNU Radio software allows for the compression/decompression, 

encoding/decoding, modulation/demodulation for the purpose of signal processing of the 

data (Dabcevic, 2011). The GNU Radio uses a signal source while transmitting and a 

signal sink while receiving. The GNU Radio framework allows for simple 

implementation of powerful signal processing systems (Oliveri, 2011). The disadvantage 

of this interface is that it requires host computers for design implementation. These 

computers cannot fit on a nanosatellite. Since a GNU radio interface cannot be utilized, 

there is a need for the digital signal processing to be implemented on the USRP itself.   
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4.2.2 Customization of USRP 

The USRP needs to be customized to eliminate the use of the GnuRadio, It is also 

possible to use the inbuilt signal processing blocks to create receiver and transmitter. 

Since the USRP allows for customization of the FPGA code different modules, which do 

the digital signal processing are added on the FPGA of the USRP (Dabcevic, 2011). As 

seen in the Figure 38, the Custom RX- Receiver and TX-Transmitter modules highlighted 

in are implemented on the USRP. These modules involve the digital signal processing 

functions necessary to receive and transmit data. Chapter 4 discusses the architecture of 

the transmitter and receiver design implemented in these customized modules. 

 

   Figure 16: Customization of USRPN210 
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4.2.3 Software Toolbox for FPGA Implementation 

Earlier sections discussed that the USRP has the flexibility of modifying the structure that 

it has already in-built. A common method to customize the RX signal path and TX signal 

path is to use the Xilinx ISE software directly, provided by the Xilinx FPGA 

manufacturers. The software can be implemented on the Linux based systems.  

An alternate method is to use Communications System Toolbox Support Package for 

USRP Radio. This package is a platform for SDR applications. This platform uses Matlab 

and Simulink. It helps to design and test SDR systems. It also uses HDL coder for 

Targeting FPGA with USRP hardware. It has functions to connect Simulink to the USRP 

UHD driver. The package is integrated with Xilinx ISE Software using System Generator 

(MathWorks). 

System Generator tool is used to design high performance DSP Systems. It integrates 

with the software’s RTL and MATLAB and hardware components of a DSP system. 

System Generator provides system modelling and automatic code generation using 

Simulink and Matlab. The tool allows the generation of HDL code for Xilinx FPGA’s 

using Xilinx-specific blocks in Simulink. 

Simulink is an environment which uses block diagrams for simulation and model-based 

design. It is also integrated with Matlab which allows using Matlab functions and Matlab 

algorithms. Simulink is used extensively in control theory and digital signal processing. 
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5 Implementation of Software Defined 

Transceiver Design  

A platform suited for a nanosatellite specifically a 1U CubeSat was built by Oliveri 

(2011) called the COSMIAC system. The next research step is the software 

implementation of SDR as a nanosatellite communications system. The design performs 

the signal processing for the communication system. In this chapter, the algorithm for this 

design is explained. The modulation / demodulation schemes used for this purpose have 

been implemented in simulation previously but not with a SDR platform. This 

implementation aspect of the signal processing methods is crucial to the incremental 

contribution in the development of the software defined radio nanosatellite 

communication system. The transceiver algorithm is fully modelled and implemented in 

software using the Simulink tool. The aforementioned environment provides the required 

flexibility for the implementation and validation of the SDR design. In section 5.2 and 

5.3, the transmitter and the receiver have been implemented.  

5.1 Transceiver Algorithm Design Specifications 

NanoCom U480 is a half-duplex UHF transceiver system for space applications with 

limited resources. NanoCom U480 consists of a transceiver which does all the analog 

signal processing and a modem which does all the baseband signal processing. The 

modem used is CMX469A FSK/MSK Modem. The transceiver is designed to emulate the 

NanoCom U480 transceiver system in software. Referring to Figure 38, for the purpose 
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of this research, the analog signal processing is performed by the front end WBX TX/RX 

board, which is attached to the FPGA on the USRP board. The transceiver design 

implements the baseband signal processing in software. The design specifications of the 

algorithm are: 

1. The algorithm implements the transmitter and receiver chains which perform 

modulation and demodulation respectively. 

2. The algorithm is compatible with the modules already present on the USRP for the 

hardware implementation of the design. The algorithm is designed to fit in the 

custom TX and RX module (from Figure 38). 

3. The signal is generated, received and processed entirely in software.  

4.  The design algorithm easily adapts to the changes in the baud rates.  

5.1.1 Selection of Modulation/Demodulation Scheme 

As discussed in section 2.4, the digital communication schemes namely PSK, CPM, and 

trellis-coded modulation require phase tracking. In this research the, a functioning 

algorithm with a simpler configuration is implemented, therefore the phases are not being 

considered. The many advantages of FSK over ASK include better noise resistance. ASK 

is prone to noise which affects the amplitude of the signal. FSK is less susceptible to 

errors as compared to ASK since the receiver looks for specific frequency changes over a 

number of intervals so noise spikes can be ignored. The type of FSK being implemented 

is BFSK modulation scheme with two frequencies which correspond to one and zero. The 

message to be communicated is a binary message, which has either a zero or one in the 
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message. The modulation scheme implemented is the non-coherent BFSK modulation. 

Given the objective is to validate the software defined communication system designed 

for a nanosatellite, a non-coherent BFSK is a better fit than a coherent system due to its 

simpler configuration on the development platform (fewer parameters) and shorter 

development duration. 

5.2 Transmitter Implementation 

Referring to section 5.1.1, non-coherent BFSK modulation is being implemented in the 

design algorithm explained in section 4.2.1 and 4.3.1. From the transmitter, the signal is 

sent to the digital up-converter of the USRP. 

5.2.1 Transmitter Architecture 

The modulator in the transmitter design has two phases shown in Figure 39.In the first 

phase the modulator generates a signal using non-coherent FSK modulation. The second 

phase consists of resampling and FM baseband modulation. 

 

 

   Figure 17: Transmitter Algorithm Architecture 

In the first phase the modulator generates a signal corresponding to the information being 

sent as illustrated in Figure 40. The binary data input message is generated by the Bits 

Generator block in Simulink. In the algorithm, the signal is generated using two 

oscillators each corresponding to mark   and space   frequencies. The two discrete 
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frequencies chosen are 2100 Hz as mark frequency and 1300 Hz as space frequency, the 

initial phases of mark and space frequencies are    and    which are not related to each 

other and are considered to be zero for this particular design. The signal generated by the 

oscillators is represented by   (Mark)=cos(2*π*2100*t),   (Space)=cos(2*π*1300*t) 

where t is the sampling period. The algorithm implementation designs the oscillators 

using DSP Sine wave generator in Simulink. The signal generated is controlled by the 

binary data input. The control is achieved by designing a multiplexer, which takes in the 

information in the form of binary data. The multiplexer switches between the mark 

frequency and space frequency depending on the bit in the binary data input. A one bit 

corresponds to the mark frequency and the zero corresponds to the zero frequency. The 

multiplexer is designed with switch block in Simulink.  The signal generated is FSK 

modulated and is represented by   (t)=cos(2*π*f(i)*t) where f(i)(frequency) depends on  

the information message bit. The signal is then sent to the second phase of the modulator 

 

 

 

 

 

 

Figure 18: Transmitter Algorithm Phase 1 FSK Signal Generation 
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The second phase of the algorithm takes the FSK modulated signal generated from the 

first phase, and modulates further to make the signal compatible with the USRP as 

illustrated in Figure 41. In the algorithm, firstly the signal is resampled to convert the 

sampling frequency of the design to the USRP sampling rate of 200 kHz.  A resampler is 

needed to achieve this function. In the algorithm implementation of the second phase the 

signal is directed through an FIR interpolation block in Simulink to achieve the 

resampling. The conversion rate depends on the sampling frequency of the design which 

in turn depends on the data rate at which the transmission is occurring. The resampling 

filter is designed using the MFILT object from the DSP System Toolbox in Simulink. For 

the example, if the baud rate is 200 bits per second, sampling frequency is 8000 Hz of the 

FSK generated signal, the conversion rate is 25 so that it gives 200 kHz (25*8000 Hz). 

 

 

Figure 19: Transmitter Algorithm Phase 2 Signal Transmission 

Next, the signal generated is converted to complex baseband signal. The conversion is so 

required because the signal needs to be compatible with the USRP Digital up-converter 

which requires a complex baseband signal. The USRP works with a complex baseband 

signal which it further converts to RF signal which is further transmitted via antenna. In 

the algorithm, the conversion is done using the frequency baseband modulation in the 

design. The real signal from the first phase of the modulator is represented as u(t). The 

complex signal x(t) can be produced in the following way 
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      x (t) = e^(2*π*j*  *integral(u(s)ds))    (7) 

where    – Modulation index or frequency sensitivity. 

Referring to Figure 42,  the frequency baseband modulator is designed with an integrator 

and a phase modulator whose function in this case is conversion of a real signal into a 

complex signal (i.e., Quadrature modulator)(SGR, 2010). In the implementation of the 

design, the integration is done by the digital filter more specifically an IIR (Infinite 

Impulse Response) filter. The signal then is multiplied with the frequency sensitivity gain 

as per equation 7. The multiplication is achieved in the implementation by passing the 

signal from the filter to the frequency sensitivity gain which has a value of 0.0785. This 

value is calculated using equation 5 from section 2.4 with the values of amplitude 1, 

frequency deviation 2.5 kHz and the sampling period of the USRP (200,000 Hz). 

Conversion of the signal into a complex signal is achieved using quadrature modulation, 

which in the Simulink implementation is the Magnitude-Angle to Complex converter 

where the magnitude is taken as 1.  

 

Figure 20: Transmitter Module – Frequency Baseband Modulator 
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The signal is then sent to the digital up converter which is already in the USRP. The 

transmitted message is sent from the host computer to the USRP via the transmitter 

control. After modulation and up conversion the frequency is converted to analog signal 

which is transmitted by the front end using the antenna. 

5.3 Receiver Implementation 

Non-coherently generated signal can only be non-coherently demodulated. Therefore, for 

the purpose of this research development the non-coherent BFSK demodulator is 

implemented on the receiver. The signal once received via the front-end connected to the 

USRP, digitized and down-converted by the down converter present in the USRP goes 

through the receiver algorithm described in section 5.3.1.  

5.3.1 Receiver Architecture  

 Referring to figure 43, the receiver algorithm has two phases. The first phase consists of 

frequency demodulation to baseband form, resampling of the signal and filtering of noise 

as illustrated in Figure 44. The second phase of the algorithm is designed using a 

correlator implementation of a non-coherent BFSK demodulator in the receiver  

 

 

 

Figure 21: Receiver Algorithm Architecture 
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The frequency demodulation to the baseband form is achieved in the design by 

performing differentiation to get the frequency change of the carrier wave. The output 

signal from the USRP digital down-converter is fed to the FM demodulator which 

performs differentiation to get the baseband signal. 

 

 

 

Figure 22: Phase 1 -Receiver Architecture 

In Figure 45, the algorithm implementation of FM Baseband Demodulator in Simulink is 

illustrated; the delayed signal is multiplied with the conjugate of the signal. The signal is 

then converted to a real baseband signal using a Complex to Magnitude-Angle block 

from Simulink to get the output as a phase angle of the input signal. 

 

Figure 23: Frequency Baseband Demodulator 
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 Secondly in the first phase of the algorithm, signal is resampled from 200 kHz to the 

sampling frequency of the design as shown in Figure 40.  The algorithm implementation 

in Simulink uses the FIR decimation to achieve the resampling.   

The received signal is contaminated with noise while being transmitted over air. There is 

thermal interference and other sources of noise which use electromagnetic waves. The 

algorithm design includes a filter to remove the noise.  A low pass filter is used for this 

purpose. A low-pass filter allows signals with frequencies lower than a certain cut off 

frequency and reduces the effect of higher frequencies on the signal. The low-pass filter 

filters out the high-frequency components of a signal, letting us focus on the low 

frequencies we may be interested in. The low frequencies keep most of their strength. 

The high frequencies are reduced. At a certain frequency, called f3db, the filtered strength 

of the frequency is exactly 3 decibels less than the original (or, about 70%).  In the design 

implementation a Low-Pass Filter block is used in Simulink. In Simulink the low-pass 

filter has the filter response illustrated in Figure 46. The filter response is for the 

following specifications, input sampling frequency of 8000 Hz and cut-off frequency of 

2500 Hz.  The low-pass filter filters out the frequencies above 2500 Hz so that it includes 

the mark and space frequencies, 2100 Hz and 1300 Hz, respectively. 
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Figure 24: Filter response of Low-pass filter 

The second phase of the algorithm is designed using a correlator implementation of a 

non-coherent BFSK demodulator in the receiver. Referring to the Figure 47, the upper 

two branches are implemented to detect    (mark frequency) and the lower two to detect 

  (space frequency).  Figure 43 illustrates the non-coherent demodulation implemented in 

the phase 2 of the algorithm design. Referring to equation 6 the received signal r(t) is 

represented as    (t,θ) = Acos(2π  t + θ),  i=1,2 , where Acosθcos(2π  t) is the in-phase 

component and Asinθsin(2π  t) is the quadrature component.  
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 In the equation 6, the in-phase component is the real part of the complex signal and the 

quadrature components is the imaginary part of the signal. In the algorithm, the signal 

received from the low-pass filter represented by r(t), is divided into in-phase and 

quadrature components for each frequency component by passing it through the 

respective correlators. The in-phase correlator is designed using real part of the expected 

mark or space frequency and the quadrature correlator is designed using the imaginary 

part of the expected mark or space frequency. The signal is multiplied with the in-phase 

correlator to get the in-phase part of the signal and the quadrature correlator to get the 

quadrature or imaginary part of the signal. In the algorithm implementation, the 

correlators are implemented in Simulink by multiplying the signal from the low-pass 

filter to the real and imaginary parts of the DSP sine wave generated, expected mark and 

space frequencies of 2100 Hz and 1300 Hz.   

Next the signal from the correlators is fed to the integrator which is implemented in the 

Simulink using the Integrate and Dump. The signal is then squared. The signal from the 

integrator is squared to get rid of the phase components. In Simulink the Math module 

specified for squaring is used for this purpose. The outputs of the in-phase and the 

quadrature branches are added. The received signal corresponds to either    mark 

frequency or    space frequency, evaluated by the judging unit. The judging unit is 

designed by comparing the outputs from the correlators of the first two and the lower two 

branches as shown in Figure 47. The judging unit implemented by comparing the output 

of the sum of the first two branches and the sum of the lower two branches in the 

algorithm using a Relational Operator block in Simulink. Next, based on the decision of 
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the aforementioned comparison the algorithm judges whether a bit one or bit zero is the 

output of the demodulation. If the sum of the first two branches is higher than the sum of 

the lower two branches then a one bit is the output and if the vice versa is true then a zero 

bit is the output. The implementation of the judging unit is done by a Simulink model 

called Relay. The data output from this relay are the final demodulated signals which are 

stored in a file.  

 

Figure 25: Phase 2- Receiver Architecture – Non-coherent FSK Demodulation 
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6 Transceiver Algorithm Performance 

Evaluation 

The research in this thesis is an incremental contribution towards the development of a 

nanosatellite SDR-based communication system. Chapter 6 describes the tests performed 

to establish whether the software implementation satisfies the research objectives 

discussed in section 1.4. Tests are performed in two phases to evaluate the algorithm. The 

tests are performed to demonstrate that the transceiver design implementation works as a 

transceiver using a singular modulation scheme. The tests also aim to establish Simulink 

as a substitute to the GnuRadio while using the hardware with the design. A third test is 

performed to test whether the design can be completely imported on the FPGA of the 

USRP N210.  With the implementation of the transceiver algorithm in software and its 

successful tests the research aims to demonstrate the feasibility of an SDR based system 

for nanosatellite communications. 

6.1 Test Setup  

To fulfill the research objectives, the functionality of the transceiver needs to be tested. 

The evaluation can be accomplished by transmitting ones and zeros as the binary 

information message through the transmitter and receiving the information using the 

receiver and checking whether the information matches.  

The tests are done in two phases. The first test phase involves the testing of the design in 

simulation to validate the functionality of the transmitter and receiver as illustrated in 
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Figure 48 of the test setup. This is performed in Simulink. The data generated by the 

transmitted design are saved on file and compared with the data received from the 

receiver design saved on file. The comparison is done using an Error Rate block in 

Simulink. The test is performed for three different baud rates of 200 bits per second, 1200 

bits per second and 1600 bits per second. 

 

  

 

 

 

 

 Figure 26: Test Phase 1 – Communication link in Simulink 

The second phase of testing has two parts to it as shown in figure 49 and 50. Firstly, 

referring to Figure 49, the transmitter design is connected to an SDRUTx block available 

in Simulink (Refer to section 4.2.3), which connects the transmitted algorithm 

implemented in Simulink to the USRP transmitter chain. The design when run transmits 

data through the USRP. The transmitter sends the data at the UHF frequency of 437.475 

MHz. The data are collected by a Baofeng radio at the UHF frequency of 437.475 MHz 

while connected to a host computer. The Baofeng radio sends the data to the host 
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computer which saves the data. The data generated by the transmitter are saved on file to 

compare with the received data.  

 

                                 Figure 27: Test Phase 2 – Transmitter Setup 

Secondly, referring to Figure 50, the receiver design is connected to a SDRURX block 

available in Simulink which connects the receiver algorithm to the receiver chain on the 

USRP. The data saved on the computer from the first part of this phase are transmitted 

through the Baofeng Radio again at a UHF frequency of 437.475 MHz, which is received 

by the USRP receiver chain and the data are sent to the receiver design implemented on 

Simulink, which gives us the demodulated data signal. The received data are saved on file 

which is once again compared with the transmitter generated data to do error analysis. 

This test simulates how the algorithm would work with the USRP but does not have the 

algorithm on the FPGA in the USRP. The baud rates of 200 bits per second and 1200 bits 

per second are tested. 
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   Figure 28: Test Phase 2 – Receiver Setup 

The third test involves using the Communications System Toolbox Support Package for 

USRP Radio to target the FPGA on the USRP.  The aim of this test is to verify whether 

parts of the transmitter and receiver design can be imported on the FPGA as illustrated in 

Figure 51 and Figure 52. The data generator in the transmitter which is implemented by 

the Bernoulli Bits Generator in Simulink is not a part of the design that needs to be 

imported on the FPGA. Similarly in the receiver design the file to receive the 

demodulated data are not the part of the design that needs to be imported on the FPGA. 

               

Figure 29: Test 3 – Transmitter on FPGA  
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                    Figure 30: Test 3 – Receiver on FPGA 

6.2 Transceiver Design performance Evaluation  

The two phases of the performance evaluation are analysed in the sections below. Data is 

compared from the receiver and the transmitted to determine a successful communication 

link and the error rates. 

6.2.1 Phase 1 – Transmitter Receiver Link Simulation Results 

As discussed earlier the simulation is tested with different data rates of 200, 1200 and 

1600 bits per second as the  generic software based communication system should be able 

to work with different baud rates. Table 15 shows a summary of  all the tests done in this 

phase, the number of data symbols being sent and the error rates. The signal  generated 

by the transmitter contains a mixture of ones and zeros.  From table 13 it is seen that data 

transmitted from the transmitter design is  identical to the received demodulated data 

without any errors. The successful transmission and reception at different baud rates 

shows that the transceiver design is capable of functioning at different baud rates. The 

1200 baud rate is one of the standard baud rates of an amateur band communication 

system. Signal processing is being performed since the information data received by the 



91 

 

receiver are identical to the information data sent by the transmitter. The non-coherent 

BFSK modulation scheme is implemented successfully by transmitter in simulation to 

provide a signal to be transmitted. The non-coherent BFSK demodulation is applied by 

the receiver successfully in simulation since the received information matches original 

information provided by the transmitter. The successful communication link established 

also shows that changes can be made quickly to the algorithm by changing the different 

baud rates, adding and FM baseband modulation / demodulation implementation to the 

algorithm thus establishing the flexibility of the design which an ASIC based system is 

unable to provide. The target rate of 9600 bps was tested with the transceiver code, the 

modulation/demodulation scheme implemented for this code does not suit the desired 

system data rate. Therefore a coherent scheme needs to be implemented which is 

explained in the section 6.3.1. 

Baud Rate (bits per 

second) 

Time (seconds) No of Data 

Symbols 

Error rate 

200 1 201 0 % 

200 25 5001 0 % 

1200 1 1201 0 % 

1200 25 30001 0 % 

1600 1 1601               0 % 

Table 15: Phase 1 test cases with results 

6.2.2 Phase 2- Tests of Transceiver Design with USRP 

The tests for the second phase of testing are performed for 200 bits per second and 1200 

bits per second. Figure 53 compares the transmitted data with received data for 200 bits 

per second baud rate. The plot comprises of the subtraction of the received data from the 
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transmitted. When the data transmitted is identical to the received data the comparision 

gives out a zero. The peaks show the errors in the  comparision. From the plot it is seen 

that the received data  has a few errors. The errors correspond to the first test case in table 

16. A total of 4 errors are detected which gives a error rate of 2% for a total of 201 data 

symbols transmitted and received. Table 16 shows a summary of  all the tests done in this 

phase along with error rates.  

 

  Figure 31: Comparison of transmitted and Received Data for 1 second at 200 baud 

rate  
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The successful communication link verifies the feasibility of the transceiver algorithm 

designed with a FPGA based hardware platform which in this case is the USRP N210. 

The successful communication link is indicated by the successful transmission and 

reception of data of the USRP N210 with the use of the transceiver algorithm for signal 

processing. The successful communication link also shows the compatibility of the 

transceiver code with the previously present modules in the USRP. The error rate column 

shows the low errors in the communication link. As per the link budget described in 

section 3.4, the bit error rate allowed for the system is 1.0E-05. The error rates shown in 

the last column of Table 16 are quite high for the system due to the lack of time 

synchronization with the USRP based transmitter and receiver. Similarly, comparing to 

Table 15 the errors are higher because the transmitter and the receiver and are not clock 

synchronized along with the lack of phase synchronization of the signal. Even though the 

error rates do not match the specified error rate for the system, they establish that the 

transceiver works with albeit with a few errors. As per the successful transmission and 

reception, the transceiver design feasibility with hardware suitable for SDR 

implementation is established for all the test cases of this phase. 

Baud Rate (bits per 

second) 

Time (seconds) No of data symbols  Error rate 

200 1 201 2 % 

200 7.5 1501 6.5 % 

1200 0.2 241 13.6% 

1200 2 2401 11.8 % 

Table 16: Phase 2 test cases with results. 
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6.2.3 Targeting the FPGA on USRP N210 

 As discussed in section 6.1, for the third test some parts of the algorithm design are 

imported on the FPGA since the blocks are compatible with the HDL coder in Simulink.  

Blocks that are not compatible with the HDL coder are the resampler in the transmitter 

and the FIR decimation block for receiver.  All the blocks where imported on the FPGA 

and the USRP was tested but a successful communication link was not established 

because some of the blocks imported on the FPGA don’t work with the frames on the 

FPGA (Digital Filters in Simulink). New blocks need to be designed with same 

functionality to be able to work with frames to establish a successful communication link. 

6.3 Error analysis of Transceiver Design 

The higher data rates produce higher error rates. These errors are reduced with 

synchronization which includes timing recovery and carrier phase recovery explained in 

section 5.3.1. Referring to table 15, the error rate for 1600 baud rate is the highest.  

It is also noticed that there is high error rate when the design is run with the USRP. The 

major contributing factor to these errors is transmitter-receiver synchronization as 

explained in section 6.3.1.  

6.3.1 Frame Synchronization 

Frame synchronization is important for error free data reception. It requires the 

transmitter and receiver to be synchronized in terms of the end and beginning of the 

frame and in the phase of the signal. 
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Timing recovery:  The objective of timing recovery is to obtain symbol synchronization.  

The demodulation in receiver needs to know the beginning and the end time of the signal. 

Clock recovery tries to synchronize the receiver clock with the symbol rate transmitter 

clock to obtain samples at appropriate time. The receiver needs to know the sample 

frequency and where to take the samples within each symbol interval. The two quantities 

need to be determined by the receiver to achieve symbol synchronization which are 

sampling frequency and sampling phase. Time timing recovery comprises estimation of 

the timing error and the timing corrections (Dick et al., 2000). Different algorithms which 

implement timing recovery are Gardner, Mueller and Mueller and Early – Late gate 

Phase recovery and tracking. 

Carrier recovery (Phase recovery): The objective is to remove frequency offset for the 

signal to be processed in baseband form. For this purpose two parameters that need to be 

estimated are carrier frequency offset and carrier phase offset. The received signal is then 

corrected as per these estimates (Dick et al., 2000). Carrier recovery can be accomplished 

with Phase Locked Loop or a feedforward digital carrier recovery technique. Costas loop, 

N-ary PSK Costas Loops, Digital phase-locked loop, decision-directed carrier recovery 

loop also performs phase coherent supressed carrier reconstruction and synchronous data 

detection within the loop.  
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6.4 Physical Specifications of the hardware 

Table 17 contains the physical specifications of USRP N210. The USRP N210 is a 

development platform on which the communication algorithm has been implemented. 

The USRP N210 requires the use of a host computer. For the communication system to 

be a modular standalone the use of host computer is not needed.  To enhance the 

hardware to fit for nanosatellite system, the algorithm code is easily ported to USRP 

E100/E100 which is appropriate as a standalone system. 

Physical Specifications  

Mass with the case 1.2 kg with the case 

Size 22 x16 x 5 cm 

Maximum Power Consumption 13.8 W maximum with the current 

daughterboard 

   Table 17: Physical Specifications of USRP N210 
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7 Conclusions and Future work 

In this chapter a summary of the research work done for this thesis is provided. The 

research objectives accomplished are discussed along with the contributions, which this 

study provides in the area of software based nanosatellite communications system. Future 

recommendations to build a complete software based transceiver for nanosatellite 

communication system are presented as well.   

7.1 Summary 

 A survey is done of the hardware for nanosatellite communications system to determine 

that SDR is a flexible, cost effective solution for nanosatellite communications system. A 

software based transceiver algorithm is developed and implemented for the purpose of 

nanosatellite communications. A survey is presented of the various hardware platforms 

available. A survey of FPGA based platforms is also presented to determine the suitable 

development platform for this research. USRP N210 is selected to implement the 

transceiver design algorithm. A communication algorithm for a transceiver is designed 

using non-coherent binary frequency shift keying modulation scheme. This design is 

implemented on the USRP N210 development platform. Simulink is the software tool 

used for this purpose and also to test the design. Implementation in Simulink provides a 

unique functionality for testing in simulation and in hardware. The design successfully 

sends and receives information bits in simulation and also with the hardware. Parts of the 

design in simulation are also targeted on the FPGA. A link budget analysis is done to 
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determine the feasibility of the system. Some of the objectives accomplished are 

presented in the following sections. 

7.1.1 Transceiver Functionality  

The software implemented on the USRP N210 functions as a transceiver whose function 

is to transmit data and receive data. The transmitter is implemented using non-coherent 

binary frequency shift keying modulation scheme. The receiver also uses non-coherent 

binary frequency shift keying demodulation scheme. The transceiver fulfills the primary 

objective of establishing a communication link by successfully transmitting and receiving 

data using the design. The communication algorithm is first tested successfully in 

simulation only. The design is also tested with the USRP successfully. Compatibility of 

the design with the already present modules on the USRP is achieved with the successful 

communication link. The USRP transmits and receives successfully at UHF frequencies. 

Data rates of 200 bits per second, 1200 bits per second and 1600 bits per second are also 

tested with the design successfully. The flexibility of the design code is demonstrated 

successfully with the implementation of the design with the already present modules, the 

implementation of different data rates and the added configurability of adding or 

removing functions of encoding, modulation and other signal processing blocks. The 

flexibility of adding more functionality is essential of a software defined radio system.  

7.1.2 Software Implementation of SDR for nanosatellite communications system 

The communication system transceiver design uses software for baseband signal 

processing. The USRP N210 is used with host PC to develop the software for the system. 
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The USRP uses open source hardware and software licenses. The communication system 

design is implemented in software on the USRP with the use of the Communications 

System Toolbox Support Package for USRP Radio. The package uses Matlab /Simulink 

which simulate the design, tests the design with USRP and also target the FPGA on the 

USRP using HDL coder. USRP UHD driver is used to test the design in Simulink with 

the USRP. The package is integrated with Xilinx ISE Software using System Generator. 

The use of Matlab/Simulink eliminates the use of GnuRadio.  

7.1.3 Transceiver Design Hardware Implementation  

USRP N210 implements both transmitter and receiver design of communication system 

successfully. The USRP N210 development platform hardware is a commercial off the 

shelf product with the cost of $2140 which remains within the cost of a nanosatellite 

mission development.  The USRP has a daughterboard with a front end attached. A 

monopole antenna is connected to the USRP N210. The FPGA has the following digital 

signal processing modules, digital down-converters and up-converters, frequency 

translators and transmitter and receiver control modules already programmed on the 

USRP N210. USRP has the flexibility of modifying the structure that it has already 

inbuilt. Therefore a communication algorithm is added and tested successfully to the 

already present software modules. Referring to section 3.2, the USRP is used normally as 

a radio using GnuRadio. The disadvantage of GnuRadio is that the software cannot be 

implemented on the FPGA. A new method is used to simulate the design, test it and port 

it on the FPGA using Simulink.  
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7.2 Contributions  

The research in this thesis is an incremental contribution towards the development of 

SDR for nanosatellite communication system using open source hardware and software. 

Oliveri(2011) developed an agile SDR hardware platform which can fit on 1U CubeSat.  

The SDR hardware platform developed is called the Configurable Space Microsystem 

Innovations and Applications Centre (COSMIAC) CubeSat FPGA board. The research in 

this thesis takes a step further on the software development aspect and presents the 

following novel contributions: 

1. The available technologies for nanosatellite communications system were 

examined   and SDR design was established as a cost-effective, flexible 

alternative; 

2. The software implementation of SDR as a nanosatellite communications system 

was done. The design performed signal processing for generic communication 

purpose. The design eliminated the use of GnuRadio by implementing in 

Simulink to allow for easy porting onto the FPGA-based system 

3. The design supports both receiving and transmission. The design uses software 

for baseband functionality in signal processing.  A singular modulation scheme to 

demonstrate the feasibility of an SDR system for nanosatellite communications is 

tested. The design is implemented on a hardware development platform which is 

commercial off the shelf, meets the budget constraints and can be enhanced for 

nanosatellites.  
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These contributions create the foundation to develop a flexible software based 

communication system using a FPGA platform.  

7.3 Future Work Recommendations  

The performance and the implementation need to be improved to build complete software 

based communication system for nanosatellites. Future recommendations are discussed to 

aid in getting closer to building a complete standalone modular system for a nanosatellite.  

7.3.1 Improve Design Performance by Reducing Errors 

Referring to the error analysis in section 6.4 there is a need for algorithm performance 

enhancement by reducing the errors. Section 6.4 lists the reason which gives rise to errors 

as the need for transmitter receiver synchronization. Higher data rates produce higher 

error rates which can be reduced with transmitter receiver synchronization as well.  

A coherent FSK implementation as explained in section 5 has a lower probability of 

errors because it includes phase tracking.  Therefore changes should be made to the non-

coherent BFSK transceiver algorithm to implement coherent BFSK scheme to reduce the 

error probability.  

7.3.2 Modular standalone Software Defined Radio 

For the communication system to be a modular standalone the use of host computer is not 

needed. The USRP N210 is a development platform on which the communication 

algorithm has been implemented. The USRP N210 requires the use of a host computer. 

For this purpose, the algorithm code should be easily ported to USRP E100/E100 which 

is appropriate as a standalone system (Ettus Research).The embedded computer has a 
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fully functional Linux distribution with GNU Radio and other software used for signal 

processing installed. The USRP E110 uses the same FPGA as the USRP N210. Since the 

USRP is not tested for space qualification, environmental testing should be done to make 

it flight ready. Aspects of environmental testing are discussed in section 6.3.3. 

Hardware sent to space is affected by the space radiation. There are some space rated 

FPGA’s like the Radiation-Hardened, space grade Virtex-5QV. But these cannot be 

adapted to a smaller satellite like a nanosatellite. Therefore, once a complete prototype is 

built it can be transferred to a custom built radiation hardened FPGA system fit for a 

nanosatellite. 

7.3.3 Protocols and Space Environment Testing 

Referring to Section 3.3.1 communication protocols should be implemented on the SDR 

for proper synchronized information transmission and reception. The implementation 

should be an added block in the algorithm design to decode the protocol and output 

information frames as per the protocol. 

The hardware also needs to go through environmental testing. Environmental testing 

includes vacuum chamber testing and thermal testing. Environmental testing is done to 

examine whether the hardware will perform in vacuum environment and if it will perform 

with space temperatures and temperature variations. Environmental testing also includes 

vibration testing. The hardware also needs to be tested to determine whether it will 

function under high vibration conditions known due to flight launch and satellite spin. 
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