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ABSTRACT 

Understanding the complex control mechanisms governing fatty acid synthesis and mobilization 

holds prognostic and therapeutic potential in treating metabolic diseases such as obesity and 

diabetes. Our data has uncovered a novel function for the transcriptional co-repressor p130 in 

adipocytes. In particular, we found that the subcellular localization of p130 supports fatty acid 

metabolism. Indeed, stimulating lipogenesis increased p130 levels in the mitochondria. Here it 

interacted at the D-loop regulatory region of mitochondrial DNA, repressing genes involved in 

oxidative phosphorylation.  This could allow the intermediates of the TCA cycle to be utilized for 

lipid synthesis in lieu of energy production. Conversely, inducing lipolysis via β3-adrenergic 

activation in white adipocytes or a physiological challenge imposed by fasting, decreased p130 

levels in the mitochondria, concomitant with increased mitochondrial-encoded gene expression. 

Unexpectedly, β3-adrenergic stimulation showed the reverse effect in brown adipocytes. Our 

results provide valuable insight for deconstructing the intricate metabolic framework of 

adipocytes. 
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1. LITERATURE REVIEW  

White, brown and beige adipocytes 

Rodents and humans possess different types of fat tissue, each with distinct 

physiological functions (Chen et al., 2016). White adipocytes located in white adipose 

tissue (WAT) depots function in triglyceride storage and act as important endocrine cells 

secreting hormones such as leptin and adiponectin (Costa and Duarte, 2006; Matsuzawa, 

2006) (Fig. 1).  Contrarily, brown and beige adipocytes dissipate energy through heat 

production in a process known as non-shivering thermogenesis. Beige adipocytes differ 

from brown adipocytes as they are inducible “brown-like” cells that develop in WAT in 

response to cold exposure or adrenergic stimulation (Harms and Seale, 2013; Wu et al., 

2012). Despite their mutual involvement in non-shivering thermogenesis, beige and brown 

adipocytes originate from distinct developmental progenitors and possesses unique gene 

expression profiles (Porras et al., 2017; Harms and Seale, 2013; Gesta et al., 2007; Vitali 

et al., 2012; Peirce et al., 2014; Lazar, 2008; Wu et al., 2012; Algire et al., 2013). Thus, it 

is clear that white and thermogenic adipocytes have opposing roles in energy storage and 

consumption respectively (Rosell et al., 2014).  

White adipocytes are found in three main anatomical regions in the human body 

that include the intra-abdominal (visceral), upper-body/abdominal (subcutaneous) and 

lower body subcutaneous adipose tissues (Tchkonia et al., 2013). In rodents, white 

adipocytes are largely found in the inguinal and epididymal fat pads (Chusyd et al., 2016). 

In adult humans, active brown and/or beige depots have been detected in the cervical, 

supraclavicular, axillary, and paravertebral regions assumed to have evolved for warming 

the blood supplying the brain (Sidossis and Kajimura, 2015). In human infants, brown 
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adipocytes are found in the interscapular and perirenal regions, and appear to remain 

present throughout adulthood but drastically reducing at a very early age (Lecoultre and 

Rayussin, 2011). In rodents, brown adipocytes are found in interscapular and perirenal 

BAT depots, while beige adipocytes are found interspersed within WAT depots (Sidossis 

and Kajimura, 2015). 

 

 

 

 

 

 

 

 

Figure 1. Features and functions of white, brown and beige adipocytes. White adipocytes 
function mainly in storing excess energy as triglycerides, whereas beige and brown adipocytes 
dissipate energy through heat production known as non-shivering thermogenesis. Brown and beige 
adipocytes have a relatively high mitochondrial content compared to white. They also contain many 
multilocular/small lipid droplets whereas white adipocytes have one lipid (unilocular) morphology.  

 

Oxidative metabolism in adipocytes  

Metabolic modulations regulating energy production govern whether a cell 

proliferates, differentiates or exits the cell cycle and enters a state of quiescence (Shyh-

Chang et al., 2013).  Furthermore, some metabolic pathways play an important role in 

dictating tissue lineage fates (Porras et al., 2017; van der Knapp and Verrijzer, 2016). In 

contrast to differentiated cells, proliferating stem/progenitor cells rely mainly on non-

oxidative energy generation by glycolysis whereby the end product pyruvate is not used by 
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the mitochondria (Rafalski et al., 2012; Zhang et al., 2011; Zhou et al., 2012). Although 

glycolysis alone is less efficient in producing energy than the mitochondria that houses the 

tricarboxylic acid (TCA) cycle and the electron transport chain (ETC), it produces ATP at 

a faster rate with reduced generation of reactive oxygen species. In addition, glycolysis 

provides the necessary cofactors and metabolic intermediates to support the proliferative 

capacity of the cells (Folmes et al., 2012).  

Differentiated cells require larger amounts of energy are required to sustain 

specialized functions. The decreased demand for anabolic substrates allows for increased 

energy conversion into ATP via oxidative phosphorylation (OXPHOS) that occurs in the 

mitochondria (Rafalski et al., 2012). In this case, pyruvate produced from glycolysis is 

converted into acetyl-CoA which enters the TCA cycle, also known as the Krebs cycle. 

The TCA cycle consists of a series of enzymatic reactions that oxidizes acetyl-CoA to 

produce energy and reducing equivalents (NADH and FADH2), that are subsequently used 

as electron donors for the ETC (Sancho et al., 2016; Chandel, 2014). Several other carbon 

sources including pyruvate, glutamine and fatty acids can also feed into the TCA cycle to 

generate reducing equivalents.  In the ETC as electrons are passed from the reducing agents 

along the protein complexes, an electrochemical gradient is established which helps to 

drive ATP synthesis in the final step of the ETC (Chandel, 2014).  

The metabolic switch from glycolytic to oxidative energy metabolism begins early 

during adipogenic stem cell differentiation. This energetic shift is fundamental in 

supporting the biological function and survival of differentiated adipocytes that 

preferentially rely on OXPHOS to synthesize larger amounts of ATP (Drehmer et al., 

2016). Several studies investigating the adipocyte progenitor cell line 3T3-L1 
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differentiation into white adipocytes have revealed an activation of mitochondrial 

biogenesis during the process, representing the importance of increased mitochondrial 

mass in supporting the metabolic nature and function of differentiated white adipocytes 

(Wilson-Fritch, L, et al., 2003). 

 

Role of mitochondria in adipocytes 

In terminally differentiated adipocytes, energy metabolism is central to supporting 

their specialized functions. For this, mitochondria are highly dynamic organelles that play 

a major role in processes such as lipogenesis and lipolysis, the production of ROS and 

OXPHOS (Cedikova et al., 2016). In addition, mitochondria are essential for proper 

differentiation of adipocyte progenitors and contribute to the adipocyte production and 

secretion of adipokines, such as leptin (De Pauw et al., 2009; Koh et al., 2007).  

All living organisms depend on an efficient energy generating system for cell 

survival and proper functioning. Mitochondria are key players involved in fuelling several 

cellular processes and can be characterized as labile energy factories that respond to the 

metabolic demands of the cell. Mitochondria are critical players in adipose metabolism, as 

prominent mitochondrial defects are commonly present in several metabolic diseases 

(Crunkhorn and Patti, 2008; Holloway et al., 2009 ;  Turner and Heilbronn, 2008). 

Differences of mouse mitochondrial protein expression within adipocyte lineages are 

related to the specialized metabolic functions of white and brown fat (Forner et al., 2009).  

In vivo comparisons of the two mitochondrial proteomes uncovered quantitative and 

qualitative distinctions, which can directly relate to the unique metabolic activities in these 

fat types. Catabolic processes including fatty acid (FA) metabolism, TCA cycle and 
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OXPHOS were predominant mitochondrial activities in brown fat, suggested by the 

relative enrichment of proteins involved in these metabolic pathways. Conversely in white 

adipocytes, mitochondria were characterized by anabolic functions such as glycerolipid 

and triglyceride biosynthesis via lipogenic routes involving the TCA cycle (Forner et al., 

2009). This was indicated by the augmentation of proteins involved in de novo lipogenesis 

among which included pyruvate carboxylase which converts pyruvate into oxaloacetate 

that can be subsequently converted into citrate. Citrate is able to cross inner mitochondrial 

membrane into the cytosol where it participates in FA biosynthesis (Mounier et al., 2014; 

Ferre and Foufelle, 2007).  

 

Lipogenesis and lipolysis 

Triglyceride storage (lipogenesis) and breakdown (lipolysis) represent two major 

biological pathways in adipocytes (Ahmadian et al., 2007; Gregoire et al., 1998). Brown 

adipocytes possess a great capacity for uncoupled OXPHOS that results in the generation 

of heat. Contrarily, white adipocytes have reduced oxidative capacity as their main function 

is converting excess energy to store as triglycerides (Mottillo et al., 2014). For the process 

of lipogenesis, triglycerides can be synthesized from pre-existing FAs taken up from 

circulating triglycerides in the plasma or from non-lipid substrates such as carbohydrates 

(de novo lipogenesis) (Townsend and Tseng, 2014; Vázquez-Vela et al., 2008) (Fig. 2). 

Although FA synthesis occurs in the cytosol, mitochondria are essential for the generation 

of key metabolic intermediates, such as acetyl-CoA (Cedikova, 2016), that are required for 

lipogenesis (De Pauw et al., 2009). De novo lipogenesis begins with glucose metabolism 

to pyruvate, which is then converted into Acetyl-CoA in the mitochondria. Acetyl-CoA 
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enters the TCA cycle to form citrate, which would normally be used in the TCA cycle to 

produce isocitrate. However, in de novo lipogenesis, it crosses the inner mitochondrial 

membrane into the cytosol and is targeted for cleavage by ATP citrate lyase (ACL) 

generating acetyl-CoA and oxaloacetate (Fig. 2). Acetyl-CoA carboxylase (ACC) converts 

cytosolic acetyl-CoA to malonyl-CoA that is the first commitment step in FA synthesis 

(Mounier et al., 2014; Ferre and Foufelle, 2007). The lipogenic fate of malonyl-CoA is 

palmitate. This reaction is catalyzed by fatty acid synthase (FAS) which utilizes energy 

derived from NADPH. Some palmitate is then elongated to form stearate. Palmitate and 

stearate can be subsequently desaturated by stearoyl-CoA desaturase (SCD1) forming 

palmitoleate and oleate respectively. Desaturation is the formation of monounsaturated 

FAs from their respective substrates. These mono-unsaturated FA molecules form 

components of phospholipids that integrate into the lipid bilayer of the cell membrane or 

triglycerides for mobilization in very low density lipoproteins (Mounier et al., 2014). In 

addition, they can also be esterified to form triglycerides for storage (Ameer et al., 2014).  

An opposite major function of adipose tissue is lipolysis, which is stimulated in 

energy deprivation conditions and non-shivering thermogenesis (Ahmadian et al., 2007, 

Vaillancourt et al., 2009) (Fig. 3). In this case, β-adrenergic agonists such as 

norepinephrine released by the sympathetic nervous system, bind to β-adrenergic receptors 

which activate a GS (guanine nucleotide-binding) protein to initiate the cAMP/PKA-

dependent pathway (Cole and Sood, 2012). The GS protein activates adenylyl cyclase that 

converts ATP to cyclic AMP (cAMP) and leads to the activation cAMP-dependent protein 

kinase (PKA) (Collins and Surwit, 2001). PKA then phosphorylates the hormone sensitive 

lipase HSL (Stralfors and Belfrage, 1983) and perilipins that are essential for fat 
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Figure 2. De novo lipogenesis in adipocytes. Glucose is metabolized into pyruvate via glycolysis, 
which then moves into the mitochondria where it is converted into acetyl-CoA. Acetyl-CoA enters 
the TCA cycle to form citrate, which has the ability to cross the inner mitochondrial membrane into 
the cytosol. In the cytosol, it is targeted for cleavage by ATP citrate lyase (ACL) generating acetyl-
CoA. Acetyl-CoA carboxylase (ACC) converts cytosolic acetyl-CoA to malonyl-CoA. Malonyl-
CoA is converted into palmitate by fatty acid synthase (FAS) which utilizes energy derived from 
NADPH. Some palmitate is elongated to form stearate. Palmitate and stearate are subsequently 
desaturated by stearoyl-CoA desaturase (SCD1) forming palmitoleate and oleate respectively. 
These mono-unsaturated fatty acid molecules form phospholipids or triglycerides for storage.  
 

mobilization in adipose tissue (Greenberg et al., 1991; Egan et al., 1990). HSL 

phosphorylation activates its hydrolytic activity (Fredrikson et al., 1981) and subcellular 

translocation from the cytosol to the lipid droplet where it can begin to break down 

triglycerides (Egan et al., 1992; Clifford et al., 2000; Brasaemle et al., 2000). Triglycerides 
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are hydrolyzed sequentially by different lipases. In the first enzymatic reaction, 

triglycerides are broken down by adipose triglyceride lipase (ATGL) into diacylglycerol 

and a FA molecule. DAG is further hydrolyzed by hormone sensitive lipase (HSL) to yield 

monoacylglycerol and another FA molecule.  MAG is subsequently hydrolyzed to release 

glycerol and FA (Duncan et al., 2007). FAs are broken down in the mitochondria mainly 

through β-oxidation, releasing acetyl-CoA which enters the TCA cycle which generates 

NADH and FADH2, which are reducing agents utilized in the ETC (Aon et al., 2014). 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 3. Lipolysis in adipocytes. β-adrenergic agonists bind to β-adrenergic receptors (βAR) and 
lead to the activation of a GS  protein. Gs activates adenylyl cyclase (AC) that converts ATP to cyclic 
AMP (cAMP). cAMP activates cAMP-dependent protein kinase (PKA) (Collins and Surwit, 2001). 
PKA then phosphorylates the hormone sensitive lipase (HSL). Triglycerides (TAG) are 
metabolized by adipose triglyceride lipase (ATGL) into diacylglycerol (DAG) and a free fatty acid 
molecule. DAG is further hydrolyzed by hormone sensitive lipase (HSL) to yield monoacylglycerol 
(MAG) and another FA. MAG is subsequently hydrolyzed to release glycerol and FA. FAs can 
enter the mitochondria where they are converted into acetyl-CoA mainly through β-oxidation.  
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Non-shivering thermogenesis  

Exposure to cold temperatures imposes a metabolic challenge in mammals that 

must be met by maximizing their energy expenditure with heat production to ultimately 

restore homeothermy. Browning is the induction of brown and beige adipocytes to non-

shivering thermogenesis during this challenge (Sanchez-Gurmaches et al., 2016; Kajimura 

et al., 2015; Fenzl and Kiefer, 2014; Bartelt and Heeren, 2014; Harms and Seale, 2013; 

Seale et al., 2009). This is accomplished by uncoupling protein-1 (Ucp-1) in the 

mitochondria that acts as a pore for protons re-entering the matrix thereby uncoupling 

OXPHOS. In their non-activated state, Ucp-1 in brown adipocytes is negatively regulated 

by purine nucleotides, primarily ATP (Nicholls, D.G., 1974; Cannon and Nedergaard, 

2004; Kajimura and Saito, 2014). The inhibition of Ucp-1 allows coupled ATP-generation 

via OXPHOS (Fedorenko et al., 2012). However, in their activated state during exposure 

to cold temperatures, the sympathetic nervous system initiates the release of norepinephrine 

which binds the adrenergic receptors and triggers thermogenesis in brown and beige 

adipocytes (Cannon and Nedergaard, 2004) (Fig. 3). The adrenergic stimulation induces 

lipolysis and generates FA molecules which bind to and activate Ucp-1. Activation of Ucp-

1 by FA molecules uncouples electron transport and ATP synthesis, resulting in the 

production of heat instead of ATP. In order to circumvent a potential energy crisis of low 

ATP generation, glycolysis is upregulated, as well as the TCA cycle (Cooney and 

Newsholme, 1982).  

For browning in WAT, Ucp-1 expression in white adipocytes is negligible, but is 

expressed in beige adipocytes upon stimulation (Cedikova et al., 2016). Under basal 

conditions, beige adipocytes display comparable patterns of gene expression as white 
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adipocytes. However, upon adrenergic stimulation, the expression of pro-thermogenic fat 

marker genes and OXPHOS are upregulated, resembling the genetic signature of bone fide 

brown adipocytes (Park et al., 2014; Wu et al., 2012).  

It is not clear if beige cells originate from existing white adipocytes 

(transdifferentiation), non-committed progenitors (de novo differentiation) or pre-existing 

non-activated beige cells (Harms and Seale, 2013). Vitali et al. showed evidence 

supporting the transdifferentiation of mature white adipocytes into beige adipocytes upon 

prolonged cold exposure or pharmacological treatment with adrenergic agonists (Vitali et 

al., 2012). This white to beige conversion, however, is not accompanied by an increase in 

the expression of the brown adipocyte determination factor, PRDM16 (Seale et al., 2008). 

More recently, other groups used a pulse-chase fate-mapping technique in mice to track 

adipogenesis during WAT browning (Wang et al, 2013). Their results demonstrated that 

the majority of beige adipocytes in the subcutaneous WAT depot arise from de novo 

differentiation of precursor cells, rather than from pre-existing adipocytes.  

 

β-adrenergic activation in adipocytes 

β-adrenergic receptors (βARs) are members of the G-protein-coupled receptor family 

(Collins and Surwit, 2001), which is among the largest and most diverse families of 

membrane receptors (Kroeze et al., 2003). Adipocytes express all three subtypes of βARs 

that are transcribed from different genes (Collins, 2012). Since βAR activation promotes 

lipolysis of triglycerides stored in both white and brown adipocytes, an in-depth 

understanding of the β-adrenergic signalling pathways may provide more insight into the 

manipulation of adipocytes to increase fat hydrolysis and reduce fat stores (Collins, 2012).  
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Earlier studies that were aimed to identify the functional differences between beige 

and brown adipocytes have shown conflicting data on the dispensability of β3-adrenergic 

signalling for the browning of white adipocytes (de Jong et al., 2017). It was previously 

suggested that while brown adipocytes could respond to cold exposure in the absence of 

the β3AR (Mattsson et al., 2011; Susulic et al., 1995), white adipocytes depended on β3-

adrenergic signalling for cold-induced development of beige adipocytes and concurrent 

transcriptional activation of thermogenic genes (Barbatelli et al., 2010; Jimenez et al., 

2003).  However, de Jong et al has recently shown that β3-adrenergic signalling in white 

adipocytes is not absolutely critical for browning upon cold stimulation in contrast to 

earlier observations (de Jong et al., 2017). They found that β3AR genetically deleted 

mice had a fully intact thermogenic gene program in both beige and brown adipose tissue 

during cold exposure. Thus, the requirement of the β3ARs for cold-induced activation of 

thermogenic genes cannot be used as a factor to study the functional differences between 

beige and brown adipocytes (de Jong et al., 2017).  

Several rodent models have been used to study lipolysis using the β3-adrenergic 

agonist, CL 316,243 (CL) (Duteil et al., 2014; Himms-Hagen and Ghorbani, 1998; Collin 

and Surwit, 1996). Treatment with CL resulted in decreased lipid accumulation due to 

increased lipolytic activity in white adipocytes (Klaus et al., 2001). Interestingly, chronic 

CL treatment increases triglyceride turnover or lipolysis similarly in all adipose depots, 

despite drastic resulting differences in Ucp-1 (Mottillo et al., 2014). In the context of 

glucose metabolism, chronic treatment with CL has been demonstrated to up-regulate the 

expression of the insulin-sensitive glucose transporter GLUT4 in WAT and BAT of rats 

(Duffaut et al., 2006). Thus supporting the anti-diabetic properties of pro thermogenic 
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tissue activation (Bloom et al., 1992; Umekawa et al., 1997). Importantly, β3-adrenergic 

stimulation in WAT of mice upregulates the expression of lysine-specific demethylase 1, 

which directly stimulates the expression of nuclear genes involved in OXPHOS (Duteil et 

al., 2014). However, the role of LSD1 in brown adipose tissue and its expression in 

response to β3-adrenergic stimulation has not been investigated in great detail (Duteil et al., 

2016).	 

CL binds to β3ARs to activate the cAMP/PKA pathway mimicking cold exposure 

stimulation in non-shivering thermogenesis (Mouchiroud et al., 2014). Although it is 

widely accepted that lipolysis is stimulated by the cAMP/PKA pathway through HSL 

activation, there is increasing evidence supporting alternative intracellular signalling 

pathways that are activated through G-protein-coupled receptors. In adipocytes, the β3AR 

can activate p38 mitogen-activated protein kinase (p38 MAPK) via PKA and p38 MAPK 

activity is essential for cAMP-dependent Ucp-1 transcription (Greenberg et al., 2001; Cao 

et al., 2001). CL has been shown to induce p38 MAPK activation in a dose- and time-

dependent manner in both white and brown adipocytes. Altogether, these results elucidate 

the different downstream targets of the β3-adregernic pathway, which ultimately lead to 

lipolysis and mitochondrial Ucp-1 transcription.  

 

Insulin-induced lipogenesis in adipocytes 

Insulin has been shown to be a critical hormonal factor in inducing de novo 

lipogenesis (Cederquist et al., 2017; Kersten, 2001) and inhibiting lipolysis through the 

PI3K/Akt pathway (Langin, 2006). Insulin binds to the insulin receptor and activates 

tyrosine kinase activity. This recruits glucose transporters to the membrane thereby 
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promoting glucose uptake by adipose tissue (Cederquist et al., 2017), as well as activates 

lipogenic enzymes via mTORC1 and the transcription factor sterol regulatory element 

binding protein-1 (SREBP-1), (Kersten, 2001). Insulin treatment simultaneously results in 

the activation of the antilipolytic enzyme phosphodiesterase 3B (PDE 3B) by Akt 

(Wijkander et al., 1998). PDE 3B reduces intracellular cAMP levels, resulting in lowered 

activity of PKA and ultimately the deactivation of HSL, thereby inhibiting lipolysis 

(Wijkander et al., 1998).  

From a disease perspective, insulin or insulin resistance plays a pivotal role in 

metabolic disorders such as obesity and type 2 diabetes (Smith and Kahn, 2016). Under 

normal physiological conditions, lipogenesis and lipolysis are carefully regulated within 

adipose tissues and in concert with other systemic organs, especially the liver. Insulin-

resistant obesity results in impaired inhibition of lipolysis and consequently, increased 

release of FAs and glycerol (Perry et al., 2015; Arner and Langin, 2014). Ultimately, this 

can lead to ectopic lipid accumulation and dyslipidemia (Gustafson and Smith, 2014; 

Abraham et al., 2015).  

 

Regulation of mitochondrial DNA in adipocytes 

Although majority of protein-encoding genes are found within the nucleus, 

mitochondria also contain their own DNA (mtDNA), which is derived from a separate 

evolutionary origin than the nuclear genome (Gray et al., 1999). The human mitochondrial 

genome spans 16.6-kbp and contains a total of 37 genes that encode 13 mitochondrial 

proteins, 22 mitochondrial tRNAs, and 2 mitochondrial rRNAs (Anderson et al., 1981) 

(Fig. 4). The mouse mitochondrial genome exhibits a high level of similarity to that of 
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humans (Gray, 2012).  The 13 mitochondrial-encoded proteins are functional components 

of the ETC for OXPHOS. These components, which are absolutely required for electron 

transit and ATP production, are subunits of the ETC complexes I, III, IV, and V  (Schon et 

al., 2012). This is highlighted by ATP6 and ATP8 that are two critical subunits of complex 

V (ATP Synthase). Together they form a major component of the ATP Synthase, the F0 

structural domain, consisting of the membrane proton channel through which protons pass 

to produce ATP from ADP (Grzybowska-Szatkowska et al., 2014). Thus, without subunits 

ATP6 and 8, the synthase cannot support the energetically favorable flow of protons across 

the inner mitochondrial membrane to form ATP.   

 

 

 

Figure 4. Mouse and human mitochondrial-encoded genes. The human and mouse 
mitochondrial DNA (mtDNA) is a closed double-stranded circular DNA, with genes located on 
both strands, which are referred to as the heavy (H) and light (L) strands. The H-strand contains 
two promoters, Hsp1 and Hsp2, whereas the L-stand contains a single promoter, Lsp, located in the 
D-loop regulatory region. Thirteen mitochondrial protein subunits of complexes I, III, IV, and V 
are encoded from the mtDNA and are functional components of the ETC absolutely required for 
OXPHOS. 
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The structure of mtDNA is a closed double-stranded DNA circle with genes located 

on both strands, which are referred to as the heavy (H) and light (L) strands based on their 

relative densities upon gradient centrifugation. The H-strand contains two promoters, 

heavy strand promoter 1 and 2 (Hsp1 and Hsp2), while the L-strand contains a single 

promoter, light strand promoter (Lsp). Transcription can initiate in either direction along 

the circular genome at any one of the three promoters. Hsp1 and Hsp2 are located 100 bp 

apart within the D-loop region and transcribed in the same direction (Martin et al., 2005). 

Hsp2 and Lsp derived transcripts yield polycistronic messages that are subsequently 

processed and modified. On the other hand, Hsp1 terminates after transcribing 12S and 16S 

rRNAs (Peralta et al., 2012; Kruse et al., 1989; Martin et al., 2005).   

 The transcription of mitochondrial genes involved in OXPHOS and other 

mitochondrial processes is tightly controlled by key mitochondrial and nuclear factors that 

can interact directly with the mtDNA. Pgc-1α is a master regulator of mitochondrial 

biogenesis (Jornayvaz and Shulman, 2010; Wu et al., 1999). It interacts with and activates 

the nuclear transcription factors 1 and 2 (NRF-1 and NRF-2), leading to the transcription 

of the mitochondrial transcription factor (Tfam). Tfam translocates into the mitochondria 

where it activates the transcription and replication of mtDNA by binding to the D-loop 

(Ventura-Clapier et al., 2008). In brown adipocytes that are abundant with mitochondria 

and express high levels of Ucp-1 relative to white adipocytes, β-adrenergic signalling 

activates the expression of Pgc-1α, which increases the expression of Ucp-1 and 

mitochondrial genes (Fernandez-Marcos and Auwerx, 2011; Puigserver et al., 1998). 

Furthermore, cold-induced brown adipocytes increase in Ucp-1 expression concurrently 
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with activated mitochondrial biogenesis (Cohen and Spiegelman, 2015). Moreover, 

adipose-specific TFAM genetically deleted mice demonstrated a significant reduction in 

mtDNA copy number and a down regulation of OXPHOS proteins (Vernochet et al., 2012). 

As a result, both WAT and BAT displayed decreased complex I and complex IV enzymatic 

activities (Wredenberg et al., 2006). A recent study showed that a splicing isoform of Pgc-

1α, NT-Pgc-1α, also has a direct regulatory effect on mtDNA transcription in brown 

adipocytes, as its selective expression in Pgc-1α genetically deleted brown adipocytes 

resulted in higher expression of mtDNA-encoded genes (Chang and Ha, 2017).  

 The mitochondrial transcription termination factor (mTERF) protein family has 

also been identified as key transcriptional regulators of the mitochondrial genome (Roberti 

et al., 2006). mTERF1 is widely believed to mediate the transcription termination of a 

shorter transcript derived from the HSP1 promoter  by binding to the termination region 

and facilitating DNA unwinding (Roberti et al., 2006;Yakubovskaya et al., 2010). 

However, their role in adipose tissue is unknown. 

 

Rb family and adipocyte metabolism 

The retinoblastoma susceptibility gene family proteins, Rb, Rbl1 (p107) and Rbl2 

(p130), have been best described by their nuclear function as molecular repressors of 

mammalian cell growth and proliferation (Balciunaite et al., 2005). Rb is expressed in both 

proliferating and non-proliferating cells, while p130 is expressed in differentiated or 

quiescent cells and p107 is prominently expressed in proliferating cells (Macaluso et al., 

2006). Each Rb family member is known to interact with distinct proteins of the E2F family 

of transcription factors, thereby recruiting chromatin remodeling enzymes such as histone 
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deacetylases and histone methyltransferases, which in turn repress the expression of genes 

involved in cell cycle progression, as well as differentiation and development (Caputi et 

al., 2005; Cobrinik, 2005).  

Interestingly, our lab has recently shown that p107 plays a pivotal role in dictating 

adipocyte progenitor fate by regulating metabolism (Porras et al., 2017; De Sousa et al., 

2014). In the absence of p107, glucose metabolism is directed to lactate, as an alternative 

to the TCA cycle. This metabolic profile was found to control the differentiation of brown 

versus white adipocytes.  

 Unlike p107, little is known about the function of homologous family member p130 

in adipocyte progenitors and their differentiated progeny (Porras et al., 2017; De Sousa et 

al., 2014; Ross et al., 2007). Several genome-wide association studies (GWAS) have 

discovered hundreds of genetic loci with powerful associations for over 300 diseases, 

including at least 75 obesity-susceptibility loci (Day and Loos, 2011; Lu and Loos, 2013). 

The FTO (fat mass and obesity associated gene locus) was recognized as the locus with the 

most significant impact on body mass index (BMI) and the disposition of developing 

obesity (Lu and Loos, 2013) (Frayling et al., 2007; Scuteri et al., 2007). Common single 

nucleotide polymorphisms (SNPs) occur in the intronic regions of the FTO locus in close 

proximity to different genes (Davies et al., 2013). These SNPs can alter susceptibility to 

obesity by interfering with the expression or function of the nearby genes, one of which 

include p130. Interestingly, the obesity-risk allele of a common GWAS SNP in intron 1 of 

the FTO gene was concomitant with increased p130 expression in peripheral blood 

lymphocytes (Jowett et al., 2010).  
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2. RATIONALE AND OBJECTIVES  

Rationale 

As p130 is expressed only in adipocytes and nearly undetectable in their proliferating 

progenitor cells, the rationale for this project is to establish a metabolic role for p130 in 

terminally differentiated adipocytes.  

 

Hypothesis  

In adipocytes, p130 functions by regulating fatty acid metabolism.  

 

Objectives 

1. To identify a metabolic role for p130 in white and brown adipocytes. 

2. To investigate the molecular function of p130 in de novo lipogenesis.  

3.  To investigate the molecular function of p130 in lipolysis. 
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3. MATERIALS AND METHODS 

 
Mice and Dissections 

All animal experiments were performed according to the guidelines approved by 

the Animal Care Committee of York University. Experiments were performed on adult 

(8–16-week old) mice of the Balb/c genetic background. Mice were injected with 1 

mg/kg β3-adrengeric agonist CL 316,243 (Tocris Bioscience, Bristol, UK, 

https://www.tocris.com/) diluted in saline, 0.6 units/kg insulin or PBS intraperitoneally. 

Brown and white adipose depots were dissected at varying time points for analysis.  

 

Cell Types and Tissue Culture 

C3H10T1/2 cells are an uncommitted embryo cell line derived from 14 to 17 day-

old C3H mouse embryos obtained from the American Type Culture Collection. Cell lines 

for p130 KD and scrambled control were derived by transfecting C3H10T1/2 cells with 

plasmid expressing short hairpin (sh) RNAi (TRCN0000071274) or control empty vector 

(Sigma-Aldrich, St. Louis, Missouri, http://www.sigmaaldrich.com), respectively. After 

24 hours, cells were washed and cell lines were selected based on their survival in 1.5 

µg/ml puromycin. Murine embryonic fibroblasts representing a rich source of primary 

mesodermal stem cells were isolated from embryos of heterozygous p130 genetically 

deleted mating pairs at 14.5 days post coitum. After embryos were isolated and the 

placenta removed, ectodermal and endodermal cells of the head, tail and internal organs 

were discarded and the remaining mesodermal tissue was minced and plated. All cells 
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were grown in low glucose media (5.5mM Dulbecco’s Modified Eagle’s Medium 

(DMEM) (Wisent Bioproducts ST-BRUNO, Quebec, 

http://www.wisentbioproducts.com) with 10% fetal bovine serum (FBS) and 1% 

penicillin/streptomycin.  

Cells were differentiated to adipocytes after reaching confluency (day 0). At day 

0, the growth media was supplemented with 0.5mM isobutylmethylxanthine, 125 nm 

indomethacin, 1µM dexamethasone, 850 nM insulin, 1 nM tri-iodothyronine (T3), and 

1µM rosiglitazone for 2 days. At day 2, cells were switched to maintenance media that 

contained 850 nM insulin, 1 nM T3, and 1µM rosiglitazone for 6 days. At day 9, some 

plates were treated with 5 or 10 µM rosiglitazone (Sigma-Aldrich, St. Louis, Missouri, 

http://www.sigmaaldrich.com) and 10 or 40 µM CL 316,243 (Tocris Bioscience, 

Avonmouth, Bristol, United Kingdom, https://www.tocris.com) for 24 hours. Plates were 

subsequently washed with PBS and used for mitochondrial, RNA or protein isolation as 

described below.  

 

Stromal Vascular, Adipocyte and Tissue Isolation 

 White and brown fat pads from mice were dissected from the inguinal and 

interscapular regions, respectively. Tissues were minced and digested in Krebs-Henseleit 

Buffer Modified medium (Sigma-Aldrich, St. Louis, Missouri, 

http://www.sigmaaldrich.com) containing 1mg/mL collagenase I (Sigma-Aldrich, St. 

Louis, Missouri, http://www.sigmaaldrich.com). Samples were rocked on a platform 

shaker at 80 rpm in 37°C for 30 minutes. Digested tissue was passed through a 100 µm 
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sterile nylon mesh filter to collect the stromal vascular fraction and adipocytes. To 

separate the stromal vascular fraction from the fatty layer containing adipocytes, the 

filtered cells were centrifuged at 1500 rpm for 5 minutes. The top fatty layer now 

containing adipocytes was carefully transferred to a new tube. Adipocytes were 

subsequently suspended in 10mL of low glucose media and might be treated with 40 µM 

CL 316,243 for 5 hours or 850 nM insulin for 30 minutes. 

 For whole tissue protein isolation, fat pads were lysed directly in RIPA lysis 

buffer (0.1% sodium deoxycholate, 0.5% NP-40, 5 mM EDTA, 50 mM Tris HCL pH 7.5, 

150 mM NaCl,) on a cell disruptor (Retsch MM400) for 2.5 minutes (frequency 30 Hz 

with 30s on and 30s off). After disruption, the supernatant was centrifuged at 15000 rpm 

for 15 minutes at 4°C. The supernatant was collected and used for Western blot analysis.  

 

Mitochondrial Isolation 

 C3H10T1/2 cells, their differentiated progeny, isolated primary stromal vascular 

cells or primary adipocytes were washed twice with PBS and pelleted by centrifugation at 

1500 rpm for 5 minutes. The pellet was dissolved in mitochondrial isolation buffer (0.25 

M sucrose, 0.1% BSA, 0.2 mM EDTA, 10 mM HEPES) containing protease inhibitors (1 

mg/ml of each of pepstatin, aprotinin and leupeptin) and transferred into a pre chilled 

Dounce homogenizor. The sample was homogenized using loose (6 complete turns) and 

tight (6 complete turns) glass rods. The homogenate was transferred into an eppendorf 

tube and centrifuged at 1000 g at 4ºC for 10 minutes. The supernatant was collected and 

the pellet containing the debris and nucleus were discarded. The supernatant was 



	 22	

centrifuged at 14000 g for 15 minutes at 4ºC and the resulting supernatant was saved as 

the cytoplasmic fraction. The pellet representing the mitochondrial fraction was washed 

twice and dissolved in 30 ul of isolation buffer. The mitochondria were lysed by repeated 

freeze-thaw cycles (3 times each) on dry ice.  

 

Nuclear-Cytoplasmic Isolation  

 White and brown fat pads from mice aged 4-5 weeks were dissected from the 

inguinal and interscapular regions, respectively. The tissue was lysed directly in 500 µL 

cytoplasmic lysis buffer (10 mM Tris pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.5% NP-40 

and protease inhibitors) on the cell disruptor for 2.5 minutes (frequency 30 Hz with 30s 

on and 30s off). After disruption, the supernatant was transferred to a new tube and 

incubated on ice for 5 min followed by rocking at 4°C for 5 min. After incubation, a 

small volume (150 µL) of the homogenate mixture was removed. This fraction 

represented the “whole cell lysate”. The remaining homogenate was then centrifuged at 

2500 g for 5 min at 4oC. The supernatant, which represented the cytoplasmic extract, was 

then transferred to a clean pre-chilled tube. The cell pellet containing intact nuclei was 

then washed with the cytoplasmic lysis buffer. After 10 washes, the insoluble cell pellet 

was lysed with nuclear lysis buffer (50 mM Tris pH 7.4, 5 mM MgCl2, 0.1 mM EDTA, 

1mM dithiothreitol (DTT), 40% (wt/vol) glycerol containing 0.15 unit/ul benzonase 

nuclease (sc-202391, Santa Cruz Biotechnology, Dallas, Texas, United States, 

https://www.scbt.com/scbt/home) to digest the DNA and RNA in the suspension. 
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Western Blot Analysis 

 Protein samples to be loaded were first boiled for 3 minutes in loading buffer 

containing 4% SDS, 10% 2-mercaptoethanol, 20% glycerol, 0.004% bromophenol blue, 

0.125 M Tris-HCl and 1 mM DTT. Samples were loaded on gradient (6-15%) or 7.5% 

polyacrylamide gels in running buffer (25 mM Tris-base, 192 mM glycine and 0.1% 

SDS) and the proteins were separated by electrophoresis for 1.5 hours at 30 milliamps. 

Proteins were transferred on a 0.22 µm pore size nitrocellulose membrane (Santa Cruz 

Biotechnology, Dallas, Texas, United States, https://www.scbt.com/scbt/home) at 4ºC for 

80 minutes at 100V, using a wet transfer method (50 mM Tris-base, 384 mM glycine, 

20% methanol). The membranes were blocked for an hour at room temperature in 5% 

milk in TBST (150 mM NaCl, 50 mM Tris base and 0.1% Tween-20). Membranes were 

probed with primary antibodies diluted in 5% milk in TBST overnight at 4ºC with gentle 

rocking. Antibodies used were rabbit polyclonal anti-p130 (sc-317X, Santa Cruz 

Biotechnology, Dallas, Texas, United States, https://www.scbt.com/scbt/home), rabbit 

polyclonal anti-Cox4 (ab16056, Abcam, Cambridge, United Kingdom, 

http://www.abcam.com/) and monoclonal anti-α-tubulin (T9026, Sigma, St. Louis, 

Missouri, http://www.sigmaaldrich.com). The membranes were then washed three times 

with TBST and secondary antibodies conjugated with horseradish peroxidise diluted in 

5% milk in TBST were added and incubated for an hour at room temperature with gentle 

rocking. Secondary antibodies were goat anti-rabbit and goat anti-mouse (Bio-rad 

Laboratories, Mississauga, Ontario, http://www.bio-rad.com/). The membranes were then 

washed 3 times with TBST for 5 minutes each followed by a final wash with TBS for 10 

minutes. The membranes were visualized with normal (Pierce, Carlsbad, California, 
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United States, https://www.thermofisher.com/ca/en/home.html) and highly sensitive 

(Immobilon Western Chemiluminescent HRP Substrate, Millipore, Darmstadt, Germany, 

http://www.emdmillipore.com/CA/en) chemiluminescence reagents  on photographic 

film (Santa Cruz Biotechnology, Dallas, Texas, United States, 

https://www.scbt.com/scbt/home). Protein levels were then evaluated through 

densitometry using Image J software. 

 

Quantitative Chromatin Immunoprecipitation Assay (qChIP) 

 Isolated mitochondria were re-suspended in 200 µL PBS with 1% formaldehyde 

and rocked at RT for 10 minutes to enable the crosslinking/fixation reaction. This was 

quenched by adding 200 µL of 125 mM glycine in PBS and rocking for 5 minutes at RT. 

400 µL of cold PBS with 1 mM NaF and 100 mM Na3VO4 was then added and the cross-

linked mitochondria were centrifuged at 14,000g for 5 minutes at 4°C. The supernatant 

was discarded and the pellet was washed again by centrifugation in 400 µL in the same 

buffer. The pellet was re-suspended in 500 µL of chromatin immunoprecipitation (ChIP) 

Lysis Buffer (40 mM Tris pH 8.0, 1% Triton X-100, 4 mM EDTA, 300 mM NaCl, 

1µg/ml each of protease inhibitors [pepstatin A, aprotinin, leupeptin], 1 mM 

phenylmethylsulfonyl fluoride [PMSF] and 1mM Na3VO4) and kept on ice until 

sonication. Samples were sonicated at 12 cycles of 15s on, 45s off, amplitude 15. Post 

sonication, samples were centrifuged at 13,000 rpm for 10 minutes at 4°C. The 

supernatant was transferred to a new tube and an equal volume of Dilution Buffer 1 (40 

mM Tris pH 8.0, 4 mM EDTA, 1 µg/ml of each protease inhibitors, 1 mM PMSF and 1 



	 25	

mM Na3VO4) was added. 20 µL was removed and added to 100 µL of Dilution Buffer 2 

(Dilution Buffer 1 with 0.5% Triton X-100 and 150mM NaCl) and stored as Input DNA 

at -20°C. The remaining sample was diluted to 750 µL with Dilution Buffer 2. 50 µL of 

Protein A/G agarose beads (Santa Cruz Biotechnology, Dallas, Texas, United States, 

https://www.scbt.com/scbt/home) were added and the sample pre cleared by rocking at 

4°C for 1 hour. The beads were pelleted by centrifugation at 1500 rpm for 2 minutes in 

4°C and the supernatant transferred into another tube. The supernatant was incubated 

overnight on a rocker at 4°C with 5 µg of rabbit polyclonal p130 antibody (sc-317X, 

Santa Cruz Biotechnology, Dallas, Texas, United States, 

https://www.scbt.com/scbt/home).  

      The next day 50 µL Protein A/G agarose beads were added to the sample and 

rocked at 4°C for 90 minutes. Beads were pelleted by centrifugation (1500 rpm, 2 

minutes, 4°C) and the supernatant containing unbound protein/DNA was discarded. The 

agarose bound antibody/protein/DNA was washed on a rocking platform with 1 mL of 

various wash buffers for 5 minutes each. Beads were pelleted at 1500 rpm, 4°C, 2 

minutes in between washes. The various wash buffers were in sequence: Low Salt 

Immune Complex Wash Buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM 

Tris-HCl pH 8.2, 150 mM NaCl), High Salt Immune Complex Wash Buffer (0.1% SDS, 

1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH 8.2, 500 mM NaCl), LiCl Immune 

Complex Wash Buffer (0.25 M LiCl, 1% IGEPAL-CA630, 1% deoxycholic acid, 1 mM 

EDTA, 10 mM Tris pH 8.1), and two TE Buffer washes (10 mM Tris-HCl, 1mM EDTA 

pH 8.0).		



	 26	

 After the last wash, the pellet was re-suspended in 250 µL of fresh Elution Buffer 

(1% SDS, 0.1 M NaHCO3), vortexed and placed on a rotator for 15 minutes at RT.  

Samples were spun down at 1500 rpm for 2 minutes and the supernatant transferred to 

another tube. 250 µL of Elution Buffer was re-added to the pellet and the previous step 

repeated. The eluates were combined (final volume of 500 µL). To reverse crosslinks 20 

µL of 5 M NaCl was added to the combined eluates and 4 µL to the Input DNA and 

incubated at 65°C for 6 hours. The DNA was purified using a DNA Purification Kit 

(Active Motif, Carlsbad, California, https://www.activemotif.com/) as per manufacturer’s 

instructions. DNA binding was then detected using qPCR as described below.  

 

qPCR Analysis 

 qPCR experiments were evaluated following the MIQE (Minimum Information 

for Publication of Quantitative Real-Time PCR Experiments) guidelines (Bustin et al., 

2009). For RNA isolation, Trizol reagent (Ambion by Life Technologies, Carlsbad, 

California, United States, https://www.thermofisher.com/ca/en/home.html) was used 

according to the manufacturer’s instructions. 1 µg of RNA was reverse transcribed into 

cDNA using an All-in-One cDNA Synthesis SuperMix (bikmake, Houston, TX, 

http://www.bimake.com/) and the cDNA used for qPCR. The optical density (OD) of 

RNA was measured using the NanoDrop 2000 (Thermo Scienfic, Carlsbad, California, 

United States, https://www.thermofisher.com/ca/en/home.html) RNA purity was inferred 

by the A260/280 ratio (~1.80 is pure). qPCR assays were performed on Light cycler 96 

(Roche, Missisauga, Canada, http://www.rochecanada.com/) using SYBR green Fast 
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qPCR Master mix (Biotool, Carlsbad, California, United States, 

https://www.thermofisher.com/ca/en/home.html) with appropriate primer sets and Rplp0 

(36B4) as a normalization control (Table 1). Relative expression of cDNAs was 

determined after normalization with 36B4 using the ΔΔCt method. For qChIP, relative 

binding was determined by amplifying isolated DNA fragments using the D-loop primers 

and analysed using the ΔΔCt method. For fold change, ΔΔCt values were normalized to 

the control.  

 

Microscope analysis 

 Cells were imaged using the ZEISS Axio Vert. A1 scope with 5X/0, 15 Ph1 

objective (Carl Zeiss Canada, Toronto, Canada, https://www.zeiss.ca). Digital images 

were captured using a 12-megapixel camera.  Lipid droplets were quantified manually 

using Microsoft paint.  
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Table 1. Primer sets used for qPCR 

Gene 
Name 

Sequence 
Accession 
Number 

Amplicon 
Length 

(bp) 
Forward primer sequence Reverse primer sequence 

Rplp0 

(36B4) MGI:1927636 
 

29 
GAG GAA TCA GAT 
GAG GAT ATG GGA 

AAG CAG GCT GAC TTG 
GTT GC 

mt-Nd4 

(Nd4) MGI:102498 
 

66 
CCT CAC ATC ATC ACT 

CCT ATT CTG 
GGC TAT AAG TGG 

GGA AGA CCA TTT G 

mt-Co2 

(Cox 2) MGI:102503 
 

98 
AGT TGA TAA CCG AGT 

CGT TCT G 
CTG TTG CTT GAT TTA 

GTC GGC 

mt-Atp6 
(Atp6) MGI:99927 

 
55 

TCC CAA TCG TTG TAG 
CCA TC 

TGT TGG AAA GAA 
TGG AGT CGG 

D-loop MF 133498.1	 173 
GCG TTA TCG CCT CAT 

ACG TT 
GGT GCG TCT AGA CTG 

TGT G 
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4. RESULTS 

 
p130 is expressed in WAT and BAT in vivo and in vitro 

To begin to study the potential metabolic role of p130 in adipocytes we 

ascertained that it was expressed in white and brown fat pads. Western blotting of tissue 

lysates of WAT and BAT revealed that p130 was expressed in both types of fat (Fig. 5A).  

Furthermore, as p130 is well characterized as nuclear transcriptional co-repressor 

(Balciunaite et al., 2005), we confirmed its expression in the nuclear fractions of both 

tissues (Fig. 5B).   

 As p130 was expressed in both white and brown adipocytes in vivo, we next 

assessed its expression in vitro. We first confirmed that C3H10T1/2 cell lines were 

sufficient for studying p130 by comparing p130 protein expression patterns during 

proliferation and at growth arrest (Fig. 6A). As expected, Western blotting showed that 

p130 was virtually undetected in proliferating progenitors, but was expressed in growth 

arrested cells (Fig. 6B). This data is in accordance with what is in the literature providing 

a reasonable progenitor cell population to study p130 during in vitro adipocyte 

differentiation (Richon et al., 1997).  

 

p130 regulates terminal adipocyte differentiation 

We next assessed the importance of p130 function during adipocyte differentiation. For 

this, we generated a p130 knockdown (KD) in C3H10T1/2 cells by transfecting a plasmid 

to deliver a short hairpin RNA targeting p130 mRNA and control cells with empty vector. 

Cells were selected based on their survival in puromycin. Western blot analysis of the 

p130 KD cells showed a greater than 90% reduction of p130 protein levels compared to 
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control cells (Fig. 7A and B). Interestingly, at day 9 of differentiation p130 KD cells 

showing drastically reduced numbers of lipid containing cells compared to the control 

(Fig. 7C).  

 

p130 is expressed in the mitochondria of differentiating progenitors and adipocytes 

  As a substantial amount of p130 is present in the cytoplasm of BAT and WAT 

(Fig. 5B), we assessed if p130 was present in the mitochondria. Intriguingly, protein 

expression analysis by Western blotting of primary white and brown adipocytes isolated 

from WAT and BAT of mice revealed that p130 was present in the mitochondria, and to a 

lesser extent in the cytoplasm (Fig. 8A). We next determined if p130 had a potential 

mitochondrial role during adipocyte differentiation of C3H10T1/2 cells by Western 

blotting (Fig. 8B). A time course of adipocyte differentiation showed that during growth 

arrest at day 0 before the differentiation cocktail was added, p130 was localized in the 

mitochondria at low levels and decreased over time relative to the mitochondrial control, 

Cox IV (Fig. 8C). Together this data suggests a potential metabolic role for p130 that 

involves the mitochondria during differentiation of progenitors and then terminally 

differentiated adipocyte progeny.  

 

De novo lipogenesis increases p130 mitochondrial localization in vitro  

  As the mitochondria play a key role in providing the metabolic substrates for de 

novo lipogenesis, we evaluated the potential involvement of p130. For this, we stimulated 

de novo lipogenesis by mimicking a carbohydrate-rich environment in vitro by adding 

100mM glucose to differentiated C3H10T1/2 adipocytes. Western blotting analysis 
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revealed that glucose treatment in day 9 differentiated C3H10T1/2 adipocytes 

significantly increased mitochondrial p130 protein levels (Fig. 9A and B). Similarly, 

treatment with rosiglitazone, a PPAR-γ agonist and potent activator of lipogenesis 

(Festuccia et al., 2009), also resulted in significantly increased p130 protein levels in the 

mitochondria of differentiated C3H10T1/2 adipocytes (Fig. 10A and B). Further analysis 

revealed that increasing concentrations of rosiglitazone was associated with increasing 

levels of p130 in the mitochondria of adipocytes (Fig. 10C). Together, these findings 

provide compelling evidence linking the presence of p130 in the mitochondria with de 

novo lipogenesis in adipocytes.  

 

Insulin-induced de novo lipogenesis increases p130 mitochondrial localization in 

vivo 

We wanted to confirm that a physiologically induced system of de novo 

lipogenesis also influenced p130 mitochondrial localization. We performed this 

experiment two ways – in vivo and ex vivo. Insulin injection in mice stimulates de novo 

lipogenesis within 30 minutes (Shao et al., 2012). Thus, mice were injected with insulin 

to assess the subcellular localization of p130. After 30 minutes, mitochondria from white 

adipocytes were isolated from inguinal WAT for Western blotting analysis. Importantly, 

we found substantially increased p130 protein levels in the mitochondria of white 

adipocytes (Fig. 11A). We confirmed our in vivo data by Western blotting of ex vivo 

insulin treated white adipocytes (Fig. 11B). Importantly, mitochondrial p130 protein 

levels were drastically higher than cytoplasmic levels in both experiments.  
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Fasting decreases p130 mitochondrial localization in primary brown adipocytes  

We next examined if a physiological setting that induces lipolysis would also 

affect p130 mitochondrial function. Physiologically, overnight fasting induces lipolysis 

while decreasing lipogenesis in adipose tissue, resulting in a net loss of stored 

triglycerides (Ahmadian et al., 2007, Vaillancourt et al., 2009). We thus subjected adult 

mice to an overnight fast of 18 hours and analyzed brown adipocytes for Western 

blotting. Our results revealed decreased mitochondrial p130 localization in brown 

adipocytes of fasted mice compared to non-fasting mice (Fig. 12). This data suggests that 

decreased levels of p130 in the mitochondria of brown adipocytes may function during 

lipolysis opposite to how it functions in de novo lipogenesis.   

 

Adrenergic agonist has opposing effects on p130 in brown and white adipocytes 

In order to further elucidate the mitochondrial role for p130 in adipocytes we used 

a β3-adrenergic agonist, CL 316,243 (CL), which is a known activator of triglyceride 

lipolysis in adipocytes (Klaus et al., 2001). Unexpectedly, Western blotting analysis 

revealed that CL treatment substantially increased mitochondrial p130 protein levels in 

isolated primary brown adipocytes isolated from mice injected with CL for 5 hours (Fig. 

13A). As a means to show that increased mitochondrial p130 levels were due to a cell 

autonomous effect, we treated primary brown adipocytes with CL for 5 hours. We found 

higher protein levels of p130 in the mitochondria of treated compared to untreated cells, 

with the same effect as insulin (Fig. 13B and 13C). Contrarily, as expected in the 

primary white adipocytes, we found p130 was regulated oppositely CL treatment 

abolished its mitochondrial localization (Fig. 14A). Furthermore, we confirmed this 
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results by increasing concentrations of CL in differentiated white C3H10T1/2 adipocytes, 

which resulted in drastically decreasing mitochondrial p130 proteins levels compared to 

untreated cells (Fig. 14B). Thus, CL that induces lipolysis has the opposite effect in white 

and brown adipocytes for the subcellular localization of p130.  

 

p130 binds at the D-loop regulatory region of mitochondrial DNA 

  To study the importance of p130 localization in the mitochondria, we next 

investigated if it interacts with mtDNA, specifically the D-loop regulatory region 

containing the HSP1 and LSP1 promoters (Martin et al., 2005). For this we used a 

quantitative chromatin immunoprecipitation (qChIP) assay.  Although conventionally 

used as the standard detection technique for interactions between protein factors and 

nuclear DNA, it can be readily adapted to mitochondrial studies (Leigh-Brown et al., 

2010). We evaluated the mitochondria of proliferating C3H10T1/2 cells as a negative 

control where p130 is absent and their terminally differentiated progeny where it is 

present in the mitochondria (Fig. 6B). ChIP showed that p130 did not interact with 

mtDNA of proliferating progenitors, but it interacted with the D-loop region in terminally 

differentiated adipocytes (Fig. 15).  

We next assessed if inducing de novo lipogenesis in vivo, that increases p130 

protein levels in the mitochondria (Fig. 11 and Fig. 13C), influenced its interaction with 

mtDNA. Accordingly, we injected mice with insulin for 30 minutes and isolated 

mitochondria from white and brown adipocytes from WAT and BAT respectively. We 

analyzed promoter binding with D-loop primer sets amplifying amino acid residues 444 

to 616 of the D-loop region. qChIP analysis of the mitochondria from white and brown 
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adipocytes demonstrated increased p130 binding to the D-loop region with insulin 

treatment compared to untreated cells (Fig. 16A and 16B).  

Furthermore, adrenergic stimulation that induces lipolysis in white adipocytes and 

drives p130 out of the mitochondria (Fig. 14), showed significantly reduced p130 

interaction at the D-loop (Fig. 17).   This data suggests that p130 might function as a 

transcriptional co-repressor of mtDNA, similar to the mechanism through which it 

represses nuclear DNA. 

 

p130 interaction at the mtDNA is associated with mitochondrial gene transcription  

To investigate the effect of p130 interacting at the D-loop of mtDNA we analyzed 

the expression of mitochondrial-encoded OXPHOS genes in vivo. Mice were fasted 

overnight for 18 hours and the mRNA from brown adipocytes were examined for qPCR 

analysis. Fasting, which induces lipolysis and diminished p130 levels in the mitochondria 

(Fig. 12), resulted in markedly increased expression for mitochondrial-encoded OXPHOS 

genes Nd4 (Complex 1), Cox2 (Complex 4) and Atp6 (Complex 5) (Fig. 18). Together, 

this data suggests that p130 may function in adipocyte metabolism as a mitochondrial co-

transcriptional repressor by binding to the D-loop region and down regulating 

mitochondrial-encoded OXPHOS genes.  
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Figure 5 
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Figure 5.  p130 is expressed in white and brown adipose tissues in vivo. (A) Representative 
Western blot and for p130 and α-tubulin (control) of white adipose tissue (WAT) and brown adipose 
tissue (BAT) from Balb/c mice. (B) Representative Western blot for p130, α-tubulin (cytoplasmic 
control), and histone H3 (nuclear control) of whole cell (W), cytoplasmic (C) and nuclear (N) 
fractions from subcutaneous inguinal WAT and interscapular BAT of Balb/c mice.  
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Figure 6 
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Figure 6. p130 is expressed at growth arrest. (A) Brightfield microscope images for cells above. 
(Scale bars are equal to 100 μm, and 50 μm in the insets). (B) Representative Western blot for p130 
and α-tubulin (control) during proliferation (Pr) and growth arrest (GA) in C3H10T1/2 cells. 
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Figure 7. p130 knock down impairs terminal adipocyte differentiation. (A) Representative 
Western blot for p130 and α-tubulin from control (Ctl) and p130 knock down (KD) C3H10T1/2 cell 
lines differentiated for 9 days. (B) Graphical enumeration for p130 KD C3H10T1/2 differentiated 
adipocytes (n=2). (C) Brightfield microscope images and graphical enumeration of lipids droplets in 
the microscopic fields of cells above. (Scale bars are equal to 100 μm, and 50 μm in the insets).  
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Figure 8 

A 

B 

C 

Figure 8.  p130 is localized in the mitochondria during adipocyte differentiation and in 
differentiated adipocytes. (A) Representative Western blot for p130, α-tubulin (cytoplasmic controls) 
and Cox IV (mitochondrial control) of cytoplasmic and mitochondrial fractions from white (W) and 
brown (B) adipocytes.  (B) Representative Western blot of mitochondrial and cytoplasmic fractions for 
p130, α-tubulin (cytoplasmic control) and Cox IV (mitochondrial control) at days 0, 3 and 7 of 
C3H10T1/2 adipocyte differentiation. (C) Graphical enumeration of mitochondrial protein levels for p130 
(n = 3, One-way ANOVA and Tukey post-hoc tests, asterisks denote significance *p< 0.05). All data are 
mean +/- SD.  
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**

Figure 9 

A  B 

Figure 9. Induction of de novo lipogenesis increases p130 mitochondrial localization in 
differentiated C3H10T1/2 adipocytes.  (A) Representative Western blot of the cytoplasmic and 
mitochondrial fractions for p130, α-tubulin (cytoplasmic control) and CoxIV (mitochondrial 
control) in differentiated C3H10T1/2 adipocytes untreated (Ctl) or treated with 100mM glucose 
(Glu). (B) Graphical enumeration of mitochondrial fractions of (A). (n = 4, asterisks denote 
significance **p< 0.01). 
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Figure 10. Rosiglitazone increases p130 mitochondrial localization in differentiated 
C3H10T1/2 adipocytes. (A) Representative Western blot and (B) graphical enumeration of the 
cytoplasmic and mitochondrial fractions for p130, α-tubulin (cytoplasmic control) and CoxIV 
(mitochondrial control) in differentiated C3H10T1/2 adipocytes untreated or treated with 10µM 
of rosiglitazone. (n=3, asterisks denote significance **p< 0.01). (C) Representative Western blot 
of the cytoplasmic and mitochondrial fractions for p130, α-tubulin (cytoplasmic controls) and 
CoxIV (mitochondrial control) in differentiated C3H10T1/2 adipocytes untreated (Ctl) or treated 
with 100mM glucose (Glu), 5µM or 10µM of rosiglitazone (Ros).  
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Figure 11 

A  B  

 

Figure 11. Insulin-induced de novo lipogenesis increases p130 mitochondrial localization in 
vivo. (A) Representative Western blot of the cytoplasmic and mitochondrial fractions for p130, 
α-tubulin (cytoplasmic control) and CoxIV (mitochondrial control) in white adipocytes from 
Balb/c mice injected with saline (Ctl) or insulin (Ins) for 30 minutes.  (B) Representative 
Western blot of ex vivo cytoplasmic and mitochondrial fractions for p130, α-tubulin 
(cytoplasmic control) and CoxIV (mitochondrial control) in white adipocytes untreated and 
treated with 850 nM insulin for 30 minutes.  
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Figure 12 

Figure 12. Fasting induces lipolysis decreases p130 levels in primary brown adipocytes. 
Representative Western blot of the cytoplasmic and mitochondrial fractions for p130, α-tubulin 
(cytoplasmic control) and Cox IV (mitochondrial control) in primary brown adipocytes from 
Balb/c mice fasted for 18 hours (F), non-fasted (NF), and injected with 1mg/g glucose for 10 and 
30 minutes.  
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Figure 13 

A  
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Figure 13. β3-adrenergic agonist CL, 316 243 increases p130 mitochondrial localization in 
primary brown adipocytes. (A) Representative Western blot of the cytoplasmic and 
mitochondrial fractions for p130, α-tubulin (cytoplasmic control) and Cox IV (mitochondrial 
control) in brown adipocytes from Balb/c mice injected with saline (Ctl) or 1mg/kg CL for 5 
hours. (B) Representative Western blot of ex vivo cytoplasmic and mitochondrial fractions for 
p130, α-tubulin (cytoplasmic control) and Cox IV (mitochondrial control) in brown adipocytes 
untreated and treated with 2µM CL for 5 hours. (C) Representative Western blot of ex vivo 
cytoplasmic and mitochondrial fractions for p130, α-tubulin (cytoplasmic control) and Cox IV 
(mitochondrial control) in brown adipocytes untreated and treated with 40 µM CL for 5 hours 
and 850 nM insulin for 30 minutes.  
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Figure 14 

A  

B 

Figure 14. β3-adrenergic agonist decreases p130 mitochondrial localization in white 
adipocytes. (A) Representative Western blot of cytoplasmic and mitochondrial fractions for 
p130, α-tubulin (cytoplasmic control) and Cox IV (mitochondrial control) in white adipocytes 
from Balb/c mice injected with saline (Ctl) or 1mg/kg CL 316, 243 (CL) for 5 hours. (B) 
Representative Western blot of cytoplasmic and mitochondrial fractions for p130, α-tubulin 
(cytoplasmic control) and Cox IV (mitochondrial control) in differentiated C3H10T1/2 
adipocytes untreated or treated with 10 and 40 µM CL for 5 hours.  
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Figure 15 

 A 

Figure 15. p130 binds at the D-loop regulatory region of mitochondrial DNA. Relative 
binding intensity of p130 to the D-loop regulatory region in proliferating (Pr) and differentiated 
C3H10T1/2 adipocytes (Adi). No signal was detected in proliferating cells.   

Not 
detected 
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Figure 16

A B 

Figure 16. p130 binding at the D-loop regulatory region of mitochondrial DNA increased 
with insulin treatment. Binding capacity of p130 to the D-loop regulatory region as measured 
by amplification with D-loop primer sets in (A) white and (B) brown adipocytes from Balb/c 
mice that were injected with saline (Ctl) or insulin (Ins) for 30 minutes.  Values normalized to 
Ctl.  
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Figure 17 

Figure 17.  p130 binding at the D-loop regulatory region of mitochondrial DNA is 
decreased with CL, 316 243 treatment. Binding capacity of p130 as measured by D-loop 1 to 
the D-loop regulatory region of adipocyte differentiated mouse embryonic fibroblasts untreated 
(Ctl) or treated with 40 µM CL 316 243 (CL) for 5 hours. (n=3, asterisks denote significance *p< 
0.05). Values normalized to Ctl. All data are mean +/- SD. 
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Figure 18 

Figure 18. Mitochondrial-encoded OXPHOS genes are upregulated in primary brown 
adipocytes during lipolysis caused by fasting. Gene expression analysis by qPCR for 
mitochondrial-encoded OXPHOS genes Nd4 (Complex 1), Cox2 (Complex 4) and Atp6 (Complex 5) 
of brown adipocytes from fasting (F) and non-fasting (NF) Balb/c mice. (n=2). Values normalized to 
Ctl. All data are mean +/- SD. 
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Figure 19 

LIPOGENESIS 

LIPOLYSIS 

Figure 19. Differential localization of p130 is based on adipocyte cell function. A schematic 
representation illustrating the metabolic role of p130 in lipogenesis and lipolysis in adipocytes. 
Nutritional, hormonal or chemical stimuli of lipogenesis result in increased p130 levels in the 
mitochondria, that interact with the mtDNA promoter at the D-loop region (red) to repress 
mitochondrial-encoded genes involved in oxidative phosphorylation (complexes I, III, IV, and V). This 
allows intermediates of the TCA cycle, such as citrate, to be converted into Acetyl-CoA and utilized 
for lipid synthesis. Conditions activating lipolysis and oxidation of fatty acids and glucose, result in 
decreased levels of p130 in the mitochondria. This activation of mitochondrial promoters increases the 
expression of mitochondrial-encoded OXPHOS genes. Abbreviations: TCA, tri carboxylic acid; ATP, 
Adenosine triphosphate. 
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5. DISCUSSION

Our study is the first to uncover an unexpected role for the Rb protein family member 

p130 in potentially regulating fatty acid synthesis and mobilization by controlling mitochondrial 

gene expression. This data has added another layer of depth and complexity to the dynamism of 

mitochondrial gene transcription.  We show that subcellular localization of p130 is associated 

with the regulation of fatty acid metabolism in adipocytes. Indeed, stimulating de novo 

lipogenesis increased p130 levels in the mitochondria where it interacted at the D-loop 

regulatory region of mitochondrial DNA (mtDNA) to repress genes involved in oxidative 

phosphorylation (OXPHOS).  This would allow TCA cycle intermediates such as citrate to be 

utilized for lipid synthesis in lieu of energy production (Fig. 2). Conversely, inducing lipolysis in 

white adipocytes via thermogenic activation by β3-adrenergic signaling decreased p130 levels in 

the mitochondria. We believe this decrease would prevent citrate from exiting the TCA cycle to 

make fatty acids. Instead, the TCA cycle would undergo complete turns of oxidation reactions to 

generate reducing agents such as NADH and FADH2, which are shuttled to the electron transport 

chain (ETC) for OXPHOS. Intriguingly, adrenergic stimulation in brown adipocytes increased 

mitochondrial p130 levels. This difference may be linked to the differential regulation and 

unique molecular composition of brown adipocytes, as they are thermogenic cells expressing 

Ucp-1. Furthermore, the non-overlapping functions of the different βAR subtypes (β1, β2, and 

β3ARs) and their ability to couple different signal signaling pathways (Collins and Surwit, 2001; 

Miniaci et al., 2013) may result in the opposite responses observed between white and brown 

adipocytes.  Together, our data supports a potential novel function of p130 in adipocyte 

metabolism through governing fatty acid synthesis and mobilization.  
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The Rb family proteins (Rb, p107/Rbl1, and p130/Rbl2) have been best described 

according to their nuclear function as molecular corepressors of mammalian cell growth and 

proliferation (Henley and Dick, 2010; Balciunaite et al., 2005). While Rb is expressed in both 

proliferating and non-proliferating cells, p130 is most prominently expressed in differentiated or 

quiescent cells in G0 (Macaluso et al., 2006). This was confirmed by the expression of p130 at 

growth arrest and not in proliferating C3H10T1/2 cells during in vitro differentiation (Fig. 6B).  

The role of p130 during adipocyte differentiation is obscure. Differentiation begins after 

growth arrest and is thought to be divided into three distinct phases in vitro, which includes an 

initial commitment step to the adipocyte lineage, followed by mitotic clonal expansion and 

termination differentiation (Tang et al., 2004). Key features of differentiation include expression 

of lipogenic proteins, developed sensitivity to hormones such as insulin, and extensive lipid 

accumulation (Rosen and Spiegelman, 2000). Several studies have investigated the pattern of 

p130 protein levels across the differentiation of 3T3-L1 preadipocyte cell lines and found that 

p130 protein levels decrease during differentiation (Fajas et al., 2002; Richon et al., 1997). 

However, how p130 function in C3H10T1/2 differentiation is not known.   

We found that mitochondrial p130 might be required for lipogenesis in early adipocyte 

differentiation. We show for the first time p130 protein localization in the mitochondria of 

during C3H10T1/2 cell differentiation into adipocytes. Its levels are highest at growth arrest and 

decreases over the course of differentiation (Fig. 8B and 8C). Notably, a metabolic shift from 

glycolytic to oxidative metabolism occurs in the early stages of adipocyte differentiation 

(Drehmer et al., 2016), suggesting a pivotal role for mitochondrial p130 de-repressing OXPHOS 

capacity. Moreover, the knock down of p130 during differentiation of bone marrow stromal 

progenitor cells inhibited permanent cell cycle exit and resulted in dysregulated lipid uptake and 
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release (Capasso et al., 2014). We also found that the reduction of p130 in C3H10T1/2 

progenitor cells resulted in impaired terminal differentiation into adipocytes, forming 

significantly fewer lipid droplets (Fig. 7). Thus, p130 may also serve as a surveillance protein for 

nutrient (fatty acid and glucose) availability during C3H10T1/2 cell differentiation altering 

OXPHOS by regulating mitochondrial gene expression. Further studies to discern the 

involvement of p130 in lipogenesis during adipocyte differentiation might make use of p130 

deletion mutants that would be incapable of entering the mitochondria.  

 To our knowledge, we are the first to document a negative correlation between 

lipogenesis and mitochondrial gene transcription that is mediated by p130 subcellular 

localization. We demonstrated that certain nutritional and chemical stimuli manipulate p130 

mitochondrial localization that might be important to alter the metabolic program of adipocytes. 

De-novo lipogenesis in humans is known to occur under specific conditions, such as a high fat 

and/or high carbohydrate intake (Solinas et al., 2015; Saponaro et al., 2015). A study conducted 

by Collins et al. investigated the induction of de novo lipogenesis in human adipocyte 

differentiation in vitro by adding exogenous glucose as major precursor (Collins et al., 2011).  

We mimicked a carbohydrate-rich environment by adding glucose to C3H10T1/2 differentiated 

adipocytes.  Interestingly, inducing de novo lipogenesis by glucose treatment increased 

mitochondrial p130 protein levels in these cells (Fig. 9). Similarly, treatment with rosiglitazone, 

a PPAR-γ agonist known to increase glucose uptake and fatty acid esterification into 

triglycerides (Festuccia et al., 2009), also resulted in increased p130 protein levels in the 

mitochondria of differentiated C3H10T1/2 cells (Fig. 10). Together, this data provides 

compelling evidence linking the presence of p130 in the mitochondria with lipogenesis in 

adipocytes.  
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To ascertain if this new mechanism for lipogenesis has a physiological role, we injected 

adult mice with insulin for 30 minutes. The downstream target of insulin is mTOR, which 

subsequently activates SREBP-1c, which induces de novo lipogenic gene expression 

(Chakrabarti et al., 2010; Laplante and Sabatini, 2009; Porstmann et al., 2008) and also inhibits 

lipolysis (Gastaldelli, 2011). Insulin tolerance tests of mice fed ad libitum revealed that blood 

glucose levels dropped 30 minutes post-insulin injection before rising over time (Shao et al., 

2012). This suggests that lipogenesis induced by insulin treatment occurs in the short-term. Our 

results reveal increased p130 localization in the mitochondria of both white and brown 

adipocytes within 30 minutes (Fig. 11 and 13C), increasing the potential for de novo 

lipogenesis. Increased mitochondrial p130 levels was associated with decreased expression of 

mitochondrial-encoded OXPHOS genes that would potentially allow TCA cycle intermediates to 

be utilized for fatty acid synthesis rather than be used to form reducing agents for energy 

production. In the context of cellular metabolism, the maintenance and expression of 

mitochondrial genes is important to consider. The mitochondria are very dynamic organelles and 

the half-life of mitochondrial mRNA encoding OXPHOS proteins is very short (Pearce et al., 

2017). Moreover, mitochondrial biogenesis is not necessarily associated with ETC capacity 

(Rowe et al., 2013), suggesting that the expression of ETC complexes is potentially regulated by 

p130 and not changes in mitochondrial biogenesis. Hence, hormonal induction of lipogenesis 

through insulin signaling augments p130 mitochondrial localization similar to the effects of 

glucose and rosiglitazone in C3H10T1/2 differentiated adipocytes.  

To confirm that p130 acts as a lipogenic-inducing factor, measurement of cytoplasmic 

citrate levels, as well as protein levels or activities of lipogenic enzymes involved in de novo 

lipogenesis, such as ATP citrate lyase and Acetyl-CoA carboxylase would be required. Increased 
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citrate levels serves as a marker for increased enzyme kinetics in the de novo lipogenesis 

pathway, as citrate allosterically activates ACC through a feedforward loop and may directly 

increase malonyl-CoA concentration (Jewett et al., 2013).  

Lipid metabolism is very responsive to changes in the diet (Puca et al., 2008). 

Physiologically, fasting leads to an increase in the rate of lipolysis while decreasing lipogenesis 

in adipose tissue, which results in a net loss of triglycerides stored in fat cells (Ahmadian et al., 

2007, Vaillancourt et al., 2009). Furthermore, the activation of pathways involved in the 

transcriptional regulation of de novo lipogenesis are induced by feeding (Kawano & 

Cohen, 2013; Oosterveer & Schoonjans, 2014). During fasting, adipocytes are known to begin 

breaking down triglyceride stores through the hydrolytic activity of lipases to supply free fatty 

acids to other energy demanding tissues such as the brain, liver, and muscle (Gilham and Lehner, 

2004; Gibbons et al., 2000). The liver, for instance, utilizes free fatty acids to build triglycerides 

during fasting (Takeuchi, et al., 2016). We show that mitochondrial p130 localization was 

attenuated in brown adipocytes from adult mice subjected to an 18h fast (Fig. 12). Our results 

further show that decreased mitochondrial p130 localization in brown adipocytes of fasted mice 

was associated with increased expression of mitochondrial-encoded OXPHOS genes (Fig. 18).  

Collectively, this data reveals that in fasting conditions or in times of energy deprivation, p130 

does not localize in the mitochondria of brown adipocytes, which might help to shift their 

metabolic focus from building triglycerides to rapidly mobilizing fatty acids for whole body 

energy homeostasis. In an attempt to reverse the lipolytic state induced in the fasted mice, we 

injected glucose to mimic a fed state. As expected, mitochondrial p130 levels increased 10 

minutes post-injection, which was higher compared to 30-minutes post-injection (Fig. 12). This 

effect was consistent with glucose treatment in differentiated C3H10T1/2 adipocytes. Further 
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studies will entail investigating how p130 functions in white adipocytes during fasting and/or 

feeding.  

Our results can be placed in the context of metabolic disease such as obesity and Type 2 

diabetes. In both conditions, there is dysregulated lipogenesis (Saponaro et al., 2015).  In a 

rodent model of obesity or diabetes, it would be of interest to study how p130 functions in 

adipocytes and whether mitochondrial gene expression based on p130 subcellular localization 

could still function. Thus, further experiments will study p130 dynamics, mitochondrial gene 

expression and lipogenic enzymes in normal, Type 2 diabetic and obese rodents that exhibit 

insulin resistance and metabolic dysregulation. This will give us a better understanding of the 

physiological role of p130 in controlling the dynamics of mitochondrial gene expression.  

Counterintuitively, we found differences for the way p130 functions in the mitochondria 

of white and brown fat. Our data shows that while p130 protein expression levels are comparable 

in both cell types (Fig. 5), its subcellular localization is dependent on the type of nutritional, 

chemical, or hormonal cues. The reason for this is the distinct molecular and functional 

differences between white and brown adipose tissues in humans and rodents (Chen et al., 2016). 

White adipocytes located in WAT depots function mainly in triglyceride storage and act as 

important endocrine cells secreting hormones such as leptin that affects the brain as well as the 

pancreas, muscles and liver (Paz-Filho et al., 2012; Trayhurn and Beattie, 2001). On the other 

hand, the primary function of brown and beige adipocytes is to dissipate energy through heat 

production (Rosell et al., 2014). We used a highly selective β3-adrenergic agonist, CL 316, 243 

(CL) to study p130 function during lipolysis (Klaus et al., 2001). CL treatment is known to 

decrease lipid accumulation in white adipocytes due to increased lipolytic activity (Klaus et al., 

2001). As expected, increasing concentrations of CL attenuated mitochondrial p130 levels in 
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differentiated C3H10T1/2 adipocytes (Fig. 14B). Similar results were obtained in primary white 

adipocytes from adult mice injected with CL for 5 hours (Fig. 14A). However, ex vivo and in 

vivo brown adipocytes unexpectedly showed increased mitochondrial p130 levels with CL 

treatment (Fig. 13). This difference in the response to CL treatment may emanate from the 

differential function of brown adipocytes, as they are thermogenic cells expressing Ucp-1. 

Indeed, chronic CL treatment in brown adipocytes has been previously shown to significantly 

down-regulate mitochondrial-encoded ATP6 and 8 (part of mitochondrial ATP Synthase, or 

complex V) (Shore et al., 2013). Increased p130 localization with acute CL treatment in brown 

adipocytes suggests that it may explicitly repress ATP synthase expression. This could allow the 

proton gradient to be dissipated mainly through Ucp-1. Moreover, brown adipocytes also contain 

two other receptors, β1AR and β2AR that might influence brown adipocytes differently (Collins 

and Surwit, 2001).  

To date, there are only a limited number of proteins that have been identified to bind to 

mtDNA. These include Tfam, a positive transcriptional activator of mtDNA transcription, which 

can bind specifically around the transcription initiation site within the D-loop or non-specifically 

to other regions of mtDNA (Ngo et al., 2014; Kasashima et al., 2010). Other factors previously 

characterized as nuclear transcription factors and co factors have also been identified. For 

example, p53 also been shown to bind to mtDNA and aid in mtDNA repair (Bakhanashvili et al., 

2008; Achanta et al., 2005).  To increase the complexity of mtDNA transcriptional regulation, 

p53 can simultaneously repress the activity of nuclear Pgc-1α and repress Pgc-1α -mediated 

transcription of Tfam (Safdar et al., 2016).  In addition, there is recent evidence that STAT3, a 

member of the STAT protein family that plays a key role in cell growth and pluripotency of stem 

cells (Takahashi & Yamanaka, 2006; Yang et al, 2010; van Oosten et al, 2012; Martello et al, 
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2013; Stuart et al, 2014), directly induced transcription of the mitochondrial genome by binding 

to the D-loop. ChIP-seq results also indicated significant enrichment of Stat3 binding to two 

regions of the D-loop (Carbognin et al., 2016). Indeed, p130 was found to interact with the D-

loop regulatory region as well (Fig. 15). Insulin treatment which increased mitochondrial p130 

protein levels in vivo showed increased binding in both white and brown tissues (Fig. 16), while 

differentiated mouse embryonic fibroblasts treated with CL showed decreased binding to the D-

loop region (Fig. 17). Potential p130 binding partners include E2F4/5 or TFAM, however these 

interactions remain elusive. To confirm that p130 interacts at the D-loop region, future studies 

will involve the generation of a luciferase reporter construct containing the mouse D-loop DNA 

followed by a minimal promoter and the open reading frame of the firefly luciferase (Carbognin 

et al., 2016).  

How p130 is shuttled across the mitochondrial membrane remains unresolved. The 

majority of nuclear-encoded mitochondrial proteins are imported into the mitochondrial matrix 

by translocator complexes depending on the targeting signal they contain. These are a cleavable 

N-terminal presequence or a non-cleavable internal targeting sequence (Chacinska, et al., 2009). 

However, about 30% of mitochondrial proteins lack the N-terminal targeting signals (Diekert et 

al., 1999). Two software prediction programs, Target P 1.1 

(http://www.cbs.dtu.dk/services/TargetP/) and MitoFates (http://mitf.cbrc.jp/MitoFates/cgi-

bin/top.cgi), used to identify mitochondrial targeting sequences and cleavage sites confirmed that 

p130 does not possess a cleavable N-terminal pre sequence (Fukasawa et al., 2015; 

Emanueolsson et al., 2000; Nielsen et al., 1997). Although both programs indicated a potential 

cleavage site at amino acid 69, we do not see a truncated or cleaved form of mitochondrial p130. 

Thus, p130 may contain a non-cleavable internal mitochondrial localization sequence that is not 
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cleaved after import into the mitochondrial matrix. A potential mechanism for p130 

import/export into the mitochondria may involve internal sequence recognition by the Tom70 

receptor in the outer mitochondrial membrane, with subsequent translocation across Tom40 to 

the Tim23 complex that mediates translocation across the inner mitochondrial membrane and 

into the matrix with the help of Hsp70 (Becker et al., 2012; Dudek et al., 2012; Jensen et al., 

2002). 

Our current study underscores the potential of mitochondrial-encoded OXPHOS gene regulation 

that is associated with the metabolic network of the cell. Indeed, our hypothesis has introduced a novel 

and intriguing role for p130 in the mitochondria of adipocytes regulating its gene transcription, ultimately 

supporting fatty acid biosynthesis and hydrolysis (Fig. 19). Stimulating lipogenesis which increased p130 

levels in the mitochondria was associated with increased p130 interaction at the D-loop regulatory region 

of mitochondrial DNA. This repressed genes involved in OXPHOS, potentially allowing intermediates of 

the TCA cycle to be utilized for lipid synthesis in lieu of energy production. Conversely, inducing 

lipolysis in white adipocytes via β3-adrenergic activation decreased p130 levels in the mitochondria, 

concomitant with increased mitochondrial-encoded gene expression. Whilst p130 has conventionally been 

studied as a nuclear co-repressor of transcription, our data strongly supports an alternative perspective to 

studying the Rb family of proteins, as well as other nuclear proteins. Ultimately, studying the 

fundamental molecular pathways underlying lipogenesis and lipolysis in adipocytes can provide valuable 

insight for treating metabolic diseases, such as obesity and Type 2 diabetes, which are responsible for the 

greatest morbidity and mortality worldwide. 
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6. LIMITATIONS

Our findings suggest that p130 mitochondrial localization supports fatty acid synthesis and 

breakdown in terminally differentiated adipocytes. However, additional work is required to 

establish a direct effect of p130 on mitochondrial gene transcription. For this, we plan to utilize a 

reporter construct containing the D-loop regulatory region, with which p130 is shown to interact 

with, fused to the firefly luciferase ORF. Using this construct in transient transfection assays with 

overexpressed full-length and deletion mutants of p130 will confirm a direct regulatory function 

for p130 in repressing mitochondrial gene transcription. Measuring luciferase expression in p130 

knockout (KO) or knockdown (KD) cells could serve as a control compared to KO/KD cells co-

transfected with p130. Cells in the latter experiment should demonstrate decreased reporter 

activity. Furthermore, chromatin immunoprecipitation followed by whole-genome sequencing 

(ChIP-seq) will also be employed to measure enrichment of p130 on the D-loop region and on 

other potential binding sites on the mitochondrial and nuclear genomes. ChIP-seq would also allow 

us to assess if there are any differences in nuclear binding abilities of p130 under lipogenic and 

lipolytic conditions, thus confirming a mitochondrial-specific effect.  

To discern if p130 is targeted for proteomic degradation in the mitochondria or changing 

its subcellular localization, modified forms of p130 (GST-tagged) will be used. In this case, p130 

covalently coupled to glutathione can be used to track its subcellular localization and negate the 

possibly of its proteomic degradation via ubiquitination.  

Measuring the expressions and/or activities of key lipogenic and lipolytic enzymes will 

also be important in establishing a supportive function for p130 in these pathways through 

regulating mitochondrial gene expression. Of interest would be the analysis of hormone sensitive 

lipase, the rate-limiting enzyme in lipolysis, and the effects of different activators of lipolysis on 
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its phosphorylation status. Measurements of citrate levels and plasma free fatty acid concentrations 

can also be used to evaluate fatty acid metabolism. These measurements can also be evaluated in 

cells genetically-deleted or overexpressing p130, as well as deletion mutants that abrogate its 

localization and/or binding to mitochondrial DNA.  
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