
 
 

 
 
 

 
RETENTION OF PROPRIOCEPTIVE RECALIBRATION FOLLOWING 

VISUOMOTOR ADAPTATION 
 
 
 
 

NILUFER NOUROUZPOUR 
 

 
 
 
 

 
A THESIS SUBMITTED TO THE  

FACULTY OF GRADUATE STUDIES  
IN PARTIAL FULFILLMENT OF THE  

REQUIREMENTS FOR THE DEGREE OF 
 

MASTER OF SCIENCE 
 
 
 

 
 
 
 
 
 

GRADUATE PROGRAM IN KINESIOLOGY AND HEALTH SCIENCE 
 

YORK UNIVERSITY 
 

TORONTO, ONTARIO 
 

APRIL 2014 
 
 
 

© NILUFER NOUROUZPOUR, 2014 
 
 
  



 

 ii 

Abstract 
 

 This thesis builds on our laboratory’s recent findings that visuomotor 

adaptation following reaches with a misaligned cursor not only induces changes 

in an individual's motor output, but their proprioceptive sense of hand position as 

well. Long-term changes are seen in motor adaptation, however very little is 

known about the retention of changes in felt hand position. We sought to 

evaluate whether this recalibration in proprioception, following visuomotor 

adaptation, is sufficiently robust to be retained the following day (~24 hours later), 

and if so, to determine its extent. Visuomotor adaptation was induced by having 

subjects perform reaches to visual targets using a cursor representing their 

unseen hand, which had been gradually rotated 45º counterclockwise. Motor 

adaptation and proprioceptive recalibration were determined by assessing 

subjects’ reach aftereffects and changes in hand bias, respectively. We found 

that subjects adapted their reaches and recalibrated their sense of hand position 

following training with a misaligned cursor, as shown in Cressman and Henriques 

(2009). More importantly, subjects who showed proprioceptive recalibration in the 

direction of motor adaptation on Day 1 did retain changes in felt hand position 

and motor adaptation on Day 2. These findings suggest that in addition to motor 

changes, individuals are capable of retaining sensory changes in proprioception 

up to 24 hours later.  
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Introduction 

 

The ease with which one can accurately reach to a doorbell can lead one 

to misconceive the action as simple, whereas in reality it involves an array of 

complex underlying neural transformations. In order to place the limb at a desired 

spatial location, goal-directed movements require the central nervous system to 

interpret sensory information (e.g. vision, proprioception) regarding the target and 

hand’s position, thereafter transforming this information into the appropriate 

motor commands (Jeannerod 1988). In most cases this sensory information is 

congruent, such that the position one sees and feels their hand overlap. 

However, under circumstances where this is not the case (e.g. when reaching 

towards an object under the water’s surface), the brain will respond by learning a 

new visuomotor mapping, thus modifying the hand’s subsequent motor 

commands accordingly. Specifically, when presented with altered visual 

feedback of their hand, such as while wearing prism goggles or in virtual reality 

environments, subjects compensate by adjusting their motor commands in order 

to maintain movement accuracy, thereby gradually reducing the error signal 

experienced when desired and actual movement outcome are distinct; this 

process is referred to as visuomotor adaptation. When visual feedback is 

removed whilst performing open-loop reaches, individuals will continue to make 

adapted movements and these reach errors, termed aftereffects, provide a 

measure of motor learning. For instance, following training with a cursor that is 

rotated relative to their hand in a virtual reality environment, subjects’ open-loop 
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movement trajectories will remain deviated in the direction of adaptation.  These 

aftereffects, indicating changes in the motor system, can last up to a year 

following training (Yamamoto et al. 2006).  

In addition to motor changes, visuomotor adaptation has been shown to 

result in short-term sensory changes. Previous studies examining reaching with 

altered visual feedback of the hand have suggested that visuomotor adaptation is 

partially due to the recalibration of proprioception (felt joint or limb position in 

space) to match its visual representation (Hay et al. 1965; Redding and Wallace 

2004; Bernier et al. 2005; Redding et al. 2005; Simani et al. 2007).  At present, 

the persistence of these proprioceptive changes following visuomotor adaptation 

has been left unexplored. Our study aims to investigate whether proprioceptive 

recalibration and motor adaptation are retained after a 24-hour period following 

training, and if found, the magnitude of this effect. These results will provide 

insight into the effects of a longer time-lapse on the retention of proprioceptive 

recalibration following visuomotor adaptation as well as the relationship between 

the process of motor adaptation and proprioceptive recalibration.       

 

Literature review  

 

Goal-directed movement 

Our daily lives incorporate a multitude of interactions with our environment 

and a significant portion of these actions is comprised of purposeful, goal-

directed, movements. For the average human being, reaching for our phones or 
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picking up a cup of coffee are seemingly simple tasks to perform, yet they are 

governed by complex processes integrated by our brain and body. Once the 

central nervous system (CNS) selects a target or goal for the hand to reach, a 

motor plan is computed and motor commands needed to achieve the goal are 

generated.  

Vision and proprioception (mentioned below) provide sensory information 

critical for the estimation of limb position and thus, successful regulation of goal-

directed movements. The way this sensory input is processed depends on the 

demands of the motor task at hand; van Beers and colleagues (1999) have 

shown that motor performance is improved when one has access to information 

from multiple sensory modalities regarding limb position, when compared to 

information from only one source. Depending on the stage of movement planning 

(Sober and Sabes 2003, 2005), target position (van Beers et al. 1996, 1998, 

1999), and target modality (Sober and Sabes 2005), the brain can select different 

combinations of sensory input (i.e. vision, proprioception) to localize one's hand. 

For instance, movement vector (or pathway) planning relies mostly on visual 

signals, whereas the computation of the intrinsic motor command (or muscle 

signals) needed to correctly move the hand relies heavily on proprioception 

(Sober and Sabes 2005). 

Studies have found that when visual information was present, subjects 

could reach (Prablanc et al. 1979) and point (Admiraal et al. 2003) to targets 

more accurately, as well as produce more accurate movements (Woodsworth 

1899) compared to movements completed in the absence of vision.  Although it 
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has been suggested that only brief visual samples are generally sufficient for 

reasonably precise closed-loop control (Elliott et al. 1995), vision still remains of 

significant importance for optimal movement control even after considerable 

practice (Proteau 1995). This is especially true in the final, homing-in, phase 

compared to the initial ballistic phase in rapid-aiming movements, so that the 

hand can precisely reach its target (Woodsworth 1899).  

The location of the hand can also be estimated using proprioception. 

Proprioceptors are sensory receptors that convey information to the CNS about 

the body's position or movement in space and can be found primarily in muscles, 

tendons, and joints. Studies involving individuals lacking proprioceptive input 

have found deficits in most aspects of their motor ability and suggest that 

proprioception is essential in achieving fine controlled movements in the absence 

of vision (Rothwell et al. 1982). Muscle spindles are a type of proprioceptor which 

provide afferent signals about changes in length (including velocity, acceleration, 

and position) of the muscle in which they are located. They are found in higher 

numbers in muscles that are necessary for fine movements than those used for 

posture or gross motor skills. Information from muscle spindles regarding the 

kinematic properties of muscles that cross joints also help the CNS sense the 

relative position of body segments (Burgess and Clark 1969). They are found 

parallel to extrafusal muscle fibers (controlled by alpha motor neurons), thus any 

changes in length in the latter will also stretch intrafusal muscle fibers and its 

respective sensory endings, both found within the muscle spindle, increasing the 

sensory endings' firing rate.  Tendon vibrations have been used in humans to 
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investigate kinesthetic illusions, causing a deceptive sense of movement and 

altered joint position (Goodwin et al. 1972). The Golgi tendon organs are 

encapsulated sensory receptors, found in the transitional area between muscle 

fibers and tendons, which are sensitive to changes in muscle tension. A tendon 

organ is innervated by a single group 1b axon that enters its capsule, 

demyelinates, and branches around collagen strands. Golgi tendon organs are 

found in-series in the aforementioned junction and stretching the tendon organ 

(and thus, collagen fibers) will compress the nerve endings of the axon, causing 

it to fire and signal the tension developed by the muscle. In addition to other 

anatomical sensors in the body, muscle spindles and Golgi tendon organs 

convey critical sensory signals used by the CNS to accurately deduce the body's 

felt position or movement in space. 

Movement can be broken down into two main components: kinematics 

and dynamics. The geometry and speed of a movement are termed the 

kinematics, whereas the forces required to produce the movement are the 

dynamics (Krakauer 2006). In order to produce a successful goal-directed 

movement, the CNS must estimate the kinematic and dynamic changes required 

to reach the intended target, while visual and proprioceptive signals convey the 

current location of the hand. Internal models are theorized to be neural 

processes which allow us to perform goal-directed actions both prior to and after 

movement onset (Wolpert and Kawato 1998). During computation of inverse 

kinematics, the end effector position is defined and the state vector of the 

structure, which would produce the desired trajectory or final position, must be 
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derived (Kawato 1999). In other words, with the knowledge of your current hand 

position, the motor system must determine the necessary joint angles to move 

your hand to a specific target. In addition, the motor system also needs to 

compute the amount of torque that must be produced at each joint for the hand to 

reach the target; this is termed inverse dynamics. In forward kinematics, the 

motion of the joints are explicitly specified, which will compute the end effector 

position; an efference copy is issued from the motor command, stemming from 

sensory signals detecting length changes in the muscle, and will predict the 

resulting sensory consequences. The computed estimation of your hand's motion 

as a result of specific muscle forces is termed forward dynamics (Wise and 

Shadmehr 2002).  

 

Motor learning and adaptation  

 In our everyday lives we effortlessly use a variety of motor skills that have 

been acquired through practice and interaction with our environment. Skill 

acquisition involves the learning a novel behaviour, resulting in the expansion of 

our motor repertoire. Motor adaptation allows us to adapt our well-learned motor 

skills to new circumstances or environments. For instance, when first learning 

how to use a keyboard, the co-articulation of a child's finger movements may be 

very slow and imprecise. However with sufficient practice the child can 

successfully acquire this motor skill and improvements, such as faster typing 

speeds while pressing the correct keys, will be apparent. If the child is given a 

new keyboard with the letter keys in different locations, although the task still 
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requires the same skill (i.e. typing), the context will have changed and will result 

in a decline in performance (i.e. accuracy, speed). By modifying her motor 

commands, thus reducing the error signal produced when desired and actual 

movement outcome are distinct, she can compensate for the altered 

environment. In other words, motor adaptation allows one to return to their 

original proficiency in a skill, rather than learn a new one.  

As previously mentioned, in order to place the limb at a desired spatial 

location, goal-directed movements require the central nervous system to interpret 

sensory information regarding the target and hand’s position, thereafter 

transforming this information into the appropriate motor commands (Jeannerod 

1988). In most cases this sensory information is congruent, however under 

circumstances where sensory information is incongruent, the brain will respond 

by modifying the hand’s subsequent motor commands accordingly. To study our 

control system's capacity to compensate for changes in the sensory and motor 

relationship, such as growth, injury, and novel environments, motor adaptation 

can be induced through two main types of perturbations in a laboratory setting. 

The first type of perturbation involves altering visual feedback, inducing 

visuomotor adaptation, which can be achieved using prism goggles or virtual 

reality environments.  The second type of perturbation involves adding 

mechanical disturbances to movement, such as introducing a force-field 

(Shadmehr and Mussa-Ivaldi 1994) or changing the inertial properties of the 

moving limb (Bock 1990). A measure of motor adaptation following training with a 

perturbation is the aftereffect; the continuation of adapted movements following 
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the removal of a perturbation. For instance, after completing a reach training task 

with a cursor that has been gradually misaligned or rotated, removal of visual 

feedback of the unseen hand’s position results in continued deviated trajectories 

in the direction of adaptation during open-loop (ballistic) reaches. Their presence 

suggests that there had been formation of an updated or new internal model by 

the CNS following visuomotor adaptation (Shadmehr and Mussa-Ivaldi 1994; 

Wolpert et al. 1995; Shadmehr and Moussavi 2000).  

Numerous studies have used prism goggles to study visuomotor 

adaptation in both humans and monkeys. Inverse prisms optically rotate a 

subject's perceived world around the line of sight by 180°, whereas wedge prisms 

only displace vision by approximately 5° to 25°. Shifting the subject's visual field 

will cause a visual-kinesthetic conflict in the perception of location and subjects 

initially show signs of severely disrupted visually-guided movements. However, 

studies have consistently found that with repeated practice subjects can show 

error reductions in visually-guided behaviour (Harris 1963; 1965; Hay and Pick 

1966; Redding et al. 2005; Redding and Wallace 1978; 1988; 1996; 1997; 2001; 

2002; 2003; 2006) and in eye movements (Gonshor and Jones 1976). Once the 

prisms are removed, the strength of the adaptation can be measured by 

deviations in subjects' movement aftereffects, in the direction opposite to the 

visual shift.  

Visuomotor adaptation can also be induced through the manipulation of a 

hand-cursor. This perturbation allows for the misalignment of real-time visual 

feedback of one’s hand in a virtual reality environment, without shifting the entire 
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visual field, including the target (as done with prisms). Altered visual feedback of 

the hand can be introduced by manipulating the cursor in a number of ways, 

such as introducing a rotation, translation, or a novel scaling factor of the visual 

space. For instance, the cursor can be rotated 30° clockwise (CW) relative to 

actual hand motion during reaching movements.  In this scenario, subjects 

gradually adjust their hand movements in a counter-clockwise (CCW) fashion so 

that their cursor attains the target, even if their actual unseen hand is misaligned 

from this desired endpoint (Krakauer et al. 1999). Reaching baseline levels of 

performance only requires approximately 20 trials per target (Krakauer et al. 

2000). Similar to prism adaptation, subjects will exhibit aftereffects once the 

distortion is removed, such that they continue to reach in the direction of 

adaptation, ascertaining the formation of a new visuomotor mapping by the CNS. 

Visuomotor adaptation to a rotated cursor has also been shown to transfer 

between limbs. In particular, Sainburg and Wang (2002) found that opposite arm 

training improved the initial direction of right arm movements during misaligned 

training, whereas opposite arm training improved the final position accuracy of 

left arm movements. Dionne and Henriques (2008) found transfer of adaptation 

when the image of a subject's hand was mirror-reversed, however transfer did 

not occur when feedback was a rotated view of their hand.  

The exact angle of a rotation has been found to influence adaptation, such 

that task difficulty increases along with the angle of rotation (Cunningham 1989), 

whereas adaptation to a previous rotation (Abeele and Bock 2001) or adapting in 

smaller steps (Buch et al. 2003) can facilitate adapting to larger rotations. In 



 

 10 

addition, aftereffects were found to be larger (Contreras-Vidal and Stelmach 

1997) and lasted longer (Klassen et al. 2005) when the distortion had been 

introduced gradually as opposed to abruptly. When small reach errors arise while 

training with gradually rotated distortions, it is thought that implicit learning 

processes are involved; these processes update the internal model and attempt 

to increase movement accuracy on subsequent trials. When distortions are 

introduced abruptly, large initial errors are made and subjects employ explicit 

strategies in their compensatory movements (Redding and Wallace 1996).  

Implicit learning can also be part of this initial process or occur later on.  In a 

study by Mazzoni and Krakauer (2006), subjects had been instructed on explicit 

strategies during visuomotor adaptation tasks to counteract the visuomotor 

distortion; they found that subjects initially showed a decrease in target errors, 

however, as training proceeded their performance began to deteriorate such that 

they made increasingly large errors while reaching to the target. This suggests 

that during visuomotor adaptation, implicit, thus unconscious, motor adaptation 

will occur regardless of the presence of explicit strategies.  

 

Proprioceptive recalibration following visuomotor adaptation 
 

In addition to motor changes, visuomotor adaptation has been shown to 

result in short-term sensory changes, such as proprioceptive recalibration. 

Changes to felt hand position have been studied using various perturbations, 

including prism adaptation, virtual reality environments, and force-field 

adaptation.  
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Previous studies examining reaching with altered feedback of the hand 

have suggested that visuomotor adaptation is partially due to the recalibration of 

proprioception to match its visual representation (Hay et al. 1965; Redding and 

Wallace 2004; Bernier et al. 2005; Redding et al. 2005; Simani et al. 2007). In 

these previous studies, subjects used their adapted hand to perform 

proprioceptive estimation tasks, thus making it difficult to discern whether 

recalibration to such targets arose due to motor adaptation. However, changes in 

felt hand position have been observed using paradigms which do not require 

subjects to make goal-directed movements, such as the use of two-alternative, 

forced-choice psychophysical tests, hence eliminating the possibility of a motor 

confound (Cressman and Henriques 2009; Ostry et al. 2010). For instance, Ostry 

and colleagues (2010) measured change in felt limb position by having subjects 

report the direction their hand had been deflected (left or right) during their 

reaches after training in a force-field paradigm. Cressman and Henriques (2009) 

had subjects use a robot manipulandum which guided their hand along a 

constrained pathway to a designated location. Once it attained this final position, 

a visual or body midline (a non-visual reference point) reference marker 

appeared and subjects made a forced-choice judgment of the position of their 

hand relative to the marker (left or right). When tested following visuomotor 

adaptation, subjects displayed a significant proprioceptive recalibration in the 

expected direction of motor adaptation. Results from our lab have shown that this 

recalibration of hand position by approximately 6°, or 20% of the 30° distortion, 

and occurs under a multitude of contexts.  
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Cressman and Henriques (2009) had subjects perform the 

aforementioned proprioceptive estimation task while moving subjects' hands 

passively (guided by the robot) and actively, following training with either a 

rotated or translated cursor. They found that following visuomotor adaptation, 

subjects recalibrated their felt hand position approximately 20% of the magnitude 

of the distortion, regardless of cursor manipulation, including when the hand was 

moved passively or actively during felt hand position estimation tasks. 

Proprioceptive recalibration following visuomotor adaptation was seen to a 

similar extent in older adults (mean age = 66.3 years) (approximately 20% of the 

distortion) as young adults (mean age = 27.3 years). However, older adults had 

less precision (or higher uncertainty) when having to estimate hand position 

(Cressman et al. 2010). Clayton et al. (2013) found similar results for individuals 

with Ehlers-Danlos syndrome, a group of connective tissue disorders 

characterized by joint hypermobility.  

This shift in sense of hand position also arises following adaptation in both 

the left and right hands of right-handed individuals (Salomonczyk et al. 2012; 

Mostafa et al. 2014). Transfer of adaptation is thought to have occurred when 

initial errors in response to the same perturbation are smaller or when the 

learning rate is faster for the untrained hand following training of the opposite 

hand. Moreover, transfer can also be measured by comparing changes in 

aftereffects and hand biases between trained and untrained hands, as seen in a 

study by Mostafa and colleagues (2014). They sought to investigate whether 

induced changes in felt hand position could transfer from the trained hand (right 
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or left) to the untrained hand (left or right) following visuomotor adaptation. They 

found intermanual motor transfer from the right trained (dominant) hand to the left 

untrained (non-dominant) hand, however did not find transfer from the left trained 

hand to the right untrained hand. In addition, although proprioceptive 

recalibration had been observed in both trained hands, intermanual transfer of 

shifts in felt hand position did not occur.  

The ability to apply our learned skills in a new context is termed 

generalization; if it is beneficial it is termed transfer, however if it is unfavorable it 

is called interference (Krakauer et al. 2006). Generalization patterns have been 

explored by Cressman and Henriques (2010a) wherein subjects’ reaching 

movements and changes in felt hand position to novel locations were studied 

following visuomotor adaptation. They found that generalization of reach 

adaptation was local, in that adaptation was only observed at locations that were 

close to the trained target direction. Moreover, these aftereffects diminished 

drastically for targets located 20° from the trained target, confirming previous 

studies' observations that generalization patterns in motor adaptation are local 

(Krakauer 2000; Wang and Sainburg 2005). Interestingly, proprioceptive 

recalibration generalized quite broadly in comparison, such that changes in felt 

hand position in the trained location were found to a similar extent for locations 

up to 90° CCW from the trained target direction. In the same study, they also 

found that after training with small cursor-gains, subjects’ reaches had been 

adapted, whereas felt hand position was not recalibrated.  
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 In a unique paradigm, Cressman and Henriques (2010b) examined if 

exposure to solely a sensory discrepancy was sufficient enough to induce reach 

adaptation and proprioceptive recalibration. Subjects held a robot manipulandum, 

which guided their hand either actively or passively along a fixed linear path.  On 

each trial, subjects saw the cursor reach the target, however, the fixed path was 

gradually being rotated 30° CCW away from the straight path of the cursor. 

Misaligning the hand's path (proprioceptive signals) from the cursor's path (visual 

signals) created a cross-sensory error signal, without a goal-directed movement 

or, essentially, a sensorimotor error signal.  They found that subjects had in fact 

adapted their reaches by 6° without the presence of a movement related error 

signal.  They also found that felt hand position in subjects had been recalibrated 

to a similar magnitude as their reaches were adapted. In a similar experiment by 

Salomonczyk et al. (2013), they tested subjects' exposure to a 30°, 50°, 70° 

rotated hand-cursor distortion. No additional increases in recalibration or reach 

adaptation were observed, such that the changes for the 50° and 70° distortions 

were similar in magnitude as changes for the 30° distortion. Given the similar 

extent of reach and proprioceptive changes, they suggested that the reach 

adaptation observed had partially occurred due to changes in subjects' 

proprioceptive bias. Since 6° is only 1/3 of typically observed aftereffects in our 

lab (Cressman and Henriques 2009), it is likely that the usual, larger, aftereffects 

produced after visuomotor adaptation are associated with the sensorimotor error 

signal.  
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 Unlike the cross-sensory error signal, the magnitude of the sensorimotor 

discrepancy, and thus the distortion, has been found to affect subjects' reaches 

as well as their shift in felt hand position following visuomotor adaptation. 

Salomonczyk et al. (2011) had subjects train to reach with a cursor that had been 

rotated by 30°, 50°, and 70°. Although reaches and estimates of felt hand 

position were directly related to magnitude, they showed the same percent 

change found in previous work: 20% of the distortion for proprioceptive 

recalibration and 50% for motor adaptation.  

 

Retention of motor adaptation 
 

Various studies have demonstrated that induced motor changes 

accompanying visuomotor adaptation remain long after training has ended, and 

can last from several days up to a year following training. Specifically, after 

adapting to a perturbation, subjects continue to show reach aftereffects 

(Yamamoto et al. 2006) or faster relearning when exposed to the same 

perturbation on a later day (i.e. presence of savings) (Krakauer et al. 1999; Bock 

et al. 2001; Tong et al. 2002; Caithness et al. 2004; Klassen et al. 2005; 

Krakauer et al. 2005). For instance, when Klassen et al. (2005) retested subjects 

one day after they had modified their cursor reaches to an abrupt 30° rotation, 

the initial errors produced at the start of the second day were similar to those at 

the end of training on the first day, suggesting almost complete retention of motor 

adaptation. Likewise, Caithness et al. (2004) found that when subjects were 

retested on a 30° visuomotor rotation 48 hours after initial adaptation, and initial 
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deviations in reaching were reduced by approximately half when compared to 

those produced in the very first block two days before, once again suggesting 

substantial retention of the visuomotor adaptation.  

Bock and colleagues (2001) also demonstrated retention of motor 

adaptation in an experiment where a sensorimotor discordance was introduced 

by reversing cursor movement either left-right or up-down. In this study, subjects 

tracked a moving visual target by shifting the perturbed cursor with a joystick.  

They were tested again in a second session on the perturbed tracking task at 

one of various time points (8 min, 25 min, 1 hr, 2 hr, or 1 month later). Their 

overall performance (the root mean square error of the distance between the 

cursor and target) was greatly improved; specifically, when retested up to one 

month later, subjects showed almost complete retention of the adaptation such 

that tracking errors were observed to be close to end-of-training levels (baseline). 

Yamamoto et al. (2006) found that in addition to the commonly observed short-

term changes accompanying the process of motor learning, motor memory can 

be retained for extended periods of time. In this study subjects learned to use a 

joystick to move a cursor, which was gradually rotated 40°, onto a target. 

Following training, when reaching in the absence of a cursor, subjects showed 

compensation in their movement aftereffects for 63 to 91% of the rotation. More 

importantly, 59 to 91% of the compensation was still present one year later, 

relative to the initial post-test (41-77% of the visuomotor distortion).  

Long-lasting effects on motor performance have also been found following 

adaptation to other perturbations, such as a velocity dependent force-fields 
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(Brashers-Krug et al. 1996; Shadmehr and Brashers-Krug 1997).  Shadmehr and 

Brashers-Krug (1997) found that after subjects had adapted their reaches with a 

velocity dependent force-field, the level of performance achieved on that first day 

persisted up to 24 hours later whilst reaching in the same force field. 

Interestingly, this improvement remained constant when retested 5 months later, 

suggesting the formation of long-term motor memories following this type of 

learning.  

Retention of motor adaptation is also observed following prism adaptation.  

In a study by Kitazawa and Yin (2001) found that monkeys could adapt goal-

directed reaches while wearing laterally-displacing wedge prism goggles that 

shifted their entire field of vision. The task required the monkey to reach to a 

square target zone that would appear on a touch screen, while the view of its 

hand and the target were blocked by liquid-crystal shutters in front of the eyes at 

the onset of movement. The monkey was given terminal feedback of its hand's 

final position and the target once it had touched the screen.  Aftereffects more 

than half the size of the prism displacement were observed after only 50 trials.  In 

addition, after they had increased the number of training trials to 500, the monkey 

had shown a similar magnitude of aftereffects up to 48 and 72 hours later. 

Moreover, humans who had spent 6 weeks adapting their throwing movements 

while wearing displacing prisms showed almost perfect retention when retested 

9, 18, and 27 months following initial training, such that they accurately threw 

balls near the center of the target, on their first throw, right after donning prism 
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goggles. It required the same amount of time for participants to unlearn the 

adaptation as it did to initially learn it (Martin et al. 1996).   

 

Retention of proprioceptive recalibration 
 

Still unknown is whether changes in hand proprioception persist beyond 

training, following visuomotor adaptation, the way reach adaptation does. 

Retention of the change in felt hand position was investigated using a velocity-

dependent force-field perturbation, and has been shown to persist at least 24 

hours after adaptation (Ostry et al. 2010).  This change in felt limb position was 

measured by having subjects report the direction their hand had been deflected 

(left or right) during their reaches; this was measured at various intervals 

throughout the experiment, including before, after, and 24 hours following 

training. The authors observed a perceptual shift of approximately 11% 

(compared to peak deviations in aftereffects) of the estimated magnitude of 

learning following training and interestingly, these sensory changes were also 

observed to a similar extent 24 hours later.  The latter finding suggests that 

persistent changes in the sensory system are present following adaptation to a 

velocity dependant force-field. How these somatosensory changes compare with 

motor changes, such as aftereffects or savings is not known, since changes in 

movement were not re-measured the following day. In addition, although 

retention of changes in felt hand position following force-field training is known, 

its retention following visuomotor adaptation (visual-proprioceptive discrepancy) 

has not yet been investigated.    
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Hypothesis 
 

Our aim was to test for motor adaptation and proprioception recalibration 

following visuomotor adaptation and to determine if these changes could be 

retained following a period of 24 hours. In addition, if these changes were found, 

we sought to measure the extent of retention for both adaptation and 

recalibration.  We do expect to see a moderate decay in proprioceptive 

recalibration since normal vision of the hand in the intervening 24 hours would 

presumably lead to a return of the habitual visual-proprioceptive alignment.  If 

these changes are retained, then we can suggest that sensory memory may play 

a role in the long-term changes experienced following visuomotor adaptation  
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Methods 

 

Subjects 

60 right-handed participants were recruited from York University (mean 

age = 23.5 yr, SD = 5.5 yr, 43 women), 39 of which were enrolled in a first-year 

university psychology course and participated for course credit. All subjects were 

free from neurological impairments as well as pre-screened for self-reported 

right-handedness and corrected vision. Data from 14 of the initial 39 subjects 

were excluded from analyses due to incorrect performance of the Proprioceptive 

Estimates task (see below). Failure to perform the Proprioceptive Estimates task 

has been observed on a smaller scale in our previous studies and the large 

number of participants who needed to be discarded in the present study most 

likely reflects the brevity of instructions given to our first set of participants.  This 

was later remedied leading to 100% keep rate for the last 21 subjects. One of the 

14 subjects (mentioned above) had been removed because the changes in their 

proprioceptive bias, although in the expected direction of motor adaptation, fell 

outside 2 SD of the norm (a shift in proprioceptive bias of nearly 30° rightward). 

Informed consent was given and the experiment was performed in accordance 

with the ethical guidelines set by the York Human Participants Review Sub-

Committee, York University’s Ethics Review Board and the standards of the 

Canadian Tri-Council Research Ethics guidelines.  
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General experimental setup 
 

Subjects were seated in a chair adjustable in both height and distance, 

ensuring that they could comfortably see and reach to all target positions 

presented on an opaque and reflective surface; a view of the setup is presented 

in Fig. 1a.  Once the chair was adjusted, the position was fixed and remained 

consistent for all experimental sessions. Subjects were instructed to grasp the 

vertical handle of a two-joint robot manipulandum (Interactive Motion 

Technologies) with their right hand. Visual stimuli were projected from a monitor 

(SyncMaster model 510N; refresh rate: 72 Hz; Samsung, Brisbane, CA) installed 

17 cm above the robot and viewed by subjects as a reflected image. The position 

of the manipulandum’s gripped-handle was recorded throughout all reaching 

trials at a sampling rate of 50 Hz and a spatial accuracy of 0.1 mm. The room 

lights were dimmed and the reflective surface was positioned so that images 

displayed on the monitor appeared to lie in the same horizontal plane as that of 

the robot handle. Subjects’ view of their right hand was obstructed by the 

reflective surface and a black cloth draped between the experimental setup and 

their shoulders. 

 

General procedure 
 

The experiment consisted of two separate testing sessions, each 

conducted on two consecutive days within 24 hours from one another. The first 

session consisted of two blocks (Fig. 2, first 2 rows), which included 3 types of 

tasks per block. In Block 1 subjects completed reach training trials with an 
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aligned cursor, during which the visual cursor was accurately aligned with the 

subject's hand, followed by open-loop reaches made without visual feedback 

(No-Cursor task) and measures of hand proprioception (Proprioceptive Estimates 

task).  The latter was followed immediately by Block 2, where reach training 

involved a cursor that was gradually rotated 45° counter clockwise (CCW) 

relative to the hand. On the next day, subjects were re-tested on the No-Cursor 

reaches to measure persisting aftereffects, as well as on the Proprioceptive 

Estimates task to measure whether changes in felt hand position from the 

previous day had been retained.  

 

Reach training 
 

During this task, subjects made reaching movements to a yellow target 

circle (1 cm in diameter) displayed on the reflective surface. The 3 visual targets 

were either set at 30° CW, 0° or 30° CCW relative to the body’s midline and 

located 10 cm radially from the home position. The order of the targets was 

pseudo-randomized such that subjects had reached once to each of the 3 targets 

before any target was repeated.  The position of the subject's unseen hand was 

represented by a green circular cursor, also 1 cm in diameter, which was aligned 

(Block 1) or rotated (Block 2) (Fig. 1b) relative to the hand's actual location. 

During Block 1 subjects made 60 reaches (Fig. 2, top row, box 1) to the visual 

target, while in Block 2, they made 150 reaches before proprioceptive estimates 

and 30 reaches afterwards (Fig. 2, middle row, boxes 1 and 5). 
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Trials began with the subject’s hand at the home position 40 cm from their 

body midline, and after 300 ms, a yellow target appeared. Subjects were then 

asked to reach towards the target while moving the robot-handle as quickly and 

accurately as possible, so as to align both circles. For each trial, the cursor 

became visible only after the handle was moved 4 cm away from the home 

position so that subjects had likely reached peak velocity prior to the onset of 

visual feedback.  

The reach was completed once the cursor’s center was positioned within 

0.5 cm of the target’s center. At that point, both circles disappeared and subjects 

moved their hand back to the home position via a robot-generated grooved 

pathway. If any attempt to move outside the established path was made, a 

resistance force (proportional to the depth of penetration with a stiffness of 2 

N/mm and a viscous damping of 5 N/(mm/s)) was generated perpendicular to the 

grooved wall (Henriques and Soechting 2003).  

 

No-Cursor reaches  
 

The No-Cursor task was similar to the Reach Training task, except 

subjects were instructed to reach towards the target upon presentation without 

cursor feedback of their unseen hand. The task consisted of 15 trials and was 

administered before and after the Proprioceptive Estimates task, in each block, 

on the first day (Fig. 2, first and middle row, boxes 2 and 4 in each row). In 

addition, No-Cursor reaches were measured once more before the 

proprioceptive task on Day 2 as a final measure of reach adaptation (Fig. 2, last 
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row, box 1). Throughout the experiment, aftereffects were measured 5 separate 

times; each of these times will be numbered and referred to as epochs. After 

subjects' endpoint position was maintained for 500 ms, the visual target 

disappeared, subjects moved their hand back to the home position via a grooved 

pathway, and the trial was considered complete.  

 

Proprioceptive estimates 
 

The Proprioceptive Estimates task was used to measure subjects’ felt 

hand location. A trial began with the illumination of the home position indicated 

by a green 1 cm circle for 500 ms. Subjects were instructed to wait until the 

green circle disappeared to push their hand outwards along a constrained, robot-

generated linear pathway described earlier (Fig. 1c). Once their hand arrived at 

the end of the path, one of three visual markers, represented by a yellow circle (1 

cm in size) located at 30° CW, 0°, and 30° CCW relative to the body’s midline, 

appeared. Alternatively, on one-quarter of the trials we used a proprioceptive 

marker, such that rather than a visual marker an auditory cue was heard at the 

end of the pathway, which indicated to subjects that they were to estimate their 

hand position with respect to their perceived body midline. Without time 

constraints, subjects then made a two-alternative forced-choice (2-AFC) 

judgment about the position of their hand (left or right) relative to the reference 

marker using a keyboard with their free left hand. To begin the next trial, they 

then moved the robot directly back to the home position along the robot-

generated linear route. Subjects completed 200 trials per task, administered once 
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in each block on Day 1 (Fig. 2, top and middle row, box 3) and once on Day 2 

(Fig. 2, last row, box 2). The position of the hand with respect to each reference 

marker was adjusted over trials using an adaptive staircase algorithm (Kesten 

1958; Treutwein 1995), as described by Cressman and Henriques (Cressman 

and Henriques 2009). 

 

Fig. 1 Experimental setup and design.  a: Side view of the experimental setup. b 
and c: Top view of experimental surface visible to subjects. b: Visuomotor 
distortion introduced in the misaligned reach training task.   The 1 cm green 
cursor representing the hand was gradually rotated 45° CCW relative to the 
subject's actual hand location (black ring). Reach targets (yellow ring) 1 cm in 
size were located 10 cm from the home position (black circle) at 30° CW, 0°, 30° 
CCW relative to the body midline. c: In the proprioceptive estimates task, 
subjects actively pushed their hand out 10 cm along a constrained linear path 
(depicted in red) from the home position and judged the position of their hand 
with respect to a reference marker (yellow rings). Reference markers were either 
visual (30° CW, 0°, 30° CCW relative to the midline), or proprioceptive, prompted 
by an auditory cue, wherein subjects judged the position of their hand relative to 
their perceived midline. 
 

cursor

target
Left or Right?

a

b c
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Fig. 2 Schematic showing the order in which tasks were completed and the 
number of trials completed per task. Tasks run during Block 1 provided baseline 
measures of performance, wherein the subject's unseen hand was aligned with 
the cursor during reach training (first box, top row).  In Block 2 the cursor was 
gradually rotated 45° CCW relative to the subject's actual hand location during 
reach training (first and last box, second row).  On Day 2 subjects were only 
tested on open-loop No-Cursor reaches and proprioceptive estimates without any 
reach training. 
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Data Analyses 
 

No-Cursor reaches 
 

We investigated whether subjects adapted their reaches after training with 

a rotated cursor and if this adaptation was maintained 24 hours later by looking 

at No-Cursor reaches (i.e aftereffects). Reach endpoint errors were defined as 

the angular deviation between a movement vector (from the home position to the 

reach endpoint) and a reference vector (from the home position to the target). 

Similarly, reach errors at peak velocity were defined as the angular difference 

between a movement vector at peak velocity and a reference vector. We 

conducted a 4 epoch (Average Aligned, Rotated Time 1, Rotated Time 2, 

Retention) x 3 target (0°, 30 ° CW, 30° CCW) repeated measures analysis of 

variance (RM-ANOVA), and then reported our pre-planned comparisons between 

these levels to determine if adaptation had occurred and if this adaptation was 

retained. A Bonferroni correction was applied to all post-hoc pair-wise 

comparisons and all ANOVA results are reported with Greenhouse-Geisser 

corrected p values to compensate for violations of sphericity. 

 

Proprioceptive estimates  
 

The position at which subjects perceived their hand to be aligned with the 

reference marker was measured by fitting their responses to a logistic function 

for each of the four reference marker locations. Biases, which are the measure of 

accuracy of a subject’s proprioceptive sense of hand position, were then 

calculated. It is also understood as the probability of reporting left or right equally 
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often (50%). A subject’s bias for a particular marker was excluded if they 

surpassed + 2 SD (14 out of 552 marker values were replaced with their 

respective mean).  

Proprioceptive bias was analysed comparing those measured after 

aligned and misaligned training on Day 1 and again on Day 2 (Day-1 Aligned, 

Day-1 Rotated, Day-2 Retention) and marker location (30° CW, 0°, 30° CCW, or 

proprioceptive midline) using a RM-ANOVA. A Bonferroni correction was applied 

to all post-hoc pair-wise comparisons and all ANOVA results are reported with 

Greenhouse-Geisser corrected p values to compensate for violations of 

sphericity. 

 

Results 

 

Visuomotor adaptation 

Mean baseline-subtracted open-loop reaches (aftereffects) from the No-

Cursor reach task are displayed in Fig. 3a. To study retention of motor adaptation 

after training with a misaligned cursor, we examined mean baseline aftereffects 

compared to aftereffects measured before and after proprioceptive estimates on 

Day 1 (henceforth referred to as the first and second session, respectively) and 

at the outset on Day 2. Analysis of mean reach endpoint errors revealed that they 

differed significantly between epochs (F(2.4,108.8) = 67.5, p <.001). Post-hoc 

analysis revealed a significant difference between No-Cursor reaches from the 

first session (Epoch 3) and baseline reaches (p <.001), wherein subjects’ 



 

 29 

reaching movements were deviated on average 11.8º (approximately 26% of the 

distortion) more rightward, in the expected direction of motor adaptation (Fig. 3, 

dark grey bar). These results show that subjects adapted their reaches in 

response to reach training with a misaligned cursor. The magnitude of the 

aftereffects measured on Day 1 decreased significantly with time. When tested in 

a second session (Epoch 4), after subjects had performed the Proprioceptive 

Estimates task (Epoch 4), mean endpoint errors had been reduced to 

approximately 4.7º (Fig. 3, light grey bar). Although smaller, these No-Cursor 

reaches made in the fourth epoch were still significantly deviated in the direction 

of adaptation, compared to baseline measures (p <.001). Interestingly, rather 

than observing an abrupt decay from the first to the second session, there was a 

gradual decline in the magnitude of endpoint error across trials of two flanking 

epochs on the first day (Fig. 3b). During the second session, this continuous 

reduction plateaued at approximately 5° in the direction of adaptation, relative to 

baseline performance, and interestingly, was still present at similar levels when 

re-tested the next day (Fig. 3b, Epoch 4 vs. 5). Specifically, aftereffects 

measured on Day 2 were relatively the same size as those in the last set of No-

Cursor reaches on Day 1 and thus did not significantly differ from one another 

(Fig. 3a, light grey vs. white bar)  (p = .05). Aftereffects from Day 2 relative to the 

baseline results were also significantly different (p <.001). 

In sum, these results confirm that motor adaptation on Day 1 was retained 

on Day 2, such that No-Cursor reaches from both sessions on Day 1 and those 

measured on Day 2 were significantly deviated compared to baseline reaches (p 
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<.001). Reach aftereffects at peak velocity displayed similar results to that of 

endpoint reach errors (Fig. 3a, diamonds). 

 

Fig. 3 a: Reach aftereffects seen as changes in endpoint error immediately after 
(Day 1) and 24 hours after (Day 2) training with misaligned feedback of the hand. 
These changes in endpoint errors were calculated by subtracting angular reach 
endpoint errors in the No-Cursor reach task, after training with an aligned cursor, 
from errors on Day 1 and 2 after training with a misaligned cursor. Dark grey bars 
show the change in hand movement before proprioceptive estimates (Epoch 1) 
and light grey bars show the change in endpoint error following proprioceptive 
estimates (Epoch 2). Errors at peak velocity were calculated (diamonds) by 
subtracting baseline measures of error at peak velocity from those obtained 
following training with a misaligned cursor. b: Mean endpoint error per trial in 
each epoch. R and L are used to indicate rightward and leftward directions, 
respectively. We see a gradual decline in adaptation, which plateaus around 5° 
rightward, in the direction of adaptation (Epoch 3, 4), which may be due to a lack 
of interleaved reach training. Motor adaptation is maintained around 5° when re-
tested the following day (Epoch 5). Error bars reflect SEM. 



 

 31 

Proprioceptive estimates of hand position 
 

Estimates of hand position following visuomotor adaptation were analysed 

to investigate proprioceptive recalibration both immediately following training and 

24 hours later. Figure 4a depicts the positions at which subjects perceived their 

hand to be aligned with each reference marker following aligned reach training 

(diamonds), rotated reach training (triangles), and 24 hours later (squares).  

Baseline measures of felt hand position revealed a slight leftward bias, which has 

been seen in our previous studies and been suggested to arise due to a 

systematic hand bias (Jones et al. 2010; Salomonczyk et al. 2012; Salomonczyk 

et al. 2013).  Mean bias estimates differed significantly when comparing those 

measured after aligned and misaligned training on Day 1 and again on Day 2 

(F(1.9,87.9) = 3.7, p = .028). Post-hoc analysis revealed that on average, 

subjects showed a significant 2º shift rightwards in felt hand position following 

rotated reach training, as compared to following aligned reach training (Fig. 4c, 

first white bar), (p = .039). When these subjects were re-tested on the 

proprioceptive estimates task the following day, we observed a 2º shift once 

again in hand bias relative to baseline measures (Fig. 4c, first grey bar), 

suggesting that the change in bias found immediately after training was perfectly 

retained 24 hours later. However, this 2º shift observed immediately following 

reach training and 24 hours later is lower than usually observed in previous 

experiments involving training with a misaligned cursor (Cressman and 

Henriques 2009; Salomonczyk et al. 2012). Upon further inspection, we noticed a 

number of subjects (n = 14, ~30%) who did not show a normal change in hand 
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bias following training with a rotated cursor (Fig. 4d, grey circles). Since testing 

for retention requires an initial change that can be retained, we performed a re-

analysis on a subgroup of subjects (n = 32) that did show a positive change in 

bias of at least 0.001º rightward, the expected direction of adaptation, when 

compared to baseline performance (Fig. 4d, hollow circles). Figure 4b depicts the 

positions at which subjects in the subgroup perceived their hand to be aligned 

with each reference marker following aligned reach training (diamonds), rotated 

reach training (triangles), and 24 hours later (squares). This subgroup’s mean 

bias estimates also differed significantly when comparing bias measured after 

aligned and misaligned training on Day 1 and again on Day 2 (F(1.7,55.6) = 13.7, 

p < .001). Post-hoc analysis revealed that on average, they showed a significant 

4.4º shift rightwards in their felt hand position following rotated reach training, as 

compared to following aligned reach training (Fig. 4c, second white bar), (p < 

.001).  More importantly, proprioceptive recalibration for Day 2 was 

approximately 2.8º, representing a 64% retention of the 4.4º change in bias seen 

immediately following misaligned reach training (p = .022). While this change in 

proprioceptive bias one day after training appears smaller than those produced 

immediately after reach training, this reduction did not reach significance (p = 

.189). These results suggest that changes in felt hand position following 

visuomotor adaptation can be partially retained up to 24 hours later, similarly to 

motor adaptation.  
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Proprioceptive estimates of hand position were comparable across all 

visual and proprioceptive (body midline) reference marker locations for all 

subjects (F(3,135) = 2.3, p = .075) and the subgroup (F(3,93) = 1.04, p = .378).  

A one-way ANOVA revealed that our subgroup did not differ from subjects 

that did not show a positive bias (grey circles in Fig. 4d) in their slope (i.e. 

uncertainty range) fitted to the proprioceptive estimates (F(1,132) = .457, p = 

.50). Notably, when re-analyzed, this subgroup also showed similar reach 

aftereffects as all of the subjects (mentioned above).   

We also applied a regression procedure and observed that retained mean 

change in aftereffects for all subjects (β = -.148, p = .439) as well as the 

subgroup (β = -.094, p = 0.654) were not a significant predictor of retained mean 

change in proprioceptive bias. 
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Fig. 4 a: Mean 2-dimensional (2-D) proprioceptive biases after all subjects were 
exposed to aligned (diamonds) and rotated (triangle) reach training (n = 46). 
Mean change in felt hand position measured the following day is represented by 
squares and the circles represent actual reference marker positions (biases for 
the proprioceptive marker are shown as hollow shapes). b: 2-D proprioceptive 
biases for our subgroup (n = 32). c: Mean change in bias following training with a 
misaligned cursor (white bars) as well as 24 hours later (grey bars). The first pair 
of bars is the measures for all our subjects, whereas the second pair is for the 
subgroup. Error bars reflect SEM. d: The mean change in proprioceptive 
estimates, for each subject, on Day 2 is plotted as a function of the change on 
Day 1. R and L are used to indicate rightward and leftward directions, 
respectively. Approximately 30% of subjects did not show any change in felt 
hand position in the direction of adaptation (grey circles) possibly due to lack of 
interleaved reach training. Those who showed a change of at least 0.001° in the 
positive direction were represented as hollow circles. 7 out of the 14 subjects 
who did not show a positive change on Day 1 did so 24 hours later by an 
average of 4.9° in the direction of adaptation. 
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Discussion   

       

The goal of this study was to examine whether induced changes in 

subjects' felt hand position following visuomotor adaptation were robust enough 

to be maintained into the following day, and if so, to determine their magnitude.  

We assessed motor adaptation (seen as aftereffects) and proprioceptive 

recalibration of hand bias (seen as a change in felt hand position) immediately 

after training with a rotated cursor and 24 hours later. We found that, following 

reach training with distorted visual feedback, subjects adapted their mean open-

loop reaching movements by 11.8°, or 26% of the distortion, in the first session, 

compared to baseline reaches. In the second session, following proprioceptive 

estimates, they had deviated mean reaching trajectories by 4.7°, or 10.4% of the 

distortion, compared to baseline. When retested 24 hours later, subjects showed 

motor retention of these adapted hand movements from Day 1 by 5.4°, 

approximately 46% of mean aftereffects shown in the first session, and complete 

retention of aftereffects shown in the second session. For subjects that displayed 

proprioceptive recalibration in the expected direction, felt hand position shifted by 

4.4° compared to baseline results, and did indeed retain 64% of this change the 

following day. In addition, their changes in reach aftereffects were similar to 

those reported for the entire group. These results suggest that following 

visuomotor adaptation, changes affecting the sensory system, specifically 

proprioception, can persist beyond initial training, up to at least 24 hours.   
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Proprioceptive and motor changes following visuomotor adaptation 
 

Although both proprioceptive and motor changes occur following 

visuomotor adaptation (Cressman and Henriques 2009), the nature of their 

relationship still remains unclear. In our labs previous work, changes in subjects' 

felt hand position were not significantly related to changes in their aftereffects 

after free-reach training with a misaligned cursor (Cressman and Henriques 

2009; Cressman and Henriques 2010b; Salomonczyk et al. 2011; Salomonczyk 

et al. 2012). However, the aforementioned relationship had not yet been 

investigated following an extended lapse of time. We found that proprioceptive 

recalibration of hand bias following visuomotor adaptation is still not significantly 

related to changes in aftereffects when measured approximately 24 hours after 

training with a misaligned cursor, suggesting that the two processes may occur 

concurrently through distinct processes. This idea is strongly supported in studies 

where specific generalization patterns occur. For instance, Mostafa and 

colleagues (2014), found that after training with a misaligned cursor, motor 

adaptation had transferred from subjects’ trained right (dominant) hand to their 

untrained left (non-dominant) hand, however proprioceptive changes did not 

transfer at all between hands and was only found in the arm exposed to the 

distortion. Generalization patterns have also been explored by Cressman and 

Henriques (2010a) wherein subjects’ hand movements and proprioceptive 

recalibration to novel targets were studied following visuomotor adaptation. They 

found that subjects’ reaches confirmed previous studies' observations of 

localized and narrow generalization patterns in motor adaptation (Krakauer et al. 
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2000; Wang and Sainburg 2005). Interestingly, proprioceptive recalibration 

generalized quite broadly in comparison, such that the magnitude of recalibration 

observed for the trained target direction was found at similar levels up to 90° 

CCW from the trained direction. They also found that after training with small 

cursor-gains, subjects’ reaches had been adapted, whereas their felt hand 

position was not recalibrated. They suggest that these generalization patterns in 

sensory and motor plasticity may be the result of two respective error signals 

processed in different areas of the brain: one that arises from a discrepancy 

between desired and actual movement, mainly responsible for motor changes, 

and one from a discrepancy between visual and proprioceptive estimates of hand 

position, mainly responsible for sensory changes.  

 

Retention of motor adaptation  
 

Consistent with previous studies, subjects' reaches following visuomotor 

adaptation remained deviated in the direction of adaptation up to one day later. 

Although most studies measure retention through facilitation, in the form of 

savings or increased re-adaptation rates, we wished to compare changes in 

sensory estimates with those changes observed in motor endpoint error. Mean 

aftereffects observed only 24 hours later compared to the mean of those 

immediately following rotated reach training were smaller, with only 46% 

retained, in comparison to those observed up to an entire year later as found by 

Yamamoto et al. (2006), who showed up to 91% retention relative to the initial 

post-test. One explanation for the latter's high to near perfect retention of 
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aftereffects after an extended period of time may have been due to the joystick 

paradigm itself, whereas similar results may be less likely for reaches which are 

less restrained to a particular tool.  Specifically, certain perturbations may provide 

a sufficiently distinct context such that everyday movements would not interfere 

with learning and retention following adaptation (Brashers-Krug et al. 1996; 

Wolpert et al. 1998; Krakauer et al. 1999). 

Aftereffects were measured following training with a rotated cursor both 

before (Epoch 3) and right after (Epoch 4) the Proprioceptive Estimates task, 

which took approximately 25-30 minutes to complete. The smooth continuous 

decrease in reach adaptation across trials suggests that this estimation task 

between the two epochs did not cause nor accelerate this decay, and that the 

smaller aftereffects seen in Epoch 4 are likely due to a gradual washout.  In 

some of our other studies on this topic, we try to maintain the same level of reach 

adaptation by interleaving rotated-cursor training with proprioceptive estimate 

trials; a technique that others have also used for similar purposes (Kesten 1958; 

Simani et al. 2007; Synofzik et al. 2008; Ostry et al. 2010). Nonetheless, this 

continuous decrease in reach aftereffects appears to saturate at approximately 

5° on Day 1 (Epoch 4) and seems to be maintained into the following day at a 

similar level (Fig. 3b, Epoch 5). Specifically, when measured 24 hours later, 

aftereffects from the second epoch (Epoch 4) after training on Day 1 were almost 

completely preserved on Day 2. Smith et al. (2006) describes two adaptive 

processes that result from learning: a fast-learning and a slow-learning process. 

Since the fast-learning process is thought to decay much earlier than its 
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counterpart, its gradual waning would reveal the slow-learning process that is 

thought to be responsible for savings and anterograde interference (Shadmehr et 

al. 2010). It is possible that aftereffects observed immediately after training, in the 

first session (Epoch 3), may account for a combination of the two processes 

including this fast-learning process of adaptation highly involved in initial learning, 

whereas those observed after the gradual decay are the resulting aftereffects 

from slow-learning process.  Furthermore, it is these robust aftereffects resulting 

form the slow-learning process, accounting for 40% of the first set of aftereffects, 

which are retained the next day. In a study by Joiner and Smith (2008), a force-

field adaptation task was used to study the relationship between initial learning 

and long-term retention; retention measured 24 hours later was observed to have 

a very similar shape as the model-predicted slow learning process (r = 0.99), 

suggesting that the slow process contributes strongly to retention of motor 

memories, whereas the fast-process does not.  

Our results can also be explained by Berniker and Kording's (2008) 

source-estimation model, based on how a person's nervous system attributes 

observed movement errors, such as when adapting to a perturbation. 

Specifically, does one principally assign the source of errors to changes in world-

based or body-based properties?  Depending on the source of the motor errors, 

motor adaptation can vary from a transient to a more long-term change.  The 

rather quick decrease in initial aftereffects seen immediately following visuomotor 

adaptation (Fig. 3b, Epoch 3) may principally reflect world-based updates as the 

subject adapts their movements. The retention of motor changes such as those 
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seen on the second day in Epoch 5 (Fig. 3b), as well as the last set of 

aftereffects (Epoch 4), may strongly reflect an update of the visuomotor mapping 

that is more specific to the body than world-based, and thus is a more persistent 

form of adaptation. Additionally, given our findings in this study on the 

persistence of proprioceptive recalibration, changes in proprioceptive hand 

position, both immediately and the 24 hours later, may also reflect predominantly 

body-based source errors.   

 

Retention of proprioceptive recalibration 
 

Our main interest for this study was the degree of retention with regard to 

changes in proprioceptive hand position following visuomotor adaptation, which 

had not been investigated to date. When we analysed our entire group of 

subjects, we found that, on average, individuals significantly recalibrated their 

sense of hand position to be 2° more to the right (the direction of motor 

adaptation) compared to baseline measures. When tested the following day, 

subjects showed perfect retention (99.6% retained) of this shift in felt hand 

position. However, given the smaller magnitude following adaptation compared to 

our previous papers (~6° change with a 30° distortion) (Cressman and Henriques 

2009; Cressman and Henriques 2010b; Cressman et al. 2010; Salomonczyk et 

al. 2011), we investigated further and noticed a group of subjects who did not 

show a shift in the expected direction following training with a visuomotor 

discrepancy (Fig. 4d, grey circles), despite having equivalent slopes (or 

uncertainty ranges) as the others, confirming correct performance of the task. 
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These subjects may not have shown expected recalibration due to a lack of 

interleaved reach training, which would have helped maintain proprioceptive 

recalibration throughout the experiment. For instance, in our previous studies that 

had weaved reach training trials throughout proprioceptive estimates, 

approximately 83 to 100% of subjects showed the expected shift in sense of 

hand position (Cressman and Henriques 2009; Cressman and Henriques 2010b; 

Cressman et al. 2010; Salomonczyk et al. 2011; Salomonczyk et al. 2012; 

Clayton et al. 2013), whereas in those that had not (Salomonczyk et al. 2013; 

Mostafa et al. 2014), only 72 to 91% of subjects showed this recalibration. 

However, interleaving rotated reach training with the proprioceptive estimates 

task in this study would have proven to be problematic, since any type of re-

training on Day 2 had to be avoided in order to ensure we were testing for 

retention of motor and proprioceptive changes.  

So that we may draw clear conclusions on the persistence of 

proprioceptive recalibration, we then only looked at participants (32 in total, or the 

remaining 70%) who showed at least a 0.001° proprioceptive shift in bias in the 

direction of the distortion. This allowed us to see whether participants who 

showed at least some changes in felt hand position continued to do so the 

following day. On average, the shift in the felt hand position for these 32 subjects 

increased to approximately 4.4° and their estimates of hand position were 

significantly shifted by 2.8°, compared to baseline, 24 hours later.  These results 

are similar to those found by Ostry et al. (2010) where subjects retained a shift of 

2 mm in perceived limb position following 24 hours after adaptation to a force-
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field.  While the size of the retention of proprioceptive recalibration in this study 

appears rather small, it is similar, if not larger, than the changes in felt hand-

motion found by Ostry et al, such that the somatosensory changes they observed 

were about 10% of the size of initial reach aftereffects on Day 1 (~20 mm) 

compared to 17% for all our subjects and 24% for our subgroup.   

 

Offline gains 
 
 Consolidation refers to the stabilization of learned memories post-

acquisition and can prevent decay or interference. This is done by modifying 

intracellular cascades at the synaptic level, synthesizing specific neuronal 

proteins, and reorganizing the neural networks that represent the memory (Dudai 

2004). Some studies have shown that consolidation improves performance, 

following training, without any additional practice (termed "offline gains") and can 

be influenced by sleep (Robertson et al. 2005; Walker et al. 2002). In addition, 

memory consolidation has been shown to help reduce learned motor changes' 

susceptibility to disruption or interference by a second competing motor memory 

(Brashers-Krug and Shadmehr 1996; 1997). For instance, Walker et al. (2003) 

tested two different groups, one that had learned a first sequence of finger-

tapping movements and one that learned a second one right after the first. The 

first group displayed sleep-dependent enhancements such as increased speed 

and accuracy when tested 24 hours later. However, for the group that had 

learned a second sequence, interference was seen such that improvements in 
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accuracy were only seen for the second tapping task they had learned and not 

the first. Both groups showed improvements related to speed.  

Interestingly, in the current study, 7 out of the 14 subjects who did not 

show a change in hand position in the expected direction of adaptation 

immediately following visuomotor adaptation, did so 24 hours later by an average 

of 4.9° rightwards (Fig. 4d, top left quadrant). It may be possible that for a small 

number of people, this change in proprioception benefits by offline gains.  

 

Conclusion 

 

In summary, subjects expectedly showed motor adaptation and 

proprioceptive recalibration following visuomotor adaptation. As shown in 

previous studies, their adapted reach movements were retained up to the next 

day following training with a perturbed cursor. More importantly, subjects’ 

induced sensory changes, specifically proprioception, persisted up to 24 hours 

later as well. These results suggest that sensory memory may play a significant 

role alongside motor memory with regards to the long-term changes an individual 

may experience following visuomotor adaptation. Further investigation may 

provide insight into the relationship between both of these processes. 
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Appendix A: Subject form 
 
Informed Consent Form (for unpaid participants) 
Date:  ________    Study Name: Multisensory interaction in motor control and learning 
Researchers: Nilufer Nourouzpour (MSc)1, 2, Danielle Salomonczyk(PhD)2, 3, Erin K. Cressman(PhD; Co-
Supervisor)4, and Denise Y. P. Henriques (Principal Investigator)1, 2, 3 
 
1 School of Kinesiology and Health Science, York University, Toronto, Canada 
2 Centre for Vision Research, York University, Toronto, Canada 
3 Department of Psychology, York University, Toronto, Canada 
4 School of Human Kinetics, University of Ottawa, Ottawa, Canada 
 
What You Will Be Asked to Do in the Research: You will be asked to reach or point toward visual targets 
displayed on a screen and/or point to your unseen other hand (felt target).  In most tasks, you will be sitting 
comfortable in a chair, but some tasks, you will sit in a chair that swivels left and right while you aim your hand 
to a target.   
 
Risks and Discomforts: We do not foresee any risks or discomfort from your participation in the research.   
Benefits of the Research and Benefits to You:  You will receive 3 credits for participation in this study. 
 
Voluntary Participation: Your participation in the study is completely voluntary and you may choose to stop 
participating at any time.  Your decision not to volunteer will not influence your relationship with us or anyone 
else at York University either now, or in the future. 
 
Withdrawal from the Study:  You can stop participating in the study at any time, for any reason, if you so 
decide.  If you decide to stop participating, you will still be eligible to receive the promised pay for agreeing to 
be in the project.  Your decision to stop participating, or to refuse to answer particular questions, will not affect 
your relationship with the researchers, York University, or any other group associated with this project. In the 
event you withdraw from the study, all associated data collected will be immediately removed from our 
computers. 
 
Confidentiality: All information you supply and recording of your arm movements or judgments about hand 
location during the experiment will be held in confidence, your name will not appear in any report or publication 
of the research.  Your data will be safely stored password protected computers in our locked laboratory and only 
research staff will have access to this information. We will keep your information and recording will be 
destroyed after the study has been published. Confidentiality will be provided to the fullest extent possible by 
law. 
 
Questions About the Research?  If you have questions about the research in general or about your role in the 
study, please feel free to contact  Dr. Denise Henriques either by telephone at (416) 736-2100, extension 77215 
or by e-mail (deniseh@yorku.ca).  This research has been reviewed and approved by the Human Participants 
Review Sub-Committee, York University’s Ethics Review Board and conforms to the standards of the Canadian 
Tri-Council Research Ethics guidelines.  If you have any questions about this process, or about your rights as a 
participant in the study, please contact the Sr. Manager & Policy Advisor for the Office of Research Ethics, 5th 
Floor, York Research Tower, York University (telephone 416-736-5914 or e-mail ore@yorku.ca). If you have 
any questions the Graduate Program in Kinesiology and Health Science office may also be contacted at 341 
Bethune College, York University (telephone 416-736-5728 or e-mail kahs@yorku.ca). 
 
Legal Rights and Signatures: 
I ______________________, consent to participate in this study conducted by Dr. Denise Henriques and her 
research team.  I have understood the nature of this project and wish to participate.  I am not waiving any of my 
legal rights by signing this form.  My signature below indicates my consent. 
 
Signature     Date        
Participant 
 
 
Signature     Date        
Principal Investigator 


