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Abstract

Optical coherence tomography (OCT) is an imaging technique that &iinms 3D images of tissue structsre
with micronlevel resolution Today, OCT systems are widely used in medicine, especially in the fields of
ophthalmology interventional cardiologyoncology,and dermatologyAlthough OCT images provide insightful
structural information of tissues, these imagesatspecificto thechemical composition dhetissue.Yet, chemical
tissuecomposition isfrequentlyrelevant tothe stageof a diseasge.g.,atherosclerosis)eading to poodiagnosic
performance o$tructural OCT images

Photathermal optical coherence tomography {©TT) is afunctionalextension of OCT with the potential to
overcome this shortcoming byerlayingthe 3D structuralimages of OCTwith depthresolved light absorption
information Potentially, signalanalysisof the light absorption mapcanbe usedo obtain refined insight into the
chemical compositiomf tissue.Such analysis, however, is complex becahgainderlyingphysicsof PT-OCT is
multifactorial Aside from tissue chemical composition, the optical, thermal, and mechanical properties of tissue affect
PT-OCT signals;system/instrumentation parameters alsfltuence PTOCT signals. As sucghobtaining refined
insight into tissue chemical composition requireslépth research aimed at answersgyeralkey unknowns and
guestionsabout this technique

The goal of this dissertations to generate irdepth knowlege on sample and system parameters affecting PT
OCT signals to develop strategies for optimal detectioha molecule of interest (MOIand potentiallyfor its
quantification and to improve the imaging rate of the systine Pllowing items are major outcomes this
dissertation

1- Generated comprehensive thetrat discovers relations between sample/tissue properties and experimental
conditiors and their multifactorial effects on POCT signals.

2- Developed system and exqfimentation strategies for detectionmfiltiple molecules of interest with high
specificity.

3- Generated optimized machine learnpgwveredmodel in light of theabove two outcomesor automated
depthresolved interpretation of tissue compositiomirBT-OCT images.

4- Increased the imaging rate of JICT by orders of magnitude by introducingew variant of PTOCT based
on pulsed photothermal excitation

5- Developed algorithms for signal denoising and imprguihequality of received signals arkle contrastn
images which imeturn enables fasté&¥T-OCT imaging.
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Figure 1. Comparison of image resolution and penetration depth for conventional structural imaging
methods used in medicine and biology. OCT fills the gap between ultrasound and confocal microscopy.
Figure adapted from[7]. Copyright 2015, Springer Nature PubbsGroup.........c.ccccvvvvvvvvivivinnnneeennn. 2

Figure 2. Images from human egaptured by different OCT system configurations and brands. Fourier
domain OCT images: (a) , (b) 3D volume with two different views of retinal layers (Topcon 3D 1000
system). (c) Posterior vitreous detachment (PVD) that appears as detached layersrira@esTiiom the
posterior eye; cyst (S OCT Copernicus system). The PVD abnormality is pointed out by the white arrow.
(d) PVD shown in 3D inserting into macular hole (Topcon 3D 1000). To have a better contrast, retinal
layers are usually labeled with diféart colors. By forming such high quality and fine resolution 3D images
from human eye, OCT has become a gold standard in the field of ophthalmology; No scale bar was provided
in the original figure. Figure adapted from[14]. Copyright 2008, Springer Nature.....................ee... 3

Figure 3.Examples ofOCT images of normal human skin,vivo. (a) Conventional and (b) polarization
sensitive images froniné upper arm, 5 mm wide by 1.2 mm deep. Corresponding histology from the same
location (H&E stain), viewed with (c) brightfield and (d) polarized microscopy. The OCT results clearly
show the different layers of the human skin sample, consistent withdfodobical images; also, more
information regarding collagen morphology can be obtained from the polarizamsitive images; see the
reference for more information. Figure adapted from[18]. Copyright 2004, Elsevier, The Society for
Investigative Dermatogy, INCu.........uiiiiiiiiiiiiiiiiiene e eeeeseneemmmr e e e e e eeeeee s

Figure 4. Volumetric OCT imaging of human esophagugvo with tethered capsule endomicroscopy. A

3D volume of tle endomicroscopy data in panel (d) showing a 4 cm segment of Barrett's esophagus. Tick
marks and scale barsj @ 1 mm; scale bars, (d) 1 cm. Figure adapted from[20]. Copyright 2013, Nature
PUBIISNING GrOUP-A ..ttt e et e ena ettt e e e e e e e abb s annns b e s e e e e e e e e e e aannnssesenanssee s 5

Figure 5. Examples of OCT images from cardiac tissues. (a) A view of normal artery wall and its layers
captured by IVOCT. In this image, the three layers of vessel wadinfia, media, and adventitia) are clearly
separable with different scattering properties. Figure adapted fran@}agy right 2017, by the American
College of Cardiology Foundation, published by Elsevigr.An example of plaque rupture captured by
IV-OCT. Arrows delineate a broken fibrous cap. In this image, the contents of the ruptured plaque are

partially washed out by the flushing medi um, | eav
from[21]. Copyright 2011, Elsevier Publishing Group. (c3B volume of OCT captured from a calcified
region in a human aorta sampe, vivo,scale bar=1 mMM........ccccoooiiiiiiiiiiiiccceeeeeeeeeeeeeeee s 6

Figure 6. An illustratiorof the atherosclerotic growing stages including fatty streak, plaque, and rupture;
for details of plaque growth stages see text. Figure adapted from[46]. Copyright by the authars.8

Figure 7.Schematic representation of the principles of interferometry behind OCT. (a) A schematic of
Michelsoninterferometer, the system typically consists of a light source, a beam splitter, 2 mirrors and a
screen. The frequency of the interference pattern on the screen is a function of the path length difference of
mirrors (d-dz). (b) A schematic of SEDCT sysem. The output light from the laser source illuminates the
sample and the reference mirror after passing through the beam splitter. Theflemtéd light from the
sample and the mirror is merged and delivered to the spectrometer. In the spectroefruémcy of
modulated wave correlates with the depth of layers in the sample. After applying Fourier transformation on
received signals, an-Ane is obtained. For details, see the mathematical expressions in the maiiiext.
Figure 8. An example of Aine, B-mode, and volume images in OCT. AHdiAe is a 1D data that represents
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from[1]. Copyright 2008, Springeverlag Berlin Heidelberg.............ooooieeei e 12



Figure 9. An illustration of OCAngio and DopplelOCT metlods. (a) In OCTA, to form the angiogram

of the sample,afewB cans are taken over time on the Ax0 fa
slow scan axis points, allowing detection of relative flow signal. (b) Top view of the same general scan
pattegn on human eye, adapted from [53]. Copyright 2018, Springer Nature. (c) A schematic of blood flow

and OCT beamin DoppledCT. A vein that blood flows inside it
the incident OCT beam Ki. The parallel part of the vielocy v ect or with the OCT be:
backreflected light Ks, because of the Doppler effect. This effect causes a phase shift in the OCT phase
signal that can be related to the velocCity Of fIOW............ooiiiiiii e 14

Figure 10. An example of limitation of OCT in detecting molecule of interesting in the sample. The IVOCT
images of human cadaveric coronary arteries are plotted in thefirstnd matching trichrome histology

are plotted under each OCT i mages. (a,d) Fibrous t
(b,c,e,f), but the structural OCT signal shows very similar features for pathologic intimal thickening (b,e,
early disease) and a fibro atheroma (c, f, advance

catheter in this study was 8 7Qopynght2@18,aythe althats. =8 7 0 ¢ m
Figure 11. An illustration of OCE with agoupled trigger. The propagatedves inside the sample as a
result of excitation of the sample surface by thecairpled transducer can be tracked by OCT beam. By
analyzing the phase of OCT signals over time, mec|
modulus can be NaSUred INAITECTIY...........u e e 16

Figure 12. An example of Cadaver tissue imaging with OCE and histology data. (a) Image captured by
OCT fromhuman cadaver coronary artery crssstion. (b) Corresponding elastogram obtained with OCE.

(c) H&E staining of the region under 4x magnification. The difference in tissue elastic properties than
cannot be seen in OCT the image can be observed cledahg ilastogram. Figure adapted from[60].
Copyright 2017, SPriNGEr NALUIE.........ocoiiiiiiii e e e e s e e e e e e e e eeeeaessere et s rrnneaeeeeaeeas 17

Figure 13. Views of NIRSDCT scan of human cadawasronary artery. In this muitnodality system, the
structure of the sample can be imaged with OCT. The color bar ring around the image which comes from
the NIRS system gives a depth integrated/diffuse sense of chemical information. Both OCT images in thes
cases show lesions with reduced backscattering (pointed by the arrows). NIRS results as the red and yellow
rings represent (a) absorption spectra compatible with fibrotic tissue and (Widipissue. Figure adapted
from[62]. Copyright2020 by the @OrS..........uuuuiiiiiiiiiiiime e e e e e e e e e 18

Figure 14. An example application of ICT in detecting labeled cancer cells. (a) Arfage image from

the sample cdaining cancer cell. The green dots are live and red dots are dead cells. (b) Acquréd PT
signal in time, (c) and the spectrum of the signal after Fourier transformation. (a) indicates good cell
viability and relatively homogeneous cell distributiath). The OCT intensity image, phetbermal image,

and overlay of intensity/photihermal images. While the OCT result cannot show the location of cancer
cells, overlayered RDCT information can detect the cancer cells in this sample. Reprinted (adapited) wi
permission from[72], Copyright 2008, American Chemical SoCiety.................ccoirreeeviiiviiiiiinnnnnnn, 20

Figure 15. An example of depth resolved detection of meiardebrafish eye. In this study, two categories

of zebrafish were grown in light and dark environments. In these conditions, the percentage of melanin in
the eye will change. (a) , (b) results of OCT images from the layered structure of the eyd¥ PTeDCT

images of these two categories show different distribution of melanin. (e), (f) Histology of melanin
distribution in zebra fisSh @Ye. WRILE..........ooiiiiiii e 20

Figure 16. Schematic representation of the physical phenomena taking plac®@TP1n this system,

the wavelength of PT laser is selectedhat absorption band of molecule of interest in the sample. As a
result of PT light absorption in the sample by the molecule of interest, a modulated thermal field in the is
generated. The produced heat, then, causes a change in the OPL locally nesedhie wionterest that

can be tracked by OCT phase, for more details about principle-GfCAT see text.............cccvveeeeeen. 22



Figure 17. An illugration of variation of the OCT phase signal at different depths of the sample in the time
domain. Since OCT phase is cumulative, in deeper levels inside the sample, the amplitud@Q¥F PT
signal increases. The OCT phase spectrum of all absorbers afiengj-ast Fourier transformation (FFT)
represents the intensity and the depth of PT light absorption in the sample. The detailed equations are
o] (00 o | L AT T = PP 23

Figure 18. (a) Schematic presentation of sequence of physical processes taking pla€Cih &Jon
absorption of PT light. The raised temperature in the sample leads to change in OPL near the MOI. (b)
Numerical and experme nt a | results for &OPL as a function of
The nonlinear behavior in the experimental dataset is followed with the presented model......... 33

Figure 19.Schematic and assembled views of the designed and develof@@P3etup in this thesis. (a)
Schematic of the P'DCT setup including: superluminescent diode (SLD), optical circulator (OC),
spectrometer (spec) and 26@&el line scan camera (LSC), phdatermal laser (PT), 50:50 fiber coupler,
polarization controller (PC), collimator(C), dispersimmpensation block (DCB), reference mirror (RM),
reflective collimator (RC), 2 degree of freedom galvo mirrors (GM), and objective lens (OL); (b) Detailed

view of the sample arm. (c), (d) Two views of the assemble@@T system...........cccccevvvvvrrvvrieennnnn. 35
Figure 20. The flowchart of data processing to form OCT an@®ET images from the raw data, see text
for detailed explanation of .s..gnal..pr.ocessidivtng ste

Figure 21. A comparison between OCT and@QT in abilty to offer insight into MOI concentration.

OCT images of samples with mayonnaise concentration (a) 0% (b)25% (c)50% (d) 75% (e)1@ed, PT
images of samples with mayonnaise concentration (f) 0% (g)25% (h)50% (i) 75% and (j)100%. While the
OCT images ar@ot sensitive to the variation of MOI in the samples, the intensity of pixels-@®IT

images is a function of concentration of MOI in the sample, scale bars= 50. JiM.............ovvvvvveen.. 39

Figure 22. The images of the artificial lipid plague sample with OCT ar@®T. Results of OCT image

of the plague phantom with mayonnaise concentration (a) 40% (b) 959%CFTimage of the plaque
phantom with mayenaise concentration (¢) 40% (d) 95%.-OTT results has a correlation with
percentage of MOI in the sample, scale Dar=100. JML..........cooiiiiiiiiiicor e 40

Figure 23. (a) The flowchart of the proposed model. This model mainly consists of three main blocks,
including: light, thermal and the strain field. The material properties and experimental conditions and the
output of previous blocks are the input foe thext block. (b) schematic definition of heat affected zone
(HAZ), thermemechanically affected zone (TMAZ), and the rigid zone in the sample as a function of
thermal field in the sample. In this model the sample is sliced with a pile of disks alorapthgldok at

the definition of regions in the sample as a function of the generated heat in the sample. (c) a top view of a
slice and the location of elastic (HAZ+TMAZ) and rigid ZONeS iN.it.........cccoeviiiiiiiiemmnniiiiiieeeeeeennn 42

Figure 24. The results of simulated signal after changing the light field in the sample. (a) Simulated and
experimental PIOCT signals in terms of depth at various PT laser power at mamufaequency of
1000Hz; the green arrow indicates the experimental signal that was used for fitting and optimization of
input parameters. (b) Simulated and experimentaDET signals versus power in various frequencies. (c)
PT-OCT signals as a functiorf absorption coefficient (dye concentration) at various PT laser power at
modulation frequency of 1000Hz. (d) fICT signals in terms of the location of focal plane related to the
sample surface at modulation frequency Of S00HZ.............coocuiiiiieeeiiiiie e 52

Figure 25. The effect of thermal field in the sample on th€®ET signal. (a) Bnulated and experimental
PT-OCT signals in terms of modulation frequency at various PT powers. (b) Simulated temporal thermal
field at the top surface, and (c) along the depth at various frequencies. As the frequency of modulation
increases, the thermafiision length becomes Shorter. ...t 53

Figure 26. Effect of different boundary conditions on the@T signals. Simulated and exjmeental

signals of the sample (a) in air and submerged in edible oil, (b) free sample and sandwiched sample with
glass top layer. (c) Simulated signals with different values of Poisson ratio. The mechanical and thermal
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boundary conditions can affect thgsal significantly. The effect of boundary conditions, however, was

not considered iN the Previous MOGERIS. ........ouiiii e e e e e e eeenaees 55

Figure 27. Absorptin spectrum of common constituents of cardiac tissue in the NIR range, including: lipid,
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1: Introduction

1.1.Background

Optical coherence tomography (OCT) is a4iwvasive anchightresolutionoptical imaging method
which can capture twar threedimensioml images from optical scattering med2CT is widely used in
tomographic imaging of biological tisssias themagng resolution(1-10um) andhe high speeaf OCT
allow for rapid and 3D visualization of tissue internal structu@ST works based orinterferometric
measurementof the pathlength differenes and intensies of backscattered light from tissue
microstructues [1]. Geneally, nearinfrared (NIR) coherent light sources are used in OCT in order to
achieve millimeteirange penetration deptvhile maintaining ~1Amimage resolution in biological tissues
[1]. In 1990, Fercher presented the first images from a fundus humaim eyeo using white light
interferometry[2]. This pioneering work ofFercher laid the basis falevelopment oOCT system The
concept and fundamental principles of OCT wablishedin 1990 by Naohiro Tannf8], and in 1991 by
Huanget al, in Fujimoto lab athe Massachusetisistitute of Technology(MIT) [4]. Since 1990, the
tecmology has undergone significant transformations becoming a popular imaging method for
interrogating biological tissues. Today, OCT systems are widely usedditine especially in the fields
of ophthalmology, cardiology, oncology and dermatoJafyySome of the key appealing attributes of OCT

technology for medical diagnosis and screening incladé]:
91 Ability to perform realtime and fast susurface imagingf tissuein vivo

1 Image resolution and penetration depth suitable for interrogation of diselased

abnormalitiesvithout use oexogenougontrast agents

1 Ability to miniaturize the imaging head of OCT in form of catheters and small pestaes
integration in standardf-care medical devices such as catheters, endoscopes, laparoscopes, or

needles
9 Ability to interrogate excised tissue withimimal sample preparation
1 Useof nonionizing electromagnetic radiation

Accordingly, OCT systems haveen used for interrogation of tisdoeated in areas where acquisition
of excisional biopsy isot feasible(e.g., the eye, arteries, or nervous tisslies Moreover,the high

imaging speed of OCT has enabled practitionercdmprehensivelyimage large aras at various



anatomical sites of the human baddyorder to screen for diseases with patchy and discontinuous nature;
thus, significantly eliminating the intrinsic sampling error rahdomexcisional biopsiesRapidness,
resolution/imaging depth, and atyl to miniaturize into endoscopes/catheters combinade enabled
medical practitioners to make instant diagnosis basé€d@himages (akaOptical biopsy [7].

In comparison to other medical imaging technologies, OCT offers ranges of penetration depth and
resolution that cannot h@ovidedby othermedical imaging technologieBigure 1 provides a comparison
of depth of peatration and resolution ofmainstreammorphological tissue imaging methodse
ultrasonography, confocal microscopy, and OCT). Ultrasonography can image in depth uprtdoa0
with low resolution of~300 micraneterswhich is frequently insufficient to resolve diseasmduced
morphological abnormalities. OCT, on the other hand, resolves morphological signatures of biological
tissue with resolution of-1 5 mi cr omet er . In terms of penetrat.i
significantly lower than that dfiltrasonographybut significantly larger than that of confocal microscopy.
As such,OCT imaging performancéills the gap between ultrasonography and confocal microscopy by
generating fine resolutiamagesirom structureglose totheinterrogatedsurfa@ of tissue.
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Figurel. Comparison ofmageresolutionandpenetratiordepthfor conventionaktructural imaging methods used
in medicine and biologyOCT fills the gap between ultrasound and confocal microséagyre aapted frorfi7].
Copyright2015 Springer Nature Publishing Group.

1.2.Applications of OCT in Medicine

In medicine, OCT systems are widelyedfor research andlinical purposesspecificallyin the fields
of ophthalmology, cardiology, dermatology, oncology, urology, dentistry and gastroentgrplagyhe
field of ophthalmology, OCThas achieved greatesticcessmaking OCT a gold standardnethodfor
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diagnosis of retinal disea$8, 9]. OCT is ubiquitous in eye clinics amdutinely used for diagnosis and
screening ofmacular hole, macularugker, macular edema, glaucoma, diabetic retinopathy, vitreous
tractiorf10-13]. Success of OCT in ophthalmology is mostlye to the fact thatuman eye structure
consists of mulple layersof semitransparent media that allow the NIR light of Ot©@ penetratelownto

the posterior parts (fundus oculi) to fotomographyof the organ(Fig.2).

Figure2. Images fromhumaneyecaptured by different OCT system configurasamd brandst-ourierdomain
OCT images: (g, (b) 3D volumewith two different viewsf retinal layers (Topcon 3D 10G§sten). (c) Posterior
vitreous detachmerfPVD) that appears as detached layers in OCT images from the posterioysty&s OCT
Copernicussysten). The PVD abnormality is pointesut bythewhite arrow. (d) PVD shown in 3D inserting into
macular hole (Topcon 3D 10Q0)o have a better contrast, retinal layers are usually labeled with different &ylors
forming such high quality and fine resolution 3D images from human eye, OCT has become a gold stahear
field of ophthalmologyNo scale bar was provided in the original figuFégureadapted frorfl4]. Copyright 2003
Springer Nature.

In dermatology, OCT camesolveskin layers (epidermis, dermapidermal junction and dermis) to show
vascular networlayer thiknessand the hypestructure for dermatological pathology purpodég.3)[15,
16]. For exampleOCT has been employed in diagnosis of skincer, inflammatorgkin diseases, vascular

disease of skin, and also employed in physiological studies to monitor and control various treatments such



as follicular unit extraction, lasessisted drug delivery through nails and skin, and for semiautomated

localization of tle dermeepidermal junctiofDEJ)17].

Figure3. Examplesof OCT images of normal human skin,vivo. (a) Conventionabnd(b) polarizationsensitive
images from the upper arm, 5 mm wide by 1.2 mm deep. Corresponding histology from the same location (H&E
stain), viewed with(c) brightfield and(d) polarized microscopyThe OCT resultslearly show the different layers
of the hunan skin sampleconsisentwith the histologicalmages also,more informatiorregarding collagen
morphologycan be obtained from the polarizatisensitive images; see the reference for nifegmation Figure
adapted frorfl8]. Copyright 2004Elsevier The Society for Investigative Dermatology, Inc.

In oncology, OCT systems have begsed in imagingstructural changes at early stages of cancer
including those arising in the breast, brain, bladder, the gastrointésittéiFig.4), respiratoryorgans and
the skif19]. In these area€)CT has beemaking keycontribuions on severalfronts, such asscreening
for cancey guiding excision ofbiopses providing reatime feedback in the operation moas
intraoperative imaging of canceand monitoing tumor responseto treatmerg such as photodynamic

therapy, radiotherapy, and chemothefapy.
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esophagus

Figure4. Volumetric OCT imaging of human esophagusivo with tethered capsule endomicroscopy3D
volumeof the endomicroscopy daitapanel (dshowing a 4 cm segment of Barrett's esophabick marks and
scale bars, {&) 1 mm; scale bars, (d) 1 ciigureadapted fronf20]. Copyright 2013, Nature Publishing Graup

In cardiology, intravascular OCT (F@CT) has become one of the three most important imaging
methodsalongside intravascular ultrasound (IVUS) and coronary angiography mghpdg-OCT is a
non-contact catheter based method that has 10 times greater resolution in comparison WiZ2]IMS
IV-OCT, a tiny OCT probe located inside a catheter is sent into the desired areas (i.e., coronary arteries, or
aortg through the peripheral artery to scan the artery walls and adbeirmorphologyin vivo at an
unprecedented level of detdlFig.5). In 2012, a group of experts in ®UCT published a consensus
document to standardize the interpretation ofO€T image®f coronary atherosclerosis intitbrous and
fibrocalcific plaques,fibroatheroma, macrophage accumulations, intimal vasculature and cholesterol
crystals, thrombi, plaque rupture and erosion prolagtsetmalapposition, and dissections, covered and
uncovered stent struts and rester{@4is Today, IV-OCT devices &n be found commercially worldwide,
and the demand for such systems is growing a016, it was reported approximately 100,0060€CT
procedures are performed annually, andd€T application is growing at a rate of ~ 20% per [g3jr
Application of OCT system in cardiology to monitor coronatherosclerosiserves as a motivation
throughout this thesis, so hevee provide brief description dhis type ofcardiac disease.
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Figure5. Examples of OCT imagesfrom cardiac tissuega) A view of normal artery wall and its layecaptured
by IV-OCT. In this image, the three layers of vessel wall (intima, media, and adventitia) are clearly sepz
with different scatteringroperties Figureadapted frorf24]. Copy right2017, by the American College of
Cardiology Foundatiarpublished by Elsevielb) An example of plaque ruptucaptured by IVOCT. Arrows
delineate a broken fibrous cdp this image,he contents of the ruptured plaque are partially washeby the
flushing medium leaving behind acavitg ¢ a | e b aKigarbadaptecefronf21]. Copyright 2011 Elsevier
Publishing Group. (ci 3D volumeof OCT captured from a calcified region &rchumanaortasample ex vivq
scale bar=Im.

1.1.1.i)Atherosclerosis

The underlying cause of many cardiac diseasatherosclerosis, a condition developed as a result of
continuous accumulatioof various materialsuch adipid, cholesterol, cellular waste products, calcium,
and fibrinin the intimal layers of the arterie&s atherosclerotic plaqudmsiild up in the arteries, tirewalls
become thickened and sfi#b, 26] Theexact processf atherosclerosiss still not well understoodbut it
can happen in athlumanarteries. It hashreedifferent stage of growththat lead to clogged arterighe
fatty streak, the plaque, and the complicated lefptague rupturingas seern figure 6[26, 27] The first
visible stage of this diseasethe fatty streak that appears as yellow stoeaisisting ofwhite bloodcells

cholesterol, and othéeadcellular matter at the site of endothelial damagéhe plaque stage, more debris



including dead foam cells and otrserbstances such as calciand cholesterol continue to build up at the

site of fatty streaks thaventuallyleads to formation of plaqu¥]. The atherosclerotic plaques consist

of a large lipid coreepresenting more than 50%waflume of theplaque which is covered by a thin fibrous

cap and a heavy infiltrate of inflammatory cells (macrophages and lymph¢28te8)formedplaque may

stay stable for a long timé significant factor that determines the stability of a plaque is the thickness of
the fibrous capHowever, tle critical thicknessof capas acriterion of stabilityfor plaques in different
vesselss not the sameror instance, in a carotid artery, a plaque can be considered as a stable plaque when
the thickness of fibrous cap is between 0.7 to 228 Whenthe fibrous cap thickness is decreased, the
mechanical stress that is applied to the plaque by the blood pressure will inCegatieckness under 130

em for aortiem pfloarq uceasr oatnidd 8p0l agues i ndi306.&udes a pl a
have confirmd the strong correlation between lipid composition of the plaque and the risk of
vulnerabilityf31-33]. A hallmark for highrisk plaques is the thicap fibroatheroma (TCFA) stg@d, 35]
Pathologically, TCFA in coronary arteries is characterized as a large lipid pool which is overlaid by a thin
fibrous cap (thickness<66 n36]. Inflamed TCFA is the mostommonform of vulnerable plaque and
causess0% to 70% of events ofacute coronary thrombofdb]. Recently, he cholesterol crystatlepth
insidearterialplagues has beeuggeste@s an index of plague vulnerabi[By].

The last stage of atherosclerosiplaque rupturinghat happensvhen thegrown plaques break open
The rupture of the cap exposes the plaque material to the blood and causes the formation &iua throm
(blood clot).Fatal coronary thrombosis frequently results from the rupture of plaques that have a large lipid
core, separated from the lumen by a thin fibrou$3&39] When the lumen is partially or fully occluded,
the patientmay develop myocaiid a | infarction ( Ms;an excéptionaftdde the t At t
unstable angina describes symptoms of a plaque that sufficiently occludes blood flow to cause exercise
induced ischemia, but its cap is still infd€x, 41] In developed countries, coronary arteigease i®ne
of the most common tygeof heart disease with high rate of mortality that iscaused by rupterof
atherosclerotic plaquek2]. To choose proper interventional techniques in this disease, higinaay
assessmerih vulnerability of atherosclerotic plaguas essentigh3]. Routine scanning of vessels and
treating culprit | esions to get a better understa
procedurewere recently suggest¢4i3]. A preferred therapy for such cardiac disease is percutaneous
coronary intervention (PCI, formerly known as angioplasty with §&eht#5] PCI refers to a nesurgical
and minimally invasive method that utilize a catheter to place a stent to open clogged coronaifyafteries
During this procedure, scanning of vessel and identification of future events may be possible. However,
due to its invasiveness, scanning the coronaries
this method.
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Figure6. An illustration ofthe atherosclerotic growing stages including fatty streak, plaque, and ruftudetails
of plague growth stages see texigureadapted frorf#6]. Copyright by the authors

1.1.2. Principle of OCT

From the mathematical point of view, OCT rslien calculation of crossorrelation ofbackreflected
light with respect to a referce light.Such mathematical operation is normally carried o@@T systems
in Michelsoninterferometerconfiguration As shown irfigure 7(a), in a Michelsoninterferometeralight
source is split into two armsda a beam splittelThese arms then illuminate two mirrors that are positioned
at a distance oficand d from the beam splitteThe backreflectedbeamsinterfere with each other and
create an intéerencepatternon thescreerafter passingagainthrough thebeam splitterThe frequency of
dark andbright lines in the interference pattern has a correlation with the difference betwaed d
lengthg/47]. The operationof the Michelson interferometer (anby extensionthat of OCT) can be
mathematically explainedn either timedomain or Fourierdomain. In either case, tough proper
instrumentabn andsignal processinthe depth profile of subsurface reflectfsisucturegaka. Alines)

can be found

Dependingon theinstrumentation approach of an OCT systémno main types of OCT systernan be
developedTime-domain (TDOCT) androurierdomain (FDOCT)[48]. In TD-OCT, A-lines are acquired

by mechanical movement of the reference mirror of the interferometer. As HDEBCT systemsare



inherently slow andormallydeemed not suitable forterrogation of tissud-D-OCT systems, on the other
hand,is based on Fourietomain realization of crossorrelation and as such caoquire Alines without
any need for mechanice¢ference arnscaming. FD-OCT is divided into two major categoribased on
instrumentation approach for measurement of responsieskourierdomain spectraldomain (SBOCT)
and sweptource (SSOCT). Although theinstrumentation for sensing tlight signals in thessystems
aredifferent both systems use Fourgomainmathematical principlef crosscorrelationto form images
from captured raw signalSince he system developed and usadhisthesisis an SD-OCT systemwe

will explain the principle oOCT in SD-OCT arrangement

In SD-OCT systemgFig.7(b)), the light source isiormally abroadband coherent ligisburce The
output light is divided into two arms by a beam splithed are called reference and sample srm
respectivelyln the sample armightis focused on the sample surface by an objective lens. In the reference
arm, the light illuminatea fixed mirror as the referencéfter backreflection of light from sample/tissue,
and the reference mirror, these two beares @mbinedagainin the beam splitter ancedirected to a
spectrometer for recording of reflectivity interference pattern of the two besmen&inction of wavelength
The intensity of the reflectivity pattern in the spectrometer can theoretically be edpgide:

Q=S JO+B ) ¢ ))AT ¢, ). (1.1)
Where S Js the spectral power of the light sour@is intensity of reference arri@ is intensity of
i surface of the sample with reflective surfacgin depth,Qis wave number, angll; is theoptical path
length differencéOPL) between the reflected beafmom thei surfaceandthereferencgY0 ¢ 0
¢ 0, wherenis the refractive index and is the physical leng)h As such, theerm2 k g Eq. (1.2)

represents the phase shift of the lipbtween reference and sample beams

After illumining tissues with the OCT light, the intensity of baeklected (} in Eq. (1.1)) decrease
dramaticallydue tothe absorption anthe scattering of photons in the tissues. Howeuethereference
arm,such drop irthe intensity of light @¢in Eqg (1.1)) does not occur, becauthe light isreflectedby the

referencamirror. Therefore, the weak signal from the sample is amplified by the much stronger reference
signals ¢ ) ) in Eg (1.1), and we carreceive meaningful signal above the noise floof the

spectrometer

As seerin the equationintensity of the lightecorded by thepectrometer (k) in Eq. (1.1)) is a function
of wave numbewhich highlights sensing of sample responses in Fedoarain To form the OCT image
based on the intensity of reflection frandividual reflectors, the signals in-Kpace (wave numb&ourier

space) need to be converted tgpace ¢ptical path lengtspace)Therefore, to obtairhe depth profile of



reflections in sample (aka-Kne), inverse Fourier transformatias applied to the Kspace datawhich

gives:
(2=24/®+B [ ad) ¢))7U U U . (L.2)
Heredi i s delta Dirac function, and So appsaredihleg i nver

(1.2). The sampleeflectivity profile, i(z) in Eq (1.2), is obtained bycross correlatinghe point spread

function of the light source with the location rafflector in the samplelherefore, a light source with
Gaussian spectrum can improve the image quality, provide better contrast, and decrease side lobe effects.
Figure 7(b), schematic#y, demonstrates the OCT signal processing procedure for a sample with three
subsurface reflectors. As requiredby. (1.1), asthe depth of reflective surface increases, the modulation
frequency of the acquired interference spectiirk, gpibhcreases, milting in spatial separation of signals

along depth after inverse Fourier transformation. It should be noted that since the data/signal measured by
spectrometer is real number data, after application of inverse Fourier transformation the depth @rofile dat
will be of complex naturavith symmetric mirror term§ U ¢ U U in Eq (1.2). Therefore, by
calculating amplitude of complex numbers, the location of the surface in depth as well as intensity of
reflectionis obtained(aka Aline amplitude])7]. Also, the symmetric mirror terms generaenirrored

image of the sampheith respecto the zeroth surfada the tomogranthat can be neglected.
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Figure7. Schematic representation bkt principle of interferometry behind OCTa) A schematic of Michelson
interferometer, the system typically consists of a light source, a beam splitter, 2 mirrors and.a ' keréeguency
of the interference pattern on the screen is a fundfidhe path length difference of mirrorsid,). (b) A shematic
of SD-OCT sysem The output light from the laser source illuminates the sample and the reference mirror after
passingtirough the beam splitter. The balected light from the sample and the mirror is merged and delivered
to the spectrometer. In the spectrometes,fthquency of modulated wave oelates with the depth of layers in the
sample. After applying Fourier transformation on received signals;lareAs obtained For details seethe
mathematicaéxpressions ithe maintext.
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By raster scanning the beam in one direction, a cross sectional image-$alan Br tomogram) is
formed. A volumetric @ image (Cscan) of the sample can be made by attaching several parBllel 2
tomograms/BScans (Fig.8). It should be noted that in Q&ohtext to accommodate the extreme dynamic
range of the signal, amplitude images are normally shown in logarithmic dB scale. In OCT, the point spread
function of the light source cros®rrelates with the reflectivity profile of the sample. Thereforeglat li
source with Gaussian spectrum can improve the image quality, provide better contrast, and decrease side

lobe effects.
iD 2D 3D
Axadl (Z) Scanning Axiai (2} Scanning Axial (Z) Scanning
Transverse (X) Scanning XY Scanning

Backscatterad Intensity l | l l l | I l l

(Wdaq) voINSOd |#IXY

Figure8. An example oAA-line, B-mode, and volume images in OCAn A-line is a 1D data thaepresentshe
location of reflectas along the depth at a specific locationthesample surfaceBy attaching several-fines
scannedvhile translating the beam position the sample surfagea 2D Bmode image is formed. 8D volume
image of the sample is obtained by attaching the paiiebde imagesFigureadapted frorfl]. Copyright 2008,
SpringerVerlag Berlin Heidelberg.

One of the important parameters governing OCT image quality is image resolution. In OCT, two types
of resolution in an image are defined: axial and lateral resolutions. Light with broad bandwidth and low
coherence length is typically used in O@F. assunmg aGaussiarshaped speatm, theaxial resolution
o z(full width at half maximum, ofFWHM) in a low-coherence interferometry system such as GCT
defined afl]:

~

Yo — . (1.3)

Whereasi s t he center wavel erfigRWMHM critenod)of thelight.As seeh,en bandw
contrast to standard microcopy, in OCT, axial resolution is independent of the beam focusing and spot size.

For a Gaussian beam, the axial resolution is also equal to the coherenck.|Begtse of the coherence
length,OCT has aoherencegatingfeature That is the detected OCT signal in spectrometer arises only

from photons that have been backscattered froinindayer in the sample selected by the coherence gate

of the light sourcéseeFig.7(b)). Otherbackscatteng photons in tissewhose OPL difference between the
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reference arm does not match with the coherence length will not be detected as a meaningful signal in the
spectrometer. As this portion of badflected light (aka, bulk backscattered detected light) does not
provide any spatial information about the tissue layers, it only contributebadOCT noisesigna[l].
Consequently, @herence gating reduces detection of undesired scattered light in the sampleesmprov
image contrast, and enabimaging to greater deptfi§. The lateral resolutiopxfor a Gaussiameam

is[1]:

Yo — — (1.4).

Wheref is the focal length, an@/ is thewaist radiusof the beamincidenton the objective lenslo
achieve a fine lateral resolution, a large numerical aperture that focuses the beam to a small spot size can
be used.

In OCT, phase images that are formed from phase of €i@ifalsare more sensitive tthangs in OPL
thanamplitude images$haseof signals 2 k girLEq (1.1)) can detectelativedisplacemerston theorder
of tens ofpicometers tdew nanometers, whilthe detection limit othanges in OPL via themplitudeof
signalsis directly linked tothe system axial resolutiofi.e., on theorder ofseveralmicrometer3. Owing to
such enhancement in measurement of relative displacementspl@Se& signalbave been explored for
introduction of several functional extensions of OCT. For example, Doppler O&IC({D and OCT
angiography (OCTA) are two variants of OCT that measure the blood flow velocities in capillaries
(especially in the eyeléeFig.9). In these techniques, the OCT phase is captured over timé/{akade
scanningto obtain the phase shidf OCT signahs aresult of backreflection of light from moving particles
inside the samplé-ig.9.(a),(b)). The D-OCT technigue was applied on TQCT, long before introducing
FD-OCT systemFor instancein 1997, the twadimensional DOCT forin vivo imaging waspresented
using a short time fast Fourier transformation (STFFT) to measure the fringdasiiaOCT systerfi9].
This method which is called spectrogranethods allows imaging df vivo tissue structure and flow
velocity simultaneouslyHowever, a limitation in BOCT technique with TBOCT system wathe phase
stability. Indeeddue to the need for scanning a delay line, the configuration of interfenomd&iD-OCT
system were a conventional digam Michelson interferometer. The OCT phassuch norcommon path
configuration wasot too stable to receive signals with acceptable signal to noise ratio.(BNR)5,a
phasemicroscopyapproachwith SD-OCT wasdemonstratedy Izatt et a[50]. In his work, phase change
of OCT signalsalong time(M-mode scanning) dieatingheartof a chicken embryo grecaptured witha
common pathfSD-OCT systemln this study, it was shown thatd phase of OCT ira commonpath
corfiguration is more stabjdeadng to greatersignal to noise ratioThe development irthese systems

since thenhas made the®CT and OCTA astwo useful techniques for clinicpurposesRecently, hand
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held probs of OCT as a poinbf-carefor reattime angiography was proposed to make angiography of the
eye convenient for everyday clinical usgife 52]

a b

Fast axis

v
.

Fast axis

Slow axis

V0L=VcosO

Figure9. An illustration of OCTFAngio and DoppletOCT methods(a) In OCT-A, to form the angiogram of the
sampleafew B-scans are takemvertimeo n  t h e i fron the sampla ta xé sch of the Ayo sl
points allowingdetecton of relative flow signal(b) Top view of the sae general scan patteon human eye
adapted fronf53]. Copyright 2018, Springer Naturg) A schematic of blood flow and OCT beam in Doppler
OCT. A vein that blood flows inside it with a velocit
parall el part of the velocity v e-pefectad lightiKé, beauseloitheOCT b e ar
Doppler effectThis effect causes a phase shift in the OCT phase signal that can be related to the velocity of flow.
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1.1.3. Shortcomings of OCT

While OCT offers many key advantages over other medical imaging technoibfgiess images based
onlight scattered fronstructure of tissue rather than its composition. As a result, OCT is quite sensitive to
structuraldterations caused bgarly stages of disease such as atherosclerosis and early dental caries, but it
lacks diagnostic specificityi(e., yield too many false positives). This shortconfiregjuentlyresults in poor
diagnostic performance at early stages of diseases and restricts applicationsediRample, Shokouhi
et al.in a study comparediagnostigerformance of OCTwith that of a moleculacontrast imaging method
based absorption of lightnamedthermaphotonic lockin imagingor TPLI) in detection ofarly dental
carie$b4]. The results showed better detectapecificity and significantly lesgalse positivesin early
dentalcarieswith TPLI than OCT due to the more specific naturkghft absorptior(i.e., TPLI mechanish
over lightscattering(i.e., OCT mechanism)As another exampl@/illiger et al. demonstrated thatertain
stages of atherosclerosis plag(iee., intimal thickening and fibratheromayield similarOCT structural
images ¢eeFig.10), while the chemical compositions of these two stages are diffeb¢nt

»i_. -

e ol
fibrea tisstie

Figure10. An example of limitation of OCT in detecting molecule of interesting in the saffipeEdVOCT images
of human cadaveric coronary arterégge plotted in the first rolnd matching trichrome histologye plotted under

each OCT imageg¢a,d)Fibroust i ssue can be readily differentiated fr
structural OCT signal shows very similar features for
atheroma (c,f, advanced disease with high risk of ruptur@)e o ut er di amet er catsdalet er i n

b a r = 8;adapted fronj56]. Copyright 2018by theauthors

1.1.4. Extensionsof OCT
To overcomethe limitation of OCT in terms of lacking specificity, various functional
extensios of OCT and multi-modality OCT-basedsystems have beeimtroduced Optical
coherence elastography (OCE) isuactional extension of OCT than can measure mechanical
elasticity of layers inside the sampalied forns a depthresolvedelastogram of tissuegsualizing
the mechanical stiffnesk this technique, the samplegscitedwith an external actuator, sueh
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acoustic radiation forcgeneratedy anultrasound transducer, or air piffieeFig.11), and the
mechanical displacemestn theorder of a fewnanometerg the samplarecaptured by phase
sensitive OCT systerib7]. Subsequentlythis mechanical response to thecitation can be
converted to the mechanical elasticipr instance, Zaitsest al. demonstrated the application of
OCE inmeasurment ofthe strain dynamicsn cornea in the procedure of shaprrection wih
lasef58].

Air-coupled
transducer OCT beam

\
Ve We

=

Figurell An illustration of OCE with aicoupled trigger. Theropagatedvaves inside the sample as a result of
excitation of the sample surface by the@upled transducer can be tracked by OCT b&nanalyzing the phase
of OCT signals over time, mechanieal ast i ¢ properties of the sample such
indirectly.

Tissue

Indirectly, information about chemical composition may be predicted by the differences in the
mechanical elasticity of tissue constituerts anexample Qi et al. showeddifferent mechanical
response of necrotic core (NC) and fibrous cap in coronary plaque with (B1G.12)[59].
However a tissue containing specific chemicaimpositionmay generate a different mechanical
response to a stimulus at different boundary conditions. For examplierosclerosiplagque, a
lipid core undedifferent thickness and mechanical stiffnes$ilious capcangenerate different
responses. Therefqrdespite promising results in measurement of tissue mechanical properties

with OCE, this method is neintirely specific to chemical composition of tissues.



200

400

600

Figure12. An example ofCadaver tissugnaging with OCEandhistology data. (a)mage captured b®CT from
human cadaver coronary artery cresstion. (b)Corresponding elastogram obtained WBiEE. (c) H&E staining
of the region under 4x magnificatiomhe difference in tissue elastic profes than cannot be seen in O@iE

image can be observed cleairiythe elastogramFigureadapted frorf60]. Copyright 2017, Springer Nature

Near infrared spectroscopy (NIRGCT is anothemultimodality system that is sensitive to the
chemical composition of tissUé4]. To identify coronary lipids, NIRS is the only method that is approved
by Food and Drug Administration (FDPSR]. In NIRS-OCT structuralinformation are retrieved from
scattering of lightvia OCT and specific molecular and chemical composition related information are
retrieved fromabsorptionof light via spectroscopic analysis oéflectedlight from the sample The
principle d NIRS relieson measuring the amount of scatidrand absorbed light byissues In this
techniquea sample is illuminated hysing a laseemittingat NIR band generally800 to 2000 nm). The
bandwidth of the laser is selected to maxingzeetratiorof the lightinside the tissuel hescatteredight
is receivedwith a detector placed away from the light source (emitters possible to calculate the
concentration of chromophores or molkecaf interest inside the tissue, by usthg modification of the
Lamberi Beer law (to consider the scattering phenomdih)Using these principleNIRS-IVUS has
beenused forassessing theulnerability of plaque§4].
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Nearinfrared fluorescence (NIRF)CT is another multimodality systethat utilize the fluorescence
response of materials to a NIR radiation to detect the molecule interest in the[88mjplehis method,
the molecule of interest needs to be tagged with some fluorescenttagenduce NIRF signalFor
instance, indocyanine green (IC@) FDA approvecgent,has been used as an agent to visualize-lipid
laden, inflamed atherosclerotic pla¢@@. In NIRF-OCT, labeling anolecule ofinterest insampla&in vivo
is a challengingaskbecausehe agerg usuallycannot penetrate deeplytdrthe sampleTo overcome this
limitation with NIRF, Neatinfrared autofluorescence (NIRAE)CT method has been proposed that us

the naturahutofluorescence resposs# tissuesnstead othose of extrinsitabeg67].

While NIRS-OCT, NIRF-OCT, and NIRAFOCT haveshownpromise for improving theliagnostic
yield, these systems cannot produce depth resolved chemical information from samples as-the light
absorption based modality integrated in thame intrinsically diffuse (Fig.13). Consequently, these
multimodality systera do not offer sufficient spatial resolution fori@gistration of chemical information
with the microscopic structural features of OCT in a meaningful Weyeover, both approachesed
extrainstrumentatiorwhich addgo the complexity and the cosif thesesystens.

Figure13. Views of NIRS-OCT scan of humawgadaver coronary arterin this multtmodality system, the structure
of the sample can be imaged with OQhe color bar ring around the imag&ich comes from the NIRS system
gives a depth integrated/diffuse sense of chemical informaiotn OCT images in these cases shovolesivith
reduced backscattering (pointed by the arrows). NIRS results as the red and yellow rings reprassorpa)n

spectra compatible with fibrotic tissue a Ifpid-rich tissue Figure adapted frorf62]. Copyright2020 by the
authors
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1.2Photothermal (PT) OCT

Photathermal optical coherence tomography (ICT) is a functional extension of OCT with the
promise to overcome the nonspecific nature of conventional OCT by formingdihmeasional (3D)
images based on both scattering and absorption offdgjhtCompared to other moleculapecific
extensions of OCT, RDCT is intrinsically able to show depthsolved maps of targeted molecules of
interest (MOI).In PT-OCT, an intensitymodulatedphotcthermal (PT) laser with a wavelengtat the
absorption band of a molecule of interest is added to the conventional OCT system. In such a configuration,
absorption of the PT laser by the molecule of interest induces azbxtatiodulated temperature field (aka
thermal wave field). This thermal wave field, in return, yields nheiéd hermacelastic expansion resulting
in modulated variation in the local refractive index. These phenomena ultimately lead to the modulation of
the optical path length at the modulation frequency of the PT laser with a modulation amplitude on the
order of tens of nanomet@8]. To sensehe modulation of OPL with OCT signalnM-modeOCT dataset
is acquiredat each lateral imaging locatioBince the OCT phase ©i@nough sensitivity to measure such
small variations in OPL, RDCT has the potential to offer tegistered structural and molecular
information through the OCTsigg8l ampl i tude and phase, respectivel

To detect a molecule of interemhd form depthresolved maps with molecular specifiGity T-OCT
signak can beacquired fromeither sampledabeledwith exogenous agentsr labekree using intrinsic
light absorption bands of tissuEo date, nanoparticleas exogenous agentgve been employed in PT
OCT to boost the photthermal signafrom humari69] andrabbi{70] tissuesex vivq to visualize blood
capillaries ofmouseearin vivg71], as well as to detect cancer cgli8g.14) in vitro[72]. Use of both
endogenous (melanin) ankbgenous (gold nanorods) absorbers have also been reported for imagsey
retinawith PT-OCT in vivg[73]. More recently, feasibility of labdree imaging with PIOCT hasalso
been demonstrated by measuring blood oxygen saturation in vessel pliaétams melanin in zebra fish

eye(Fig.15[75].
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Figurel4. An example application of RDCT in detecting labeled cancer ce(s) An enfaceimagefrom the
sample containing cancer cell. The green dot$ieeeand red dots ardeadcells. (b)Acquired PFOCT signal in
time, (c) and the spectrum of the signal after Fourier transformgéipmdicates good cell viability and relatively
homogeneousat! distribution.(d) The OCT intensity imagghotathermalimage, and overlay of intensipfioto
thermalimages While the OCT result cannot show the location of cancer cells, overlayer&@CHTinformation

can detect the cancer cells in this samBlgrinted (adapted) with permission fr¢r2], Copyright 2008 American
Chemical Society.
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Figure15. An example of depth resolved detection of melanin in zebrafisHreytis study, two categories of
zebrafish were grown in light and dark environments. In these conditions, the percentage of melanin in the eye will
change(a) , (b) results of OCTimages from the layered structure of thesye) ,(d) PT-OCT imagesof these two
categories show different distribution of melar(&), (f) Histology of melanin distribution in zebra fish eyghite
arrowheadsn OCT and PTOCT panelsindicatevariouslayerswhere melanin is preserstale bar 50em for OCT
and PTOCT images, 28m for histology Figureadapted frorfv5]. Copyright 2018under Creative Commons
license https://creativecommons.org/licensesfixynd/4.0})

1.2.1. PT-OCT principle

Figurel16, schematicallyillustrates the sequence of physical phenomena that take place leading to PT

OCT signalsin PT-OCT, the sample is simultaneouglyminated with OCT and intensitsnodulated PT
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lases. In this configuration, at positions whehemodulated PT laser is absorbed, a modulated temperature
field (aka thermalvave field or TW field) isestablishedThis TW field is modulated over time at the
modulation frequency of PT laser source and is governed by tleebétuction differential equiain[71):

— — Y (2.5)

HereT is the temperature s time, | is the absorption coefficient at PT laser wavelenigihis the PT
power fluence rate, is the medium density; is the specific heat of the medium adds the thermal
diffusivity of the medium. The consequence of pre of a TW field at and around an absorbacksange
of thelocal refractive index and physicdéformationdue to the thermal expansion, and consequeatly,
change of OP[76]:

Yoo 000y 000 | &Y —YY8p 1YY £7Y Qb (1.6)

Here Ty is the initial temperaturen represents the refractive indedn)/dT stands fo thermcoptic
coefficient, andb is the thermal expansion coefficient. The presendbeaifhtegral inEg. (1.6) declares
that the absolute phasat a specific depth is theum of phase changes frosample surface to the
interrogated depthNumerically, the range 6f0 0 is normally between few nanometers to few hundred
nanometers. Therefore, such smdll O &ariations, compared to the ~10um axial resolution of OCT,
cannot shift the location gfeaks inthe A-line amplitude channel. #ine phase channel, however, offers
sufficient sensitivity torevealthe small variation inY0 0 0Thus upon absorption of modulated PT
excitation phase of OCT signal will change as a consequence of variai@Rliaccording tahe following
equatiofb0]:

Y% —. (1.7)

Wh e rois thescenter wavelength of the OCT laJdrat is if the amplitude of the PT laser is modulated
in sinusoidal form at a specific frequency, the ensuing temperaturedieldonsequentOPL, will vary

at the same sinusoidal frequency.
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Figure16. Schematic representation of theygicalphenomenaaking placen PT-OCT; in this system, the
wavelength of PT laser is selecidhe absorption band of molecule of interest in the sam@e.résult of PT
light absorption irthe sampldy the molecule of intereshmodulaedthermal field in the is generatethe
produced heat, thenauses a change in the OBLally near the miecule of interesthat can be tracked by OCT
phasefor more details about principle of FOCT, see text.

Accordingly, by applying FT to the acquired time lapse OCT phase signal (@kamyand evaluating
signal amplitude athe modulation frequencygf the PT laserthe modulation amplitudef ¥%.can be
experimentallyquantified at each deptlFif.17). The modulation amplitude &f%is proportional to the
intensity of the PT laser at the absortbermaemechanical properties of medium, ahd concemation of

the absorbing chromophore.
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Figurel7. An illustration ofvariation of the OCTphasesignalat different depths of the sample in the time domain.

SinceOCT phase is cumulative, in deeper levels inside the sample, the amplitud®©&TP3ignal increaseshé

OCT phase spectrum afl absorbes after applying Fast Fourier transformation (FF@presents the intensity and
the depth of PT light absorption the sampleThe detailed equations are brought in text

Above text discusses thasicprocedure of extracting POCT signals from raw OCSignals To form
a PT-OCT A-line, the amplitude of phase modulatiagsassigned to each pixel along the depih form a
B-mode PTOCT image, obtained #ines are attached togeth&oncurrently, ceregistered structural
images can be produced from the amplitu€©GT datasets. As suchy lthoosing PT lasers with a
wavelength at the absorption peakv®! (e.g.,lipid), co-registered®T-OCT and OCT image pairs can be

produced that can be further analyzed to gaipthresolvednsight into chemical compositiaof tissue

1.2.2. Shortcomings and gaps
PT-OCT gudiesto dateoffer promising result®n ability of this functional extension of OCT in depth
resolved visualization a0l in samples. However, there are severglortantgapsremaining in the area

of PT-OCT thatwe will point out here.First, as the physics underlying ¥CT is multifactorial,
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consequentlythe behavior of PTOCT signas in complex media such as biological tissisgeaot well
understoodWithout a deep knowledge about this multifactophysics extracting accurate information
from received signalss not feasible Although some theoretical models have been generated $o far
enhanceour understandingf PT-OCT signals the key effects @ certain sample and system influence
parametersave not been considereddgistingmodels.

Secondthere iscurrentlya gap in signal/image processisttategiedor decoupling the influences of
experimental condition and tissparameters to enableteaction of quantitative information on tissue
chemical compositioriThat is, significant majority of the approaches suggested to date focus on qualitative
assessment of POCT signals with the overarching goal of determining the presence and locati@isf M
Forming predictions based aualitative assessment BT-OCT resultswould be misleadingn many
casesFor examplea samplecontaining a high concentration MOl (i.e.,good PT absorber) buried under
a thick layer onon-absorbingiissuegenerates weak POCT signas which is deemed asrmonMOI or
low concentration of MOI regioim qualitative signal/image processing approacbeseloping strategies
for signal procesagin light of a comprehensive optbermemechanical theory is expectecstoablenore
accurateand perhaps quantitativie]-OCT imaging of biological tissues.

Third, due to the necessity of extended temporal sampling of respBTs@€; T inherentlysuffersfrom
low-imagingspeed. This limitation hindetganslation otthis promisingtechnology into clinicsAttempts
made to date for enhancing the imagspgedof PT-OCT suffer from key limitations such as increased
complexity and cost of the systeordegradation of SNR of received sign@idunctional PFOCT system
for clinical usage must biast enough to be able tmptureimages from movinganples for example

motion of cardiac tissues due to the heartbeat)

1.3Motivations and specific aims

The motivatios of this thesisareto generate hepth knowledge on sample and system parameters
affecting PTOCT signals antb develop strategies for optimal detection and potentially quantification of
MOls. To enable translation of POCT to clinics, development of methodologies forngigant
enhancemenin imaging speed is also pursued. Specificaliyg tleveloped knowledge and technology
stemming out of this thesis is expectedpen the doofor more accuratassessment @therosclertic
plagues based on both tissue structureci@mical compositianConsideringhe above limitationgaps

and motivationsthe objectives afhe thesis are definexs follows:
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Obj.1: Generating a comprehensive theoretical model for-BTTthat relates system parameters, the
sample geometry, andptothermomechanical sample properties to PICT signak. Such a
comprehensive model enablggining deep understanding of variables affectingdIT signals and their
relation to chemical composition and structure of biological tissues.

Obj.2 Develop experimentation and signal processing strategies for extractiggantitative
information about chemical composition of tissues from FICT signalsfor application in cardiology
Developing such strategies will enable us to analyze #fadtorial PT-OCT sgnal that leads tdetection

of the molecule of interest in the tissues with higher specifiaitgto quantifytissueproperties

Obj.3 Development of strategies for enhancing the imaging speed inR@T for capturing image
from bothstationaryand moving samplessenerating strategies in FOCT to enhance the imaging speed
up toat least the WMz effectiveA-line rate range, that will pave the way for clinical application of3T.
Additionally, with the® strategies, wwill beable toform PT-OCT imagesrom anoisy and fasacquired

signalthat reduces thienaging time and volume afaved data

1.4Dissertation outline

This dissertation has been organize8 chaptersn the followingway.

Chapter 1 consists ah introduction, #teraturereviewon technologyand clinical applicationsf OCT,
advantages and shortcomiwf OCT and PTOCT, the motivation for the dissertation and an overview of

the objectives

Chapter 2lescribes two theotieal models for PTIOCT. In the first theoryRT-OCT signal as a function
of optothermemechanical properties of samplissnodeled.With this model, the behavior of RDCT
signal as a result of changing material prdpertas a function of compositios studied Next, a
comprehensiveéheoryof PT-OCT is generatedvhich modek the received PTOCT signal from a mulki
layer sample by considering effect of thigto-thermemechanical properties stirrounding media arfeT-
OCT system parameterdsing this mode a parametric studis done tosurveythe influence of sample
and systenparameters on RDCT signas. Theseworks were published irthe Journal of Biomedical

Optics (JBO) and Biomedical Optics Express (BOE), respectively.

Chapter Joresents methods and stratedg@squantifying MOI concentrations in light of the outcomes
of the theoretical works of chapter i the first sectiona straegy is proposedto increae detection
specificity, and toenabe distinguishing the PTOCT responses of MOlglevant to atherosclerotic plaques
from each othe(e.qg., lipid, water, collagenYo do so, we presented a spectroscopic method i @ET

that enploystwo wavelengthdor the PT laser. The response of samples then is decoupled for increasing
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specificity of MOI detectionIn the nextsection another strategy is presented tprantifying MOI
concentrations independent of system and sample paranjetgr, distance to the focal plane of the
objective lensetc). In thisproposedtrategy, machine learning models are trained to lab&@@T images
based on the concentration of MOI, in a general imaging condition.

Chapter $roposstwo strategiedor increasinghe imagingspeedf PT-OCT. The first method works
based omesponse of the sample to a low energy squared PT laseegaition, leading to introduction
of a new variant of PPDCT namedransien{TM)-PT-OPCT.We show that pposed variant enables PT
OCT imaging of MOls at video rat&his work was published ithe journal ofOptics letters (OL).Next, a
methodis presented to reconstruBfT-OCT imagesfrom noisy, but rapidly captured, datasets this
strategy a deepneurd network structureis used to denoise sigrsendto predict the meaningful signal
with high similarity to the ground truthAlso, this method will improve the detection limit in fJCT
signals.

Chapter 5 consist of a conclusion for thissertationincluding a summary of theurveyspresented in
this dissertation, a discussiofidirectionsand suggestions for futuveork, and astatement othe scientific

contributionsand societal impadif this work
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2: Development andValidation of PT-OCT model

2.1Introduction

As discussed in Chapter PT-OCT has been used in several studies to detect MOI in saimples
assedng thereceived PTOCT signalqualitatively. Yet PT-OCT signas$ contain characteristic trends and
attributes (e.g amplitude, or overall shape) that directly correlate with the physical properties and the
spatial distribution of the lighatbsorbing MOIs in tissue. Quantitative analysis of@JT signas,
therefore, offers potential for obtaining depésolved mapsf tissue compositiorQuantitative PTOCT
imaging of real tissue, however, is complicated by the fact that tHe@Tsignal is influenced not only
by the concentration of MOls but also the optical, thermal, and mechanical properties obtssupling
the effects of MOI light absorptiofrom other influence parameters requires refined understanding of the
complex physics underlying the FOCT signas. To date, several theoretical models fo-®BTT have

been proposed.

In 2008, as the first thedreal model for PTOCT, the variation of the OPL as a result of a change in
the temperature field was moddieg]. In this work, the solution dieat conduction equatidiq. (1.5))
asaresult of PT laser excitatiorwas used to estimate the OPL in liquid samdksce the focus of this
study was offiquid samplesno mechanical strain/stresguationsvere generated he result®f themodel
showeda good consistenayith the experimentd®T-POCT signad from liquid phantoms inside a channel.
This work could present the proof abnceptof PT-OCT successfully. Howevethe missing point in this
model waghe ability to model multilayer sample. Additionally, this model assumed sangpés a 1D

space that neglects the effect of vicirargaon the PTOCT signal.

In 2015, a more complexnodel in 3-D spacefor the PTFOCT signal in solid phantoms was
proposef’7]. In this work, after calculating the illumination distributi@mnd the thermal and the
mechanical stresstrain fields, the OPL was calculated in a homogeneous sarhglislonte Carlo method
andtleGr e en 6 s f u werdempbopedmitéstmbdeldo estimate the light field and the temperature
distribution in the sample, respectively this model, no analytical solution fdre mechanical field was
proposed.The advantage of an analytical solution for a physical system is that the significance and the
behavior of each parameter in that system cannderstoogdclearly. This model served to improve the
reconstruction of deptlesolved PTOCT signal acquirefom a single layer sampla vivo. The missing
point in this study was that @mrametricstudy was done on different inputs to indicateréfiation between

inputs of the model and the FOCT signal as the output.
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A more refined model of RDCT in quasiheterogenous muitayered samples was presenteld &).
This model combined the individual components ofgghetothermalprocess to investigate tleéfects of
PT laser power on measured-BCT signalln this model, the light fielevascalculated in the sample with
the Monte Carlo method in 3D. Also, to simplify the equations, the thermal field wasedod#&ID spae
along the depth of the sample. Validation results proved that Weesa great consistency between the
model and thexperimentaPT-OCT signakeceivedrom multi-layer samples some imaging conditions
A limitation of this modeivasthat the mechagcal expansion of the samplasmodeledn a very specific
conditionin 1-D spacdalong the axial directignneglecting key elastic mechanical properties of a sample
such as Poisson ratio or the mechanical stiffness of the surrounding madditionally, heat flux that
occurs between the layers of the sample was not considered in this Waefore, withoticonsidering
such important phenomena, this modalild not provide enough accuracy to study the@®QT signal in

general conditions.

More recently, an interesting work on interferometric imaging of thermal expansion for temperature
control in retinal Iaer therapy was publishg®]. While the f@us of this workvason determination of the
optical and thermal parameters of midtyered tissue via fitting of experimental data to a proposed
comprehensive theoretical model, it highligéhthe feasibility and the need for similar comprehensive
modelsin the field of PTOCT.

Our grouppreviously used a-D thermalwavebased model to study the effects of PT laser modulation
frequency on PIOCT imagef80]. To model te t her mall field, Greends func
frequency domain to solve the heat conduction equafibmugh this modelit was shownthat the
amplitude of the PTOCT signal is inversely proportional to the square root of the modulation frequency o
the PT laserOur teamalso investigated how an increase in modulation frequency of the PT laser improves
the ability to detect two adjacent pcemibsorbers (aka. resolution). The key message of this work was that
a compromise between the signal amphtughd spatial resolution should be considered to select the
optimum modulation frequencidighermodulation frequencywhile reduéng SNR, improves the spatial

resolution in PTOCT images.

Combined, existing PDCT models developed loyr teaniB0] and other$8, 77, 78]offer key insights
for better understanding of FOCT signal, yet take limiting assumptiotisat hinder their use for

guantitative PTOCT imaging of tissueMore rigorous theoretical models are needed to enable:

1) better understandingf ahe effects of system parameters and tissue -thygionemechanical

properties on experimentsignak.

2) knowledgebased optimization of experimentatisinategies.
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3) guidanceof reconstructioralgorithms fordepthresolved prediction of tissue chemicahgaosition

information.

To address thedimitations in this chapter, wwill presentwo modelsfor PT-OCT from two different

points of view.

In thefirst mode| we take the first step in understanding the relation between composition-@dPT
signals by considering the interplay between dgptomaophysical properties of tissue as a function of its
composition. We develop a theoretical model estimating th®ET response in a twoomponent tissue
like sample. We then present experimental®dT results of mayonnaise (mayoltrasound gel mixtures
at various component ratios. Mayo was chosen to mimic therlighdnecrotiecore material present in
atheromatous coronary atherosclerotic le§®hs82] Mayao, actually,is primarily composed of lipids,
which provide an absorption signature that can be targeted wvi@@T and its lipid composition is similar
to that of he atherosclerotic plaqyé4, 82] Since the composition and lipid content play a critical role in
determining the propensitf a plaque to ruptuf@3], PT-OCT may offer the prospect to leverage the same
contrast mechanism as those used by near infraestkspcop§B4] and photoacoustic imagif&1, 32, 85]

(i.e. absorption of jpid) for plaque composition imaging, albeit with much finer resolution.

In the secondstudy we propose a comprehensiweodel for prediction of PTOCT signal in
heterogenous multayer samples considering the opb@rmaemechanical properties of all slices irD3
The proposed theoretical model has a serial hierarchy with 3 blocks for predicting the OCT and PT laser
light fields, determining the induced thermahve field upon absorption of PT light by MOIs, and
evaluating the subsequent thermechanical expansion field due to the induced temperature change in the
sample.For simplification, the model ignores possible coupliegween the three block§he output of
these blocks is then used to calculate the variation in the OPL resulting from the mechanical expansion and
the temperature dependence of the refractive index and subsequently the variation of the OCT phase with
time (aka, PTOCT signal). As this model is generated on rdalier and in & space, it allows us to
survey the effects of the thermal and mechanical
modulus, on PFOCT signas. Moreover, by consideng the induced thermal field as a thermalve field,
the model can reliably predict the effects of PT laser parameters (e.g., modulation frequehey)Ten
OCT signalTo gauge accuracy of the modah experimental parametric study is carried outthsmlissed
to realize the significance of the influence of PT laser power, modulation frequency, location of OCT focal

plane, and thermal and mechanical boundary conditions on t@HTsignal.
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2.2 Effects of Lipid Composition onPhoto-thermal Optical Coherence Tomography
Signals

2.2.1. The theoretical model

As we explained itChapterl, lipid is the main chemical of the atherosclerosis plaquess reported
that the lipid content is different at variougrowing stages oftherosclerosis plaqués, 87] The
motivation of this model is to quantify the lipid concentration in samples using the receNg@@Pignal.
Figure18(a) is schematic representation of processes that take place upon absorption of the PT laser in a
PT-OCT system (e.g., absorption of 121 laser by lipidwater mixtur¢31]). Absorption of intensity
modulated PT light results in production of heat,, which subsequently diffuses into the molecular

matiix, forming a localized thermal wave field modeled by thehsat equatiofEg. (1.5)).

Previously, the generated thermal field in a sample as a results of laser excitation was solved using the
bio-heat equatidi88]. In this work,the boundary conditions were defined to insulate the boundary of the
sample, thermally. The general solution of theligat equation wittheeigen function method was not in
a closed form solutionHowever, under some resonable assumptisnclosal form solutiors can be
obtained for some specific conditio®r small PT spot sizesomparedo the absorption depth (in our
experiments: PT spot size =30n at 10dB vs 1/ =1 cm), the amplitude of this temperature
modulation Y Yaat the center of the PT beam is expressed byZEQ[g8]:

o N o
Y'Y —lJdp —— 8 <P

0 0w ..

TR I'Tp
Here0 is the PFlaserpower, i s t he medi umés abs claserwavelangth;c o ef f i ¢

its thermal diffusivity” its mass densitypits specific heat capacityy is the waist of the PT laser beam,

and 0 is the laser exposure time, taken as half of the PT laser modulation cycle, assuming a square

modulation.The thermal diffusivity( Ij” e is the thermal conductivijyappeared in Eq. (2.1) is a

material poperty tharepresentshe rate of transfer of heait the sampldrom the hotspot created by the

PT lightto thesurroundingA key assumption in derivation of Eq. (2.1) is neglecting the scatteriRg of

light in tissue. For the sake of our estimatiothie field of PFOCT,assumption ofmabsorption dominated

light field is reasonable becaukere PT light is intentionally selected at a wavelength that is significantly

absorbed by the molecule of intereldibwever, neglecting scattering of PT lightnceesult in slight

overestimabn of thePT light fieldin the sampleBy expanding the logarithm in EQ.1) as a power serigs

Y”Ycan beexpressed in form gdroduct of variables
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The nonlinear terms of the power seriéggwever, can be neglected under certain conditions. A case in
point is wken thePT beam is large (i.e., large , inducingplanar hermal waves at the center of the
beam In such caseshe value of higher order ndimear terms become small; therefdog,neglecting the
nortlinear terms andising the definition of beam intensit®( ¢0j “c ), thefamiliar expression for
temperatre change followingontinuous wavéaser excitation can be reach8dY © 0j” @n PT
OCT, while the PT beam size is larger than OCT beam size, it is normally not very large. However, in PT
OCT, the PT laser is modulated at high frequencies whickturn make thé small. As such, similar to
the previous case, the higher ordertiorar terms can be neglected to reach a simple expreEsjof22),
for estimatinggeT in PT-OCT. Eq. (22) suggestshat for a given PTOCT setting, only parametess” and
‘ areaf fected by samplebs composition. Consi-dering
component mixtui@9, 90] the value of a given parameter can be modeled as:

- - -y — - wy - h W W m HEQ- —8 @

Here—is the concentratiodependent materiglarametefe.g.,” ), W is the relative concentration with
respect to a 1:1 mixture, ard — are the values of the matenmrametersf pure individual components,
respectively— is the contrast of the rtexial property in the tw@omponent mixturgvhich determinethe
sensitivity of the parameter to variation of concentratitsing Taylor expansiotY,"Ycan then be expressed

in terms of concentratiedependent material parameters as:

v ~ ~
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Eq. 24) lies at the heart giroposed theorgnd suggests that the temperature variation resulting from
PT-laser illumination depends on ntrivial interactions of multiple physical parameters. Only when PT
OCT imaging is carried out on agueous samples containing relatively low amounts of exogenous agents or
dissolved molecukew i | | &T depend | i ne(.g.|lwprksoaportedlid,i75). Tmb ncent r
is so because in these scenarios changes in concentration do not lead to considerable change in density and
specific heat capacity (i.e’, e & e ), making the coefficients of ndmear terms in Eq.24)
negligible. This linear prediction aligrwell with the results reported to date on different concentrations of
ICG-water mixturef®1] or those on blood oxygen saturatjéd]. Variation of concentration in biological

tissue compounds (e.g., lipid), on the other hand, results in considerable change in density and specific heat
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capady, leadingtonod i near vari at i on [3f Thesdegree oftthis neineantgis nt r at i
determined by the contrasts of the componentos pr

Once @&T is induced, the volume and t héangeocal
(Fig.18(a)), and the optical path length differerx@ 0 @&s a function of relative concentratian, can be
found aq80]:
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Here, Y is the initial temperature of the samﬁﬁé:sn -@thethermoopﬁc coefficient, andl is its linear
thermal expansion coefficient. Considering the range of values of parameters af5dn piological
systems (see Table 1), the quadratic ter¥"dfs negligible compared to the linear term. Therefore, the

Y0 0 tneasured through the phase signal of OCT is directly proportional to variations in temp¥fature,

Tablel Optothermaphysical properties of components usethim experiments arttie simulations. These
propertiesappear in th@roposed solution of the biweat equation in Eq. (2.1).

Property (unit) Water Mayo
Absorption coefficient’ (& 100 [31] 160 [31]
Density” (QTh ) 1000 910

Specific heatO((F0 "® ) 4184 2450  [93, 94]
Thermaldiffusivity / (n?/ s) 0.145¢10° 0.110<10° [89]
Refractive index 1.34 [80] 1.49 [95]
Thermooptic coefficient— wp pr I LoppT

[95]

Linear thermal expansion coefficignt(Q ) prmrmp T [80] PTTTP T
[96]

2.2.2. Simulation

To get a better understanding of the predictions of the developed model we simulatedGfd PT
responses of various ratios of mayater mixtures. The optthermoephysical properties used foure
mayo and water (i.es and— ) are depicted in Table 1. The simulation results of the normafizedl as
a function of mayo concentration are plottedfigure 18(b). When considering a mixture in which the

properties of the solvent adominant { e @ e T), the change in the concentration predominantly

32



induces a change in the absorption coefficient of the PT light. Under this condition, lesaoterms of

Eq. 2.4) become negligible, resulting in a linear relation betwé&fandconsequently 0 0Eq. .6))

and mayo concentration as experimentally observed by other §fdufiy. However, when the sample is
considered as a compound of mayo and water, the material properties are determined by the weight
percentage of its components, E33]. Since there is a pronounced difference between thettoptime

physical propertiesf mayo and water (Table 1), parameters®, * in Eq. @.4) are all considerable,

leading to the notinear variation ofY"Ywith mayo concentration seen figure 19(b). Furthermore, the
refractive index, its temperature dependence, and thengigpa coefficient in Eq. 25) are also
concentratiordependent (see Table 1) and contribute to thelinearity of Y 0 .0Consequently, unlike

the linear behaviors reported to date on samples with exogenous agents or dissolved molecules in aqueous
medig[74, 75] the general variation 0 0 Wvith the concentration of one tissue component islimear.

Another notable point ifigure18(b) isthesmalV 0 pr edi ct ed for water (i .e.,
moderate absorption at 1210n[31]. The reason behind the sm¥li O for water is the large heat capacity

of water acting against the rise of the temperature as well as the cancellation of contributions of thermal
expansion w1 w , and herno-optic coefficient— w , to OPL-changes. The small O of water is

spedfically important for PFOCT of biological tissues that generally have high water content because it
helps with the detection of POCT signatures of waterless tissue components above the srralCPT
signal baseline from water. Therefore, in-OTT, thelarge absorption coefficient of a component does
not necessarily lead to a strong-BTT signal and, in fact, the optimization of BT experiments needs

to take place by considering the interplay between thetbptonephysical properties of tissue.

Temperature PT Laser Beam 30':2:21252'; I I ‘ I -
Hig e e 25 |- A aT=Eq. 4 A
\ 1 ‘é‘ AT=Eq. 4;11,(100%May0)=p,(Pure Mayo) P ¢, Q
Low ‘'L I Ly € 20 10— AT=Eq. 4;1,(100%Mayo)=y,(Pure Mayo)X36 2”77
\ 52 I n<n; :15 * Experiment 27 ’/ o i
00 0eq 5 O 5
Q 10 & a7 - ]
ce0®ee333 " SO o
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. . 1 . * _ :3” =8F"
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(a) Zone2  Zonel (b) %Mayo

Figure 18. (a) Schematic presentation of sequence of physical processes taking plage@@T Ripon absorption of
PT light. The raised temperature in the sample leads to change in OPL near th@pMQ@imerical and
experimental results for &OPL as a f uTheronlimear bahdviorc oncent
in the experimental dataset is followed with the presented model.
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2.2.3. Experimental Validations
2.2.3.i)experimental setup

(Note: In this section, we explain the FOCT setup that we designed and assembled in our lab. In the

following sections and chapters, to prevespetition wesimplyreferto this section.

To experimentally verify our theoretical predictions, deelopeda sgctrakdomain PTOCT system,
employing broadband light of a superluminescent diode centered ahd8#3 75nmat 10dB; Exalos,
Switzerland), a 204ixel line scan camera spectrometer with a maximum acquisition rate okHz47
(Wasatch Photonics; USAand an intensitynodulated singlenodephotothermallaser In our setup we
installed3 PT lasesilluminating at 806 (30mW- Thorlabs USA), 1040(500 mW- Innolume Germany,
and 1210nm (500 mW- Innolume Germany. The schematic of our setup is plottedfigure 19.a The
output OCT light is directed to the beam splitter by an optical circulator. The PT laser is also connected to
the other input head of the beam splittdrhese two light@aremerged and split intbwo beams (i.e., the
reference and the sample arms) after passing through the beam $plittersample arm, the output light
in the fiber is directed tareflective collimator (ThorlahdJSA). The collimated beanin the sample arm
(seeFig.19(b)) is focused on the sample surface by the objective lens (LSM02, Thddabs. The 2
DOF Galvo mirror isalsoused to raster scan the sample surface with the laser beams. In the reference arm,
the light illuminates a goldoated reference mirror aftekiting from the collimatorTo compensate the
dispersion as a result of passing the light from the objective lens in the sample arm, the dispersion
compensation block is installed in the reference @ynchanging the polaraion of the light in the
reference arm witthe polarization controllanit (Thorlabs USA), thepolarization of the reference beam
is matched with the polarization of the sample betine reflected lighof these two arms merged again
in the beam sfiter and is redirected to the spectrometer by the optical circulattire pectrometer, the
spectrum of the received signal is digitized and sent to the PC for proceRssmd¢wo views of the
assembledystemat the HBO lab, York University ashownin figure 19c),(d).
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Figure19. Schematicand assembled views of the designed and deveBp&CT setup in this thesis. (a)
Schematic of the PDCT setup including: superluminescent diode (SLD), optical circulator (OC), spectrometer
(spec) an@048pixel line scan camera (LSC), phetieermal laser (PT), 50:50 fiber coupler, polarization controller
(PC), collimator(C), dispersiocompensation block (DCB), reference mirror (RM), reflective collimator (RC), 2
degree of freedom galvo mirrors (GM), and objective lens (OL); (b) Detailed view of the sample afd). {ajo
views of the assembled FOCT system.

The flowchart of signaprocessing for PTOCT signals is plotted ifigure 20. To form the tomogram
of the sample, in light of Eq1.1) and Eq(1.2), we need to capture the OCT signal-splace (wavenumber
spaceg “7_), then convert it to the-gpace (physical length)o do so, fier loading theeceived signal
on the PCthe captured background is subtracted frofilie background subtraction removesittiensity
of the reference bearte(mlgin Eq.(1.1)). In thespectrometer, samplirnig the wavelengtlvas irdeed in
aconstantnterval.Oncethe wavéengthconverted tahewavenumber, the sampling interveds no longer
constantUsing linear interpolabn, the signais resampled linearly ik-spaceThis resamfing with linear

intervalallows us to use FaBourierTransformation (FFT)By applyinginverseFFT (FFT) on the signal
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in k-space, the signal converts tespace(Eq. (1.2). The amplitude of complex numbers proohgcby
iFFT forms the OCT amplitude image. The phasecomplex number&or each pixel ovetime (M-scan)
is the basigor forming PT-OCT images. Due to the DC term in the thermal field, there is drift line in the
variation of phase over tim&o removehesignal dift, adifference in temporal direction is applied on the
signal.Removing the signal drift gives us the phasedulatingthat is generated due to the modulatdn
PT laser powepn the sampleBy applyingFFT on the phase modulation, and calculating the anciglaf
resuts, the spectrum of the phase is obtaingdentually, bycarrying outlock-in demodulationat the
modulation frequency of the PT laser, and uding (2.7)78], the pixel amplitude in PPDCT image is

calculatedusing following equation

s h

an

0 & N (2.7)

e

Hereq)sis the normalized FFT amplitude of ttiéference of thgphase signal at the PT laser madiigin
frequency of 'Q _ is the center wavelength of the OCT laser, a0ds the acquisition time for one-A

line.

Considering th@bsorptiorband of theMOl, one of tke PT lases is powered onThe axial and lateral
resolutions of OCT imir were meaured ad.0 um and11.5um, respectively. The OCT and PT beams are
concentric and egcanned, and theiWHM spot sizes are [fm and8.5um (30¢ nmat10dB attenuation)
respectively. Using a commoipath reference, a displacement error ohf at aSNR of 35 dB was
measured, which is close to that of a shaiselimited systen®7]. The methods and results of

characterization of the setapepresentedn AppendixA.
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2.2.3.ii)) The phantoms

To prepare various dilutions of the lipigater compound, droplets of mayo and ultrasound gel with
appropriate weight ratios were dispensed in a petri dish and stirred well to make homogenous samples at
five different weight concentrations of mayo (100, 88, 25, 0). The scattering of the 0% mayo sample
was adjusted to those of other mayo concentrations using titanium dioxide plovadtitition, to examine
the efficacy of the system in detecting lipid in tissue, pith atherosclerotic plague was makéd by
injecting 95% mayo compound into fresh normal bovine cardiac muscle. A similar sample was also
prepared using 40% mayo compound to examin®RIT systembés sensitivity to
tissues. The thickness of the cap above the-ppidl for the 40% and 95% mayo simulated plaques varied
between 11@um to 360um and 14Qum to 280um, respectively. These simulated cap dimensions are

comparable to those encountered in vulnerable coronary pfaglies

2.2.3.iii) Imaging protocol
In the study, as we chose lipid as MOI, and since lipid has a peak ahd@fhCabsorption bar{@1],

the 1210 nm PT laser with a power on sample 18V was connected to the setup.-BTT experiments
were carried at an-fine rate of 21.6 Kz for OCT spectrometer. Each-btan consisted of 5000 data points

acquired in ~230 ms. The PT signal is sinusoidal and modulated at 500 Hz.

2.2.4. Results and discussion

Figure 2 depicts results obtained from samples at various mayo concentrations. Conventional OCT
images of panels-a cannodiscern between different concentration of mayo/lipid. The root cause of this
limitation is the fact that conventional OCT forms images based on elastic scattering of light which
originates from discontinui ti ehan based on theepreseace efrai al s C
characteristic molecular marker of the disease. Hence, tissues with very different composition may have
very similar OCT structural signatures. A case in point is the identificatitmedtiin capfibroatheromas
(TCFA), chamcterized by the presence of a necrotic core and extracellular lipid, and their differentiation
from less vulnerable pathological intimal thickenif@$3. Both plaque types bear similar structural features
when imaged with intravascular OCT, complicating the identification of plaques at increased risk of causing
future adverse events. TheICT images of panelsjf on the other hand, clearly show theosty direct
correlation of PTOCT signal strength with concentration of mayo/lipid. The@®JT images ofigure21,
gualitatively, suggest a ndimear variation of PIOCT signal with concentration. The normalized average
PT-OCT signals of each mayo conaetion is plotted irfigure 19(b) together with the simulated results.

For the dilution experiments, the average of the pixels in thl®@T B-mode images were normalized to
that of the 100% mayo sample, as seefigare 19(b). The nonlinear variation ofPT-OCT signal with

%mayo is evident in this plot, as predicted by the theoretical model. Another key observation is the
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significant underestimation of the FOCT signal for 100% mayo when only considering the absorption
coefficient ( ) to be concentrain-dependent in the model. In such a singdeiable model, a 36mes

higher absorption coefficient is needed for mayo to achieve ®©®T signal comparable to the
experimental value. The reason behind this discrepancy is that in practicé batid &0 play an
intensifying role based on E(R.4) in producing a large¥"Ycompared to the case where concentration
dependence ¢f and® are neglected. Also note that while the +lioear trend of variation of normalized

Y0 0 dvith %mayo is reasably close to the predicted theoretical values in the-26986 range, the
experimental PIOCT signal deviates from the predicted theoretical trend at 0% (i.e., water) because the
measured PDCT signal is dominated, in this case, by the noise floor iOME phase channel.

(e) 100dB 30nm

5dB Onm

Figure21. A comparison between OCT andICT inability to offer insight intaviOl concentrationOCT images
of samples with mayonnaise concentration (a) 0% (b)25% (c)50% (d) 75% (e)10d2&; Pimages osamples
with mayonnaise concentration (f) 0% (g)25% (h)50% (i) 75% and (j)100kte the OCT images are not
sensitive to the variation of MOI in the samples, the intensity of pixelsi®@T images is a function of
concentration of MOI in the samplesde bars= 5Qum.

Imaging results of the artificial lipidich plaques are shown figure 22. In conventional OCT images,
the boundary of the 40% mayo sample can clearly be identified in the OCT image of panel (a) while the
boundary of the 95% mayo, pargb), is diffuse similar to those seen in OCT imaging of the lipid pool in
human atherosclerotic plaq#80]. In either case, information about the composition of the tissue cannot
be obtained from theonventional OCT images. The fCT image of panel (d) is from the sample with
95% mayo injection (i.e., similar lipid content as atherosclerotic plg8lie82). The lipidrich pool is
clearly identified in this image. The FICT image of panel (c) is from the 40% mayo injection. Here the
subsurface diluted lipid pool cannot be reliably recognized as tHe@ITsignals are wiih the range of
noise floor. While the lipid content here is 42% of that of the sample in panel (d), the resuHB@QTPT
signal is only about 20% of that of the sample in panel (d). Thidinear variation of PTIOCT signal with
concentration is in comete aligjiment with the theoretical predictions of our model. Resulfsgoie 22
indicate that PIOCT has potential for offering key insight into tpeesence of subsurface lipith
materialin tissue; however, the interpretation of results seede carried ouvith careand by keeping

the nonlinear interplay between optbermophysical properties and POCT signals in mind.
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Figure22. The images of the artificial lipid plague sample with OCT andd&IT. Results 0OCT image of the
plague phantom with mayonnaise concentration (a) 40% @) B3-OCT image of the plague phantom with
mayonnaise concentration (c) 40% (d) 992%-OCT results has a correlation with percentage of MOI in the

sample, sale bar=10qQum.

2.2.5. Summay

In summary, thissection provides a theoretical model and a preliminary experimental study
demonstrating the feasibility of obtainiggiantitativeinsight into the chemical composition of biological
tissues using RDCT. The developed model and experita results suggest that the relation between PT
OCT signals and the concentration of an absorbing component in the tissudingagrand that the degree
ofthisnonl i nearity is determined bthermophgsicat prapdras,ast s o f
Another key conclusion of this work is that in®LCT a large absorption coefficient of a component does
not necessarily lead to a strong-BTT signal. Instead, the strength of the-®TT signal is highly
dependent on the interplay between tiptoghermaphysical properties of the tissue, all of which are
concentratiordependent. Our experimental results suggest the possibility of obtaining insight into the lipid
content of tissudike samples and may offer a pathway towards refined assessmatiitecosclerotic
plagues irthe future. In this potential application, decreasthgnoise floor in a cathetdrased PTOCT
system for iavivo imaging leads to improwveentsin the accuracyof detectimg lipid in atherosclerotic
plagues. This can be done either by tuning parameters-@@Timaging ordesigring the hardware so
thatit is more stablend suppressgmase variation. It should be noted that executing a complicated phase
stable system in aush small volume of catheter has technical challerigehis section, we have shown
PT-OCT signals contain information from which MOI concentration can be predidtechexiogical step
is to explorewhat other sampland systenparametersnfluence PT-OCT signas (i.e., the motivation
behind development of next theoretical work).

2.3.A 3D Opto-Thermo-Mechanical Model for Predicting PhoteThermal Optical
Coherence Tomography Responses in Multilayer Geometries
2.3.1. Theory

As we toldin the beginning of this chapter, a few models for®TT have been presented so far.
these mode|ghe mechanicaktrain/stress field, as well as the effect of vicinity aedated to the beam

axis such as heat fluwn the PTOCT signalneglected The notivation of the work in this sectionis
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generatinga new modefor PT-OCT that covers this limitation bgonsideing the effect of vicinity area

and the mechanical response of the samphe PTFOCT signhal.Based on the sequence of physical
phenomenaxplained inChapter2, Section2.2, we propose a model to simulate the®CTT signal in
samples in D space using cylindrical coordinatdéslayer refers to a homogeneous area of the sample
with uniform optethermemechanical properties, such a glass layer, d?olydimethylsiloxandPDMS)

layer. Then, we mesh each layer into a series of homogeneous slices with their own constant material
properties, stacked on top of each other. For simplicityrefer tothese meshes as skcaVith this
appoach, we can model both single and milajier samples. Boundary conditions impose continuity of
fields at slice interfaces. The flowchart of the proposed model is depictagliie 23(a). The model is
comprised of three computing blocks in series: Ifght, thermal field, and stress/strain field. Each block

is fed by the results of the previous block(s), system parameters, and material properties.

Coupling between the blocks, while physically possible, is considered negligible and ignored. In this
model, we assume that the sample is located between two fixed suppo28(fffgDepending on the
specific sample geometry, the top support may be a constrained sample surface, a constrained glass slide
on top of the sample surface, or an imaginary péotve sample surface in air. The fixed bottom support
is at the bottom of sample, at a depth well beyond achievable imaging depths. Samples canl&gemono
or multi-layer. Then the volume between the fixed supports, in cylindrical coordinates, is re&mdting
in a stack of disksSubsequently, the disks (slices) are assigned withtbptonemechanical properties of
the corresponding sample layers. This meshing approach ensures that the sample surface falls within the
space between the two fixed sopg which, in return, allows us to use the same boundary condition when
solving for the stress/strain field regardless of number of layers in the sample and boundary condition on

the sample surface.

In the first block, based on the optical properties of the sample and system parameters (e.g., PT laser
power and modulation frequency), the PT laser light field in the sample is estimated in 3D. The temperature
field in the sample is then determined in 8bnsidering the thermal properties and the light intensity
distribution in the sample. The output of this part is the variation of temperature at every point in the sample
over time. In the last block, the mechanical stress/strain field in the samphponse to the temperature
change and as a function of the material 6s mechani
and PTOCT signal are calculated from the mechanical displacements and the temperature changes. The
sections below depithe mathematical modeling of the three serial blocks. In this model, our approach to
solve equations ithe mechanicadtrainblock was elaststatic and ignored dynamic states and interaction

between thassociated dynamaffects.
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Figure23. (a) The flowchart of theproposednodel This model mainly consists of three main blocks, including:
light, thermal and the strain field. The material properties and experimental conditions and the output of previous
blocks are the inpubf the next block(b) schematic definition of heat affected zone (HAZ), themmechanically
affected zone (TMAZ), and the rigid zone in the sample as a function of thermal field in the.darttptemodel
the sample is sliced with a pile of disks aldhg depthjook at the definition of regions in the sample as a function
of the generated heat in the samf@.a top view of a slice and the location of elastic (HAZ+TMAZ) and rigid
zones in it.

2.3.1.))The light field

Assuming Gaussian beam propagation argate of scattering, the intensitgf light in the sample
can be expressed[461]:

o —Qdwn — . (2.9

Here,0 0 is the incident power of the PT laser on the top surfads,the absorption coefficiers
is the radiato the center of the beam at a specific deptlis time,andW s theradius ofthewaist of the
beam at each depth which can be estimatgdap

Od o p — . 2.9

Here, Z; is theaxial distance between a selected depth and the focal plapes the Rayleigh range,
andW; is the beam waist at the focal plane which is calculated as:
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A J— (2.10

Here an stands for the wavelength of the incident beams the focal length of the objective lens,
andW is the waist of the collimated beam incident on the objective lens. Projecting the beam on a sample

with refractive indexn, the Rayleigh rangeay can be calculated as:

0 — w0 . (2.19

Combined, this block estimates the intensity of the PT beam in the s&gpédhould reiterate here that
the above derivations are ignoring light scattering and assume that light attenuation within the effec
imaging depth of PIOCT is dominated by absorption of light. The rationale for this simplifying assumption
is that in practice the imaging depth of-BTCT is limited to at most the imaging depth of OCT, which is
on the order of few scattering mearefigaths. Within this imaging range contributions of scattering to the
light field are expected to be significantly less than when approaching the transport mean free path or the
diffuse regime. At these imaging depths, there would not be any OCT sighMde¢over, in PTOCT,
the PT laser wavelength is intentionally selected at a wavelength at which the PT laser is very efficiently
absorbed. These considerations motivated us to assume an absioptioated light field for our
approximation. It shouldlso be noted that the POCT depends on the modulated (AC) portion of the
thermal field and not the bulk temperature rise. This point is important because the AC portion of the
temperature field is attenuated exponentially in spatial directions. Thhs@ption of scattered light that
is more than a thermal diffusion length (e.g., 4.3um at 242 RT laser modulation) away from the OCT
beam axis is not expected to contribute significantly to the measur@LCHsignal. Light scatteringan
however, ceate an offset error in the proposed model. A potential remedy to this limitation of our model is
to convolve model predictions with an empirical spread function to account for scattering of light (as shown
in Ref79]).

2.3.1.ii) The thermal field

A

Absorption of phot ons 6 e n e thg yampgley Thengaitiat diffederdiad g en e
equation governing the thermal diffusion field in thab@main i$102]:

YR O -—="Y -0 —0 38 (2.12
WhereT is the temperatur@, [3;z] is vectorial distance to the center of the bédimthermal diffusivity
of the mediump is the thermal conductivity of the medium. Since the heat sddmmeginates from an
intensitymodulated PTlaser excitation, it is more convenient to solve the kgaation in the frequency
domairj103]. After applying FT on Eq.2.12 with respect to time, the heat equation is converted from

time domain to the frequency domailf?]:
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—h .1 —h -0 h —0O h 8 (2.13
Here—is the temperature in the temporal frequency dontais,the heat source distribution in the

frequency domairiQs the intensity in the frequency domain gnid the complex wave number which is
defined apl02, 103]

” — -p >\ (2.19

Here,' —is the ther mal di ffusion |l ength. Using th

equation (Eq.4.12), the temperature field for a seinfinite volume in frequency domain can be obtained
aq102]:

~

¢— R -a 00 | b O — — OQY. (2.19
In the above equatiof is the threed i me nsi onal Gr e-©@Totke pénatmation depihn . I n
of the PT light is usually shorter than the thickness of the sample, so a homogeneous sample can be
considered as a setinifinite medium. For a seninfinite medium and homogenotlermal properties
slice, the gY02ed4d6s function is
Nj

0 — 5 5 N (2.16

Wherel oro, o, 2) is the location of the heat point source, andi h—h & is its mirrorpoint
corresponding to reflection at the top surface. The result of the temperature field in frequency domain can

be converted to time domain using inverse Fourier transformation as fdl@8jis

v ! b
vy oo

— h Q Qb (2.17)

In multi-layergeometries, the heat exchange between layers with different thermal prdoéféesnt
materials)s considered by taking the thermal effusivity at the boundary of two adjacent layers into account.
The thermakffusivity (Q T " )ds a thermal materigroperty thameasursthe ability of a materiato
exchangeheatwith its surroundinggi.e., other layers with different materiasg heatflux. However,to
calculatethe thermal waves inside a laysmsising of a singlematerial in light of Eq. (212), thethermal
diffusivity (| Ilj” Joof the layer isnormally used As anexample,in modeling of aratherosclerosis
plaguesample the thermafield inside the lipid pool is estimated using the thermal diffusivity of lipid.
However the effect of théneat sink that occurs because oftikat flux between thiglood flow on the top
of the plagueand the plaquesan beestimatedy consideringhe thermal effusivitynismatchof the plaque
and the blood
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The heat fluxeffect can be applied in the model by superposing the temperature field in absence of any
heatflux with the temperature distribution in presence béatflux. Assuming perfect thermal contact, the
temperature at the contact surface of two layers @ygrl and layer?)Y is estimated §$05]:

A A— (2.19

Here e stands for thermal effusivity. The generated thermaldlirxterms of the distance related to the
top surfacegx ¢ Scan then be calculated as:

Rol— s—"; 2.19

Once the thermal flux at boundaries is calculated via E49); the updated temperature will be
calculated with Eq.2.15[102]. The accuracy of thisuperpositiormethod was testl with a precise
numerical solution obtained wifimite difference method (FDM)n AppendixB. The ultimate output of
the subtraction of the thermal field from the heat flux is the 3D temperature field of the multilayer geometry,
T(@ ).

2.3.1.iii) The mechanical stress/strain field

To estimatehe thermeelastic expansion of the sample as a consequence of the temperature change, the
sample igadially divided into three zone$-i(g.23(b)). The cylindrical zone concentric with the PT beam
where most of temperature rise takes place is named thaffezted zone (HAZ). The zone outside of
HAZ that is not significantly affected by the temperature change, but still mechanically contributes to
thermoelastic expansion as an impedance is named thereohanicallyaffeced zone (TMAZ). These
two elasticzones are surrounded by a rigid zone in which temperature rise and-#lastio expansions
are considered negligible. Eige 23(c) shows the location of these three zones in a top view of a slice. To
find the radii of HAZ and TMAZ, first we find the mamum temperature amplitude inside the sample. A
10 dB radial drop in the temperature amplitude at that depth defines the HAZ radius for all depths
(Fig.23(h)). The radius of TMAZ is defined as 10 times that of HAZ (thicdled cylinder condition)Note
that series of simulations were done to justify this selected ratio between HAZ and EMdiAblein
Appendix C. Outside TMAZ is the rigid zone where no material is displaced. Using constitutive
thermoelastic equations in the cylindrical coordinate systemd assuming an axialgymmetric
problenj106, 107] the radial and axial displacemenisi) under assumption of these boundary condition

(B.Cs) are (sedppendixC for more informatioj
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The goal of above system of equation is to estimate the displacement field by meshing the sample along
the depth into a stack of disks witte same radius. That is, in above equations nonuniformity in distribution
of axi a,) duestd theermlgradiett along the depth is ignored (B.C.4 and B.C.5). This simplifying
assumption enables the model to focus on calculation of normal stresses and strains as main contributors to
changes to the axial physical length of each slice (eeded for estimation of OPL). In addition, the total
strain along the depth is considered to be zero (B.C.6.), assuming that the distance between the top and
bottom sample supports is fixed (i.e., to satisfy continuity in axial direction). The stepwyeotisede
equations are explained in more detail inAppendixC.

2.3.1.iv)PT-OCT signal

PT-OCT works based on measurement of the change in OPL as a function of depth and at the center of
HAZ via the timelapse (Mmode) OCT phase. ORk defined as the product tife refractive index and
the physical length of each HAZ slide,

wO00ED &08 (2.21)
The new length of all slicds,, is calculated from Eq2.20. Changing the temperature not only alters
the length of HAZ, but alsaffects its refractive index:

€ € —w"B (2.22

Where,— is the optethermo coefficient of the sample. Finally, the change in the OCT ghasan

be obtained by:

W %o

(2.23

Here _ is the center wavelength of the OCT laser. The detected signal HCHTsystem is the

cumulative effect of phase variation at each slice.
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2.3.2. Experimental methodology
2.3.2.i)The PTOCT setup
The setup is explaidein detail inSection2.3.i andfigure 19. We should adthatthe 806nm PT laser

was used with a Bi\W power on the sample.

2.3.2.ii)) The Phantoms

For evaluating the accuracy of the modelo kinds of phantoms were prepared. The first kind used
PDMS SYLGARD184, DOW, USA as the matrix material. The two parts of PDMS (base and curing
agent) were mixed in a ratio of 1:10 by weight. To enhance light scatteringg #&nium dioxide (TiQ
Sigma Aldrich, USA) was added tom! of curing agent before cdsimation with the base; the particle
curing agent mixture was then shaken in the ultrasound bath for 10 minutes to make a homogenous liquid.
A dye (IR-806, Sigma Aldrich, USA) which is soluble in methanol was selected as the absorber of the PT
laser lightat 808nm. Using a UVVIS spectrometer (Shimadzu, Japan), the absorption coefficient of a
solution of the dye with a concentration of 19r88/ml was measured (Tal. The dissolved dye in
methanol then was added to the PDMS mixture and was stirredAftetl pouring a mold with the PDMS
sample and degasification for 15 minutes, the mixture was put on the hot plateCatorQOh to cure.

Finally, the cured sample was ejected from the mold. Four phantoms with 0.22, 0.43, 1.3,ragth.2
absorber cacentrations were made. The second kind of phantoms used plastisol as the matrix material. In
an aluminum dish, 10 ml of liquid plastisol was heated up on a hot plate f€1Iben the dye solution

and 25mg of the scattering powder were added to théngpplastisol and stirred well for 2 minutes to

make a homogeneous mixture. Next, this mixture was cast into a cube mold and was cooled in air to solidify.
The concentration of the dye in this sample wasnig2nl. To make a muliayer phantom, a slicef o

PDMS absorber layer was sandwiched between two layers of standard glass slides. These layers were
bonded together mechanically via clear tapee thickness of each absorber layers (4 PDMS and 1 plastisol
samples) was aboutcin.

2.3.2.iii) Imaging protocol

To image samples, PT laser intensit\asmodulated irtheform of a sinusoidal waveform fromr@wW
to a set maximum power (for example 0 tm®/). In all experiments, 1000 points over time-¢khn) at
an Adline rate of 21.&kHz were captured from each point on gample surface (duratian 46 ms). The
PT laser was then turned off for 46% before acquiring the ¥dcan data of the next point on the sample

surface, laterally spaced from the previous point by 5 pm.
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2.3.2.iv)The Simulation and the input parameters

To examine the performance of the model, using the generated equasienss of simulations under
various conditions were performed. These conditions can be divided into two categories, including:
conditions which relate to PT illumination parametard anes related to material properties. In the first
category, the power of the PT laser, the frequency of the PT laser modulation, and the lottegisangble
with respect to the focal plane were studied on the same sample. The second simulationaratsigted
of simulation of: a singkdayer phantom with various concentrations of absorber, a-fay#r phantom
submerged in different liquids, and an absorber layer sandwiched between layers with different mechanical
stiffness. These simulations weoarried out under identical illumination condition. Simulated and

experimental signals were processed in the same way.

The inputs to the simulation were sample properties and system parameters. Those that could reliably
be measured (e.g., beam size) waeasured and are depicted in Tabl&or parameters that could not be
reliably measured, we used an optimization code to find optimum values (e.g., thermal conductivity,
thermal expansion coefficient, etc.). Through this code, we tried to minimize feeedde between
simulated and experimental signal by defining the goal function based on the root mean square error
(RMSE). It should be pointed out that in this optimizati@anPT-OCT signal data from an individual
experimentwas selected. This selectedral dataasis marked with a green arrow in Fig.24(&).the
optimization procedure, considering the reported values in references for each parameter, a reasonable
scanningrange was defined fazachparameterAt each step of this proceduriae value of only one
parameter was changed withire predefined rangether parameters were kept constant) wihieeRMSE
between thexperimental signal and the simulated signal was calculakesiprocess was repeated for all
parametersEventually, the valuethat generated smallest RMSE was selected as the optimized values for
inputs of the modelOnce the missing parameters/properties were found from the single experimental
dataset, values were used for all subsequent simulations/comparisons. The optinigedne compared
to literature values in Table 3. Here, the scanning range of parameters corresponds to doubling of MSE in
each direction with respect to MSE of the optimal values (i.e., the global mininistussion on

uncertaintyof predictions candfoundin AppendixD.
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Table2. Values for experimentahput and material propertiesedin the simulatiorand the experiments. Some
parameters in this table were measured directly. The other paraaretegorted from other references.

Parameters (Units) Value

PT Parameter

Absorption coefficient (cm?) of dye with concentration of (19.58mg/m 89.04

PT laser powePi,. mW) 0to4.5

PT laser wavelengthr(m) 808

PT laser amplitude modulation frequerf@iiz) 500-1000-15002000-2500
PT Laser beam radius after collimator (mm) 25

OCT Parameter

OCT center wavelengthnm) 1315

OCT lasempower (mW) 30

Sample Parameter

Young's modulus of PDMS (kPa) 400 (reported 3687(108])
Young's modulus of Plastisol (kPa) 70 (reported 400[109])
Young's modulus of BK7 Glass Fa) 90

Table3 The values of material properties in the simulation for PDMS and plastisol. For each materiatintieed
values the scanning range in the optimization procedure angepiwrted values for matergdrelisted

PDMS Plastisol

Optimized Optimized
Material properties valugscanning valudscanning
(Units) range] Reported value range] Reported value
Refractive index 1.4[1.34;1.46] 1.4[110] 1.491.39;1.51] 1.45[111]
Thermal
conductivity 0.11]0.128; 0.06[0.78; 0.060.12
(W/mK) 0.098] 0.15[110] 0.049] [112]
Specific heat 1.08/0.089;1.80 1.162.65
(kJ/kg/K) 1.20.093;1.85]  1.46[110] ] [112]
Density (Kg/nf) 964870;1370] 970110] 958830;1340] 962113]
Thermaooptic -460x10°[(-520; -400 x10°f[(- -340 x10°
coefficient (K% -395)x109 -450x10° [114] 460:350)x106%  [115F
Linear thermal 230x10
expansion 310x10 6(180;255)x10  50-200x10°
coefficient (K%) 6(286;334)x10]  320x10°[116] § [117]
Poisson ratio 0.4[0.37;0.43] 0.5[110] 0.4[0.37;0.43] 0.6[118]

a/alue for silicone since this value could not be found inliteeature for Plastisol.

2.3.3. Results and discussion
2.3.3.i)Effect of the PT laser light field on the f&XICT signal
To study the effects of the PT laser parameters, a sample witlgh# of absorbing dye concentration
(e=10cm?) was defined for the simulationoTverify the simulation results, a series of experiments with

matching conditions were performed on a fabricated phantom. First, to study the effect of power of the PT

laser, the sample was illuminated by the PT laser at 5 different levels of powef7(®.41Q 3.6, and 4.5
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mW). In all these cases, the focal plane was aligned with the top surface of the sample, resulting in highest
intensity of the PT laser on the top sample surface. Simulated@T signals and smoothirfdtered
experimental signals versus depth at varipower levels are plotted ifigure 24(a). Both simulated and
experimental signals exhibit monotonic increase with depth. This trend is due to the cumulative nature of
PT-OCT signal in a homogenous layer with the signal amplitude at each depth encodiffgahef all
preceding layers. It can also be seen thaOETT signhals exhibit a jump in amplitude at the sample surface
(i.e., the ¥intercept) followed by an increase in signal values along depth. The rate of increase in signal
values is higher at demltloser to surface because in these experiments and simulations the top surfaces
of the sample are exposed to higher intensity of PT beam than deeper sample areas which results in larger
thermoelastic expansion of top levels. This behavior is also pestiisy Eq(2.8) and Eq(2.15), as larger
intensity of PT laser yields larger heat sougcend subsequently larger amplitude of thermal/e fields.

Given that the movement of the sample is not restricted on the top surface in this case (i.e., zero axial
mechanical stress on each slice of HAZ/TMAZ), these warmer top levels tend to expand upward, so the
OPL varies drastically near the top levels which contributes to the initial jumps in #&PBignals at

the first few depth levels of the sample ($8g.24(a)). Gradually, as the light penetrates deeper in the
sample, the light intensity decreases due to absorption of PT light by overlayers, and the variation of
temperature and OPL in deeper levels reduces. The restiggiaf 24(a) suggest good alignent of the
experimental data with the developed theory. Results also demonstrate ability of developed theory in
predicting the initial signal jump in POCT signals which could not be predicted by any of previous

theoretical models.

In figure 24(b), the aerage of PTOCT signals within a 26m window below the sample surface were
plotted in terms of PT laser power at various modulation frequencies. As seen at each modulation frequency,
increasing the power on the sample increases the amplitude -GfCPTsighal. These experimental
observations are consistent with the predicted linear increase of the model. Deviations of experimental
values from linearity are likely due to noise. Such deviations are larger at lower modulation frequencies
due to the pink naturef noise in PTOCT systems (i.e., larger error bar at the lower frequencies). Also, in

experimental data points, there is deviation from the linearity.

To understand the effect of the absorber concentration e@@IT signal, single layer samples with
three different concentrations of absorber (0.22, 0.43, andhdy/&l) with absorption coefficient () of
100, 200, and 600 tfnwere imaged under PT illumination at various powers (0.6, 1.07n2/@B Infigure
24(c), experimental and simulated fCT signal as a function of absorption coefficient (dye
concentration) are plotted. As seen, there is proportional relation betwe@®CPTignal and dye

concentration. Also, the slopes of these lines are determined by TthiasBr power. At higher
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concentrations, PT light is absorbed more efficiently, leading to the generation of more heat and eventually
larger temperature variations. The greater temperature leads to a greater variation in OPL and subsequently
greater PTOCT signals. Therefore, the effects of the dye concentration and the PT laser power on the PT
OCT signals are identical and cannot be directly distinguished from each other as both parameters influence
the thermal energy delivered to the sample. One possible of decoupling the effects of MOI
concentration from PT laser power is to perform spectroscopiO®T at dual PT wavelengths as shown
beford74, 119] Another key point infigure 24(c) is the increase in size of error bars at higher
concentrations which is duettoe degradation of SNR caused by enhanced attenuation of PT laser at larger

dye concentrations.

To study the effect of the focal plane position, its location within the sample was changed on a single
layer PDMS sample with Ifig/ml of absorber at a conetdPT laser power level (4rBW). The amplitude
of experimental and simulated fICT signals from top surface of the sample in terms of distance between
top sample surface and the focal plane are plottéigume 24(d). Negative values of the distancesaii
this figure indicate that the sample was closer to the objective lens than the focal plane. As seen in both
experimental and simulation results, the maximum signal was obtained when the top surface of the sample
was located in focus at the focal plaie the top surface moves away from the focal plane, th@©T
signal of the top surface drops approximately in a symmetric manner. Based oR)ggt (Be focal plane,
the beam diameter reaches a minimum, so a focused thermal field is then geéndraeshmple. This
focused thermal field causes greater change in temperature locally at the center of the beam than a defocused
beam far from the focal plane. The more change in temperature, the more variation in OPL; thus, the
amplitude of the PTOCT sinal is maximum when the top surface is located at the focal plane. Regarding
this inverse relation between signal amplitude and the focal plane, the intensity of the beam becomes half
after displacing the sample by the Rayleigh range €tBdor our setup As seen irfigure 24(d), both
experimental data and simulated signals confirm this drop in intensity on order of the Rayleigh range. In
addition, at offfocus planes, the OCT beam is also defocused which, in return, results in deterioration of
OCT phase&SNR50]. Results ofigure 24(d) suggest that in interpretation of fJCT signal, the location
of focal plane relative to the sample must be considered; othengigseng absorber at deeper regions can
give the same signal as that of a week absorber in focus. To conclude, the optimum location for the desired
depth of the sample that needs to be imaged witOET is the focal plane. This important point should

be comidered in design of RDCT catheters in the future.
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Figure24. The results of simulated signal after changing the light field in the satap®mulated and
experimental PFOCT signals in terms of depth at various|B3er power at modulation frequency of 1000tz
green arrow indicates the experimental signal that was used for fitting and optimization of input parémeters.
Simulated and experimental RICT signals versus power in various frequencies. (ePET dgnals as a function
of absorption coefficient (dye concentration) at various PT laser power at modulation frequency of 1000Hz. (d) PT
OCT signals in terms of the location of focal plane related to the sample surface at modulation frequency of 500Hz.

2.3.3.ii) Effect of the modulation frequency onICT signal

To survey the effect of the PT laser modulation frequency, a single layer PDMS phantom miginal. 2
concentration of absorber was used. This sample was illuminated by the PT laser at modulation frequencies
of 1000, 1500, 2000, and 2561z at various power levels (1.07, 2.37, andr@\W). The simulated signals
and average of experimental ®ICT signals acquired in a window of & just below the sample surface
as a function of modulation frequency are plbtie figure 25(a). As seen, there is an inverse relation
between the modulation frequency and the®OT signal. In other words, as the modulation frequency
increases, the amplitude of the thernwalve field, and thus the POCT signal, decreases. Thisatbn
can be justified by the simulated thermal fields in the sample at various frequEigies25(b) andfigure
25(c) show the results of simulated thermal fields in the sample at the sample surface and along the depth,
respectively. These plots shale temperature variation in time domain of a section passing the center of

the sampleAs seen, as the modulation frequency increases, the amplitude and size of the thermal field
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decreases, because the penetration depth of the thermal waves (i.e., difersiah length) is inversely
proportional to the square root of the modulation frequesey Eq(2.14). This trend, however, does not
necessarily mean that lower modulation frequencies have priority to higher ones because in practice PT
OCT systems suffer from pink noise. In other words, at lower modulation frequencies,-®€P3ignal

is larger, but the noise floor becomes larger as well. Another relevant consideration in choosing the PT laser
modulation frequency is its effect on resolyiadjacent MOls.tlhas been shown in a previous s{&dy

that at higher modulation frequencies, the resolution of th®ET for distinguishing two adjacent point
absaber improves.This improvement in resolution occurs because at higher frequencies, the thermal
diffusion length becomes shorter, preventing the interference of the generated thermal fields of the two
adjacent point absorbers. Resultsigfire 25 show thathe SNR of PTOCT systems is a function of the

PT laser modulation frequency and a compromise need to be considered in selection of the optimal
modulation frequency of a given FOCT systemlIn previous works, the modulation frequencies were
selected frm few hundref®1] to few kilo hert268] without any optimizing and justification. Indeed, for

each sample, the optimum range of modulation frequency must be obtained specifically in light of sample
properties and experimental conditions. To find thigyeaof frequency, a compromise between SNR and
spatial resolution must be considered.
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Figure25. The effect of thermal field in the sample on the ®CTT signal(a) Smulated and experimental FOCT
signals in terms of modulation frequency at various PT powerSirth)lated temporal thermal field at the top
surface, and (c) along the depth at various frequentgethe frequency of modulation increasthe thermal

diffusion length becomes shorter.

2.3.3.iii) Effect of the surrounding medium on-BTT signal

The thermal and mechanical properties of the surrounding medium of an absorber afe&&3 PT
signal. To observe the thermal effect of the surrounding on an absorbémexpelly, the plastisol sample

with higher dye concentration was selected (BgZml concentration of absorber). To magnify this effect,
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the thermal properties of plastisol such as lower thermal conductivity, allowed us to have greater thermal
field ampltude in the sample. To generate two different heat fluxes on the sample surface, the sample was
imaged in air or submerged in ollhe simulated and experimental signals are plottédyure 26(a). Air

and oil as the surrounding media have different théeffusivities, so the generated thermal fields in the
sample are not the same at the proximity of these media. In fact, the thermal effusivity is a thermal property
of materials that determine how much heat can transfer in boundary of two different Tedthermal
effusivity of the edible oil (500700 W$-¥m?K[120]) is much greater than that of adrg W<¥m?K). Based

on the principles of heat transfer and Efj1§), the sample surface temperature in case of submerging in

oil is lower compared to the one in air. So, because of larger effusivity of oil, more heat is sunk from the
sample, and as a result the amplitude of the generated thermal field decreasd.1®Etie last part of
therighthand si de stands for the thermal flux on the
(2.1 as a solution for Eq2(19 has an inverse relation with the distance from the top surface where is the
location ofthe heat flux, the temperature drop at the top surfaces is greater than for deeper levels.
Considering these results, the surrounding media can penalize-@E€PTignal. In practice, for example,

tissues consist of water and blood that can act as arfubeat sink and destroy the PT signal, so the
thermal effect of the surrounding media of HAZ should be considered in the analysiO& PSignal.

Besides this, as an application, the amount of decrease in initial jump can be used to measure the therma

flux at the proximity of HAZ.

To study the effect of mechanical stiffness of the surrounding medium on4B€PTignal, the PDMS
sample containing 2/2g/ml of the absorber dye was sandwiched between two glass slides. The simulation
and the experiment®T-OCT signals in terms of depth for the free and the sandwiched samples are shown
in figure 26(b). It can be seen that there is no jump (zerimtércept) in the signal from the sandwiched
sample.However, in the sample with glass top layer, the top layer with greater mechanical stiffness
( Yo ung o séospal opposes this expansion, resulting in compression of the layer below and/or
radial expansion of the material. In this scenario, the physiogth in the axial direction near the junction
of these layers does not change that much (unlike in the case of the free ddongl@yer, at the junction
of the PDMS and the glass layers, because of heat flux, the amplitude of temperature chéegessill
OPL and PTOCT signals from the sample with glass top layer are much lower than from the free sample,
because maximum temperature and the physical displacement that are the two parameters in the definition
of OPL are less for the sandwiched sampidight of these results, the stiffness of the top layer can alter
the signal amplitude, and when the MOI is buried under a top layer (e.g., subsurface lipid pools in
atherosclerotic plagues), this effect should be considered. Also, the change itiahjiimp because of
stiffness can be considered as a criterion to determine the stiffness of the top layer. For example, as a

potential application, the stiffness of the cap layer in qpti coronary plaques may be evaluated by
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analyzing the PTOCT tg surface signal jumps to get an insight into vulnerability of plaque to r{fp&ire
122].

Finally, to show the effectofth@oA s sonbés rati o, simul ated signal s \
effect were plotted irfigure 26(c). As seen, the signal amplitude in the sample without considering

Poi s s o n3630s sigaificanty srhaller than that of a sample with1zeno ® i ssonésQ.r dti o (
Il ndeed, t he Poi ssonods effect descri bes how mol ec
perpendicular to the direction of an applying force. After heating, when the HAZ tends to expand in radial
direction, because of inteetion with TMAZ, a radial pressure is generated on HAZ. Consequently, because

of this pressure and Poissond6s effect, mor e mater
show that neglecting Poi ss on aten ofsmgnallTle fatt that desfindd o und
Poisson coefficients that are consistent with literature values when optimizing the simulation parameters

offers further evidence for the validity of the model.
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Figure26. Effect of different boundary conditions on the-PTT signalsSimulated and experimental signals of

the sample (a) in air and submerged in edible oil, (b) free sample and sandwiched sample with glass top layer. (c)
Simulated signals with different value$ Poisson ratioThe mechanical and thermal boundary conditions can affect

the signal significantly. Td effect of boundary conditionsowever, was natonsideredn the previous models.

2.3.4. Summary

In this section we propose a comprehensive and 3D theoretical model for predictH@CHT
responses in multilayer geometriekhe poposed model considers optical, thermal, and mechanical
properties of samples as well as-@TT system parameters such as PT laser maoilparameters and
location of system focal plane with respect to samBlmulation and experimental parametric studies
presented in this work demonstrate the ability of the developed model to predict the general behavior of
PT-OCT signals in multlayer phantoms with different optical, thermal, and mechanical properties. Our
results also highlight how the properties of the material in the vicinity of light absorbing molecules
contribute critically to the acquired POCT signals. We should, however, caatithe reader that the

developed model is an approximation model based on simplifying assumptions such as neglecting scattering

55



of light in the light field block, or based on a thermal model developed for solid materials rather than tissue.
These assumptigntogether with other random and systematic sources of noise and error resulted in
suboptimal aligment of presented simulation and experimental data (e.g., in Higs.24d 2%a)).
Nevertheless, we anticipate the proposed model to open the door foubetestanding of the effects of
system parameters and tissue epermcemechanical properties on experimental signals, enabling
informed optimization of experimentation strategies. The model can potentially also be used as a tool for
identifying paramedrs that are most significant in specific experiments to subsequently guide signal
processingand machine learningplutions for depthiesolved prediction of tissue molecular composition

information.
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3: Experimentation and Signal AnalysisStrategiesfor Enhancing the
Performance of PT-OCT

3.1Introduction

PT-OCT is capable to form images from tissues by taking advantage of fine resolution structural images
coming from OCT, and depttesolved insight into ctmaical information coming from the absorption of
the PT light by MOIAs we discussed before, RICT has the potential to address the detection specificity
shortcoming of OCTFor example,in figure 22(a), (b) (the artificial lipid plaques), while different
concentration of lipid had the sarfleokd under OCTthe differences ifipid concentrationsvereclearly
recognizedby PT-OCT. In this chapter, wewill be introducing experimentation and signal analysis
strategiedor further enhancement of detection performance ofO€IT. These strategies serve dirst
stepfor tailoring PFOCT to the specific needs afterventionalcardiology(i.e., one of the two major
clinical applications of OC)l Such modalitiezan bette aid interventionalcardiologiss in assessing the
risk of atherosclerosis plagues becasggalies have shown great correlation between the probability of
rupturing of lipid plaquein artery walls with both the chemical composition and structure ofdlo@g31,
32, 85] Current statef-the-art in PFOCT, howevercannot satisfyheseimaging requirementisecause:
1- absorption of light at a given wavelength is not necessarily specific to only one MOI (e.g., water and
lipid both absorb 1218mlight), and 2 obtaining réined insight into tissue chemical composition directly
from PT-OCT signals is not reliable as many system and sample parameters affe€TPdignals (as
discussed in the previous chaptdifiese twanajor challengeof PT-OCT have heldbacktranslation
the techniqueto clinical studies In this chapter, we will develop two strategies addressing the
challenges.

The first challenge that will be discussed is about specificity eOET to tissue type andhemical
composition ConventionaPT-OCT issuccessful in depthesolved sensing @bsorptiorof PT light The
absorption of th@T light at a given wavelengthpwever s notunique toa singleMOI. That is, PT light
absorption takes place at tloeation of targeted MOIin the sampleas well as other ndargetedtissue
constituent (pseudblOl). As there is no metricx conventional PFOCT to distinguish between sigrsal
originatingfrom MOI and pseudd®1Ols, conventional PTIOCT images are not entirely specificdertain
tissue constitueni otacklethis limitation, wewill increase the specificity in detection of Mi@lanalyzing

their PFOCT responses to more than one PT laser excitation (aka spectroscapETpT
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Extracting quantitative insight intthemical composition dissue is another key challenge of-BTT.
As discussed in Chapter Eig.24 to Fig.26), PT-OCT signa$ are,intrinsically, multi-factorial That is,
aside from tissuabsorption spectrunsystenparameterand sample properties influence the acquired PT
OCT signals. Quantitativenierpreation of tissuecompositionfrom PT-OCT signals,therefore, requite
decoupling of influencerot related to chemistrgnd absorption spectrurRor examplefor quantitative
imaging of atherosclerotic plaques with-BCT, bothimaging conditior(e.g.,the distancerom thelipid
pool to the focal planggnd sample parametersd.,the thickness of the fibrous cagffect the strength of
theacquired PTOCT signal in addition to lipid concentration. In the second part of this chaptewilve
introduce a machinkarningbased strategy for decoupling tetect of influence parameters to enable

obtaining quantitative insight into tissabkemical compositiowith PT-OCT.

3.2.Spectroscopic PTOCT for specific detection of MOls

In conventional PIOCT, signalsoriginate fromabsorption ofa narrowbandPT light sourcein the
sample Such absorption events take place not only at MOI sites, but also atissheconstituentsites
thatabsorb tie PT light. Therefore, presence of ICT signalcannot be used to uniquely identify/detect
aMOlI. Forinstancein cardiology, arterial plaque is made up of materials, including: lipid, water, elastin,
and collagef81, 82] Absorption spectra of these material®ea-IR (NIR) are shown ifigure27. Based
on these spectra, at 12hén, water, lipid, elastin/collagen all absorb the PT light, theredmecannot

distinguishthe MOIs based otheir responses to the PT laser

To increase specificitin detection of MO| spectroscopic method POCT can be employedn such
systens, to discern MOI from pseudilOl, considering spectroscopy principles and absorsjmttraof
MOI, two (or morg PT wavelengthsare usedin the setup The PTOCT signalis gatheredduring
illumination of the sampldy each of these PT lasers. Thencbynparing the dugbr multi) wavelength
responses of sample thecharacteristic spectral absorption signatures of M@depthresolvedmap of
distribution of MOIwithinthe OCT image igormed For examplebased oithe absorption spectrafigure
27,PT lasers at040nmand1210nmcan be used for enhancing the detection performa&xcéing lipid
with 1210nm PT-laser is expected to produce a strong@JT signal vhile PT-OCT signals at such
excitation from water, elastin and collagen are expected to be moderate. PT excitationreh, 1@ the
other hand, is expected to yield moderate@®QT signal for elastin and collagen while producing minimal
PT-OCT signal forlipid and water. As such, interrogation of T signals atll of these PT laser
wavelengths andecoupling the received responses from the sancgleprovide depthesolved insight

into the chemical composition of tissues with higher specificity.

The idea of spectroscopic RICT was introduced by the growb Prof. Milner for the purpose of
measuring the level afaturated oxygen in bloadth high accuracybothin phantoms anih-vivg74, 119,
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123]. We are not aware of any other work in the field that has utilized spectroscofCPTFor
cardiologyapplications use of PT-OCT has so far been reported only in one conference publication in
which single PT laser of utiled for detecting and visualizidigid in human cardiac tissue«vivo[124].

As such, thespectroscopic PDCT work offered in thisectionfor detection of atherosclerotic plaque
constituents is a first of its kind.
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Figure27. Absorption spectrurof commonconstituents otardiac tissue ithe NIR range, includingtipid, water,
elastin, and collagerrigureadapted frorf81]. Copyright bythe authors

3.2.1. Methodology
3.2.1.i)) The setu@nd imaging protocol

The experimentabetupused for spectroscopic FOCT wasexplained inSedion 2.2.3.i. Considering
theabsorptiorspectradepicted irfigure27, 1040nmand 1210hm PT lasers were seleatéor experiments
The PT laser power on the samatédoth 104Gimand 1210mwas 30mW. To image samples, modulation
frequency of PT laser was set to 388. Also, at each Mscan, 1000 data pointsat A-line rate of 21.6
kHz were captured.

3.2.1.ii)) The samples

To evaluate the efficacy of spectroscopic-BTT, three studies were deskgph The objectiveof the
first study wago find thecharacteristic ratio dT-OCT responses at the two PT wavelendphnglifferent
plague materialincluding water, lipid, collagen, and elastin. Thenwa-tayer wateipid samplewas
studiedtoe val uat e sy discerniiy betweednithbse twg materials from each other. Finally, a
human cardiac tisssamplewvasstudiedto see how the previotdimdings from phantoms comparettmse
from real tissue.
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To carry out these studigs series of phantositontaining the dominant material of cardiac tissues were
made.Mayonnaise Kraft) waschosenas therich source forlipid (>80%)82]. The used soybean oil in
mayonnaiséhatis composed of primary lipid compositie of linoleic acid, oleic acid and Palmitic acid
has a similar composition to coronary plaq8&s125, 126]Moreover scatteringandsimplicity in shaping
of mayonnaisarethe other featureshat convinced us of using mayonnagsemain material for odipid

phantons.

To make watebased tissue likphantomsagarpowder(SigmaAldrich, USA) was dissolved in water
to make a solution with 98%f waterweight ratio As the sample provide enough scattering in OCT images,
no otherscatteringagentwas added. Then the soluti was heated up and stirred well for 5min until the
water was boiling. After that the solutisraspouredinto a petri dish and was put in a refrigeratGCjto
solidify. Also, to make a twdayer sample, a wedge of the ageater sample was put on a yoanaise
substrate.

The collagen sample was obtained from chicken cartilage as a rich source of §bl@pheh fresh
chicken leg vas cut from the knee joint, and tendons above the cartilage were removed, then the sample
was washed wittPhosphatéuffered saling(PBS. The tissue was placed on a glass slide at room
temperature (24C) to image with the systerithe elastin foam sample was mauwith elastin from bovine
neck ligament (Sigmaldrich, USA). After dissolving elastin in 0.05% acetic acid solution, and freezing

it at-20°C for 24hr,the sample was sublimated to make a foam scaffioddastin.

The next sample was prepared from a piece of fresh haortatissue This tissuavasobtainedhrough
the National Disease Research Interchange (NBRJ USA) fromawoman (88year) who died of cardiac
issues The freshsamplewas shipped tour lab atthe York universitywithin 24h after tissue collection
Theacquisition of human sample and fireparation steps were dond-gtorid Biomedical OpticsHBO)
lab under approveethicsprotocols by York universitye2020234 and e202@50). After unpacking and
washing theaortasample with PBS serum, a longitudinal cut wasdewith dissection scissors to make a
rectangular flat tissue from a pigbapeaorta(Fig.28). There were some calcified regions (harder than
normal tissue) otheinner side otheaortgintima). A square regiowontainingoneof these calcifications
was cutcarefully with a surgery knifgseeFig.28). Two points with regular tattoo ink artdttooneedle
were carved othis sample to set the orientation for raster scanning by OCTadgrdguide thénistology
sectioning(Fig.29). This sample washenput on a glass slide and imaged by-®@TT system at room
temperatureDuring imaging,10cc of PBS was poured on the samplergd® minutes tgreventtissue

dehydration.
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Figure28. The procedure of preparing the aorta sampldting theaortasample in 3 steps with a dissection scissor
and a surgery knife

Figure29. Direction of scanning that is set with two black dots with ink tatide two selected parts (red windows)
were used to image with POCT and to perfan histology procedure.

3.2.1.iii) Histology

After imaging the two selected parts (red windows Rig.29) of this sample it was immediately
submergedo the optimal cutting temperatur®(C.T) compound (FishetUSA) and was kept in é80°C
fridge. The same procedure was done on another piece abtteesample, but this time, to fix the tissues
after imaging the cut sample was placed into Formalin (Sightdrich, USA). Histology on frozen and
fixed samplegivesusa better insight intthe chemial compositionAfter few dayshistologystudywere
conductednthese two types dfample thefrozen andhefixed in Formalin)

First, the process of histology for Formalin sample will be explaifieel sample was placed in histology
cassette(Fig.30(a)). The closed lid cassette then was submeiligea ethylenediaminetetracetic acid
(EDTA) decalcifying solution for & days with agitatiorAfter decalcification, samples were washed well
in running tap water, then the cassette was placed inE/l0Q4 (water and ethanol solutiarifhe cassette
was loaded into a tissue procesBmr16-18 hours.n the processorjdsuesampla were subjecedto a
series of increasing concentrations of ethanol, followed by xylene, and finally molteiflvearext dg,
the tissues were removed from the tissue processor and placed in the embextindlote thatin the

tissue embedding proceduresh e fAembeddi ng referatd veorksiationssandnaccassories g y

designed fothis purposeThe sample was testedbased on theegion of interestmarked bytattoo ink,
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thencut surface wereembeddedlown intoa metal mold Fig.30(b)). After this step, final Paraffin blocks
were producedFig.30(c)). Eventually, sctioning was done on a microtome ahi¢ron thickness

(@) ) (b) ©

Figure30. (a) Histology cassette for the Formalin fixed tissue, (b) the sliced samples, (c) the paraffin emb
blocks

To slice the frozen sample, a cryostat was used. Cabinet chamber and specimen head of the cryostat is
settoabout-19t0-2 0 UC. The frozen sampl e -BOMC cAse &ntieldinc o mpo ur
the chamber to of cryostat teach theaemperatire of the chambeilhe frozen sample blockig.31(a))
wascut into 4 sectionsHig.31(b)) andwasthenmounted on specimen chucks for sectioning-&tuén-
thick sections.

(a) (b)
Figure31. (a) the frozen block, and (b) slice blocks with cryostat

Subsequentlythe preparedlicesof both typesverestained withiMovat pentachrome anghematoxylin
and eosinKI&E). Finally, the stained slices were scanned with the high resolutiore (@5 ) Drigix
field slide scanner (Aperid_eicaBioSystems, Canad&amplehistologyimages withMovat and H&E
stainscan be seen ifigure 32 andfigure 33, respectively.
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Figure32. A view of aMovatstained slice

ww

Figure33. A view of aH& E-stainedslice

3.2.2. Results anddiscussion

The OCT Bmode and PAIOCT B-mode imagesf the standard phantorasedepicted irfigure34. The
PT-OCT B-mode images were captureddiconditions when both PT lasers were ¢lfase line)the 1040
nmPT laser was on, and the 121 PT laser was orComparingthe dual wavelengtRT-OCT responses
of phantomswith respect to the baseline allsws to study characteristiabsorptionsignatures of the
samples. For example, bothaterbasedagarose(Fig.34(a.l) to (a.4) and lipid (Fig.34(b.1) to (b.4))
samples absodd PT laser att210nm but did not absorb 1048m. These images that show the map of
absorption of lighhave a strongconsistencywith the absorptionspectra of lipid and wateat these two
wavelengthsin figure 27. Next, to compare the amplitude of sighatquired from water and lipid, the
two-layer sample consisting of a substratémél under a wedge of wat@garose sample was imagsd€
Fig.34(c.] to (c.4). Although both water and lipid genesadtrong PTOCT signal at 1216im, the
amplitude of lipidsignalis much greater thatimat ofwater. The reason behind this can be found in their

material properties. Indeed, the optical properties of lipid (absorption coefficient) and thermal properties
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(specific heat and diffusivity) of lipid results generation of strongerthermal field in he sample than
that of thewater.Thesekey difference werediscussed in detaChapter 2 undeection2. Similarly, the
results of collagen (chicken cartilage)figure 34(d.1)-(d.4) and elastin foanfigure 34(e.1)-(e.4 show a
moderate absorption at both waeagthswhich are consistent witlexpectations from the reference
absorption spectra digure27.

ss-a.?_l100 oCT PT:off PT:1040nm PT:1210nm

2
o
5
+
—
Q
©
=

Cartilage

Figure34. The results of spectroscopy on the controlled phantdhesOCT and thePT-OCT images from the
(a)water, (b) lipid, (c) twdayer sample, (d) cartilage, and (e) elastin samgsomparing the received signals at
1040 and 1210 nm with the PT:off mode, it is seen that there is great consistency between the absorption spectra of
these materials and the received®TT signalsscale bax80¢ m.

To get better understanding of characteristic spectroscop©@®T responsesiistograms oPT-OCT
imagesare plotted inifure 35. As seen, in histograsvf water Fig.35a)) and lipid (Fig.35(b)) the
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difference in count of pixels in 1210m condition are quite discernible from the off and 1G%#0

conditions. These observations suggdbit these samples absorb 121@ effectively, because the
distribution of pixels in histogranhsi f t s t o the right. Also, the pixel
and fnihd 4®ases ar e al mo s tnhotableabsorgtianmelf4m. Daspite thetfactn g  n o
that both water and lipid absorb atldzhm, the characteristic differences$ Igpid and water allows us to

discern between the two tissue constituemse to the differences in the opiwermemechanical

properties PT-OCT signals from lipid areintrinsically, greaterthan water In addition,because othe

higher scattering property of lipid related to the water, the look of lipid under OCT is quite different
(Fig.34(c), the twolayer sample).

For the cartilageRig.35(c)), and the elastin sampldsd.35(d)), by comparing the pixel counts for 1040
nmand 1210hm modeswith the off mode, there imioderateabsorption at both wavelengths. However, as
the shift to the right in these histograms is lower than that of the water and lipid cases, the absorption of PT
light is lowerin these sample§Ve should ay at the two PT wavelengths uselhstin and collagen absorb
similarly, so wecan onlydetectthe combined category efastin/collagerbut not individualcomponents
This behaviohasconsisteny with the absorption spectra of thedeemicalsn figure27.

Based onthese phantom studiesve see that it is possible to discern between lipid, water,
collagen/elastin category with this spectroscopic strategpid and water samples have completely
different absorption map from collagen/elastitegory(i.e., greater signals at 12f6h and almost nothing
at1040nm) with PT-OCT. Additionally, to increase accuracy discerningwvater from lipid, looking at the
OCT imagesalong with the PIOCT signal amplitudewill be helpful.
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Figure35. Quantitative analysis of images depictegimvious figureHistogram of pixel amplitude in RODCT
images for the (a)water, (b) lipi;) cartilage, andd) elastin sampleddistograms follow characteristic light
absorption behaviors of water, lipid, and elastin/collagen

After performinga feasibility study with the spectroscopic strategy on the standard phantoms, we
extended the study the humantissues The results of humaaortasamples with PFIOCT and histology
aredepicted infigure 36. While the OCT and histology imagsekhow high degree of structursimilarity,
we cannotclaim them to be exactly eregistered. Exact emegistration proved to be very challenging

becauséehe structure of the tissue chargeringthe decalcification processimg histology.

Resultssuggest thatdth the histology Fig.36(a)) andthe OCT image Fig.36(b)) show a multiayer
structureinsidethe sampleln the OCT image, there @narea in the top left that has a greater scattering
than other area@abeled with A1) The layer under A areahas a poor scattering asdppears aa dark
region in the OCT image (labeled with A2). Beneath these two lapersthetayer which is labeled with
A3 has a scatteringropertybetweerthe scattering of thetwo upperayers.Although we can distinguish

these layers from OCT imageo chemicalcompositioninformation carbeobtained fronthe OCT image
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By comparing PTOCT results Fig.36(d)-(e)) with the base lineHig.36(c)) small absorptionat 1040
nm and stronger absorpticat 1210nm at the left side of images can keeg(Al in the OCT image)The
possible source for the weak signal at 1640can be elastigollagenin this layer.The histology results
(Fig.36(8)) also showed elastin composition in this region (purptedark color withMovat stain). The
elastincomposition in tissues is responsible for the extensibility and elastic recoil features of tissues,
therefore we speculate this region is a soft tissue that contains a notable percentaggl@Bwakg]
Therefore,a large portion ofthe strong signal at 1218m comes from wateiin this layer The
elastin/collagen also generates-®TT signal at 121@m, but it will be much smaller than that of water.
Becauseof the poorscatteringand deep levels related to the surface, the oth@ngglo not generate a

meaningful PTOCT signal.

PT:1040nm PT:1210nm

Figure36. The results oépectroscopic PDCT of thehuman aorta samplég) histology, (b) OCT, (c) ROCT
base line, (d) P'OCT at 1040hm, and (e) PTOCT at 1210hmimages.The OCT result represents that sample has
3 different layers, marked with Al to A3. By comparing the®CT results and the histologgsults as the gold
standardit is assumed that signals come from water and collagen/elastin. Further studie®reitwavelengths
will improve the accuracy of detecting materisge text for more informatioscale bar 200e m.

The resultsof anotherregion of the aorta tissuesre depictedin figure 37. This areais far from the
calcified abnormality, and hahormal tissue look. Simildo the previous casthehistologysliceandthe
correspondingOCT imagedemonstrate high degree of similarifiye., a single layer structuyeThe
histology imageKig. 37(a)) shovs an accumulation of collagen/elastin (yellow and green color for collagen
and purple for elastin witMovatstain) in this sample. The obtained-BCT responses are consistent with
presence of collagen/elastin in the fresh tissue sammigparison of thacquired signalat 1040nm and
1210nmwith the baselineRig.37(c)) suggesioderatdight absorptiorat 1040nm (Fig.37(d)) due to light
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absorption by collagen and elastind strondight absorptiorat 1210nm (Fig.371) due to light absorption
by the waterin thisfreshtissue

dB

Figure37. The results ofpectroscopic PDCT methodf anormal human aorta sampl histology, (b) OCT, (c)

PT-OCT base line, (d) RDCT at 1040m, and () PFOCT at 1210hm of humanaortasample These preliminary

and promising results demonstrate the potential of spectroscofHTmethod as a new method for digitized
histology;scale bar 200 m.

To summarize, in this sectiong proposed and discussed a strategy for enhancing the specificity of PT
OCT using principles of spectroscopy MOls relevant to atherosclerotic plaqu&hke promising results
are consistentwith what we anticipatedrom the absorption spectrand leadto specific detection of
materials This study can be considered as a future direction of application-QfCATin intravascular
imaging.Without thedual wavelengtispectroscopic methodresencef somechemicalcannotbeseenin
the sample. Fonstancein figure 37, by considering onlyhe 1210nm results, the detection of collagen
and elastirin the tissues impossibleas lipid, collagen/elastin, and water all absorb at this wavelesggh (
their spectra iigure27). However, when 1048mimage is also considered, detection of collagen/elastin

is rendered as water and lipid do not absorb at @40

To design aspectoscopic setup, a compromise should be considered in light of sample properties,
sample geomeyr andtissue constituent$n general, to decrease ttletectionuncertainty, atdasttwo PT
lasersare needeth which thetargetMOI absorls moderately or songly butwith different ratio.That is,
poor absorption othe PT laser bythe targeMOI may not bevery helpful in the spectroscopiapproach
For examplethe 1040nm used in our systerwas not an optimal choice falifferentiation oflipid and
waterfrom each othebecausédoth entities havao/minimal absorptiomat 1040nm. Distinction of water

from lipid can be performed by adding for exampl878® nm PT laser at which water offers moderate
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absorption but lipid does not absdifig.27). Probing at more thatwo PT wavelengths generally,is
expected to enhance detection performance at the cost of edogdexiyy and costof the setupand
increasd processingime ofimaging.A possible way to decreatieeimaging time is shining aPT lasers
simultaneously but with slightly different modulation frequesso thatindividual responses can later be
demodulated from the acquired dd&aentually,the spectroscopic POCT isacomplementary approach
to the conventional RDCT and isa helpful method in detection aflOI with a higher specificity.

3.3Quantitative PT-OCT imaging with Al -powered classifiers

In this section, the goal is to label the-BTT image pixels based on their concentration of MOI
Theoretical an@xperimental results discussed in previous sections and chstpter thaPT-OCT signas
contain characteristic trends and features that are correlated withdisapesition To date few efforts
have beemadeto quantifyMOI concentrations such @sncentration ofdissolved oxygeim blood123]
orICG in watef91] from PT-OCT signalsAlthough thesepreliminary results were encouragitige design
of studies were disconnected from clinical scenarios as in tiés all the sample and system influence
parameters (other than MOI concentration) were kept constaintypeof singleparameter quantification
is notnormallyvalid becauséwo or moreinfluenceparametes (e.g., surroundingnedum, distance to the
focal planedepth of MOl etc.)are expected to vary from one tissue to anotheme discussed earlier in
Chapter2,thePT-OCT signal dependmvarioussystem and sampparameters that make the functionality
of the signalhighly nonlinearto the input parameterthese nodinearitiesaffect each otheland often
increase the order dfortlineaity. Analytic inversion of such multifactorial problems is inherently
challenging and noise sensitive. Machine learning (or simply ML) hasrdgmated, time and again, that

it offers a compelling solution to this typemiltifactorial and nodinear problems

ML modelsconsists ofalgorithms that can improvihemselveghrough gaining experience over
time[130]. The main models of ML include: support vector machine (SVM), artificial neural network (and
also deep net), deaisi tree, regression analysis, Bayesian networksgandtic algorithms, thatan be
used for various purposes such as classification, regreasidclustering with supervisedeinforcement,

and norsupervisedearningmethod{130-132].

In thefield of OCT,ML models have beemsed as @owerful toolfor analyzing captured imagésr a
variety of applications spanning from pattern recognitionand texturfl33-135], to labeing and
segmentatiolclassifcation) of regionsof interesin OCT image&[136-140]. For instance, a pixekise ML
method was presented for classifyl@@T images obtained frotmmor and normadamplesof murine ear
tissuefl41]. As another examplea combinedML model consisting ofSVM and principal component
analysis (PCAhas proved to be helpful iautomated tissue classification in braintastgasesrom human

samplegl42]. In multi-modality OCFbased systesiML has been utilized talassify materials based on
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the mechanical propertigsom OCE datasetshere,using aSVM model on OCT and OCE datthe
glomerulonephritis (inflammation and damage to the filtering part of the kidneys) in mouse sasmples
analyzef143].

To thebest ofour knowledge feasibility of classifying MOI concentrations wiMiL modelshave not
yet been examineith the field of PFOCT. As such,n this section, wavill discuss thalesignand the
development o ML modelfor labeing PT-OCT imagepixels based orMOI concentratior(e.g., lipid)
The developedML modelis trained to decouple the effects of influence parameters not linked to MOI

concentration (e.g., MOI depth or distancéaal plang.

3.3.1. The machine learning (ML) model
3.3.1.i)Feature selection

Given the significance of lipid concentrationtta vulnerability of atherosclerotic plaqugl], aML
modelwas designed fdabelingclassifyinglipid composition of pixels in aROCT dataseflTo do so, the
influence parameters having significant contributions to théDET signals were first identifie(hka,
feature selection stepyhis step was deemed essential because for exampézéieed signal from a high
concentration region of lipid far from the focal plane can very well be comparable with that of a low
concentration region close to the focal plane. Therefore, the net needs to form its prediction based on a
collection of pararaters and not just the intensity of the-BTT signal of a given pixel. Based on the
outcomes of the theoretical models developed in the previous chapter, the following parameters were

deemed to be of significant relevance to the ML model:
1) the distancdérom the selected pixel to the focal planey,{BeeFig.38).

Figure 24(d) in Chapter ZShows that regardless of MOI concentration,-PCT signal decreases
sharply with distancérom the focal plane. As such, the distance of a pixel to system focal plane

(Dsp) wasconsidereds a significant parametas input of the model
2) the distance of the seled pixel to the top surface of the samplef{3eeFig.38).

It is shown infigure 24(a) that the amplitude of RDCT signalversusdepth is cumulativelhat is,
the received signal from a giveepthinside the sample is the summation of the signall surfaces
from the top surface down to thdegpth However, the rate ahcreasen the signal amplitudalong
depthis na constant The ratedepends othe PT power andhe optical properties of the sample.
Therefore, the spati&cationof each pixetelativeto the top surfacehouldbe taken ito account

by the model.

3) the gray level of the selected pixel in the OCT im@8grix; see Fig.38)
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The gray level of a pixel in OCT image representsatin@unt ofthe backreflected light from that
depth inside thesample andcan beused as a metric f8NR of receivedOCT signal from that
specific depthin the characterizatioof the setusection(AppendixA), the inverse proportionality
of phase stability anthe square root @NR of OCTis discussedDue to such proportionalityhé

PT-OCT signalsoriginatingfrom pixels with lower gray leve(i.e., lower OCT SNR) are noisier
(i.e., poor phase stability)The level of noise in the phase of O@ffects the PIOCT signal and

needs tde considered by the model.
4) the average of gray level of the pixels above the selected pixgd; (€&e Fig.38

As we explained at the beginning of this thesis, OCT works based on thedadigtedight from
the sampleAs such, ptical scattering properties of samples cae&tenated fronthe OCT image
[144]. Generally, a the scattering propertiesmidium increaseshelight power attenuatasiore
along the depthwvhich, in return leads to smallePT-OCT signalfrom the MOI(Fig.24(b)). Note
that the wavelengths of the PT light (12160) and the OCTight (1315 75nm) in this studywere
not too farapart soconsideringhe scattering of OCT light givedhe modela relevant estimation
(not exactly) about the scattering of the PT light in thepdam

5 the ampl it udeCBsgnab(Pkwpi xel 6s PT

The amplitude of pixel in PDCT imagess directly correlated witthe anount of absorption of
PT light. This parameters, perhapsthe most obvious parameter that can be used to label pixels
based on their concentration of MOI. However, it was shov@etion2.2thatthe relation between
PT-OCT signal and the concentratiohMOI is nonlinear and the degree of ndinearity depends

on samplehermal and physicgdarameters.

The information provided to the model by above parametere expected to offer thenodel an
estimation of the medi umb soff bfiOGThand PAQCT sigmal sensitivityn pr o p
with depth, and the strength of PT light absorption by MOI. Using this informatiomatielwas designed
to classify a given pixel into one tie following groups/classes of lipid concentratitow (~[0-30%]),
medium (~[3670%]), and high (~[7.00%]).
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Figure38. An illustration ofspatialparametersf asingle pixelin an OCT imagethat are deemed of significance to
proper predictions by the ML modélhese parameters provide the ML model with information alstrength of
pi xel 6s Edepttsaf sglacted pixel in the sample, the distance of the selected pixel related to the focal
plane, and the scatterinfthe medium above the selected pixels

3.3.1.iij) Model selection

To generate and trainNL model,supervisedearningSVM methodwasused.SVM is one of the most
robustclassificationmethod in muti-factorial problemswhich works based othe statistical learning
frameworks SVM can efficiently perform classificatioim high nonlinear datasef145] and ha shown
interesting results in OCT signal analysis with a high acc{t88y 146] Briefly, to explain the principle
of SVM classifiersijn adistributionof two-class datéthe green and the blumlored datapoints in Fig.39)

severabossibldines(e.g.,S1, S2, S3 Fig.39) can bedrawnto separate the two classes.

s1 s2 s3
L J
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[ ] @
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Figure39. In this distribution oflata (greeitrianglesand bluedotg, there exists an infinite number of solutions to
separate these regions. Which one is thellmest

To find the optimum line, SVM algorithm, firdinds the closest data points tme of the linesThese
points thadeterminghe optimumseparation line are called support vectors. The distance between the line

andthesupported vectors is named margin. In SVM algorithm, the goal is to maximize the margin for each
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class(the distance between the two dashed lindsigi0). According tomahematicaloptimization the
hyperplane that makes the margins maximum is the optimal hyperplane (classifiewjtageneral
equation in form of w.x+b=0 ifrig.40)[147]. Similar to other ML algorithms, training of SVM can be
supervised or unsupervis@ghen combined with unsupervised feature learniimgyur study, as the input
data for training the model is labeled with the known concentratibreamples (and by extension

corresponding concentration classes), the SVM classifier used is a supervised method.

Optimal hyperplane(w.x+b=0)
Negative margin(w.>§+b:—1 ) Posit\ive marginlwx-tb=1)
\ ®
® o
AA \ \O e
A €]
A
\
\/
Support vectors

Figure4O. lllustration SVMalgorithm on a distribution of data. Theique and optimal hyperplane irveo-
dimensional input space based on margin maximizatias draw. In this schematidjwo is the trainedveights
fixo is theinput vectors and@bo is a constant that is called hias

3.3.2. Methodology
3.3.2.i)) Thesetupand imaging protocol

The PTOCT setup was descrithéefore undeBection2.2.3.iiin Chapter2. Sincelipid was selected as
the target MOl in this studyhe1210nm PT laser was use@hePT laseipowerandmodulation frequency
were 10mW on samplesurfaceand 100(Hz, respectively At eachM-scan, 1000 data points were captured
at an A-line rate of 21.6kHz.

3.3.2.ii) Thephantoms

To makedifferent concentration of lipid, mayonnaisgKraft) was mixed with a watebased gel in
differentweight raties. After weightingby a scalethe two components wesstirred well for 10min to make
a homogenous sample. To generate a training datargée net mixtures with lipid percentage of 20%
(the top border of low concentration class), 40%, §0#top and the bottom borders of mid concentration
class), an@0% (the bottom border of high concentration clagsle madeAdditional samples with lipid

percentages of 10%, 50%, 95% were also prepasathseen datasdts testing the performance of the
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net. For more sophisticated evaluation of the c@iplelayer phantorawerealsoprepared in whiclagar

was used aatop layerover substrate with 50% and 95% lipid percentadée agaoveldayerwas made

by dissolvingagar powder (Sigmaldrich, USA) in water with a weight ratio of 2%. Theixturewas then
heatedup andstirred well till boiling. Next, the mixturewas poured into a petri dish and stored in a
refrigerator at £C for 30min. After solidification, a wedge shape slice of the agar samp$cut and
placed over lipidsubstrate to simulate 50% and 95% lipid samples with various thicknesses of-a non

absorbing overlayer.

3.3.2.iii) Preparation of datasets

As we discusseblefore the SVM model has 5 inputBhe inputdo themodelarethe PFOCT amplitude
of pixel (Amper), the grayness level of the pixel in OCT image {fgRthe grayness level of the-lke
above the pixel (GR.), the distance of the pixel to the teywface of sampléD:.), andthe distance of the
pixel to the focal plane (B). Note that hese selected parameters have a relation with the received PT
power on a given pixelThe output of the model was lipid percentage label as either low, mid, or high
classes. A schematic of the inputs and output in the designed SVM mitidstriated in figure 41.

Classl1, Low
concentration
SVM Class2, Mid

concentration

Classifier
Class3, High
concentration

Figure4l. An illustration of the designed classifimodel The five significant inputs are extracted from the raw
OCT and PTOCT images and are sent to the SVM classifier madet. model is trained fdabeling pixels in PT
OCT images into three bins, |l abel ed with Al owt

!

The values of these parameters for each pixel were extracted from OCT-&@TPB-mode images
by the written code in MATLABFirst, the level of focal plane in the OCT images were entered manually
in the code. Therthe top edges of the sample in OCT imaggedetected automatically by thresholding
method.Noted that there were 55 pixels per each line in average, after telangaTherefore, the
maximum depth of a pixel of the images in training was approximately equalgot@0 Fi nal |l y, t he

of all these 5 inputs for each pixel were extracted and listed in the data base. In this data base, the data of
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about 27,000 pisls were collected. To train the model, 90% of these datapéifts 00) were selected

randomly.

The samples that were used to train the model are plotteguire 42. Given the nofinear relation
between PIOCT signal amplitude and the concentratidriM®I that was explained i€hapter2, the
differences between the high class with other classes is larger, so we anticipate the accuracy of labeling in
this class to be higher.

Concentration

Figure42 The PTOCT images of the samples udedtraining the SVM model. In this plot, the ndinear relation
between the amplitude of RICT in terms of the concentration of lipid is illustrated schematicsdigle
bar=150e m

3.3.2.iv)The SVM classifier

Following the procedures discussedattion3.1,a SVM classifier model was designed in MATALB.
To train theSVM model| 95% of thetrainingdatasefor each classasusedfor training and theremaining
5% wasconsidered as outliethe outlies were de¢cted by calculating the distance of each datapatht
respecto the average of aflatapointsThen, by sorting thdistance othesedatapointsthe first 5% with
the largestwas labeled as the outlierfSuchstrategyfor removingthe outliersenablegshe model tdind
better support vectors in dateadng to ahigherprecigon in sketching oboundary of class Polynomial
kernelwas used fothe SYM model toallow learning of norinear behavias that are intrinsic to RDCT
responses (adstussed irBection2.2). To analyze generalizatian the training dataset and to optimize
the trained modekhecrossvalidation with thek-fold method(here k=10) was performed on the trained
model The kfold method is a effective validation methowhen dealing wittrelatively small training
datasetdnthekf ol d met hod, the training dataset ©Omse randol
out of thes@ko subsetss retained as the validation data émaluathgthe model, and the remainifig-10
subsetsare used as training dator k times, lhe crossvalidation process is repeatesd, thateach of the k
sub®ts exactlyused one timas the validation data. Téek training result€an then be averaged to guce

a single and optimizethodel The advantage of this methoder random subsampling thatwe can make
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sureall data pointsn a dataseare used for both training and validatidrhis enables us to train a model

with a better performance in generatinn.

3.3.2.v)The method for evaluation

Eventually, he ability of themodelin generalization irclassifyingwasevaluated with the unseést
dataseboth qualitatively and quantitativelfhe concentrations of lipid in the unseen datasets were 10, 50,
and 95%.To visualizethe performancef the model irprediction, helabels ofground truthimages were
assigned on each pixel based on their known lipid concensafitso, to analyze th performance of the
model, the confusion matrix for each class was calculdteel calculate@onfusionmatrix allonedus to
comparehe accuracy of classification each class

3.3.3. Results and discussion

To evaluate the training accuracy, the trained SVM model was fed with the training dataset. The OCT
images andhe model predictiondor the training sampleare plotted infigure 43. Theses sampleare
wedgeshaped which allows us to verify the performan€ the net in classification of samples located at
a continuum of distances from the focal plaNete that to test the failing conditions and lingts of the
model,themaximumsampledepthconsidered for analysis these imageare80e m d e e pMaatwas h a n
used to train the mod€190e m)As seen irfigure 43, regarding th@pproximatedange of classes {80
for low, 30-70 for mid, and 76100 for high), most of pixelsarelabeled correctlylt is worth poining out
that in SVM models, the accuracy of classificatimrmally degradefor data pointscloser to theclass
boundary.Therefore we anticipatehavingregionswith poor accuracy in classificatiatue to closeness of
thedata pointgo theboundaies of classesln the samplewith 20, 40 and 6@ of mayo, the accuracy of
classifyingdecreasas we go deepén the sampleA possible reason is that at the dedpeations the
PT-OCT signaldecomesoisier, becauste SNRand phase stabilitgf the OCT signals deterioratesAt
such depthshe amplitude ohoisegets addetb the amplitude of the RDCT signa) therefoe, themodel
classifies these noisy pixal#to thehigh-concentrationlass.As evidencethe depthof correctpredictiors
in the 20% samplis shallowerthan the other sampldsecause the scattering of this sample in OCT images
is greater than otherThe wrong predictiomlsohappes in the sample witl0 and60% of mayo but at
the deeper level\dditionally, in the samplavith 40% of mayomost of failure inclassifyingoccursin
pixels closer to the top surfadeecauset levels close to the surfadbere is no big difference between
PT-OCT signal amplitude for the sample with 20% and 48%«deeper levelshowever,the difference
between PTOCT signas becomedarger due to the accumulation of RICT signals which in turn,
enhanceshe accuracy of the modé&fisually, themodel ha a good accuracy in th@ediction of the 80%
sample because the difference in amplitude with other samgplgsite large $eeFig.42) that makes the

classificationeasierfor the modé Statistically, the performance of the model on the training daimset

76



evaluated by the-kold method. For every foldhecalculated value indicatéise losy¥mean squared error)

for validationfold observations usintpemodel trained on traininfpld observations. The losses obtained

by the kfold crossvalidated SVM modeare0.46 for the low class, 0.38 for the miéss$, and 0.13 for the

high class.Note that class labels in th&tudy were the same as the predefined classes (low<30%,
30%0mi d<70 %, altshbuldal8ob®hipgohnt ed out that the origin

was used to calculate thdses values.

20% 40% 60% 80%

Class1:Low
Class2:Mid
Class3:High m

Figure43. The OCT images and the predictimsults of the trained SVM model on the training deita 20,40,60,
and 80% lipid The SVM model has a good performance in the prediction of the high class pixels, due te the non
linear behavior of the RDCT signal, for more details, see testale bar=188 m.

To evaluate generalization of the model, the unseen test datasetsafrples with 10, 50, 95% of lipid
were sent to the model. The O@md PFOCT images of theses samplas plotted infigure 44. As seen,
the PFOCT signal changsn thesample as a function of distance from the focal plane, distance from the

top surfaceconcentration of lipid, and the received power on each pixel.
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Figure44. The OCT and PTOCT imagef the singldayer data testwith a lipid concentration of (d)10, (he)50,
and (¢f)95% The red continuous lineepresents the location of focal plaseale bar=188 m.

In figure45(a) to (c), theground truth information (i.e., known phantom concentratiansyisualized
by three different colors into three classes (low, mid, high concentrafiomgcallagain, heapproximated
rangesarefrom O to 30%for the low, from 30 to 70%or the mid andfrom 70 to 100%or the high classes
The classifying results of the modelthetest datasetredepicted irfigure45(d) to 45(f). The color coding
used to label the pixels are the saméhagyround truth labelSimilarly, to survey the failing cases of the
model, these plotsare80 ¢ m d etleap thetraining depth The qualitative assessment tfie model
classification performanazan be done by comparitige prediction and thground truth. This comparison
indicates that themodelcorrectly labeled most of the pixels general, the quality of classification for
these unseen concentrations byrtfalelimprovesrelated to prediction by the training caseg@3). The
reason is that these unseemcentrationarefurtheraway from the boundary of the SVM than the training
concentrationsis seerin figure45(d) to 45(f), at deeper surfaces, the accuracy ofsifasitionis lostdue
to the missing OCT signals and low SNR in such highly scattering mdidiglassificationalsotake place
at pixels close to surfadeecauseéhe PFOCT signals have not accumulated enough, leading to relatively

same PTOCT signalsegardless of lipid percentage.
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