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Abstract

Exploiting structure information for network dissimilarity characterization –

Application to disease network analysis and treatment prediction

Serene W. H. Wong

Doctor of Philosophy

Graduate Department of Computer Science and Engineering

York University

2014

Most cancers lack effective early disease markers, prognostic and predictive signatures,

primarily due to tumor heterogeneity. As a result, we fail treating cancer heterogeneity

due to multiple ways cancer initiates and develops treatment resistance. Models that

represent these differences and the underlying molecular mechanism in cancer enhance

the possibility in characterizing and in turn treating cancer successfully.

We introduce novel graph-based methods for exploiting network structure information

in the comparison between any graphs, and validate them on non-small cell lung cancer

datasets. We generate normal and tumor graphs using normal and tumor samples from

gene expression datasets, where vertices are genes, and edges connect co-expressed genes.

In the first part of this dissertation, we propose a systems approach with an aim to revert

disease conditions to healthy ones through treatments. In order to achieve the objective,

we propose three novel methods to 1) systematically identify network structure differ-

ences between normal and tumor graphs, 2) identify and prioritize drug combinations

based on extracted network structure differences, and 3) computationally estimate the

potential of the proposed drug combination to “repair” deregulated subgraphs. Biological

validation of the predictions highlights that our systems approach is a promising method

to provide treatment options to non-small cell lung cancer through the rewiring of disease

networks. In the second part of this dissertation, we introduce the notion of differential
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graphlet community to detect deregulated subgraphs between any graphs such that the

network structure information is exploited. We observed a trend that the shortest path

lengths are shorter for tumor graphs than for normal graphs between genes that are in

differential graphlet communities, suggesting that cancer creates shortcuts between bi-

ological processes that may not be present in normal conditions. In the third part of

this dissertation, we propose a heuristic, the differential correlation graph approach, that

identifies areas that are different between the normal and tumor graph, and perform

graphlet enumeration on the identified areas. Results showed that our approach achieves

accurate estimation in the difference between normal and tumor states by performing

network comparisons in important areas only.
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Chapter 1

Introduction

The study of large networks for network structure analysis has continued to grow and is

an active research area in systems biology (e.g., [58], [89], [80], [40]). Large networks are

used to model many real-world phenomena; social, biological and technological networks

are a few examples. These real-world phenomena are modeled with nodes and edges of a

network where nodes are components and edges are relationship between two components.

In this dissertation, we focus on biological networks.

For over a century, reductionism has dominated biological research [10]. Individual

cellular components and their functions are studied. Despite of the success of focusing

on individual components, it is increasingly clear that rarely an individual molecule

is responsible for a biological function. Instead, most biological functions are due to

interactions between different cellular constituents. Systems biology is a new dimension

to traditional approaches. Systems biology uses a holistic, rather than a reduction view

to understand complex biological phenomena [4]. Not only are individual constituents

studied, the interactions between constituents in a network are studied as well. For

example, how different constituents function together in a network.

One area of biological network research is the analysis of network structures. Analysis

of biological network structures can enhance the understanding to biological functions of

1
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cellular components, underlining mechanisms of disease, and drug discoveries. A chal-

lenging problem (in the post-genomic era) is to identify relationship between network

topology and disease, and network comparisons can obtain such relationship. By com-

paring networks representing different states, differences of network structure correspond-

ing to different states can be extracted. These extracted network structure differences

can be used to gain insights to the underlying mechanisms and treatments for complex

disease. Comparing networks with different conditions is extremely useful, for example,

comparing networks with different stages or subtypes in cancer, comparing networks with

different drug treatments, comparing networks with disease development in different time

points.

Graph theory has been an important tool to compare networks, to identify structural

properties, and to provide insights to the underlying mechanisms of disease by linking

network structures to different types of biological data such as gene expressions, gene

signatures, known and novel drugs, and protein-protein interactions. In this dissertation,

graph theory will be used for network comparisons. Methods in comparing networks

can be applied to other real-world networks, but we confine our comparisons on bio-

logical networks. In particular, we compared normal versus non-small cell lung cancer

co-expression networks.

A co-expression network is an undirected graph such that individual vertices repre-

sent genes, and an edge represents the two genes co-expressed. Gene expression studies

enable us to understand the mechanism in the molecular level as responses to stimuli are

reflected in gene expression levels [24]. Gene expression studies allow the revolutionising

of molecular medicine such as the potential to classify, predict diagnosis and prognosis

of disease. Thus, we focus on comparing co-expression networks in this dissertation.

According to the American Cancer Society for 2013, in the United States, cancer

is the second leading cause of death, and it is estimated that lung cancer accounts for

27% of all deaths from cancer [3]. Lung cancer has three main types, and non-small cell
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lung cancer (NSCLC) is the most common type, accounting for 85% of lung cancers [3].

Hence, we are interested in gaining insights in NSCLC.

While methods in comparing networks can be applied to other networks, we con-

fine our network comparisons on normal (usually generated from pathologically normal

tissue adjacent to tumor or from healthy controls) versus non-small cell lung cancer

co-expression networks.

1.1 Objectives

The goal of this dissertation is to design algorithms to compare network structures be-

tween different states of networks systematically. Particularly, graphs that are compared

are normal versus disease networks. The ultimate objective in extracting network struc-

ture differences is to gain insights to the underlying mechanisms and treatments for

complex disease. For example, relating the identified network structures to deregulated

genes in signatures, to known and novel drugs, to protein-protein interactions. Yet the

main contribution of this dissertation remains to translate insights to the underlying

mechanisms or treatments for clinical use. We focus on NSCLC in this dissertation, but

the algorithms can be applied generally.

Comparing network structures between graphs provides useful insights, but large

graph comparison is computationally intensive as it involves the subgraph isomorphism

problem which is NP-complete [45]. Thus, heuristics for network comparison have arisen

[92]. In this dissertation, we developed a heuristic that reduce search space by identifying

relevant areas for network comparison.

1.2 Contributions

In this dissertation, we address the problem of comparing graphs, and extract network

structure differences between them. We focus on comparing normal and disease graphs
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in this dissertation, but the algorithms can be applied generally. Most previous network

comparisons between healthy and disease networks used 1) simple gene connectivity or

its variations; 2) edge or the mean edge weight between groups; 3) membership of cliques

to compare the graphs. Furthermore, after differential networks are obtained, often there

is no systematic network analysis on them. Although comparing network structures will

provide important information for the understanding of disease mechanism, it has not

yet been used to its full potential. In this dissertation, we developed novel methods that

use network structure information to compare graphs. Based on the extracted network

structure differences, we analyzed and designed methods in order to gain insights to the

underlying mechanisms and treatments for diseases. While these approaches are generic,

we evaluated our approaches on NSCLC datasets.

We proposed a systems approach with an aim to revert disease conditions to healthy

ones through treatments. First, we developed a systematic approach to extract network

structure differences between normal and NSCLC graphs. Second, based on the network

structure differences, a computational method is designed to identify drug combinations

in order to “repair” the wiring of the identified subgraphs in tumor samples; i.e., to

make the tumor graph more similar to the normal graph. Third, a novel, systematic ap-

proach that provides insights on both mechanistic impacts and therapeutic effects of drug

treatments on networks is introduced. Validations of drug combination predictions, both

mechanistically - measuring whether the graphs are altered as predicted, and functionally

- whether the cells show positive effect of the treatment, showed promising results.

We developed a novel method to detect deregulated subgraphs between any graphs

such that the network structure information is exploited. Deregulated subgraphs refer

to subgraphs that are present in the tumor state, but are not present in the normal

state. This approach circumvents the exponential growth of computation required as the

deregulated subgraph size increases, and enables the systematically exploring of protein

communities with larger size, which provide stronger biological context. Importantly,
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this approach has the ability to include a gene into more than one deregulated subgraph.

The ability for overlapping deregulated subgraphs is important because genes can have

multiple functions under different biological contexts. The analysis led to intriguing

results; the difference in network topology between normal and tumor graphs provides

insights to the underlying molecular mechanism in NSCLC. In particular, a trend that the

shortest path lengths are shorter for tumor graphs than for normal graphs in deregulated

subgraphs is observed, suggesting that tumor cells can create shortcuts between biological

processes that may not be present in normal conditions.

Comparing network structures between graphs is useful, but large graph comparison

is computationally intensive. However, not all areas of the graphs are needed to perform

comparisons. We designed a heuristic that identifies areas that are different between

the normal and tumor graph, and perform graphlet enumeration on the identified areas.

Results showed that our method achieves accurate estimation in the difference between

normal and tumor states by performing network comparisons in important areas only.

1.3 Organization of the thesis

The structure of the dissertation is as follow. Chapter 2 defines graph theoretic ter-

minologies and biological terminologies that are used throughout the dissertation, and

presents background work that are closely related to our research. Chapter 3 introduces

a systems approach with an aim to revert disease conditions to healthy ones through

treatments. Chapter 4 presents the notion of differential graphlet community to detect

deregulated subgraphs between any graphs such that the network structure information

is exploited. Chapter 5 describes a heuristic, the differential correlation graph approach,

that reduces search space by identifying relevant areas for graphlet enumeration. Chapter

6 summarizes the contributions of the dissertation and discusses future work. Appendix

A presents the prognostic signatures that are used throughout the dissertation. Appendix
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B presents the drug concentrations that were used, and the drug validation results for

the impact on the deregulated subgraph in Chapter 3. Appendix C presents information

regarding the overlapping of genes in differential graphlet communities with pathways

and GO biological processes in Chapter 4.



Chapter 2

Background

The main focus of the dissertation is on comparative biological network analysis, thus,

we provide a brief overview of the research area in biological network analysis. We begin

by first introducing graph theoretic and biological terminologies. Then, we discuss the

background work on biological network analysis.

2.1 Graph theoretic terminology

A graph is composed of vertices and edges [113]. Let G(V,E) denote a graph where V is

the set of vertices, and E, E ⊆ V x V , is the set of edges in G. |V | denotes the number

of vertices in G, and |E| denotes the number of edges in G. V (G) denotes the set of

vertices in G, and E(G) denotes the set of edges in G. A graph can be undirected or

directed. A directed graph consists of V (G), E(G) and a function that assigns an ordered

pair vertices to an edge. Thus, an edge in a directed graph is an ordered pair. The first

vertex of the ordered pair is the tail, and the second vertex of the ordered pair is the

head. An edge goes from its tail to its head. A graph is weighted if its edges or vertices

are associated with a numerical label.

A graph is complete if there exists an edge between all pairs of vertices. A complete

graph is also known as a clique. Let x and y be vertices from G. y is adjacent to x if

7
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there is an edge between x and y, and y is a neighbour of x. Let Nn(x) denote the set of

vertices that are adjacent to x, and Nn(x) is the neighbourhood of x.

A degree of a vertex x, d(x), is the number of incident edges to x. A path in a

graph that contains no loop contains vertices that can be ordered such that 2 vertices

are adjacent if and only if they are consecutive in the ordering. The diameter of a graph

is the maximum shortest path length between any pair of vertices. A cycle is a graph

having the same number of vertices and edges, and its vertices are ordered along a circle

such that 2 vertices are adjacent if and only if they are consecutive in the ordering.

A connected graph, G, is a graph such that ∀u, v ∈ V (G), there is a path between u

and v; otherwise, G is a disconnected graph. A forest is a graph with no cycle. A tree is

a connected graph with no cycle.

A subgraph H of G is a graph such that V (H) ⊆ V (G), E(H) ⊆ E(G) and H has

the same assignment of vertices to edges as in G. An induced subgraph, H, is a subgraph

such that E(H) consists of all edges that are connected to V (H) in G. The maximal

connected subgraphs of G are called the components of G.

2.2 Biological terminology

Proteins are very important components to living organisms, and they are responsible

for most functions in a cell [56]. The roles of proteins include providing structural sup-

port and infrastructure of living things, they are enzymes that make necessary chemical

reactions for life, they are sensors and detectors, and they control the on and off states

of genes. All proteins are formed by linear sequences of basic units called the amino

acids. Proteins can be as long as 4500 amino acids. Proteins can also fold to form three

dimensional structures, which provide specific chemical functionalities.

If proteins are the work horses, then nucleic acids are the drivers that control actions

in the biochemical world [56]. Genetic information are all stored in deoxyribonucleic
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acid (DNA) which are sequences of nucleic acid units. Each nucleic acid unit is called a

nucleotide. There exists four nucleotides in DNA. The encoding for the primary structure

of proteins are in nucleic acids, which is the primary role of nucleic acids. The genome

of an organism refers to all genetic information as a whole there is in an organism.

The basic processes of protein synthesis include transcription, splicing and translation.

Transcription is the process to make a messenger ribonucleic acid (mRNA) molecule from

a portion of the DNA molecule by using the DNA as a template to make a complementary

strand of ribonucleic acid (RNA). This resulted RNA contains both exons and introns.

Exons are segments that contains protein coding, and introns are segments that do not

contain protein coding. Splicing is the process to take out the introns, and splice the

exons together, and the product is then used as the blueprint to make proteins, known

as translation [56]. The central dogma of molecular biology refers to the process in which

information transfer among DNA, mRNA and protein [24].

In general, each cell (with few exceptions) in the body has the same DNA. There

are different type of cells in the body, and a lot of difference is in the subset of genes

that a cell expressed. Besides the fact that different types of cells can express different

subsets of genes, different responses to stimuli can also lead to expressing different subsets

of genes [24]. Thus, different cell types or responses to stimuli are reflected in gene

expression levels. Gene expression studies enable us to understand the mechanism in

the molecular level [24]. Gene expression studies allow the revolutionising of molecular

medicine such as the potential to classify, predict diagnosis and prognosis of disease.

Studies (e.g., [23]) have shown that genes that are involved in common processes are

often co-expressed. Gene expression profile or signature describes a cell’s molecular state

in a specific condition [118], [24], and can be used to infer cellular phenotypes.

Despite of the success of focusing on individual components, it is increasingly clear

that most biological functions are due to interactions between different cellular con-

stituents. Thus, various networks have emerged including protein-protein interaction
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networks and co-expression networks. A protein-protein interaction (PPI) network is

generally represented as an undirected network that represents physical interactions be-

tween proteins. However, in general, protein-protein interactions are directed, we just

do not have the directionality information for most physical protein-protein interactions.

One of the challenges for computational biology is to predict directionality, strength and

time of interactions. A co-expression network is an undirected graph such that individ-

ual vertices represent genes, and an edge represents the two genes co-expressed. Besides

networks, biological pathways are important in research in biology. A biological pathway

is the combination of actions in series among molecules to accomplish tasks such as trig-

gering the assembling of new molecules, turning genes on and off, and can cause other

changes in a cell. Some common types of biological pathways involved metabolism, gene

regulation and signal transduction [2].

There is a major bioinformatics initiative project, the Gene ontology project, that

aims to standardize representations of attributes on genes and gene products across

databases [8]. Gene ontology is often used in the area of biological network research.

2.3 Network properties

In order to compare and characterize different complex networks, some network mea-

sures are needed. There are two main categories of network properties used to compare

biological networks, global network properties and local network properties. Global net-

work properties study the overall network, while local network properties focus on local

structures or patterns of the network [92].

2.3.1 Global network properties

Some global network properties that have been studied extensively include diameter,

degree distribution, clustering coefficient and network centrality measures. As stated in
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Section 2.1, the diameter of a graph is the maximum shortest path length between any

pair of nodes according to classical graph theory. However, very often, the diameter of

a graph is the average shortest path length between all pairs of nodes in the context

of analysis of large networks [91]. The degree distribution of G, commonly denoted as

P (k), is the probability in which any randomly selected node has degree k [90]. The

clustering coefficient measures the average probability of two neighbours of any node

being adjacent, and centrality measures identify important vertices in complex graphs.

The clustering coefficient and centrality measures are to be discussed in turn.

Clustering coefficient

The clustering coefficient, C, of a network measures the average probability of two neigh-

bours of any node being adjacent [110]. More formally, let Cx denote the clustering

coefficient for node x. Then Cx is defined to be 2Ex

nx(nx−1)
where Ex is the number of edges

between all the neighbours of x, and nx is the number of neighbours of x. C is the average

of Cx for all x in the network.

Degree centrality

The idea of degree centrality is that a vertex is important if it is involved in many

interactions. The degree centrality [77] of a vertex u measures the number of edges that

are incident to it. Degree centrality of u is defined as

Cd(u) = d(u).

Closeness centrality

The idea of the closeness centrality is that a vertex is important if it is “close” to other

vertices in the graph. Closeness centralities, the center and the median are defined in
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turn. Let d(x, y) be the shortest path length between vertices x and y. The center [77],

[113] of G , Cen(G) is the set

Cen(G) = {x ∈ V |e(x) = r(G)}

where e(x) is the excentricity of x ∈ V defined as

e(x) = max
y∈V

d(x, y)

and radius r(G) is defined as

r(G) = min
x∈V

e(x).

The median [77] of G is the set

Med(G) = {x ∈ V |s(x) = σ(G)}

where s(x) is the status of x ∈ V defined as

s(x) =
∑
y∈V

d(x, y)

and σ(G) is defined as

σ(G) = min
x∈V

s(x).

Betweenness centrality

The betweenness centrality [41], [77] takes into account the global connectivities of G,

and it is defined as follow. {u, v, w ∈ V |u ̸= v, v ̸= w},

BC(w) =
∑
u,v∈V

Suv(w)

Suv
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where Suv is the number of shortest paths between u and v, and Suv(w) is the number

of shortest paths between u and v that traverse through w. The idea of betweenness

centrality is that a vertex is important if it is involved in a high proportion of paths

between other vertices.

2.3.2 Local network properties

Global network properties examine network properties of entire networks, but for some

applications, for example, the characterization of biological networks, more detailed net-

work properties are needed. In this section, we discuss local network properties, motifs

and graphlets.

Network motifs [81] are small subgraphs in a network whose patterns appear signif-

icantly more than in randomized networks. Randomized networks in [81] are generated

by preserving the number of incoming and outgoing edges for each node. Motifs can be

found in different complex networks, from biochemistry, neurobiology, and engineering.

Different motifs are found for different types of networks. For example, two transcription-

regulatory networks, one from yeast Saccharomyces and another from Escherichia coli,

both have a 3-node motif known as the feed-forward loop. However, in food webs net-

works, this 3-node feed-forward loop is under-represented [81]. Thus, motifs can be used

to characterize broad classes of networks. The network motifs approach, however, would

miss those subgraphs that are functionally significant but not statistically significant [81].

Another approach for measuring local network properties is the use of graphlets [90].

Graphlets are all non-isomorphic connected induced graphs on a certain number of ver-

tices. In Figure 2.1, all 5 node graphlets are shown. Our dissertation closely relates to

graphlets, thus, we discuss graphlets in detail in Section 2.4.

There are differences between graphlets and motifs. Motifs depend on the randomiza-

tion scheme, but graphlets do not because graphlets do not have to be over-represented

when compared to randomized networks [95]. There are many different models of ran-
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dom networks which we would not diverge to in this document, but motifs are dependent

upon the model that is chosen. Graphlets, on the other hand, are able to identify all

structures, not only the over-represented ones, and are independent of random network

models.

1 2 3

4 5

6 7 8

4 edges

5 edges

9 10 11

12 13

6 edges

14 15

16 17

7 edges

18

19
20 21

8 edges 9 edges 10 edges

Figure 2.1: All twenty-one 5-node graphlets, all non-isomorphic, connected, induced graphs on

5 vertices.

2.4 Graphlets

Graphlets are all non-isomorphic connected induced graphs on a specific number of ver-

tices [90]. By definition, they have the ability to capture all the local structures on a

certain number of vertices. Several graphlet-based network properties have been devel-

oped, relative graphlet frequency distance (RGF-distance) [94], graphlet degree distribu-

tion agreement (GDD agreement) [92] and Graphlet degree signature [80]. Each of these

graphlet-based network properties will be discussed in this section. Pržulj et al. used the

RGF-distance to determine the random graph model that is the most accurate represen-

tation of PPI networks [94]. Furthermore, Pržulj showed that geometric random graphs

modeled eukaryotic PPI networks well using the GDD-agreement [92]. A random geomet-

ric graph G(n, r) is a graph with n vertices distributed at random independently and uni-

formly in a metric space with radius r such that u, v ∈ V , E = {{u, v}|0 < ∥u− v∥ ≤ r}

and ∥ · ∥ is any distance norm [94, 86]. Milenković et al. demonstrated that proteins
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in PPI that are grouped using the graphlet degree signature are in the same protein

complexes and the biological functions that they carry out are the same [80].

2.4.1 Relative graphlet frequency distance

A network measure, graphlet frequency, is introduced which is the count of the number

of graphlets of each category (graphlets 1 to 29 in Figure 2.2) a network contains [94].

The relative frequency of graphlets is defined to be Ni(G)
T (G)

, where Ni(G) is the number

of graphlets of category i, i ∈ [1, ..., 29] in graph G, and T (G) =
∑29

i=1Ni(G), that is the

total number of graphlets in graph G. In this measure, the similarity of two graphs does

not depend on the number of nodes and edges the two graphs have, but instead, should

reflect the relative frequency of graphlets [94].

The RGF-distance between graphs G and H is denoted by D(G,H).

D(G,H) =
29∑
i=1

|Fi(G)− Fi(H)|,

where Fi(G) = −logNi(G)
T (G)

. Logarithm is used due to the difference of frequency in

graphlets, at times, the difference can be of order of several magnitude. The use of

logarithm would prevent the RGF-distance measure to be totally dominated by the most

frequently appeared graphlets [94].

2.4.2 Graphlet degree distribution

The network similarity measure graphlet degree distribution (GDD) [92] is based on

graphlets, and it’s a direct generalization of degree distribution.

Let there be two graphs G and H, and let f be an isomorphism from G to H. f

is a bijection from V (G) to V (H), and ab ∈ E(G) if and only if f(a)f(b) ∈ E(H). An

automorphism is an isomorphism in which a graph maps onto itself. Let a, b ∈ V (G) and
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Figure 2.2: 2-5 node graphlets with automorphism orbits 0 .. 72.

f ∈ Aut(G), where Aut(G) denotes the automorphism group of G. The automorphism

orbit of a is {b | b = f(a)}.

From graphlets g0 to g29, there are 73 automorphism orbits, refer to Figure 2.2.

There is a graphlet degree distribution for each automorphism orbit, and thus there are

73 graphlet degree distributions.

Based on GDDs, Pržulj [92, 93] developed the GDD agreement measure to compare

network similarity. The idea is to reduce the 73 GDDs into a scalar agreement between

[0, 1] where 0 means that the networks are at a distance, and 1 means that the distribu-

tions of the two graphs are identical.

Let djG(k) denote the number of nodes that touch automorphism orbit j in G k times.

Pržulj [92] states that most of the information is in the lower degrees of the distribution,

and that the information in the extreme high degrees of the distribution is due to noise.

Thus, it is desired to scale djG(k) as follow:
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Sj
G(k) =

djG(k)

k
(2.1)

Sj
G(k) is normalized with respect to the total area, T j

G, and is denoted as N j
G(k):

T j
G =

∞∑
k=1

Sj
G(k) (2.2)

N j
G(k) =

Sj
G(k)

T j
G

. (2.3)

The distance of the automorphism orbit j between two graphs, G and H is defined

to be:

Dj(G,H) =
1√
2
(

∞∑
k=1

[N j
G(k)−N j

H(k)]
2)1/2. (2.4)

The jth GDD agreement is defined to be:

Aj(G,H) = 1−Dj(G,H), for j ∈ {0, 1, ..., 72}. (2.5)

The agreement for graph G and H can be defined as the arithmetic mean over

Aj(G,H) for all j:

Aarith(G,H) =
1

73

72∑
j=0

Aj(G,H) (2.6)

or the geometric mean over Aj(G,H) for all j:

Ageo(G,H) = (
72∏
j=0

Aj(G,H))1/73. (2.7)

2.4.3 Graphlet degree signature

A vertex similarity measure is introduced based on the Graphlet degree signature for

each node [80]. The Graphlet degree signature for each node, n, is a vector that has 73
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coordinates corresponding to automorphism orbits 0..72 for 2 − 5 node graphlets (refer

to Figure 2.2), and it counts the number of orbits that n touches. nj denotes the jth

coordinate of n. For example, if n touches orbit 0 once, then n0 is 1.

To compute node signature distances, in addition to the graphlet degree signature

vector, a weight vector,W is also used. W is a vector with 73 coordinates, wj, j ∈ {0..72},

corresponding to the 73 automorphism orbits. Different orbits are assigned different

weight because the count of some orbits depend on other orbits. Thus, orbits that are

not affected by many other orbits are assigned higher weights. Let oj denote the number

of orbits that affect orbit j, j ∈ {0..72}. wj = 1− log(oj)

log(73)
.

The distance of nodes m, n of orbit j is defined as:

Dj(m,n) = wj ×
|log(mj + 1)− log(nj + 1)|

log(max{mj, nj}+ 2)

The distance between m, n is:

D(m,n) =

∑72
j=0Dj∑72
j=0 wj

2.5 Biological network comparisons

Several approaches to compare co-expression networks constructed from two conditions,

for example, healthy and disease samples, have been developed.

Choi et al. compared a normal network with a tumor network by mapping edges

in the normal and tumor network to functional interactions using Gene Ontology terms

[27]. If gene 1 belongs to category 1 according to GO annotations, and gene 2 belongs to

category 2, then the edge gene 1 − gene 2 is mapped to the category pair category 1 −

category 2. Measurements normal coexpression score (NCS) and tumor coexpression

score (TCS) are proposed to detect the change in strengths of functional interactions in

normal versus in tumor conditions. If there are many co-expressed gene pairs mapped to

a particular category pair in normal or in tumor, then the category pair will have a high
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NCS or TCS respectively. Choi et al. identified function interactions that are inactivated

or enhanced in cancer when a normal network and a tumor network is compared; however,

the comparison considered only edge by edge differences between the two conditions.

Fuller et al. performed differential network analysis on weighted co-expression networks

for lean and obese mice [42]. The connectivity of gene i is defined to be ki =
∑

u̸=i aiu

where aiu is the correlation for genes i and u. k1(i) and k2(i) are the connectivity for

gene i in network k1 and k2 respectively. Let K1(i) =
k1(i)

max(k1)
and K2(i) =

k2(i)
max(k2)

, the

differential connectivity is defined to be DiffK(i) = K1(i) − K2(i). The identification

of genes that are differentially expressed and differentially connected is the aim of the

differential network analysis. Fuller et al. plotted DiffK against student t-test statistic,

and obtained eight sectors that have either high absolute values for DiffK or t-statistic

values, or both. The comparison is on a variation of connectivity of each gene between the

two conditions. Watson et al. used hierarchical clustering to identify co-expressed gene

groups, and used a resampling method to find gene groups that are co-expressed in one

condition and not another [109]. The mean pairwise correlations for genes in differentially

co-expressed groups are compared between two conditions. Pairwise correlations that

have the most changes between the two conditions are examined. The comparison is

on each edge weight in the two conditions, and on the mean edge weight between the

differentially co-expressed gene groups. Voy et al. compared co-expression networks for

irradiated and sham-irradiated mice using cliques and edges [108]. The comparison is

on the difference of clique memberships on genes or subsets of genes between the two

conditions; or on each edge weight in the two conditions.

Other approaches use dependency networks to compare healthy and disease net-

works. Qiu et al. constructed dependence networks for normal and cancer samples [96].

Edges do not represent correlations, but dependency determined by eigenvalue patterns.

Dependence-network-based biomarkers are identified by the norm of all columns or rows

of the matrix Dnormal −Dcancer, where Dnormal is the adjacency matrix for normal, and
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Dcancer is the adjacency matrix for cancer. Then, the approach used the change of con-

nections in neighboring nodes of each node to identify biomarkers. Zhang et al. detected

topological changes between two conditions in transcriptional networks using a differen-

tial dependency network analysis [120]. The approach used a local dependency model

such that for each node given its parents, there can be more than one conditional prob-

ability distribution. Differential dependency networks were extracted; however, there is

no systematic analysis on network structure information in the differential dependency

networks.

The most straightforward way for such network comparison is to use the connectivity

of each gene in the healthy and disease network [33]. Previous methods used diverse

approaches to compare two networks: 1) simple gene connectivity or its variations; 2)

edge or the mean edge weight between groups; 3) membership of cliques. Furthermore,

after differential networks are obtained, there is no systematic network analysis on them.

Although comparing network structures will provide important information for the un-

derstanding of disease mechanism, it has not yet been used to its full potential. We

propose novel methods that use network structure information to compare any graphs.

2.6 Computational challenges

Comparing all aspects of large networks is a challenging problem as it involves the sub-

graph isomorphism problem which is NP-complete [45]. The subgraph isomorphism prob-

lem is defined to be the following: given two graphs G and H as input, determines if

there exists a subgraph in G such that it is isomorphic to H.

A version of the subgraph isomorphism problem that is most relevant for our purposes

is the enumeration induced subgraph isomorphism problem. The enumeration induced

subgraph isomorphism problem is defined such that given G and some small fixed graph

H, the solution will include an enumeration of all sets of nodes fromG that are isomorphic
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induced subgraph to H [91]. In this section, we briefly give an overview of approaches

that directly relate to the dissertation, giving more details on approaches that are most

related to the focus.

Since the subgraph isomorphism problem is NP-complete, one reasonable solution

is to restrict the subgraph size for searching. The limitation is dependent upon the

availability of computing power and the algorithm that is used [47]. Algorithms for exact

counting of small subgraphs have been developed. For example, Batagelj et al. developed

an algorithm that returns all triangles in a graph [11], and Marcus et al. presented a

graphlet enumerator for all graphlets of size up to four [76]. Milo et al. presented an

algorithm that exhaustively enumerate all subgraphs for a given size, n, in the network

[81]. The algorithm scales at least as the size of the network, for it scales with the number

of n-subgraph in the network [64].

Wernicke [111] proposed an algorithm, EnumerateSubgraphs (ESU ), to enumerate all

size-n subgraphs. All vertices in the input graph are labeled in an increasing order. Each

vertex of the input graph is a starting point for the algorithm. The algorithm keeps 2

sets of vertices, VExtension and VSubgraph. VSubgraph contains the partial list of a subgraph,

and VExtension is the working set. The basic idea of the algorithm is as follow. Start

with a vertex v, only vertices with the following 2 properties are added into VExtension:

1) their labels are greater than that of v and 2) they are neighbors of the newly added

vertex, but not the neighbors to vertices already in VSubgraph. An arbitrary vertex from

VExtension is moved to VSubgraph. VExtension is updated according to the above 2 properties.

When |VSubgraph| = n, then the algorithm outputs the graph corresponding to vertices

in VSubgraph, and it is a size-n subgraph. ESU is a recursive algorithm, and it is able to

enumerate all size-n subgraphs. ESU is implemented in Fanmod, a fast tool to detect

network motifs [112].

In addition to restricting the subgraph size for searching, methods that approximate

subgraph frequencies instead of counting the exact subgraph frequencies have developed.
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Kashtan et al. [64] developed a sampling method to estimate the concentration of sub-

graphs and to detect motifs. Kashtan et al.’s sampling method has a major drawback as

the method needs to correct the non-uniform sampling problem which is computationally

expensive. Wernicke developed an uniform sampling method of size-n subgraphs based

on the algorithm ESU that overcomes the above drawback [111].

Pržulj et al. developed two heuristics to efficiently estimate graphlet frequency distri-

bution for high confidence PPI networks and geometric random networks: Neighborhood

Local search (NLS) and Targeted Node Processing (TNP) [88].

In NLS, the idea is that a random seed node is chosen from the network, and a specific

graphlet is searched in the seed’s neighborhood [88]. For any specific graphlet, with n

nodes and m edges, the following is performed. A node, v, is randomly selected. v and

its neighbors are put in a set. From this set, a subset of n connected nodes are randomly

selected. If the subset of n connected nodes contains the induced graphlet Gs with m

edges, then the algorithm returns. Otherwise, the neighborhood of Gs is searched for a

n-node subgraph with number of edges closer to m than Gs.

In TNP, the idea of the heuristic is that an exhaustive search for graphlets in a small

part of the network is performed, and use the graphlet frequency distribution obtained

to estimate the graphlet frequency distribution of the entire network [88]. The heuristic

is based on the observation that geometric random networks have a sparser boundary,

and the rest of the network has a uniform structure. Thus, the hypothesis is that in the

sparser boundary of the network, exhaustive search for graphlets can be done quickly; due

to the uniformity structure of the rest of the network, the graphlet frequency obtained

from the boundary can be used to estimate the graphlet frequency of the network.



Chapter 3

Network rewiring approach to drug

repositioning. Novel non-small cell

lung cancer treatment option.

3.1 Introduction

Most cancers lack effective early disease markers, prognostic and predictive signatures,

primarily due to tumor heterogeneity. As a result, we fail treating cancer heterogeneity

due to multiple ways cancer initiates and develops treatment resistance. Models that

represent these differences and the underlying molecular mechanism in cancer enhance

the possibility in characterizing and in turn treating cancer successfully.

Traditionally, systems approaches that aim to understand and target diseases have

been lacking. Most studies focus on individual targets and specific mutations, but not

on the impact on signaling or molecular networks [38]. However, knowing how a network

responses to a drug is essential for targeting it best. If the way tumor cells are rewired

and entered into a new state is known, then it will be easier to force tumor cells out of

that state [38].

23
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We use gene expressions from tumor and normal samples to create normal and tumor

graphs. Based on coexpression differences, we predict drug combinations that would make

the two graphs more similar, with the hypothesis that making tumor graphs more similar

to normal graphs will be beneficial. We then validate prediction both mechanistically

- measuring whether the graphs are altered as predicted, and functionally - whether

the cells show positive effect of the treatment. The goal of our systems approach is to

rewire disease networks, i.e., making the disease graph more similar to the normal graph

through drug treatments. In order to achieve the objective, there are several problems

that need to be addressed. First, we need to systematically identify network structure

differences between normal and tumor graphs. Second, we need to identify and prioritize

drug combinations based on the extracted network structure differences. Third, we need

to systematically quantitate the potential of the proposed drug combinations to “repair”

deregulated subgraphs. We use methods based on graph theory to solve these challenges.

While the proposed methods are generic, we evaluated them on NSCLC datasets.

While identifying differences between normal and tumor samples using gene groups

(e.g., [59]) proved useful, increasing evidence shows that network-based approaches pro-

vide substantial benefits (e.g., [58], [28], [40]). For example, Ideker et al. showed that

top-scoring subnetworks overlap well with known regulatory mechanisms [58]. Chuang et

al. showed that identified subgraphs were more reproducible, and better predict breast

cancer metastasis than individual genes [28]. Fortney et al. showed that subnetworks

are effective biomarkers in the prediction of aging [40]. Network structure provides ev-

idence for protein function (e.g., [89], [80]). For example, Pržulj et al. observed that

proteins from different functional classes have different network properties. Milenković

et al. showed that topologically similar proteins are in same protein complexes, and per-

form same biological functions. Thus, identifying network structure differences between

normal and tumor samples may provide useful clues about carcinogenesis (the process

in which cancer cells are transformed from normal cells). In turn, we may be able to
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computationally predict what drug combinations will likely “rewire” tumor graphs to

resemble normal graphs.

A key drug treatment to cancer involves cytotoxic chemotherapy that kills both can-

cer and normal cells that divide rapidly [5]. The cytotoxic chemotherapy approach is

a one-size-fits-all approach. We are moving towards a new era of personalized molecu-

lar medicine, a medical model that customizes treatments to individual patients. The

personalized molecular medicine approach is a genetically targeted approach [5]. The

recognition of outstanding drug combinations is needed for targeted cancer therapy to

be at its full potential as a key challenge in drug combinations in cancer is to overcome

genetic heterogeneity and drug resistance [5]. In order to identify desirable drug combina-

tions, new computational methods including network biology approaches are needed [5].

Given the large number of possible drug combinations, it would be infeasible to evaluate

all of them in biological experiments due to cost. Thus, computational approaches are

desirable to prioritize potential combinations.

As mentioned previously, our systems approach first extracts network structure dif-

ferences between normal and tumor graphs, then base on the deregulated subgraphs,

we identify drug combinations. In order to compare and characterize different complex

networks, some network measures are needed. There are two kinds of network measures,

global network properties and local network properties. Refer to Section 2.3 for more

detail on network properties; we briefly remind the reader about them here. Global net-

work properties examine the overall network, while local network properties focus on local

structures or patterns of the network [92]. Some common global network properties used

are degree distribution, diameter and clustering coefficient; however, these measures do

not contain the detail needed to capture the structural characteristics of biological net-

works [95]. Thus, more sensitive local structure measurements have emerged. Graphlets

[90], by definition, have the ability to capture all the local structures on a certain num-

ber of vertices. Graphlets are all non-isomorphic connected induced graphs on a specific
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number of vertices. We propose a graphlet approach to systematically identify network

structure differences between any graphs, in this dissertation, between normal and tumor

graphs.

The identification of disease pathways and modules in networks greatly contributes

to drug development [67]. Given knowledge on mechanism of diseases, prioritization

of potential drug targets can be enhanced with networks [57]. The network structure

differences obtained through the graphlet approach provide us with potential knowledge

of disease mechanism. Exploiting the detected disease modules, we propose a graph-

based computational method to prioritize potential drug combinations with a goal to

rewire tumor graphs. Importantly, our approach identifies not only individual drugs, but

also drug combinations.

We propose a novel, systematic evaluation method in order to determine if the pro-

posed drug combinations are indeed able to “repair” the wiring of deregulated subgraphs

in tumor samples. The proposed approach systematically determines the mechanistic

impact of drug treatments on: i) the wiring of the edges, ii) individual nodes and iii)

the deregulated subgraph. Furthermore, the evaluation provides therapeutic effects on

NSCLC. We validated three identified drug combinations on three NSCLC cell lines.

3.2 Methods

Sections 3.2.1 - 3.2.4 describe the datasets, prognostic signatures, notation and imple-

mentation. Sections 3.2.5 - 3.2.6 present the graphlet approach. Section 3.2.7 presents

the graph-based approach for prioritizing drug combinations. Section 3.2.8 describes the

systematic evaluation of mechanistic and therapeutic impact of drug treatments.
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3.2.1 Datasets

Datasets were obtained from Gene Expression Omnibus database [36]. We applied our

approach to 3 NSCLC microarray gene expression datasets [55, 104, 70]; referred to as

Hou, Su, and Landi respectively in this chapter. Datasets were chosen based on the

number of normal and tumor samples they contain. Refer to Table 3.1 for more details.

Authors GSE # Title Description

J. Hou et al.
(PLoS One,
2010)

19188 Expression data for
early stage NSCLC

91 patients, 91 tumor
and 65 adjacent nor-
mal lung tissue sam-
ples

L. Su et al.
(BMC Ge-
nomics, 2007)

7670 Expression data from
lung cancer

Pairwise tumor-
normal samples from
27 patients

M. T. Landi et
al. (PLoS One,
2008)

10072 Gene expression sig-
nature of cigarette
smoking and its role
in lung adenocarci-
noma development
and survival

107 lung adenocarci-
noma and normal lung
samples, 58 tumor and
49 non-tumor tissues

Table 3.1: 3 non-small cell lung cancer datasets are used [55, 104, 70].

3.2.2 Prognostic signatures

Eighteen prognostic NSCLC signatures [44, 12, 14, 114, 17, 37, 106, 26, 50, 75, 87, 97,

15, 72, 71, 73, 105] were used in our approach. Refer to Table A.1 in Appendix A for a

list of genes that were used.
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3.2.3 Notation

Let e1 and e2 be edges from G. e1 is adjacent to e2 if e1 and e2 share a common vertex.

Let N(e) denote the neighbourhood edges of e, i.e., the set of edges that are adjacent to

e ∈ E but not including e.

The set of dataset is denoted as D = {Hou, Su, Landi}. For i ∈ D, Ti, Ni denote

the tumor and normal graph for dataset i respectively. Let S be any subgraph identified

to be different between normal and tumor graphs. T all ⊆ E(S) is a set of edges such

that t ∈ T all is in some Ti but not in any Ni. abscorrTi
(e) represents the absolute

correlation value of e in the tumor graph for dataset i. abscorrNi
(e) represents the

absolute correlation value of e in the normal graph for dataset i. Let NTi
(e) denote the

neighbourhood edges of e in the tumor graph of dataset i.

3.2.4 Implementation

GO enrichment analysis was performed using the GOstats package [39] in R. The t

test and Mann Whitney test were performed in R 2.15.0. Node signature distance was

computed using graphcrunch 2 [68]. The enumeration of all graphlets was executed

using Fanmod [112]. Graph visualization was from NAViGaTOR version 2.3 - Network

Analysis, Visualization, & Graphing TORonto [22].

3.2.5 Graphlet approach

Recall that Graphlets are all non-isomorphic connected induced graphs on a specific

number of vertices [90]. By definition, they have the ability to capture all the local struc-

tures on a certain number of vertices. We propose a graphlet approach to systematically

identify network structure differences between any graphs, in this dissertation, between

normal and tumor graphs [116].
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Relative graphlet frequency distance (RGF-distance) [94] and Graphlet degree distri-

bution agreement (GDD-agreement) [92] have been developed as local network structure

measures between two graphs using graphlet frequencies and graphlet degree distribu-

tions respectively. Both of them return a scalar for the difference between two graphs;

thus, throwing away important information that would help further characterization of

network structure differences. Previous graphlet based measures are useful for comparing

graphs efficiently, since only scalars need to be evaluated. However, our aim is to make

the most of graphlet information, and use it to further characterize network structure

differences between any graphs. We propose a novel method that make full use of the

enumeration of n-node graphlets in graphs A and B. Our method detects deregulated

subgraphs that differ between the two graphs, and corresponding network structures from

compared graphs will be returned.

We propose a graphlet approach to systematically extract network structure differ-

ences between any graphs, in this dissertation, between normal and NSCLC graphs [116].

Normal and NSCLC graphs are generated using coexpression values from normal and

NSCLC samples respectively. The construction of graphs is described below. In our

approach, we enumerate all n-node graphlets in normal graphs and NSCLC graphs. We

then separate the n-node graphlets into different categories, and focus on graphlets that

are tumor-specific. As with all exhaustive search algorithms, the graphlet approach is

a simple way to solve the problem, and our approach guarantees to extract all n-node

graphlets that are different between the normal and NSCLC graph for any specified n.

The graphlet approach is systematic because all n-node graphlets from the normal and

NSCLC graphs are enumerated, and no subgraph of size n will be missed. Furthermore,

by the definition of graphlets, the graphlet approach has the ability to capture local

structures of biological networks.

The graphlet approach involves the subgraph isomorphism problem, which is NP-

complete. As n increases, the number of different types of subgraphs increases exponen-
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tially [94], and the time as well as the memory needed to determine isomorphic subgraphs

increases exponentially as well [84]. On the other hand, the number of genes that function

together is often more than a few. In previous graphlet-based measures [94, 92], n ranges

from 2 to 5. Since exploring protein communities with larger size provides stronger bio-

logical context, the largest feasible graphlet size with respect to previous graphlet-based

measures is chosen; that is, n = 5. Figure 2.1 shows all 5-node graphlets.

Construction of co-expression graphs

While the approach is generic, we evaluated it on three NSCLC gene expression datasets.

Three NSCLC gene expression datasets (Section 3.2.1) and eighteen prognostic NSCLC

signatures (Section 3.2.2) are the input to the method. The union of genes from all

eighteen prognostic gene signatures is denoted as PGS. For each gene expression dataset,

i ∈ D, genes in i are intersected with PGS, and the resulting gene set is denoted as gi.

Two co-expression graphs for each dataset, a normal and a tumor graph, are generated

using normal and tumor samples, respectively. The co-expression graphs are generated

using the following approach, for both normal and tumor samples:

• calculate pairwise Pearson correlations for all gene pairs;

• rank edges according to their absolute correlation values;

• select gene pairs with the top 1% of the absolute correlation values.

The construction of co-expression graphs is highlighted in Figure 3.1.

Enumeration of graphlets

For each dataset, given a normal and a tumor graph, all 5-node graphlets are enumerated.

We separate the enumeration of 5-node graphlets into 3 categories.

1. NORMAL: graphlets that are only in the normal graph.
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Gene expression

data on

condition A

Gene m Gene n

Edge mn: m correlates with n

Graph G

Gene expression

data on

condition B

Edge mi: m correlates with i

Gene m Gene i

Graph H

Figure 3.1: The construction of co-expression graphs. Graph G represents condition A, and

Graph H represents condition B.

2. BOTH: graphlets that are in the normal and tumor graphs, but with structural

differences.

3. TUMOR: graphlets that are only in the tumor graph.

We focus on graphlets that are in the tumor category, and those that have the same

membership across all 3 datasets. The graphlet approach identifies interactions between

proteins that are deregulated in tumors. Deregulations are seen from the difference in

network structures between the normal and tumor graph. The graphlet approach is

highlighted in Figure 3.2.

3.2.6 Biological meaning on identified network structures

In order to interpret possible biological meaning of the network structures identified

as different between normal and tumor samples, we performed several analyses. We

performed GO enrichment analysis using Gene ontology [8] to determine if the identified

network structure differences are involved in any biological processes. Let F denote the
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Figure 3.2: The graphlet approach.

union of all subgraphs that are significantly enriched in some GO terms (there was only

one significant GO term). We further annotate F with information from literature and

PPI databases. In particular, we determine if genes in F are therapeutic targets, and if

edges in F are PPIs.

GO enrichment analysis

5-node graphlets in the tumor category that have the same membership across all 3

datasets are compared with the background network. The set of background genes is

the intersection of gi ∀i ∈ D. GO enrichment analysis is performed using GOstats [39].

A conditional hypergeometric method [39] from GOstats is used. Significant terms are

controlled for multiple testing using FDR [13] with a cut-off of 0.05.

PPI analysis

In order to determine if co-expressed edges in identified network structures have PPI

evidence, PPI enrichment analysis with the hypergeometric test is performed. Experi-

mentally detected PPIs are obtained from the Interologous Interaction Database (I2D)

version 1.95 [21], and computationally predicted PPIs are obtained from FpClass [66].

The set of background genes is the intersection of gi ∀i ∈ D, denoted as Bg. The set
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of background interactions used in the hypergeometric test is
(|Bg|

2

)
, representing the

number of possible interactions among Bg.

3.2.7 Graph-based approach for prioritizing drug combinations

We define a computational method to prioritize drug combinations using identified dif-

ferences in graphlets. The main goal is to predict drug combinations that have potential

to rewire tumor graphs and make them more similar to normal graphs. In order to sys-

tematically evaluate and prioritize possible drug combinations, we define an objective

function - impact weight function - which maximizes impact while minimizes the number

of drugs needed. We first discuss data sources that were used, then we define the impact

weight function.

Data source

We have data sources for vertices, edges and drugs.

There are two data sources for vertices, gene expression datasets that are described in

Section 3.2.1 and gene expression lung datasets in Cancer Data Integration Portal (CDIP)

http://ophid.utoronto.ca/cdip (2011). ∀i ∈ D, we determine which genes in F are

significantly up-regulated or down-regulated. A gene is significantly up-regulated (or down-

regulated) if the mean expression value of its tumor (normal) samples is greater than the

mean expression value of its normal (tumor) samples, and p < 0.05 (t-test, controlled for

multiple testing using FDR [13]). Let a ∈ {significantly up– or down–regulated genes

in F}. m(a) is the number of datasets that have node a as significantly up- or down-

regulated in D, and cdip(a) is the number of lung datasets in CDIP that have the

direction of node a as datasets in D. m(a) is normalized to [0, 1] by dividing each

m(a) by max{m(a)} ∀ a, and cdip(a) is normalized to [0, 1] by dividing each cdip(a) by

max{cdip(a)} ∀ a.
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The set of genes in F that is significantly up-regulated or down-regulated plus LCK

is denoted as Sg. LCK was included because out of all genes that are not significantly

up or down in F , LCK is the most highly connected in F . Our analysis is not only on

nodes but on edges as well, thus, it is desirable for LCK to be included.

There are three data sources for edges, gene expression datasets that are described

in Section 3.2.1, experimentally detected PPI from I2D [21] and predicted PPI from

FpClass [66]. Edge e ∈ E(F ) comprises vertices {a, b}, a, b ∈ V (F ). A PPI score,

PS(a, b) ∈ [0, 1], is defined for each edge using I2D [21] and FpClass [66]. PS(a, b) is

the prediction score from FpClass [66] if (a, b) is a predicted PPI, and 1 if (a, b) is an

experimentally detected PPI in I2D [21]. Three scoring functions are defined using the

gene expression datasets (see below). Thus, each edge is associated with three scoring

functions and a PPI score. The PPI score is used as evidence on edges indicating that

edges not only represent co-expression, but also evidence about physical PPI.

The main data source we use for drugs is the Comparative Toxicogenomics Database

(CTD) [32]. The chemical-gene interaction table in CTD provides us with drug-vertex

pair information. For each gene in Sg, putative compounds which reverse the gene

expression direction are obtained from the chemical-gene interaction table in CTD, giving

us drug-vertex pairs. The set of putative compounds obtained from CTD is denoted

as PC. Additional data sources are used to further prioritize PC. We annotate PC

with information from the U.S. Food and Drug Administration (FDA), clinical trials,

GI50 values from NCI-60 (we use studies from National Cancer Institute to determine

whether drugs are able to cause 50% growth inhibition of the given concentrations on cell

lines) and literature (including American Society of Clinical Oncology (ASCO), American

Association for Cancer Research (AACR), International Association for the Study of

Lung Cancer (IASLC) meetings). Compounds that do not have at least one of the above

additional evidence are filtered out, and the set of compound that remains is denoted as

PCf .
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PubMed IDs are provided for chemical-gene interactions in CTD. If CTD provides a

family of compound for any drug in PCf , we select a specific compound from that family

according to the PubMed reference. For example, polyphenol is in PCf , and polyphenols

are compounds that contain more than one phenol group [32]. A PubMed ID is referenced

for our drug-vertex pair that involves polyphenols. The specific compound in the class

of polyphenols that CTD references for is Epicatechin. Thus, we use Epicatechin for

polyphenols in our drug validation experiment.

These data sources are used to define the impact weight function (see below), and

they provide input to the method. Putting all the pieces of information together, the

intuition of the approach is as follow. Given 1) an impact weight on vertices (define

below) and 2) drug-vertex pairs, the approach searches for best combinations of drugs to

“rewire” tumor samples. The method searches for vertices with top impact weights, and

from the drug-vertex pairs, chooses drugs that associate with these vertices.

Impact weight

The purpose of the impact weight is to estimate the impact of a drug on a given subgraph.

The impact weight comprises two components: edge weight and node weight. Edge

e ∈ E(F ) comprises vertices {a, b}, a, b ∈ V (F ).

The node weight, wn(a), for node a is defined as:

wn(a) = m(a) + cdip(a).

The edge weight incorporates biological as well as topological information, and it

comprises of three scoring functions, I(e), C(e), S(e) and a PPI score (defined above).

1. I(e) ∈ [0, 1] is the average absolute correlation value of e itself among datasets that

contain e in their tumor graphs, but not in their normal graphs. Refer to Algorithm

1.
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2. C(e) ∈ [0, 1] is the average absolute correlation difference of N(e) between the

tumor and normal graph among datasets that contain e in their tumor graphs.

Refer to Algorithm 2. Ci(e) denotes the absolute correlation difference of N(e)

between the tumor and normal graph for dataset i.

3. S(e) ∈ [0, 1] is the average node signature distance (described in Section 2.4.3)

between the tumor and normal graph for a and b among datasets that contain e in

their tumor graphs. Refer to Algorithm 3 for the algorithm of S(e). Si(e) denotes

the node signature distance score for e in dataset i. D(a Ti, a Ni) denotes the node

signature distance (described in Section 2.4.3) between node a in the tumor and

normal graph for dataset i. Si(e) ∈ [0, 2]. In order for S(e) to be in [0,1], the

average value of Si(e) is multiplied by 1
2
. It is desirable for S(e) to be in [0, 1] as

C(e) and I(e) are in [0, 1].

Input: An edge e, Graphs Ti, Ni, ∀i ∈ D
Output: I(e) ∈ [0, 1], the average absolute correlation value of e
counter = 0;
foreach i ∈ D do

// e is not in tumor

if e ̸∈ E(Ti) then
go to next dataset;

// e in tumor, not in normal

else if e ∈ E(Ti) ∧ e ̸∈ E(Ni) then
I(e) = I(e) + abscorrTi

(e);
increment counter;

// Done if normal contains e
else if e ∈ E(Ti) ∧ e ∈ E(Ni) then

return I(e) = 0;

end
return I(e) = 1

counter
I(e);

Algorithm 1: Compute I(e), the average absolute correlation value of e.

we(a, b) denotes the edge weight for edge e, and is defined as:
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Input: An edge e, Graphs Ti, Ni, ∀i ∈ D
Output: C(e) ∈ [0, 1], the average absolute correlation difference of N(e) between

tumor and normal graphs
counter = 0;
foreach i ∈ D do

// e is not in tumor

if e ̸∈ E(Ti) then
Ci(e) = 0;
go to next dataset;

else
increment counter;
// loop through the neighborhood edges of e in tumor

foreach l ∈ NTi
(e) do

// assign max weight if l is in tumor, but not in normal

if l ∈ E(Ti) ∧ l ̸∈ E(Ni) then
Ci(e) = Ci(e) + 1;

// Take absolute correlation difference if l is in tumor and

normal

else if l ∈ E(Ti) ∧ l ∈ E(Ni) then
Ci(e) = Ci(e) + |abscorrNi

(l)− abscorrTi
(l)| ;

end
Ci(e) =

1
|NTi

(e)|Ci(e);

end
return C(e) = 1

counter

∑
i∈D Ci(e);

Algorithm 2: Compute C(e), the average absolute correlation difference of N(e)
between tumor and normal graphs.
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Input: An edge e comprises of vertices a and b, Graphs Ti, Ni, ∀i ∈ D
Output: S(e) ∈ [0, 1], the average node signature distance between tumor and

normal graphs for a and b
counter = 0;
foreach i ∈ D do

// e is not in tumor

if e ̸∈ E(Ti) then
Si(e) = 0;
go to next dataset;

else
increment counter;
// calculate node signature distance for a, assign max value

if a is in tumor only

if a ∈ V (Ti) ∧ a ̸∈ V (Ni) then
D(a Ti, a Ni) = 1;

else if a ∈ V (Ti) ∧ a ∈ V (Ni) then
compute D(a Ti, a Ni) ; // using GraphCrunch 2

// calculate node signature distance for b, assign max value if

b is in tumor only

if b ∈ V (Ti) ∧ b ̸∈ V (Ni) then
D(b Ti, b Ni) = 1;

else if b ∈ V (Ti) ∧ b ∈ V (Ni) then
compute D(b Ti, b Ni) ; // using GraphCrunch 2

Si(e) = D(a Ti, a Ni) +D(b Ti, b Ni);

end
return S(e) = 1

2
( 1
counter

∑
i∈D Si(e));

Algorithm 3: Compute S(e), the average node signature distance between tumor
and normal graphs for a and b.
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we(a, b) =


I(a, b) + C(a, b) + S(a, b) if numN = 0

0 if numN ≥ 1.

where I(a, b) = I(e) ∗ 1
3
numT , C(a, b) = C(e) ∗ 1

3
numT , S(a, b) = S(e) ∗ 1

3
numT ,

numT is the number of datasets that have (a, b) in the tumor graphs, and numN is the

number of datasets that have (a, b) in the normal graphs. I(a, b), C(a, b), S(a, b) ∈ [0, 1].

I(e), C(e), S(e) are independent of the number of datasets that have e in their tumor

graphs. I(a, b), C(a, b), S(a, b) take into account the number of datasets that have (a, b)

in their tumor graphs. An edge, e, should have higher weight if all datasets have e in

their tumor graphs.

The impact weight of x ∈ V (F ), impactWeight(x), is defined as:

impactWeight(x) = wn(x) +
∑

i∈Nn(x)

wn(i) +
∑

(x,i)∈E(F )

[we(x, i) + PS(x, i)] (3.1)

An impact weight is calculated for each gene in Sg.

Computational method to determine drug combinations

Using the impact weight, the drug-vertex pairs, drug combinations are identified from

PCf using the following criteria:

1. select the gene with maximized impact weight.

2. maximize intersection with genes in Sg.

3. minimize the number of drug used.

We imposed some restrictions on the computation of drug combinations. We limit

the maximum number of drug to be 2 in the computation. Suppose that we have drug-

vertex pairs d1− v1, d2− v2 where d1, d2 ∈ PCf , v1, v2 ∈ Sg, and impactWeight(v1) >
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impactWeight(v2). Let’s also suppose that drug combination ← {d1}, and [(v1 ∪

Nn(v1)) ∩ Sg] ̸= Sg. Then d2 can only be added to drug combination if v2 /∈ Nn(v1).

The reason for the latter restriction is that if v2 ∈ Nn(v1), we infer that d1 covers v2

already.

3.2.8 Systematic evaluation of mechanistic and therapeutic im-

pact of drug treatments

We propose a systematic evaluation to quantitate the potential of the proposed drug

combinations to “repair” deregulated subgraphs. The goal is to validate the proposed

treatment options by 1) functional changes of cells, and 2) mechanistic changes of network

structures as predicted from the graphlet approach through changes in genes. Functional

changes of cells are measured by sulforhodamine B (SRB) assay. SRB assays are used to

measure cytotoxicity and cell proliferation caused by the application of drugs [107]. More

details on SRB can be found in [107]. We used SRB assay as a surrogate measurement

of NSCLC cell viability. Mechanistic changes are measured by quantitative polymerase

chain reaction (qPCR) on genes. Biological experiments were performed by Dr. Chiara

Pastrello and Marc Angeli in Dr. Igor Jurisica’s lab.

We used three NSCLC cell lines (a cell line is a population of cells having the same

genetic make-up as the cells are derived from a single cell) for in vitro (experiments

conducted in components of an organism that are isolated from an organism’s biological

environment) validation on our treatment options. A549, H460 and H1975 were used.

These cell lines were used because 1) they are NSCLC cell lines, and the graphlet approach

is applied on NSCLC gene expression datasets, and 2) genes ∈ Sg in these cell lines

expressing the same direction as in datasets ∈ D overlap well. A549 and H1975 are

cell lines derived from adenocarcinoma, and H460 is from large cell carcinoma. A549,

H460 and H1975 cells were cultured, and cell lines were treated with the identified drug
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combinations and their individual drugs. Drug concentrations that were used are in

Appendix Table B.1.

SRB and qPCR

For each treatment, for each cell line, there are 12 replicates of SRB values. SRB values

are averaged for each treatment, for each cell line with outliers removed. For each gene in

F , there are 6 replicates of qPCR expression values for each treatment and for each cell

line, qPCR expression values are averaged with outliers removed. Outliers are removed

when there is an experimental failure (e.g., missing values, values at the extremes of

the scale, values lower than the background, values lower than the negative control) or

an evident technical variability (e.g., a replicate that is very different from the other

replicates).

Rewiring of deregulated edges

The intuition of rewiring deregulated tumor edges is that T all should “disappear” from

F after treatment. Considering that changes are not “black and white”, we take edges

in T all that also rank among the top in non-treated cell lines in terms of absolute

correlation values, and hypothesize that those edges should rank low after treatment.

For each gene in F , there are 3 averaged real time PCR expression values, one value

corresponding to each cell line. For each treatment:

• calculate pairwise Pearson correlations for all gene pairs in F ;

• rank edges according to their absolute correlation values.

Edges in T all that also rank among the top in non-treated cell lines in terms of

absolute correlation values are determined. The histogram of absolute correlation values

of T all in non-treated is plotted, and the histogram shows a natural split in absolute
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correlation value at 0.8, which is thus used as a threshold to determine which edges rank

among the top in non-treated, and this set of edges is denoted as T 11.

Let R(T 11)NT denote the set of rank for T 11 in non-treated. The set of rank for

T 11 in non-treated is obtained as follow. For each edge in T 11, determine where it ranks

in the absolute correlation value ranking in non-treated. Let R(T 11)treatment denotes the

set of rank for T 11 in treatment. If we can show that the median of R(T 11)treatment is

larger than that of R(T 11)NT , it would provide evidence that the change is concordant

with prediction.

Impact on individual nodes

For each gene in Sg, qPCR expression values are used to determine if the gene expression

increased or decreased after treatment with respect to non-treated. Specifically, for each

treatment, for each gene in Sg, the averaged qPCR value after treatment is divided by

the averaged qPCR value for non-treated (this ratio is also called the fold change); if

the answer is greater than 1, the direction after treatment for the gene is up, and if the

answer is less than 1, the direction after treatment is down. The significance of directions

is determined by the two-sided mann-whitney test.

Recall that we have drug-vertex pairs in our prediction, let d − v be a drug-vertex

pair where d ∈ PCf and v ∈ Sg. The prediction is as follow: if v is up-regulated (or

down-regulated), the direction of v will be down (up) after d is applied. Before d is

applied, the direction of v is computed as described in Section 3.2.7 using datasets in D.

After d is applied, the direction of v is determined as in the aforementioned computation

using qPCR data. We compute how many drug-vertex pairs indeed have this effect.

Impact on the deregulated subgraph

For all v ∈ Sg, there is a direction calculated for v. The direction of v is computed

as described in Section 3.2.7. For each drug treatment applied, we compute how many



43

v ∈ Sg would have its direction reversed. Reverse means that if v is up (or down) before

a treatment, then v is down (up) after the treatment is applied. The direction of v after

a treatment is applied is determined as in the aforementioned computation using qPCR

data.

3.3 Results and Discussion

Section 3.3.1 presents the results for the graphlet approach, Section 3.3.2 presents results

for the graph-based approach for prioritization of drug combinations, and Section 3.3.3

presents results for the systematic evaluation of mechanistic and therapeutic impact of

drug treatments.

3.3.1 Results for the graphlet approach

Gene enrichment analysis

Gene enrichment analysis resulted in 9 subgraphs that are significantly enriched. All 9

subgraphs are enriched in the term “regulation of lymphocyte activation” (p < 0.05), and

genes are related to chemokine receptors (CCR2, CCR7), interleukin (IL16), interleukin

receptor (IL7R), interferon regulatory factor (IRF4), and T cells or B cells (PTPRCAP,

SH2D1A, LCK, BTK, MS4A1). Table 3.2 provides the name of the genes. Notably,

evading immune destruction is an emerging hallmark of cancer [51].

More importantly, the graphlet approach identified not only gene groups that are

different between normal and tumor samples, but also the interactions between genes

that are deregulated in tumors. Figure 3.3 shows the resulting subgraph, F , from the

union of nodes and edges in the 9 aforementioned subgraphs. Deregulated interactions

in tumor that are present in all 3, 2, 1 datasets are in red, pink and black respectively.
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Figure 3.3: The union of nodes and edges in the 9 subgraphs in the tumor category that

are significantly enriched in the term “regulation of lymphocyte activation” (p < 0.05). The

drug-vertex pairs are also shown.
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Gene Symbol Name Related to
CCR2 chemokine (C-C motif) recep-

tor 2
Chemokine receptor

CCR7 chemokine (C-C motif) recep-
tor 7

IL16 interleukin 16 Interleukin
IL7R interleukin 7 receptor Interleukin receptor
IRF4 interferon regulatory factor 4 Interferon regulatory factor

PTPRCAP protein tyrosine phosphatase,
receptor type, C-associated
protein T cells or B cells

SH2D1A SH2 domain containing 1A
LCK lymphocyte-specific protein

tyrosine kinase
BTK bruton agammaglobulinemia

tyrosine kinase
MS4A1 membrane-spanning 4-

domains, subfamily A,
member 1

Table 3.2: Genes identified that are related to the emerging hallmark: evading immune destruc-
tion.

PPI analysis

The PPI analysis resulted in 13/38 edges that have known or predicted interaction evi-

dence. This overlap with PPIs is significant P (X ≥ 13) = 4.440892e− 16, as determined

using the hypergeometric test. Interactions with PPI evidence are shown as solid lines

in Figure 3.3.

Literature evidence

Some genes in F are found to be promising therapeutic targets in other cancers, e.g.,

Bruton agammaglobulinemia tyrosine kinase (BTK): “Bruton tyrosine kinase represents

a promising therapeutic target for treatment of chronic lymphocytic leukemia and is

effectively targeted by PCI-32765” [53] and “The Bruton tyrosine kinase inhibitor PCI-

32765 blocks B-cell activation and is efficacious in models of autoimmune disease and

B-cell malignancy” [54].
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Interferon regulatory factor 4 (IRF4) may also be a promising therapeutic target,

“IRF4 silencing inhibits Hodgkin lymphoma cell proliferation, survival and CCL5 secre-

tion” [6].

3.3.2 Results for the graph-based approach for prioritization of

drug combinations

The purpose of the impact weight is to estimate the impact of a drug in F . Table 3.3

displays the impact weights using formula 3.1.

Node Neighbors Impact weight
IL7R BTK, CCR2, CCR7,

IL16, IRF4, ITM2A,
LCK, MS4A1, PTPRCAP,
SH2D1A

27.63

LCK BTK, CCR2, CCR7, IL16,
IL7R, IRF4, ITM2A,
MS4A1, PLCL2, PT-
PRCAP, SH2D1A

25.62

CCR2 BTK, CASP10, CCR7,
IL16, IL7R, IRF4, ITM2A,
LCK, MS4A1, PLCL2,
PTPRCAP, SH2D1A

23.99

IRF4 BTK, CASP10, CCR2,
CCR7, IL16, IL7R, LCK,
MS4A1, PLCL2, PT-
PRCAP, SH2D1A

20.36

BTK CCR2, IL7R, IRF4, LCK 12.32
IL16 CCR2, IL7R, IRF4, LCK 9.47
MS4A1 CCR2, IL7R, IRF4, LCK 8.24
ITM2A CCR2, IL7R, LCK 7.49
PLCL2 CCR2, IRF4, LCK 6.65

Table 3.3: The list of impact weights for Sg in the identified subgraph.

Drug combinations are identified using the impact weights, limiting the maximum

number of drug used to be 2. For example, IL7R has the highest impact weight (Table

3.3), and its neighbors include all genes in Sg except PLCL2. Thus, IL7R affects all
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genes except PLCL2. Therefore, maximum impact with minimum number of drugs

should target IL7R and PLCL2. The resulting drug combination comprises Bortezomib

+ Isotretinoin (see Figure 3.3). Similarly, LCK has the second highest impact weight,

and its neighbors include all genes. Thus, the drug in this case is Isotretinoin.

We identified 4 drug combinations that cover all 9 genes (see Table 3.4). We also

identified 2 drug combinations that cover 6/9 genes. Combination 5 maximizes the

impact weight for drug combinations that cover 6/9 genes. Combination 6 maximizes

the impact weight and minimize the overlapping neighbors for drug combinations that

cover 6/9 genes.

Combination No. Drug combinations Nodes Impact weight
1 bortezomib IL7R 27.63

Isotretinoin PLCL2 6.65
2 Isotretinoin LCK 25.62
3 Tretinoin CCR2 23.99
4 Polyphenols IRF4 20.36

Bexarotene ITM2A 7.49
5 Mifepristone BTK 12.32

Gemcitabine IL16 9.47
6 Mifepristone BTK 12.32

Bexarotene ITM2A 7.49

Table 3.4: This table displays the identified drug combinations. Combinations 1 − 4 cover all
9 genes. Combination 5 maximizes the impact weight for drug combinations that cover 6/9
genes. Combination 6 maximizes the impact weight and minimizes the overlapping neighbors.

After prioritizing drug combinations for validation, we also considered combinations

which contain drugs currently used, in clinical trials, or reported with potential clinical

use. Gemcitabine is an FDA-approved drug for NSCLC, and Bexarotene + Erlotinib’s

clinical activity is encouraging in NSCLC [35]. We considered combinations that contain

Gemcitabine, Bexarotene or Erlotinib as these drugs can be used as a positive control.

Thus, our final combinations for biological validation include:

1. Mifepristone + Gemcitabine
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2. Polyphenols + Bexarotene + Erlotinib (i.e., Epicatechin + Bexarotene + Erlotinib,

see Section 3.2.7)

3. Mifepristone + Bexarotene + Erlotinib.

3.3.3 Results for the systematic evaluation of mechanistic and

therapeutic impact of drug treatments

Therapeutic impact of drug treatments

SRB assay was used as a surrogate measurement of NSCLC cell viability. Absorbance

was measured after a drug or a drug combination was applied for 48 hours. For each

drug combination, we compared the drug combination with the individual drugs that

form the drug combination. For Mifepristone + Gemcitabine, we compared Mifepristone

+ Gemcitabine with Mifepristone individually, and with Gemcitabine individually. For

Epicatechin + Bexarotene + Erlotinib, we compared Epicatechin + Bexarotene + Er-

lotinib with Epicatechin individually, with Bexarotene individually, and with Erlotinib

individually. Furthermore, since Bexarotene + Erlotinib has encouraging clinical activity

in NSCLC [35], we compared Epicatechin + Bexarotene + Erlotinib with Bexarotene +

Erlotinib as well. For Mifepristone + Bexarotene + Erlotinib, we compared Mifepristone

+ Bexarotene + Erlotinib with Mifepristone individually, with Bexarotene individually,

with Erlotinib individually, and with Bexarotene + Erlotinib for the aforementioned rea-

son. Figures 3.4, 3.5, and 3.6 show promising results: for all three cell lines, for all three

drug combinations, the cell viability (absorbance percentage with respect to Dimethyl

sulfoxide (DMSO)) for the predicted drug combinations are lowest. Importantly, the

predicted drug combinations have lower cell viability than Gemcitabine, Erlotinib and

Bexarotene + Erlotinib in their respective comparisons. The reader is reminded that

Gemcitabine, Erlotinib and Bexarotene + Erlotinib can be used as a positive control as
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the former two are FDA approved NSCLC drugs, and the latter has encouraging clinical

activity in NSCLC [35].
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Figure 3.4: The cell viability for all three predicted drug combinations are significantly the

lowest in A549. The mean of absorbance percentage with respect to DMSO are shown in the

graphs. Error bars represent standard errors. * p < 0.05; ** p < 0.01; *** p < 0.001; unpaired

one-sided Mann-Whitney test. B is Bexarotene, Erlo is Erlotinib, Epi is Epicatechin, Mife is

Mifepristone and Gem is Gemcitabine.

Results for the rewiring of deregulated edges

Recall that if we can show that the median of R(T 11)treatment is larger than that of

R(T 11)NT , it would provide evidence that the change is concordant with prediction.

Table 3.5 shows that for all treatments, the median of R(T 11)treatment is larger than

that of R(T 11)NT . Furthermore, all treatments except for Epicatechin, the median of

R(T 11)treatment is significantly larger than that of R(T 11)NT (adjusted p < 0.05; one-

sided Mann Whitney test; adjusted with FDR). The adjusted p value for Epicatechin is

slightly above the significance threshold, p = 0.050142.
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Figure 3.5: The cell viability for all three predicted drug combinations are lowest in H460.

The mean of absorbance percentage with respect to DMSO are shown in the graphs. Error

bars represent standard errors. * p < 0.05; ** p < 0.01; *** p < 0.001; unpaired one-sided

Mann-Whitney test. B is Bexarotene, Erlo is Erlotinib, Epi is Epicatechin, Mife is Mifepristone

and Gem is Gemcitabine.

Results for the impact on individual nodes

There are four drugs ∈ PCf from the drug combinations for biological validation; thus,

we have four drug-vertex pairs to be validated for the impact on individual nodes. Table

3.6 displays the results. The predictions for BTK, ITM2A and IL16 are confirmed in all

three cell lines; out of 9 predictions, 6 fold changes are ≥ 1.78. The prediction for IRF4 is

confirmed in H460. The effect of Epicatechin on IRF4 may be dependent on histology as

the reader is reminded that A549 and H1975 are cell lines derived from adenocarcinoma,

but H460 is from large cell carcinoma.

Results for the impact on the deregulated subgraph

Not only do we want to determine the effect of putative compound on individual nodes,

we want to further determine the cascade effect on the deregulated network when a drug
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Figure 3.6: The cell viability for all three predicted drug combinations are lowest in H1975.

The mean of absorbance percentage with respect to DMSO are shown in the graphs. Error

bars represent standard errors. * p < 0.05; ** p < 0.01; *** p < 0.001; unpaired one-sided

Mann-Whitney test. B is Bexarotene, Erlo is Erlotinib, Epi is Epicatechin, Mife is Mifepristone

and Gem is Gemcitabine.

is applied. All comparisons between predicted and validated directions are in Tables 3.7

- 3.9, all fold changes are in Appendix Tables B.2 - B.4. We highlight several results in

the figures and text of this section.

In H460, the Mifepristone + Gemcitabine combination performs the best, better than

Mifepristone or Gemcitabine alone; and reverses 8/9 genes in the deregulated subnetwork

(Figure 3.7). Recall that Gemcitabine is an FDA-approved NSCLC drug; thus, our

predicted combination provides better in vitro results. Epicatechin + Bexarotene +

Erlotinib performs well in A549 and H1975, adenocarcinoma cell lines, but not in H460, a

large cell carcinoma cell line. In A549, Epicatechin + Bexarotene + Erlotinib reverses 7/9

genes, and the combination performs better than Bexarotene, Erlotinib and Bexarotene

+ Erlotinib. Note that the predicted combination performs better than Erlotinib, an

FDA approved NSCLC drug, which reverses 3/9 genes. Mifepristone + Bexarotene +

Erlotinib also performs well in A549, see Figure 3.8.
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Figure 3.7: In H460, the proposed combination Mifepristone + Gemcitabine (C) performs the

best, and reverses 8/9 genes. Mifepristone + Gemcitabine performs better than Mifepristone

(A) or Gemcitabine (B) alone, and Gemcitabine is an FDA approved drug for NSCLC.
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Figure 3.8: In A549, the proposed combination Mifepristone + Bexarotene + Erlotinib (E)

performs better than Erlotinib (A), Bexarotene (C) and Bexarotene + Erlotinib (B). Mifepris-

tone + Bexarotene + Erlotinib performs better than Erlotinib (A) and Bexarotene + Erlotinib

(B), which is an FDA approved NSCLC drug and a drug combination whose clinical activity is

encouraging in NSCLC [35] respectively. Mifepristone + Bexarotene + Erlotinib reverses 7/9

genes while Erlotinib reverses only 3/9 genes, and Bexarotene + Erlotinib reverses 3/9 genes.
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Drug Median of
R(T 11)NT

Median of
R(T 11)treatment

P value

Bexarotene 16 48 0.02
Bexarotene+Erlotinib 16 40 0.01
DMSO 16 40 0.02
Epicatechin+Bexarotene+Erlotinib 16 46 0.01
Epicatechin 16 57 0.05
Erlotinib 16 38 0.01
Gemcitabine 16 39 0.01
Mifepristone+Bexarotene+Erlotinib 16 38 0.02
Mifepristone 16 37 0.03
Mifepristone+Gemcitabine 16 30 0.02

Table 3.5: Rewiring of deregulated tumor edges. The median of R(T 11)treatment is larger than
that of R(T 11)NT . P values are adjusted using FDR.

Drug - Vertex pair Prediction Validation
for A549

Validation
for H1975

Validation
for H460

Mifepristone - BTK up up up up
Bexarotene - ITM2A up up up up
Gemcitabine - IL16 up up up up
Epicatechin - IRF4 down up up down

Table 3.6: The first column is the drug-vertex pair. Suppose that we have a drug-vertex pair,
d − v. Prediction is the predicted direction of v after d is applied. Validation for A549 is the
validated direction of v after A549 cells are treated with d. Validation for H1975 is the validated
direction of v after H1975 cells are treated with d. Validation for H460 is the validated direction
of v after H460 cells are treated with d.
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3.4 Conclusion

We developed a network rewiring approach that provides treatment options to NSCLC.

The goal to our systems approach is to rewire disease networks, i.e., making the disease

graph more similar to the normal graph through drug combination treatments. In order

to achieve the objective, we proposed three novel methods to 1) systematically identify

network structure differences between normal and tumor graphs, 2) identify and prioritize

drug combinations based on detected deregulated graphs, and 3) computationally esti-

mate the potential of the proposed drug combination to “repair” deregulated subgraphs,

making disease graphs more similar to normal graphs.

The systematic graphlet approach resulted in 9 subgraphs significantly enriched in

the GO term “regulation of lymphocyte activation” (p < 0.05), and evading immune

destruction is an emerging hallmark of cancer. Furthermore, the deregulated subgraph

is enriched in PPIs, and contains genes that are found in literature to be promising

therapeutic targets in other cancers.

Exploiting the identified disease module, we proposed a graph-based computational

method to prioritize potential drug combinations with a goal to rewire tumor graphs,

making them more similar to normal graphs. Importantly, our approach identifies not

only individual drugs, but also drug combinations. We computationally identified 6 drug

combinations to rewire the deregulated subgraph.

We performed a systematic evaluation on 3 drug combinations on 3 NSCLC cell lines

in order to determine if the predicted drug combinations are indeed able to “repair” the

wiring of the deregulated subgraph in tumor samples. The evaluation provides therapeu-

tic effects of the drug combinations on NSCLC as well as the mechanistic impact of drug

treatments on: i. the wiring of the edges, ii. individual nodes and iii. the deregulated

subgraph.

SRB assay was used as a surrogate measurement of NSCLC cell viability. For each

drug combination, we compared the drug combination with the individual drugs that
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form the drug combination. For all three cell lines, for all three drug combinations, the

cell viability is lowest for the predicted drug combinations. Importantly, the predicted

drug combinations have lower cell viability than the tested FDA approved NSCLC drugs

in their respective comparisons.

The mechanistic impact of drug treatments is promising as well. For the rewiring of

edges, we showed that for all tested drug combinations, the median rank of deregulated

tumor edges after treatment is significantly larger than that of non-treated (adjusted p

< 0.05, one-sided Mann Whitney test, adjusted using FDR), resulting in rewired disease

graphs that are more similar to normal graphs. Furthermore, the mechanistic impact of

drug treatments on individual nodes are encouraging. The predictions for BTK, ITM2A

and IL16 are confirmed in all three cell lines, and the prediction for IRF4 is confirmed

in the large cell carcinoma cell line. The results for the cascade treatment effect on the

deregulated network is also reassuring. For example, the Mifepristone + Gemcitabine

combination in H460 performs extremely well; not only did the predicted combination

performs better than Mifepristone or Gemcitabine alone, but it is able to reverse 8/9

genes in the deregulated subnetwork.

Results have shown that our systems approach is a promising method to provide

treatment options to NSCLC through the rewiring of disease networks, i.e., making the

disease graph more similar to the normal graph through drug combination treatments.



Chapter 4

Comparative network analysis via

differential graphlet communities

4.1 Background

The identification of differences between healthy and affected tissues is important for

the understanding of disease. Differential expression studies that compare gene expres-

sion levels between healthy and affected tissues have been developed [33]. Differential

expression studies usually involve detecting statistical significance changes to the mean

expressions of individual genes [30]. Some studies associated changes in mean expression

levels in gene groups or pathways with disease phenotypes [33]. However, useful prognos-

tic signatures are not necessarily the most differentially expressed genes [19]. Differential

co-expression approaches that compare co-expression patterns between healthy and dis-

eased samples have been developed (e.g., [65]). Studies have identified several highly

differentially co-expressed transcriptional regulators involved in cancer, but their mean

expressions did not change much [33].

Identification of differences between healthy and diseased tissues is important, but

the difference should not be limited to gene groups. Difference in network structure

60
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is essential as studies have shown that systematically studying structural properties of

biological networks can bring forth important insights, for example, determining the

relationship between network topology and protein functions, or network topology and

the underlying disease mechanism. Jeong et al. suggested that the most highly connected

proteins are those that are the most important to survival [60]. Pržulj et al. observed

that lethal proteins are not only highly connected, but they are articulation points [89].

Jonsson et al. provided insight of global network properties of cancer proteins, and found

that cancer proteins, on average, had twice as many interacting partners as non-cancer

proteins [61]. These results have to be interpreted carefully as trends can be due to

literature bias; however, they suggest that there is a relationship between structures and

functions in networks that needs to be explored further.

Furthermore, network-based approaches have been successful in identifying subnet-

works for classification (e.g., [28]), for recovering of known and uncovering of novel biolog-

ical functions (e.g., [58]). For example, Ideker et al. showed that top-scoring subnetworks

overlap well with known regulatory mechanisms [58]. Chuang et al. showed that identi-

fied subgraphs were more reproducible, and better predict breast cancer metastasis than

individual genes [28]. Subnetworks have also been shown to be effective biomarkers in the

prediction of aging [40]. Thus, identification of differences between healthy and diseased

tissues should include differences in network structures.

Several approaches to compare co-expression networks constructed from healthy and

disease samples have been developed, Section 2.5 provides details on them.

In order to compare and characterize different complex networks, we can use global

or local network properties. Refer to Section 2.3 for more detail on network properties;

we briefly remind the reader about them here. Global network properties examine the

overall network, while local network properties focus on local structures or patterns

of the network [92]. One approach for measuring local network properties is the use

of graphlets. Graphlets are all non-isomorphic connected induced graphs on a specific
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number of vertices [90]. By definition, they have the ability to capture all the local

structures on a certain number of vertices.

In Chapter 3, we propose a novel method that make full use of the enumeration of

n-node graphlets in graphs A and B [116]. The graphlet approach detects deregulated

subgraphs that differ between the two graphs, and corresponding network structures from

compared graphs are returned. In this chapter, we propose another novel graphlet-based

method to identify network structure differences between any graphs. Our approach cir-

cumvents the exponential growth of computation required as the graphlet size increases,

and enables the systematically exploring of protein communities with larger size, which

provide stronger biological context. The size of our detected deregulated communities

can be much larger than the size of individual graphlets.

We introduce the notion of differential graphlet community to detect deregulated

subgraphs between any graphs such that the network structure information is exploited.

The differential graphlet community approach overcomes a limitation of some existing

approaches (e.g., [42, 109]); importantly, it has the ability to include a gene into more than

one deregulated subgraph. The ability for overlapping differential graphlet communities

is important because genes can have multiple functions under different biological contexts.

While the differential graphlet community approach is generic, we evaluated our approach

on three NSCLC datasets. The approach led to intriguing results; the difference in

network topology between normal and tumor graphs provides insights to the underlying

molecular mechanism in NSCLC. In particular, a trend that the shortest path lengths

are shorter for tumor graphs than for normal graphs in differential graphlet communities

is observed, suggesting that tumor cells can create shortcuts between biological processes

that may not be present in normal conditions. Examples of shortcuts that are observed,

and are in agreement with known mechanism in literature include the crosstalk between

the Jak-STAT and NF-kappaB pathways or STAT3 signaling enabling crosstalk among

tumor and immune cells, resulting in an immunosuppressive network.
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4.2 Methods

4.2.1 Graphlet approach

We proposed a graphlet approach in Chapter 3 to systematically extract network struc-

ture differences between normal and NSCLC graphs [116]. We briefly review the graphlet

approach in this section. The graphlet approach enumerates all n-node graphlets in

normal graphs and NSCLC graphs. This method involves the subgraph isomorphism

problem, which is NP-complete [45]. As n increases, the number of different types of

subgraphs increases exponentially [94], and the time and memory needed to determine

isomorphic subgraphs increases exponentially as well [84]. The use of differential graphlet

communities can help circumvent this exponential growth of computation and space re-

quired. Importantly, the number of genes that function together is often more than a

few. Previous approaches considered 2− 5 node graphlets [94, 92]. Since exploring pro-

tein communities with larger size provides stronger biological context, the largest feasible

graphlet size with respect to previous graphlet-based measures is chosen; that is, n is 5.

The graphlet approach is systematic because all 5-node graphlets from the normal and

NSCLC graphs are enumerated, and no subgraph of size 5 will be missed.

4.2.2 Differential graphlet community

Enumerating 5-node graphlets ensures that all non-isomorphic connected induced graphs

on 5 nodes will be considered. However, the number of genes that function together is

often more than 5. Furthermore, any 2 graphlets, A and B can potentially have 4 nodes

that overlap. Thus, we extend the approach to consider graphlet communities with a

goal to identify the difference in the properties of networks between different graphs – in

this dissertation, between normal and tumor graphs.

Palla et al. [85] defines a community as the union of all k-cliques such that one can

reach to another by a chain of adjacent k-cliques. A k-clique is a complete graph with k
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vertices. Adjacent k-cliques are k-cliques that share k − 1 nodes. A differential graphlet

community is defined as the union of all k-graphlets such that one can reach to another

by a chain of adjacent k-graphlets. Adjacent k-graphlets are graphlets that share k − 1

nodes. Since all 5-node graphlets are enumerated, k is 5 for the purpose of this chapter.

Figure 4.3 illustrates the notion of differential graphlet community.

The differential graphlet community approach detects deregulated subgraphs that

differ between two graphs. There are several advantages to the differential graphlet com-

munity approach. First, the proposed approach has the ability to include a gene into

more than one deregulated subgraph. The ability for overlapping differential graphlet

communities is important because genes can have multiple functions in biological sys-

tems. Second, the differential graphlet community approach circumvents the exponential

growth of computation required as the graphlet size increases, and enables the systemat-

ically exploring of protein communities with larger size which provide stronger biological

context. Thus, although the size of each graphlet is 5, the sizes of differential graphlet

communities can be much larger. Third, no predetermined size or number of deregulated

subgraphs are required as input to the method, size and the number of communities are

determined automatically.

The construction of co-expression graphs is discussed in Section 3.2.5. For each

dataset, given a normal and a tumor graph, all 5-node graphlets are enumerated. We

separate the enumeration of 5-node graphlets into 3 categories.

1. NORMAL: graphlets that are only in the normal graph.

2. BOTH: graphlets that are in the normal and tumor graphs, but with structural

differences.

3. TUMOR: graphlets that are only in the tumor graph.

We focus on graphlets that are in the tumor category, and those that have the same

membership across all 3 datasets. Differential graphlet communities are then computed
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for the extracted graphlets. The differential graphlet community analysis identifies in-

teractions between proteins that are deregulated in tumors. Deregulations are seen from

the difference in network structures between the normal and tumor graph.

4.2.3 Datasets

We applied our approach to 3 NSCLC microarray datasets [55, 104, 70], referred to as

Hou, Su, and Landi. The same datasets are used in Chapter 3. Refer to Section 3.2.1

for more detail. Datasets have been selected based on the number of normal and tumor

samples they contain, and were downloaded from Gene Expression Omnibus database

[36].

We used four independent NSCLC microarray gene expression datasets [74, 99, 82, 48]

to validate our results (referred to as Lu, Sanchez, Okayama and Girard, respectively).

Table 4.1 provides more detail on the 4 datasets.

4.2.4 Notation

Let HouN , SuN , LandiN denote the normal graphs for Hou, Su, and Landi respectively.

Similarly, let HouT , SuT , LandiT denote the tumor graphs for Hou, Su, and Landi

respectively.

Let gT−Hou, gT−Su, gT−Landi denote the set of graphlets that are in the tumor category

for datasets Hou, Su, and Landi respectively. Let MTALL denote the set containing sets of

5 vertices such that V (h) = V (s) = V (l) for some h ∈ gT−Hou, s ∈ gT−Su, l ∈ gT−Landi.

|MTALL| is the number of graphlets that have the same membership across all 3 datasets

in the tumor category.

Differential graphlet communities are then computed on gT−Hou for all h ∈ gT−Hou,

gT−Su for all s ∈ gT−Su, gT−Landi for all l ∈ gT−Landi such that V (h), V (s), V (l) ∈MTALL.
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Authors GSE # Title Description

T. P. Lu
et al.

19804 Genome-wide
screening of
transcriptional
modulation in
non-smoking fe-
male lung cancer
in Taiwan

120 samples: 60
normal samples,
60 tumor sam-
ples

A.
Sanchez-
Palencia
et al.

18842 Gene expression
analysis of hu-
man lung cancer
and control sam-
ples

91 samples: 45
controls, 46 tu-
mor samples

H.
Okayama
et al.

31210 Gene expression
data for patho-
logical stage I-II
lung adenocarci-
nomas

246 samples: 20
normal samples,
226 tumor sam-
ples

L. Girard
et al.

31547 MSKCC-A Pri-
mary Lung Can-
cer Specimens

50 samples: 20
adjacent normal
lung controls, 30
tumor samples

Table 4.1: 4 other independent non-small cell lung cancer gene expression datasets [74, 99, 82,
48].

We have identified three differential graphlet communities for each dataset, referred

to as: dGCHoui, i ∈ {1, 2, 3} for Hou, dGCSui, i ∈ {1, 2, 3} for Su and dGCLandii, i ∈

{1, 2, 3} for Landi. Importantly, note that V (dGCHoui) = V (dGCSui) = V (dGCLandii), i ∈

{1, 2, 3} respectively, and thus the computation returns the same number of differential

graphlet communities for each dataset.

All shortest paths are computed between all vertex pairs in V (dGCHoui), i ∈ {1, 2, 3}

for HouN and for HouT . All shortest paths are computed between all vertex pairs in

V (dGCSui), i ∈ {1, 2, 3} for SuN and for SuT . Finally, all shortest paths are computed

between all vertex pairs in V (dGCLandii), i ∈ {1, 2, 3} for LandiN and for LandiT .

Let dGCspHouN i, i ∈ {1, 2, 3} denote the shortest path graph for differential graphlet

community i for dataset Hou in Hou’s normal graph. dGCspHouN i, i ∈ {1, 2, 3} con-
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tains all shortest paths in HouN between all vertex pairs in V (dGCHoui), i ∈ {1, 2, 3}.

Let dGCspHouT i, i ∈ {1, 2, 3} denote the shortest path graph for differential graphlet

community i for dataset Hou in Hou’s tumor graph.

4.2.5 Shortest path distribution

After obtaining deregulated subgraphs, comparing network structures is important for

the understanding of disease mechanisms. In order to better utilize network structure

information obtained from the deregulated subgraphs, we computed shortest path distri-

butions on differential graphlet communities.

Visualization of differential graphlet communities in NAViGaTOR [22] shows that

there are fewer vertex pairs xy such that x is adjacent to y among vertices in V (dGCHoui), i ∈

{1, 2, 3} forHouN than in dGCHoui, i ∈ {1, 2, 3} respectively. Similar results are observed

for Su and Landi datasets. To quantify these observations, we performed a systematic

shortest path distribution analysis.

Shortest path distributions are computed for:

• dGCspHouN i, i ∈ {1, 2, 3} and dGCspHouT i, i ∈ {1, 2, 3};

• dGCspSuN i, i ∈ {1, 2, 3} and dGCspSuT i, i ∈ {1, 2, 3};

• dGCspLandiN i, i ∈ {1, 2, 3} and dGCspLandiT i, i ∈ {1, 2, 3}.

Significance of shortest path distribution differences between normal and tumor graphs

is determined by the Mann-Whitney test. A constant C is used to replace infinity dis-

tance (i.e., non-reachable vertices). By the nature of the Mann-Whitney test, results

from different Cs will be the same if C is greater than all non-infinity lengths in the

compared shortest path distributions. Thus, without loss of generality, C is set to be 100

as the maximum shortest path length is 12.
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4.2.6 Pathway and GO analysis

In order to gain biological insights from network structures of the differential graphlet

communities, and to test whether edges in differential graphlet communities are within

a pathway or across pathways, nodes are overlapped with pathways and Gene Ontol-

ogy (GO). Pathway databases used include Encyclopedia of Homo Sapiens Genes and

Metabolism (HumanCyc) [98], Kyoto Encyclopedia of Genes and Genomes (KEGG) [63],

National Cancer Institute - Pathway Interaction Database [100], Reactome [78] and The

Cancer Cell Map [9]. KEGG was downloaded on Feb 2011; remaining databases were

downloaded from Pathway Commons [25] on Aug, 2012. Annotations for GO ontol-

ogy - biological process were downloaded from Quick GO from European Bioinformatics

Institute [16] on Aug, 2012.

The intersection of dGCspHouT i, dGCspSuT i and dGCspLandiT i is taken for i ∈ {1, 2, 3},

and is denoted as dGCspALLi, i ∈ {1, 2, 3}. V (dGCspALLi), i ∈ {1, 2, 3} are intersected

with individual pathways and GO biological processes.

4.2.7 Implementation

The shortest path distribution analysis and the differential graphlet community analysis

were written using the igraph package [29] version 0.5.5.2 in R. The differential graphlet

community analysis adapted the implementation of the clique percolation algorithm in

the wiki website of igraph [1]. The Mann-Whitney test was performed in R 2.15.0. The

enumeration of all 5-node graphlets was executed using Fanmod [112]. Fanmod is a fast

tool to detect network motifs, and contained an algorithm, EnumerateSubgraphs (ESU),

by Wernicke [111], to enumerate all size-n subgraphs. Graph visualization was from

NAViGaTOR version 2.3 - Network Analysis, Visualization, & Graphing TORonto [22].
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4.3 Results and discussion

We identified three differential graphlet communities for each dataset; for all 3 differential

graphlet communities, for all 7 datasets, we observed a trend that the shortest path

lengths are shorter for tumor graphs compared to normal graphs. Differential graphlet

communities dGCHoui, dGCSui and dGCLandii, i ∈ {1, 2, 3} are presented in Figures

4.1-4.3. Note that the difference in wiring in individual datasets could be due to the

difference in disease stage as well as the difference in histology.
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Figure 4.1: dGCHou1, dGCSu1 and dGCLandi1 are shown. Edges connect co-expressed genes.

Nodes are sorted and colored based on GO biological function.



70

Hou Su

Landi

PTPRCAP

IRF4

IL16

MS4A1

CCR2

BTK

CAPG

TYROBP

IL7R

ITM2A

ARHGDIB

POU2AF1

U - Uncharacterized
D - Genome Maintenance
C - Cellular Fate and Organization
P - Translation
B - Transcriptional Control
T - Transcription
M - Other Metabolism
F - Protein Fate
G - Amino Acid Metabolism
A - Transport and Sensing
R - Stress and Defence
E - Energy Production
Unmatched

C1orf38
LCK

PTPRCAP

CTSS

IL16

MS4A1

CCR2

BTK

TYROBP

IL7R

ITM2A

ARHGDIB

POU2AF1

C1orf38

LCK

PTPRCAP

CTSS

IRF4

IL16

MS4A1

CCR2

BTK

CAPG

TYROBP

IL7R

ITM2A

ARHGDIB

POU2AF1

Figure 4.2: dGCHou2, dGCSu2 and dGCLandi2 are shown. Edges connect co-expressed genes.

Nodes are sorted and colored based on GO biological function.
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Figure 4.3: dGCHou3, dGCSu3 and dGCLandi3 are shown. Edges connect co-expressed genes.

Differential graphlet communities are formed by graphlets; graphlet i is in blue, and graphlet j

is in green for some i, j that form dGC3. Other graphlets that form dGC3 are in black (other

graphlets that overlap with graphlets i, j are not shown).
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We also present the comparisons of shortest path distributions for:

• dGCspHouN i versus dGCspHouT i for i ∈ {1, 2, 3};

• dGCspSuN i versus dGCspSuT i for i ∈ {1, 2, 3};

• dGCspLandiN i versus dGCspLandiT i for i ∈ {1, 2, 3}.

For readability, simpler terms are used in the Figures. For example, shortest path

distribution for Landi for dGC1 refers to the comparison of the shortest path distributions

between dGCspLandiN1 and dGCspLandiT1.

Figures 4.4 - 4.6 show that for all 3 datasets, for all 3 differential graphlet communities,

tumor graphs have shorter shortest paths than normal graphs; the median of shortest

path lengths in normal is significantly larger compared to tumor graphs (adjusted p

values ≤ 1.13E − 20; one-sided Mann-Whitney test). This suggests that tumor cells can

cause crosstalk between biological processes that usually does not exist under normal

conditions.
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Figure 4.4: Shortest path distributions for dGC1 for Landi, Hou and Su datasets. Inf represents

shortest path between unreachable nodes. A is the number of node pairs that have infinity as

the distance due to the absence of nodes in the graph.
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Figure 4.5: Shortest path distributions for dGC2 for Landi, Hou and Su datasets. Inf represents

shortest path between unreachable nodes. A is the number of node pairs that have infinity as

the distance due to the absence of nodes in the graph.
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Figure 4.6: Shortest path distributions for dGC3 for Landi, Hou and Su datasets. Inf represents

shortest path between unreachable nodes. A is the number of node pairs that have infinity as

the distance due to the absence of nodes in the graph.

To further validate the observed trend, we used four independent NSCLC datasets –

Lu, Sanchez, Okayama and Girard [48, 74, 82, 99]. In all 4 datasets, for all 3 differential

graphlet communities, the observed trend is confirmed: tumor graphs have shorter short-

est paths compared to normal graphs; the median of shortest path lengths in normal is
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significantly larger than tumor graphs (adjusted p values ≤ 2.61E−13; one-sided Mann-

Whitney test). Figures 4.7, 4.8 and 4.9 show the observed trend for different datasets for

differential graphlet community 1, 2 and 3, respectively.
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Figure 4.7: Shortest path distribution for dGC1 for Girard and Lu datasets are shown at the

top. Shortest path distribution for dGC1 for Okayama and Sanchez datasets are shown in the

bottom. Inf represents shortest path between unreachable nodes. A is the number of node pairs

that have infinity as the distance due to the absence of nodes in the graph.
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Figure 4.8: Shortest path distribution for dGC2 for Girard and Lu datasets are shown at the

top. Shortest path distribution for dGC2 for Okayama and Sanchez datasets are shown in the

bottom. Inf represents shortest path between unreachable nodes. A is the number of node pairs

that have infinity as the distance due to the absence of nodes in the graph.
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Figure 4.9: Shortest path distribution for dGC3 for Girard and Lu datasets are shown at the

top. Shortest path distribution for dGC3 for Okayama and Sanchez datasets are shown in the

bottom. Inf represents shortest path between unreachable nodes. A is the number of node pairs

that have infinity as the distance due to the absence of nodes in the graph.
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Thus, for all 7 datasets, for all 3 differential graphlet communities, we observed a

trend that the shortest path lengths are shorter for tumor graphs compared to normal

graphs; the median of shortest path lengths in normal is larger than that of tumor graphs,

as determined using the one-sided Mann-Whitney test (adjusted p values ≤ 2.61E− 13).

4.3.1 Biological meaning of differential graphlet communities

From the shortest path distributions across all 7 datasets and all 3 differential graphlet

communities, we observed a trend that the shortest path lengths are shorter for tumor

graphs than for normal graphs. The observed trend suggests that tumor cells can cre-

ate shortcuts between biological processes that are usually not connected under normal

conditions.

In order to test whether edges in differential graphlet communities are within a path-

way or across pathways, nodes in differential graphlet communities are overlapped with

pathways and GO biological processes, and are presented in Tables C.1 - C.9 in Appendix

C.

A proof-of-concept.

We use an example from dGCspALL2 as a proof-of-concept to demonstrate that the dif-

ferential graphlet community approach provides insights into the underlying mechanism,

and potential novel treatments for NSCLC. Figure 4.10 presents dGCspALL2 labeled with

pathway information, and it shows that many edges in dGCspALL2 are across different

pathways suggesting crosstalk between them.

In dGCspALL2, there are many edges crossing between members of the chemokine

signaling pathway, Jak-STAT signaling pathway, Canonical NF-kappaB pathway and the

B cell receptor signaling pathway. It has been reported that Jak-STAT signaling pathway

and Canonical NF-kappaB pathway have STAT3 and NF-kappaB “collaborating” in

cancer [49]. The activation of STAT3 and NF-kappaB as well as the interaction between
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Figure 4.10: An example from dGCspALL2. Edges link co-expressed genes. Nodes are colored

based on GO biological function. IL7R belongs to the Jak-STAT signaling pathway and the

hematopoietic cell lineage. LCK belongs to the canonical NF-kappaB pathway and the natural

killer cell mediated cytotoxicity.

them are important for controlling the communication between a malignant cell and its

microenvironment. Often, STAT3 and NF-kB are basally active in neoplastic cells. A

global profiling of mouse lung cells showed that STAT3 controlled the expression of a

large number of genes, and some NF-kappaB target genes were among them [31]. Genes

that are controlled by STAT3 and NF-kappaB include chemokines, PAI-1, Bcl3, Bcl2,

GADD45β and SOCS3. This suggests that STAT3 and NF-kappaB pathways have to

work together for the induction of specific groups of genes [49].

CCR2 and CCR7 are chemokine receptors in the chemokine signaling pathway iden-

tified in dGCspALL2. Genes that encode chemokines are among targets for STAT3 and

NF-kappaB [49]. Chemoattractants are crucial for recruiting and renewing various cells

in the tumor microenvironment. In particular, CCL2, a CCR2 ligand, controls the en-

rollment of myeloid cells, which induce tumor-associated macrophage (TAM) or myeloid-

derived suppressor cells (MDSC) [49]. In the tumor microenvironment, TAM can promote
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tumor and MDSC can suppress T cells [20]. Another chemokine receptor in dGCspALL2

is CCR7. CCL19/CCL21/CCR7 play a role in attracting immunosuppressive T regula-

tory cells [18]. Therefore, STAT3 and NF-kappaB, through the regulation of chemokine

synthesis, can determine which groups of immune cells are active in the tumor microen-

vironment.

Not only is STAT3 observed to have crosstalk with NF-kappaB, STAT3 signaling

also enables crosstalk among tumor and immune cells, resulting in an immunosuppres-

sive network [119]. This crosstalk via STAT3 signaling involves hematopoietic progenitor

cells, and hematopoietic cell lineage is also present in dGCspALL2 (IL7R, MS4A1 ). Fur-

thermore, pathways related to immune cells are also present in dGCspALL2. Increase

in STAT3 activity in hematopoietic progenitor cells encourages the production of im-

mature myeloid cells, and increases the amount of plasmacytoid dendritic cells. The

amount of immature dendritic cell is also increased. Both immature dendritic cells and

plasmacytoid dendritic cells encourage and accumulate regulatory T cells in the tumor

microenvironment. STAT3 activity prevents immature dendritic cells from maturing.

However, mature dendritic cells are able to stimulate CD8+ T cell’s and natural killer

cell’s anti-tumor effects. IL7R and MS4A1 belongs to the lymphoid stem cell branch,

and the lymphoid stem cell branch is responsible for the maturing of T and B cell, as seen

from the hematopoietic cell lineage in KEGG [63]. From the primary immunodeficiency

pathway in KEGG, LCK can affect the maturing of T cell, and BTK can affect the

maturing of B cell. Although IL7R and MS4A1 are involved in the lymphoid stem cell

branch, and not the myeloid stem cell, other crosstalk among tumor and immune cells

is possible. Note that the plasmacytoid dendritic cells also belong to the lymphoid stem

cell branch.

BTK also has edges across different pathways. BTK can relate to the crosstalk

between STAT3 and NF-kappaB, as BTK is crucial in the survival of B cell as well as

the activation of NF-kappaB [101]. BTK can also relate to the crosstalk among tumor
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and immune cells involving hematopoietic progenitor cells since BTK plays an important

role in the maturation of B cell as mentioned above.

PTPRCAP, protein tyrosine phosphatase receptor type C-associated protein, is an-

other vertex that has edges across different pathways. Several protein tyrosine phospho-

tases, PTPs, have been associated with the regulation of JAKs [102], and the JAK-STAT

pathway is important for controlling immune responses [102]. Furthermore, T-cell pro-

tein tyrosine phosphatase is identified to be a crucial regulator in the signaling of immune

cells [34]. PTPRCAP is particularly associated with CD45, an important controller of B

and T lymphocyte activation [46]. In dGCspALL2, edges are present between PTPRCAP

and the chemokine receptors, as well as between PTPRCAP and the Jak-STAT signaling

pathway.

The example from dGCspALL2 highlights different crosstalk between pathways or

among tumor and immune cells. There can be other crosstalk and interpretations to

dGCspALL2, yet this proof-of-concept demonstrates that the differential graphlet com-

munity approach provides insights to the underlying mechanism and potential treatments

for NSCLC. Importantly, the differential graphlet community approach does not only re-

turn gene groups, but the edges between them as well. Systematically comparing network

structure enables the identification and characterization of differences between tumor and

normal samples, and enables the formalization of functional hypotheses and prioritization

of biological experiments.

4.4 Conclusions

We have developed a graph-based approach that systematically characterizes network

structure differences between any graphs, and used it for identifying lung cancer-specific

differences between normal and tumor graphs. We proposed using differential graphlet

communities for detecting deregulated subgraphs between any graphs. The differential
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graphlet community approach reveals gene group and wiring differences between com-

pared graphs – in this dissertation, between normal lung and lung cancer. Going beyond

using connectivity of each gene or each edge to compare the identified deregulated sub-

graphs, we used shortest path distributions on differential graphlet communities in order

to exploit network structure information on identified deregulated subgraphs. Impor-

tantly, the differential graphlet community approach enables a gene to participate in

more than one deregulated subgraph. The ability for overlapping differential graphlet

communities is important because genes can have multiple functions in different context.

Interestingly, this approach identified difference in network topology between normal and

tumor graphs which provides insights to the underlying molecular mechanism in NSCLC.

In particular, across all 3 NSCLC datasets and all 3 identified differential graphlet com-

munities, a trend that the shortest path lengths are shorter for tumor graphs than for

normal graphs is observed; the median of shortest path lengths in normal is signifi-

cantly larger compared to tumor graphs (adjusted p values ≤ 1.13E − 20; one-sided

Mann-Whitney test). The results suggest that tumor cells can create shortcuts between

biological processes that may not be present under normal conditions. We have fur-

ther validated these results on 4 independent NSCLC datasets. As a proof-of-concept

to demonstrate that the differential graphlet community approach provides insights to

the underlying mechanism for NSCLC, we highlighted crosstalk between pathways and

among tumor and immune cells that are revealed through the systematic graph-based

analysis. Examples of crosstalk that are observed include the crosstalk between the Jak-

STAT and NF-kappaB pathways or STAT3 signaling enabling crosstalk among tumor

and immune cells, resulting in an immunosuppressive network. The systematic network

structure comparison enables the identification of network structure differences between

tumor and normal samples. Ultimately, new therapies and drug discoveries will benefit

from identifying such information.



Chapter 5

A heuristic for finding graphlets

that are different between normal

and tumor graphs

5.1 Introduction

In Chapter 3 and Chapter 4, we have shown that comparing network structures that char-

acterize healthy and disease state provides insights to the underlying mechanisms and

treatment options for complex disease like cancer. With technological advancement, bio-

logical data will continue to grow, likely resulting in networks with millions of nodes and

edges. While graphlet analysis provides valuable information in comparing networks, the

subgraph isomorphism problem is NP-complete [45]; thus, we need heuristics to obtain

this information efficiently. There are two groups of approaches: 1) develop approximate

but efficient graphlet counting heuristics; and 2) reduce the search space by identifying

relevant areas for graphlet enumeration (similar to [88]). We have discussed the compu-

tational challenges in graphlets counting in Section 2.6. In this chapter, we introduce a

method for reducing search space. We develop the differential correlation graph approach

81
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to identify areas that are likely to be different between the normal and tumor graph, and

perform graphlet enumeration on the identified areas only. We introduce the notion of

backbone to explain why the differential correlation graph approach works well.

Section 5.2 describes the differential correlation graph approach. Section 5.3 intro-

duces the notion of backbone. Section 5.4 presents the benchmark for evaluation, Section

5.5 provides the results, and Section 5.6 gives some concluding remarks.

5.2 The differential correlation graph (DCG) approach

Differential expression studies have been developed to compare gene expression levels

between healthy and affected tissues [33]. Differential expression studies usually involve

detecting statistical significance changes to the mean expressions of individual genes [30].

Some studies associated changes in mean expression levels in gene groups or pathways

with disease phenotypes [33]. However, useful prognostic signatures are not necessarily

the most differentially expressed genes[19]. Differential co-expression approaches that

compare co-expression patterns between healthy and diseased samples have developed

(e.g., [65]). We use DCG to identify differences in network structures between normal

and tumor graphs because 1) DCG captures the difference in gene expression correlation

values between normal and tumor samples, and 2) DCG has relatively few edges among

its vertices; DCG spans to different areas instead of having too many edges between the

same vertices (we formalize the notion of backbone to describe this property in Section

5.3). We obtain network structure differences by using neighborhoods of depth 4 of

DCGs. We consider areas of distance 4 around each node inDCGs because we use 5-node

graphlets in previous chapters; thus, in order to compare our heuristic with approaches

described in previous chapters, we consider neighborhoods of depth 4 of DCGs.

We construct normal and tumor co-expression graphs as previously described (see

Section 3.2.5). Let N , T denote the normal and tumor graph respectively. In the DCG



83

method, two correlation matrices for each dataset, a normal and a tumor correlation

matrix, are generated using normal and tumor samples, by calculating pairwise Pearson

correlations for all gene pairs. The normal correlation matrix is denoted as MN , and the

tumor correlation matrix is denoted as MT . Let MNij, MTij represent the correlation

value from the ith row and jth column in MN and MT respectively. The differential

correlation matrix MD is defined as MDij = |MNij − MTij|. MDij is the absolute

differential correlation value between genes i and j. All gene pairs are ranked according

to their absolute differential correlation values. Let DCGx denote the DCG constructed

by taking the top x% of gene pairs in MD. For each v ∈ V (DCGx), enumerate all 5-node

graphlets involving v. Figure 2.1 shows all 5-node graphlets. The design of the heuristic

is to reduce the search space by identifying relevant areas for graphlet enumeration; thus,

in order to compare our heuristic with the graphlet approach (described in Chapter 3),

we use 5-node graphlets as previous chapters also use 5-node graphlets. The reasons for

using 5-node graphlets are described in Section 3.2.5. The DCG approach is highlighted

in Figure 5.1.

5.3 Backbones

The intuition of a backbone is to have relatively few edges among its nodes. For DCGx,

as x increases, the number of edges increases. Suppose that we have DCGx and DCGy

where x < y, and e ∈ E(DCGy), e /∈ E(DCGx). We want e to be between two vertices

that are not already in V (DCGx), or at least one of them is not already in V (DCGx).

Given a fix number of edges, we desire DCGs to span over more vertices, instead of being

dense graphs that span over few vertices.

Section 2.1 defines graph theoretic terminologies used in this chapter. The reader is

reminded that a tree is a connected graph with no cycle, and a forest is a graph with
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Figure 5.1: Instead of comparing between the entire normal and tumor graph (A), the DCG

approach (B) obtains network structure differences by using neighborhoods of DCGs.

no cycle [113]. The maximal connected subgraphs of G are called the components of G

[113].

A pseudotree is a connected graph such that |V | = |E|, that is, a tree with an extra

edge that forms a cycle [43]. A pseudoforest is a graph such that each of its connected

component is either a tree or a pseudotree [43]. We define a n-node graphlet backbone

and a n-backbone with intuitions similar to that of a pseudotree and a pseudoforest

respectively, i.e., having relatively few edges among their nodes. We define a n-node

graphlet backbone to be a n-node graphlet with m edges, where m ≤ n + 1. We define

a n-backbone to be a graph such that each of its component, C, is a tree if |C| < n or

all n-node graphlets are n-node graphlet backbones in C if |C| ≥ n. Note that when

|C| < n, it is not possible to enumerate n-node graphlet in C.
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5.4 Benchmark for evaluation

We applied the DCG approach on the same datasets, Hou, Landi, and Su as previous

chapters (see Section 3.2.1), as we have shown that biologically meaningful deregulated

subgraphs are obtained.

In Chapter 3, we separate the enumeration of 5-node graphlets from normal and

tumor graphs into 3 categories: normal, tumor and both. We remind the reader that

normal category contains graphlets that are only in the normal graph, and tumor category

contains graphlets that are only in the tumor graph. Since we want to identify network

structure differences between normal and tumor graphs, the benchmark for evaluation is

focused on the normal and tumor category.

In previous chapters, we focused on graphlets that are in the tumor category, and

those that have the same membership across all 3 datasets. The set of graphlets in

the tumor category having the same membership across all 3 datasets is denoted as

all3, and |all3| = 323. all3 represents deregulated graphlets that are most important

biologically speaking as all three datasets captured these graphlets. Thus, we use all3 as

our benchmark for evaluation as well.

Benchmark 1 - the normal and tumor category

Let ApproxNCDCG, ApproxTCDCG be the number of graphlets obtained for the normal

and tumor category using the DCG method respectively. Let EnumNC, EnumTC

denote the number of graphlets obtained for the normal and tumor category through

enumeration respectively. Let the accuracy obtained for the DCG method be denoted

as AccNCDCG for the normal category, and AccTCDCG for the tumor category.

AccNCDCG =
ApproxNCDCG

EnumNC
∗ 100

AccTCDCG =
ApproxTCDCG

EnumTC
∗ 100
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We generated 9 DCGs using the top 0.1%, 0.2% and 0.3% of gene pairs in MD

for each of the three datasets. Higher percentages are not chosen as heuristics would

be meaningless if they need to process more nodes than exhaustive searches. hou001

denotes the top 0.1% of DCG for dataset Hou, hou002 denotes the top 0.2% of DCG

for dataset Hou, and hou003 denotes the top 0.3% of DCG for dataset Hou. Similar

representations are used for datasets Landi and Su.

Benchmark 2 - the all3 category

Let Approxall3DCG be the number of graphlets obtained for all3 using theDCG heuristic.

Let the accuracy obtained for the DCG method be denoted as Accall3DCG.

Accall3DCG =
Approxall3DCG

|all3|
∗ 100

5.5 Results and Discussion

We present the results for the DCG approach in this section.

Table 5.1 presents the results for the DCG approach for the normal category. The

result for the top 0.1% for all three datasets already performs very well; achieving greater

than 87% accuracy, processing less than or equal to 57.01% of nodes. The top 0.2%

returns high accuracy, with the lowest accuracy being 95.8%. Of course, the top 0.3%

gives the best accuracy. Trivially, there is a trade-off between accuracy and computational

demand. Note that V (N), V (T ) and V (DCG) are not the same in general; thus, it is

possible for the percentage of node processed with respect to N (or T ) to be greater than

100%.
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DCG |V (DCG)| % Node wrt N EnumNC ApproxNCDCG AccNCDCG

hou001 179 38.66 4182593 3666267 87.66
hou002 265 57.24 4182593 4007103 95.80
hou003 328 70.84 4182593 4133480 98.83
landi001 183 57.01 15748654 13801528 87.64
landi002 276 85.98 15748654 15546347 98.72
landi003 350 109.03 15748654 15714772 99.78
su001 186 43.97 6137000 5800794 94.52
su002 300 70.92 6137000 6106397 99.50
su003 379 89.60 6137000 6134931 99.97

Table 5.1: Results for the normal category for the DCG approach.

Table 5.2 shows the results for the DCG approach for the tumor category. Results

for the top 0.1% for Hou and Su are extremely good, achieving 99.33% and 92.54%

accuracy respectively, but not for Landi, achieving 50.69% accuracy. We investigated

the reason as to why landi001 performs so poorly. Let notInNT denote the set of nodes,

v ∈ V (DCG), v /∈ V (N) and v /∈ V (T ). Nodes in notInNT will not help to identify

graphlets in the normal or tumor category as they are not in the normal or the tumor

graph. Let inN denote the set of nodes, v ∈ V (DCG), v ∈ V (N) and v /∈ V (T ). Let

inT denote the set of nodes, v ∈ V (DCG), v /∈ V (N) and v ∈ V (T ). Let inNT denote

the set of nodes, v ∈ V (DCG), v ∈ V (N) and v ∈ V (T ). We did a breakdown of nodes

in DCG for the top 0.1% for all three datasets, refer to Table 5.3. We found that 16.39%

of nodes in landi001 belong to notInNT compared to 2.79% and 2.15% for hou001 and

su001 respectively. Thus, landi001 does not perform well because it contains a large

percentage of nodes that would not help to identify graphlets in the normal and tumor

category.
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DCG |V (DCG)| % Node wrt T EnumTC ApproxTCDCG AccTCDCG

hou001 179 43.03 8577395 8520169 99.33
hou002 265 63.70 8577395 8574195 99.96
hou003 328 78.85 8577395 8576125 99.99
landi001 183 49.46 12180103 6174288 50.69
landi002 276 74.59 12180103 10164804 83.45
landi003 350 94.59 12180103 11560964 94.92
su001 186 42.96 9081990 8404783 92.54
su002 300 69.28 9081990 9056966 99.72
su003 379 87.53 9081990 9081225 99.99

Table 5.2: Results for the tumor category for the DCG approach.

DCG # of
Nodes in
notInNT

# of Nodes
in inT

# of Nodes
in inN

# of Nodes
in inNT

hou001 5 18 19 137
landi001 30 32 38 83
su001 4 32 17 133
hou002 7 26 40 192
landi002 48 52 55 121
su002 14 56 35 195
hou003 10 34 57 227
landi003 66 72 68 144
su003 23 68 54 234

Table 5.3: Node breakdown for DCGs.

From both the normal and tumor category, we see that in general, unless the appli-

cation requires close to perfect accuracy, there is no need to compute DCGs with higher

percentages than top 0.1% since the top 0.1% of DCGs already perform so well. The

DCG approach works very well even at the top 0.1% if the DCG does not contain too

many nodes in notInNT . Thus, one can perform a quick check on the number of nodes

in notInNT to determine if accurate results can be achieved.

The all3 category contains the most important graphlets that differed between the

normal and tumor graph because all three datasets picked up these graphlets. Thus,

even if the heuristic cannot achieve high accuracy in the normal or tumor category, it is

important for the heuristic to obtain graphlets in the all3 category. The DCG approach

performs extremely well, refer to Table 5.4. For all three datasets at the top 0.1%, the
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performance for the all3 category is 100%, 99.07% and 95.98%. Importantly, although

landi001 did not perform well in the tumor category, landi001 performs extremely well

in this key category.

DCG |V (DCG)| % Node wrt N % Node
wrt T

Approxall3DCG Accall3DCG

hou001 179 38.66 43.03 323 100
hou002 265 57.24 63.70 323 100
hou003 328 70.84 78.85 323 100
landi001 183 57.01 49.46 320 99.07
landi002 276 85.98 74.59 322 99.69
landi003 350 109.03 94.59 322 99.69
su001 186 43.97 42.96 310 95.98
su002 300 70.92 69.28 323 100.00
su003 379 89.60 87.53 323 100.00

Table 5.4: Results for the all3 category for the DCG approach.

Since the top 0.1% DCGs already perform so well, we do not need to go to the

top 0.2% or 0.3% DCGs. Why do the top 0.1% DCGs perform so well? There are

two reasons. First, differential co-expression values capture co-expression values that

differed between the normal and tumor condition. The co-expression is calculated from

gene expressions, which provide much information about the normal and tumor states.

Second, the top 0.1% DCGs for Hou, Su and Landi are 5-node backbones. 5-node

backbones allow edges in DCGs to span to different areas instead of having too many

edges between the same vertices. Since in this chapter as well as in previous chapters,

5-node graphlets are used; thus, using 5-node backbones is a natural choice. 5-node

graphlets are used for the aforementioned reasons, and we will not repeat them here. By

enumerating graphlets on nodes in DCGs, the neighborhoods of depth 4 of DCGs are

used for obtaining graphlets in the normal, tumor and all3 category.

Tables 5.5 and 5.8 show that the top 0.1% DCG for Hou is a 5-node backbone. All

components in the top 0.1% DCG for Hou that have less than 5 nodes, they are trees

(having |C| − 1 edges, where C denotes a component). All components in the top 0.1%

DCG for Hou that have greater than or equal to 5 nodes, all 5-node graphlets in them
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are 5-node graphlet backbones. Similarly, Tables 5.6 and 5.8 show that the top 0.1%

DCG for Landi is a 5-node backbone; Tables 5.7 and 5.8 show that the top 0.1% DCG

for Su is a 5-node backbone.

Component Nodes Edges
1 2 1
2 2 1
3 2 1
4 2 1
5 2 1
6 2 1
7 2 1
8 2 1
9 2 1
10 2 1
11 2 1
12 3 2
13 3 2
14 3 2
15 4 3
16 5 4
17 139 172

Table 5.5: All components in hou001. Nodes are the number of nodes in the component, and
edges are the number of edges in the component.

Table 5.8 also compares the 5-node graphlet distributions between Ns, T s and the

top 0.1% DCGs for Hou, Su and Landi. There is no graphlet for graphlet numbers

that are greater than or equal to 13 for all of the three top 0.1% DCGs, which is not

the case for Ns and T s. Graphlet numbers increase monotonically with the number of

edges between the 5 vertices. Note that the computation for graphlet distributions are

not needed for the DCG approach; graphlet distributions are only used to illustrate that

the top 0.1% DCGs for Hou, Su and Landi are backbones. Note also that we are not

claiming that all DCGs that are n-node backbones will perform well as there are other

factors to be considered such as the aforementioned |notInNT |. We are using 5-node

backbone to explain why the top 0.1% DCGs for Hou, Su and Landi perform so well.
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Component Nodes Edges
1 2 1
2 2 1
3 2 1
4 2 1
5 2 1
6 2 1
7 2 1
8 2 1
9 2 1
10 2 1
11 2 1
12 3 2
13 3 2
14 3 2
15 3 2
16 5 4
17 6 5
18 138 148

Table 5.6: All components in landi001. Nodes are the number of nodes in the component, and
edges are the number of edges in the component.

5.6 Concluding remarks

We described a heuristic, the DCG approach, that performs well in obtaining graphlets

that differed between normal and tumor graphs by identifying relevant areas for graphlet

enumeration. From the three NSCLC datasets, we showed that if only a low percentage

of vertices in DCGs are in notInNT , it is sufficient to achieve accurate estimation in

the difference between normal and tumor states using only the top 0.1% DCGs. For

example, we obtained a 99.33% accuracy from the top 0.1% DCG for Hou in the tumor

category. Furthermore, we showed that the top 0.1% DCGs are able to achieve excellent

accuracy in the all3 category, achieving accuracies as high as 100%. Recall that the all3

category represents deregulated graphlets that are most important biologically speaking

as all three datasets captured these graphlets.
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Component Nodes Edges
1 2 1
2 2 1
3 2 1
4 2 1
5 2 1
6 2 1
7 2 1
8 2 1
9 2 1
10 2 1
11 2 1
12 2 1
13 2 1
14 2 1
15 3 2
16 3 2
17 3 2
18 3 2
19 4 3
20 4 3
21 4 3
22 4 3
23 18 18
24 112 124

Table 5.7: All components in su001. Nodes are the number of nodes in the component, and
edges are the number of edges in the component.

In order to explain why the top 0.1% DCGs for Hou, Su and Landi perform so

well, we introduce the notion of backbone. Intuitively, a backbone is a graph that has

relatively few edges among its vertices; allowing it to span to different areas instead of

having many edges between the same vertices.

While the DCG approach is generic, we applied it to three NSCLC datasets. A future

work is to evaluate how well the DCG approach works on other cancer and other disease

datasets. In this chapter, the benchmark of evaluation is on the normal and tumor

graphs that are used throughout the dissertation. Another future work is to evaluate the

approach on different sizes of graphs.
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No. HouN HouT hou
001

LandiN LandiT landi
001

SuN SuT su
001

1 1106313 1315759 2165 2212733 1580462 1095 1268630 1180453 855
2 1325614 1735266 3928 3236163 2684372 1649 1567616 1951757 1589
3 149038 228778 1224 539277 534023 506 204360 332008 329
4 427382 970202 0 2066653 1583524 0 716688 1160982 0
5 427986 947766 0 1735082 1220161 0 681149 930447 0
6 251277 619477 0 1388068 1217524 0 452958 812807 0
7 5416 7186 2 30462 15755 1 9078 10618 0
8 61536 70682 262 304551 193711 127 94913 130146 158
9 137608 595457 0 1288541 1051188 0 332769 702967 0
10 35637 118965 0 301030 213192 0 81666 162023 0
11 131491 541341 0 1073163 782939 0 297820 593723 0
12 609 529 23 6796 3318 4 1201 1754 5
13 17890 30024 0 157245 90810 0 36382 62438 0
14 8038 87056 0 119890 107858 0 26554 69210 0
15 43732 527789 0 658272 551003 0 157465 376583 0
16 35088 199449 0 514164 368467 0 107944 264932 0
17 2991 7048 0 42660 23841 0 8090 15429 0
18 17448 324251 0 408137 332110 0 80248 228167 0
19 1929 8437 0 42027 26701 0 7011 17684 0
20 4016 156303 0 145409 121768 0 26735 82351 0
21 718 94794 0 40343 39388 0 7506 25294 0

Table 5.8: 5-node graphlet distributions. Refer to Figure 2.1 for all 5-node graphlets. No. refers
to graphlet numbers.



Chapter 6

Conclusions and future work

6.1 Conclusions

We proposed novel approaches to compare graphs, and to extract network structure

differences between them. We focused on comparing normal and disease graphs in this

dissertation, but the algorithms can be applied generally. Base on the extracted network

structure differences, we analyzed and designed methods in order to gain insights to the

underlying mechanisms and treatments for diseases.

In Chapter 3, we demonstrated how graphlets facilitate network structure compari-

son, and in turn how this information can be used to predict novel treatment options.

We proposed a systems approach with an aim to revert disease conditions to healthy

ones through treatments. In order to achieve the objective, we proposed three novel

methods to 1) systematically identify network structure differences between normal and

tumor graphs, 2) identify and prioritize drug combinations based on extracted network

structure differences, and 3) computationally estimate the potential of the proposed drug

combination to “repair” deregulated subgraphs, making disease graphs more similar to

normal graphs. Validations of drug combination predictions, both mechanistically and

functionally are performed. Results have shown that our systems approach is a promis-
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ing method to provide treatment options to NSCLC through the rewiring of disease

networks, i.e., making the disease graph more similar to the normal graph through drug

combination treatments.

In Chapter 4, we introduced the notion of differential graphlet community to detect

deregulated subgraphs between any graphs such that the network structure informa-

tion is exploited. The differential graphlet community approach systematically captures

network structure differences between any graphs. This approach circumvents the expo-

nential growth of computation required as the deregulated subgraph size increases, and

enables the systematically exploring of protein communities with larger size, which pro-

vide stronger biological context. Importantly, this approach has the ability to include a

gene into more than one deregulated subgraph. The differential graphlet community ap-

proach led to exciting results, providing insights to the underlying molecular mechanism

in NSCLC. In particular, across all three NSCLC datasets, we observed a trend that the

shortest path lengths are shorter for tumor graphs than for normal graphs between genes

that are in differential graphlet communities, suggesting that cancer creates shortcuts

between biological processes that may not be present in normal conditions. Importantly,

we have validated these intriguing results on four independent datasets. Examples of

shortcuts that are observed, and are in agreement with known mechanism in literature

include the crosstalk between the Jak-STAT and NF-kappaB pathways or STAT3 signal-

ing enabling crosstalk among tumor and immune cells, resulting in an immunosuppressive

network.

Comparing network structures between graphs is useful, but large graph comparison

is computationally intensive. However, not all areas of the graphs are needed to perform

comparisons. In Chapter 5, we proposed a heuristic, the differential correlation graph

approach, that identifies areas that are different between the normal and tumor graph,

and perform graphlet enumeration on the identified areas. Results showed that our

approach achieves accurate estimation in the difference between normal and tumor states
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by performing network comparisons in important areas only. We also introduce the notion

of network backbone to explain why the differential correlation graph approach works

well.

Our study increases the current exploitation of network structures in the compari-

son between networks. We introduce two novel graphlet-based methods, and an efficient

heuristic for exploiting network structure information in the comparison between any

graphs, and we validate them on comparing graphs generated from NSCLC datasets.

Going beyond identifying network structure differences, our approaches resulted in in-

sights to the underlying molecular mechanism in NSCLC, as well as treatment options

to NSCLC through the rewiring of disease networks.

We have demonstrated that the potential is enormous in going from comparative net-

work analysis to the understanding of the underlying mechanisms of disease to treatment

options. Although we have proposed several novel methods to discover these immense

treasures, we are still far from fully understanding them.

6.2 Future work

We propose some future work that are closely related to our dissertation.

6.2.1 Pseudo dominating set of differential correlation graph

(PDS)

In Chapter 5, we used the differential correlation graph to reduce search space by identi-

fying relevant areas for graphlet enumeration. We can use dominating sets of differential

correlation graphs to further reduce search space.

A dominating set of G is defined to be a subset S, S ⊆ V (G) such that ∀v ∈ V (G),

either v ∈ S or v ∈ Nn(s), s ∈ S [52]. The domination number for G, γ(G), is the number

of vertices that is present in the smallest dominating set for G. Given a graph G and an
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input k, the dominating set problem is to determine if γ(G) ≤ k is true. The dominating

set problem is a NP-complete decision problem [45]. Thus, many heuristics have been

developed (e.g., [69]).

The notion of dominating sets is used in the field of designing routing protocols for

wireless networks, e.g., [103, 117]. Dominating sets are used to locate central nodes in

wireless networks for efficient routing, e.g., [103, 117]. The dominating set in a wireless

network can be viewed as a skeleton of the network where data can be efficiently routed

through it because each node in the network is at most one hop away from the skeleton.

We are inspired to apply the notion of dominating sets to identify skeletons to correlation

difference graphs where graphlets that are differed between normal and tumor graphs

can be identified. In the biological network context, Milenković et al. suggested that

biologically essential proteins can be obtained through dominating sets of PPI networks

[79], and Molnár Jr. et al. studied how the size of minimum dominating set in scale-free

networks scales [62].

Algorithm-PDS

The algorithm aims to identify a skeleton for the given differential correlation graph.

The objective of the algorithm is to design a heuristic to identify as many deregulated

subgraphs as possible without an exhaustive search on the normal and tumor graph. The

objective is not to design a heuristic to obtain a minimum dominating set; rather, it is

designed to identify as many deregulated subgraphs as possible.

Let DCG, N , T denote the differential correlation graph, the normal graph, and the

tumor graph respectively. The inputs to the algorithm are DCG, V (N) and V (T ). The

output to the algorithm is the pseudo dominating set for DCG. The idea of the algorithm

is as follow. At any time, every node in V (DCG) belongs to 1 of 3 sets: S denotes the set

of nodes that are in the pseudo dominating set; Grey denotes the set of nodes that are

either the neighbors of nodes in S or nodes that would not be considered as candidates
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for S; White denotes the set of nodes that have not been processed yet. The algorithm

halts when there is no more nodes in White. corr(a, b) denotes the absolute correlation

value for {a, b}, a, b ∈ V (DCG). We define the correlation weight, scorr(v), as:

scorr(v) =


1 +

∑
(v,i)∈E(DCG) corr(v, i), i ∈ Nn(v) ∧ i ∈ White if v ∈ White

0 if v ∈ S or v ∈ Grey.

In each step, we select the node with the highest correlation weight to S.

In order to enhance the identification of deregulated subgraphs, the heuristics has a

pre-process step. Let notInNT denote the set of nodes, v ∈ V (DCG), v /∈ V (N) and

v /∈ V (T ). All nodes in notInNT are put into Grey because these nodes will not help

to identify deregulated subgraphs if they are not in the normal or the tumor graph. Let

inN denote the set of nodes, v ∈ V (DCG), v ∈ V (N) and v /∈ V (T ). Let inT denote

the set of nodes, v ∈ V (DCG), v /∈ V (N) and v ∈ V (T ). All nodes in inN and all nodes

in inT are put into S. Nodes that are in the normal graph only, and nodes that are in

the tumor graph only will help to identify graphlets that are different between the two

graphs. The neighbors of nodes in S are put into Grey. The algorithm for PDS is shown

in Algorithm 4.

The reason for the algorithm to return a pseudo dominating set for DCG, and not

a dominating set is because of the pre-process step in the heuristic. When all nodes in

notInNT are put into Grey, the output of the heuristic may not satisfy the definition

of a dominating set, which is fine for our purposes. Putting nodes in notInNT to Grey

informs us that those are not important areas to look for deregulated subgraphs.

6.2.2 Size of graphlets

In Chapter 3, we proposed the graphlet approach to identify network structure differ-

ences between any graphs. We used 5-node graphlets in the graphlet approach for reasons



99

Input: DCG, V (N), V (T )
Output: Pseudo dominating set for DCG
// Initialization

S ← ∅;
Grey ← ∅;
White← V (DCG);
// Pre-process step

Grey ← Grey ∪ {v},∀v ∈ notInNT ;
S ← S ∪ {v}, ∀v ∈ inN ;
S ← S ∪ {v}, ∀v ∈ inT ;
Grey ← Grey ∪ {v},∀v ∈ Nn(s), s ∈ S;
White← White \ {v}, ∀v ∈ S;
White← White \ {v}, ∀v ∈ Grey;
// Main step

while White ̸= ∅ do
choose m ∈ {v|scorr(v) = maxu∈V (DCG){scorr(u)}} ; // m will be from

White as otherwise, the correlation weight is 0
S ← S ∪ {m};
Grey ← Grey ∪ {v}, ∀v ∈ Nn(m);
White← White \ {m};
White← White \ {v}, ∀v ∈ Nn(m);

end

Algorithm 4: Algorithm for the pseudo dominating set of differential correlation
graph.
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described in Section 3.2.5. The graphlet approach using 5-node graphlets obtained bi-

ological meaningful network structure differences (Section 3.3.1). Nevertheless, one can

examine network structure differences from the graphlet approach using graphlets of

different sizes.

In Chapter 4, we proposed the differential graphlet community approach. Recall that

a differential graphlet community is formed by n-node graphlets. The approach circum-

vents the exponential growth of computation required as the graphlet size increases, and

enables the systematically exploring of protein communities with larger size which pro-

vide stronger biological context. We used 5-node graphlets in the differential graphlet

community approach for reasons described in Section 4.2.1. What about if different n’s

are used for the n-node graphlets? How different would the differential graphlet commu-

nities be? The reader is reminded that a differential graphlet community is defined as

the union of all n-graphlets such that one can reach to another by a chain of adjacent

n-graphlets. Adjacent n-graphlets are graphlets that share n − 1 nodes. Trivially, it

would not be very meaningful if n ≤ 3. 2-node graphlets are edges, and 3-node graphlets

will likely form large differential graphlet communities as well because of the differential

graphlet community definition. On the other hand, it would also not be meaningful if n is

too large. One of the main advantage of the differential graphlet community approach is

that it circumvents the exponential growth of computation required as the graphlet size

increases and still results in protein communities with larger size which provide stronger

biological context. Thus, having large n’s would defeat the design of our approach. Nev-

ertheless, one can investigate the network properties on differential graphlet communities

when different n’s are used for the n-node graphlets.

6.2.3 Applications to other networks

In Chapter 1, we discussed that comparing networks with different conditions is extremely

useful, for example, comparing networks with different stages or subtypes in cancer,
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comparing networks with different drug treatments, comparing networks with disease

development in different time points. We focus on comparing normal and NSCLC graphs

in this dissertation, but the algorithms can be applied generally. Applying our algorithms

on the comparisons between normal and other diseases graphs, or other aforementioned

different conditions would be interesting. Furthermore, besides biological networks, many

real-world phenomena are modeled with large networks, for example, social, technological

and information networks. Applying our algorithms in these networks can also be of

interest. Of course, tuning of the algorithms will likely be needed to tailor for any

specific fields or conditions.

6.2.4 Applications of other biological techniques

With technological advancement, new biological techniques continue to arise. As data

from new techniques becomes available, we can apply our approaches on them. For

example, we used microarray datasets for gene expressions in the dissertation; we can

apply our approaches on RNA-Seq (RNA Sequencing) data.

In addition to applying data from new techniques, there are other existing techniques

whereby we can validate our drug combinations. We used cell lines in the dissertation;

we can validate our drug combinations on xenograft models.
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Appendix A

Prognostic gene signatures

A.1 Prognostic signatures

Eighteen prognostic NSCLC signatures were used [44, 12, 14, 114, 17, 37, 106, 26, 50, 75,

87, 97, 15, 72, 71, 73, 105] throughout the dissertation. Refer to Table A.1 for a list of

genes that were used.

Genes (Entrez gene ID)
3964 3156 7385 396 5754 2800 3276
10857 2517 1066 397 638 284611 26469
6512 1476 6188 3267 4356 163486 7443
7379 5621 3579 6773 10320 79627 51442
5193 2064 324 6781 9412 9473 79650
5191 383 1909 1315 8899 51104 116138
7480 3623 498 5428 545 54665 83604
11113 5054 4504 10321 29896 8532 58495
6399 3383 1520 641 6642 144193 11055
1106 6181 5725 1822 7162 23231 11235
9536 6175 4485 8028 864 23347 80303
1787 6741 1271 4673 4666 25836 79083
8573 3249 4140 1006 5168 256949 79053
2069 3643 1803 3169 2966 256227 55006
23037 3932 4134 5316 5150 728340 29775
375449 5836 5295 9520 8621 730394 8284
753 7054 5122 637 3603 79818 60468
11079 7056 2048 10718 1298 9652 8539
8473 1514 25802 54020 3184 23253 84084

Continued on next page
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Table A.1 – Continued from previous page
Genes (Entrez gene ID)

10622 3912 1381 6281 23650 133121 57556
27324 4313 5037 10096 9898 129285 1798
1317 3145 894 746 8581 80108 92552
10257 4256 7465 6138 1974 23389 55204
10057 5788 624 390 2535 7846 79101
3638 308 4836 7114 2886 2011 80157
9422 3868 1992 8766 10406 1355 54462
27429 5452 6541 51646 8404 54808 79762
5889 8273 11151 59 6596 159090 54414
9452 307 6241 6234 4175 90233 57161
10488 2736 7072 2782 10795 79694 64816
7305 3576 3301 6434 8243 114784 9200
23036 6036 6282 100291837 9790 10444 57665
4976 2548 887 6227 23180 11011 28316
26025 369 1236 7329 5790 57862 57110
8828 596 1880 6047 841 54919 22931
8029 251 6546 8480 5349 84440 56344
10492 1191 3445 10265 1108 84864 55734
7975 6513 4363 3766 10948 25901 56943
1500 5834 5217 6868 22949 94134 55505
4068 6440 5245 80742 4784 10523 55900
8996 1559 133 3430 27332 10346 56948
1838 931 6291 23635 3837 221154 11179
4037 4953 4488 3020 4978 91526 3890
261734 650 2201 3021 9975 196403 55732
3161 2547 3667 7436 23395 56983 54014
11156 5916 7078 3339 5031 8495 51761
4094 3852 157 57198 5050 27127 10137
23451 634 1119 4693 5339 23 55752
4246 966 403 7073 3662 25983 54498
8676 3082 5268 1869 5094 55578 54952
4308 3660 3080 271 1266 84548 55863
9252 4811 6337 1671 5794 80321 23163
10434 7184 1650 8140 6491 84236 11163
5495 6628 822 5214 2220 2595 440270
11169 1359 7066 5460 23531 51099 55888
5064 8061 10124 5342 8717 6574 4139
7743 3248 1811 5343 1740 23522 8911
10263 3543 846 3398 6307 5279 55691
7204 1832 8744 1824 6453 9896 100130086
10845 4582 729230 2692 1874 9806 51402
23683 5618 6772 9590 4916 1794 6683

Continued on next page
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Table A.1 – Continued from previous page
Genes (Entrez gene ID)

9860 1363 2475 2122 3131 1902 51454
22943 3575 4110 5970 1432 2125 6400
23052 7554 5780 51035 814 843 7750
22872 5578 3802 3083 6804 9138 11012
11130 2697 7080 6742 5450 5976 10157
11328 5566 546 4486 2981 11184 1616
25796 2596 6157 3382 3091 535 26083
10527 7494 6387 695 1847 113178 51566
19 655 5993 4208 4225 114907 26249
8876 378 372 3823 11099 57655 11232
11062 6651 6511 7033 1848 89970 8697
27107 522 5294 1591 152485 92856 51155
9453 2780 223 55697 348654 30001 23305
24139 2057 6164 92070 80315 79731 267
10648 2921 7203 2589 64285 83737 7224
86 5870 23438 1628 339318 26018 57476
1528 4437 837 2529 388969 84502 51440
216 1644 56252 547 80206 89782 4854
4860 825 10965 3778 3077 57554 23228
4609 3589 10972 7786 11259 92304 23265
1950 2525 7424 7866 605 9971 11238
1442 5764 5663 3609 132332 84955 117178
1443 4763 5498 7074 9540 64421 22890
796 2357 429 64714 4957 2304 23589
3512 2263 8087 7710 84075 54738 10809
2243 2065 9364 1846 84986 1316 11187
2244 6192 2719 10949 8852 4258 23151
714 7317 6356 5058 2778 990 1837
5196 6699 3899 7965 79605 398 51400
2512 5567 113 4250 10807 8904 56105
29923 25825 10564 27445

Table A.1: Genes in the 18 prognostic signatures (Entrez gene ID)



Appendix B

Drug validation

B.1 Drug concentration

Effective concentrations for Bexarotene, Epicatechin, Erlotinib, Gemcitabine and Mifepri-

stone were evaluated using a serial dilution curve of 5 points. Cells were treated with the

half maximal inhibitory concentrations (IC50), refer to Appendix Table B.1.

Drug Concentration used

Bexarotene 4uM

Epicatechin 100uM

Erlotinib 2uM

Gemcitabine 30uM

Mifepristone 10uM

Bexarotene + Erlotinib 4uM + 2uM

Bexarotene + Erlotinib + Epicatechin 4uM + 2uM + 100uM

Bexarotene + Erlotinib + Mifepristone 4uM + 2uM + 10uM

Mifepristone + Gemcitabine 10uM + 30uM

Table B.1: Drug concentrations that were used.
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B.2 Drug validation results for the impact on the

deregulated subgraph

We present the results for the impact on the deregulated subgraph for Chapter 3. For

all v ∈ Sg, for all treatment, for all cell lines, fold change information is presented in

Appendix Tables B.2 - B.4.
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Appendix C

Pathway and GO information

Tables containing information regarding the overlapping of genes in differential graphlet

communities with pathways and GO biological processes (used in Chapter 4).

GO ID GO Term Gene in biological process
(Entrez gene ID)

GO:0006810 transport 3766
GO:0006811 ion transport 3766
GO:0006813 potassium ion transport 3766
GO:0006355 regulation of transcription, DNA-

dependent
5450,3662

GO:0006351 transcription, DNA-dependent 5450,3662
GO:0007165 signal transduction 729230,1236,23228,3575
GO:0019221 cytokine-mediated signaling pathway 3662,729230,3575
GO:0002606 positive regulation of dendritic cell

antigen processing and presentation
1236

GO:0002885 positive regulation of hypersensitivity 1236
GO:0002922 positive regulation of humoral immune

response
1236

GO:0006935 chemotaxis 729230,1236
GO:0006955 immune response 729230,1236,931,3575
GO:0007186 G-protein coupled receptor signaling

pathway
729230,1236

GO:0032496 response to lipopolysaccharide 1236
GO:0032649 regulation of interferon-gamma produc-

tion
1236

GO:0032735 positive regulation of interleukin-12
production

1236

GO:0045060 negative thymic T cell selection 1236
Continued on next page
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Table C.1 – Continued from previous page
GO ID GO Term Gene in biological process

(Entrez gene ID)
GO:0050706 regulation of interleukin-1 beta secre-

tion
1236

GO:0050862 positive regulation of T cell receptor
signaling pathway

3932,1236

GO:0070098 chemokine-mediated signaling pathway 729230,1236
GO:0072610 interleukin-12 secretion 1236
GO:0090023 positive regulation of neutrophil

chemotaxis
1236

GO:0097029 mature dendritic cell differentiation 1236
GO:2000510 positive regulation of dendritic cell

chemotaxis
1236

GO:2000522 positive regulation of immunological
synapse formation

1236

GO:2000525 positive regulation of T cell costimula-
tion

1236

GO:2000526 positive regulation of glycoprotein
biosynthetic process involved in im-
munological synapse formation

1236

GO:0006954 inflammatory response 729230,3766
GO:0006468 protein phosphorylation 695,11184,3932
GO:0050729 positive regulation of inflammatory re-

sponse
729230

GO:0016310 phosphorylation 695,11184,3932
GO:0045944 positive regulation of transcription

from RNA polymerase II promoter
3662

GO:0006915 apoptotic process 843
GO:0045893 positive regulation of transcription,

DNA-dependent
3662

GO:0042981 regulation of apoptotic process 843
GO:0045087 innate immune response 729230,843
GO:0006508 proteolysis 843
GO:0035556 intracellular signal transduction 695,23228
GO:0006629 lipid metabolic process 23228
GO:0007601 visual perception 3766
GO:0007628 adult walking behavior 3766
GO:0007596 blood coagulation 3932
GO:0001974 blood vessel remodeling 729230
GO:0006874 cellular calcium ion homeostasis 729230
GO:0007268 synaptic transmission 3766
GO:0000165 MAPK cascade 11184
GO:0051384 response to glucocorticoid stimulus 3766

Continued on next page
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Table C.1 – Continued from previous page
GO ID GO Term Gene in biological process

(Entrez gene ID)
GO:0016032 viral reproduction 3932
GO:0042493 response to drug 3932
GO:0007243 intracellular protein kinase cascade 11184
GO:0006950 response to stress 11184
GO:0007166 cell surface receptor signaling pathway 3575
GO:0006366 transcription from RNA polymerase II

promoter
5450

GO:0051289 protein homotetramerization 3766
GO:0008624 induction of apoptosis by extracellular

signals
843

GO:0031295 T cell costimulation 3932
GO:0042535 positive regulation of tumor necrosis

factor biosynthetic process
729230

GO:0022010 central nervous system myelination 3766
GO:0007267 cell-cell signaling 4068
GO:0043123 positive regulation of I-kappaB

kinase/NF-kappaB cascade
843

GO:0034765 regulation of ion transmembrane trans-
port

3766

GO:0071805 potassium ion transmembrane trans-
port

3766

GO:0006952 defense response 5790
GO:0018105 peptidyl-serine phosphorylation 11184
GO:0007204 elevation of cytosolic calcium ion con-

centration
729230

GO:0006959 humoral immune response 4068,5450
GO:0007259 JAK-STAT cascade 729230
GO:0030168 platelet activation 3932
GO:0042110 T cell activation 3662
GO:0050870 positive regulation of T cell activation 729230,3932
GO:0016525 negative regulation of angiogenesis 729230
GO:0010820 positive regulation of T cell chemotaxis 729230
GO:0032729 positive regulation of interferon-gamma

production
729230

GO:0043388 positive regulation of DNA binding 3662
GO:0051930 regulation of sensory perception of pain 3766
GO:0030217 T cell differentiation 3932
GO:0042391 regulation of membrane potential 3766
GO:0006917 induction of apoptosis 3932,843
GO:0048169 regulation of long-term neuronal synap-

tic plasticity
3766

Continued on next page
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Table C.1 – Continued from previous page
GO ID GO Term Gene in biological process

(Entrez gene ID)
GO:0006919 activation of cysteine-type endopepti-

dase activity involved in apoptotic pro-
cess

3932

GO:0007194 negative regulation of adenylate cyclase
activity

729230

GO:0009611 response to wounding 729230
GO:0030097 hemopoiesis 3932
GO:0019048 virus-host interaction 729230,3932
GO:0050852 T cell receptor signaling pathway 3932
GO:0050900 leukocyte migration 3932
GO:0002407 dendritic cell chemotaxis 729230
GO:0051209 release of sequestered calcium ion into

cytosol
3932

GO:0007257 activation of JUN kinase activity 11184
GO:0045954 positive regulation of natural killer cell

mediated cytotoxicity
4068

GO:0043011 myeloid dendritic cell differentiation 3662
GO:0032743 positive regulation of interleukin-2 pro-

duction
729230

GO:0043966 histone H3 acetylation 3662
GO:0002827 positive regulation of T-helper 1 type

immune response
729230

GO:0046641 positive regulation of alpha-beta T cell
proliferation

729230

GO:0050690 regulation of defense response to virus
by virus

3932

GO:0006968 cellular defense response 4068,729230
GO:0090026 positive regulation of monocyte chemo-

taxis
729230

GO:0060333 interferon-gamma-mediated signaling
pathway

3662

GO:0010107 potassium ion import 3766
GO:0042113 B cell activation 931
GO:0045404 positive regulation of interleukin-4

biosynthetic process
3662

GO:0000185 activation of MAPKKK activity 11184
GO:0055075 potassium ion homeostasis 3766
GO:0014003 oligodendrocyte development 3766
GO:0043967 histone H4 acetylation 3662
GO:0060337 type I interferon-mediated signaling

pathway
3662

Continued on next page
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Table C.1 – Continued from previous page
GO ID GO Term Gene in biological process

(Entrez gene ID)
GO:0051385 response to mineralocorticoid stimulus 3766
GO:0045086 positive regulation of interleukin-2

biosynthetic process
3662

GO:0006882 cellular zinc ion homeostasis 3932
GO:0051249 regulation of lymphocyte activation 3932
GO:2000473 positive regulation of hematopoietic

stem cell migration
729230

GO:0051935 glutamate uptake involved in synaptic
transmission

3766

GO:0010574 regulation of vascular endothelial
growth factor production

729230

GO:0019725 cellular homeostasis 729230
GO:0090265 positive regulation of immune com-

plex clearance by monocytes and
macrophages

729230

GO:0000018 regulation of DNA recombination 3575
GO:0038111 interleukin-7-mediated signaling path-

way
3575

GO:0060075 regulation of resting membrane poten-
tial

3766

GO:0060081 membrane hyperpolarization 3766
GO:0002829 negative regulation of type 2 immune

response
729230

GO:0035705 T-helper 17 cell chemotaxis 729230
GO:0043310 negative regulation of eosinophil de-

granulation
729230

GO:2000439 positive regulation of monocyte ex-
travasation

729230

GO:2000451 positive regulation of CD8-positive,
alpha-beta T cell extravasation

729230

GO:2000464 positive regulation of astrocyte chemo-
taxis

729230

GO:0051938 L-glutamate import 3766
GO:0009637 response to blue light 3766
GO:0021554 optic nerve development 3766
GO:0034122 negative regulation of toll-like receptor

signaling pathway
3662

GO:0045082 positive regulation of interleukin-10
biosynthetic process

3662

GO:0045368 positive regulation of interleukin-13
biosynthetic process

3662

Continued on next page
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Table C.1 – Continued from previous page
GO ID GO Term Gene in biological process

(Entrez gene ID)
GO:0045622 regulation of T-helper cell differentia-

tion
3662

Table C.1: Intersection of genes with GO biological processes for differential graphlet community
1

GO ID GO Term Gene in biological process
(Entrez gene ID)

GO:0006355 regulation of transcription, DNA-
dependent

3662,5450

GO:0006351 transcription, DNA-dependent 3662,5450
GO:0007165 signal transduction 729230,7305,1236,3575
GO:0007275 multicellular organismal development 397
GO:0007411 axon guidance 7305
GO:0019221 cytokine-mediated signaling pathway 729230,3662,3575
GO:0002606 positive regulation of dendritic cell

antigen processing and presentation
1236

GO:0002885 positive regulation of hypersensitivity 1236
GO:0002922 positive regulation of humoral immune

response
1236

GO:0006935 chemotaxis 729230,1236
GO:0006955 immune response 729230,1520,1236,397,3575,931
GO:0007186 G-protein coupled receptor signaling

pathway
729230,1236

GO:0032496 response to lipopolysaccharide 1236
GO:0032649 regulation of interferon-gamma produc-

tion
1236

GO:0032735 positive regulation of interleukin-12
production

1236

GO:0045060 negative thymic T cell selection 1236
GO:0050706 regulation of interleukin-1 beta secre-

tion
1236

GO:0050862 positive regulation of T cell receptor
signaling pathway

3932,1236

GO:0070098 chemokine-mediated signaling pathway 729230,1236
GO:0072610 interleukin-12 secretion 1236
GO:0090023 positive regulation of neutrophil

chemotaxis
1236

GO:0097029 mature dendritic cell differentiation 1236
GO:2000510 positive regulation of dendritic cell

chemotaxis
1236

Continued on next page
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Table C.2 – Continued from previous page
GO ID GO Term Gene in biological process

(Entrez gene ID)
GO:2000522 positive regulation of immunological

synapse formation
1236

GO:2000525 positive regulation of T cell costimula-
tion

1236

GO:2000526 positive regulation of glycoprotein
biosynthetic process involved in im-
munological synapse formation

1236

GO:0006954 inflammatory response 729230
GO:0006468 protein phosphorylation 695,3932
GO:0050729 positive regulation of inflammatory re-

sponse
729230

GO:0016310 phosphorylation 695,3932
GO:0045944 positive regulation of transcription

from RNA polymerase II promoter
3662

GO:0045893 positive regulation of transcription,
DNA-dependent

3662

GO:0007264 small GTPase mediated signal trans-
duction

397

GO:0051056 regulation of small GTPase mediated
signal transduction

397

GO:0045087 innate immune response 729230,1520
GO:0006508 proteolysis 1520
GO:0035556 intracellular signal transduction 7305,695
GO:0007596 blood coagulation 3932
GO:0001974 blood vessel remodeling 729230
GO:0006874 cellular calcium ion homeostasis 729230
GO:0030036 actin cytoskeleton organization 397
GO:0016032 viral reproduction 3932
GO:0043547 positive regulation of GTPase activity 397
GO:0042493 response to drug 3932
GO:0007166 cell surface receptor signaling pathway 3575
GO:0006366 transcription from RNA polymerase II

promoter
5450

GO:0007162 negative regulation of cell adhesion 397
GO:0031295 T cell costimulation 3932
GO:0042535 positive regulation of tumor necrosis

factor biosynthetic process
729230

GO:0050776 regulation of immune response 7305
GO:0007229 integrin-mediated signaling pathway 7305
GO:0006952 defense response 5790

Continued on next page
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Table C.2 – Continued from previous page
GO ID GO Term Gene in biological process

(Entrez gene ID)
GO:0007204 elevation of cytosolic calcium ion con-

centration
729230

GO:0006959 humoral immune response 5450
GO:0007259 JAK-STAT cascade 729230
GO:0030168 platelet activation 3932
GO:0042110 T cell activation 3662
GO:0050870 positive regulation of T cell activation 729230,3932
GO:0016525 negative regulation of angiogenesis 729230
GO:0010820 positive regulation of T cell chemotaxis 729230
GO:0032729 positive regulation of interferon-gamma

production
729230

GO:0043388 positive regulation of DNA binding 3662
GO:0030217 T cell differentiation 3932
GO:0019882 antigen processing and presentation 1520
GO:0002474 antigen processing and presentation of

peptide antigen via MHC class I
1520

GO:0006917 induction of apoptosis 3932
GO:0006928 cellular component movement 397
GO:0007266 Rho protein signal transduction 397
GO:0006919 activation of cysteine-type endopepti-

dase activity involved in apoptotic pro-
cess

3932

GO:0007194 negative regulation of adenylate cyclase
activity

729230

GO:0042590 antigen processing and presentation of
exogenous peptide antigen via MHC
class I

1520

GO:0009611 response to wounding 729230
GO:0030097 hemopoiesis 3932
GO:0019048 virus-host interaction 729230,3932
GO:0050852 T cell receptor signaling pathway 3932
GO:0050900 leukocyte migration 3932
GO:0002407 dendritic cell chemotaxis 729230
GO:0051209 release of sequestered calcium ion into

cytosol
3932

GO:0043011 myeloid dendritic cell differentiation 3662
GO:0032743 positive regulation of interleukin-2 pro-

duction
729230

GO:0043966 histone H3 acetylation 3662
GO:0002250 adaptive immune response 1520

Continued on next page
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Table C.2 – Continued from previous page
GO ID GO Term Gene in biological process

(Entrez gene ID)
GO:0002827 positive regulation of T-helper 1 type

immune response
729230

GO:0046641 positive regulation of alpha-beta T cell
proliferation

729230

GO:0050690 regulation of defense response to virus
by virus

3932

GO:0006968 cellular defense response 729230,7305
GO:0090026 positive regulation of monocyte chemo-

taxis
729230

GO:0002281 macrophage activation involved in im-
mune response

7305

GO:0002283 neutrophil activation involved in im-
mune response

7305

GO:0060333 interferon-gamma-mediated signaling
pathway

3662

GO:0042113 B cell activation 931
GO:0045404 positive regulation of interleukin-4

biosynthetic process
3662

GO:0043967 histone H4 acetylation 3662
GO:0060337 type I interferon-mediated signaling

pathway
3662

GO:0045086 positive regulation of interleukin-2
biosynthetic process

3662

GO:0006882 cellular zinc ion homeostasis 3932
GO:0051249 regulation of lymphocyte activation 3932
GO:0097067 cellular response to thyroid hormone

stimulus
1520

GO:2000473 positive regulation of hematopoietic
stem cell migration

729230

GO:0010574 regulation of vascular endothelial
growth factor production

729230

GO:0019725 cellular homeostasis 729230
GO:0090265 positive regulation of immune com-

plex clearance by monocytes and
macrophages

729230

GO:0000018 regulation of DNA recombination 3575
GO:0038111 interleukin-7-mediated signaling path-

way
3575

GO:0002480 antigen processing and presentation of
exogenous peptide antigen via MHC
class I, TAP-independent

1520

Continued on next page
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Table C.2 – Continued from previous page
GO ID GO Term Gene in biological process

(Entrez gene ID)
GO:0002829 negative regulation of type 2 immune

response
729230

GO:0035705 T-helper 17 cell chemotaxis 729230
GO:0043310 negative regulation of eosinophil de-

granulation
729230

GO:2000439 positive regulation of monocyte ex-
travasation

729230

GO:2000451 positive regulation of CD8-positive,
alpha-beta T cell extravasation

729230

GO:2000464 positive regulation of astrocyte chemo-
taxis

729230

GO:0034122 negative regulation of toll-like receptor
signaling pathway

3662

GO:0045082 positive regulation of interleukin-10
biosynthetic process

3662

GO:0045368 positive regulation of interleukin-13
biosynthetic process

3662

GO:0045622 regulation of T-helper cell differentia-
tion

3662

Table C.2: Intersection of genes with GO biological processes for differential graphlet community
2

GO ID GO Term Gene in biological process
(Entrez gene ID)

GO:0006355 regulation of transcription, DNA-
dependent

4208

GO:0006351 transcription, DNA-dependent 4208
GO:0007049 cell cycle 990
GO:0008283 cell proliferation 6491
GO:0007165 signal transduction 7305,8404,6387
GO:0007275 multicellular organismal development 6491,397,4256
GO:0007411 axon guidance 7305
GO:0006935 chemotaxis 6387
GO:0006955 immune response 397,6387
GO:0007186 G-protein coupled receptor signaling

pathway
6387

GO:0070098 chemokine-mediated signaling pathway 6387
GO:0001764 neuron migration 6387
GO:0008285 negative regulation of cell proliferation 990
GO:0008152 metabolic process 4313

Continued on next page
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Table C.3 – Continued from previous page
GO ID GO Term Gene in biological process

(Entrez gene ID)
GO:0055114 oxidation-reduction process 6241
GO:0030154 cell differentiation 4256
GO:0030900 forebrain development 6491
GO:0045666 positive regulation of neuron differenti-

ation
6387

GO:0007264 small GTPase mediated signal trans-
duction

397

GO:0043066 negative regulation of apoptotic pro-
cess

6491,6387

GO:0051056 regulation of small GTPase mediated
signal transduction

397

GO:0030198 extracellular matrix organization 4313
GO:0001701 in utero embryonic development 6491
GO:0030324 lung development 4256
GO:0051301 cell division 990
GO:0007155 cell adhesion 6387
GO:0044281 small molecule metabolic process 6241
GO:0006508 proteolysis 4313
GO:0035556 intracellular signal transduction 7305
GO:0022617 extracellular matrix disassembly 4313
GO:0007420 brain development 6387
GO:0035264 multicellular organism growth 6491
GO:0008284 positive regulation of cell proliferation 6387
GO:0006874 cellular calcium ion homeostasis 6387
GO:0030036 actin cytoskeleton organization 397
GO:0009615 response to virus 6387
GO:0001938 positive regulation of endothelial cell

proliferation
6387

GO:0008217 regulation of blood pressure 59
GO:0051216 cartilage development 4256
GO:0006260 DNA replication 6241,990
GO:0008156 negative regulation of DNA replication 990
GO:0030334 regulation of cell migration 6387
GO:0007067 mitosis 990
GO:0030335 positive regulation of cell migration 6387
GO:0006936 muscle contraction 25802
GO:0043547 positive regulation of GTPase activity 397
GO:0001843 neural tube closure 6491
GO:0007368 determination of left/right symmetry 6491
GO:0001666 response to hypoxia 6387
GO:0001502 cartilage condensation 4256

Continued on next page
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Table C.3 – Continued from previous page
GO ID GO Term Gene in biological process

(Entrez gene ID)
GO:0030500 regulation of bone mineralization 4256
GO:0007224 smoothened signaling pathway 6491
GO:0000082 G1/S transition of mitotic cell cycle 6241,990
GO:0043434 response to peptide hormone stimulus 6387
GO:0031100 organ regeneration 6387
GO:0000278 mitotic cell cycle 6241,990
GO:0007162 negative regulation of cell adhesion 397
GO:0050776 regulation of immune response 7305
GO:0007229 integrin-mediated signaling pathway 7305
GO:0030903 notochord development 6491
GO:0007281 germ cell development 6387
GO:0009725 response to hormone stimulus 4256
GO:0014829 vascular smooth muscle contraction 59
GO:0001569 patterning of blood vessels 6387
GO:0021915 neural tube development 6491
GO:0042221 response to chemical stimulus 4256
GO:0009186 deoxyribonucleoside diphosphate

metabolic process
6241

GO:0008045 motor axon guidance 6387
GO:0000079 regulation of cyclin-dependent protein

kinase activity
990

GO:0009314 response to radiation 6387
GO:0009612 response to mechanical stimulus 4256,6387
GO:0007584 response to nutrient 4256
GO:0051592 response to calcium ion 4256
GO:0001525 angiogenesis 4313
GO:0006928 cellular component movement 397
GO:0007266 Rho protein signal transduction 397
GO:0000075 cell cycle checkpoint 990
GO:0000084 S phase of mitotic cell cycle 990
GO:0000216 M/G1 transition of mitotic cell cycle 990
GO:0001503 ossification 4256
GO:0051259 protein oligomerization 6241
GO:0008344 adult locomotory behavior 6387
GO:0001947 heart looping 6491
GO:2000107 negative regulation of leukocyte apop-

totic process
6387

GO:0015949 nucleobase-containing small molecule
interconversion

6241

GO:0055086 nucleobase-containing small molecule
metabolic process

6241

Continued on next page
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Table C.3 – Continued from previous page
GO ID GO Term Gene in biological process

(Entrez gene ID)
GO:0000578 embryonic axis specification 6491
GO:0008354 germ cell migration 6387
GO:0008064 regulation of actin polymerization or

depolymerization
6387

GO:0009408 response to heat 6387
GO:0048754 branching morphogenesis of a tube 4256
GO:0050930 induction of positive chemotaxis 6387
GO:0042098 T cell proliferation 6387
GO:0006968 cellular defense response 7305
GO:0090026 positive regulation of monocyte chemo-

taxis
6387

GO:0002281 macrophage activation involved in im-
mune response

7305

GO:0002283 neutrophil activation involved in im-
mune response

7305

GO:0048842 positive regulation of axon extension
involved in axon guidance

6387

GO:0000076 DNA replication checkpoint 990
GO:0000083 regulation of transcription involved in

G1/S phase of mitotic cell cycle
6241,990

GO:0022029 telencephalon cell migration 6387
GO:0030574 collagen catabolic process 4313
GO:0008015 blood circulation 6387
GO:0051290 protein heterotetramerization 6241
GO:0051929 positive regulation of calcium ion trans-

port via voltage-gated calcium channel
activity

6387

GO:0033603 positive regulation of dopamine secre-
tion

6387

GO:0009263 deoxyribonucleotide biosynthetic pro-
cess

6241

GO:0007089 traversing start control point of mitotic
cell cycle

990

GO:0009262 deoxyribonucleotide metabolic process 6241
Continued on next page
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Table C.3 – Continued from previous page
GO ID GO Term Gene in biological process

(Entrez gene ID)
GO:0001667 ameboidal cell migration 6387
GO:0090007 regulation of mitotic anaphase 990
GO:0071777 positive regulation of cell cycle cytoki-

nesis
990

GO:0033504 floor plate development 6491
GO:0051984 positive regulation of chromosome seg-

regation
990

Table C.3: Intersection of genes with GO biological processes for differential graphlet community
3

KEGG ID KEGG pathway Gene in pathway
(Entrez gene ID)

04010 MAPK signaling pathway 11184
04060 Cytokine-cytokine receptor interaction 729230,1236,3575
04062 Chemokine signaling pathway 729230,1236
04210 Apoptosis 843
04380 Osteoclast differentiation 695,3932
04622 RIG-I-like receptor signaling pathway 843
04630 Jak-STAT signaling pathway 3575
04640 Hematopoietic cell lineage 931,3575
04650 Natural killer cell mediated cytotoxicity 4068,3932
04660 T cell receptor signaling pathway 3932
04662 B cell receptor signaling pathway 695
04664 Fc epsilon RI signaling pathway 695
04971 Gastric acid secretion 3766
05340 Primary immunodeficiency 695,3932,3575

Table C.4: Intersection of genes with Kegg pathways for differential graphlet community 1
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KEGG ID KEGG pathway Gene in pathway
(Entrez gene ID)

04060 Cytokine-cytokine receptor interaction 729230,1236,3575
04062 Chemokine signaling pathway 729230,1236
04142 Lysosome 1520
04145 Phagosome 1520
04380 Osteoclast differentiation 7305,695,3932
04612 Antigen processing and presentation 1520
04630 Jak-STAT signaling pathway 3575
04640 Hematopoietic cell lineage 3575,931
04650 Natural killer cell mediated cytotoxicity 7305,3932
04660 T cell receptor signaling pathway 3932
04662 B cell receptor signaling pathway 695
04664 Fc epsilon RI signaling pathway 695
04722 Neurotrophin signaling pathway 397
04962 Vasopressin-regulated water reabsorption 397
05340 Primary immunodeficiency 695,3932,3575

Table C.5: Intersection of genes with Kegg pathways for differential graphlet community 2
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KEGG ID KEGG pathway Gene in pathway
(Entrez gene ID)

00230 Purine metabolism 6241
00240 Pyrimidine metabolism 6241
00480 Glutathione metabolism 6241
01100 Metabolic pathways 6241
04010 MAPK signaling pathway 4208
04060 Cytokine-cytokine receptor interaction 6387
04062 Chemokine signaling pathway 6387
04110 Cell cycle 990
04115 p53 signaling pathway 6241
04270 Vascular smooth muscle contraction 59
04360 Axon guidance 6387
04380 Osteoclast differentiation 7305
04512 ECM-receptor interaction 3161
04650 Natural killer cell mediated cytotoxicity 7305
04670 Leukocyte transendothelial migration 4313,6387
04672 Intestinal immune network for IgA production 6387
04722 Neurotrophin signaling pathway 397
04912 GnRH signaling pathway 4313
04962 Vasopressin-regulated water reabsorption 397
05200 Pathways in cancer 4313
05219 Bladder cancer 4313

Table C.6: Intersection of genes with Kegg pathways for differential graphlet community 3

Pathway Source Gene in pathway (Entrez
gene ID)

The role of Nef in HIV-1 replication and
disease pathogenesis

REACTOME 3932

Nef Mediated CD4 Down-regulation REACTOME 3932
Nef-mediates down modulation of cell
surface receptors by recruiting them to
clathrin adapters

REACTOME 3932

Nef and signal transduction REACTOME 3932
Platelet activation, signaling and ag-
gregation

REACTOME 3932

Hemostasis REACTOME 3932
GPVI-mediated activation cascade REACTOME 3932
Host Interactions of HIV factors REACTOME 3932
HIV Infection REACTOME 3932
Signal Transduction REACTOME 1236
Chemokine receptors bind chemokines REACTOME 1236

Continued on next page
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Table C.7 – Continued from previous page
Pathway Source Gene in pathway (Entrez

gene ID)
Signaling by GPCR REACTOME 1236
GPCR ligand binding REACTOME 1236
Class A/1 (Rhodopsin-like receptors) REACTOME 1236
Peptide ligand-binding receptors REACTOME 1236
Adaptive Immune System REACTOME 3932
TCR signaling REACTOME 3932
Phosphorylation of CD3 and TCR zeta
chains

REACTOME 3932

Translocation of ZAP-70 to Immuno-
logical synapse

REACTOME 3932

Immune System REACTOME 3662,3932,843
PD-1 signaling REACTOME 3932
CD28 co-stimulation REACTOME 3932
CD28 dependent PI3K/Akt signaling REACTOME 3932
CD28 dependent Vav1 pathway REACTOME 3932
Generation of second messenger
molecules

REACTOME 3932

Downstream TCR signaling REACTOME 3932
Costimulation by the CD28 family REACTOME 3932
TRAIL signaling REACTOME 843
FasL/ CD95L signaling REACTOME 843
Death Receptor Signalling REACTOME 843
Extrinsic Pathway for Apoptosis REACTOME 843
Apoptosis REACTOME 843
Innate Immune System REACTOME 843
RIG-I/MDA5 mediated induction of
IFN-alpha/beta pathways

REACTOME 843

NF-kB activation through FADD/RIP-
1 pathway mediated by caspase-8 and
-10

REACTOME 843

Cytokine Signaling in Immune system REACTOME 3662
Interferon alpha/beta signaling REACTOME 3662
Interferon Signaling REACTOME 3662
Interferon gamma signaling REACTOME 3662
Regulation of cytoplasmic and nuclear
SMAD2/3 signaling

NCI NATURE 3662,3932

IL2 signaling events mediated by
STAT5

NCI NATURE 3932

EphrinA-EPHA pathway NCI NATURE 3932
Canonical NF-kappaB pathway NCI NATURE 3932
EPHA forward signaling NCI NATURE 3932

Continued on next page
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Table C.7 – Continued from previous page
Pathway Source Gene in pathway (Entrez

gene ID)
Syndecan-1-mediated signaling events NCI NATURE 695,4068,11184,3662,3932,843
Regulation of CDC42 activity NCI NATURE 3662,3932
Glypican pathway NCI NATURE 695,4068,11184,3662,3932,843
GMCSF-mediated signaling events NCI NATURE 695,4068,11184,3662,3932,843
Insulin Pathway NCI NATURE 695,4068,11184,3662,3932,843
Nectin adhesion pathway NCI NATURE 695,4068,11184,3662,3932,843
CD40/CD40L signaling NCI NATURE 3932
TRAIL signaling pathway NCI NATURE 695,4068,11184,3662,3932,843
LPA receptor mediated events NCI NATURE 3932
IGF1 pathway NCI NATURE 695,4068,11184,3662,3932,843
PLK1 signaling events NCI NATURE 3932
CDC42 signaling events NCI NATURE 3662,3932
Signaling events mediated by Hepato-
cyte Growth Factor Receptor (c-Met)

NCI NATURE 695,4068,11184,3662,3932,843

Glypican 1 network NCI NATURE 695,4068,11184,3662,3932,843
Fc-epsilon receptor I signaling in mast
cells

NCI NATURE 695

PDGF receptor signaling network NCI NATURE 695,4068,11184,3662,3932,843
EphrinB-EPHB pathway NCI NATURE 3932
Integrin family cell surface interactions NCI NATURE 695,4068,11184,3662,3932,843
IL1-mediated signaling events NCI NATURE 3662,3932
Caspase cascade in apoptosis NCI NATURE 843
Calcineurin-regulated NFAT-
dependent transcription in lym-
phocytes

NCI NATURE 3662

Internalization of ErbB1 NCI NATURE 695,4068,11184,3662,3932,843
TGF-beta receptor signaling NCI NATURE 3662,3932
BCR signaling pathway NCI NATURE 695,11184
Signaling events mediated by TCPTP NCI NATURE 3662
Signaling events mediated by VEGFR1
and VEGFR2

NCI NATURE 695,4068,11184,3662,3932,843

Beta1 integrin cell surface interactions NCI NATURE 695,4068,11184,3662,3932,843
Thromboxane A2 receptor signaling NCI NATURE 3932
Urokinase-type plasminogen activator
(uPA) and uPAR-mediated signaling

NCI NATURE 695,4068,11184,3662,3932,843

TCR signaling in näıve CD8+ T cells NCI NATURE 3932
Signaling by Aurora kinases NCI NATURE 3932
Polo-like kinase signaling events in the
cell cycle

NCI NATURE 3932

IFN-gamma pathway NCI NATURE 695,4068,11184,3662,3932,843
Continued on next page



129

Table C.7 – Continued from previous page
Pathway Source Gene in pathway (Entrez

gene ID)
PAR1-mediated thrombin signaling
events

NCI NATURE 695,4068,11184,3662,3932,843

Regulation of p38-alpha and p38-beta NCI NATURE 3662,3932
PDGFR-beta signaling pathway NCI NATURE 695,4068,11184,3662,3932,843
Integrin-linked kinase signaling NCI NATURE 3662,3932
Ephrin B reverse signaling NCI NATURE 3932
p38 MAPK signaling pathway NCI NATURE 3662,3932
EGF receptor (ErbB1) signaling path-
way

NCI NATURE 695,4068,11184,3662,3932,843

p75(NTR)-mediated signaling NCI NATURE 3932
Thrombin/protease-activated receptor
(PAR) pathway

NCI NATURE 695,4068,11184,3662,3932,843

Class I PI3K signaling events NCI NATURE 695,4068,11184,3662,3932,843
Arf6 signaling events NCI NATURE 695,4068,11184,3662,3932,843
EPO signaling pathway NCI NATURE 695
Plasma membrane estrogen receptor
signaling

NCI NATURE 695,4068,11184,3662,3932,843

IL2-mediated signaling events NCI NATURE 3932
FAS (CD95) signaling pathway NCI NATURE 695,3932,843
IL3-mediated signaling events NCI NATURE 695,4068,11184,3662,3932,843
AP-1 transcription factor network NCI NATURE 3662,3932
Signaling events regulated by Ret tyro-
sine kinase

NCI NATURE 3932

amb2 Integrin signaling NCI NATURE 3932
mTOR signaling pathway NCI NATURE 695,4068,11184,3662,3932,843
ErbB receptor signaling network NCI NATURE 695,4068,11184,3662,3932,843
Signaling events mediated by focal ad-
hesion kinase

NCI NATURE 695,4068,11184,3662,3932,843

VEGF and VEGFR signaling network NCI NATURE 695,4068,11184,3662,3932,843
Alpha9 beta1 integrin signaling events NCI NATURE 695,4068,11184,3662,3932,843
Signaling events mediated by Stem cell
factor receptor (c-Kit)

NCI NATURE 11184

ALK1 pathway NCI NATURE 3662,3932
Arf6 downstream pathway NCI NATURE 695,4068,11184,3662,3932,843
JNK signaling in the CD4+ TCR path-
way

NCI NATURE 11184

Role of Calcineurin-dependent NFAT
signaling in lymphocytes

NCI NATURE 3662

IL4-mediated signaling events NCI NATURE 3662
Signaling events mediated by PTP1B NCI NATURE 3932

Continued on next page
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Table C.7 – Continued from previous page
Pathway Source Gene in pathway (Entrez

gene ID)
Validated transcriptional targets of
AP1 family members Fra1 and Fra2

NCI NATURE 3662

CXCR4-mediated signaling events NCI NATURE 11184,3932
S1P1 pathway NCI NATURE 695,4068,11184,3662,3932,843
Alpha-synuclein signaling NCI NATURE 3932
ATM pathway NCI NATURE 4068,843
TNF receptor signaling pathway NCI NATURE 3662,3932,843
p53 pathway NCI NATURE 4068,843
ErbB1 downstream signaling NCI NATURE 695,4068,11184,3662,3932,843
EGFR-dependent Endothelin signaling
events

NCI NATURE 695,4068,11184,3662,3932,843

ATR signaling pathway NCI NATURE 4068,843
Regulation of nuclear SMAD2/3 signal-
ing

NCI NATURE 3662,3932

ALK1 signaling events NCI NATURE 3662,3932
Arf6 trafficking events NCI NATURE 695,4068,11184,3662,3932,843
Endothelins NCI NATURE 695,4068,11184,3662,3932,843
TCR signaling in näıve CD4+ T cells NCI NATURE 11184,3932
IL5-mediated signaling events NCI NATURE 695,4068,11184,3662,3932,843
IL23-mediated signaling events NCI NATURE 3932
Direct p53 effectors NCI NATURE 4068,843
IL12-mediated signaling events NCI NATURE 3932
IL2 signaling events mediated by PI3K NCI NATURE 3932
Sphingosine 1-phosphate (S1P) path-
way

NCI NATURE 695,4068,11184,3662,3932,843

Proteoglycan syndecan-mediated sig-
naling events

NCI NATURE 695,4068,11184,3662,3932,843

Atypical NF-kappaB pathway NCI NATURE 3932
BMP receptor signaling NCI NATURE 3662,3932
Endogenous TLR signaling NCI NATURE 3932
Aurora A signaling NCI NATURE 3932
Class I PI3K signaling events mediated
by Akt

NCI NATURE 695,4068,11184,3662,3932,843

LKB1 signaling events NCI NATURE 695,4068,11184,3662,3932,843
TNF alpha/NF-kB CELL MAP 843

Table C.7: Intersection of genes with pathways in Pathway Commons for differential graphlet
community 1
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Pathway Source Gene in pathway (Entrez
gene ID)

The role of Nef in HIV-1 replication and
disease pathogenesis

REACTOME 3932

Nef Mediated CD4 Down-regulation REACTOME 3932
Nef-mediates down modulation of cell
surface receptors by recruiting them to
clathrin adapters

REACTOME 3932

Nef and signal transduction REACTOME 3932
Developmental Biology REACTOME 7305
Axon guidance REACTOME 7305
Semaphorin interactions REACTOME 7305
Other semaphorin interactions REACTOME 7305
Platelet activation, signaling and ag-
gregation

REACTOME 3932

Hemostasis REACTOME 3932
GPVI-mediated activation cascade REACTOME 3932
Host Interactions of HIV factors REACTOME 3932
HIV Infection REACTOME 3932
Signal Transduction REACTOME 1236,397
Signaling by Rho GTPases REACTOME 397
Rho GTPase cycle REACTOME 397
Chemokine receptors bind chemokines REACTOME 1236
Signaling by GPCR REACTOME 1236
GPCR ligand binding REACTOME 1236
Class A/1 (Rhodopsin-like receptors) REACTOME 1236
Peptide ligand-binding receptors REACTOME 1236
Adaptive Immune System REACTOME 7305,3932,1520
TCR signaling REACTOME 3932
Phosphorylation of CD3 and TCR zeta
chains

REACTOME 3932

Translocation of ZAP-70 to Immuno-
logical synapse

REACTOME 3932

Immune System REACTOME 7305,3932,1520,3662
Cell-Cell communication REACTOME 7305
Signal regulatory protein (SIRP) fam-
ily interactions

REACTOME 7305

PD-1 signaling REACTOME 3932
Class I MHC mediated antigen process-
ing & presentation

REACTOME 1520

CD28 co-stimulation REACTOME 3932
CD28 dependent PI3K/Akt signaling REACTOME 3932
CD28 dependent Vav1 pathway REACTOME 3932

Continued on next page
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Table C.8 – Continued from previous page
Pathway Source Gene in pathway (Entrez

gene ID)
Generation of second messenger
molecules

REACTOME 3932

Downstream TCR signaling REACTOME 3932
Costimulation by the CD28 family REACTOME 3932
Endosomal/Vacuolar pathway REACTOME 1520
Immunoregulatory interactions be-
tween a Lymphoid and a non-
Lymphoid cell

REACTOME 7305

Antigen processing-Cross presentation REACTOME 1520
Cytokine Signaling in Immune system REACTOME 3662
Interferon alpha/beta signaling REACTOME 3662
Interferon Signaling REACTOME 3662
Interferon gamma signaling REACTOME 3662
Regulation of cytoplasmic and nuclear
SMAD2/3 signaling

NCI NATURE 3932,3662

IL2 signaling events mediated by
STAT5

NCI NATURE 3932

EphrinA-EPHA pathway NCI NATURE 3932
Canonical NF-kappaB pathway NCI NATURE 3932
EPHA forward signaling NCI NATURE 3932
Syndecan-1-mediated signaling events NCI NATURE 695,3932,3662
Regulation of CDC42 activity NCI NATURE 3932,3662,397
Glypican pathway NCI NATURE 695,3932,3662
GMCSF-mediated signaling events NCI NATURE 695,3932,3662
Insulin Pathway NCI NATURE 695,3932,3662
Nectin adhesion pathway NCI NATURE 695,3932,3662
CD40/CD40L signaling NCI NATURE 3932
TRAIL signaling pathway NCI NATURE 695,3932,3662,397
LPA receptor mediated events NCI NATURE 3932
IGF1 pathway NCI NATURE 695,3932,3662
PLK1 signaling events NCI NATURE 3932
CDC42 signaling events NCI NATURE 3932,3662,397
Signaling events mediated by Hepato-
cyte Growth Factor Receptor (c-Met)

NCI NATURE 695,3932,3662

Glypican 1 network NCI NATURE 695,3932,3662
Fc-epsilon receptor I signaling in mast
cells

NCI NATURE 695

PDGF receptor signaling network NCI NATURE 695,3932,3662
EphrinB-EPHB pathway NCI NATURE 3932
Integrin family cell surface interactions NCI NATURE 695,3932,3662
IL1-mediated signaling events NCI NATURE 3932,3662

Continued on next page
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Table C.8 – Continued from previous page
Pathway Source Gene in pathway (Entrez

gene ID)
Caspase cascade in apoptosis NCI NATURE 397
Calcineurin-regulated NFAT-
dependent transcription in lym-
phocytes

NCI NATURE 3662

Internalization of ErbB1 NCI NATURE 695,3932,3662
TGF-beta receptor signaling NCI NATURE 3932,3662
BCR signaling pathway NCI NATURE 695
Signaling events mediated by TCPTP NCI NATURE 3662
Signaling events mediated by VEGFR1
and VEGFR2

NCI NATURE 695,3932,3662

Beta1 integrin cell surface interactions NCI NATURE 695,3932,3662
Thromboxane A2 receptor signaling NCI NATURE 3932
Urokinase-type plasminogen activator
(uPA) and uPAR-mediated signaling

NCI NATURE 695,3932,3662

TCR signaling in näıve CD8+ T cells NCI NATURE 3932
Signaling by Aurora kinases NCI NATURE 3932
Polo-like kinase signaling events in the
cell cycle

NCI NATURE 3932

IFN-gamma pathway NCI NATURE 695,3932,3662
Regulation of RAC1 activity NCI NATURE 397
PAR1-mediated thrombin signaling
events

NCI NATURE 695,3932,3662

Regulation of p38-alpha and p38-beta NCI NATURE 3932,3662
PDGFR-beta signaling pathway NCI NATURE 695,3932,3662
Integrin-linked kinase signaling NCI NATURE 3932,3662
Ephrin B reverse signaling NCI NATURE 3932
p38 MAPK signaling pathway NCI NATURE 3932,3662
EGF receptor (ErbB1) signaling path-
way

NCI NATURE 695,3932,3662

p75(NTR)-mediated signaling NCI NATURE 3932
Thrombin/protease-activated receptor
(PAR) pathway

NCI NATURE 695,3932,3662

Class I PI3K signaling events NCI NATURE 695,3932,3662
Arf6 signaling events NCI NATURE 695,3932,3662
EPO signaling pathway NCI NATURE 695
Plasma membrane estrogen receptor
signaling

NCI NATURE 695,3932,3662

IL2-mediated signaling events NCI NATURE 3932
FAS (CD95) signaling pathway NCI NATURE 695,3932,397
IL3-mediated signaling events NCI NATURE 695,3932,3662
AP-1 transcription factor network NCI NATURE 3932,3662

Continued on next page
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Table C.8 – Continued from previous page
Pathway Source Gene in pathway (Entrez

gene ID)
Signaling events regulated by Ret tyro-
sine kinase

NCI NATURE 3932

amb2 Integrin signaling NCI NATURE 3932
mTOR signaling pathway NCI NATURE 695,3932,3662
RAC1 signaling pathway NCI NATURE 397
ErbB receptor signaling network NCI NATURE 695,3932,3662
Signaling events mediated by focal ad-
hesion kinase

NCI NATURE 695,3932,3662

VEGF and VEGFR signaling network NCI NATURE 695,3932,3662
Alpha9 beta1 integrin signaling events NCI NATURE 695,3932,3662
ALK1 pathway NCI NATURE 3932,3662
Arf6 downstream pathway NCI NATURE 695,3932,3662
Role of Calcineurin-dependent NFAT
signaling in lymphocytes

NCI NATURE 3662

IL4-mediated signaling events NCI NATURE 3662
Signaling events mediated by PTP1B NCI NATURE 3932
Validated transcriptional targets of
AP1 family members Fra1 and Fra2

NCI NATURE 3662

CXCR4-mediated signaling events NCI NATURE 3932
S1P1 pathway NCI NATURE 695,3932,3662
Alpha-synuclein signaling NCI NATURE 3932
TNF receptor signaling pathway NCI NATURE 3932,3662,397
ErbB1 downstream signaling NCI NATURE 695,3932,3662
EGFR-dependent Endothelin signaling
events

NCI NATURE 695,3932,3662

Regulation of nuclear SMAD2/3 signal-
ing

NCI NATURE 3932,3662

ALK1 signaling events NCI NATURE 3932,3662
Arf6 trafficking events NCI NATURE 695,3932,3662
Endothelins NCI NATURE 695,3932,3662
TCR signaling in näıve CD4+ T cells NCI NATURE 3932
IL5-mediated signaling events NCI NATURE 695,3932,3662
IL23-mediated signaling events NCI NATURE 3932
IL12-mediated signaling events NCI NATURE 3932
IL2 signaling events mediated by PI3K NCI NATURE 3932
Sphingosine 1-phosphate (S1P) path-
way

NCI NATURE 695,3932,3662

Proteoglycan syndecan-mediated sig-
naling events

NCI NATURE 695,3932,3662

Atypical NF-kappaB pathway NCI NATURE 3932
BMP receptor signaling NCI NATURE 3932,3662

Continued on next page
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Table C.8 – Continued from previous page
Pathway Source Gene in pathway (Entrez

gene ID)
Endogenous TLR signaling NCI NATURE 3932
Aurora A signaling NCI NATURE 3932
RhoA signaling pathway NCI NATURE 397
Class I PI3K signaling events mediated
by Akt

NCI NATURE 695,3932,3662

LKB1 signaling events NCI NATURE 695,3932,3662
Regulation of RhoA activity NCI NATURE 397

Table C.8: Intersection of genes with pathways in Pathway Commons for differential graphlet
community 2

Pathway Source Gene in pathway (Entrez
gene ID)

Developmental Biology REACTOME 7305,4208
Axon guidance REACTOME 7305
Semaphorin interactions REACTOME 7305
Other semaphorin interactions REACTOME 7305
CDO in myogenesis REACTOME 4208
Myogenesis REACTOME 4208
Mitotic Prometaphase REACTOME 11130
Mitotic M-M/G1 phases REACTOME 11130,990
M Phase REACTOME 11130
DNA Replication REACTOME 11130,990
Smooth Muscle Contraction REACTOME 25802,59
Muscle contraction REACTOME 25802,59
Nuclear Events (kinase and transcrip-
tion factor activation)

REACTOME 4208

ERK/MAPK targets REACTOME 4208
Signalling by NGF REACTOME 4208
NGF signalling via TRKA from the
plasma membrane

REACTOME 4208

Signal Transduction REACTOME 397,4208,6387
CDC6 association with the ORC:origin
complex

REACTOME 990

Assembly of the pre-replicative com-
plex

REACTOME 990

DNA Replication Pre-Initiation REACTOME 990
M/G1 Transition REACTOME 990
E2F mediated regulation of DNA repli-
cation

REACTOME 6241,990

G1/S-Specific Transcription REACTOME 6241,990
Continued on next page



136

Table C.9 – Continued from previous page
Pathway Source Gene in pathway (Entrez

gene ID)
G1/S Transition REACTOME 6241,990
S Phase REACTOME 990
Cyclin A:Cdk2-associated events at S
phase entry

REACTOME 990

G0 and Early G1 REACTOME 990
Mitotic G1-G1/S phases REACTOME 6241,990
Cell Cycle, Mitotic REACTOME 6241,11130,990
Regulation of Insulin-like Growth Fac-
tor (IGF) Activity by Insulin-like
Growth Factor Binding Proteins (IGF-
BPs)

REACTOME 4313

Diabetes pathways REACTOME 4313
Removal of licensing factors from ori-
gins

REACTOME 990

Regulation of DNA replication REACTOME 990
Association of licensing factors with the
pre-replicative complex

REACTOME 990

CDT1 association with the
CDC6:ORC:origin complex

REACTOME 990

Activation of the pre-replicative com-
plex

REACTOME 990

Synthesis of DNA REACTOME 990
Switching of origins to a post-
replicative state

REACTOME 990

Orc1 removal from chromatin REACTOME 990
CDK-mediated phosphorylation and
removal of Cdc6

REACTOME 990

Signaling by Rho GTPases REACTOME 397
Rho GTPase cycle REACTOME 397
Chemokine receptors bind chemokines REACTOME 6387
Signaling by GPCR REACTOME 6387
GPCR ligand binding REACTOME 6387
Class A/1 (Rhodopsin-like receptors) REACTOME 6387
Peptide ligand-binding receptors REACTOME 6387
Adaptive Immune System REACTOME 7305
Immune System REACTOME 7305,4208
Synthesis and interconversion of nu-
cleotide di- and triphosphates

REACTOME 6241

Metabolism REACTOME 6241
Metabolism of nucleotides REACTOME 6241
Cell Cycle Checkpoints REACTOME 990

Continued on next page
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Table C.9 – Continued from previous page
Pathway Source Gene in pathway (Entrez

gene ID)
G2/M DNA damage checkpoint REACTOME 990
G2/M Checkpoints REACTOME 990
Activation of ATR in response to repli-
cation stress

REACTOME 990

Cell-Cell communication REACTOME 7305
Signal regulatory protein (SIRP) fam-
ily interactions

REACTOME 7305

TRIF mediated TLR3 signaling REACTOME 4208
Toll Like Receptor 3 (TLR3) Cascade REACTOME 4208
TRAF6 Mediated Induction of proin-
flammatory cytokines

REACTOME 4208

Toll Like Receptor 5 (TLR5) Cascade REACTOME 4208
Toll Like Receptor 7/8 (TLR7/8) Cas-
cade

REACTOME 4208

MyD88 dependent cascade initiated on
endosome

REACTOME 4208

TRAF6 mediated induction of NFkB
and MAP kinases upon TLR7/8 or 9
activation

REACTOME 4208

Toll Like Receptor 9 (TLR9) Cascade REACTOME 4208
Activated TLR4 signalling REACTOME 4208
MyD88:Mal cascade initiated on
plasma membrane

REACTOME 4208

Toll Like Receptor 4 (TLR4) Cascade REACTOME 4208
NFkB and MAP kinases activation me-
diated by TLR4 signaling repertoire

REACTOME 4208

MyD88-independent cascade initiated
on plasma membrane

REACTOME 4208

Innate Immune System REACTOME 4208
Toll Receptor Cascades REACTOME 4208
Immunoregulatory interactions be-
tween a Lymphoid and a non-
Lymphoid cell

REACTOME 7305

Toll Like Receptor 10 (TLR10) Cas-
cade

REACTOME 4208

MAPK targets/ Nuclear events medi-
ated by MAP kinases

REACTOME 4208

MAP kinase activation in TLR cascade REACTOME 4208
MyD88 cascade initiated on plasma
membrane

REACTOME 4208

Toll Like Receptor 2 (TLR2) Cascade REACTOME 4208
Continued on next page
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Table C.9 – Continued from previous page
Pathway Source Gene in pathway (Entrez

gene ID)
Toll Like Receptor TLR1:TLR2 Cas-
cade

REACTOME 4208

Toll Like Receptor TLR6:TLR2 Cas-
cade

REACTOME 4208

guanosine nucleotides de novo biosyn-
thesis

HUMANCYC 6241

pyrimidine deoxyribonucleotides de
novo biosynthesis

HUMANCYC 6241

Wnt signaling network NCI NATURE 4313
Osteopontin-mediated events NCI NATURE 4313
Regulation of cytoplasmic and nuclear
SMAD2/3 signaling

NCI NATURE 4208

Signaling events mediated by the
Hedgehog family

NCI NATURE 6491

Signaling events mediated by HDAC
Class I

NCI NATURE 4208

Integrins in angiogenesis NCI NATURE 4313
Syndecan-1-mediated signaling events NCI NATURE 4313,4208,59,4256,6387
Regulation of CDC42 activity NCI NATURE 397,4313,4208,4256,6387
Glypican pathway NCI NATURE 4313,4208,59,4256,6387
GMCSF-mediated signaling events NCI NATURE 4313,4208,59,4256,6387
Insulin Pathway NCI NATURE 4313,4208,59,4256,6387
Signaling events mediated by HDAC
Class II

NCI NATURE 4208

Stabilization and expansion of the E-
cadherin adherens junction

NCI NATURE 4313

Glypican 3 network NCI NATURE 4313
Nectin adhesion pathway NCI NATURE 4313,4208,59,4256,6387
Neurotrophic factor-mediated Trk re-
ceptor signaling

NCI NATURE 4208

TRAIL signaling pathway NCI NATURE 397,4313,4208,59,4256,6387
LPA receptor mediated events NCI NATURE 4313
IGF1 pathway NCI NATURE 4313,4208,59,4256,6387
ATF-2 transcription factor network NCI NATURE 4313
HIF-1-alpha transcription factor net-
work

NCI NATURE 6387

CDC42 signaling events NCI NATURE 397,4313,4208,4256,6387
Signaling events mediated by Hepato-
cyte Growth Factor Receptor (c-Met)

NCI NATURE 4313,4208,59,4256,6387

Glypican 1 network NCI NATURE 4313,4208,59,4256,6387
N-cadherin signaling events NCI NATURE 4313

Continued on next page
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Table C.9 – Continued from previous page
Pathway Source Gene in pathway (Entrez

gene ID)
PDGF receptor signaling network NCI NATURE 4313,4208,59,4256,6387
Integrin family cell surface interactions NCI NATURE 4313,4208,59,4256,6387
IL1-mediated signaling events NCI NATURE 4208
Caspase cascade in apoptosis NCI NATURE 397
Internalization of ErbB1 NCI NATURE 4313,4208,59,4256,6387
TGF-beta receptor signaling NCI NATURE 4208
Posttranslational regulation of ad-
herens junction stability and dissassem-
bly

NCI NATURE 4313

Signaling events mediated by VEGFR1
and VEGFR2

NCI NATURE 4313,4208,59,4256,6387

Beta1 integrin cell surface interactions NCI NATURE 4313,4208,59,4256,6387
Urokinase-type plasminogen activator
(uPA) and uPAR-mediated signaling

NCI NATURE 4313,4208,59,4256,6387

Signaling mediated by p38-alpha and
p38-beta

NCI NATURE 4208

IFN-gamma pathway NCI NATURE 4313,4208,59,4256,6387
Regulation of RAC1 activity NCI NATURE 397,4313
PAR1-mediated thrombin signaling
events

NCI NATURE 4313,4208,59,4256,6387

Noncanonical Wnt signaling pathway NCI NATURE 4313
Regulation of p38-alpha and p38-beta NCI NATURE 4208
PDGFR-beta signaling pathway NCI NATURE 4313,4208,59,4256,6387
Canonical Wnt signaling pathway NCI NATURE 4313
E-cadherin signaling in the nascent ad-
herens junction

NCI NATURE 4313

Integrin-linked kinase signaling NCI NATURE 4313,4208,4256,6387
Regulation of nuclear beta catenin sig-
naling and target gene transcription

NCI NATURE 4313

p38 MAPK signaling pathway NCI NATURE 4208
EGF receptor (ErbB1) signaling path-
way

NCI NATURE 4313,4208,59,4256,6387

p75(NTR)-mediated signaling NCI NATURE 4208
Thrombin/protease-activated receptor
(PAR) pathway

NCI NATURE 4313,4208,59,4256,6387

Class I PI3K signaling events NCI NATURE 4313,4208,59,4256,6387
Arf6 signaling events NCI NATURE 4313,4208,59,4256,6387
Plasma membrane estrogen receptor
signaling

NCI NATURE 4313,4208,59,4256,6387

FAS (CD95) signaling pathway NCI NATURE 397
FOXM1 transcription factor network NCI NATURE 4313

Continued on next page
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Table C.9 – Continued from previous page
Pathway Source Gene in pathway (Entrez

gene ID)
IL3-mediated signaling events NCI NATURE 4313,4208,59,4256,6387
AP-1 transcription factor network NCI NATURE 4313,4208,4256,6387
Hypoxic and oxygen homeostasis regu-
lation of HIF-1-alpha

NCI NATURE 6387

amb2 Integrin signaling NCI NATURE 4313
mTOR signaling pathway NCI NATURE 4313,4208,59,4256,6387
RAC1 signaling pathway NCI NATURE 397,4313
ErbB receptor signaling network NCI NATURE 4313,4208,59,4256,6387
Signaling events mediated by focal ad-
hesion kinase

NCI NATURE 4313,4208,59,4256,6387

VEGF and VEGFR signaling network NCI NATURE 4313,4208,59,4256,6387
Alpha9 beta1 integrin signaling events NCI NATURE 4313,4208,59,4256,6387
Syndecan-2-mediated signaling events NCI NATURE 4313
ALK1 pathway NCI NATURE 4208
Arf6 downstream pathway NCI NATURE 4313,4208,59,4256,6387
Validated transcriptional targets of
AP1 family members Fra1 and Fra2

NCI NATURE 4313,4256

CXCR4-mediated signaling events NCI NATURE 6387
S1P1 pathway NCI NATURE 4313,4208,59,4256,6387
ATM pathway NCI NATURE 6241,990,4313
TNF receptor signaling pathway NCI NATURE 397,4208
p53 pathway NCI NATURE 4313
ErbB1 downstream signaling NCI NATURE 4313,4208,59,4256,6387
EGFR-dependent Endothelin signaling
events

NCI NATURE 4313,4208,59,4256,6387

Syndecan-4-mediated signaling events NCI NATURE 4313,6387
ATR signaling pathway NCI NATURE 990,4313
Regulation of nuclear SMAD2/3 signal-
ing

NCI NATURE 4208

ALK1 signaling events NCI NATURE 4208
Angiopoietin receptor Tie2-mediated
signaling

NCI NATURE 4313

Arf6 trafficking events NCI NATURE 4313,4208,59,4256,6387
E-cadherin signaling events NCI NATURE 4313
Endothelins NCI NATURE 4313,4208,59,4256,6387
Regulation of retinoblastoma protein NCI NATURE 4208
E2F transcription factor network NCI NATURE 6241,990
IL5-mediated signaling events NCI NATURE 4313,4208,59,4256,6387
Direct p53 effectors NCI NATURE 4313
Sphingosine 1-phosphate (S1P) path-
way

NCI NATURE 4313,4208,59,4256,6387

Continued on next page
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Table C.9 – Continued from previous page
Pathway Source Gene in pathway (Entrez

gene ID)
Proteoglycan syndecan-mediated sig-
naling events

NCI NATURE 4313,4208,59,4256,6387

BMP receptor signaling NCI NATURE 4208
RhoA signaling pathway NCI NATURE 397,4313
Class I PI3K signaling events mediated
by Akt

NCI NATURE 4313,4208,59,4256,6387

LKB1 signaling events NCI NATURE 4313,4208,59,4256,6387
Regulation of RhoA activity NCI NATURE 397,4313
Trk receptor signaling mediated by the
MAPK pathway

NCI NATURE 4208

Trk receptor signaling mediated by
PI3K and PLC-gamma

NCI NATURE 4208

TGFBR CELL MAP 4208

Table C.9: Intersection of genes with pathways in Pathway Commons for differential graphlet
community 3
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AACR American Association for Cancer Research

ASCO American Society of Clinical Oncology

CDIP Cancer Data Integration Portal

CTD Comparative Toxicogenomics Database

DMSO Dimethyl sulfoxide

FDA U.S. Food and Drug Administration

FDR False Discovery Rate

GO Gene Ontology

I2D Interologous Interaction Database

IASLC International Association for the Study of Lung Cancer

KEGG Kyoto Encyclopedia of Genes and Genomes

NSCLC Non-Small Cell Lung Cancer

PPI Protein-protein interaction

wrt with respect to
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Glossary

Biological pathway

A biological pathway is the combination of actions in series among molecules to accom-

plish tasks such as triggering the assembling of new molecules, turning genes on and

off, and can cause other changes in a cell. Some common types of biological pathways

involved metabolism, gene regulation and signal transduction [2].

Carcinogenesis

The process in which cancer cells are transformed from normal cells. (http://www.

cancer.gov/dictionary (Nov, 2013))

Cytotoxic

“Cell-killing”. (http://www.cancer.gov/dictionary (Dec, 2013))

Deregulated subgraph

Subgraphs that are present in the tumor state, but are not present in the normal state.

Drug repositioning

Applying known drugs to new uses.

Gene expression profile or signature

A gene expression profile or signature describes a cell’s molecular state in a specific con-

dition [118].

Gene ontology

Gene ontology is a major bioinformatics initiative project that aims to standardize rep-
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resentations of attributes on genes and gene products across databases [8].

Personalized molecular medicine

A medical model that customizes treatments to individual patients.

Predictive signature

In the context of oncology, a predictive signature gives information about therapeutic

effect, and it can be a therapeutic target [83].

Prognostic signature

In the context of oncology, a prognostic signature gives information about the overall

cancer outcome of a patient independent of therapy [83].

qPCR

Quantitative polymerase chain reaction (qPCR or real-time quantitative PCR) is a tech-

nique to sensitively quantify nucleic acids [7].

SRB assay

Sulforhodamine B (SRB) assay is a test used to measure cytotoxicity and cell proliferation

caused by the application of drugs [107].


