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Abstract

This dissertation focuses on two issues in retirement planning. The first issue, an-
nuitization problem, provides insight on how interest rates may affect annuitization
decisions for retirees under an all-or-nothing framework. The second issue, ruin
probability, studies the probability for a retired individual who might run out of
money, under a fixed consumption strategy before the end of his/her life under
stochastic hazard rates. These two financial problems have been very important in
personal finance for both retirees and financial advisors throughout the world, es-
pecially in the developed countries as the baby boom generation nears retirement.
They are the direct results of both longevity risk and demise of Defined Benefit
(DB) pension plans.

The existing literature of the annuitization problem, such as Richard (1975),
concludes that it is always optimal to annuitize with no bequest motives under a
constant interest rate. To see the effect of stochastic interest rates on the annuitiza-

tion decisions under a constrained consumption strategy without bequest motives,
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we present two life cycle models. They investigate the optimal annuitization strat-
egy for a retired individual whose objective is to maximize his/her lifetime utility
under a variety of institutional restrictions, in an all-or-nothing framework. The
individual is required to annuitize all his/her wealth in a lump sum at some time at
retirement. The first life cycle model we have presented assumes full consumption
after annuity purchasing. A free boundary exists in this case upon the assumption
of constant spread between the expected return of the risky asset and the riskless
interest rate. The second life cycle model applies the optimal consumption strat-
egy after annuitization, and numerical analysis shows that it is always optimal to
annuitize no matter what the current interest rate is. This conclusion is based on
the assumption of constant risk premium, no loads and no bequest motives.
Historical data show that mortality rates for human beings behave stochasti-
cally. Motivated by this, we study the ruin probability for a retired individual who
withdraws $1 per annum with various initial wealth for log-normal mortality with
constant drift and volatility, which is a special form of the most widely accepted Lee-
Carter model. This problem is converted to a Partial Differential Equation (PDE)
and solved numerically by the Alternative Direction Implicit (ADI) method. For
any given initial wealth, ruin probability can be obtained for various initial haz-
ard rates. The correlation between the wealth process and the mortality process

slightly affects the ruin probability at time zero.
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1 Introduction

1.1 Introduction and Motivation

This dissertation focuses on two issues in retirement planning. The first issue,
annuitization problem, provides insight on how interest rates may affect annuiti-
zation decisions for retirees under an all-or-nothing framework. The second issue,
ruin probability, studies the probability for a retired individual who might run out
of money under a fixed consumption strategy before the end of their life under
stochastic hazard rates. These two financial problems have been very important in
personal finance for both retirees and financial advisors throughout the world, es-
pecially in the developed countries as the baby boom generation nears retirement.
They are the direct results of both longevity risk and demise of Defined Benefit
(DB) pension plans.

Longevity risk is the risk that an individual will outlive his/her retirement sav-
ings due to a longer life span. For example, if one’s retirement consists of per-

sonal savings only, the possibility exists that the money will run out before one
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dies under a fixed consumption strategy. According to Berkeley human mortality
database (http://www.mortality.org/hmd/), life expectancies at birth for Canadi-
ans increased by more than 20 years from 1929 to 2009 due to enhancements of
diet, life style and medical care. By the time of late adulthood, one’s chances of
survival to a very old age are quite good. For example, although the life expectancy
for those born in Canada in 1989 is 77.12 years, those who live to age 65 will have
an average of almost 18 additional years left to live, making their life expectancy
almost 83 years. The risk to retirees who do not adequately consider these life
expectancy gains is potentially very expensive since they are in great danger of
becoming financially ruined at retirement, especially in the current situation where
the world economy is not doing well after the subprime crisis.

Traditional DB pension plans are becoming less popular worldwide. One of the
factors that have contributed to this is the risks associated with long life expectancy.
These risks finally translate to higher than expected pay-out-ratios for many pen-
sion funds and insurance companies, so more and more institutions are closing DB
pension plans to avoid this risk. In 1998, 62.7% of individuals who participated
in a retirement plan had a Defined Contribution (DC) plan as their primary plan,
compared to 49.8% in 1993 (Copeland 2002). Therefore, more and more people as-
sume all investment and longevity risk, which makes it a great challenge to manage

their wealth after retirement.



Many retirees face a dilemma as to whether to choose annuitization from insurers
who guarantee a lifelong payment stream, or self-annuitization offering a higher
consumption rate by investing more assets in the equity market but with a risk
that retirees may outlive the wealth from the self-managed assets. For instance, in
Canada, RRSPs must be collapsed by December 31st of the year individuals turn
age 71. One option is to cash out all their RRSPs, but it is obviously not the best
alternative if the amount of accumulated income in the RRSP is significant because
the tax payment is huge. The second option is to purchase a fixed term annuity or
life annuity to provide for a steady stream of income over their life or their spouse
depending on the plan. The third option is to establish a Registered Retirement
Income Fund (RRIF) for which retirees will self-manage the funds while required to
make an annual minimum withdrawal based on age. Therefore, most retirees need
to make decisions between annuitization and self-annuitization, which is affected
by many factors, such as, longevity, risk aversion and existing pensions.

It is well known that the advantage of self-annuitization is high liquidity, on the
other hand, it has the risk of outliving one’s wealth in case the investment return
is below expectation. The risk in this case can be measured by the probability
of running out of money before one dies, with current living standard maintained.
This interesting problem, known as ruin probability, is our second research project.

Some literature on this exists, such as Khorasanee (1996), Milevsky and Robinson



(2000), Albrecht and Maurer (2002), Young (2003) and Huang, Milevsky and Wang
(2004). Through analyzing historical mortality data, we find that the mortality
rate is better described by the stochastic model, rather than the Gompertz model.
Motivated by this finding, we study the individual ruin probability under stochastic
hazard rates in which the mortality rate is a state variable. Therefore, for any given
initial mortality rate at time 0, which could be either greater than, equal to, or less
than the GM mortality rate, we will compare the ruin probabilities under stochastic
and GM mortality rates to look into the effect of stochastic mortality on the lifetime
ruin.

Annuitization guarantees a certain living standard with its lifelong payment
stream, but its obvious disadvantage is the illiquidity, which may not lead to a
substantial bequest to survivors and the estate upon the death of the annuitant.
In addition to bequest motives, the other factors that may affect the annuitization
decision is the personal mortality rate and interest rates. In the real world, the
risk-free interest rate is changing over time, which in turn affects the optimal an-
nuitization time. In this dissertation, we study how stochastic interest rates, which
are assumed to follow the Cox-Ingersoll-Ross (CIR) process, affect the optimal an-

nuitization timing problem.



1.2 Contributions and Outline of the Dissertation

The contribution of the first project is to study the optimal annuitization time under
the all-or-nothing framework when the individual consumes all of his/her annuity
payment or consumes optimally, an extension of Milevsky and Young (2007). The
contribution of our second project is to study the ruin probability under stochastic
hazard rates under a fixed retirement consumption strategy, which is an extension
of Huang, Milevsky and Wang (2004).

This dissertation is organized as follows. Chapter [2] studies the annuitization
problem for a retired individual whose objective is to maximize his/her lifetime
utility under stochastic interest rates by assuming that she will consume all the
annuity income after annuitization in an all-or-nothing framework. When the sub-
jective mortality rate is equal to the current interest rate, the results are consistent
with previous works done by other researchers. We first study the optimal annuiti-
zation time with the exponential mortality rate for constant and stochastic interest
rates. Then we move on to the same problem with the GM mortality rate, which
is a free boundary problem, quite similar to the American option pricing problem.

In Chapter B, which is an extension of Chapter 2, by realizing the fact that
retirees may not consume all the annuity income, we study the optimal consumption

rate by assuming that consumption is part of the annuity income and the remains



are used to purchase new annuities. Then we apply the dynamical programming
strategy to find the free boundary. Exponential mortality and GM mortality are
investigated respectively and numerical results are given in each subsection.

Chapter @ implements numerical PDE solution techniques to calculate the prob-
ability of lifetime ruin, which is the probability that a fixed retirement consumption
strategy will lead to financial insolvency under stochastic investment returns and de-
terministic mortality rates. The ruin probability satisfies a backward Kolmogorove
equation and can be solved by finite difference method. Secondly, we obtain the
PDE that the ruin probability must solve under stochastic hazard rates. This PDE
is two dimensional with cross derivatives. We have checked the consistence of the
two PDEs under special conditions and carried out a convergence analysis to prove
that our numerics are good, and then provide the numerical results in the end. We
find that the ruin probability under stochastic hazard rate is always greater than
the ruin probability under Gompertz mortality. The correlation between wealth
and hazard rate affects the lifetime ruin for stochastic hazard rate.

Finally, Chapter Bl concludes this dissertation and identifies future research.

e Remarks on Simulations and Software: All simulations in this disserta-
tion are performed on MATLAB version 6.5.1 with Lenovo’s ThinkPad T43

using MATLAB programming.



2 Optimal Annuitization Timing with

Constrained Consumption

2.1 Introduction

The existing literature of the annuitization problem, such as Yaari (1965) and
Richard (1975), concludes that it is always optimal to annuitize with no bequest mo-
tives under a constant interest rate. In this chapter, we study the effect of stochastic
interest rates on the annuitization decisions under a constrained consumption strat-
egy without bequest motives. The various models proposed to describe the behavior
of interest rates in literature are equilibrium models and no-arbitrage models. In
this chapter, we use the CIR model, a one-factor no-arbitrage model of the short
rate, since it has the advantage of avoiding the possibility of negative interest rates,
as well as mean reversion and robustness, which can be used in conjunction with
any set of initial zero rates to study the optimal annuitization problem after re-

tirement. When the short-term interest rate falls below the long-term average, the



short-term interest rate tends to increase towards the long run rate in the future.
When the short-rate interest rate is above the long-term average, the short-term
interest rate tends to fall towards the long run rate. Another advantage of the
CIR model is that the present value of a bond’s price can be computed through a
neat exponential expression, which can be used to calculate the actuarial annuity
factor, the present value of a life annuity that pays $1 per year continuously to an
individual at the time of purchase. Although the interest rate models are mature
in pricing options, futures and other derivatives, little work has been done on how
this might affect the retired individuals with regards to their annuity purchasing
decisions at retirement.

In an attempt to help fill this vacuum, we seek to present two life cycle models
which investigate the optimal annuitization strategy for a retired individual whose
objective is to maximize his/her lifetime utility under a variety of institutional
restrictions without bequest motives in an all-or-nothing framework, where the
individual is required to annuitize all his/her wealth in a lump sum at some time 7
at retirement. We further explore the effect of stochastic interest rates on individual
annuity purchasing. Motivated by previous works where researchers often assume
full consumption of the annuity payment after annuitization, such as Milevsky
and Young (2007) and Yaari (1965), we use the same assumption throughout the

whole chapter, i.e., the individual will consume all his/her annuity income after



annuitization, which echoes the fact for some retirees in reality. In financial markets,
this individual is allowed to invest in a risky asset with constant volatility and a
riskless asset whose interest rates obey the CIR process, and the expected equity
returns are modeled to be a constant spread above the riskless interest rate, which
is reasonable in the sense that the equity return should be always greater than
the riskless interest rate, and so far we have not found any research studying this
relationship. This assumption means that when the riskless interest rate goes up,
the equity return also goes up and vice versa, and Merton’s constant is fixed if the
risky asset volatility and the individual’s risk-aversion coefficient are constants.

In the two primary life cycle models addressed in this chapter, the consumer’s
preference is represented by the constant relative risk aversion (CRRA) utility func-
tion, whose homogeneity allows the value function to take a similar power form.
We take advantage of this property from a technical point of view.

For the first model, we present a constant force of mortality to address the
optimal annuitization problem with constant interest rates and stochastic interest
rates. Given initial wealth w at time zero (retirement), we are looking to see
if it is most favorable to annuitize, as well as the optimal annuitization time, if
it is necessary upon optimal investment and consumption strategies. In general,
the value function (the present discounted utility function from retirement to time

of decease) associated with this optimal control problem is a function of time t,



wealth w and interest rate r. When the interest rate is static, this value function
is independent of time ¢ for any given initial interest rate r (the interest rate will
not change over time). Therefore, the value function depends only on the interest
rate r, not time ¢, with the mortality rate A as a parameter. One step further, for
any given r, it will be favorable either to annuitize or never to annuitize.

The second model is actually an extension of the all-or-nothing framework of
Milevsky and Young (2007) under GM mortality, in which we modify the constant
interest rate by stochastic interest rates. The force of mortality is assumed to be
invariable after the maximum age (120) of a human being. This is a plausible
assumption because human beings rarely live past the maximum age, and their
mortality rate is very high, which means that the effect of mortality after the max-
imum age is trivial to the value function. In this scenario, the value function can
be proved to satisfy a second-order linear Hamilton-Jacob-Bellman (HJB) equation
with cross derivatives after applying Ito’s lemma and Bellman’s principle of opti-
mality. Our problem becomes a free boundary one which is quite similar to the
American put option problem since at each time ¢, we need to determine not only
the value function, but also, for each value of r, whether or not the individual need
to annuitize. We then transfer this free boundary problem to an equivalent linear
complementarity (LCP) problem which has the advantage that the free boundary

does not interfere with the solution process, and it can be recovered from the solu-
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tion after the latter has been found. Then the projected successive over-relaxation
(SOR) method is applied to solve the LCP problem since it has the advantage of
immediate replacement of the newest values of the unknown variable.

Some literature exists on the annutization decisions at retirement. In the sem-
inal paper of Yaari (1965), he argues that an individual should always annuitize
all his/her wealth in the absence of bequest motives, but in reality, the annuitiza-
tion rates are very low, the so called ‘annuity puzzle’. There have been a lot of
papers which study ‘annuity puzzle’ problem such as Brown and Poterba (2000),
and Brown and Warshawsky (2001), which documented that the low voluntarily
annuitization rate is due to the high loads and fees embedded in annuity prices.
Friedman and Warshawsky (1990) and Vidal-Melia and Lejarraga-Garcia (2006)
concentrated specially on how bequest motives affect the demand for annuities,
both showed that strong enough bequest motives can eliminate purchases of annu-
ities with high enough loads. For more literature review about this topic, we refer
the interested reader to the paper by Milevsky and Young (2007). In this chapter
we focus on the optimal asset allocation associated with the optimal annuitization
timing under two different types of interest rates.

The remainder of this chapter is organized as follows. General notation and
basic assumptions coming from the research community are elaborated in Section

22l Then we document the annuitization problem under exponential mortality
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rate for constant and stochastic interest rates respectively in Section Next we
investigate the annuitization problem under GM mortality and stochastic interest
rates in Section 2.4 which is a free boundary problem similar to the American
option problem. We convert it to an equivalent LCP problem, and solve it by the
projected SOR method, and then recover the free boundary from the solution of
the value function. Finally, Section concludes this chapter and gives directions

for future research.

2.2 General Notation and Basic Assumptions

This section provides a primer on the notation and terminologies used later in the
annuitization problem. It aims at providing a consistent nomenclature.
The survival probability for an individual aged x, alive at time ¢, who survives

to a future time s (s > t), is given by

(s—tDatt) =€ I /\Hvdya (2.1)

where A, stands for the instantaneous force of mortality at age = + v. In the
case of exponential mortality, i.e., \,1, = A, this survival probability simplifies to

efA(sft)

. In this chapter, we will study the annuitization problem under constant
and variable mortality rate respectively, i.e., the force of mortality is constant and

Gompertz.
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We further assume that the individual can choose to invest his/her wealth W,
in a financial market composed by a risky asset (a portfolio of stocks with return
dS,) and a riskless asset (with return R,dv), and consumes at a rate ¢,, at time v.

This riskless asset, X, evolves according to the following process

dX, = R,X,dv,
(2.2)
Xy = It
where z; is the amount of riskless asset at time t. Notation R, is the instantaneous

risk-free rate of interest at time v, which obeys the following CIR process (see

Chapter 17, Hull (2005))

dR, = 0(u, — R,)dv + 0.V R,dB!,
(2.3)
R, =
where B) represents a standard Brownian motion, the superscript » means the
instantaneous riskless asset and the subscript v means time, and 6, u,, o, are the
parameters. 6 is the speed of adjustment, g, is the long run interest rate and
o, is the volatility. This dynamic interest rate model was introduced by Cox,
Ingersoll and Ross (1985) and has been applied widely in financial economics. For
given positive initial interest rate r, R, will never touch zero if 20y, > o2 holds,
otherwise, it will occasionally touch zero. For detailed parameter estimates, we

refer the interested reader to Chan, Karolyi, Longstaff and Sanders (1992). Another

advantage of the CIR process is that it is mean reverting. When the short-term
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interest rate falls below the long-term average p,., the short-term interest rate tends
to increase towards p,. in the future. When the short-term interest rate is above the
long-term average, the short-term interest rate tends to fall towards the long-term
average in the future.

As in Black and Scholes (1973) and Merton (1971), the risky asset S, evolves

according to a geometric Brownian motion (GBM)

dS, = psS,dv+ 0:S,dB;,
(2.4)
Sy = s,
where B; represents a standard Brownian motion, the subscript v means time and
the superscript s means stocks (risky asset). Parameter o is the diffusion term
of the risky asset, its typical values fall in the range of (5%,50%). ps is the drift
term, which is modeled to be stochastic, i.e., ps(v) = R, + d;. This implies that
is(v) is modeled to be a constant spread above the riskless interest rate, which is
reasonable in the sense that the equity return should be always greater than the
riskless interest rate. This assumption means that when the interest rate goes up,
the expected return of the risky asset goes up as well and vice versa. In this chapter,
01 is taken to be a constant 0.03. The correlation between dB; and dB; is denoted
by p,s (a constant), which is independent of time v and ranges from —1 to +1. A

correlation of +1 means a perfect positive correlation, indicating the two variables

moving in the same direction together. A zero correlation means that there is no
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relationship between the two variables. Since changes in wealth are equal to the
return from the riskless and risky assets minus the consumption, we obtain the

wealth dynamics as

dWU - [RUW’U — Gy + (,U/s - RU)TFU]dU + 057TUdB1€7
(2.5)
Wt = w,
where 7, is the amount invested in the risky asset. Note that this variable can be
negative, meaning that the individual has shorted the risky asset and invested in
the riskless asset.
We also assume that the individual can annuitize all his/her wealth at a time

7 >t (if applicable) and obtain an actually fair amount, determined by the objective

actuarial annuity factor

ayrr(T,R;) = E [/ e~ Jr Rodv( pyir)ds|R, = 7“:| (2.6)
- / E, [e_ Iz Rodv|p - — 7“] (s—rDzir)ds (2.7)
= / Pp (7—7 S, RT)(S—Tp:v-‘,-T )dS, (28)

where Pg(7,s, R.) describes the price of the zero-coupon bond at time 7 with time
to maturity s. We have also assumed independence between the bond price and
the survival probability so that the expectation can be taken inside the integral
directly to the discounted interest rate. We finally assume that the individual

will consume the annuity income after annuitizing his/her wealth as Milevsky and
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Young (2007) in their all-or-nothing framework. Note that a,,(7, R,) is a random
variable depending on time 7 and the corresponding interest rate at that time.
The concave utility function of consumption we are interested in exhibits con-

stant relative risk aversion (CRRA). In specification, it follows

(:1_“/—17 1’
u(c) = = 17 (2.9)

in which ~ represents the relative risk aversion coefficient and % measures the elastic-
ity of substitution between consumption at two points in time. In this dissertation,

we only consider the cases when 7 is greater than or equal to 1, because low levels of

~ imply high leverage ratios which is not allowed at retirement. In fact, for v # 1,

Cll:v for simplicity as it does not affect the optimal solution.
5

we will use
Now that we have finished introducing all the notation and terminologies we are
going to use in this chapter, so we are ready to move on to our model calibration

part for exponential mortality rate next.

2.3 Model Calibration 1: Exponential Mortality

In this section, we study the annuitization problem for a retired individual whose
objective is to maximize his/her lifetime utility under exponential mortality and
a variety of institutional restrictions without bequest motives in an all-or-nothing

framework. This individual only has initial wealth in the form of a lump sum
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cash amount (such as an RRSP account in Canada), does not come pre-annuitized
with a pre-existing pension or social security and has no remaining lifetime income.
In general, the value function associated with this optimal control problem is a
function of time ¢, wealth w and interest rate r, but it is independent of time ¢
under exponential mortality for any given initial interest rate r. Therefore the
value function should depend only on r, not time ¢, with the mortality rate A\ as a
parameter, which is proved later in this section. This implies that, for any given
interest rate r, it will be favorable either to annuitize or never to annuitize at
retirement. Based on this observation, we will look at the value functions with and
without annuity purchasing at time ¢, V¢ and V", for two different interest rates
models: constant and stochastic. Then we compare the two value functions to draw
the conclusion as to whether it is optimal to annuitize or not for any given interest
rate.

Firstly, we investigate the case when the interest rate is constant. In this sce-
nario, the analytical solutions for V* are obtained under the assumption of full
consumption of the annuity income after annuitization. For V", the HJB equation
that it must satisfy is derived using dynamic programming techniques. Then its
analytical solution is acquired in a similar power form as the CRRA utility func-
tion. Finally, we compare the two analytical value functions we have obtained and

conclude that when the interest rate r is equal to the subjective discount factor p,
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it is optimal to annuitize when the force of mortality is greater than Merton’s con-
stant, which is consistent with the results obtained by Milevsky and Young (2007).
When the interest rate r is not equal to the subjective discount rate, it is optimal
to annuitize when the interest rate is small and it is optimal not to annuitize when
the interest rate is large.

Secondly, we describe the optimal control problem with stochastic interest rate.
In this case, the analytical solutions for V* are obtained through the zero-coupon
bond price which is derived from the CIR process. For V™, it satisfies a second-order
nonlinear HJB equation which can be derived by applying dynamic programming
techniques. At last, we compare these two value functions and find that the results
are consistent with what we have obtained under a constant interest rate.

The rest of the section goes into detail about the annuitization problem corre-
sponding to constant and stochastic interest rates respectively. Section 2.3.1] works
on the constant interest rate case, and analytic solutions for V¢ and V™ are derived.
Through comparison of these two functions, we draw our conclusion as to when it
is optimal to annuitize. Then the annuitization problem under a more complicated
stochastic interest rate situation is considered in Section 2.3.2] Here, one important
observation is that the two value functions, V* and V", are both time-independent
if a power term e~ (?*M is excluded. Then a comparison is performed between them

to find the annuitization boundary, which is an increasing function of the interest
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rate r and consistent with the constant interest rate case.

2.3.1 Constant Interest Rate

In this section, we study the annuitization problem starting from the most simple
short interest rate case in which the return of the riskless asset is fixed all the time.
It is known that in this case, the associated value function is independent of time
t, and it is a function of wealth w and interest rate r. Therefore we only need
to address the optimal control problem at time 0 (age x) to obtain the optimal
annuitization strategies without loss of generosity. The homogeneity property of
the CRRA utility function allows the value function to take a similar power form,
i.e., the wealth w can be factored out. So the value function becomes invariant to
the scale of wealth, i.e., the level of wealth does not matter in this specification of
utility. Therefore, the only thing that matters is the interest rate. Therefore, for any
given interest rate r, it will be favorable either to annuitize or never to annuitize,
i.e., if it is optimal not to annuitize at time zero, then it will never be in the future.
Hence, it is sufficient to study the two value functions, with annuitization (V'*) and
without annuitization (V"), at time zero, and then compare them to see whether it
is optimal to annuitize when the risks faced by the individual includes the longevity

risk and the return risk. Next we will illustrate this in much detail.
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2.3.1.1 The Value Function with Annuitization

When the force of mortality is assumed to be constant A, the value function is

defined as

Cs

V(w) =sup E [/ e~ NSy (e )ds|Wy = w (2.10)
0

in which ¢, is the optimal consumption rate at time s, and E denotes the expec-
tation conditional on Wy = w, and u is an increasing concave utility function of
consumption introduced back in section 2.2l Notation p is the subjective discount
rate which is personal and independent of the economic models for the risky asset
and the risk-free asset in the financial market. This parameter is subjective by
its own nature despite the fact that people prefer to consume more now rather
than more later. Next we will study this value function according to whether the
individual annuitizes his/her wealth or not at time zero, denoted by V¢ and V"
respectively.

If the individual annuitizes at time zero, the value function of the control prob-

lem can be written as

V4 (w) =sup E {/ e~ N3y (e, )ds (2.11)
Cs 0

_ [T e, g 2.12

/o e u(&x(O,T)) s. (2.12)

We have assumed that the individual consumes exactly the annuity payout after

_w
az(0,r)
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factor a, (0, ), the present value of a life annuity that pays $1 per year continuously

to the retiree who is age x at the time of purchase, is computed by

1
r4+ A

a,(0,7) :/ e e Mds = (2.13)
0

After plugging this expression and the utility function (29) into equation (2I2]),

the closed-form expression for V*(w) can be obtained as

)az(0,p), v =1 (2.14)

2.3.1.2 The Value Function without Annuitization

In this subsection, we assume that the individual does not annuitize at time zero,
and investigate the value function V" when both riskless and risky assets are avail-
able to invest by applying dynamic programming techniques. In details, we will
apply Bellman’s optimality principle and Ito’s lemma to obtain the HJB equation
that the value function must solve. This HJB equation is then solved analytically
by making a proper transformation stimulated by the special form of the CRRA
utility function.

The expected discounted utility of consumption in this case is defined by

V*(w) =sup F l/ e~ PNy (e dt Wy = w | (2.15)
0

Ct, Tt
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with the following budget constraint

aw, = [rW, —c, + (us — r)m)|dv + osm,d B3,
(2.16)

W, = w.

Note that borrowing is allowed in this circumstance. To apply the dynamic pro-
gramming techniques, we denote V (¢, w) the value function starting in state w at
time ¢ and controlling the system optimally from then until time oo and divide the

value function V' (¢,w) into two sub-integrals. Specifically,

V(t,w) = supFE [/ e~ PNy (¢ ) ds|wy = w]
t

Cs,Ts

t4-dt
= sup {/ e~ PNy (eg)ds + V(Wi t + dt)]
t

Cs,Ts

t+dt
= sup {/ e~ PNy (e )ds + V (wy, t) + dV} : (2.17)
¢

Cs,Ts

It can be easily observed that V" (w) = V(0,w). Then Bellman’s optimality princi-
ple and Ito’s lemma are applied to obtain the following HJB equation for V (¢, w),

see Bjork (2004, Chapter 14).

1
Vi + sup{e” "t Vu(e,) — ¢,V + (rw + (ps — 7)) Vi + =027V} = 0, (2.18)

S
eyt 2

subject to the terminal condition V(co,w) = 0. Let V(t,w) = T;:h(t) (v # 1),

then the optimal consumption ¢; and investment 7; can be obtained from the first

order necessary conditions

~ Mt 1
G =e 7 wh 7,
(2.19)
o Hs—T %
7Tt —_— 0—2’7 ’U},
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where w is the optimally controlled wealth. Substituting the two admissible controls

into the HJB equation (ZI8]), we obtain the following PDE that h(t) must satisfy

_(ptN)t 1—1

he + (1 —=~)nh+~e~ + h 7 =0, (2.20)

subject to the terminal condition h(co) = 0. The notation 7 is the sum of the cur-

rent interest rate r and (us — 7)?/0? scaled by double v, i.e., n =1+ (“%%2)2 This

Bernoulli ordinary differential equation (ODE) can be solved by making a transfor-
mation h = y?. After some mathematical manipulation, the analytic solution for

h(t) (when p+ X+ (v —1)n > 0) is

o~ (PHA+h—kNE _ o= (p+A+k—ky)T
h(t) = (

Y=t (2.21)

p+A+Ek—Fky
So that
V*w) = V(w(0),0) (2.22)
1=y 1 — = (ptA+k—=ky)T
S Y ). (2.23)

L—v" p+A+k—ky

Similarly we can obtain the expression for V" when the utility function takes the

form of the natural logarithm

In(w) +In(p+ A+ -1
Vi w) = (w) (p—i-/\) s S (2.24)

2.3.1.3 Optimal Annuitization Strategy

In this subsection, we discuss whether it is optimal to annuitize at retirement by

comparing the two value functions V* and V" which are time independent to give
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the annuitization boundaries for v greater than 1. The reason why we are interested
in these v values is historical, such as Feldstein and Ranguelova (2001) documented
that the risk aversion constant is less than 3, while Campbell and Viceira (2002)
suggested that risk aversion levels may be higher. The constant spread between
the expected equity returns and the risk-free interest rates are set to be 0.03, which
is reasonable in the circumstance of our current low interest rates. The equity
volatility is taken to be 0.2, which is roughly in line with Ibbotson Associates
(2001). From Section 2311 and Z3.T.2] we have obtained the analytic solutions

for V* and V", hence we have

(p+N)(r+ At — (22 g s
Ve —V" x (2.25)
+A— +A =
et gy, y=1
When the interest rate r is equal to the subjective discount rate p, the condition
for V¢ > V™ is simplified to

2

- 2v0?

v > 1 (2.26)
This means that it is optimal to annuitize today when the force of mortality is
greater than Merton’s constant, which is consistent with the results obtained by
Milevsky and Young (2007). Since we have assumed constant spread between the
expected return of the risky asset and the riskless interest rate, this means that

it is optimal to annuitize for any interest rate when the hazard rate is greater
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than Merton’s constant. In contrast, it is always optimal not to annuitize when
the hazard rate is less than Merton’s constant. Therefore, the size of the force of
mortality decides if the individual need to annuitize at retirement.

To see when it is optimal to annuitize when the interest rate r is not equal
to the subjective discount rate p, we solve the equation V* = V™ to obtain the
annuitization boundary that the interest rate must satisfy. The conditions for

V@ > V"™ are summarized in Table 2Tl for v = 2 and Table2 2 for v = 3 respectively.

(s *7")2
2v02

Merton’s constant ( ) corresponding to 7 = 2 and v = 3, give 0.005625 and
0.00375 for fixed values of o5 (0.2) and ps — r (0.03), which means that all the
force of mortality values in both tables are greater than these two constants. Note
that the maximum interest rate we are going to consider is 0.4000, which is never
reached in reality in developed countries where people pay attention to retirement
planning after retirement. Two different subjective discount factors (0,0.02) are
investigated in the two tables so that we can observe the annuitization boundaries
more consistently.

From Table T]and Table 2.2 we can see that the annuitization boundary is an
increasing function of the mortality rate when A is small. Note that we have taken
the subjective discount rate to be zero for comparison purposes. The maximum

interest rate we are considering is 0.4, which is an artifact because in reality it

is too large to be attained in western countries. We observe from the table that
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when A is big enough, it is always optimal to annuitize. This means that for
individuals who believe that their mortality rate is relatively high, it is optimal
to annuitize immediately, and for individuals whose mortality rate is relatively
low, it is optimal to annuitize when the interest rate is less than the annuitization
boundary and optimal not to annuitize when the interest rate is greater than the
annuitization boundary. There are three factors that may have contributed to these
numerical results: the interest rate is not equal to the subjective interest rate, full
consumption after annuity purchasing, and constant spread between the risky asset
return and the riskless asset return. Then we observe that higher levels of the
subjective discount rate leads to higher levels of annuitization boundaries, which
means that when p is higher, individuals more likely choose to annuitize. Intuitively,
this is because the discounted utilities at retirement are in fact very different for
two subjective discount rates.

Comparing Table 2.1] to Table 2.2] we see that higher levels of risk-aversion
coefficient implies higher levels of annuitization boundary. This is a reflection of
the fact that risk averse individuals are more likely to annuitize at retirement if
applicable. And once the force of mortality is big enough, it is always optimal to

annuitize for interest rates less than 0.4.
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Table 2.1: Conditions for V¢ > V™ When ~ = 2

A domain of r (p = 0) | domain of r (p = 0.02)
0.0200 r < 0.0483 r < 0.0823
0.0500 r < 0.1386 r < 0.1758
0.0800 r < 0.2287 r < 0.2668
0.1000 r < 0.2887 r <0.3273
0.1242 r < 0.3613 r < 0.4000
0.1371 r < 0.4000 vV or

> 0.1371 vor vV or

Table 2.2: Conditions for V¢ > V" When v =3

A domain of r (p = 0) | domain of r (p = 0.02)
0.0200 r < 0.0651 r < 0.1035
0.0500 r <0.1767 r < 0.2187
0.0800 r < 0.2885 r <0.3313
0.0984 r < 0.3569 r < 0.4000
0.1100 r < 0.4000 vV r

> 0.1100 vor vor
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2.3.2 Stochastic Interest Rates

In the previous section, we have studied the optimal annuitization timing problem
under constant interest rate and concluded that for » = p, it is optimal to annuitize
when the mortality rate is greater than Merton’s constant, and for r # p, it is opti-
mal to annuitize when the interest rate is smaller than the annuitization boundary;,
and optimal not to annuitize when the interest rate is greater than the annuitization
boundary if the mortaliy rate is relatively small. Otherwise, it is always optimal
to annuitze at any interest rate. But the assumption of a constant interest rate is
not true in the real world since it fluctuates over time. Therefore, we move on to
investigate the same annuitization problem under a much more real interest rate in
which the return of the riskless asset obeys the CIR process (see equation (23])).
In this section, we look at the annuitization value function V¢ first, which is
proved to be time-independent if the power term e~ (*+M?! is factored out. Secondly,
we study the non-annuitization function V" via dynamic programming, which is
also time-independent if e=(**M! is factored out. Finally we compare these two
value functions to find the free boundaries and present the numerical results in

tables for two different risk aversion coefficients v = 2 and v = 3.
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2.3.2.1 The Value Function with Annuitization

If the retiree annuitizes his/her wealth at time ¢, the associated value function can

be written as

Ve(t,w,r) =sup & {/ e~ PNy (e, )ds
¢

_ > —(ptN)s,, (W d 2.97
= e U S. .
/t (C_Lac+t(t7 T)) ( )

Note that we have assumed full annuity payout consumption after annuitization.

After some mathematical manipulation, we obtain

Vet w,r) = e Py ))&Ht(t, p), =1 (2.28)

C_Zert(t, T

The annuity factor a,(t, R;) is determined by

a/x+t(t, Rt) = E |:/ e f: Rvdv(87tpx+t )d8:| = / pB(t, S, Rt)(sftpx+t )dS (229)
t t

The notation Pg(t, s, R;) is the zero-coupon bond price at time ¢ with maturity s.

According to Cox, Ingersoll and Ross (1985), it is computed by

Py(t,s, Ry) = A(t, s)e BE=)E

_ (e
B(t, 3) = (€10)(EGD—1)t2¢’ (2 30)

26c0+0(—n/2 24
(E10) (D 1)12¢) "

£ = /0% + 202.

If we make a transformation z = s — ¢, then the above annuity factor becomes

At,s) =

aprt(t, Ry) = / e M At t + 2)e” BUHAR g, (2.31)
0
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Since A(t,t+ z) and B(t,t + z) are functions of z only, the annuity factor does not
depend on time . It is the interest rate at time ¢ decides the size of the annuity
factor. It is known that the return of the riskless asset progresses as a stochastic
process with a set mean and experiences random deviations from its mean that
are not known beforehand. Therefore, the specific interest rate at time ¢ can be
any positive value which is a state variable in our optimal problem, and the value
function V® is time-independent if the power term e~ **V! is factored out as the

constant interest rate case. In next section, we will show that V" shares the same

property.

2.3.2.2 The Value Function without Annuitization: Dynamic Program-

ming Method

If we assume the retiree never annuitizes at retirement, then the discounted utility

of consumption the individual is seeking to maximize is defined by

V™(t,w,r) = sup £ [/ e~ PNy (e, ds | (2.32)
t

By applying Bellman’s optimality principle and Ito’s lemma, we obtain the follow-

ing HIB equation (superscript n is omitted in V™ hereafter in this section) that
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V™ (t, w,r) must satisfy

Vi +sup,, ., e "™u(c,) + (rw — )V + 0(pr — 1)V, + 2ro?V,, ]

(2.33)
+supy, [(s — 7)1V + 371202 Vi + prs0r05(/ T Vi | = 0.
If we postulate V(t,w,r) = “{i:h(t, r) like before, then the optimal consumption
and investment strategies can be obtained via its first order derivatives as
& = e 5 @l (2.34)
7 = WeZ DT proron/rh (2.35)

vosh
where w is the optimally controlled wealth. Substituting them back into the HJB

equation (2.33), we obtain the following nonlinear PDE of h.

he+ (1= y)rh+ve 5 mY 3 4 Oy — r)he + 1ro2h,,
(2.36)

(1_ )(( s_r)h+ 7‘50'7‘0'3\/;]7»7‘)2 _
+ e 20‘25}1 =0,

with terminal condition h(co, ) = 0. For simplicity, we will consider the case when
there is no correlation between the Brownian motions that drive the risky asset and
the return of the riskless asset, i.e., p,s = 0. In this case, equation (230) collapses

to

(ptN)t 1—

1
hi + (1 —~)nph +~ye " T4 O(pr —1)hy + érafhrr =0, (2.37)

(HS_T)2
202y

where n = r + For numerical calculation purposes, the computational

domain is truncated to be [0, 7] X [0, 7qz), in which 7" is the maximum lifespan of
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the individual minus his/her current age x, and 7,4, is the maximum interest rate
that the riskless asset can attain. The terminal and boundary conditions imposed

at time t =T, r =0, and r = 1,4, are respectively

t="1T: h(T,r) =0,

(p+N)t

r=0: h+(1- V)Mh +ye A Ou,h, =0, (2.38)

202~

\ = Tmaz - h,. = 0.
We make an attempt to explain these conditions intuitively. Firstly, the zero termi-
nal condition at time 7" is due to the fact that the integration of V' is zero when 7'
is fairly large. Secondly, the boundary condition at » = 0 is obtained from the PDE
(Z30) by setting r = 0 on both sides of the equation, which is a natural boundary
condition. Thirdly, the Neumann boundary condition at r = r,,, is provided on
the observation that the second-order derivative at this point is close to zero for
constant interest rates.

Now we are ready to solve this equation system (Z37) and (238)) numerically.
Unfortunately, the right hand sides of the new discretized equation system are
all trapped to zero due to the zero terminal condition, thence zero solutions are
obtained, which is not what we are looking for. To seek a non-zero solution, we

make the transformation h(t,r) = y?(t,7) as before, then the non-zero solution

y(t,r) must solve the following nonlinear second-order PDE

1-— (Nt 1 1
Gl ny+e T +0( — )y + =10 (Ypr + 7Tyff) =0. (2.39)

Yr + 5
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Since the force of mortality is constant, the value function V' can be shown to be

independent of time ¢ if the time factor e~ (?*V? is excluded, just as the annuitization

—(p A
function V. Therefore, we make a new transformation y(¢,r) =e E Ji(t,r), and

substitute it into equation (239), we obtain the following PDE that (¢, r) must

satisfy
=y (s =) pEA I oyy—=1_._ 1 ,_
et (r+ 2702 )— > )y+(9(ur—T)+§T0r7yr)yr+§mryrr+1 = 0.
(2.40)
The corresponding terminal and boundary conditions become
t="T: g(T,r) =0,
_0- 5o (e ws=r)?y L oph s 7 - (2.41)
r=0: I+ (FH(557) — 57)0 + O +1 =0,
T = Tmaz * Yrr = 0.

We have solved this equation system of y in two different ways. The first way is
to solve it directly with the above terminal and boundary conditions applying the
implicit finite difference method. The solution we have obtained in this way is time
invariant when time ¢ is away from the zero terminal condition, which means that
the effect of the zero terminal condition can actually be eliminated after some time.
The second way is to apply the condition g, = 0 first, and then solve the ODE by
finite difference method using the iterative method. The two solutions obtained
using these two different ways are in perfect agreement after elimination of the

effect of the zero terminal condition from the first method. Therefore, y depends
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only on the interest rates r. After solving this equation system, we are able to
obtain all the numerical solutions of V"(¢,w,r) on its grids.

The value function, V, is the maximum of the two value functions V" and V¢,
ie., V =sup(V", V). We run into a problem when we take the maximum of the
two if they intersect with each other. This means that at this intersection point, V"
equals V% while their derivatives are not equal. Motivated by the classical Stefan
velocity for phase-change models (see Donaldson and Wetton (2006)), we move the
intersection leftward so that both the value function values and their derivatives
are equal on it. Next we will illustrate this procedure in much detail.

It is known that the two value functions with and without annuitization are
respectively

Vn(t7 w, T) = uil,_,;/h(u T) = %y’y(ta T) = uil:,;/ ei(er)\)tg’Y(t? T)u

(2.42)
Va(ta w, 71) = %e_(p—’—)\)tﬁ%daﬁﬂ (ta r)'y—l'

We can see that V™ and V* are both independent of time ¢ if the exponential term
e~ (PNt is excluded because the annuity factor a,,(¢,7) and the function g(t,r) are

independent of time ¢, so the annuitization boundary does not change over time.

7 (t,r) and Qg (t,r)Y 1 t

Therefore, for each fixed time ¢, we only need to compare T Sy =

0
find the annuitization boundary. Without loss of generality, we do this comparison
at time t =0 (s =1T).

We first compare V* and V" to obtain the initial annuitization boundary r* (it
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indeed exists in this case), which divides the whole interest rate domain into two
separated regions: in region [0, 7], it is optimal to annuitize, and in region [r*, 74z ],
it is optimal not to annuitize. On this annuitization boundary, not only the two
value functions, but also their derivatives with respect to r should be equal. So
we compute the difference of the derivatives %H:r* — 88#“:,"*, if this difference
is equal to zero, then r* is the annuitization boundary that we are looking for,
otherwise, we need to move ™ with an explicit time step r to the left (denote
r* = r* — Jr), and solve the PDE of ¢ in the new domain [r*,r,,..] by setting
the boundary condition at r* to be the corresponding value so that the two value
functions V™ and V* would be equal on the annuitization boundary (Note that in
domain [0, 7*], it is optimal to annuitize, so V' = V). Then we compare the two
derivatives on the new annuitization boundary r*. If it is equal to zero, then this
new 7* is what we are looking for, otherwise, repeat the above procedure until we
find a new r* in which V" and V* and their derivatives with respect to r are equal
on the annuitization boundary. If we continue this procedure and cannot find a

solution, then the annuitization boundary does not exist, which means that it is

always optimal not to annuitize for any interest rate.
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2.3.2.3 Numerical Results

In this section, numerical results are presented for two different levels of risk aver-
sion, v = 2 and v = 3. As for the financial market parameters, the volatility for
the risky asset, o, is assumed to be 0.2, which is roughly in line with numbers
provided by Ibbotson Associates (2001), which are widely used by practitioners
when simulating long-term investment returns. The drift term pg, is assumed to
be moving with the interest rate r at any time t, i.e., the expected equity returns
are modeled to be 0.03 above risk-free interest rates. The constant mortality rate
is assumed to be 0.05, implying that the expected remaining lifetime is 20 years.
The maximum life span for the individual is assumed to be T" = 125 years. The

parameters for stochastic interest rates are § = 0.25, u, = 0.06 and o, = 0.1. The

2

T

volatility o, is chosen to satisfy condition 260u, > o7, which guarantees that the
interest rate will never touch zero for any given positive initial interest rate. The
subjective discount rate p is specified to be 0 for comparison purposes, since it is
not a real assumption. The correlation p,, is taken to be 0 since Munk, Sorensen
and Vinther (2004) estimated that the stock index is slightly negatively correlated
with the nominal interest rate (—0.06). Parameters described in the algorithm are

summarized in Table 23l All the parameter values take these typical values unless

otherwise specified throughout the entire section.
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Figure 2.1: The Annuitization and Non-annuitization Value Functions.
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The figure shows both initial and final free boundaries under stochastic interest rates (note that the
free boundary here means the annuitization boundary). The parameters used are: constant force
of mortality A = 0.05, adjustment speed 6 = 0.25, long run interest rate u, = 0.06, volatility of
interest o, = 0.1, volatility of risky asset os = 0.2 and risk aversion coefficient v = 2. V¢ denotes
the value function with annuitization, V"2 denotes the value function obtained by solving ¢ in
domain [0, ry,4z] in which the boundary condition at » = 0 is imposed by equation ([ZZI]), and
the initial annuitization boundary is equal to 0.7800. V™1 is the non-annuitization value function
obtained by solving ¢ in domain [0.2560, 7,4.] in which the boundary condition at r = 0.2560 is

set to be V"1 = V.
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Figure 2.2: The Derivatives of the Value Functions.
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Note that the free boundary here means the annuitization boundary. The parameters used are:
constant force of mortality A = 0.05, adjustment speed 6 = 0.25, long run interest rate p,, = 0.06,
volatility of interest o, = 0.1, volatility of risky asset o, = 0.2 and risk aversion coefficient v = 2.
The two derivatives intersect at point 0.2560. This is the annuitization boundary we are looking

for.
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Table 2.3: Typical Parameter Values

Constant mortality A 0.05
CIR model 0, ., o, 0.25, 0.06, 0.1
Risky asset ps —r, 05 0.03, 0.2
Maximal life time T’ 125
Correlation between By and By, p,s 0

To give readers some intuition about how the annuitization boundary is ob-
tained, the two value functions and their derivatives are plotted in two separate
figures (2] and 2.2) for parameters 6 = 0.25, i, = 0.06, 0, = 0.1 and A = 0.05. In
figure 2211 V* is the value function with annuitization, V"2 is the value function
obtained by solving 7 in domain [0, 7,,4,] in which the boundary condition at r = 0
is imposed by equation ([Z41]), and V"1 is the non-annuitization value function
obtained by solving ¢ in domain [0.2560, 7,,4,| in which the boundary condition at
r = 0.2560 is set so that V"1 = V*° The initial annuitization boundary, where
V¢ intersects V"2, is at point » = 0.7800, we then move it leftward until the final
annuitization boundary r = 0.2560 is obtained on which both V* and V"1 and their
derivatives with respect to r are equal. These two derivatives are plotted in Figure
2.2l Note that when r is constant, the annuitization boundary is » = 0.1386, so the
annuitization boundaries for constant and stochastic interest rates for exponential
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mortality are not too far away from each other.

Table 2.4: Match of the Annuitization Boundaries

A Domain of r (analytical solution) | Domain of r (§ = 0, o, = 0)
0.0200 r < 0.0483 r < 0.0462
0.0300 r <0.0784 r < 0.0762
0.0400 r < 0.1086 r < 0.1063
0.0500 r < 0.1386 r < 0.1363
0.0800 r < 0.2287 r < 0.2263
0.1000 r < 0.2887 r < 0.2838
0.1371 r < 0.4000 r < 0.3888
0.1398 vr r < 0.4000
> 0.1398 vr vr

Notes: The 2" column denotes the annuitization boundary for constant interest
rates, the 3™ column denotes the annuitization boundary for stochastic interest

rates when the adjustment speed and volatility are both 0.

To verify our numerical results, we first compare the annuitization boundaries
we have obtained by setting the adjustment speed and volatility of the interest rate
to be 0 (the stochastic interest rates collapse to constants) and compare them with

previous results in section 2.3 1.3 which is summarized in Table 2.4 for v = 2 and
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p = 0. It can be easily computed that the maximum absolute difference of the two

annuitization boundaries using two different methods is 1.12 percent, so they are

in agreement, which gives us confidence that our numerics are good.

Table 2.5: Annuitization Boundaries for Stochastic and Constant Interest

A Domain of r (# =0, o, = 0) | Domain of r (¢ =0.25, o, = 0.1)
0.0200 r < 0.0462 %)
0.0300 r < 0.0762 r <0.1120
0.0400 r < 0.1063 r < 0.1920
0.0500 r <0.1363 r < 0.2560
0.0800 r <0.2263 r < 0.3867
0.1000 r <0.2838 vr
0.1371 r < 0.3888 vr
0.1398 r < 0.4000 vr
> 0.1398 vr vr

Notes: The 2" column denotes the annuitization boundary for constant interest
rates, and the 3" column denotes the annuitization boundary for stochastic interest

rates.

Then we compare the effect of the stochastic interest rates on the optimal an-

nuitization strategies in Table We can see that in general the annuitization
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boundary for stochastic interest rates lies above the annuitization boundary for con-
stant interest rate (if applicable). For stochastic interest rates, when the mortality
rate is 0.02, it is always optimal not to annuitize, and when the mortality rate is
greater than 0.10, it is always optimal to annuitize. For a constant interest rate,
when the mortality rate is greater than 0.1398, it is always optimal to annuitize.
Therefore, both the mortality rate and the interest rate matter when it comes to
the decision of annuity purchasing. The intuitive explanation for the rise in the an-
nuitization boundary in this case lies in that the dominant effect of the stochastic
interest rate to push up expected interest rates over time.

Now we move on to see the effect of the subjective discount rate on the annuiti-
zation boundary. The parameters for the CIR process are 8 = 0.25, u, = 0.06, 0, =
0.10 for two different risk-aversion coefficients. The annuitization boundary are
summarized in Table for v = 2 and Table 271 for v = 3 respectively. In each
table, two different subjective discount rates, p = 0 and p = 0.02, are considered.
It can be seen that the annuitization boundary is an increasing function of A\, and
it is optimal to annuitize when the interest rate is smaller than the annuitization
boundary (note that the hazard rate is greater than Merton’s constant), which is
consistent with the constant interest rate case. Note that when v = 2 and A = 0.02,
the annuitization boundary does not exist, which means that it is always optimal

not to annuitize no matter what the current interest rate is, which is an exten-
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sion of the result for constant interest rate. Another important observation is that
when the force of mortality is big enough, it is always optimal to annuitize, which
is due to a significant survivor credit to be gained in investing in annuities. When
the subjective discount rate is larger, the individual tends to annuitize in a larger

interest rate domain.

Table 2.6: Annuitization Boundary for v = 2

A Domain of r (p = 0) | Domain of r (p = 0.02)
0.0200 %) r < 0.1250
0.0300 r < 0.1120 r < 0.2150
0.0400 r < 0.1920 r < 0.2750
0.0500 r < 0.2560 r < 0.3250
0.0800 r < 0.3867 vr
0.1000 Vr Vr

Above all, whether the interest rate is constant or stochastic, it is optimal
to annuitize when the interest rate is small and optimal not to annuitize when the
interest rate is large when applicable (if the mortality rate beats the risk premium).
When the mortality rate is higher, it is always optimal to annuitize due to higher
mortality credit. With a participating annuity, premiums paid by those who die

earlier than expected contribute to gains of the overall pool and provide a higher
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Table 2.7: Annuitization Boundary for v = 3

A Domain of r (p = 0) | Domain of r (p = 0.02)
0.0200 r < 0.1350 r < 0.2950
0.0300 r < 0.2550 r < 0.3650
0.0400 r < 0.3250 vr
0.0500 r < 0.3850 vr
0.0800 Vr Vr

yield or credit to survivors than could be achieved through individual investments
outside of the pool. The annuitization boundary that lies between is an increasing
function of mortality rate A. These important observations will shed light on the

next section where we study the annuitization problem under Gompertz mortality.

2.3.3 Concluding Remarks

In this section, we have studied the annuitization problem for a retired individual
whose objective is to maximize his/her lifetime utility under exponential mortality
and a variety of institutional restrictions in the absence of bequest motives. There
are two asset classes available to invest in: a risky asset and a riskless asset, in
which the return of the riskless asset is constant, or stochastic. The utility function

we are interested in exhibits constant relative risk aversion (CRRA), which has
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been widely used in the insurance economics literature. Since two value functions
Ve and V" are independent of time ¢ if the power term e~ "V is excluded, so that
the annuitization boundary is deterministic for any constant \.

First of all, we calibrated the model for a constant interest rate. Analytic
solutions for V¢ and V™ are obtained using some mathematical techniques. In
this case, the mortality rate A\ and interest rate r are free parameters. Through
comparison of the two value functions, we find that for » = p, it is optimal to
annuitize for any interest rate when the mortality rate is greater than Merton’s
constant, which is consistent with Milevsky and Young (2007). If the interest rate
is not equal to the subjective interest rate, it is optimal to annuitize when the
interest rate is small, and optimal not to annuitize when the interest rate is large
when applicable, while it is always optimal to annuitize when the force of mortality
is higher. This is due to the assumption of constant spread between the expected
risky asset return and that of the riskless asset, and the significant survivor credit
to be gained in investing in annuities.

Secondly, stochastic interest rates are considered, which adds more uncertainty
to the interest rates. In this case the annuity factor is much more complex since
it involves the price of a bond which matures at certain time. The annuitization
value function can be obtained analytically. The non-annuitization value function

satisfying an HJB equation can be solved numerically using the upwind scheme
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and the Crank-Nicolson method. We then use the free boundary refining method
to find the annuitization boundary. The annuitization boundaries agree well when
the stochastic interest rates collapse to constants. Numerical results show us that
when the force of mortality A is less than Merton’s constant, it is always optimal not
to annuitize. Otherwise, it is optimal to annuitize when the interest rate is small
and optimal not to annuitize when the interest rate is large when applicable. When
the mortality rate is higher, which makes the survivor credit significant, it is optimal
to annuitize, which agrees with the constant interest rate case. When interest rates
are stochastic and current interest rate is high, one should delay annuitizing, earn
short term interest, and once interest rates revert to a more realistic level, one will
probably be able to buy more annuities than he/she would otherwise. In other
words, the annuities one eventually buy will be more expensive, but he/she will be
able to buy more of them and actually earn higher income.

The mathematical simplification of the mortality process (exponential) enables
us to find a solution with much greater ease. This assumption is memory-less
which means that the future mortality rates of the individual are independent
of the past mortality rate which is inconsistent with the time varying mortality
models and reality. To help overcome this disadvantage, we will look at the same
optimal control problem under the GM mortality rate in next section because of

its widespread use in the insurance and finance literature (see Milevsky and Young
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(2007), Horneff, Maurer and Stamos (2008)), which is simple and consistent with

the insurer’s view on mortality.

2.4 Model Calibration 2: Gompertz Mortality

In the previous section, we have studied the annuitization problem for a retiree who
seeks to maximize his/her lifetime utility of consumption after retirement under
constant force of mortality and other institutional restrictions in an all-or-nothing
framework. In this section, we will investigate the same problem under Gompertz
mortality, in the circumstance of stochastic interest rates which follows the CIR

process. The Gompertz mortality model (A4 = %e”tb_m ,t € [0,00]) is common in

the actuarial literature for annuity pricing (Frees et al., 1996) and in the economics
literature for pricing insurance (Johansson, 1996). Milevsky and Young (2007) have
fitted the Gompertz distribution to the individual annuity mortality 2000 (basic)
table, obtaining estimates of the parameters (m,b) = (88.18,10.5) for males and
(m,b) = (92.63,8.78) for females. These parameters are the values that we will use
for the annuitization problem for males and females. Figure2.3lplots the probability
density function of the future lifetime random variable with above parameters for
both males and females.

For mathematical manipulation purposes, our Gompertz mortality A, is modified
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Figure 2.3: The Probability Density Function for Males and Females

Age 65: PDF of Future Lifetime Random Variable
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This is the probability density function of the future lifetime random variable under Gompertz
mortality rate. For females, the fitted parameters are (m,b) = (92.63,8.78) and for males they

are (m,b) = (88.18,10.5).
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to be

Aot = (2.43)
Aot t>T,

where x denotes the current age of the individual, s is the time the individual is
going to survive, m is the mode of the future lifetime, b is the dispersion constant. T’
is the maximum life time for a human being (in our case, it is taken to be 125). Note
that this definition is different from the traditional GM mortality which assumes
exponential function all the time. This is an approximation we need to work out
the terminal condition without having any practical impact from a technical point
of view. This is a plausible assumption because human beings rarely live past the
maximum age (the longest unambiguously documented human lifespan is 122 years
old), so their mortality rate is very high, which means that the effect of mortality
after the maximum age is trivial to the value function. For example, if we take
xr = 65,m = 88.18,b = 10.5,T = 125, then the mortality rate is constant 3.1840
after age 125. One big advantage of this assumption is that we can apply non-
zero terminal condition at ¢ = 7', which can be obtained by applying the same
mathematical techniques for exponential mortality as in the previous section.
Instead of including one special point in time (retirement), we will include the
whole retirement period (from retirement to death) to see under what conditions

should the individual annuitize all his/her wealth. This is a free boundary problem
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because the value function is specified by a set of constraints which are exactly
the properties of a free boundary problem, similar to the American option pricing
problem. The main takeaway from the last section is that it is optimal to annuitize
when the interest rate is small and not optimal to annuitize when the interest rate
is large when the hazard rate is greater than Merton’s constant. Therefore, we have
come up with the illustration of our free boundary problem: for any given time ¢,
when the interest rate is smaller than the free boundary (optimal annuitization
interest rate), it is optimal to annuitize, and when the interest rate is greater than
the free boundary, it is optimal not to annuitize. This free boundary problem can
be converted to an equivalent linear complementarity problem and solved by the
projected successive over-relaxation method.

The rest of this section is organized as follows. In Section 2.4.1]l we model and
frame the optimal annuitization timing problem when the risk-free rate is driven
by CIR process under Gompertz mortality. Then the free boundary problem and
its equivalent LCP problem are illustrated in Section and Next the
projected SOR method is applied to solve the LCP problem in Section 2.4.4] and

finally, numerical results are addressed in Section 2.4.5
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2.4.1 The Value Function and HJB Equation

For a retired individual at age x, we look for the optimal asset allocation, consump-
tion, and annuitization strategies to maximize his/her lifetime utility of consump-
tion in an all-or-nothing framework without bequest motives. Mathematically, we

wish to find the value function defined as below

V(t,w,r)=sup, . E[[] e _ip,iu(c) ds

(2.44)
+ fTOO e P51 s—tPz+tU <L> ds) Wiy=w, Ry = 7“] )

g7 (T, Rr)
in which E denotes the expectation conditional on W, = w and R; = r, and
u is a concave utility function of consumption. Note that the expectation stays
outside the integral since u(c,) and w(W; /a,4.(T, R;)) may be correlated with the
discount factor. Thus we cannot replace the discount factor by the zero-coupon
bond price Pg(t, s,r) inside the integral. 7 is the time the individual annuitizes all

his/her wealth in a lump sum. The survival probability (s_¢p..¢) is defined back

in equation (ZI)). The actuarial annuity factor is calculated using equation

) ftT Pg(t,s,r)e” Je Aavodvgg 4 fToo Py(t,s,r)e =+ Dds ¢ < T,
%+t(t7 Rt) =
[ Pp(t, s, r)e rerr(s=D s, t>T

Note that this annuity factor is different than the traditional one due to the modified
GM mortality we have applied.

Next we are going to derive the HJB equation that the value function must
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satisfy in domain t € [0,7] by applying Bellman’s optimality principle and Ito’s

lemma.
V(t,w,\)
T opls-t) s Tt s W
= sup Ey,, e s—tPau(cs) ds + e s—tDpit | —— | ds]
Ts,Cs,T t T a:tJrT
t+dt
= sup var[/ e Ps=Y) s—tDyu(cs) ds
TsyCs,T t
+ e i, V(E+ dt,w+ dWy, T+ dRy)]. (2.46)

Since V(t,w,r) has two state variables, wealth w and interest rate r, it is obvious
that we can apply Ito’s lemma to obtain the stochastic differential equation that V

must satisfy

AV (t,w,r) = Vidt+ V,dW, + V,dR, + %wa < dW,, dW, >
+ %VM < dR;,dR; > +V,, < dW,;,dR; >
= Vidt + Vo,((RWi + (s — Ry)m — ¢)dt + o,md By)
+ Vi(0(ur — Ry)dt + o,/ RydBY)
b VTt 4 SV Rudt + a0, BV
= Vidt + &Vydt + o,\/RV,dB! + 0.1, V,yd BS, (2.47)

where p, is the correlation between dB; and dB;, and the second-order differential
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operator £V, is defined as

2‘/;5 = (RtWt + (,u/s - Rt)ﬂ't - Ct>Vw + e(ur - Rt)‘/;“ + %Ugﬂngw ( )
2.48

+ %Rto-z‘/rr + PrsOrO0sTty Rtir'

This is equivalent to

V(t+dt,w+dWyr+dR) = V(t,w,r)+ Vidt + £V,dt (2.49)
2.49

+ o.vRV,dB] + osm,V,,dB;.

Thus the value function V' satisfies the following equation

t+dt
V(tvwa T) = sup Ew,r |:/ e—p(s—t) s—tp;—l—tu(cs) ds
t

Ts,CsyT

+ e dtpith (V + Vidt + £Vidt + 0,/ Rtv;“dB: + Usﬂ'tvdef) : (2‘50)
Moving V' to the right-hand side, we arrive at

t+dt
sup Ey, [/ e Pt s—tPyu(cs) ds
t

Ts,Cs,T

+ (e—pdt dtij-t - 1)V + e—pdt dtp;+t (‘/;dt + SWdt)] = 0. (251)

Dividing dt on both sides, letting dt — 0 and assuming that we can change the

order of the limit and expectation, we get the HJB equation for V'

(p+ )V = Vi +sup LV, (2.52)

c,m

where the second-order differential operator £V is defined by

LV = wu(e)+ (rw+ (s — )7 — ) Vi + 0(pr — 1)V; + 5027 Vi (253)
2.53

+ 2102V + prs0r 0T TV .
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The optimal consumption and asset allocation strategies ¢ and 7 can be obtained

in feedback form

Vw B

ol
Il
2=

(2.54)

_ (Ns _T)Vw +prsoros \/;Vwr
Ug‘/ww '

=l
I

In the next subsection, we will study the free boundary problem in detail.

2.4.2 Free Boundary Problems

In this section, we will solve the HJB equation (2.52) by transferring it into an
equivalent free boundary problem. At each time ¢ we need to determine not only
V(t,w,r), but also, for each value of r, whether or not the individual needs to
annuitize. Typically at each time ¢ there is a particular interest rate r which marks
the boundary between two regions: on one side the individual should not annuitize
and on the other side the individual should annuitize. The value function V (¢, w, r)

is specified by a set of constraints:

e The value function must be greater than or equal to the annuitization func-

tion, the value of V' when the individual annuitizes immediately at time t.

e The HJB equation is replaced by an inequality because the value function is

the supreme of all the functions that maximize the individual’s utility.

e The value function must be a continuous function of wealth, this can be seen

from the definition of the value function.
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e The derivatives of the value function are continuous. This is the basic as-

sumption when we are solving the problem.

Therefore, this is a free boundary problem, quite similar to the American put
option pricing problem. We denote the free boundary by r*(¢), and refer to it as
the annuitization boundary. From Section 2.3 we have known that it is optimal
to annuitize when the interest rate is small and it is optimal not to annuitize
when the interest rate is large if the optimal annuitization interest rate exists for
exponential mortality. Therefore, for a specified time ¢, it is favorable to annuitize
if the interest rate is smaller than the optimal annuitization interest rate, otherwise
it is not favorable to annuitize. The mathematical statement of the free boundary

problem is given by

(P4 dogt)V = Vi — £V > 0,V(t,w,7) = G(t,w,7) (2.55)

for 0 < r < r*(t) (optimal to annuitize),

(P4 Aot )V = Vi — £V = 0,V (t,w0,7) > G(t,w,7) (2.56)

for r*(t) < r < oo (optimal not to annuitize). Here 7*(¢) is the function of free
boundary at time ¢. The notation G (¢, w,r) is the value function when it is optimal
to annuitize at time ¢. Since V(¢,w,r) is the supreme value of the HJB equation

(2352)), it does have a lower bound G, which is the value of V' when we annuitize
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immediately at time ¢. This bound can be calculated via its definition as below

Glt,w,r)= [e ™D ipoisu (aﬁil}(t,r)) ds

= U(ax:}(t r)) ftoo e~ P o= J{ Aatudv g (2.57)

-

wl
= 4=g(t,7),

in which g(¢,7) is a function of ¢ and r, and defined as below

T —p(s—t) p— [ Aptodv 1
1 f e P e Jt ds + ,  t<T,
g(ta fr) = _l—y(t ) ' p+)\x+T (258)
Apy i\, T 1
pHAayT”’ t=T.

This is due to the assumption that the individual will annuitize all his/her wealth at
time 7 (if applicable) and consume exactly the annuity payout after annuitization,
which is the classical annuity result that has been proved in the absence of bequest
motives such as Yaari (1965). Therefore, if the individual annuitizes at time t,

he/she will consume the amount —%— thereafter.

Azt (t, 1)
If we postulate that the value function can be written in the form V (¢, w,r) =

wl=7
1=y

h(t,r), then the optimal consumption and investment strategies in equation

([Z54) can be written as

1

¢ = hw,
(2.59)
T o= (“S’T)ht?;g“’sﬁhrw.
Plugging them into the HJB equation (Z52), we obtain
1 1
(p + /\:v-i-t)h - ht + (1 - V)Th + ’7h17; + 0(:“’7“ - T)hr + §T0-72*hrr
= h Vrh,)? 2.60
+20_§7h((:us_r) + PrsOrOsVT 7’) : ( . )

56



Before seeking a non-zero solution h(t,r), a standard transformation h(t,r) =

y(t,r)" is done first, thus equation (260) is converted to

1
1+ [(p+ Xost)y — vy + Ly] = 0. (2.61)

The reason the factor ﬁ is kept here will be explained shortly. The second-order

differential operator £y is given by

Cy= - (=2ry=7 =00 =)
- 2
B 210—31(% =)y — gro7y(y — 1% — STV Yy (2.62)

1—y 2 2 2. 92y;
- QJEWPTSUTUSTV ?T - 02y (/'LS - T)prso-ro-s\/;’yyr'

Therefore the free boundary problem can be written in terms of the new variable

y as below
L [(p+ Xosd)y — Yy + Ly] >0 ! Y (t,r) = ——g(t,r) (2.63)
1—7 o Col—7 1—77"
for 0 < r < r*(t) (optimal to annuitize),
L [(p+ Xy + &yl =0 ! T(t,r) > b (t,r) (2.64)
— = r r .
1_7 P z+t)Y YYi Y 9 1_79 ) 1_79 )

for r > r*(t) (optimal not to annuitize). The reason why the common factor ﬁ has
not been eliminated in the equation is that the statement of the free boundary will
have two different forms if we eliminate it (it is positive when vy < 1 and negative

when v > 1).
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In general, there are two distinct methods for the numerical solutions of free
boundary problems. One is to try to track the free boundary as part of the time-
stepping process. In our context this is not a particularly attractive method because
the free boundary is implicit. We refer the interested reader to Crank (1984) for
the numerical solutions of implicit free boundary problems by boundary tracking
strategies. The second method is to try to find a transformation that reduces
the problem to a fixed boundary problem from which the free boundary can be
inferred afterwards. There are many transformations that can do this, but here
we only consider the elegant method which involves the linear complementarity
formulation. In next section, the free boundary will be converted to an equivalent

LCP problem for reasonable risk-aversion coefficients.

2.4.3 The Linear Complementarity Problem (LCP)

It is almost always impossible to find a closed-form solution to any given free
boundary problem, so our chief aim is to construct efficient and robust numerical
methods for the computation. Since it is difficult to deal with free boundaries, it
is worthwhile to reformulate the problem in such a way as to eliminate any explicit
dependence on the free boundary. The free boundary does not then interfere with
the solution process, and it can be recovered from the solution after the latter has

been found.
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In mathematical optimization theory, the LCP problem arises frequently in
computational mechanics and encompasses the well-known quadratic programming
as a special case. It was proposed by Cottle and Dantzig in 1968. We start by
considering a simple example of such a reformulation, in the context of the obstacle
problem. The reason why we do not consider the American option pricing problem is
that it is much more complex than the obstacle problem. We then apply the lessons
learnt from the obstacle problem, which has linear complementarity formulations
leading to efficient and accurate numerical solution schemes with the desirable
property of not requiring explicit tracking of the free boundary, i.e., we are going
to convert the free boundary problem into an equivalent LCP problem and then

solve it by an iterative numerical method.

2.4.3.1 Linear Complementarity Problem for v > 1

In this section, we will illustrate the optimal annuitization problem in the com-
pact linear complementarity form for the risk aversion constant v > 1. We can
not directly convert the free boundary problem into an LCP problem because the
free boundary problem is not written in a standard form. Therefore, we make a
transformation g(t,r) = —y(¢,r), then the free boundary problem can be restated
as

(p+ Xest)§ = 75+ £5 > 0, §(t,7) = —g7 (t,7) (2.65)
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for 0 < r < r*(s),

1
(p + )‘ac—l—t)g - ’ygt + 'Qg - 07 g(tu T) > —g7 (tu T) (266)

for r*(s) < r < oo. The second-order differential operator £y is defined by

SISy

L5 = —(L=Nrg+v =0 — )70 — 5025 (s = 7)°G = gro7y(y = 1)
(2.67)

1, 2~ 292 1—y .
— 51O rr — 202 L o2 ololry T (s — 7) prsOrOsA/TY Ty

Note that the only difference between £y and £y is that the sign in front of 7 is

opposite. Let s =T —t, y(s,r) =g(T — s,r), §(s,r) = g(t,r), i.e.,

1 fT . Z T+s IT s )\m+vdvdz + p+)\ - t S 7‘77
g(S,T) = C_Ll—'y (T S ’I") N
z+T—s - 1
PRSI t=T.
(2.68)

Then the above free boundary problem ([Z65) and (Z60]) can be converted to an

equivalent LCP problem

(

A

~ “ PN 1
((p + /\:v-i-T—s)y + TYs + Sy)(y g"/) 0

0, (2.69)

2=
Vv

y+g

(p + /\:v-i-T—s)g + 7@5 + Sg Z 0.

\

To solve this LCP problem in domain s € [0,7], we need to specify its initial and
boundary conditions. The boundary conditions imposed on r = 0 and r = r,,,, are

similar to what we have done before, specifically

" = Tmaz * Yrr :07

r=0: (p + )‘ac—l—T—S)g(S? 0) - 210731/1?@(37 O) + '7@5(37 O) +7— 0/‘7‘7@7’(57 0) =0.
(2.70)
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Now we look at the non-zero initial condition at time s = 0 by applying the
same mathematical techniques for exponential mortality in domain ¢ € [T, 00).
In this region, the two value functions with and without annuitization, V¢ and
V", are time independent if the power time term e~ "tV is excluded according
to our previous results. So we are able to compare the two value functions to
find the initial free boundary and then move it to the place where both value

functions and their derivatives are equal, and a time-independent function g(r) in

which V"™ = “{i?g(r)ve*(p“‘x” )t as in Section If we denote this final free
boundary as r*, we know that when r > r*, it is optimal not to annuitize, and when
r < r* it is optimal to annuitize. Therefore the initial condition for (s, r) can be
derived to be

_ (p+Ag4 )T _

g(0,r)=e"" 7 g(r). (2.71)

Note that for large T, A\, 7 is usually greater than 1, and the exponential term
_ Ay )T . . ~
e 2 is very close to 0 but not equal to 0. Since ¢(r) is bounded, so 7(0, )
is close to but not equal to 0 as well.
The advantage of the LCP formulation (2.69) is that it has no explicit mention
of the free boundary. If we can solve it, then we can recover the free boundary

afterwards. We will solve this LCP problem in the next section by an iterative

finite difference method.
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2.4.4 The Projected Successive Over-relaxation (SOR) Method

In this section we numerically solve the LCP problem (Z.69) by applying the pro-
jected SOR method. In numerical linear algebra, the projected SOR method is a
variant of the Gauss-Seidel method for solving a linear system of equations, result-
ing in faster convergence. A similar method can be used for any slowly converging
iterative process. It was devised simultaneously by David M. Young, Jr. and by H.
Frankel in 1950 for the purpose of automatically solving linear systems on digital
computers.

We divide the (s,r)-plane into a regular finite mesh with step sizes ds and
or, and use a finite-difference approximation for the derivatives with respect to s
and 7. The truncated domain of my choice is [0,7] X [0, pqe] with 7' = 125 — x
and 7,,,; = 0.4. The underlying reasons for these numbers are that we believe life
expectancy for a human being should not exceed 125 years and the risk-free interest
rate is less than 0.4, which is extremely large compared to its normal values. We
start with an initial guess for ¢ that is certainly above Q%, generates a sequence
of more accurate approximations to the exact solution. During each iteration the
constraint is implemented by resetting ¢ to equal g% if values of ¢ is less than g%.
For better stability and convergence, the second-order accuracy Crank-Nicolson

method is applied. At point (s r;), the discretization of y (The " on y has been

1
n+3’
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omitted for simplicity hereafter) and its derivatives are,

n+1

Yty
Y(snagomi) = Tg
n+1 n
Y —Y;
ys(SnJr%a ri) - Ta
Uyt e vk
yr(sn—f—%? Ti) - 4574 )
oy Y 2 g Y - 2y
yrr(sn+%7 Ti) — 2612 ’

where y" = y(nds,idr), is the approximation of y(s,r) at every grid. Hence the

partial differential equation y(s, ) must solve is approximated by

)y?“ tyr L uT oyl nd

Aot T 0.5 eyt =0, 2.72
(p+ Aesr—s,-0.5d 5 +7 5s + Ly, (2.72)

2 . .
yj. We discretize one y, term

Notice how we have discretized the nonlinear term
explicitly with the known values of y at time level n and another vy, term with
Crank-Nicolson method using y values at time level n and n+ 1, which has success-
fully avoided solving a nonlinear equation system. About the denominator y, We

discretize it with y* when it is not equal to 0, otherwise, setting the whole nonlinear

term y?’% equals 0. This is reasonable because y equals 0 if and only if at time s = 0
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na
and the value % is very close to 0 when y = 0. Specifically, Ly; ™2 takes the form

1 +1 n n+1 n
nty _ yi 'ty 1—y 27y
Ly, = (="~ 47— gagy(ﬂs — 1)t
ntl, n ntl g
Yir1 TYip1—Yi—1 — Y1
_e(lu?“ - 711)'7 Aor
+1 +1
1—v Yl YR Vil Y

_o-g—’y(/'bs - Ti)prsargsﬁi’y 407

yz?l+17yz?l71 n+l, n ntl__ n
— 55— Yit1 TYip1 Vi1 ~ Y1

1,. 2 o l—y 2 2 2. 2 25
_(57'10'7“7(7 1) + QJgryprso'rO'srlﬁy ) y;:‘ 4or
Ly g2 Vi P 2 ey 2
2 iV 2012
(2.73)
for y* # 0, and
n+% o yn+1+yn 1—v 2yn+1+y?l
Ly 2= (L=t +7— g5 (s —1i)" 75—+
n+1 n n+1 n
Yir1 Vg1~ Yi—1 Y1
_e(lu?“ - Ti)”)/ 457
(2.74)
n+1 n n+1 n
1—v Yir1 Y1~ Y% 1 “Yia
T o2y (:U’s - Ti)prso-ro-s\/;i/y 467
1. 2y?jll"'y?jll_2y?+1+y?+1+y?71_2?!?
21Oy 2072 )

for y? = 0. In order to apply the projected SOR method, we then write y/'™" in

terms of all the other terms

Tinop \— n n n n n
A 5+ 25%) H—cyl + C2(yiJ:L11 t Y — yit =)
(2.75)
Ti 03 n n n n n
+ ;_Syzn +7+ 4gr2 (yijll + yz‘jll + Y Yt — 2y )}
where ¢; and ¢y are given by the following expressions
_ 1 1— 2
cr = 5P+ Aeyros,—05ds — (L —7)ri — 5022 (s — 13)?),
i e (2.76)

o = (ca+0(ur — 1)y + 72 (11s — 13)prs0r06\/T ) [4/01,
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and where

riopy(y—=1) (Wl —yP 1) i (1=y)p2s02o2riv (Yl —yiy) it yr £ 0
46ry? 4o2~y0ryl ) Yi )
C3 = (277)

0, if y = 0.

The corresponding initial and boundary conditions for y(s,r) imply that

p
_ f’+>‘z+TT .

yil:e 7 y(T’Z‘),Z':]_,Q,"',]‘i‘l,

Yier = 297 — Yr-1,
i (2.78)

PHAefT— s, —0.5ds 11—y 2 Y n+l _ 1= 2 P+)‘Z+T—s —0.5ds \, n
( P o o s T T = (s — TRy

Yy —Y7

+7 + 5ur — Oy =g

\

Here n = 1 corresponds to time ¢ = 0, in which the initial condition is posed.
i =1and ¢ = I + 1 correspond to the interest rate » = 0 and r = 7,,4,, Which
are the boundaries of the truncated computational domain for calculating y. We
write gI' = g(nds,idr) (“on g is omitted for simplicity) for the discretized annuity
function, we will return to its discretization shortly. Hence the projected SOR

algorithm is to iterate (on k) the equations

1, e

n+1,k+1 -1 n n+1,k n n+1 n
Z = (a+ 5s + 9572 ) (—ay + C2(yz‘+1 + Yiy1 — yi—+1 —Yi)
2
Y on TiV0E , ntlk n+1,k+1 n n n
+ gyz +7+ 1572 (yi+1 Y1 + i Y — 2y, )
y?+17k+1 _ Sup(y;ﬂrl,k + W(Z;L+17k+1 . y;lJrl,k)’ giTLJrl), (279)

The parameter w (1 < w < 2) is the over-relaxation parameter, which guarantees

the convergence of the algorithm. We repeat the above procedure until the error
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such as

Hyn+1,k+1 i yn+1,kH2 _ Z(ynJrl,kJrl o y?”““)Q (2.80)

7 7
7

is small enough for us to consider any further iterations as unnecessary. Notice that

n+1,k+1

the constraint is enforced at the same time as the iterate y;

; is calculated, the

effect of the constraint is immediately felt in the calculation of y:fll’kﬂ, y:f;’kﬂ,
etc. The projected SOR method is an iterative method which starts with an initial
guess for the solution and successively improves it until it converges to the true
solution. One advantage of the projected SOR method is that during the process
of searching for the true solution, it can apply the constraints directly without
affecting other same time level values, which is impossible if direct methods are
applied. Another advantage is that it is easier to program. A disadvantage of the
projected SOR method is that it is somewhat slower than direct methods since it
usually takes many iterations to complete the searching procedure.

Now we look at the discretization of the function g(s,r). From equation (2Z.68)),
we know that §(s,r) is a product of the actuarial annuity factor to the power v — 1
and a piecewise function. The annuity factor and the integral in the piecewise
function, can be computed by Simpson’s rule as before. We then arrive at all the
numerical results of (s, ) at any time s, and ready to solve the LCP problem with

known lower bound.

After solving the LCP problem (Z:69]) to obtain all the values of g(s,r), we are
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ready to recover the free boundary. We will look at the values of §(s,r) + g(s, r)%
for each fixed time s. The free boundary lies where this function switches from zero
to nonzero. The set of these interest rates form the free boundary. Note that we

need to transform back to the (¢, r)-plane after the free boundary is obtained.

2.4.5 Numerical Results

In this section, numerical results are presented for two different levels of risk aversion
parameters v = 2 and v = 3. The other financial market parameters used are
0=0,u,=0.06,0, =0.1, us—r = 0.03, 05, = 0.2, T = 125, p = 0.02, p,, = 0. All
the parameter values take these typical values unless otherwise specified throughout
the entire section. The Gompertz parameters (before age 125) are taken to be
(m,b) = (88.18,10.5) for males, and (m,b) = (92.63,8.78) for females as Milevsky
and Young (2007), which are fitted to the individual annuity mortality 2000 table
with projection scale G. Under this typical GM model the exact instantaneous force
of mortality at various ages are listed in Table We can see that the force of
mortality for males is greater than that of females at first, and when time exceeds
115 and beyond, it becomes less than that of females.

Note that we have treated ps—r as one variable which leads to Merton’s constant

( (Ns _7’)

507 f = 0.0056) fixed when risk-aversion coefficient and risky asset volatility are

both constants. Table shows us the annuitization interest rate domain for both
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Table 2.8: Force of Mortality Table for Males and Females

Age 65 ) 85 95 105 115 > 125

Amates | 0.0105 | 0.0271 | 0.0704 | 0.1823 | 0.4726 | 1.2250 | 3.1749

Afemates | 0.0049 | 0.0153 | 0.0478 | 0.1492 | 0.4660 | 1.4555 | 4.5463

exponential mortality and Gompertz mortality for v = 2 and p = 0. It can be
easily observed that for stochastic interest rates, this annuitization domain for GM
mortality is much higher than that for exponential mortality when applicable, and
it is always optimal to annuitize when the force of mortality is big enough. The
intuitive explanation for this rise in the annuitization boundary lies in the fact that
Gompertz mortality has a higher force of mortality later at various ages, which
adds the survivor credit later on, so that the individual will be better off if he/she
annuitizes in a larger interest rate domain.

In the rest of this section we will demonstrate our numerical results in various

plots and do sensitivity analysis for the CIR parameters 6, o, and .

2.4.5.1 Annuitization Boundaries for Different Risk Aversion Coeffi-

cient vy

Figure 2.4] displays the free boundaries for v = 2 and v = 3 respectively for a
male (m = 88.15,b = 10.5) in which the maximum interest rate 0.4 is an artifact.
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Table 2.9: Annuitization Boundaries for Exponential and Gompertz Mortalities

Mortality rate A | Exponential mortality | Gompertz mortality
0.02 1%} r < 0.1575
0.03 r <0.1120 r < 0.2400
0.04 r <0.1920 r < 0.3000
0.05 r < 0.2560 r < 0.3500
0.08 r < 0.3867 vr
[0.10, 00) Vr Vr

Notes: The 2™ column denotes the annuitization boundary for expo-
nential mortality, the 3" column denotes the annuitization boundary

for GM mortality.

We can observe that the annuitization boundary starts to emerge from age 65 and
increases over time, and after some age, whre the mortality rate is much more
higher, it becomes always optimal to annuitize for all the interest rates we are
considering. These numerical results are consistent with our previous results for
constant mortality rates.

On one hand, as time goes by, the individual with higher levels of risk aver-
sion has higher annuitization boundary, which means that the individual tends to

annuitize in a larger interest rate domain (from 0 to the annuitization boundary),
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Figure 2.4: Free Boundaries for v =2 and v =3

ur=0.06, 6=0.25, Gr=0.1, p=0.02, m=88.18, b=10.5
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which is consistent with our intuition: if it is optimal to annuitize for v = 2, then
it must be optimal to annuitize for v = 3, but the opposite is not necessarily true.
On the other hand, the riskless interest rate in reality seldom reaches 25 percent,
so these numerical results merely mean that it is always optimal to annuitize if the
risk premium is constant and there are no loads and no bequest motives.

Note that we have drawn the graph as staircases, which has been verified by

both the LCP and the free boundary refining method, even for small time steps and

70



space steps. There are two things that have contributed to this result. One is the
assumption of constant spread between the risky asset and the riskless asset, which
makes ps — r constant while r is a state variable. The other one is that when time
changes, the mortality rate won’t change big enough to move the free boundary

during some period of time.

2.4.5.2 Annuitization Boundaries for Males and Females

Figure 2.5: Free Boundaries for Males and Females

ur=0.06, 6=0.25, Gr:O'l’ p=0.02, y=2

0.4

Non-annuitization region

0.38}
0.36}
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03F -

Interest rate
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0.26} Annuitization boundary

0.24

0.22F == Males: m=88.15, b=10.5
—— Females: m=92.63, b=8.78

65 70 75 80 85 90
Age (Years)

Figure 2l provides two annuitization boundaries for males (m = 88.15,b = 10.5)
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and females (m = 92.63,b = 8.78). It can be observed from this figure that the
annuitization boundary for males is always above the annuitization boundary for
females because the mortality rate of males is higher at each given age. This is
equivalent to saying that the annuitization domain for males is always greater than
or equal to the annuitization domain for females, i.e., if it is optimal to annuitize

for females, then it must be optimal to annuitize for males.

2.4.5.3 Sensitivity Analysis

Figure 2.6: Sensitivity Analysis of Parameter 6

ur=0.06, Gr=0.1, p=0.02, v=2, m=88.18, b=10.5
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Figure 2.7: Sensitivity Analysis of Parameter p,

6=0.25, 6 =0.1, p=0.02, y=2, m=88.18, b=10.5
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To further understand the behavior of the annuitization boundary, sensitivity
analysis is performed to the three CIR parameters 6, u, and o,.. From Figure
2.6l 21 and 28] we can see that higher adjustment speed, lower mean and higher
volatility have higher annuitization boundaries. Firstly, when the adjustment speed
is higher, which means that the interest rate will return to its long run mean
sooner (with the current spot interest rate very high), individuals will be better off
to annuitize immediately considering the high annuitization boundary. Secondly,

when the long term rate drops, this moves interest rates down more quickly, which
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Figure 2.8: Sensitivity Analysis of Parameter o,

pr:0.06, 6=0.25, p=0.02, y=2, m=88.18, b=10.5
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cuts into the benefit of delaying. so there are fewer interest rates at which we delay;,
if we move the long-term down. Thirdly, the effect of the volatility o, is trivial
because intuitively its value does not affect the value function significantly. Since

the annuitization boundaries are very high compared to real interest rates, we can

draw the conclusion that it is optimal to annuitize in reality.
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2.5 Concluding Remarks

In this chapter, we have studied the optimal annuitization timing problem for a
retired individual whose objective is to maximize his/her lifetime utility of con-
sumption under a variety of institutional restrictions in the absence of bequest
motives for exponential and Gompertz mortalities. There are two asset classes
available to invest in the financial market, one is the risky asset and the other is
the riskless asset.

First of all, we have calibrated two models for exponential mortality: constant
and stochastic interest rates. When the interest rate is constant, analytic solutions
for V* and V™ can be obtained using mathematical techniques. If the interest rate
equals the subjective discount rate, it is optimal to annuitize when the mortality
rate is greater than Merton’s constant, which is consistent with Milevsky and Young
(2007). If the interest rate is not equal to the subjective discount rate, it is optimal
to annuitize when the interest rate is small, and it is optimal not to annuitize when
the interest rate is large. When the interest rate is stochastic, the annuity factor is
much more complex since it involves the bond price which matures at a future time.
It is shown that both V¢ and V" are independent of time ¢ if the power term e~ (P*+)¢
is excluded. Numerical results show us that when the force of mortality A is less than

Merton’s constant, it is always optimal not to annuitize. Otherwise, it is optimal
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to annuitize when the interest rate is small, and it is optimal not to annuitize when
the interest rate is large. Another important observation is that the annuitization
boundary is an increasing function of mortality rate A\. These important results for
exponential mortality have shed light on the optimal annuitization timing problem
under Gompertz mortality.

Secondly, we have modeled the optimal annuitization problem when the risk-free
rate is driven by CIR process under Gompertz mortality. This is a free boundary
problem, which is similar to the American put option problem. Its equivalent LCP
problem is formulated and the projected SOR method is applied to solve it numeri-
cally. Due to the fact that the Gompertz mortality rate increases exponentially with
time, the annuitization boundary is an increasing function of time, which echoes
the results for exponential mortality when mortality rate is adjusted accordingly.
One more finding is that the free boundaries are higher for Gompertz mortality
than that of exponential mortality.

No matter the mortality rate is exponential or Gompertz, there is always an
annuitization boundary for stochastic interest rate. This means that it is optimal
not to annuitize even if r is high. One should delay annuitizing, earn short term
interest, and once interest rates revert to a more realistic level, one will probably
be able to buy more annuities than he/she would otherwise. In other words, the

annuities he/she eventually buy will be more expensive, but he/she will be able to
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buy more of them and actually earn higher income.

Although we have used the more realistic Gompertz model, there are still some
ways that we can improve it. One natural follow up would be to relax the assump-
tion of the mortality rate to be stochastic. This view has been widely accepted
since the advent of the stochastic mortality model proposed by Lee and Carter
(1992). This complicates our model by introducing one more state variable in the
HJB equation, and we leave it for further research in the future. Another natural
extension of our model would be to incorporate various stocks, bonds and vari-
able annuities, which would allow the individual to buy annuities in lump sums or

continuously, instead of the all-or-nothing framework.

2.6 Appendix

2.6.1 The Obstacle Problem

In this section, the obstacle problem is introduced and illustrated. The free bound-
ary problem and LCP problem corresponding to the obstacle problem are mostly
adapted from Wilmott, Howison and Dewynne (1995).

An elastic string is held fixed at two ends, A and B, and passes over a smooth
object which protrudes between the two ends (Figure Z9). We do not know a

priori the region of contact between the string and the obstacle, only that either
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Figure 2.9: The Classical Obstacle Problem

The classical obstacle problem: the string is held fixed at A and B and must pass smoothly over

the obstacle in between.
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the string is in contact with the obstacle, in which case its position is known; or it
must satisfy an equation of motion, which, in this case, says that it must be straight.
This simply says that the string must lie above or on the obstacle, combined with
the equation of motion, the curvature of the string must be negative or zero. In

summary,

the string must be above or on the obstacle;

the string must have negative or zero curvature;

the string must be continuous;

the string slope must be continuous.

Under these constraints, the solution to the obstacle problem can be shown to
be unique. The string and its slope are continuous, but in general the curvature of
the string, and hence its second derivative, has discontinuities.

To derive the LCP illustration for the obstacle problem, we take the ends of
string to be at z = £1 and write d(z) for the string displacement and h,(z) for the
height of the obstacle, both for —1 < z < 1. We assume that h,(£1) < 0, and that

ho(z) > 0 at some points between —1 and +1, so that there definitely is a contact

region. We also assume, at least initially, that “jj;o < 0, thereby guaranteeing

that there is only one contact region. The free boundary is then the set of points,

marked as L (z = z) and R (2 = zg) in Figure 2.9 where the string first meets
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the obstacle. These are priori unknowns, and have to be determined as part of the
solution.

In the contact region, d = h,, where the string is not in contact with the obstacle
it is straight, so d’ = 0. Normally, one would need just two boundary conditions to
determine the straight portions of the string uniquely, and the values of d at the two
ends of each straight portion would certainly do. However, because L and R are
unknown, we need two more boundary conditions than usual in order to determine
these points, and here a physical argument based on a force balance shows that at
points such as L and R, d’ must be continuous as well as d. Now we can write this

particular example as the problem of finding d(z) and the points L, R such that

d" =0, —1<z< 2,

d(z) = ho(zr),  d'(z1) = f'(21),

d(2) = ho(2), 2 < 2 < zp, (2.81)
d(2r) = ho(zr),  d'(zr) = f'(2r),

d" =0, 2p < z<l1,

Given any particular h,(z) it is straightforward in principle to show that d(z), L
and R are uniquely determined by this problem, and to find them. The procedure is

tedious, and for all but specially simple h,, L and R must be determined numerically
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as solutions of an algebraic or transcendental equation.

An alternative approach to the problem is to note that the string either lies
above the obstacle, d > h,, in which case it is straight, d’ = 0, or is in contact with
the obstacle, d = h,, in which case d” = h! < 0. This means that we can write the

problem as what is call a linear complementarity problem

A" (d—h,) =0, —d" >0, (d—h,) >0, (2.82)

subject to the boundary conditions

d(—1) =d(1) =0, d,dare continuous. (2.83)

This statement of the problem has a tremendous advantage over the free bound-
ary version (2.81]) because there is no explicit mention of the free boundary points
L and R. They are still present, but only implicity via the constraint d > h,. If we
can devise an algorithm to solve the constrained problem, we just have to look at
the resulting values of d — h,: the free boundaries are where this function switches
from being zero to nonzero.

It is beyond the scope of this dissertation to prove that the LCP formulation
is equivalent to the free boundary formulation, nor do we show that there is a
unique solution to the former. The proofs use techniques of functional analysis,
in particular the theory of variational inequalities, but the basic idea is simply

minimization of the appropriate energy functional over the convex space of all
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suitably smooth functions v(z) that satisfy the constraint v > h,,.

2.6.2 Algorithm

We give the algorithm for the LCP problem with 0 < v < 1 in this section. After

n+1,1 , n+1,2 | n+1,1+1)
) )

the transformation s = T —t, how do we obtain 3" = (y

Y Y

from y" = (y™!y™2, -,y T)? To answer this question, we need to fulfill the

following five steps.

e step 1: Calculate the annuitization function at time level n + 1, g"*t.

e step 2: Using the upwind scheme, we obtain the boundary value for » = 0 at

time level n + 1 by:

Pt Noir—s—05ds 1= o 7

n+l _ -1
L= 5 p+Ar s Y Yy — Yt
D Tt Tosy,n L ab .
[( ppm 5 Jyr + v+ 5oUL T AT ]

n+1),

7 ’

e step 3: Given y", start with the initial guess yi"H’1 = sup(y, g

n+1,2

e step 4: In increasing i-indicial order, we calculate gy , its components are,

~n+1,2 v TiY0. 1 Y on
= — + —cp X —y+
Yi (Cl + 5s 2572 ) ( 1 Xy + (5Syl 8
+ X (?J?:f’l +Yiths — y?jlm — Y )
2
i 0o n+1,1 n+1,2 n n n
+ 1572 X (%:1 + oyt Yis Ty — 2y7))-
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and let

Yy = sup(y T w (g =y, g (2.84)

where the coefficients ¢y, ¢y are

Y (g — 13)2);

cg = 05(p+ AztT—s,—0.5ds — (1= 7)7i = 203y

2 = (e3+0(pr —ri)y+ 0277 (ps = 13) prsoro /1) JA] dr;

oy = 1o = Dt —uty) | (L= )ekoiosrnt vl — vt

40ry? do2~ory!

Jaf oy #0;

cs = 0, of y'=0.

n+1,2

e step 5: Test whether the error ||y y" 11| is small enough. If yes, put

n+1,1 — n+1,1 —

y y" 12 this is the solution we are seeking. Otherwise let y

n+1,2

Y and return to step 4.

2.6.3 Free Boundary Refining Method to Find the Free Boundary for
GM Mortality with Constrained Consumption after Annuitiza-

tion

In this section, we will illustrate an alternative way (we refer it as free boundary
refining method) to find the free boundary for GM mortality, i.e., for any fixed time
t, we need to find a critical interest rate, under which it is optimal to annuitize and

above which it is optimal not to annuitize. To achieve the specified goal, we need

83



to find the value function V' (¢, w,r) in which it is optimal not to annuitize and the

annuitization function V' in which it it optimal to annuitize. Then we compare

them to find the original free boundary and check if their derivatives are equal. We

need to move this free boundary to the left and set the value functions equal on

the new point and then check the derivatives again until we obtain a point where

both value functions and their derivatives are equal.

If we assume the retiree does not annuitize at time ¢, the value function V (¢, w, r)

is defined by

V(t,w,r) = sup E [/ e P70 L ptules) ds|
t

Ts,Cs,T

The HJB equation that V (¢, w,r) must solve is

(p + )\:tth)V = ‘/t + sup QV:

where the second-order differential operator £V is defined by

LV = u(e)+ (rw+ (s — )7 — )V + 0(pr — 1)y + 20272V,

1,. 2
+ 570 Vi F Prs0r 0T TV .

Let V(t,w,r) = &

-
1—y

y(s,r) satisfies the following equation

(p+Xoir )y +77s + £y =0,

84

(2.85)

(2.86)

(2.87)

h(t,r), h(t,r) =y(t,r)7, y(s,r) = y(t,r), where s =T —t. So

(2.88)



Where £ is defined as

_ _ _ _ _ 72
Ly = ~(1 =g =70k = 1) — 5o (s — 1)*5 — gro7y(y — )%
— 72 — —_
_%7”7‘73@7"7" - Qlaglpgsagagwﬂ% - lgg—,?(,us — 1) PrsCrTs\/TV Yy
(2.89)

The boundary conditions for the above PDE are

" = Tmax :grr - 07

r=0:(p+ X p_,)u(s,0) — 21;%/@@(5, 0) +~vs(s,0) — v — Op,yy,-(s,0) = 0.

(2.90)

These two boundary conditions have been used many times before and readers can
refer to Section for its detailed explanation.

Now let’s look at the initial condition at s = 0 (¢t = T"). It is very complicated
so we must be cautious. Note the assumption that the hazard rate is constant in
domain [T, 00), therefore the value functions have nothing to do with time ¢ if the
time term e~ (?*V is excluded. We will be able to find the critical interest rate r*
and a time-independent function g(r) using the same technique as we have applied
in Section Please note that when r > r*, it is optimal not to annuitize, and
when r < r* it is optimal to annuitize. So that the initial condition for (s, r) is

derived to be
y(0,7r) =€ 7 "y(r). (2.91)
To solve the second-order nonlinear PDE of 7, the following quotients are applied
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for a second-order accuracy.

—n—+1

_ R/ + gzn,
Flonepr) = g
B B g;‘nﬁfl _ g?
Bolonap i) = T
_ R
yr(sn—f—%? Ti) - 457" )
) ot 2 g - 20
yrr(er_%a Ti) - o572 .

Substituting them into equation (2.88), we obtain

n+l v rivoiy—1 —n —nt+l | —n —nt+l _ —n
Y; = (Cl + 55 1T 552 ) {_Cl * Y +Cok (yi—‘,—l T Yiy1 — Y1 — Y1)

—n riyo2 —n —n =N =N g
SR A O e (yiJ:—ll + 7+ Ui + Uit — 297}

in which ¢; and ¢y are given by

cg = 05(p+ AotT—s — (L —)ri — 21;377 (hs — Tz‘)2);
cy = (63 + Q(Mr — n‘)v + 1;—7(,115 — Ti)ﬂrsardsﬁﬂ)/ll/ér,

e

and where

7’1’”%7(7_1)(27;11—??71) + (I_W)Pgs(TEUgTWQ(ngl_37?—1) it " ?é 0:
46ryr 46ro2yyl ) Yi )
C3 —

63:07 if QZ”:O

(2.92)

(2.93)

(2.94)

This is reasonable because y equals 0 if and only if at time s = 0 and the value 37—?;
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is very close to 0 at y = 0.

s=0 : g =0,i=1,2,---,I+1;

T=Tmae = Yy T U1 — 207 = 0= Yr =207 — Uiy (2.95)
r 0 (P + )\§+T2_sn—o.5ds B Za—g::ug + %)g?ﬂ
_ (10—23 2_ P+ )‘;+2—sn—0.5d5)g? P %@? n Qﬂﬂgg(;ﬂg?-
The annuitization function V¢ = % g(t,r), where g(t,r) is defined as
IR S R Sy C
g(t,r) = @) /t e Pl i Aart®(s, (2.96)

We make a transformation ¢ = T — s, and define g(s,r) = g(T — s,7) to compare

it with ¥.

2.6.4 Strategies to Find the Free Boundary

The hazard rate is assumed to follow a modified GM mortality.

x+t—m

e v, it <tpe
)\ert: (297)

)\ac—l—tmaxy if ¢ Z tma:v‘

This is a reasonable assumption because when ¢ > t,,.,, the mortality rate is
very large, which means that the probability of surviving to that age is negligible.
Therefore, the constant force of mortality after ¢,,,. is resonable.

To compute the free boundary, the first step is to calculate the terminal con-

dition at ¢ = t,,4, (the initial condition at s = 0). Due to the mortality assump-
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tion, we can calculate the value of y by the same method as before. Note that

P

gs,r) =e T g(r).

Suppose we have known the free boundary at time level s(n). How can we
obtain the free boundary at time level s(n 4+ 1)7 First, we calculate y(n + 1,:)
by the projected SOR method using y(n,:), and obtain V,(n + 1,:). Second, we
compare V,(n + 1,:) and V%n + 1,:) to see if there exists an 7*, in which we
have V,,(n + 1,7%) = V%(n + 1,7*). If yes, we then compare their derivatives w.r.t.
time ¢. If their derivatives are equal, then r* is the free boundary we are looking
for. Otherwise, move r* leftward, and repeat the above procedure by replacing the

boundary condition at the new point r* to be V.
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3 Optimal Annuitization Timing and Optimal

Consumption

3.1 Introduction

In this chapter, we investigate the annuitization problem for a retired individual
whose objective is to maximize his/her lifetime utility after retirement with the
optimal consumption strategy, instead of what we have done in the previous chapter,
where we assumed that the consumption rate is equal to the annuity payout. We
also assume that this individual only has initial wealth in the form of a lump sum
cash amount, and does not come pre-annuitized with a pre-existing pension or
social security and has no remaining lifetime income. To calculate the optimal
consumption rate, we assume that this rate is a fraction («y) of the annuity income
Ay, and the remainder (1 — ay)A; is used to purchase more annuities at each time
t without management fees. Two different mortality models, exponential and GM

mortality, are calibrated to study the optimal control problem in a similar way as
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what we have done in the previous chapter.

The rest of this chapter is organized as follows. Section studies the optimal
control problem under exponential mortality for both constant and stochastic inter-
est rates. In section GM mortality under stochastic interest rate is investigated

to see its effect on the value function. Finally, conclusions are addressed in section

B4

3.2 Model Calibration 1: Exponential Mortality

In this section, the force of mortality is assumed to be constant A, which allows us
to find the analytic solutions of the value functions V* and V" with much greater
ease. Comparison of the two value functions shows us that it is always optimal to
annuitize no matter what the interest rates are, which differs from the numerical
results we have obtained in the previous chapter. The reason lies in the fact that the
optimal consumption strategy has been executed, which leads to the value function
V% to be much higher than the previous one with full annuity income consumption.
Next we document this optimal control problem for two different types of interest
rates (constant and stochastic) to obtain the optimal annuitization strategy for the

retired individual.
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3.2.1 Constant Interest Rates

In this subsection, we study the annuitization problem for an idealized interest rate
case, i.e., constant, which means that the return of the riskless asset is invariant
over time. It is known that when the force of mortality is constant, the associated
value function is independent of time with full consumption after annuitization,
but this is not true under the optimal consumption strategy any more because this
strategy depends on time. Since the purpose of this section is to gain useful insight
into the optimal annuitization strategy, it is enough to investigate our problem at
time zero (age x) for simplicity. Next we will study the two value functions, with
and without annuitization (V* and V™), and compare them to obtain the optimal

annuitization strategy at time 0.

e The value function with annuitization under the optimal consump-
tion strategy
The purpose of this subsection is to find out the optimal consumption strategy
at retirement applying the calculus of variations (CV) method if the individ-
ual chooses to annuitize at time zero, and then obtain the closed-form solution
of the associated value function (see appendix B.5] for the consistency veri-

fication using dynamic programming techniques).

First we look at the discounted lifetime utility of consumption the retiree is
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seeking to maximize, which is defined as

Vi(w) = sup/ e~ PNy (¢,)dt, (3.1)
0

Ct

in which p is the subjective discount factor, A is the constant force of mortality
and ¢; is the consumption rate. Notice that the mortality rate is high when
individuals are getting older, all people will die after some time T'. Therefore
we will consider a finite domain [0, 7] since the integral of the value function
from T to oo is zero. We first look at this value function with annuitization
(denoted as V*) at age = under the optimal consumption strategy. We assume
that the consumption rate is a fraction (0 < a; < 1) of the annuity income
Ay, e,

Ct = OétAt, (32)

where «; is time varying. Note A; is the only annuity income after annuitiza-
tion because there is no pre-existing pension or social security. The remainder
(1 — ay)A; is used to purchase more annuities, so A; satisfies the following

first-order linear ordinary differential equation (ODE)

dAt . (]_ — Oét)At
e R (3.3)

in which a,; is the actuarial annuity factor at time ¢, i.e., age x + ¢t. This

annuity factor is a constant (y3-) when both interest rates and the force
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of mortality are constant. To apply the CV method to obtain the optimal
consumption strategy, we rewrite the above ODE of A; as

Ay

atAt:At_)\+T‘

(3.4)

Here the dot denotes the derivative with respect to time ¢. Substitute into
the discounted lifetime utility function (BI), then V' becomes a function of
A, and it takes the following form

Ay
A1

Ve(A,) = /OT e_(p+>‘)tU(At — )dt. (3.5)

Let ¢(t, Ay, Ay) = e~ V(A — )\ijjr), we see that ¢ is a functional of function
Ay Next we seek to find a particular path A; from time zero to T so that the

integral reaches its maximum value. First we add a perturbation dA; to A,

and expand V* using Taylor expansion

Va(At + (SAt) — / e*(PJr)\)tu(At + 5At _ w)dt
0 A1
T , Do oo _ .
- £ ALA) + L0654, + 2254, + 06A))dt, 3.6
| (6t A+ S K 5A 4 0) (36)

in which notation O(§A;) means higher order with respect to d A, i.e., it goes

to zero faster than §A; as 0 A; approaches zero. Therefore, we have

T
V(A +0A) — VO(Ay) :/ (20 54, + 22
0

" 5A, + O(5A,))dt. 3.7
oA, Py (0A)) (3.7)
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Applying integration by parts, we obtain

T
6¢6A d 99

LQA—}‘(SA —&aA —/ .
(t t) (t) 0(9475 dt?]

— A+ O(6A,))dt + —— A} -
+OBAdb+ A
(3.8)

Since Ag is given, 64y = 0. So we have

00 54,199

V)V = [ (roa - o
t

5At+0(5At))dt+ |t 70 AT,
DA,

(3.9)

The assumption of no bequest motives leads to zero wealth at the horizon,

so the fraction of consumption is 100% at time T, meaning that there is

no annuity income left to purchase more annuities. Therefore the boundary

condition becomes %t|,_7 = 0. So we have

—(p+M)t A
% e (At _ At

8AttT A+

)= (3.10)

This term approaches zero since p and A are both positive numbers, and Ay
is bounded. Therefore the necessary condition for the integral to reach its
maximum is given by the Euler-Lagrange equation

d At r—p(A At
L —

Z(A — —
dt(t )\+7“) y A+

). (3.11)

After some mathematical manipulation, A; must satisfy the following second-

order linear homogenous differential equation over the values for which A; # 0.

At_(%—i—)\—FT)At—F?(A—FT)At:O (3.12)
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in domain [0,7]. The coefficients in this equation are time independent and
the method of undetermined coefficients can be used to find the general so-

lution. Note that the two roots of the characteristic equation

22—(T;p+x+r)z+r%yp(x+r):o (3.13)

are “=£ and A 4, so the general solution to ODE B.12) is
At = kle?t + ]{JQG(A—’—T)t. (314)

To obtain the analytic solution for A;, we impose the terminal boundary
condition at a large enough time 7" to be %\t:T = (0. This is reasonable
because people die at a finite age and the integral for the value function after
T is neglectable. To solve the two free constants k; and ks, we apply the

initial condition Ay (known). In mathematics, we have

k1 + ko = Ao,
(3.15)
kl%e(rg_p)T + k(A +7)eX T =,
After some algebraic manipulations, we have
fy = — Ao Qe
’Y(>\+T)6(A+T)T—E‘7‘_—pp)e “/pT, (316)
kz - dolp—vle 7 r—pp:

YA AHIT —(r—p)e T

Then the fraction of consumption rate «y is deterministic and given by
YA+T)+p—7

YA+ 1)+ (p— )TN
95

(3.17)

ay =



It can be easily observed that «; is a monotonic function of time ¢. After ap-
plying the constrain 0 < oy < 1, we obtain the optimal consumption strategy

a; for the retiree for v > 1

1, r € (0, p),
af = (3.18)

YA+7r)+p—r
ot =han € [p; 00).
Y(A+r)+(p—7)e "

We see that when the interest rate is less than the subjective discount factor,
it is optimal to consume all the annuity income. When the interest rate is
greater than the subjective discount factor, it is optimal to consume part
of the annuity income depending on time ¢. This consumption ratio is an
increasing function of time t, i.e., it gradually increases to 100 percent upon
the decease of the individual. This optimal strategy is consistent with the case

in which the consumption ratio oy is constant, which is left in the appendix.

Intuitively, it is possible that a; will hit 1 when ¢ = t* < T" and then stay over
the interval [t*,T]. Below we prove that this scenario will never happen in
practice. To this end, we take t* as a parameter, compute the corresponding
value function V(¢*) for t* € [0,7] and then find that the critical value of

Ve always occurs at time ¢ = T' through first-order condition.

First, we write the value function V¢ as a function of ¢*,

* T
V(t*) =sup E l/ e~ PNy (o, Ay dt +/ e~ PNy (A )d) | . (3.19)
0 ¢

at *
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Note that the consumption ratio «; is always equal to 1 over the last time
period t € [t*,T], which means that the annuity income will not change in

this time interval. Hence we have the following expression for A,

A — A AOOEn)—riped T S € [0, "]

L e e T o (3.20)
A, = AO(’Y(>\+T)—T+p)eT_;£t*e(%+r)t* .

T G te [t 7).

YAFr)eA T 4 (p—r)e ™

Substituting them into equation ([B.19), we have

ALY _ 1= g (1=7) (A+r)t*
Va(t*) — 0o (YAFr)—rtp)iTTe e X
(A=) (YOI (pr)e 7)1y (3.21)
e*(z\+(1*%)r+%/ﬂ)t*71 (e’(/’Jrk)Tfe’(”Jrk)t*)e(%71)“7#“*

( 1 1
)\+(177)T+7p p+A

conditional on A + r + %(p —r) > 0. Denote M(t*) to be

1 67(,\+(175)r+§p)t* _1 (e—(ﬂ-i-)\)T _ e—(p-l-)\)t*)e(%*l)(?"*l’)t*

M(tF) = + ,
®) 7—1(A+(1—%)r+%p p+A )
(3.22)
then V(t*) can be written as
AT (v( — 1y
Va(t*) — 0 (7( + T) T+ p) M(t*) (323)

(A4 1)+ (p =)l T

Note that the fraction before M (¢*) is a monotonically increasing function of
t* for v > 1, it must attain its maximum value at time t = 7". Below we will
verify that the maximum value of M(#*) also occurs at time ¢t = T. To this

end, we write the first derivative of M (t*) with respect to t* as

OM(t* (3=1)(r=p) (L_1)(r—p)t* , _ _ «
Bt(*) _ 'yil ~ el )(r—p) (e (P+NT _ ¢ (p+)\)t)

(3.24)

_  _p-r e(%*l)(T*P)t*(ef(er)\)T — e~(prNEy,
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No matter whether the interest rate r is greater or less than the subjective

p—r_(=1)(r—p)t*
factor p, the term oin€

is an increasing function of t*, therefore
the maximum value of M (t*) is attained at time t* = T by its first-order

condition. This is equivalent to saying that a; = 1 before 7' is not optimal.

Therefore, the closed-form solution for the value function V¢ for v > 1 can

be written as

Ve u(ax(u(})7r))a$(07 p)? re (O, p],
- W) Y (GO —rp) YT AT )
— , € [p,00).
<17v><v<x+w)+<pfr)e<%*A*T)Tw( A+(A=r+5p ) r€lpoo)
(3.25)

This is due to the fact that in domain (0, p|, the optimal consumption strategy
is oy = 1, so the value function V® is obtained from section 2311l in chapter

2l

Optimal annuitization strategy

In this section, we compare the two value functions V* and V" to achieve
the optimal annuitization strategy at retirement for v greater than 1. The
analytic solution of V* for T"= oo (assuming A + r > “=£) can be simplified

to

u(ﬁ)ax(ovp)v re (Ovp]v

Ve = (3.26)

wl—%yw

noa 1€ 1 oo).

The analytic solution for the value function without annuitization, V", for
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T = oo is introduced back in section 23.1.1] in chapter 2 and takes the

following form

n w7 1
14 (U}) = (1 - ,7) (p+>\+(7_1)77)7’ Y 7& L.
¥

Figure B.1] and Figure display the comparison of V" and V* for force of
mortality A = 0.05 for v = 2 and vy = 3 respectively, in which V.., is
the value function with optimal consumption, V* is the value function with
full consumption after annuitization, and V"™ is the value function without
optimal consumption. We see that all the values of V7, ., are greater than
that of V*, which is due to the fact that consuming all the annuity income
is not always the optimal consumption strategy. It can also be observed
that V. 18 always greater than V", meaning that it is always optimal to
annuitize no matter what the current interest rate is. This is different from the
numerical results we have obtained in Chapter ] in which the consumption
strategy after annuitization is not optimal. Therefore we recommend the
retiree to buy annuities immediately if he/she doesn’t have bequest motives

and his/her force of mortality is a constant 0.05 based on the assumption of

no loading fees.

Now we have completed the analysis of the optimal consumption and annu-

itization strategies for the retired individual whose objective is to maximize
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Figure 3.1: Value Function Comparison for v = 2
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Figure 3.2: Value Function Comparison for v = 3
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optimal 1S the value function with optimal consumption, V* is the value function with full con-

sumption after annuitization, and V"™ is the value function without optimal consumption.
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his/her lifetime utility from retirement to time of decease in the case of con-
stant interest rates. In the next section, we will investigate the same problem

under more realistic interest rate model.

3.2.2 Stochastic Interest Rates

In the previous section, we showed that it is always optimal to annuitize for the
retired individual under exponential mortality no matter what the interest rates
are (constant) without bequest motives and loading fees. In this section we study
the same optimal annuitization problem under stochastic short rate models. To
this end, we look at the two value functions V* and V" and then compare them to

obtain the optimal annuitization strategy at time 0, i.e., age x.

e The value function with annuitization under optimal consumption
In this section, we investigate the optimal fraction of consumption « under
exponential mortality rate and stochastic interest rates, which is a function of
time ¢ and interest rate . The discounted utility function (with annuitization)

the retiree is seeking to maximize is defined as

V®=sup F {/ e(pH‘)tu(ct)dt} : (3.27)
0

Ct

where the consumption rate ¢; is assumed to be part of the annuity income,

(1—a)A

Azt

as before. The stochastic interest rate model

ie, ¢ = aA, and A =
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we applied in this section is still a one-factor CIR interest rate model. We

write it here again for convenience’s sake.
th = Q(IU/T — Rt)dt + 0. thB: (328)

Note that the annuity income A depends not only on time, but also on the
interest rate due to the fact that r is a state variable when the interest rate
is stochastic. The calculus of variations method is not applicable in this sce-
nario due to the stochastic term of the interest rate, so dynamic programming
techniques are applied to obtain the HJB equation that VV* must solve. Specif-
ically, we rewrite V' as a function of time ¢, annuity income A and interest

rate r as below

V(t,A,r)=supF [/ e~ PNy (e, )ds | (3.29)
t

Ct
Similarly, we will consider the value function in a limited time domain [0, 7]
since people will die in a finite time and the utility function is zero after that.
After applying Bellman’s optimality principle and Ito’s lemma, we obtain the

following nonlinear HJB equation

1 1—-—a)A
Vi+0(pu, — 1)V, + érawa + sup[e’(”*’\)tu(@A) + VA(_ia)] =0. (3.30)
o Qg

Note that the consumption strategy « is not only a function of time ¢, but

also a function of interest rate r. Notation a,,, is the annuity factor at time
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t, i.e., age  + t, which is defined by

Apit(t,r) = F [/ e ftS(R”)‘)d”ds} : (3.31)
t

If we use a transformation s = z 4+ ¢, then we have

(—lx_i_t(t’?ﬂ) = F {/ €—>\z6_ tt+z Rvdv} — / €_>‘ZA(t, t+ Z)e_B(t’H_Z)thZ.
0 0
(3.32)
Since A(t,t+ z) and B(t,t+ z) are independent of time ¢, the annuity factor

a,++(t,r) depends only on interest rate. If the value function takes the power

1—
form V = ‘? i

— h(t,r), then the optimal consumption strategy o* is given by

the first-order condition

ht
= (eﬂt“tié )3 (3.33)
T+t

«

Substituting the expressions of V' and a* into the HJB equation (3.30), we

obtain the following PDE that A(¢,r) must solve

1-— 11 _»p
Thtrar, e R =0, (3.34)

1
he + 0ty — 1)hy + =102 Ry +
2 Qgtt
To solve this PDE numerically, the computational domain is truncated to
be (t,r) € [0,T] x [0, "maz|, where T is the maximum life expectancy of the

individual minus his/her current age z, and 7,4, is the maximum interest rate

that the riskless asset can attain. Terminal and boundary conditions imposed
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on this PDE are

t=T © W, 1) = Gpope PP
r=0 o hy +0uh, + ;;lh + végltle_%thl_% =0, (3.35)
r="Tmaz : Hhm =0.

\

The explanation for the terminal condition is due to that the consumption
ratio is 1 at t = T'". The boundary condition at r = 0 is obtained by setting
r = 0 on both sides of the PDE (334)). The Neumann boundary condition
at r = r,4 is imposed on the observation that the second-order derivation
at this point is close to zero for constant interest rates. To obtain non-zero
solutions for A(t,r), we make a transformation h(t,r) = y(¢,r)?, and reach

the following PDE for y(t, 7).

1-— 11 (oMt 1 —1

Y + y+age 0+ 00 =)y + 570l (Y + Tyf) = 0. (3.36)

RN

_(ptNt

Let y(t,r) = e~ g(t,r), and substitute it into equation (B56]), we have

N 11—y p+A . 1 v=-1_._ 1 ,_ 1
Yt + ('VC_Lac—f—t - ~ )y + (Q(MT - T) + 57“0-3 g yT’)yT + §ngyrr + a;th = 0.
(3.37)
The corresponding terminal and boundary conditions become
1
t="1T: y(T,r) =a;.,
11
r=0: G+ (Gt — BG4 Oy + agy, =0, (3-38)
T = Tmaz - grr = 0.
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We then solve the equation system ([B.37) and (B.38) by finite difference
method. After solving this equation system, the optimal consumption strat-

egy « can be recovered from the equation (3.33).

Now we are ready to compute the annuitization value function V* numerically.

To this end, we first look at the annuity income A, at time s, which satisfies

the following ODE

dAs (1 —ay)As
= (3.39)

Integrating it from time zero to time ¢, we have

b dA, /t 1 — ay
= — ds. 3.40
/0 As 0 aers ( )

After some mathematical manipulations, we obtain the following solution

A, = Agelo maia® (3.41)

in which Ay is the annuity payout at time zero (age z), which is equal to the
initial wealth w divided by the actuarial annuity factor at time zero. The
value function with annuitization can be computed through formula V¢ =

?tl_jh(t, r) for all ¢t and r.

The value function without annuitization

If the retiree does not annuitize at time ¢, the value function is defined as

Cs

V"™(t,w,r) =sup F l/ e~ PNy (e, )ds | . (3.42)
t
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The HJB equation that V" satisfies and its solution can be obtained by ap-
plying the same procedure as in Section [Z3.2.2]in Chapter 2] which is omitted

here for simplicity.

Note that V" is still independent of time ¢ if the exponential power term
e~ PtV i excluded, while V' does not share the same property with optimal
consumption after annuitization. For each fixed time ¢, we compare V' and
V™ to find the initial free boundary, and if the free boundary does exist, we
move it, applying the same method as in Section 2.3.2.2/in Chapter 2 to obtain
the final free boundary. This free boundary problem can also be solved by
converting the corresponding HJB equation into an equivalent LCP problem,
applying the projected SOR method to solve the PDE the value function must
solve, and then obtaining the optimal consumption strategy and the optimal
annuitization strategy by comparing the value function with its lower bound

as before. The numerical results show us that the two methods agree.

The optimal consumption strategy «

When the interest rate is stochastic, the analytic optimal consumption ratio
« is not available due to the complexity of the PDE that h must solve. From
our previous analysis, we have known that both V¢ and V™ are independent

of time ¢, therefore, the optimal annuitization strategy is independent of ¢
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Figure 3.3: The Optimal Consumption Strategy Comparison at ¢ = 0
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When the speed of adjustment 6 equals 0, and the volatility o, equals 0, stochastic interest
rates collapse to constant interest rates. Therefore, the optimal consumption strategies for both
stochastic and constant interest rates should agree. This figures compares these two optimal

consumption strategies, and the absolute maximum difference is 0.0077.
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Figure 3.4: Optimal Consumption Strategies for Stochastic Interest Rates
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The figure shows two random paths for the optimal consumption strategy for stochastic
interest rates using Monte Carlo simulations for parameters v = 2, p = 0.02, § = 0.25,

iy = 0.06, o, = 0.1, with initial interest rate r(0) = 0.06.
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too. To verify our numerics for stochastic interest rates are correct, Figure 3.3
displays the optimal consumption strategies under stochastic interest rates for
0 = 0,0, = 0 and constant interest rates as a function of r at time ¢t = 0. We
see that the optimal consumption strategies under two different interest rates
models match very well, which gives us confidence that our numerics are good.
Figure B4 shows two random paths for the optimal consumption strategy for
stochastic interest rates using Monte Carlo simulations for parameters v = 2,
p=0.02,0=0.25 u =0.06, 0. = 0.1, with initial interest rate r(0) = 0.06.
Since the interest rate is stochastic, it has many random paths, which leads
to different optimal consumption strategies. At any given age, the optimal
consumption strategy a; depends on the spot interest rate realized. It is not

an increasing function of time ¢ as for the constant interest rate scenario.

The Optimal Annuitization Strategy

In this section, we first compare the value functions under stochastic interest
rates for 6 = 0 and o, = 0 with those of constant interest rates at time 0.
It shows that the value functions for them agree very well, which gives us
confidence that our numerics are good. We then move on to finish the free
boundary seeking procedure for each fixed time ¢ from time zero to T" using
free boundary refining method. This method and the LCP method both show

us that it is always optimal to annuitize no matter what the current interest
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rate is for v = 2 under optimal consumption strategy with continuous annuity
purchasing, which is consistent with our previous results for constant interest

rates.

Next we investigate the stochastic interest rates case, in which the adjust
speed 0 and interest rate volatility o, are both positive (0.25, 0.10). Figure
displays the value functions comparison at time zero, i.e., age z. We
see that the annuitization value function V*® with optimal consumption is
always above the non-annuitization value function V", meaning no annuitiza-
tion boundaries exist, and the value function V¢ with full consumption after
annuitization intersects V", meaning free boundaries exist in this scenario. It
turns out that no annuitization boundaries exist for any time level ¢,,, and it
is always optimal to annuitize for any current interest rate. In other words, if
one wants to shift consumption to later years and can rebalance his annuities

continuously, he will gain higher income later.

3.2.3 Concluding Remarks

In this section, we have documented the optimal consumption and annuitization

strategies for a utility maximizer with exponential mortality rate for constant and

stochastic interest rates. The optimal consumption ratio for stochastic interest

rates is a little bit greater than that of constant interest rate, while the optimal
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Figure 3.5: Value Functions Comparison for v = 3 Using the LCP Method
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This figure compares the annuitization value functions under optimal and constrained consump-
tion strategies and the non-annuitization value function V™ at time 0. We can observe that no

annuitization boundary exists when the consumption strategy is optimized.

112



annuitization strategy is always the same, i.e., it is always optimal to annuitize
no matter what the interest rate is under the assumption of no-bequest, no-loading
fees. This is due to the fact that when one sacrifices some of his/her annuity income
now, he/she will gain a higher income later, which adds more utilities to the value
function.

Although the mathematical simplification of the mortality rate (exponential)
makes us to find the solutions with much greater ease, it has the disadvantage of
memory-less. To overcome this flaw, we will investigate the same optimal control
problem by relaxing the mortality to be GM mortality because it is widely accepted

and applied in the insurance and finance literature.

3.3 Model Calibration 2: Gompertz Mortality

In this section, we discuss the optimal consumption and annuitization strategies for
a retired individual whose objective is to maximize his/her lifetime consumption
utility under the following modified GM mortality rate as in Section 2.4lin Chapter

2

)‘ac-i—t - (343)
AosT, t>1T,

This modified GM mortality enables us to apply the non-zero terminal condition

at time ¢ = T, which can be computed in domain [T, 00| by applying the same
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mathematical techniques for constant force of mortality as in the previous section.
In mathematics, the associated value function the individual is seeking to max-

imize is defined as

V(t,w,r) = Sup E |:/ e—p(s—t) sftprrtu(Cs) ds
t

Ts,CsyT

i Ww.
—p(s—1) T d
* /7- ‘ o tbert (a:tJrT(T: RT)) °

This is exactly the same value function as in Section 2.4.1] in Chapter 2 Simi-

W, = w, R, = r} . (3.44)

larly, this annuitization problem is a free boundary problem and its mathematical

statement is given by

(P4 Aop)V = Vi — £V > 0,V (t,w,7) = J(t,w,7) (3.45)

for 0 < r < r*(t) (optimal not to annuitize),

(P4 Aait)V = Vi — £V = 0, V(t,w,7) > J(t, w,7) (3.46)

for r*(t) < r < oo (optimal to annuitize), in which £V is introduced back in
equation (Z48). Note that in domain r € [0,7*(¢)], it is optimal not to annuitize,
and in domain r € [r*(t), 00|, it is optimal to annuitize, which is different than the
free boundary problem stated in Chapter @l This statement is motivated from the
observation that it is always optimal to annuitize for stochastic interest rates under

exponential mortality.

114



If we postulate that V (¢, w,r) = “{::h(t, r), h(t,r) =y(t,r)7, g(t,r) = —y(t,r),

then the above free boundary problem is equivalent to

1
(p + )‘ac—l—t)g - ’ygt + 'Qg > 07 g(tu T) = —g7 (tu T) (347)

for 0 < r < r*(s),

(p + )\I+t>g - ’Vgt + ’Q?j = 07 g(ta 7“) > _g; (ta 7“) (348)

for r*(s) < r < 0.

There are two different ways to solve this free boundary problem. The first way
is to convert it to an equivalent LCP problem and then solve it by the projected
SOR method. The second way is to compare V' to the annuitization value function
(J below) to obtain the initial free boundary, and then move it to achieve the final
free boundary where both value functions and their derivatives are equal. FEither
way, we need to look at the annuitization value function first. In the next section,
we will use dynamic programming techniques to study this annuitization value

function.

3.3.1 The Annuitization Value Function Under Stochastic Interest Rates

If the individual annuitizes at time ¢, the expected utility of discounted lifetime

consumption over admissible control «; that he/she is seeking to maximize is given
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by the following definition

Qs

J(t, Ay, Ry) =sup E [/ e JotXara)dvy (o A Vds| Ay = A, Ry = 1| | (3.49)
t

where the consumption rate is assumed to be a fraction (0 < a; < 1) of the annuity
income A; as before, and the stochastic interest rate R; follows the CIR process
introduced back in equation (Z3]). So the annuity factor can be computed through

the zero-coupon bond Pg(t, s, R;) with maturity s

ax+t(t7 Rt) = / PB(t, S, Rt)(s—tpac+t)ds' (350)
t

We assume that the individual can purchase the annuity at the actuarial fair price

a,+¢ per dollar of annuity income at time ¢ and we have %f = ugaﬁ. So the HJB
x4+t

equation that J(t, A, r) must satisfy can be derived as

(1-a)A

Qg

1 t
Ji + 0(pr — 1) A =102 T + suple P o Aeredvy (0 A) 44 ]=0. (3.51)

2

The optimal consumption strategy a* is given by the first-order condition

(LA epttfg Aaodo) =5

r = e : 3.52
a 1 (3.52)

Motivated by the CRRA utility function, we postulate that J takes the similar

A=Y
1—y

power form as J = h(t,r), then the above optimal consumption ratio becomes

Oé* _ (h(ta 71) ept+fg )\x+vdv>*%’ (353)
dert
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and the HJB equation (B.51]) collapses to the following partial differential equation

for function h(t,r).

1 — ¥ 1_q _pt-&-f(’f Apppdv

htral, e o BTV =0. (3.54)

1
he + 0(py — 7)hy + =702 Ry +
2 Qoytt

To solve this PDE, we impose the following terminal and boundary conditions

t=T : W) = gy e PTIo Aot

l—l t+ft Agopdv
r=0 bl Ophe + ;g:th + 7054 S 0, (3.55)
r = ’]"maw . hTT — 07

\

The explanation for conditions » = 0 and r = r,,,, are similar to the scenario when
A is constant and r is stochastic. The reason for boundary condition at t = T is
due to the fact that the optimal consumption strategy in domain [T, 00) where the
mortality is constant is always 1.

To obtain non-zero solutions for h(t,r), we make a transformation h(t,r) =
y(t,r)7, and substitute it into equation ([B.54]), then we achieve the following PDE
for y(t,r).

1 — l*l _pt+ft Azpodv ]_ - 1
Yt + — 7y + (_I;th € K - + Q(Mr - T)yr + _ng(yrr + —yZ) = 0. (3‘56)
Yazyt 2 Yy

pt+f§ Ag4pdv

Let y(t,r) = e~ g y(t,r), and substitute it into equation (3.50), we have

L=y p+ Aoy, - I oy—1_._ 1 o 21—
— — g+ (0(pr—r)+=ro, —9,)Yr+ =10, Ypr+a,,, =0. (3.57
R 0y =) rot )i+ J=0 @)

g+ (
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The corresponding terminal and boundary conditions become

l
t="T: y(T,r) =a;,
r=0: o+ (2 — 22y g, ay =0, (3.58)
T = Tmazx * Yrr = 0.
\

We then solve the equation system (B.57) and (B.58) by finite difference method.
After solving this equation system, the optimal consumption strategy o* can be
recovered from equation (B.53)).

To compute the value function with annuitization J numerically, we first look

at the annuity income Ay at time s, which satisfies the following ODE

dA, (1 —al)A,
= ) 3.59
ds daH»s ( )

Integrating it from time zero to ¢, we have

LdA t1—
/ : :/ —p (3.60)
0 As 0 aers

After some mathematical manipulations, we obtain the following expression

A = Ageh = (3.61)

in which Ag is the annuity payout at time zero (age x), which is equal to the

initial wealth w divided by the actuarial annuity factor. Then the annuitization

value function J can be calculated via equation J = ’?_? h(t,r) for any time ¢ and

interest rate r.
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3.3.2 The Optimal Consumption Strategy

In this subsection, we carry out a convergence analysis of our numerical algo-
rithm first. Three different experiments with different time and interest step sizes
([0.1,0.008], [0.05,0.004], [0.025,0.002]) are performed, and the convergence rate,
which is the logarithm of two immediate quotients of the Ly norms, turns out to be
1. Therefore our algorithm converges to the exact solution as step sizes go to zero.
The following optimal consumption comparison further verifies this fact.

When the interest rate is stochastic, the optimal consumption strategy «; is
not only a function of time ¢, but also a function of interest rate r. To compare
this optimal consumption strategy with the scenario in which the interest rate is
constant, we choose a special interest rate r = u,., since when # = 0 and o, = 0, the
stochastic interest rate collapses to a constant. Then the optimal consumption ratio
ay is a function of time ¢, and it should agree with the case in which r is constant.
Figure displays this comparison for v = 2 for both stochastic and constant
interest rates, in which the CV method and the dynamic programming techniques
are applied to calculate oy for constant interest (see appendix for its derivation). We
can see that a; agrees very well, meaning that our numerics are good. Now we move
on to compute the optimal consumption strategy « for stochastic interest rates.

Figure 3.7 plots a as a function of time ¢ and interest rate r for CIR parameters
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Figure 3.6: a; Comparison for Different Interest Rate Models: v = 2
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When the speed of adjustment 6 and volatility o, are both 0, stochastic interest rates collapse to
constant interest rates. Hence the optimal consumption strategies should agree with each other.

This figure verifies this argument for Gompertz mortality.
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Figure 3.7: Optimal Consumption Strategy « for 6 = 0.25, y,, = 0.06, 0, = 0.1
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This figure plots the optimal consumption strategy « as a function of time ¢ and interest rate r for
Gompertz mortality. When the individual sacrifices some of the annuity income now, in return

he/she will be able to consume more later.

121



0 = 0.25 u, = 0.06,0, = 0.1, GM parameters m = 88.15,b = 10.5, v = 2 and
p = 0.02. We see that for any fixed interest rate, o is an increasing function of
time ¢. For any fixed time ¢, o is a decreasing function of interest rate r, which is
intuitively pleasant. The annuity income is also an increasing function of time ¢,
which means that when the individual sacrifices some of the annuity income now,

in return he/she will be able to consume more later.

3.3.3 The Optimal Annuitization Strategy

No matter whether we use the LCP method or the free boundary refining method,
the first thing we need to handle is the terminal condition at t = T'. Since the force
of mortality is a constant (1.9777) in domain [T, 00|, the free boundaries in this
domain is time invariant and we can obtain it by comparing the non-annuitization
value function V" and the annuitization value function V* as before. When we
calculate V', which is very time consuming, we store the value function in a matlab
file and then we reload it when necessary. It turns out that the optimal consumption
ratio is 1 in domain [T, oo], an intuitively pleasant result, because the mortality rate
is a large enough constant so that individuals will have little chance to live past the
maximum age.

The parameters used in our experiment are listed below: u, = 0.06, 6 = 0.25,
o, =01,0, =02 v=2,p=002 2 =65 ps =0, wy =1, 6y = 0.03, the
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maximum life span of a human being T,,,, = 125. Both the LCP method and
the free boundary refining method show that it is always optimal to annuitize no
matter what the interest rates are, which is consistent with our previous results for
exponential mortality. Therefore, if the individual sacrifices some income now and

can repurchase annuities at fair prices, he/she will earn higher income later.

3.4 Concluding Remarks

In this chapter, we have studied the optimal annuitization problem for a utility
maximizer for exponential and Gompertz mortalities under the optimal consump-
tion strategy.

Firstly, two interest rate models, constant and stochastic, are calibrated under
exponential mortality to study the optimal annuitization timing problem. Sec-
ondly, stochastic interest rates are imposed under Gompertz mortality to study the
optimal consumption and annuitization strategies, which is a free boundary prob-
lem, and can be solved using either the LCP method or the free boundary refining
method. The results show that it is optimal to annuitize no matter what the inter-
est rate or the mortality rate is. If the individual follows the optimal consumption
strategy, he/she will earn higher income if he/she annuitizes immediately upon the
assumption of no loading fees and no bequest motives.

All our numerical results show that it is optimal to annuitize even if the interest
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rate is high, but that one should consume less than what the annuity provides. In
other words, one wants to shift consumption to later years. This suggests that if
one annuitizes right away, with complete consumption required, then the realized
consumption level is higher than optimal. Note that annuities get cheaper when
interest rates rise, so in a sense, the annuity is actually too good a deal when the
interest rate is high. Optimal behavior is to sacrifice some of that income now,
in return for higher income later. In other words, instead of taking that deal, one
should delay annuitizing, earn short term interest, and once interest rates revert
to a more realistic level, you will probably be able to buy more annuities than you
would otherwise. The annuities you eventually buy