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Abstract

In the context of crowd simulation, there is a diverse set of algorithms that

model steering, the ability of an agent to navigate between spatial locations, while

avoiding static and dynamic obstacles. The performance of steering approaches,

both in terms of quality of results and computational efficiency, depends on internal

parameters that are manually tuned to satisfy application-specific requirements.

This work investigates the effect that these parameters have on an algorithm’s

performance. Using three representative steering algorithms and a set of established

performance criteria, we perform a number of large scale optimization experiments

that optimize an algorithm’s parameters for a range of objectives.

For example, our method automatically finds optimal parameters to minimize

turbulence at bottlenecks, reduce building evacuation times, produce emergent pat-

terns, and increase the computational efficiency of an algorithm. Our study includes

a statistical analysis of the correlations between algorithmic parameters, and per-

formance criteria. We also propose using the pareto-optimal front as an efficient
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way of modelling optimal relationships between multiple objectives, and demon-

strate its effectiveness by estimating optimal parameters for interactively defined

combinations of the associated objectives. The proposed methodologies are general

and can be applied to any steering algorithm using any set of performance criteria.
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1 Introduction

Simulating groups of autonomous virtual humans (agents) in complex, dynamic

environments is an important issue for many practical applications. A key aspect of

autonomous agents is their ability to navigate (steer) from one location to another in

their environment, while avoiding collisions with static as well as dynamic obstacles.

The requirements of a steering approach differ significantly between applications

and between application domains. For example, computer games are generally

concerned with minimizing computational overhead and often trade quality for

efficiency, while evacuation studies often aim to generate plausible crowd behaviour

that minimizes evacuation times while maintaining order.

There is no definitive solution to the steering problem. Most of the established

methods are designed for specific classes of situations (scenarios) and make different

trade-offs between quality and efficiency. The fine balance between these often

competing performance criteria is governed by algorithm-specific parameters that

are exposed to the user. Some of these parameters have intuitive direct effects. For
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example, the value of a comfort zone affects how close agents may come to each

other, while the neighbour horizon limits the distance from an agent within which

other agents are considered during steering. This significantly influences both the

predictive power and computational efficiency of the associated method. However,

even when the parameters are fairly intuitive, their combined effect, or their effect

on the macroscopic behaviour of a large crowd, is not always easy to predict. For

this reason, the inverse question is particularly interesting. Given a pattern of

behaviour and a performance criterion (metric) or a trade-off between performance

metrics, can we automatically select the parameter values of a steering algorithm

that will produce the desired effect? This is a timely and important question, and

the focus of our work.

We begin our study by looking at the independent effects of parameters. Using

a simple equidistant parameter sampling strategy we analyze the effects individual

parameters have on different performance measures. We perform additional corre-

lation analysis over the parameters and the metrics to identify parameters that have

the greatest effect on different performance measures. It can easily be shown that

these methods are incapable of finding a globally optimal solution, but the results

can be used in a number of ways. For example, using the correlation analysis we

can identify the most important parameters of a steering algorithm and then limit

our optimization on them.
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We present a methodology for automatically fitting the parameters of a steering

algorithm to minimize any combination of performance metrics across any set of

environment benchmarks in a general, model-independent fashion. Using our ap-

proach, a steering algorithm can be optimized for the following: success; quality

with respect to distance, time, or energy consumption of an agent; computational

performance; similarity to ground truth; user-defined custom metrics; or, a weighted

combination of any of the above. Optimizing an algorithm’s parameters across a

representative set of challenging scenarios provides a parameter set that generalizes

to many situations. A steering approach may also be fitted to a specific bench-

mark (e.g., a game level), or a benchmark category (e.g., evacuations) to tailor its

performance for a particular application.

We demonstrate our proposed methodology using three established agent-based

algorithms: (1) PPR: a hybrid approach that uses rules to combine reactions, pre-

dictions, and planning [Singh et al., 2011], (2) ORCA: a predictive technique that

uses reciprocal velocity obstacles for collision avoidance [van den Berg et al., 2011],

and (3) SF: a variant of the social forces method for crowd simulation [Helbing et al.,

2000]. We thoroughly study these algorithms and compute their optimal parameter

configurations for different metric combinations on a representative scenario set of

local agent interactions and large-scale benchmarks. For example, our method au-

tomatically finds optimal parameters to minimize turbulence at bottlenecks, reduce
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building evacuation times, produce emergent patterns, and increase the computa-

tional efficiency of an algorithm, in one case by a factor of two. Cross-validation

shows that, on average, optimal parameter values generalize across scenarios that

were not part of the test set. Our study includes an in-depth statistical analysis of

correlations between algorithmic parameters and performance criteria.

We also study the interesting and challenging problem of dynamically tuning

the parameters of an algorithm to support interactively defined combinations of ob-

jectives. For most practical cases, it is not feasible to solve this problem in real-time

each time the combination changes. To address this issue we precompute optimal

trade-offs between the objectives in the form of a discrete approximation of the

pareto-optimal front . During runtime, our method efficiently estimates the param-

eters of the algorithm that optimally support a new combination of the objectives.

1.1 Contributions

1. We propose a statistical framework that can be used to identify the rela-

tionship between a steering algorithm’s parameters and a set of quality and

performance objectives.

2. An analysis of the effects parameter changes have on a number of different

steering algorithms, PPR, ORCA and SF.
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3. A set of optimal parameter settings for each of the steering algorithms for

each of the objectives used.

4. A model-independent solution that automatically fits a steering algorithm’s

parameters to maximize its performance, and we demonstrate its effectiveness

with a use-case analysis of many popular crowd simulation techniques.

5. A general method to produce a pareto-optimal front between a number of

objectives that can be used to form a dynamic blending function between

objectives.

1.2 Outline

The rest of this work is organized in a number of chapters. Chapter 2 describes

recent work in the area of crowd simulation and related work on optimization

methods used in the field of computer animation. In Chapter 3 we outline the

software foundation used in this research. The methodology and mathematical

formulation needed for optimization is found in Chapter 4. Chapter 5 contains

results and discussion from early experiments and studies on independent param-

eters. Then in Chapter 6, we discuss multi-variate optimization. In Chapter 7,

we study multi-objective optimization and optimal trade-offs between objectives

using pareto-optimal front estimation. Chapter 8 presents additional results and
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use cases. Chapter 9 concludes the thesis with a discussion of future work and

limitations of the framework.
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2 Related Work

Since the seminal work of [Reynolds, 1987; Reynolds, 1999a], crowd simulation

has been studied from many perspectives. We refer the readers to comprehensive

surveys [Pelechano et al., 2008; Huerre et al., 2010; Thalmann and Musse, 2013]

and present a broad review below.

2.1 Steering Techniques

Centralized techniques [Milazzo et al., 1998; Hoogendoorn, 2003; Henderson, 1971;

Lovas, 1994; Treuille et al., 2006] model the characteristics of the crowd flow rather

than individual pedestrians. Such models are of value in computing macroscopic

simulations involving thousands of agents (e.g. stadium evacuation scenarios, urban

simulations, etc). However, these approaches are unable to model specific agent-

agent interactions which are crucial in a microscopic view of crowd simulations that

are prevalent in today’s games.

Continuum-based techniques [Treuille et al., 2006; Narain et al., 2009] model

7



the characteristics of the crowd flow to simulate macroscopic crowd phenomena.

Particle-based approaches [Reynolds, 1987; Reynolds, 1999a] model agents as parti-

cles and simulate crowds using basic particle dynamics. The social force model [Hel-

bing et al., 2005; Pelechano et al., 2007] simulates forces such as repulsion, attrac-

tion, friction and dissipation for each agent to simulate pedestrians. Rule-based

approaches [Lamarche and Donikian, 2004; Sud et al., 2007] use various conditions

and heuristics to identify the exact situation of an agent. Egocentric techniques [Ka-

padia et al., 2009; Kapadia et al., 2012] model a local variable-resolution percep-

tion of the simulation. Data-driven methods [Lee et al., 2007; Lerner et al., 2007;

Ju et al., 2010; Boatright et al., 2013] use existing video or motion capture data to

derive steering choices that are then used in virtual worlds, and recent work [Ondřej

et al., 2010] demonstrates a synthetic vision-based approach to steering by mod-

elling the optical flow from an agent’s perspective. The work of [Paris et al., 2007;

van den Berg et al., 2011] uses predictions to steer in environments populated with

dynamic threats.

Commercial and open-source software [Regelous, 2014; Mononen, 2009; Axel Buen-

dia, 2002; Singh et al., 2009b] provide complete steering and navigation solutions

using variations of the aforementioned techniques.
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2.2 Crowd Evaluation

There has been a growing recent trend of using statistical analysis in the evaluation

and analysis of crowd simulations. The work of Lerner et al. [2010] adopts a data-

driven approach to evaluating crowd simulations by measuring the simulations’ sim-

ilarity to real world data. Singh et al. [2009a] proposes a compact suite of manually

defined test cases that represent different steering challenges and a rich set of de-

rived metrics that provide an empirical measure of the performance of an algorithm.

Recent extensions [Kapadia et al., 2011a] propose a representative sampling of chal-

lenging scenarios that agents encounter in crowds to compute the coverage of the

algorithm, and the quality of the simulations produced. Density measures [Lerner et

al., 2010] and fundamental diagram-based comparisons [Seyfried et al., 2010] use ag-

gregate metrics, like speed, for quantifying similarity. The work of [Guy et al., 2012;

Pettré et al., 2009] measures the ability of a steering algorithm to emulate the be-

haviour of a real crowd dataset by measuring its divergence from ground truth.

[Musse et al., 2012] presents a histogram-based technique to quantify the global

flow characteristics of crowds. Perceptual studies rely on human factor experi-

ments to measure the variety in visual appearance and motion [McDonnell et al.,

2008], or perceptual fidelity of relaxing agent collisions (intersecting agents) [Kulpa

et al., 2011] in crowds.
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2.3 Parameter Optimization in Computer Animation

Parameter fitting is widely used in visual effects [Bruckner and Moller, 2010] to

automate the tuning of model parameters to meet certain user-defined criteria. The

resulting optimization problems tend to involve non-convex and high-dimensional

spaces. For these problems evolutionary strategies, based on the ideas of evolution

and adaptation, are preferred. These strategies generally have fewer parameters to

tune and do not require the computation of derivatives. Such techniques have been

successfully demonstrated on a diverse set of application domains [Ha et al., 2013;

Wang et al., 2010]. By selecting the right set of parameters, researchers have

shown improvements in a steering algorithm’s ability to match recorded crowd

data [Johansson et al., 2007; Pettré et al., 2009; Pellegrini et al., 2009; Davidich

and Koester, 2011; Lemercier et al., 2012].

2.4 Concurrent Work

Concurrent work with the present thesis [Wolinski et al., 2014] explores parameter

estimation of steering algorithms to match reference data for specific scenarios. Our

method is not tied to ground truth and can be used to optimize quantitative metrics

such as the computational performance of the algorithm. Additionally, we leverage

the use of different test sets including small-scale interactions and high-density
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crowds, to obtain optimal parameter values that generalize across the space of

possible scenarios. To offset the computational burden of optimizing an algorithm

for different criteria, we propose a method to precompute the mapping between

an algorithm’s parameters and objective weights, thus allowing us to dynamically

adapt the crowd behaviour at real-time rates.

Although prior work has entertained the notion of parameter tuning in certain

specific cases, a methodology to identify the mapping between a steering algorithm’s

parameters and performance objectives has not been developed yet. Such a study

is an important and timely next step, and it is the focus of this thesis.
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3 Outline of the Framework

We built this framework from a pre-existing crowd simulator called SteerSuite.

We briefly describe what SteerSuite is and the modifications that were done to

SteerSuite in order to perform this research.

3.1 SteerSuite

SteerSuite [Singh et al., 2009b] is a modular framework that is used to simulate

and evaluate steering algorithms. There exist few libraries that can be used to

prototype and experiment with steering algorithms. One of the first [Reynolds,

1999b] demonstrated many basic steering behaviours. A much newer framework

called OpenSteer [Reynolds and others, 2004] can be used to help build steering

algorithms, but not compare them. SteerSuite is designed to make it easier to

develop, test and analyze steering algorithms. The system includes a number of

example scenarios, many steering algorithms and SteerBench [Singh et al., 2009a],

which can be used to profile the performance and behaviour of steering algorithms.
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For this work we extended some functionality of the SteerSuite framework. To

make the framework more robust we added support for different types of static

obstacles. In order for calculations to be more accurate, methods to smooth A*

grid-based paths were included. We added more methods to the generic agent

interface to allow us to calculate more information about the agents during simu-

lation. To be able to switch between different example simulation many command

line arguments were added. A GUI was added to the SteerSuite framework called

AntTweakBar1 to give the user better interactive control over a simulation. In

order to support interpolation methods used later in this work we added the qhull2

library to SteerSuite. Lastly, we added two steering algorithms to the framework,

which are described in the next section.

3.1.1 Steering Algorithms

Steering algorithms, or dynamic navigation algorithms, are used to control the

locomotion decisions of agents during a simulation. The navigation problem is

complex because of the static and dynamic obstacles that exist in the environment.

There are many methods that attempt to conquer this problem domain.

Every steering algorithm has a number of parameters that can be changed by the

1http://anttweakbar.sourceforge.net/doc/

2http://www.qhull.org/
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user. Changing the parameters of a steering algorithm often changes dramatically

the behaviour of the agents. We demonstrate our approach using the following

established algorithms that model different steering approaches.

1. PPR [Singh et al., 2011] presents a hybrid framework that combines reaction,

prediction, and planning. It is an example of a rule-based method for agent

steering and has 38 independent parameters. For example, avoidance-turn-

rate defines the turning rate adjustment speed in proportion to the typical

speed and query-radius controls the radius around an agent that PPR uses

to predict collisions with other objects and agents.

2. ORCA [van den Berg et al., 2011] is a very popular method that uses optimal

reciprocal collision avoidance (ORCA) to efficiently steer agents in large-scale

crowds. A subset of its independent parameters are: max-neighbors, the

maximum number of nearby agents that an agent will take into consideration

when making steering choices; max-speed, the maximum speed that an agent

may travel with; and time-horizon, the minimal time for which an agent’s

computed velocity is safe with respect to other agents.

3. SF [Helbing et al., 2000] uses hypothetical social forces for resolving collisions

between interacting agents in dense crowds. In addition to general parameters

similar to the other methods, the social forces model has associated param-
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eters that govern an agents’s relative influence to neighboring agents. One

such influence is interpersonal repulsion that models peoples’ desire to avoid

getting close to each other. This repulsion is controlled by the agent repulsion

parameter.

The SF and ORCA steering algorithms were added to SteerSuite for this work.

There is a publicly available library for ORCA that was integrated into SteerSuite.

We needed to add global planning on top of this library as it did not come with

such functionality. The SF steering algorithm had to be implemented from scratch

based on a combination of the social forces model [Helbing et al., 2000] and the

High-Density Autonomous Crowds (HiDAC) model [Pelechano et al., 2007].

3.1.2 Scenario Description

A scenario is an initial configuration of a simulation. It usually includes the initial

positions of the obstacles and agents, and additional information on the agents’

parameters, such as desired velocity and target location. The space of possible

scenarios is extremely large. A basic scenario can be seen in Figure 3.1.

Many features were added to SteerSuite that annotate scenarios and different

steering algorithms. These annotations include position histories, ability to control

the colour of agents in the simulation per scenario, and to record the current state

of the simulation to a text file.
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3.1.3 Scenario Module

In crowd simulation it is common to evaluate steering algorithms over a small set

of manually designed benchmarks. The scenario module, a package in SteerSuite,

can randomly generate a very large number of benchmarks. It allows the user to

generate benchmarks with specific characteristics, for example benchmarks involv-

ing more than 4 agents. This method was first used in [Kapadia et al., 2011b],

where the total space of possible scenarios was considered and a formulation of a

representative set of all the scenario space was created. The scenario module is

used in this work as a primary means to generate and execute many scenarios.

We extended the scenario module with a parallelized playback mechanism that

allows us to replay segments from a large number of simulated scenarios.

3.2 SteerStats

SteerStats acts as a wrapper for SteerSuite in order to make the processes of calling

and collecting the statistical information a single function. When using the scenario

module, all of the statistics for the simulation are recorded and can be accessed by

SteerStats. The wrapper accepts many arguments that are passed to the scenario

module when running SteerSuite that indicate, amongst many other things, the

kinds of data to be collected from the simulation and the type of simulations to be
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executed.

3.2.1 SteerSuite Interface

The SteerSuite interface wrapping is not a direct Python wrapping of the C++

library. Instead, the wrapping calls the executable using a mechanism similar to a

system call, passing all the relevant simulation parameters to the executable pro-

gram. The wrapping of SteerSuite is done in two parts. The first part is primarily

designed to read, parse and organize the simulation data that is recorded by the

scenario module. The second part is used to control the execution of SteerSuite and

the arguments passed. In addition, various forms of parallelization are supported to

allow for more efficient collection of data and execution of SteerSuite on multi-core

systems.

3.2.2 SteerStats Database

The SteerStats framework also supports integration with the postgreSQL database3.

This integration provides a number of useful features:

1. Facilitates full data recording.

2. Allows for easier analysis/data mining.

3http://www.postgresql.org/
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3. Enforces a structured organization to the data.

3.2.2.1 Schema

The schema used to organize the data in the data base is rather standard. A brief

diagram of the schema is presented in Figure 3.2. The organization uses join tables

between the different tables to organize various types of data logged by the system.

Each scenario is stored as a test in the database. Many tests can be associated

with a single test set, which also stores the simulation configuration. If desired a

video and re-playable raw recording of the simulation can also be associated with

a test. Lastly, there are a number of tables for each steering algorithm that store

information on the algorithms settings during simulation.

3.2.3 Discussion

The SteerSuite framework has been designed for ease of use. The goal is to make a

call to SteerStats a single function which can later be used by different methods to

analyze the performance of steering algorithms. All of the code and functionality for

SteerStats was created for this work, as well additional code to integrate SteerStats

into different optimization algorithms.
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Figure 3.1: A basic scenario in SteerSuite with 6 agents. The goals of the agents

are marked by the small flags poles and the dark green blocks are static obstacles.

The arrows on the agents indicate initial facing direction and the blue agent is the

reference agent.
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Figure 3.2: SteerStats database schema. The relationships between the algorithm

data and the test case data can be seen. The foreign key constrains to other tables

also show how to access data related to a particular test case. For brevity, not all

the columns in the tables are listed in this figure.
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4 Experiment Formulation

In this chapter we present a framework for analyzing the effects of parameters

v ∈ V of an algorithm, Av. The next sections describe the elements involved in

this framework.

In order for this analysis of the steering algorithms to be more independent of a

particular scenario, a number of test sets are created. These test sets will be used

across the steering algorithms for analysis and optimization. These test sets are

the best known samplings of the space of difficult scenarios. Using this difficulty

sampling results in our analysis and optimizations to be more general. We also

define a number of objectives that are used to measure different elements of the

steering algorithm’s performance and a weighted combination of these objectives.

4.1 Generating Test Sets

We employ different benchmark sets including local agent interactions and high-

density crowds to find the optimal values of an algorithm’s parameters that gen-
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eralize across the wide range of situations that agents encounter in crowds. Note

that certain performance metrics may have more meaning for specific test sets. For

example, computational efficiency is more meaningful for situations that involve

sufficiently large numbers of agents.

Large Scale Set. S contains most of the large-scale benchmarks in Table 4.1

that define large environments with many agents. Sv is a set similar to S but

with different large-scale benchmarks that will be used to validate the results of

parameter optimization on previously unseen cases (cross-validation).

Benchmark # Agents Description

Random 1000 Random agents in open space.

Forest 500 Random agents in a forest.

Urban 500 Random agents in an urban environment.

Hallway 200 Bi-directional traffic in a hallway.

Free Tickets 200 Random agents to same goal, then disperse.

Bottleneck 1000 Tight bottleneck.

Bottleneck evac 200 Evacuation through a narrow door.

Concentric circle 250 circle with target on opposite side.

Concentric circle 500 circle with target on opposite side.

Intersection 400 4-way directional traffic.

Table 4.1: Large scale benchmarks. The bottom three scenario are part of Sv. All

are designed to stress the steering algorithm’s computational efficiency.

Representative Set. The representative scenario set, R, includes 5000 samples

of a wide range of local interactions. It is designed to include challenging local
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scenarios and to exclude trivial or invalid cases. We constructed it in a fashion

similar to [Kapadia et al., 2011a], following these general guidelines: (a) the refer-

ence agent is placed near the centre of the scenario, (b) agent targets are placed

at the environment boundary, and (c) non-reference agents are distributed at loca-

tions that maximize the likelihood that their static paths will intersect the reference

agent’s static path to its target. We use the same method to generate another set

of the same size, Rv, for cross-validation. We use the representative set because

it provides the best sampling of the full space of possible scenarios. Therefore,

optimizing for the representative set should give better results in general for any

scenario.

Combined Test Set. The union of the large scale set, S, and the representative

set, R, T = S ∪R, is the main test set that we use for algorithm analysis and pa-

rameter fitting with a significant number of tests. Here we use significance number

of tests to contrast against common practise in crowd simulation where results are

demonstrated on a very limited number of test cases.

Combined Validation Set. Similarly, the combined cross-validation set is T v =

Sv ∪Rv.

Custom Scenario Set. A user can specify a subset of scenarios in T or even

design custom benchmarks to focus the parameter fitting on application-specific

requirements. Random permutations in the environment configuration and agent
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placement can generate multiple samples of a custom benchmark category. For ex-

ample, one can create a set of test cases that capture two-way traffic in orthogonally

crossing hallways as is common in large buildings.

Ground Truth Test Set. There are few publicly available data sets of recorded

crowd motion which can be used to test a steering algorithm’s ability to match

real world data. We use a ground truth test set G, published by [Seyfried et al.,

2010], for our experiments. This data includes many recordings of crowds funnelling

through passageways, bi-direction hallways, room evacuations, ect.

4.2 Performance Measures

Given an appropriate test set, we want to compute normalized quantities (metrics)

that characterize important aspects of a steering algorithm’s performance. Re-

cently, a number of intuitive performance metrics have been proposed that include:

(a) the fraction of scenarios that an algorithm is unable to solve in a representative

set of scenarios, (b) quality measures with respect to distance travelled, total time

taken, or energy consumption of an agent, (c) computational performance of the

algorithm, and (d) statistical similarity with respect to ground truth. The specific

metrics that we use in our experiments are briefly described below4. One can also

4For more details see [Kapadia et al., 2011a; Berseth et al., 2013; Guy et al., 2010a; Guy et
al., 2012]
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define custom metrics to meet application-specific requirements.

Failure Rate. The coverage c(Av) of a steering algorithm Av over a test set T is

the ratio of scenarios that it successfully completes in T . An algorithm successfully

completes a particular scenario if the reference agent reaches its goal without any

collisions and the total number of collisions among non-reference agents is less

than the number of agents in the scenario. This measure of success removes many

artifacts and unrealistic solutions to a scenario. The failure rate is the complement

of coverage d(Av) = 1−c(Av). It captures the ratio between the number of scenarios

not successfully solved and the total number of scenarios in T .

Distance Quality. For a single small scale scenario s we define the distance quality

metric qd(Av) of an algorithm Av as the complement of the ratio between the length

of an ideal optimal path ods, and the length of the path that the reference agent

followed, ads:

qd(Av) = 1− ods
ads

. (4.1)

The ideal optimal path is the shortest global path from the agent’s initial po-

sition to its goal after line-of-sight smoothing [Pinter, 2001]. If the algorithm does

not successfully complete the scenario, then the associated distance quality metric

is set to the worst-case value of 1. For a large-scale scenario we compute qd(Av) as

the average over all agents and for a set of scenarios, we computed it as the average
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over the set.

Time Quality. Similarly, qt(Av) characterizes how much longer the reference agent

took to reach its goal compared to an ideal optimal time. The ideal optimal time

ots as:

qt(Av) = 1− ots
ats
, (4.2)

where ats is the time it took the agent to reach its goal in the scenario s. If the

algorithm does not successfully complete the scenario, then the metric is set to the

worst-case value of 1. For large scale scenarios, this metric represents the average

over all agents, and for a set of test cases the average over the set.

PLE Quality. The principle of least effort characterizes the energy expenditure

of a reference agent over a path travelled [Guy et al., 2010a] as follows:

pe = m

∫ tend

tstart

(es + ew)|v|2dt, (4.3)

where es and ew
5 are commonly used energy terms for the average person [Whittle,

2007], v is the velocity and the mass, m is set to 1 in our experiments. The PLE

quality metric, qe(Av), is computed similar to the other metrics as follows:

qe(Av) = 1− oes
aes
, (4.4)

where oes = 2 · optimal-path-length · (es + ew) is the ideal optimal effort6 and aes

the actual effort of the agent. If the algorithm does not successfully complete the

5es = 2.23 J
Kg s and ew = 1.26 Js

Kg m2

6See [Guy et al., 2010b] for a proof of this
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scenario, the metric is set to the worst-case value of 1. For many agents and/or

test cases, the metric is computed in the average sense.

Computational Efficiency. The computational efficiency e(Av) metric is the

average CPU time consumed by all agents in all scenarios in a test set S. Unlike

the above normalized metrics, it is not straightforward to provide an ideal upper

bound for e(Av). To provide a basis for normalization, we assume that 10% of all

computational resources are allocated to the steering algorithm. The maximum

time allocated to a steering algorithm every frame is 0.1 · 1
ndes

seconds for a desired

framerate of ndes fps. For every scenario s, the maximum time tmax
s allocated to

each steering agent per frame is 0.1 · 1
(N ·ndes)

seconds, where N is the number of

agents in s. Let tavg
s be the average time spent per frame for all agents to reach

a steering decision. The average computational efficiency e over a test set S is

computed as follows:

e(Av) = 1−

∑
s∈S

es(Av)

|S|
, es(Av) =

tmax
s

tavg
s

(4.5)

where es(Av) is the efficiency of Av for a particular scenario s, and |S| is the

cardinality of the test set S.

The desired framerate, ndes, provides an ideal upper bound for efficiency, anal-

ogous to the ideal upper bounds of the other metrics, and allows us to define a

normalized efficiency metric. Finding a usable ndes might take some experimen-
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tation for a particular steering algorithm. For our work we set ndes = 30, as this

is a common minimum framerate for smooth motion. Normalized metrics can be

combined more intuitively into optimization objectives in the forthcoming analy-

sis. Alternatively, we could set the desired framerate to a very high value for all

algorithms and attend to scaling issues later.

Similarity to Ground Truth. In addition to quantitatively characterizing the

performance of a steering algorithm, we can also measure its ability to match ground

truth. We compute a simulation-to-data similarity measure g(Av,G) [Guy et al.,

2012] which computes the prediction errors of algorithm Av relative to a given ex-

ample dataset, such as a single ground truth test G defined in Section 4.1. This

process is iterated using the expectation maximization algorithm to produce a ro-

bust, statistical estimate of the magnitude of the prediction error as measured by

its entropy.

4.3 Weighted Multi-Objective Optimization

Given a set of performance metrics such as the ones defined in Section 4.2, M =

〈d, qd, qt, qe, e〉, we can define an objective function as a weighted combination of

these metrics:

f(Av,w) =
∑
mi∈M

wi ·mi, (4.6)
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where w = {wi} contains the weights which determine the relative influence of

each individual metric. By choosing different sets of metrics and associated relative

weights, we can define custom objectives. For a steering algorithm Av with internal

parameters v ∈ V, a set of test cases, and a desired objective function f(Av,w),

our goal is to find the optimal parameter values v∗w that minimize the objective

over the test set. This can be formulated as a minimization problem:

v∗w = arg min
v∈V

f(Av,w). (4.7)

This is generally a non-linear and non-convex optimization problem for the inde-

pendent parameters, v ∈ V.

4.4 Discussion

We constructed a set of test cases that can be used to optimize for parameter

settings that will, in general, be an improvement over the default parameter settings

for any scenario. We have also formulated a number of objective metrics that can

be used to compare the behaviour of steering algorithms. These objectives have

been formulated in a novel way that normalizes each of the individual objectives

allowing the weighted combination of objectives to be less biased for particular

objectives.
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5 Parameter Analysis

In this chapter the results of initial experiments using the framework are discussed.

We start with a uni-variate optimization process. After this, correlations between

the objectives and steering algorithm parameters, and then between objectives and

other objectives, are explored.

5.1 Uni-Variate Optimization

This section describes a preliminary analysis we performed to understand the effect

of the independent parameters on an algorithm’s performance, and serves as a

precursor to the multi-variate analysis reported in Chapter 6. By varying each

parameter in isolation and studying its effects on the performance criteria, we can

answer questions such as: Which parameters are important? What are the bad

values we need to avoid? Are the default values good?

For reference, we first compute the deficiency d(Av), distance quality qd(Av),

and efficiency e(Av) metrics for the test set, T , for the PPR algorithm using
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Algorithm v d(Av) qd(Av) e(Av) f(Av)

PPR
DEF 0.39 0.49 0.96 0.61

UNI 0.25 0.25 0.95 0.46

Table 5.1: Comparison of d(Av),qd(Av), es(Av), and f(Av) which is the equally

weighted combination of the 3 metrics for the PPR steering algorithm using: (a)

DEF: default parameter values and (b) UNI: best parameter values obtained using

uni-variate analysis.

default parameters, provided in Table 5.1. With default parameter settings, PPR

can solve 61% of the sampled scenarios.

To study the effect of each parameter in isolation, we sample each parameter

of the steering algorithm independently in a bounded interval taking 20 uniformly

distributed samples. The parameter bounds are chosen separately for each parame-

ter based on intuition, physical interpretation of the parameter, and default values

provided by the algorithm’s creators. Table 10.1 enumerates the bounds of the

parameters for PPR.

We find that the deficiency of PPR is only affected by 23 of its 38 parameters.

For each parameter we can identify its optimal value. Table 5.1 shows the maximum

improvement in the value of the performance metrics that we can achieve using

this analysis (labelled UNI in the table) compared to value of the metrics that
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correspond to the default values (labelled DEF in the table).

The deficiency for PPR, d(Appr
v ), decreased significantly by selecting the opti-

mal values of ped-faster-avoidence-turn-rate and typical speed, which control the

turning and default speed. As well, the quality with respect to distance travelled for

PPR, qd(Appr
v ), decreases for the optimal values of ped-faster-avoidence-turn-rate

and typical speed.

Efficiency is an important issue for steering algorithms. We found, as expected,

the efficiency of PPR decreases with query radius. However, the more interesting

observation comes from Table 5.1, where we can see that the efficiency metric for

the PPR algorithm improves when we use the uni-variate optimal parameter values

from this analysis.

To gain insight on the simultaneous effect of adjusting multiple variables we

perform one bi-variate analysis for PPR. Figure 5.1 shows the coverage, c(Appr
v )

defined in Section 4.2 of PPR with respect to the Cartesian product of two param-

eters, ped-faster-avoidence-turn-rate, and typical speed. The shape of the resulting

surface indicates that finding the optimal value for coverage and therefore deficiency

depends on both parameters at the same time.

Optimizing for a weighted combination of all three metrics also yields interesting

results. We observe in Figure 5.2(d) that ped-faster-avoidence-turn-rate = 0.84

produces optimal results in the PPR algorithm for an equally weighted combination

32



Figure 5.1: The coverage of PPR, c(Appr
v ) (z-axis), with respect to two parameters,

ped-faster-avoidence-turn-rate (x-axis) and typical speed (y-axis). This figure shows

that finding a globally optimal solution can not be done while optimizing parameters

independently.
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of the objectives 3 d(Appr
v ), qd(Appr

v ) and es(A
ppr
v ).

Knowing how each parameter affects each performance metric, allows us to

potentially focus our optimization efforts on specific parameters based on the re-

quirements of an application. We can see in Figures 5.3 to 5.5 some examples of

how single parameters for each steering algorithm can effect a particular metric. We

found in Figure 5.2(a-c) ped-faster-avoidence-turn-rate has little effect on efficiency,

e(Appr
v ) while it does affect deficiency, d(Appr

v ), and quality, qd(Appr
v ). Therefore, it

may be a suitable parameter to explore if we need to improve quality or deficiency

without affecting efficiency.

5.1.1 Discussion

The analysis in this section offers valuable insights on the effects of each parameter

on the objectives.

• We can easily identify which values of the parameters we should avoid, and

which might be good choices.

• The experiments indicate that for an algorithm the default parameters are

not necessarily optimal. They also verify that, as expected, finding global

optimality for an objective requires the parameters v of a steering algorithm

to be optimized simultaneously. We therefore need to fit the parameters using
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Figure 5.2: Graphs of a ped-faster-avoidence-turn-rate for the PPR algorithm.

Figures (a) and (b) are of very similar shape, showing that ped-faster-avoidence-

turn-rate affects qd(Appr
v ) and d(Appr

v ) the same. The similar shape in (a), (b) and

(d) and the marginal effect of e(Appr
v ) in (c) indicate that ped-faster-avoidence-turn-

rate as very little effect on e(Appr
v ).
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Figure 5.3: Graphs of a few objectives for the PPR algorithms. These graphs

show the effects parameters have on the objectives. All of these graphs illustrate

the non-linear relationships between the steering algorithm parameters and the

different objectives.
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Figure 5.4: Graphs of a few objectives for the ORCA algorithms. These graphs

show the effects parameters have on selected objectives. Figures (b) and (d) almost

look linear while Figures (a) and (c) appear to have multiple local minimums.
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Figure 5.5: Graphs of a few objectives for the SF algorithms. These graphs show

the effects parameters have on selected objectives. Figure (c) clearly shows the

relationship between acceleration and how it increases qe(Asf
v ).
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a multi-variate optimization method.

• From analyzing the effects parameters have on objectives independently for

PPR we found we might be able to reduce the number of parameters that

we need to fit from 38 to the 23. These 23 parameters seem more influential,

using this reduced set of parameters may significantly improve the time it

takes to perform optimal fitting.

5.2 Parameter-Metric Analysis

It is interesting to identify which parameters change when optimizing the objectives

and to study the trade-offs that the algorithms essentially make with these changes.

In our analysis we also computed correlations between the parameters of the steering

algorithms and the metrics. A Spearman correlation is used because it computes

a non-parametric correlation that is not based on any linearity and we suspect

that the relationships between parameters and metrics and metrics and metrics are

non-linear. Tables 5.2, 5.3 and 5.4 list the results of this analysis.

1. Table 5.2 shows for PPR, the max-speed-factor, which is a multiplier that

increases the speed of an agent, is strongly correlated with the efficiency

metric, e(Av), and has a negative effect on all quality metrics.

2. Also in Table 5.2 for PPR, the size of the neighbourhood area and the dis-

39



tance to the furthest local target seem to be the parameters most strongly

correlated with efficiency, e(Av).

3. For ORCA, the maximum-number-of-neighbours, limits the number of neigh-

bours used during local collision avoidance calculations, has the highest corre-

lation with most metrics, as can be seen in Table 5.3. The max-speed, used to

clamp the speed to a max value, seems to be the second most important pa-

rameter. It affects effort quality, qe(Av), negatively, and time quality qt(Av)

positively.

4. For SF in Table 5.4, the parameters with the highest correlation to compu-

tational efficiency, e(Av), have to do with proximity forces. When these are

increased, agents push each other away forcefully, decreasing the likelihood

that they will interact again in the the next frame.

5. As seen in Table 5.4, the parameters of SF that affect the quality measures

the most are the wall repulsion coefficients.

Parameter d(Av) qd(Av) qt(Av) qe(Av) e(Av)

max speed −0.06 −0.12 −0.24 −0.04 −0.04

max force −0.40 −0.41 −0.45 −0.38 −0.13

max speed factor −0.58 −0.63 −0.72 −0.57 −0.23

faster speed factor 0.35 0.34 0.33 0.32 0.23

slightly faster speed factor −0.06 −0.12 −0.25 −0.08 −0.06

typical speed factor −0.40 −0.43 −0.62 −0.28 −0.26

slightly slower speed factor 0.30 0.28 0.28 0.26 0.00
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slower speed factor 0.30 0.27 0.16 0.25 0.06

cornering turn rate 0.15 0.08 0.07 0.13 0.18

adjustment turn rate −0.21 −0.24 −0.23 −0.22 −0.18

faster avoidance turn rate −0.39 −0.39 −0.39 −0.35 −0.19

typical avoidance turn rate −0.33 −0.34 −0.39 −0.37 −0.27

braking rate −0.32 −0.28 −0.26 −0.27 −0.12

comfort zone −0.30 −0.26 −0.26 −0.23 0.02

query radius 0.29 0.33 0.38 0.34 0.63

similar direction threshold 0.15 0.11 0.11 0.14 0.14

same direction threshold 0.52 0.55 0.64 0.52 0.11

oncoming prediction threshold 0.03 0.02 0.04 0.05 0.13

oncoming reaction threshold −0.48 −0.50 −0.58 −0.49 −0.25

wrong direction threshold 0.23 0.25 0.29 0.23 0.05

threat distance threshold 0.12 0.10 0.14 0.13 0.00

threat min time threshold 0.38 0.40 0.46 0.37 0.19

threat max time threshold −0.01 −0.04 −0.07 −0.00 0.02

predictive anticipation factor −0.30 −0.29 −0.27 −0.28 −0.21

reactive anticipation factor 0.01 0.02 0.12 0.13 0.05

crowd influence factor −0.35 −0.35 −0.38 −0.31 −0.12

facing static object threshold 0.21 0.21 0.27 0.18 −0.05

ordinary steering strength 0.04 0.03 0.07 0.02 0.04

oncoming threat avoidance strength −0.25 −0.31 −0.35 −0.23 −0.16

cross threat avoidance strength −0.08 −0.12 −0.18 −0.14 −0.01

max turning rate 0.43 0.35 0.33 0.29 0.17

feeling crowded threshold −0.49 −0.53 −0.56 −0.46 −0.30

scoot rate −0.12 −0.17 −0.24 −0.17 −0.11

reached target distance threshold −0.26 −0.41 −0.44 −0.36 −0.30

dynamic collision padding 0.15 0.15 0.25 0.18 0.11

furthest local target distance 0.16 0.19 0.25 0.17 0.65

next waypoint distance −0.07 −0.04 0.07 −0.07 0.01

max num waypoints 0.39 0.41 0.43 0.35 0.14

Table 5.2: This table shows Spearman rank correlation coefficients between 5

objectives and all the parameters for the PPR algorithm. Greener is more

positively correlated and redder more negatively correlated.
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Parameter d(Av) qd(Av) qt(Av) qe(Av) e(Av)

max speed 0.02 0.03 −0.34 0.58 0.14

neighbour distance −0.09 −0.07 −0.13 −0.03 0.03

time horizon −0.12 −0.08 0.10 0.04 0.07

time horizon obstacles −0.09 −0.09 0.17 0.04 0.11

max neighbors 0.42 0.47 0.54 0.29 0.37

Table 5.3: This table shows Spearman rank correlation coefficients between 5 objec-

tives and all the parameters for the ORCA algorithm. Greener is more positively

correlated and redder more negatively correlated.

The above analysis is not meant to be definitive or complete, but rather to

demonstrate that the proposed methodology can be notably more effective than

manual tuning. The framework is an effective way to optimize, probe and analyze

the behaviour of a steering algorithm in relation to its parameters, over a small or

large set of test cases.

5.3 Metric-Metric Analysis

A correlation analysis clarifies the dependencies across metrics for a given algorithm.

We generate 1000 random samples in the parameter space of ORCA and use them

to compute each metric over the more than 5000 cases in T . We then compute

the Spearman correlation coefficients between pairs of metrics, shown in Table 5.5
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Parameter d(Av) qd(Av) qt(Av) qe(Av) e(Av)

acceleration 0.14 0.18 0.15 0.18 −0.17

personal space threshold −0.02 −0.01 −0.01 −0.01 0.02

agent repulsion importance 0.04 0.04 0.04 0.04 0.04

query radius −0.01 −0.01 −0.01 −0.01 −0.00

body force 0.05 0.05 0.04 0.05 0.04

agent body force 0.00 0.01 0.00 0.01 −0.02

sliding friction force 0.00 0.01 0.01 0.01 −0.01

agent b 0.02 0.14 0.15 0.13 −0.37

agent a −0.27 −0.21 −0.24 −0.21 −0.25

wall b 0.66 0.65 0.62 0.66 −0.01

wall a 0.37 0.37 0.34 0.37 −0.04

Table 5.4: This table shows Spearman rank correlation coefficients between 5 ob-

jectives and all the parameters for the SF algorithm. Greener is more positively

correlated and redder more negatively correlated.
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. We can identify the following correlations:

1. A weak negative correlation between computational efficiency, es(Av), and

the other metrics.

2. A strong negative correlation between time quality, qt(Av), and effort quality,

qe(Av), which in general can be expected, as faster motion requires more

energy according to the qe(Av) objective.

3. A weak positive correlation between time quality, qt(Av), and distance qual-

ity, qd(Av). Also expected, since a shortest path often results in shorter

completion time.

4. A very strong positive correlation between qd(Av) and d(Av). This means

that improving distance quality also improves deficiency and vice versa.
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ORCA d(Av) qd(Av) qt(Av) qe(Av) e(Av)

d(Av) 1.00 1.00 0.20 0.35 −0.18

qd(Av) 1.00 1.00 0.21 0.36 −0.16

qt(Av) 0.20 0.21 1.00 −0.63 −0.02

qe(Av) 0.35 0.36 −0.63 1.00 −0.01

e(Av) −0.18 −0.16 −0.02 −0.01 1.00

Table 5.5: Spearman correlation coefficients between performance metrics for 1000

parameter samples with ORCA. Greener is more positively correlated and redder

more negatively correlated.
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6 Parameter Optimization

We present an optimization-based framework for automatically fitting the param-

eters v ∈ V7 of an algorithm, Av. Our framework automatically selects optimal

parameter values v∗ ∈ V such that the performance of Av∗ minimizes certain per-

formance criteria over a set of benchmarks (test set). The next sections describe

the elements involved in this problem and our approach to solving it.

6.1 Multi-Variate Optimization

The Covariance Matrix Adaptation Evolution Strategy technique (CMA-ES) [Hansen

and Ostermeier, 1996; Hansen, 2011] is one of the many methods that can solve

such problems. We chose CMA-ES because it is straightforward to implement, it

can handle ill-conditioned objectives and noise, it is very competitive in converging

to an optimal value in a small number of iterations, and it has support for integer-

based parameters as well. The CMA-ES algorithm terminates when the objective

7where V = Domain(v)
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converges to a minimum, when very little improvement is made between iterations,

or after a fixed number of evaluations. Limiting the values of an algorithm’s pa-

rameters transforms the problem of optimizing over an unbounded domain to a

bounded one, which generally decreases the number of iterations needed for the op-

timization to converge. In most of our experiments the algorithm converged within

1000 evaluations. Some research has already been done on a number of optimization

algorithms for steering algorithm parameter optimization [Wolinski et al., 2014].

Figure 6.1 describes the details of the CMA-ES algorithm we used for automat-

ically selecting parameter values that optimize a given objective function.

The CMA-ES algorithm iteratively searches the parameter space for the opti-

mal parameter values in an evolutionary fashion. At each iteration it generates

N -samples of the parameter vector and after objective function calculation, keeps

a subset of the samples that exhibit high fitness (minimize the objective). The

algorithm then tries to increase the probability of successful candidate solutions

and search steps, in a maximum-likelihood sense. The mean of the probability

distribution of the samples is updated such that the likelihood of successful solu-

tions is increased. A covariance matrix that captures the pair-wise dependencies

between parameter distributions is also updated such that the likelihood of previ-

ously successful steps is increased. Samples are taken from a normal multivariate

distribution with the computed mean and covariance matrix. A key feature of the
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algorithm is the way it controls the step size between iterations and the evolution

paths. The algorithm adaptively changes the step size used for the search89.

Example: Figure 6.2 illustrates an optimization process. The parameters of

ORCA v = {max speed, neighbour distance, time horizon, time horizon obsta-

cles, max neighbours} are optimally fitted to an equally weighted combination of

metrics over the test set T . After 60 iterations the optimization converges to ap-

proximately 10% better objective value. A cursory observation shows that the

optimization has reduced the number of neighbours that the algorithm considers

for each agent from 10 to 2.

6.2 Objective Optimization

After multi-variate optimization the default parameter values for PPR, ORCA

and SF cannot solve 39%, 56%, and 26% of the sampled scenarios respectively.

Using the optimal parameter selection for PPR, the algorithm only fails in 9% of

the scenarios, an improvement of 30% over the default settings. The significant

optimization in time quality, qt(Av), for the PPR algorithm is impressive as well,

having improved almost 90%. ORCA does not show significant results over the

metrics except for qt(Av). On the other hand SF shows strong improvement over

8For more details see [Hansen and Ostermeier, 1996], and http://en.wikipedia.org/wiki/CMA-
ES

9The source code we started with can be found at https://www.lri.fr/∼hansen/cmaesintro.html
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input Step size σ, Objective f(Av, w), Algorithm Av, parameters v ∈ V

Initialize, mean m, covariance matrix C

while not termination condition do

for i ∈ {1 . . . N} do

vi = Sample N (m, C)

Compute Objective fi = f(Avi
, w)

end for

{v0,v1, . . . ,vN−1} = arg sort{vi}({fi|∀i})

v∗ = Update the best solution ({v0, v1, . . . ,vN−1 })

Update expected best solution from data (mean), m

Update search path for covariance matrix update

Update search path for step size update

Update covariance matrix, C

Update step size, σ

end while

return v∗ and m

Figure 6.1: Main loop of CMA-ES Algorithm for parameter optimization of steer-

ing algorithms.
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(a) Objective Function

(b) ORCA parameter values

Figure 6.2: Optimizing ORCA parameters to minimize the uniformly weighted

combination of metrics over the test set T . Each iteration is equal to 8 objective

evaluations. As can be seen, convergence occurs around 60 iterations.
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d(Av) qd(Av) qt(Av) qe(Av) e(Av) u(Av)

Figure 6.3: Relative percent improvement of failure rate d, distance quality qd, time

quality qt, effort quality qe, computational efficiency e, and a uniform combination

of metrics u for the three steering algorithms. See Table 10.4 for the values that

correspond to this graph.

most metrics, achieving the smallest failure rate d and the minimum energy expen-

diture, qe. Table 10.4 lists the objective values for these findings and Figure 6.3

shows the relative percent improvement.

To optimize the deficiency, d(Av), PPR chooses very high values for predic-

tive avoidance parameters and minimal values for speed thresholds, and trades off

efficiency by selecting higher spatial querying distances.

When optimizing distance quality qd(Av) PPR changes different speed multi-

pliers in an attempt to minimize any extra distance covered around corners. To

improve computational efficiency e, PPR minimizes parameters that would trigger
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changes in its planned path, which would require an expensive path replanning

operation. To minimize failure rate, ORCA raises its time horizon to increase

the number of agents it considers in its velocity calculations and increases its max

speed so that agents cover as much distance as possible. For distance quality,

qd(Av), ORCA reduces max speed just like PPR. In general, SF reduces acceler-

ation parameters to minimum values for all quality metrics to prevent agents from

overreacting.

By comparing the values in Table 5.1 and Table 10.4 it can be seen that mutli-

variate optimization achieves better results than uni-variate or independant pa-

rameter optimization. This provides additional evidence to indicate that global

optimality can only be found with mutli-variate parameter optimization.

6.2.1 Validation

We verify the statistical validity of the results shown in Figure 6.3 in two ways.

First, we observe that for all three algorithms and for all the scenarios in the test

set, T , which are more than 5000, the optimization did not time out but converged

to at least a local minimum. In the context of numerical optimization that is a suf-

ficiently strong indication that the results are not random. Second, we perform a

cross validation study on an equally large test set of similar, but previously unseen

scenarios, T v. The results of this study can be found in Figure 6.4 and Table 10.6.
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d(Av) qd(Av) qt(Av) qe(Av) e(Av) u(Av)

Figure 6.4: Relative percent improvement of failure rate d, distance quality qd, time

quality qt, effort quality qe, computational efficiency e, and a uniform combination

of metrics u for the three steering algorithms. This result is over the cross validation

test set T v. The values that correspond with this figure can be found in Table 10.6

Comparing the values of the objectives for the default parameters of the algorithms,

and for the optimized ones, we see that the optimized parameters on average per-

form better even on scenarios that were not used during the optimization.

6.3 More Metric-Metric Analysis

It is compelling to investigate whether relationships exist between performance

metrics. For example, does optimizing for distance quality, qd, also optimize time

quality qt? To answer such questions, we compute the value of each metric ob-
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PPR d qd qt qe e u

d(Av) 0.09 0.09 0.15 0.12 0.32 0.13

qd(Av) 0.23 0.20 0.26 0.23 0.44 0.26

qt(Av) 0.61 0.64 0.07 0.30 0.73 0.06

qe(Av) 0.41 0.42 0.34 0.28 0.57 0.34

e(Av) 0.98 0.96 0.97 0.94 0.89 0.90

u(Av) 0.46 0.46 0.36 0.38 0.59 0.34

Table 6.1: Comparison of failure rate d(Av), distance quality qd(Av), time qual-

ity qt(Av), effort quality qe(Av), computational efficiency es(Av), and a uniform

combination of all metrics u(Av) for the PPR steering algorithms. Each cell is

the computation of the objective (row) using the parameters settings from optimiz-

ing for the objective (column). The optimal value for each objective is along the

diagonal.

tained with parameter values that are optimized for the other metrics. Comparing

objective values using optimal parameter settings for other objectives can indicate

that two objectives are related. These comparisons can be found in Tables 6.1 to

6.3. We observe that the optimal parameters for distance quality, qd(Av), produce

near-optimal results for failure rate, d(Av) for PPR () and ORCA. However, the

opposite does not hold true. Optimizing for failure rate does not yield optimal

results for distance quality.
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ORCA d qd qt qe e u

d(Av) 0.47 0.46 0.49 0.48 0.65 0.48

qd(Av) 0.59 0.56 0.58 0.57 0.71 0.57

qt(Av) 0.39 0.52 0.30 0.63 0.43 0.32

qe(Av) 0.73 0.66 0.71 0.63 0.79 0.71

e(Av) 0.72 0.74 0.71 0.74 0.67 0.74

u(Av) 0.59 0.59 0.56 0.61 0.65 0.55

Table 6.2: Comparison of failure rate d(Av), distance quality qd(Av), time qual-

ity qt(Av), effort quality qe(Av), computational efficiency es(Av), and a uniform

combination of all metrics u(Av) for the ORCA steering algorithms. Each cell is

the computation of the objective (row) using the parameters settings from optimiz-

ing for the objective (column). The optimal value for each objective is along the

diagonal.

55



SF d qd qt qe e u

d(Av) 0.04 0.05 0.05 0.05 1.00 0.05

qd(Av) 0.20 0.20 0.20 0.20 1.00 0.20

qt(Av) 0.30 0.28 0.29 0.28 1.00 0.29

qe(Av) 0.24 0.23 0.24 0.23 1.00 0.23

e(Av) 0.83 0.83 0.83 0.83 0.80 0.83

u(Av) 0.32 0.32 0.32 0.32 0.96 0.32

Table 6.3: Comparison of failure rate d(Av), distance quality qd(Av), time qual-

ity qt(Av), effort quality qe(Av), computational efficiency es(Av), and a uniform

combination of all metrics u(Av) for the SF steering algorithms. Each cell is the

computation of the objective (row) using the parameters settings from optimiz-

ing for the objective (column). The optimal value for each objective is along the

diagonal.
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6.4 Summary

We investigate the effects of parameter fitting using the combined test sets, T and

T v. Our goal is to identify whether parameter fitting has a significant effect and to

understand the relation between algorithmic parameters and performance. For each

of the three algorithms, PPR, ORCA and SF, we compute the optimal parameter

values for each of the five metrics, failure rate d(Av), distance quality qd(Av), time

quality qt(Av), effort qe(Av), efficiency e(Av), as well as a uniform combination

of these metrics u(Av), over the entire combined set, T . For comparison, we also

compute the same metrics for all algorithms with their parameters set to default

values. The results in Figure 6.3 show a strong increase in optimality for all metrics.
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7 Multi-Objective Optimization

Optimizing a steering algorithm’s parameters across a large test set is computa-

tionally expensive. The computational complexity increases with the number of

parameters and the cardinality of a test set. For example, it takes ∼ 20 hours to

optimize the 11 parameters of SF over the representative test set T . In a weighted

multi-objective optimization application, it is desirable to model the relationship

between objectives and algorithm parameters. This avoids running an expensive

optimization every time we wish to change the associated weights. This can be ac-

complished by pre-computing the optimal parameters for a discrete set of weighted

combinations that can then be interpolated. There are two problems with this ap-

proach. First, it can waste significant amounts of computation since each sample

point is the result of an independent process that could be visiting the same points

in the objective space. Second and most important, weighted multi-objective op-

timization does not examine relationships between the objectives but rather their

weighted combination. Both of these problems can be addressed by computing a
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Pareto Optimal Front. Pareto optimality is a very important concept in optimiza-

tion which has sparingly been used in computer animation. Our method based

on Pareto Optimality not only avoids unnecessary computation but also provides

a more principled model of the optimal relationships between multiple objectives.

Pareto Optimality (or Efficiency) refers to a situation where no objective can be

improved further without worsening one of the other objectives. The set of points

that are Pareto optimal constitute the pareto-optimal front , a hyper-surface that

captures the optimal relationships between the objectives.

Multi-objective optimization using a weighted or scalarized combination of the

objectives still has many disadvantages. Small changes in the weights used can

result in large changes in the parameters and small changes in the objective value.

An uneven sampling of the trade-offs between objectives can occur if an objective

has a much higher value or variance than the other(s). Addressing this requires

forms of scaling the objectives in order to prevent one objective from being over

represented in the weighted sum. A user needs to provide weights to a function

that could return unintuitive results. For example, when selecting the next weight

setting after the user decides one objective is not represented enough, the magnitude

of the change in behaviour might be unexpected. If the pareto-optimal front is

non-convex, points that represent optimal trade-offs between objectives can be

missed [Caramia and Dell’Olmo, 2008].
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7.1 Computing the Pareto Optimal Front

Computing this front is not trivial and is, in fact, an active area of research. Current

state-of-the-art techniques are primarily based on genetic algorithms. Two multi-

objective optimization algorithms of interest are the Strength Pareto Evolutionary

Algorithm 2 (SPEA-2) [Zitzler et al., 2001] which is competitive and multi-objective

CMAES (MO-CMA-ES) [Igel et al., 2007]. Another method created first for de-

manding space applications [Schlüter et al., 2009] can handle very large numbers

of variables. We chose to use the software DEAP [Fortin et al., 2012] and the

algorithm NSGA-II [Deb et al., 2002] to estimate the pareto-optimal front . The

Non-dominated Sorting Genetic Algorithm II (NSGA-II) is a well known and pop-

ular multi-objective optimization algorithm that is very competitive at converging

quickly over many problem types.

A standard evolutionary approach to solving a multi-objective optimization

problem models the fitness of samples using a single objective function that is

the weighted sum of multiple objectives, where the samples chosen in each itera-

tion minimize the combined objective. In contrast, the goal of pareto-optimal front

approximation is to maximize the hyper-volume constructed by the non-dominated

samples (see Figure 7.1). A point dominates another if it is superior in all Pareto

dimensions.
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Figure 7.1: This figure shows the construction of the hyper-volume from the non-

dominated points. Each of the points are considered more optimal than any point

in the shaded region defined by the point. The addition of the green point increases

the area of the hyper-volume by the green area.
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7.2 Results

First, we optimize the ORCA steering algorithm for efficiency e(Av) and effort

(PLE) qe(Av) over a bottleneck scenario. The process and resulting pareto-optimal

front can be seen in Figure 7.2. Second, we optimize the SF algorithm for the same

scenario and three metrics, e(Av), qe(Av) and ground truth similarity g(Av,G) (the

result can be found in Table 7.1(a)). The ground truth set G, is a recording of people

funnelling into a small bottleneck, very similar to the scenario used. We optimize for

the same objectives with the ORCA steering algorithm and the resultant pareto-

optimal front can be see in Table 7.1(b). The pareto-optimal front is able to capture

the non-linear relationships between contradictory objectives and efficiently encodes

the trade-offs between them. For example, optimizing qe(Av) has an adverse effect

on g(Av,G), as shown in Table 7.1(a and b).
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Figure 7.2: This figure shows the final pareto-optimal front of non-dominated points

(in green) for the ORCA steering algorithm over two objectives: effort and effi-

ciency. The points in blue are the samples in the last generation and the circles are

from previous generations.
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(a)

64



(b)

Table 7.1: Figures (a and b) show the final computed

pareto-optimal front of three objectives for the SF and

ORCA steering algorithms over a bottleneck scenario.

The pareto-optimal front provides a principled model of the optimal relation-

ships between the objectives. The number of dimensions is equal to the number
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of objectives. Thus the result for two objectives is a 2D curve and a 3D surface

for three objectives. For most practical applications, three objectives should be

sufficient.

7.3 Pareto Optimal Front Interpolation

Having an estimate of the pareto-optimal front for a set of objectives provides us

with the basis to estimate optimal parameters for the associated algorithm with

arbitrary combinations of the objectives.

The first step in developing an interpolation model for arbitrary combina-

tions of the objectives is to transform the pareto-optimal front from objective

space to weight space. For m objectives, the pareto-optimal front contains a

set of m-dimensional points, P = {bp|∀p = 1, ..., N}, including a set of points

PO = {bO
p |∀p = 1, ...,m}, that correspond to minimizing each objective while ig-

noring the others. These latter points have known coordinates in weight space

that correspond to the standard unit vectors and hold the minimum value in the

associated dimension.

We transform the pareto-optimal front from the m-dimensional objective space,

bi, to the m-dimensional weight space, [wi], using the following steps which can be

seen in Figure 7.3: (a) we normalize the pareto-optimal front so that each dimen-

sion maps to [0, 1] (line 1), (b) we replace each point with its distances from the
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1: P ′ = P−min(P)
max(P)−min(P)

2: P ′′ = 〈〉

3: for p ∈ P ′ do

4: for po ∈ PO do

5: p′ = 〈〉

6: p′.append(length(po − p))

7: end for

8: P ′′.append(p′)

9: end for

10: P ′ = {∀bi ∈ P ′′|b′i = bi∑
j∈bi

j
}

11: P ′′ = 1− P ′

12: W =barycentric(PO,P ′′)

return W

Figure 7.3: Algorithm used to transform m-dimensional objective space to m-

dimensional weight space. min() returns a vector of the lowest values for each

objective dimension. Similarly, max() returns the highest values for each ob-

jective dimension.
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objective space (P) weight space (W)

Figure 7.4: Projecting the 3D pareto-optimal front from Table 7.1 (a) to a triangular

normalized weight domain. The objectives are mapped to points (0,0), (0,1) and

(1,0) to be visualized in 2D Cartesian coordinates.

normalized points in PO(lines 3 to 9, (c) we project the points, b′, resulting from

the previous stage onto the
∑

i b
′
i = 1 plane (line 10 ) , (d) we subtract them from 1

(line 11) and (e) move to barycentric coordinate system (line 12). The transformed

pareto-optimal front is now mapped onto a normalized simplex from which we can

compute the relative weights of each original point as its barycentric coordinates,

(Figure 7.4).

Having the pareto-optimal front in weight space, we can now use a standard
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multidimensional interpolation method such as radial basis functions or variants of

Shepard’s method [Shepard, 1968]. A common choice within the family of Multi-

variate interpolation methods, similar to Shepard’s method, is inverse distance

weighting. We chose this method because of the sparseness of our data. For three

objectives, the associated weight domain forms a triangle. In this case, given a new

set of weights, we can use Delaunay triangulation to compute the three points that

make up the bounding simplex whose associated parameters will be interpolated

with a standard inverse distance approach.
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8 Additional Results and Examples

The results in Chapter 6 demonstrate that it is both beneficial and revealing to

fit the parameters of a steering algorithm to performance objectives over a large

set of test cases. This section presents a series of experiments that demonstrate

the potential applications of parameter fitting for more specific cases. We refer the

reader to the accompanying video for a visual demonstration of the results and

additional experiments.

8.1 Single-Objective Results

Circular Benchmark. A popular and challenging scenario, often used to test the

effectiveness of a steering algorithm, distributes the agents on a circular fashion

with diametrically opposite goals. Such a configuration forces simultaneous dense

interactions in the middle of the circle. Using a group of 500 agents, we compare the

results of ORCA with the default and optimized parameter values that minimize

time quality qt(Av). With the optimal parameters, ORCA takes 50% less time
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to complete the benchmark and exhibits a more organized emerging behaviour.

Agents seem to form groups that follow a smooth curved trajectory; see Figure 8.1

(top). For reference, the optimal parameter set in this case is: {max speed: 3.2,

neighbour distance: 13.63, time horizon: 2.32, time horizon obstacles: 5.30, max

neighbours: 7}.

Room Evacuation. Evacuation benchmarks are important for a range of applica-

tion domains. In this benchmark, a group of 500 agents must exit a room. For this

experiment, we use the social forces, SF, method with the default as well as op-

timized parameter values that minimize the effort quality metric qe(Av). SF with

optimal parameters spends 66% less energy on average per agent, exhibits tighter

packing, and visibly reduces the turbulence of the crowd’s behaviour; see Figure 8.1

(bottom).

Office Evacuation. A more challenging evacuation scenario places 1000 agents

in a complex, office-like ground floor. Optimizing ORCA for time quality, qt(Av),

reduces the average time it takes to exit the building by almost 60%. In addition,

it exhibits higher crowd density and greater throughput at the exits, as seen in

Figure 8.2. Here we use ADAPT [Kapadia et al., 2014] to render bipedal characters.

Optimizing for Ground Truth. There are a few methods that use recorded

crowd motion to influence and direct virtual crowds. Here, we simply show that

our methodology can also support this application. We optimize the behaviour of
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(a) Scenario I : default (b) Scenario I: optimal time

(c) Scenario II: default (d) Scenario II: optimal effort

Figure 8.1: Comparison of simulations using default [(a), (c)] and optimized [(b),

(d)] parameters. Top: Agents are initially in a circle with anti-diametric goals. The

ORCA algorithm, optimized to reduce time-to-completion, completes the task

twice as fast as its default configuration and exhibits a less turbulent pattern.

Bottom: The SF algorithm, optimized to minimize effort, requires a third of the

energy spent by its default configuration, and produces a smoother, faster and

tighter room evacuation.
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Figure 8.2: Office evacuation with ORCA. Simulation with parameters optimized

for time quality (bottom) take half the time to complete as compared to the default

parameters (top).
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2-agent-crossing 2-way hallway

Figure 8.3: Relative percent improvement of entropy metric values after optimiza-

tion on two different benchmarks.

the three test algorithms to match real world data contained in the ground truth test

set, G, Section 4.1. Our experiments showed that, in most cases, the optimization

was able to significantly alter the resulting steering behaviour and increase the

similarity to the recorded data. Figure 8.3 reports the reduction in the entropy

metric, g(Av,G) (increase in similarity), as a result of parameter optimization for

all three algorithms and two different benchmarks.

Dynamically Adapting Steering Parameters. Our method can create numer-

ous samples that relate parameter values to performance metrics. Figure 8.4 shows

a snapshot from an interactive demo of a busy bi-directional hallway that allows

the user to switch dynamically between optimal parameter values that correspond

to different objectives. The parameter settings used in this demo are the standard
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Figure 8.4: A prototype system for interactively setting the relative weights of the

metrics in the objective. When the weights are interactively changed, the steering

algorithm’s parameters are automatically updated to the corresponding optimal

values with respect to the weights.

unit vectors described in Section 7.3. This demo shows the effects of changing

between behaviours mid-simulation.

8.2 Pareto Optimal Front Results

Interactive Parameter Blending. Using a precomputed pareto-optimal front ,

as discussed in Chapter 7, we can automatically adapt an algorithm’s parameters to

provide optimal trade-offs for interactively defined combinations of the associated
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Figure 8.5: Blending three objectives interactively (efficiency, entropy, and effort)

using a pre-computed pareto-optimal front with the SF algorithm. The scenario

used is hundreds of agents tunnelling through a small pathway.

objectives. Figure 8.5 shows a snapshot of such blending between three objectives.

This process is best demonstrated in the accompanying video.

8.3 Implementation Details

The primary factors affecting the computational performance of the optimization

are the size of the test set, the number and range of parameters that are fitted,

and the number of agents in the test cases. Although CMA-ES is an efficient

optimization method, fitting many parameters over a sizable test set is compu-

tationally expensive. For reference, a 12 core, 2.4 GHz, 12 GB, computer (with
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hyper-threading), using 10 parallel threads, takes ∼ 20 hours to optimize the SF

algorithm over the representative test set T . It takes ∼ 3 days running 16 par-

allel threads to compute a pareto-optimal front with 3 objectives using NSGA-II.

Interactive blending the pareto-optimal front is done in realtime.
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9 Conclusion

We have presented a framework for optimizing the parameters of a steering algo-

rithm for multiple objectives. We have shown that optimizing steering algorithm

parameters simultaneously gives more optimal results than just doing independent

parameter optimization. Using cross-validation, we show that optimizing over a

representative set of scenarios produces optimal parameters that generalize well

to new test cases. We have also proposed a method to model trade-offs between

the objectives using multiple-objective optimization (pareto-optimal front). The

pareto-optimal front essentially captures the optimal relationships between objec-

tives. Although our approach can be applied to any number of objectives, three is

a practical choice. Thus, we have demonstrated an interactive example that uses

the computed pareto-optimal front to blend between three objectives.

Our study shows that parameter fitting not only can be used to improve the

performance of an algorithm, but it can also serve as an analysis tool to produce

a detailed view of an algorithm’s range of behaviour relative to its internal pa-

78



rameters. This detailed view can be the basis of a thorough introspective analysis

that allows both developers and end-users to gain insights on the performance and

behaviour of an algorithm. Our framework and methodology are general. Most

elements can be tailored to the needs of a particular application. For example,

one can use different performance metrics, objectives, test sets, and optimization

methods. The appendix provides the optimal parameter values of the three steer-

ing algorithms for the different objectives which AI developers and enthusiasts can

directly use to improve the performance of their crowd simulations. The computa-

tional expense of optimizations, especially for large-scale crowd simulations is one

of the reasons why we are committed to sharing our results with the community.

9.1 Limitations

Optimization-based methods have certain well-known limitations. For example,

it might not be easy or even possible for an optimization process to construct

what is essentially a relationship between the parameters of a steering algorithm

and global, or long-term, type of objectives. Furthermore, describing desired be-

haviours as combinations of objectives is not always straightforward and may re-

quire experimentation. Although estimating the pareto-optimal front is much more

efficient and effective than naive domain sampling, it still requires significant offline

computation. Lastly, we would like to explore more methods to interpolate the

79



pareto-optimal front data.

9.2 Future Work

We plan to address heterogeneous crowds by using different parameters per agent

or group of agents. We also plan to thoroughly investigate the sampling and com-

plexity issues related to the estimation of the pareto-optimal front , focusing on

objectives that are common in crowd simulation. Evaluating additional crowd sim-

ulation techniques with different agent representations and parameterizations is a

potential subject for future work.
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Donikian. A synthetic-vision based steering approach for crowd simulation. ACM
Trans. Graph., 29(4):123:1–123:9, July 2010.
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10 Appendix

This appendix contains additional data collected from optimizations and statistical
analysis.

10.1 Parameter Settings

Tables 10.1 to 10.3 list the default parameters for each algorithm as well as the
optimal parameter settings for the first 5 objectives and the equally weighted com-
bination of the first 5 objectives.

Parameter Name DEF Min Max d qd qt qe e u
max speed 2.60 1 4 3.29 1 4.00 1.66 4 3.03
max force 14 8 22 14.45 15.15 22 18.76 15.62 19.50

max speed factor 1.70 0.60 4.70 3.38 1.11 4.70 0.60 3.77 3.45
faster speed factor 1.31 0.55 4.20 0.62 3.92 0.81 2.84 1.22 0.71

slightly faster speed factor 1.15 0.40 3.40 1.72 2.41 3.40 3.09 0.90 2.29
typical speed factor 1 0.50 1.50 0.53 0.50 1.50 1.04 0.50 1.50

slightly slower speed factor 0.77 0.15 1.20 0.22 0.19 1.20 0.70 0.59 0.84
slower speed factor 0.50 0.10 1 0.11 0.10 0.10 0.10 0.57 0.10
cornering turn rate 1.90 0.83 3.76 3.45 2.30 1.69 3.51 2.64 1.53

adjustment turn rate 0.16 0.03 1.54 0.03 0.58 0.29 0.13 0.29 0.37
faster avoidance turn rate 0.55 0.15 1.87 0.72 1.06 1.01 0.79 0.89 1.30
typical avoidance turn rate 0.26 0.08 0.75 0.66 0.62 0.75 0.59 0.62 0.71

braking rate 0.95 0.50 1.50 0.52 1.50 0.55 1.17 0.67 1.44
comfort zone 1.50 0.70 2.80 1.41 1.70 1.32 2.01 0.86 1.63
query radius 10 5 21 17.40 11.03 5 8.22 5 5

similar direction threshold 0.94 0.78 1.00 0.93 0.95 0.78 0.89 0.99 0.80
same direction threshold 0.99 0.89 1.00 0.90 0.89 0.91 0.92 0.91 0.93

oncoming prediction threshold −0.95 −0.99 −0.78 −0.97 −0.81 −0.81 −0.92 −0.99 −0.92
oncoming reaction threshold −0.95 −0.99 −0.78 −0.87 −0.85 −0.78 −0.94 −0.95 −0.87

wrong direction threshold 0.55 0.23 0.78 0.26 0.23 0.23 0.29 0.45 0.25
threat distance threshold 8 3 16.80 13.70 16.19 8.59 6.02 6.90 9.48
threat min time threshold 0.80 0.37 1.45 0.38 0.79 1.17 0.39 1.11 0.37
threat max time threshold 4 1.22 8.77 7.99 5.15 6.46 8.21 3.97 3.99

predictive anticipation factor 5 2.33 8.39 4.30 4.74 4.78 6.87 5.85 5.38
reactive anticipation factor 1.10 0.33 2.31 0.95 1.03 0.97 1.01 0.62 0.99

crowd influence factor 0.30 0.11 0.61 0.35 0.22 0.30 0.44 0.11 0.59
facing static object threshold 0.30 0.08 0.61 0.09 0.34 0.29 0.61 0.19 0.46

ordinary steering strength 0.05 0.00 0.20 0.02 0.00 0.00 0.08 0.11 0.02
oncoming threat avoidance strength 0.15 0.05 0.40 0.40 0.12 0.06 0.09 0.17 0.08

cross threat avoidance strength 0.90 0.73 1.00 0.76 0.91 0.95 0.74 0.90 0.95
max turning rate 0.10 0.02 0.23 0.10 0.10 0.15 0.13 0.10 0.10

feeling crowded threshold 3 1 8 2 2 1 4.06 1 5
scoot rate 0.40 0.17 0.78 0.78 0.60 0.78 0.78 0.72 0.71

reached target distance threshold 0.50 0.10 0.90 0.78 0.90 0.90 0.90 0.12 0.89
dynamic collision padding 0.20 0.02 0.43 0.43 0.24 0.17 0.20 0.16 0.19

furthest local target distance 20 10 50 34 22 39 15 10 10
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next waypoint distance 50 30 70 62 39 64 38 32 44
max num waypoints 20 10 50 22 15 10 44 32 13

Table 10.1: Parameters for PPR algorithm with their default values, bounds,
and optimal values obtained using multi-variate analysis for different objective
functions.

Parameter Name DEF Min Max d qd qt qe e u
max speed 2 1 3.20 3.20 2.15 3.20 1.52 3.14 3.14

neighbor distance 15 2 22 17.39 13.37 14.75 12.08 8.18 8.99
time horizon 10 2 16 16 3.71 2 2.72 8.44 2.92

time horizon obstacles 7 2 16 12.30 16 9.60 11.81 2 10.92
max neighbors 10 2 22 8 11 2 15.03 2 2

Table 10.2: Parameters for ORCA algorithm with their default values, bounds,
and optimal values obtained for each metric separately, and a uniform combination
of the metrics.

Parameter Name DEF Min Max d qd qt qe e u
acceleration 0.50 0.05 2 0.05 0.05 0.05 0.05 1.90 0.05

personal space threshold 0.30 0.10 1 0.69 0.28 0.50 0.10 0.10 0.41
agent repulsion importance 0.30 0.05 1 0.05 0.05 0.05 0.11 0.66 0.38

query radius 4 1 10 1 10 9.44 10 2.08 3.28
body force 1500 500 5000 2431.40 2778.10 3832.20 500 3498.40 4858.80

agent body force 1500 500 5000 500 4677.80 1573.70 4027.40 3009.50 1073.20
sliding friction force 3000 1000 10 000 3281.10 1000 6795.70 10 000 8489.20 6091.30

agent b 0.08 0.01 5 0.09 0.08 0.09 0.11 3.81 0.13
agent a 25 1 100 46.25 48.21 58.27 53.24 52.00 53.37
wall b 0.08 0.01 5 0.15 0.10 0.18 0.08 5 0.09
wall a 25 1 100 100 67.15 55.05 61.65 98.20 60.87

Table 10.3: Parameters for SF algorithm with their default values, bounds, and op-
timal values obtained using multi-variate analysis for different objective functions.

10.2 Optimization Values

Table 10.4 contains the default and optimized objective values for the three steering
algorithms over the first 5 objectives and their combination. Similarly, Table 10.5
shows the default and optimized objective values for the three steering algorithms
but specifically for the entropy metric for two scenarios. Last, in Table 10.6 the
findings from performing a cross validation test on T v.
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Av v d(Av) qd(Av) qt(Av) qe(Av) e(Av) u(Av)

PPR
DEF 0.39 0.49 0.56 0.53 0.96 0.58
OPT 0.09 0.20 0.07 0.28 0.89 0.34

ORCA
DEF 0.56 0.61 0.56 0.67 0.75 0.62
OPT 0.47 0.56 0.30 0.63 0.67 0.55

SF
DEF 0.26 0.41 0.50 0.45 0.87 0.50
OPT 0.04 0.20 0.29 0.23 0.78 0.32

Table 10.4: Comparison of failure rate d(Av), distance quality qd(Av), time qual-
ity qt(Av), effort quality qe(Av), computational efficiency es(Av), and a uniform
combination of all metrics u(Av) for the three steering algorithms using: (a) DEF:
default parameter values and (b) OPT: optimal parameter values. These results are
from multi-variate optimization of each objective.

Av v g(Av, 2− agent− crossing) g(Av, two− way − hallway)

PPR
DEF 3.42 3.40
OPT 1.92 2.27

ORCA
DEF 2.12 2.95
OPT 0.63 2.20

SF
DEF 3.74 3.62
OPT 3.10 2.76

Table 10.5: Comparison of entropy metric values before and after optimization to
match real world data in two scenarios. DEF: default parameter values, OPT: optimal
parameter values. These results are from multi-variate optimization.

Av v d(Av) qd(Av) qt(Av) qe(Av) es(Av) u(Av)

PPR
DEF 0.39 0.49 0.57 0.53 0.96 0.59
OPT 0.10 0.22 0.07 0.30 0.91 0.34

ORCA
DEF 0.53 0.61 0.56 0.67 0.84 0.64
OPT 0.51 0.57 0.29 0.62 0.82 0.58

SF
DEF 0.27 0.42 0.50 0.46 0.89 0.51
OPT 0.05 0.20 0.30 0.23 0.81 0.33

Table 10.6: Validation of the Comparison of qe(Av), d(Av),qd(Av), es(Av), qt(Av),
and a uniform combination of all metrics for the three steering algorithms using: (a)
DEF: default parameter values and (b) OPT: optimal parameter values on a second
set of scenarios that were not used in training. These results are from multi-variate
optimization.
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