Kumarakrishnan, AnantharamanBeica, Hermina2020-05-112020-05-112019-092020-05-11https://hdl.handle.net/10315/37390We have developed and characterized a new class of vacuum-sealed, auto-locking diode laser systems with an auto-locking controller that allows these instruments to be operated with greater ease and control at desired wavelengths in the visible and near-infrared spectral range. These laser systems can be tuned and frequency stabilized with respect to atomic, molecular, and solid-state resonances without human intervention using a variety of control algorithms programmed into the same controller. We show that these lasers have exceptional long-term stability, with an Allan deviation (ADEV) floor of 210^{-12}, and a short-term linewidth of 200 kHz. These performance characteristics are related to reducing current noise and ensuring vacuum sealing. We demonstrate accurate measurements of gravitational acceleration at the level of a few parts-per-billion by incorporating the laser into an industrial gravimeter. We also realize the basis of a LIDAR transmitter that can potentially operate in a spectral range in which frequency references are not readily available. We have also developed a technique for precise measurements of atomic lifetimes using optical photon echoes. We report a measurement of 26.10(3) ns for the 5^2P_{3/2} excited-state in ^{85}Rb vapour that has a statistical uncertainty of 0.11% in 4 hours of data acquisition. We show that the best statistical uncertainty that can be obtained with the current configuration is 0.013%, which has been exceeded by only one other lifetime measurement. An analysis of the technical limitations based on a simple model shows that these limitations can be overcome using a feedback loop with a reference interferometer. Our studies indicate that it should be possible to investigate systematic effects at the level of 0.03% in 10 minutes of data acquisition. Such an outcome could potentially result in the most accurate measurement of any atomic lifetime.Author owns copyright, except where explicitly noted. Please contact the author directly with licensing requests.PhysicsDevelopment and Characterization of Auto-Locked Laser Systems and Applications to Photon Echo Lifetime MeasurementsElectronic Thesis or Dissertation2020-05-11LaserPrecision metrologyPhoton echo lifetimeAuto-lock controllerAllan deviationLidar