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ABSTRACT

Particle picking in cryo-EM is a form of object detection for noisy, low contrast, and out-

of-focus microscopy images, taken of different (unknown) structures. This thesis presents a

fully automated approach which, for the first time, explicitly considers training on multiple

structures, while simultaneously learning both specialized models for each structure used

for training and a generic model that can be applied to unseen structures. The presented

architecture is fully convolutional and divided into two parts: (i) a portion which shares its

weights across all structures and (ii) N+1 parallel sets of sub-architectures, N of which are

specialized to the structures used for training and a generic model whose weights are tied

to the layers for the specialized models. Experiments reveal improvements in multiple use

cases over the-state-of-art and present additional possibilities to practitioners.

Keywords: Cryo-EM, particle picking, object detection, fully convolutional, dataset bias
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Chapter 1

Introduction

Electron cryomicroscopy (cryo-EM) is an experimental technique that captures images of

biological samples at cryogenic temperatures using a transmission electron microscope.

Single particle analysis of cryo-EM images is a set of computational procedures which aim

to determine the 3D structure of single particles using 2D electron microscopy images (or

micrographs) [1]. This study presents a novel approach to one of the first computational

problems in single particle cryo-EM known as particle picking.

1.1 Problem Statement and Challenges

In particle picking the goal is to locate individual particles in a micrograph while avoiding

contaminants, malformed particles and background regions. In other words, the input of

the problem is a micrograph and the desired output is the coordinates of all particles in

that micrograph image. Accurate detection of particles is necessary, as the presence of

contaminating particles can complicate subsequent processing, degrade the resolution of

the final estimated 3D structure or even cause the reconstruction process to fail entirely.
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a)

b)

c)

Figure 1.1: Visualization of Particle Picking. a) Micrograph patches of Beta-galactosidase (left),
Apoferritin (middle), and Ribosome (right). b) Zoomed in boxes of a few correct parti-
cles (green) and corrupted particles (red). c) 3D reconstruction of the molecules using
such particles. [2]–[4].
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The picking task is challenging due to several factors, including high levels of noise,

low contrast of particles, and variability of the appearance of an individual particle caused

by changes in orientation and differences of structure between different particles. Figure

1.1 shows some sample micrographs, particle images and their corresponding 3D structures

to illustrate the problem. In general, when performing particle picking for a new experi-

ment, the appearance of particles in the case is unknown meaning that structure specific

training data is unavailable. This has led previous researchers to attempt to use the appear-

ance of other particles to train learning-based picking approaches by pooling data [5]–[10].

However, this can be problematic as different particles and datasets can have significantly

different appearances and quantities of data leading to biases or degraded performance.

Here we argue that this problem is analogous to the “dataset bias” problem which has been

identified and considered in object recognition generally [11]–[13].

1.2 Summary of the Thesis

Motivated by the importance of high-quality 3D reconstruction of biological molecules

and the role particle picking plays, we aim to leverage methods from computer vision to

establish an objective comparative study on the topic and further improve the accuracy of

fully automated particle picking.

In chapter 2, we review the literature related to fully automated particle picking in cryo-

EM. We also look at the related background in computer vision, most notably deep learning

based object detection methods and cross dataset studies in image recognition.

In chapter 3, We formulate particle picking as an object detection task and build off of

modern object detection approaches, in particular the Single Shot Detector (SSD) approach

[14]. However, unlike SSD we formulate the network architecture and learning problem

3



to represent and model the existence of particles from different datasets explicitly. The

proposed approach consists of a network with a shared trunk and multiple heads, one head

for each dataset and an additional head which can be used for zero-shot picking where the

particles are of a previously unseen structure. We call this model HydraPicker.

In chapter 4, we consider the performance of HydraPicker in both a zero-shot and a few-

shot setting (where limited training data of a new structure is available) which simulate the

most important use cases for particle picking. Our results demonstrate the value of the new

formulation, enabling performance improvements in both zero-shot and few-shot settings.

We compare the proposed method directly against several recent learning-based particle

picking methods in one of the most thorough experimental comparisons in the literature

and establish HydraPicker as a new state-of-the-art for particle picking.

In chapter 5, we conclude this study with a discussion on major findings and a roadmap

for future studies in multiple directions from particle picking to general computer vision.

1.3 Contributions

The main contributions of this study are: 1) Adaptation of deep learning architectures for

image recognition and object detection, respectively ResNet and SSD, to specific properties

of particle picking task to gain state-of-the-art accuracy in particle picking; 2) Explicit con-

sideration of dataset bias in a deep learning framework for object detection in the context

of particle picking problem as a proof of concept; 3) A framework for conducting compar-

ative quantitative and qualitative study on practical use cases of the latest fully-automated

learning-based particle picking approaches; 4) Several future directions for further studies

both on the subject of particle picking and dataset bias in computer vision.
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Chapter 2

Background

This chapter presents a literature review on fully-automated learning-based particle picking

in cryo-EM. It also provides the related background in computer vision tasks including

image recognition, object detection, and image segmentation.

Particle picking was traditionally done manually, through a time-consuming process

where experts selected particles from hundreds or even thousands of micrographs. In cases

where a low resolution model of the molecule or a related molecule is available template-

based methods can be applied [15]–[18] but this limits the usefulness of the approach to

effectively known structures. Such picking approaches are tedious, expensive and risks

introducing biases into the process and fully automatic picking has always been a goal.

Many automatic approaches over the years have been tried including contrast enhance-

ment [17] and difference of Gaussians [18]. However, results of such efforts have generally

not been accurate enough to be used in a fully automated procedure. Instead these methods

have often been used as part of semi-automatic methods where a high recall 1 automated

method is used to select candidate particles which are shown to the experts to label [2], [19]

1The fraction of ground truth particles that are picked
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and in some cases learning from this manual annotation to improve performance [20].

Recently, researchers have started to explore the use of deep learning in computer vi-

sion to improve the fully automated particle picking task. There are three main automated

approaches to deal with objects in computer vision.

2.1 Recognition-Based Approach

Image recognition is defined as a classification problem in which it is assumed that the input

is an image corresponding only to exactly one of the provided classes. It has been in focus

as a main computer vision task, specially since the adaptation of deep neural networks to

it in an approach known as AlexNet and its impressive accuracy in ImageNet challenge

[21] which resulted in further popularity and adaptation of convolutional neural networks

(CNNs) to many other applications.

Three main components used in such network architectures include convolutional, pool-

ing, and fully connected layers. Convolutional layers in this case are usually defined as

performing a 2D convolution with a 3× 3 or 5× 5 filter on each input channel of the layer

followed by a rectification. Pooling layers usually choose the maximum or average value

of every 3 × 3 or 5 × 5 patch of the input to the next layer which respectively helps to

emphasize edges or smoothens the input while performing an up-scaling. Fully connected

layers are used as the final layers of the networks to both flatten the outputs and perform a

learning function considering all possible combinations of inputs.

Simonyan and Zisserman [22] won the ImageNet 2014 challenge by further exploring

the network architectures. By introducing VGG-Net they considered having multiple 3×3

convolutional layers in between pooling layers, increasing the number of channels after

each pooling layer and increasing the total depth of the network to 16-19 layers.
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One of the main challenges of increasing the depth and consequently the computational

power of CNNs was the ability to train them, as the flow of gradients would start to vanish

in direct relation with the increased depth. He et al. [23] made an important contribution

to the community by proposing shortcut connections in an architecture made of multiple

similar components called residual blocks. These would allow the next layer to optimize an

additive combination of the output of immediate previous block and an identity mapping

coming from the output of a block before that. As a consequence, facilitating the gradient

flow to deeper layers of the network, training architectures with hundreds of layers was

made possible.

Recognition-Based Particle Picking The first particle picking approach enhanced by

deep learning was DeepEM [5]. It utilized a simple CNN architecture based on AlexNet [21]

to train a model that can pick particles from unseen images of the same dataset and an iter-

ative process to improve picking performance from partially labelled data. DeepPicker [6]

used a customized VGG-Net [22] architecture and trained on multiple molecules to try to

create a more generic particle picking approach for unknown targets. However, training and

testing was generally limited to a small number of datasets and performance indicated gen-

erally low precision which was somewhat improved with better data pre-processing steps,

including micrograph sharpening and histogram equalization, in subsequent work [7].

2.2 Detection-Based Approach

More recently, advances in object detection architectures have been explored in particle

picking as well. Unlike image recognition, object detection loosens the assumption of the

input and allows it to contain one or multiple objects from any of the considered classes. It

7



further more requires the solution to have a pair of corresponding coordinates associated to

each of the detected objects.

The first deep neural network approach to successfully address this task was introduced

by Girshick et al. [24]. RCNN associates each input image to 2,000 proposed regions

of interest given by selective search [25], which considers multiple hierarchical grouping

strategies for the task. It then passes the proposed regions through a CNN to have a set

of futures for each region. Finally, it uses class specific linear Support Vector Machines

(SVMs), a category of kernel-based methods which had state-of-the-art results in classifi-

cation tasks before the appearance of CNNs in the literature, to classify each region based

on its features.

Main problems with RCNN were its slow and multi-stage training procedure and slow

detection performance. To address these issues, Fast-RCNN [26] was introduced which

was re-organized to first pass the whole image once through a CNN and then propose

regions from the output feature-map. This approach combined with a multi-task training

loss that considered both location and classification at the same time, resulted in both speed

and accuracy improvements.

Faster-RCNN [27] further improved this line of research by introducing a trainable

region proposal network to replace selective search and therefore train the whole network

end-to-end. It is still known as one of the most accurate object detection approaches for

natural images in the literature.

A faster approach in object detection, known as single-shot detector was developed in

two concurrent but separate projects by Redmon et al. [28] and Liu et al. [14]. The main

idea was to remove the region proposal section of the solution and try to detect objects

using features learned directly over pre-defined bounding boxes of the input image. Their
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first implementations were not as accurate as Faster-RCNN and therefore introduced as

methods that drastically improve the speed of detection and can be used for real-time object

detection in videos. Further improvements and customizations over these approaches have

resulted in a range of solutions that allows the user to choose the architecture based on a

trade-off between speed and accuracy [29].

Detection-Based Particle Picking Inspired by the advancements of object detection in

generic computer vision, Xiao and Yang [8] considered Fast R-CNN [26] for particle

picking. They decided to use a simplified region proposal method and some of the pre-

processing introduced in [7]. They also introduced explicit labels for contaminants as dis-

tinct from background which helped reduce false positives. However, the method was only

reported on three datasets and with no direct comparisons to existing techniques.

Zheng, Ni, and Zhao [30] followed the approach in [8] but instead of a fixed size sliding

window, they used the Region Proposal Network (RPN) in Faster-RCNN [27] architecture.

They also used previously discussed pre-processing steps and considered coefficients of 90

degrees rotations as augmentations. The performance was only reported on one dataset.

SPHIRE-crYOLO [9], customizes the You Only Look Once (YOLO) [28] architec-

ture for particle picking which significantly improves picking speed while maintaining rea-

sonable precision and recall rates. Direct comparison against other learning-based parti-

cle picking methods were not provided but showed improvements over a baseline semi-

automated approach [31]. The model was trained on a large number of datasets, but when

tested on a held-out target dataset comparing against a similar model specially trained for

the target dataset, poorer performance was demonstrated, suggesting that even the much

larger training set was not helpful enough for generalization.

9



2.3 Segmentation-Based Approach

A similar but conceptually lower level task in computer vision is semantic segmentation.

It aims to assign a class label for each pixel in the image not considering the higher level

concept of objects and their instances in an image. Ronneberger, Fischer, and Brox [32]

have presented one of the most successful CNN architectures to address this task, U-Net.

Its main idea is to compress the representation space of the image by a series of pooling and

convolutional layers, before up-sampling those features back to the input image resolution.

Therefore, it gives a same label to connected components in the pixel space.

Segmentation-Based Particle Picking In an approach called BoxNet, Tegunov and Cramer

[10] formulated particle picking as a segmentation problem and used an architecture similar

to U-Net [32]. This requires multiple post-processing steps to avoid picking from detected

contaminated regions and to identify the final coordinates of the selected particles which

can be particularly challenging in crowded micrographs. The study did not provide any

quantitative comparisons.

2.4 Dataset Bias

The proposed particle picking approach is also motivated by the work on dataset bias in

image recognition [11] in which one important obstacle for generalization of trained models

is shown to be the bias towards the datasets used in training. Khosla et al. [12] considered

training a shared SVM with explicit bias vectors for each training dataset and reported

improvements in generalization over the traditional approach of training a single SVM

using all datasets. Tommasi et al. [13] followed this research line and analyzed the effects

10



of multiple SVM solutions for domain-adaptation besides a specifically designed SVM to

the task of cross-dataset generalization in image recognition [33]. They concluded that

SVM cannot undo the damage of dataset bias on features learned through CNNs and seek

a deep learning solution for future research directions.

2.5 Proposed Approach

The approach proposed here is most closely related to the detection-based approaches [8],

[9] in that a detection-based training framework is used. However, we adapt a network

architecture to the specific requirements of the picking task. Further, unlike existing ap-

proaches, we explicitly represent the fact that picked particles used in training come from

multiple, different datasets corresponding to different structures. We can view the problem

of particle picking on a new dataset as a form of dataset bias given only a finite (biased)

sample of currently available datasets used in training. Unlike previous work on dataset

bias [12], [13] with SVM, we introduce a deep learning architecture to concurrently learn

specialized models for each dataset and an extra generalized model.

Beyond a novel technical approach and with the hope of encouraging the Cryo-EM

community to form a standardized evaluation framework for particle picking, we further

provide a detailed evaluation of our method on a range of datasets [10] and in realistic

scenarios using conventional metrics in visual object detection and analyze the modelling

decisions made. Further, we perform direct baseline comparisons to existing methods to

demonstrate that HydraPicker represents the new state-of-the-art in particle picking.
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Chapter 3

Technical Approach

Here we now outline the proposed HydraPicker method. The CNN architecture is modelled

in two parts, a body which acts as a feature extractor and a set of dataset specific heads

which are tied together by an enforced similarity to a “generalization” head which can be

used for the zero-shot case, i.e. on datasets without labelled data.

3.1 Network Architecture

For the architecture of the body, we construct a variation of the ResNet architecture [23]

which utilizes residual connections to improve training. However, the basic ResNet archi-

tecture was designed for natural images which have significantly different characteristics

with cryo-EM micrographs. In particular, the high level of noise in particle picking sug-

gests that the 3× 3 filters in ResNet may be suboptimal as information must be aggregated

over much larger spatial extents to perform effective detection. Larger filter sizes would

be natural but quickly increases the computational costs and number of parameters that

need to be estimated which can lead to slow training and overfitting. Instead, we replace

12



3x3 conv, 64 ch

3x3 conv, 64 ch

3x3 conv, 64 ch

3x3 conv, 64 ch

3x3 conv, 64 ch

3x3 conv, 64 ch

GN, Relu

GN, Relu

GN

Relu

x3

Figure 3.1: The shared recognition network. It consists of two stacked 3x3 convolutions, followed
by three ResNet-like blocks of pairs of two stacked 3x3 convolutions with shortcut
connections.

the single 3 × 3 convolutional layers with pairs of two 3 × 3, without an intervening non-

linearity. This gives an effective filter size of 5 × 5 but with a reduced parameter count

and computational requirements. For simplicity we use a consistent numbers of channels

(64) throughout and consequently forego the 1 × 1 convolutional layer. Because we are

using the body as a feature extractor for input into dataset specific heads, we remove the

fully connected layers. This has the added benefit of ensuring that the architecture is fully

convolutional. Finally, in order to handle smaller batch sizes during training we replace

the batch normalization layers with group normalization layers [34] which divide channels

into groups and normalize them separately. The complete architecture is shown in Figure

3.1.

The body forms a common feature extractor for multiple detector heads whose design

(Figure 3.2) is derived from the single shot detector (SSD) framework [14]. SSD, like some

previous approaches [28] operates by predicting detections and bounding boxes at a grid of
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GN,
Relu,
DropDrop 3x3 conv

64->128ch
stride: 2

3x3 conv
128->256 ch

stride: 2

3x3 conv
256->512 ch

stride: 2
3x3 conv, 512->1024 ch, stride: 2 3x3 conv, 1024 ch

GN,
Relu,
Drop

GN,
Relu,
Drop

GN,
Relu,
Drop

Figure 3.2: Architecture Diagram for Each of the SSD Heads. Each layer has half the resolution of
the previous layer until it reaches the resolution of an assumed grid over the input. At
the same time, each layer has twice the number of channels to allow more of the infor-
mation to pass through. Output is an assumed grid over the image providing coordinates
and classification probabilities for each box which represents 16× 16 pixels.

anchor points. The network is trained using a focal classification loss [35]. This combina-

tion of SSD and the focal classification loss (called RetinaNet) has achieved state of the art

performance for detection on natural images [35]. While SSD is a good starting point, we

adapt the approach in several key ways to make it better suited for particle picking. First,

in object detection there are many classes of objects which could be detected and so the

output at each anchor point is a multi-class classification of which object is detected or no

detection. In the case of particle picking there is only a single class (particle) or not parti-

cle. Second, objects in natural images can be at many different scales and with significant

variations in aspect ratio and consequently the bounding box prediction at an anchor point

includes not only an offset but also the size and aspect ratio of the bounding box. In the

case of particle picking, because the images are orthographic projections, all particles of

the same type will generally have the same size. Between different particles we assume that

the input micrographs have been rescaled so that different particles share the same extent

in pixels.1 Further, bounding boxes for particle picking are square to simplify subsequent

processing. Thus, in our adapted network the output at each anchor point for the bounding

1This is a relatively mild assumption in practice.
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box needs only to include the offset.

The architecture itself consists of a sequence of 4 blocks consisting of 3 × 3 convolu-

tions with a stride of 2, rectification, group normalization and dropout with the number of

channels being 128, 256, 512, and 1024. The final layer is then a 3× 3 convolutional layer

with stride of 1 and with 3 outputs: 2 for the offset of the bounding box form the anchor

and 1 for the (log) probability of a particle being detected at that anchor.

3.2 Training

The above architecture with a single head can be trained on a large number of micrographs

and will work well on its own. However, as discussed, a major issue is the balance between

different datasets which can have significantly different numbers of detected particles and

the effective generalization of the approach as the number of datasets grows. Instead, Hy-

draPicker uses a different head for each dataset that it is trained on, plus an additional head

which generalizes picking on unseen datasets, i.e., it is used for picking particles without

training data. Inspired by [12], this generalization head is trained with an additional loss

which encourages the weights of the dataset specific heads to be close to those of the gen-

eralization head. Conceptually, we can consider that there exists a general particle picking

head which should work well on all datasets and dataset specific heads which are similar

to this general head but with mild specializations for their specific datasets. Thus, the gen-

eralization head of HydraPicker is implicitly trained by requiring that it be similar to the

dataset specific heads.

The is done by using the following loss function:

`Hydra = `loc + λcls`cls + λbias`bias , (3.1)
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where `loc is a localization loss which penalizes errors in the bounding box prediction, `cls

is a classification loss which penalizes incorrect detections, `bias encourages the dataset

specific heads to be close to the generalization head and λcls and λbias are hyperparameters

which weight the losses. We discuss each part of this overall loss in turn next.

The localization loss is:

`loc (δp ,p) =
∑

(i , j)∈M

||(ai + δpi)− pj||1 , (3.2)

where ai is the location of the ith anchor, δpi is the predicted offset of the bounding box at

the ith anchor and pj is the ground truth location of the bounding box for the jth detection.

The sum is taken over the setM of particles in a micrograph and their corresponding anchor

points. Formally M = {(i, j)|IOU[box(ai), box(pj)] > 0.6} where IOU is the Intersection

Over Union (or Jacquard index) between the anchor box and the particle bounding box and

the threshold of 0.6 is selected to match previous approaches [9].

For the classification loss, we use the focal classification loss [35]. Specifically,

`cls =
∑
i

−1

2
αci(1− pi)γ log pi , (3.3)

where ci is the correct class at the ith location, pi is the probability of the correct class at

the ith location, αc is a class-specific constant factor which accounts for imbalance between

the particle and background classes, γ is a hyperparameter and the sum is taken over all

detections. The focal loss is similar to a standard cross-entropy classification loss. How-

ever, the term (1− pi)γ downweights detections where the probability of the correct class,

pi, is close to 1. That is, it downweights detections which are generally easy and allows

learning to focus more on hard cases. As such, the focal loss can be considered a form of
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Figure 3.3: High-Level Diagram of HydraPicker. At training time on N datasets, all micrographs
are passed through the shared portion of the architecture. However, each is only passed
through the head assigned to its dataset resulting in a specialized model for that dataset.
The generic head has its weights tied to all other heads. It both learns a generic model
and acts as a regulator.

hard example mining. We use a value of γ = 2 which is typical.

The classification loss is evaluated using the correct head for each dataset, enabling

both the shared body and the dataset specific heads to learn. To enable learning of the

generalization head and to encourage the different, dataset specific heads to be similar to

the generalization head we use a simple form of the generalization loss. Specifically,

`bias(WS1 , . . . ,WSN
,WG) =

1

N

N∑
k=1

||WSk
−WG||2 , (3.4)

where N is the number of datasets used in training, WSi
is the set of weights for the ith

dataset specific head and WG is the set of weights for the generalization head.
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Chapter 4

Experiments and results

4.1 Datasets

To evaluate HydraPicker, we made use of a collection of 37 datasets collected by Tegunov

and Cramer [10]. These datasets are a mix of real and synthetic data from real structures

all of which has been annotated per pixel. To choose a single pair of coordinates for each

particle, we picked the central coordinates of each connected component in the annotation.

Each dataset has between 4 to 103 micrographs with approximately 30 to 800 particles per

micrograph. To account for scale variations all 37 datasets were re-scaled so that the target

particles would have similar sizes. In order to have more representative augmentations

during training, micrographs were padded with Gaussian noise with its mean and standard

deviation chosen separately based on the background regions for each micrograph. For

each dataset a small number of micrographs are randomly chosen as validation and test

micrographs. Finally, we further split the data into 30 “source” datasets (table 4.1) and 7

“target” datasets (table 4.2). This split is used to test the performance of the methods on

previously unseen target datasets. The 7 target datasets are chosen to have a diverse set of
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Access Code Sample Synthetic Phase
Plate

Approximated
Particle Size

(in pixels)

Number of
Micrographs

EMPIAR-10017 beta-galactosidase 22 84
EMPIAR-10077 80S ribosome 25 26
EMPIAR-10078 20S proteasome X 20 30
EMPIAR-10081 HCN1 channel 18 30
EMPIAR-10084 Haemoglobin X 8 15
EMPIAR-10089 TcdA1 in prepore state 24 24
EMPIAR-10097 Influenza Hemagglutinin 14 30
EMPIAR-10122 Apoferritin X 16 25
EMPIAR-10153 80S ribosome X 25 71
EMPIAR-10156 80S ribosome 31 21
gk 1 RNA Polymerase II complex 23 18
hh 2 RNA Polymerase II complex 21 36
lf 1 RNA Polymerase II complex 15 11
PDB-1sa0 Tubulin-Colchicine X 20 8
PDB-2gtl Lumbricus Erythrocruorin X 13 8
PDB-3j9i Thermoplasma acidophilum 20S proteasome X 18 8
PDB-4zor S37P MS2 viral capsid X 17 8
PDB-5foj Grapevine Fanleaf Virus complex with Nanobody X 8 5
PDB-5mmi Chloroplast ribosome, large subunit X 24 8
PDB-5ngm 70S ribosome X 30 8
PDB-5w3s TRPML3 ion channel X 13 8
PDB-5xwy LbuCas13a-crRNA binary complex X 11 8
PDB-5y6p Phycobilisome X 78 22
PDB-6az1 80S ribosome, small subunit X 32 8
PDB-6bco TRPM4 in ATP bound state with short coiled coil X 15 8
PDB-6bcq TRPM4 in ATP bound state with long coiled coil X 26 8
PDB-6bcx mTORC1 X 23 8
PDB-6bhu Multidrug Resistance Protein 1 (MRP1) X 14 8
PDB-6bqv Human TRPM4 ion channel X 17 8
ss 1 Viral polymerase 20 103

Table 4.1: Properties of source datasets. The information (except for particle size) was retrieved
from [10], the Electron Microscopy Public Image Archive (EMPIAR) [36], and the Pro-
tein Data Bank (PDB) [37].
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Access Code Sample Synthetic Phase
Plate

Approximated
Particle Size

(in pixels)

Number of
Micrographs

PDB-2wri 70S ribosome X 24 8
PDB-4hhb Human deoxyhaemoglobin X 7 4
PDB-5vy5 Rabbit muscle aldolase X 10 5
PDB-5w3l Rhinovirus B14 X 38 8
PDB-5xnl Stacked PSII-LHCII supercomplex X 37 8
PDB-6b7n Porcine delta coronavirus spike protein in the pre-fusion state X 14 8
PDB-6b44 CRISPR Csy surveillance complex with bound target dsDNA X 17 8

Table 4.2: Properties of target datasets. The information (except for particle size) was retrieved
from [10] and the Protein Data Bank (PDB) [37].

structures. Besides, they are all chosen from the synthetic datasets to be confident of the

picked ground truth coordinates, avoiding the possibility of human errors in their picking

process.

4.2 Baselines

We compare our results on these datasets against two state-of-the-art learning-based parti-

cle picking methods, BoxNet [10] and crYOLO [9]. For these baseline methods we used

published code to retrain the models using the same experimental setup as for HydraPicker.

For both methods we used the latest release but to ensure adherence to the experimental

setup, we had to retrain them from scratch as the available models training sets overlapped

with our held-out test and validation micrographs and target datasets.

We used the latest stable release of BoxNet and experimented with hyperparameters to

find the best performing ones, finding an input pixel size of 5Å and remaining parameters

set as default. We excluded any other pre-processing or CTF correction to compare the per-

formance of all methods on exact same inputs. BoxNet allows users to label contamination

in the training micrographs, a signal that isn’t exploited by either crYOLO or HydraPicker.
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Thus we compared against two versions of BoxNet, one which didn’t use the contamina-

tion label (and hence labelled contamination as background) and another which masked the

contamination. We refer to these two variants as BoxNet and BoxNet mask respectively.

We trained crYOLO with a range of hyperparameters and selected an input resolution of

1024, batch-size of 6, anchor-size of 21, maximum 900 boxes per image, and the remaining

parameters set as default.

4.3 Implementation

HydraPicker was implemented using the PyTorch deep learning framework [38]. For op-

timization, ADAM [39] was used with a cosine annealing scheduler with warm restarts

every 40 epochs [40]. Micrographs were randomly rotated and cropped to a resolution of

368×368 and mini-batches of 4 were used where each mini-batch used micrographs from a

single dataset only for better representation of smaller datasets during training. To improve

training time and convergence, a single-head architecture was first trained as a generic par-

ticle picker for 5000 epochs and the best performing model was selected based on the loss

on the validation data. Based on our experiments, validation accuracy would not improve

significantly after 1200 epochs. However, due to the additional randomness given by the

restarts, it was allowed to continue much longer to make sure any additional improvement

in accuracy in the second phase of the training would be a result of the multi-head training.

The resulting weights were used to initialize the training of the full multi-head architecture.

Given that the network should already be in a neighbourhood of the optima, the Adam op-

timizer and the scheduler would not be much beneficial for this second phase of training. It

could even slow down the training. Therefore, training was done only by 100 epochs using

a SGD [41] optimizer with a momentum of 0.98. (A similar optimization setting as the first
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phase for 1000 epochs was also tried but no significant improvement was found.)

4.4 Evaluation

Like in most detection tasks, particle picking is biased towards rejections rather than detec-

tions of true particles. As a consequence, measurements relying on true negatives such as

accuracy and specificity are less informative [42]. Instead we propose evaluations based on

a metric commonly used in the object detection literature, the precision-recall curve and the

area under it, also known as the Average Precision (AP). For completeness, we also plot the

ROC (Receiver Operating Characteristic) curve and compute the AUROC (Area Under the

ROC curve). Following the literature [9] we use an IOU threshold of 0.6 between picked

and true particle boxes to count as positive detection. In case of multiple detections for

a single true particle, we select the one with maximum confidence as true positive. Fur-

thermore, we illustrate the qualitative performance of different methods with a few sample

micrographs and use green bounding boxes over ground truth locations and red bounding

boxes over locations picked by a stated model. As all compared models give confidence

probabilities per each picked location, to have less crowded and easier to interpret figures,

we only show the bounding boxes with a higher confidence than a threshold. This threshold

is chosen once for each method so that it would lead to a precision more than or equal to

0.8 based on the validation set accuracy of the 30 source datasets.

4.5 Generalization vs Specialization

To validate that training was successful we report results on the held-out test micrographs of

the 30 source datasets. Two versions of HydraPicker are compared. HydraPicker gen uses
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Figure 4.1: Precision-Recall Curves on Test
Portions of Source Datasets

Figure 4.2: ROC curves on test portions of
source datasets

Model AP AROC
crYOLO 0.718 0.822
BoxNet 0.650 0.766
BoxNet mask 0.625 0.733
HydraPicker gen 0.882 0.962
HydraPicker spec 0.884 0.963

Table 4.3: Measurements on Test Portions of Source Datasets. Testing by the generic head of
HydraPicker is distinguished from testing by the specialized heads for each dataset as
”gen” vs. ”spec”.
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the generalization while HydraPicker spec uses the specialized heads. The results, found

in figures 4.1 and 4.2 and table 4.3, show that both versions of HydraPicker significantly

outperform the baseline methods. Further, there is only a small improvement with the

specialized head over the generalization head which suggests that the generalization head

has been very effective in learning indirectly from the data. Finally, we see that there is a

strong conservative approach to particle selection which prevents BoxNet from saturating

recall. This is likely by design as avoiding bad picks is often considered more important

than getting all particles in a micrograph. However, the precision-recall curves show that

these methods still suffer from lower accuracy despite this preference.

We also look at the results in a more detailed view, per dataset, for this task (table B.1

in the appendix). We first compare the results using the generalization head versus the

specialized heads and assume that a relative difference of 0.005 to be significant for either

AP or AROC between the two types of heads. Only 7 out of 30 datasets are significantly

different. Five of which (EMPIAR-10084, gk 1, PDB-5foj, PDB-5xwy, and ss 1) have

their picking improved using the specialized heads. Two other (PDB-2gtl and PDB-6bcq)

were picked better by the generalized head. The fact that the results for the two datasets are

worsened is obviously unfavorable. One way to address this issue would be to explicitly

consider dataset specific loss terms comparing the generalization head with the specialized

heads, instead of a single bias loss term as in Equation 3.4. Moreover, looking at AP

among all datasets, it is evident that PDB-5foj has been a hard dataset for this task. While

HydraPicker gives an AP in the range of 0.57 and 0.59, the AP for all other methods are

in the range of 0.11 to 0.21. The dataset’s original particle size is the smallest (8 pixels).

Therefore, it could be a result of scaling issues that the performance on this dataset is worse.

To better understand the situation, we draw the Precision-Recall and ROC curves for
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Figure 4.3: Precision-Recall
Curves on PDB-
5foj

Figure 4.4: ROC Curves on
PDB-5foj

Model AP AROC
crYOLO 0.116 0.333
BoxNet mask 0.207 0.486
HydraPicker 0.586 0.872

Table 4.4: Measurements
on PDB-5foj

Figure 4.5: A Sample of a Micrograph with Particle Pickings from PDB-5foj. The ground truth
is depicted in green. From left to right, the results for crYOLO, BoxNet mask, and
HydraPicker are depicted in red. Here we only show the picks with a confidence higher
than a set threshold.
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this dataset exclusively. We also illustrate a sample micrograph from its held-out test set

and how crYOLO, BoxNet mask, and HydraPicker pick particles in it (figures 4.3, 4.4, and

4.5 and table 4.4). The reason behind having so few picked particles by crYOLO in figure

4.5 is that we chose the confidence threshold for picked particles based on the aggregated

results on the validation set of all 30 datasets. Although BoxNet mask has picked a fairly

large amount of particles as well, too many of them are false positives resulting in a much

lower AP and AROC. There are many corrupted particles, which are not marked as ground

truth, in the dataset. Such a large number of corrupted particles is unusual among the source

datasets and has resulted in poor performance by all methods.

Moreover, for EMPIAR-10078 dataset, crYOLO has performed better than HydraPicker,

both in AP and AROc. We look at the exclusive results on this dataset (figures 4.6, 4.7, and

4.8 and table 4.4). It is evident that almost all the particles around the border of the mi-

crographs are marked as ground truth in the dataset. However, they are very similar to

ground truth particles and HydraPicker picks most of them, resulting false positives. A

post-processing step which filters out detections near the borders could be added as an

option to meet the user’s preference in such databases.

4.6 Zero-Shot Picking

To test the performance of HydraPicker on previously unseen datasets, we apply the gen-

eralization head on the 7 target datasets which were never used in training. This can be

thought of as a “zero-shot” learning scenario as the particles in the target datasets are un-

seen. For comparison, we also trained 7 different single-head HydraPicker models on the

training portions of the target datasets and report these under the “7 models” title. Results
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Figure 4.6: Precision-Recall
Curves on
EMPIAR-10078

Figure 4.7: ROC Curves on
EMPIAR-10078

Model AP AROC
crYOLO 0.116 0.333
BoxNet mask 0.207 0.486
HydraPicker 0.586 0.872

Table 4.5: Measurements
on EMPIAR-
10078

Figure 4.8: A Sample of a Micrograph with Particle Pickings from EMPIAR-10078. The ground
truth is depicted in green. From left to right, the results for crYOLO, BoxNet mask,
and HydraPicker are depicted in red. Here we only show the picks with a confidence
higher than a set threshold.
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can be seen in figures 4.9 and 4.10 and table 4.6. Again, HydraPicker significantly outper-

formed the baselines on this task. Further, note that HydraPicker’s generic picking head

performed almost identically to the “7 models” case, despite never having seen any of the

datasets in training.

Moreover, we look at the per dataset results on this task (table B.2). Compared to

crYOLO and both versions of BoxNet, HydraPicker is more accurate for almost all datasets.

The only exception is crYOLO on PDB-5w3l.

To further investigate the reason behind HydraPicker’s lower precision on this dataset,

we illustrate the results and some sample micrographs exclusively from this dataset (figures

4.11, 4.12, and 4.13 and table 4.7). One thing that could be problematic for HydraPicker on

this dataset is the existence of many overlapping particles in the ground truth. The reason

could be that the hyperparameters like the size of the bounding box are chosen based on the

validation subset of source datasets while this situation is less evident in source datasets.

Furthermore, compared to the 7 models directly trained on target datasets, HydraPicker

performs slightly better than six of them. Only in PDB-4hhb, HydraPicker performs worse.

Although it is absolutely unfair to expect HydraPicker to generalize as well as a model

directly trained on a target, we would like to have an explanation. By looking at the target

dataset properties (table 4.2) we learn that the original particle size (7 pixels) for this dataset

is smaller and outside the range of all 30 source datasets. This would result in more scaling

effects in the image than the network is trained to tolerate. As extrapolation is a hard task

for neural networks, this behavior is not far from our expectations.
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Figure 4.9: Precision-Recall Curves for Zero-
Shot Picking

Figure 4.10: ROC Curves for Zero-Shot
Picking

Model AP AROC
crYOLO 0.584 0.682
BoxNet 0.611 0.797
BoxNet mask 0.613 0.769
HydraPicker 0.803 0.947
7 models 0.802 0.949

Table 4.6: Measurements for Zero-Shot Picking. Tests using 7 independent single-head Hy-
draPicker models trained on few micrographs of target datasets are also provided as
”7 models”.
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Figure 4.11: Precision-Recall
Curves for Zero-
Shot Picking on
PDB-5w3l

Figure 4.12: ROC Curves
for Zero-Shot
Picking on
PDB-5w3l

Model AP AROC
crYOLO 0.953 0.956
BoxNet mask 0.296 0.296
HydraPicker 0.894 0.951

Table 4.7: Measurements
for Zero-Shot
Picking on
PDB-5w3l

Figure 4.13: A Sample of a Micrograph with Particle Pickings from PDB-5w3l. The ground truth
is depicted in green. From left to right, the results for crYOLO, BoxNet mask, and
HydraPicker are depicted in red. Here we only show the picks with a confidence
higher than a set threshold.
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4.7 Few-Shot Picking

We further explore the case where there is a small amount of training data available for a

new dataset. In this case, we train new dataset specific heads for the target datasets using the

same training procedure, except we freeze the weights of the body and the generalization

head. This can be thought of as a “few-shot” learning scenario as only a small number of

particles in the target datasets are used for training.

For other methods we similarly fine-tuned their models using the training data of the

target datasets. we tried multiple times both re-training the whole model and . For crYOLO,

by testing on the validation set, whole model re-training was chosen as it performed better

than fine-tuning on just a few of the last layers. The results are shown in figures 4.14 and

4.15 and table 4.8. HydraPicker performs better in all measurements. It also outperforms

the 7 single-head trained models indicating that picking on the target datasets are benefiting

from the additional information available from a larger set of source datasets.

Comparing the per dataset results of HydraPicker in the few-shot scenario versus the

previous zero-shot scenario (tables B.3 and B.2 in the appendix), we can confirm that im-

provement is achieved for all datasets and that it has performed better than all the 7 models

directly trained on the target datasets. This means regardless of the target structure, if the

zero-shot performance of HydraPicker is not good enough for an application, it is possible

to improve the results by fine tuning on a few of the target micrographs and to outper-

form training from scratch on those few micrographs. However, comparing the results for

other methods, we notice that their accuracy on three datasets (PDB-5w3l, PDB-5xnl, and

PDB-6b44) have generally decreased after fine-tuning. This means for other methods these

datasets are hard to fine-tune. According to table 4.2 in two of these datasets, the origi-

nal particle sizes (37 and 38 pixels) were much larger than the average size among source
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Figure 4.14: Precision-Recall Curves for Few-
Shot Picking

Figure 4.15: ROC Curves for Few-Shot
Picking

Model AP AROC
crYOLO 0.599 0.746
BoxNet 0.676 0.826
BoxNet mask 0.676 0.827
HydraPicker 0.870 0.969
7 models 0.802 0.949

Table 4.8: Measurements for Few-Shot Picking. Tests using seven independent single-head Hy-
draPicker models trained on few micrographs of target datasets are also provided as ”7
models”.
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Dataset Access Code Multi-head AP Multi-head AROC Single-head AP Single-head AROC
PDB-2wri 0.949 0.997 0.931 0.995
PDB-4hhb 0.785 0.955 0.775 0.947
PDB-5vy5 0.733 0.93 0.728 0.924
PDB-5w3l 0.964 0.975 0.947 0.982
PDB-5xnl 0.986 0.999 0.99 0.999
PDB-6b7n 0.909 0.99 0.9 0.985
PDB-6b44 0.936 0.982 0.939 0.983
Average 0.895 0.975 0.887 0.974

Table 4.9: Measurements for multi-head vs single-head. The access codes indicate the Protein Data Bank
(PDB) [37] structure used to simulate the micrographs by [10].

datasets (21 pixels). Since crYOLO fine-tuned worse on both of them, we could assume

it cannot tolerate scaling effects when fine-tuning. In appendix A, we have included per

dataset results on all 7 datasets for few-shot learning along with sample micrographs.

4.8 Multi-Head vs Single-Head

Finally, we analyze the contribution of multiple heads. As discussed in the beginning of

this section, we trained a single-head architecture which we provide a comparison to in this

experiment. We fine tune this model on the target datasets and compare it against against

the multi-head architecture. To have a more detailed insight on the results, we look at the

AP and AROC per target dataset as well as on average. As seen in Table 4.9, in 5 out

of 7 target datasets the multi-head model outperforms the single-head model in both AP

and AROC measures. The average improvement is small, about 1% in AP, but the results

indicate overall that the multi-head model improves over the single head model.
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Chapter 5

Conclusion and Future Work

This work has presented HydraPicker, a new method for particle picking in single-particle

cryo-EM. The proposed method consists of a customized CNN architecture tailored for

the particle picking problem and taking into account the differences of datasets in particle

picking data through the use of multiple, dataset specific heads. The architecture is trained

using a variation of a focal loss combined with a new term which allows for the training of

a general, non-dataset specific head. Beyond a new architecture and training loss, we estab-

lish a rigorous testing framework for particle picking methods and compare HydraPicker

against state-of-the-art particle picking methods. Our results demonstrate that HydraPicker

significantly outperforms existing methods in both zero shot and few shot detection scenar-

ios both in terms of accuracy and consistency among multiple datasets.

In terms of future work, we believe there are several promising directions. First, the for-

mulation used here could also be used to handle the general problem of dataset bias in tasks

like recognition, detection, and segmentation. Second, there are a number of modelling

decisions which could yield performance improvements. To come up with the proposed

HydraPicker, we ran multiple rounds of architecture search. One of the main constraints
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that we considered was to avoid usage of more than 11 GB of GPU memory (typical for

high-end consumer GPUs at the time) when training the full multi-head model. This lim-

ited the flexibility of search over the architecture for detector heads as we needed one copy

per dataset in GPU. It also limited the depth of the shared recognition network. Further ar-

chitecture search without hardware restrictions or even the application of automated search

methods [43] is a promising future direction. Third, other choices for `bias may work bet-

ter. The simple Euclidean norm that we used was effective, but others may yield better

performance. In particular, there may yet be room for more improvements in the few-shot

case. Fourth, there are a number of other problem specific characteristics which could be

used. We excluded the pre-processing and post-processing steps that should further im-

prove the picking accuracy but make objective comparisons more complicated as they may

affect each method differently. For instance, explicit handling of the microscope’s contrast

transfer function can help detection methods generalize over a range of imaging conditions.

Fifth, computational and memory complexity and consequently an empirical comparison

on the speed of each method should also be considered. However, objective comparison of

such matters would require a unified software implementations of all competing methods.

Finally, we believe it would be beneficial to establish a larger collection of datasets and

standard testing procedures for particle picking methods. The progress on the problem of

particle picking has been unclear, in part because of a lack of consistent and comparable

testing methodology. This study attempts to address this in part by establishing a general

methodology and directly comparing against previous approaches. However, more work

remains to be done by collecting a larger set of datasets and providing a set of consistent

and meaningful evaluation metrics. To encourage further comparisons, we will release the

code for our method, our comparison methodology and the dataset splits.

35



References

[1] J. L. Milne, M. J. Borgnia, A. Bartesaghi, E. E. Tran, L. A. Earl, D. M. Schauder, J.

Lengyel, J. Pierson, A. Patwardhan, and S. Subramaniam, “Cryo-electron microscopy–

a primer for the non-microscopist,” The Federation of European Biochemical Soci-

eties (FEBS) Journal, vol. 280, no. 1, pp. 28–45, 2013.

[2] S. H. Scheres, “Semi-automated selection of cryo-em particles in relion-1.3,” Jour-

nal of Structural Biology, vol. 189, no. 2, pp. 114–122, 2015.

[3] Cellular Structure and 3D Bioimaging Team EMBL-EBI. (2018). EMPIAR-10216,

[Online]. Available: http://dx.doi.org/10.6019/EMPIAR-10216.

[4] O. von Loeffelholz, G. Papai, R. Danev, A. G. Myasnikov, S. K. Natchiar, I. Haze-

mann, J. F. Menetret, and B. P. Klaholz, “Volta phase plate data collection facilitates

image processing and cryo-em structure determination,” Journal of Structural Biol-

ogy, vol. 202, no. 3, pp. 191–199, 2018.

[5] Y. Zhu, Q. Ouyang, and Y. Mao, “A deep convolutional neural network approach

to single-particle recognition in cryo-electron microscopy,” BioMed Central (BMC)

Bioinformatics, vol. 18, no. 1, p. 348, 2017.

36



[6] F. Wang, H. Gong, G. Liu, M. Li, C. Yan, T. Xia, X. Li, and J. Zeng, “Deeppicker:

A deep learning approach for fully automated particle picking in cryo-em,” Journal

of Structural Biology, vol. 195, no. 3, pp. 325–336, 2016.

[7] T. Da, J. Ding, L. Yang, and G. Chirikjian, “A method for fully automated parti-

cle picking in cryo-electron microscopy based on a cnn,” in ACM Conference on

Bioinformatics, Computational Biology, and Health Informatics (ACM BCB), 2018.

[8] Y. Xiao and G. Yang, “A fast method for particle picking in cryo-electron micro-

graphs based on fast r-cnn,” in International Conference on Applied Mathematics

and Computer Science (ICAMCS), 2017.

[9] T. Wagner, F. Merino, M. Stabrin, T. Moriya, C. Antoni, A. Apelbaum, P. Hagel, O.

Sitsel, T. Raisch, D. Prumbaum, et al., “Sphire-cryolo is a fast and accurate fully au-

tomated particle picker for cryo-em,” Communications Biology, vol. 2, no. 1, p. 218,

2019.

[10] D. Tegunov and P. Cramer, “Real-time cryo-EM data pre-processing with warp,”

bioRxiv, 2018. DOI: 10.1101/338558.

[11] A. Torralba and A. A. Efros, “Unbiased look at dataset bias,” in CVPR, 2011.

[12] A. Khosla, T. Zhou, T. Malisiewicz, A. A. Efros, and A. Torralba, “Undoing the

damage of dataset bias,” in ECCV, 2012.

[13] T. Tommasi, N. Patricia, B. Caputo, and T. Tuytelaars, “A deeper look at dataset

bias,” in Domain Adaptation in Computer Vision Applications. 2017, pp. 37–55.

[14] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and A. C. Berg, “Ssd:

Single shot multibox detector,” in ECCV, 2016.

37



[15] N. Volkmann, “An approach to automated particle picking from electron micro-

graphs based on reduced representation templates,” Journal of Structural Biology,

vol. 145, no. 1-2, pp. 152–156, 2004.

[16] B. Rath and J. Frank, “Fast automatic particle picking from cryo-electron micro-

graphs using a locally normalized cross-correlation function: A case study,” Journal

of Structural Biology, vol. 145, no. 1-2, pp. 84–90, 2004.

[17] P. U. Adiga, R. Malladi, W. Baxter, and R. M. Glaeser, “A binary segmentation ap-

proach for boxing ribosome particles in cryo em micrographs,” Journal of Structural

Biology, vol. 145, no. 1-2, pp. 142–151, 2004.

[18] N. Voss, C. Yoshioka, M. Radermacher, C. Potter, and B. Carragher, “Dog picker

and tiltpicker: Software tools to facilitate particle selection in single particle electron

microscopy,” Journal of Structural Biology, vol. 166, no. 2, pp. 205–213, 2009.

[19] J. Vargas, V. Abrishami, R. Marabini, J. de la Rosa-Trevı́n, A. Zaldivar, J. Carazo,

and C. Sorzano, “Particle quality assessment and sorting for automatic and semiau-

tomatic particle-picking techniques,” Journal of Structural Biology, vol. 183, no. 3,

pp. 342–353, 2013.

[20] J. Zhao, M. A. Brubaker, and J. L. Rubinstein, “Tmacs: A hybrid template match-

ing and classification system for partially-automated particle selection,” Journal of

Structural Biology, vol. 181, no. 3, pp. 234–242, 2013.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in NeurIPS, 2012.

[22] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” in ICLR, 2015.

38



[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in CVPR, 2016.

[24] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for ac-

curate object detection and semantic segmentation,” in CVPR, 2014.

[25] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders, “Selective

search for object recognition,” IJCV, vol. 104, no. 2, pp. 154–171, 2013.

[26] R. Girshick, “Fast r-cnn,” in ICCV, 2015.

[27] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object

detection with region proposal networks,” in NeurIPS, 2015.

[28] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,

real-time object detection,” in CVPR, 2016.

[29] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, Z. Wojna,

Y. Song, S. Guadarrama, and K. Murphy, “Speed/accuracy trade-offs for modern

convolutional object detectors,” in CVPR, 2017.

[30] F. Zheng, F. Ni, and L. Zhao, “Localization and recognition of single particle image

in microscopy micrographs based on region based convolutional neural networks,”

in International Conference of Pioneering Computer Scientists, Engineers and Edu-

cators (ICPCSEE), 2018.

[31] G. Tang, L. Peng, P. R. Baldwin, D. S. Mann, W. Jiang, I. Rees, and S. J. Ludtke,

“Eman2: An extensible image processing suite for electron microscopy,” Journal of

Structural Biology, vol. 157, no. 1, pp. 38–46, 2007.

[32] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomed-

ical image segmentation,” in MICCAI, 2015.

[33] T. Tommasi and T. Tuytelaars, “A testbed for cross-dataset analysis,” in ECCV, 2014.

39



[34] Y. Wu and K. He, “Group normalization,” in ECCV, 2018.

[35] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object

detection,” IEEE TPAMI, 2018.

[36] A. Iudin, P. K. Korir, J. Salavert-Torres, G. J. Kleywegt, and A. Patwardhan, “Em-

piar: A public archive for raw electron microscopy image data,” Nature Methods,

vol. 13, no. 5, p. 387, 2016.

[37] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N.

Shindyalov, and P. E. Bourne, “The protein data bank,” Nucleic Acids Research,

vol. 28, no. 1, pp. 235–242, 2000.

[38] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-

maison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” in NeurIPS,

Workshop on Automatic Differentiation (AutiDiff), 2017.

[39] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in ICLR,

2015.

[40] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with warm restarts,”

Learning, vol. 10, p. 3, 2016.

[41] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of initialization

and momentum in deep learning,” in ICML, 2013.

[42] R. Langlois and J. Frank, “A clarification of the terms used in comparing semi-

automated particle selection algorithms in cryo-em,” Journal of Structural Biology,

vol. 175, no. 3, pp. 348–352, 2011.

[43] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learning,” in

ICLR, 2017.

40



Appendix A

Per Dataset Results for Few-Shot

Picking with Sample Micrographs

Here we have provided Precision-Recall curves, Receiver Operating Characteristics (ROC)

curves, and their related measurements for HydraPicker, crYOLO, and BoxNet mask. We

only included BoxNet mask as it performed slightly better than its unmasked variant in

a few-shot learning scenario on all 7 target datasets. For each method, We looked at the

Precision-Recall curves on the validation set of all the 30 source datasets and chose a confi-

dence threshold for which the precision stays above 0.8. The reason we looked at validation

sets of source datasets rather than target datasets is the assumption that the labeled data for

few-shot picking is limited and all of it is used for fine-tuning and a threshold based on

training set of target datasets should not generalize well to testing sets. In the provided

figures we used those thresholds to pick particles from sample micrographs of testing sets.
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Figure A.1: Precision-Recall
Curves for Few-
Shot Picking on
PDB-2wri

Figure A.2: ROC Curves
for Few-Shot
Picking on
PDB-2wri

Model AP AROC
crYOLO 0.638 0.889
BoxNet mask 0.765 0.884
HydraPicker 0.921 0.995

Table A.1: Measurements
for Few-Shot
Picking on
PDB-2wri

Figure A.3: A Sample of a Micrograph with Particle Pickings from PDB-2wri. The ground truth
is depicted in green. From left to right, the results for fine-tuned models of crYOLO,
BoxNet mask, and HydraPicker are depicted in red. Here we only show the picks with
a confidence higher than a set threshold.
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Figure A.4: Precision-Recall
Curves for Few-
Shot Picking on
PDB-4hhb

Figure A.5: ROC Curves
for Few-Shot
Picking on
PDB-4hhb

Model AP AROC
crYOLO 0.256 0.458
BoxNet mask 0.506 0.752
HydraPicker 0.758 0.942

Table A.2: Measurements
for Few-Shot
Picking on
PDB-4hhb

Figure A.6: A Sample of a Micrograph with Particle Pickings from PDB-4hhb. The ground truth
is depicted in green. From left to right, the results for fine-tuned models of crYOLO,
BoxNet mask, and HydraPicker are depicted in red. Here we only show the picks with
a confidence higher than a set threshold.
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Figure A.7: Precision-Recall
Curves for Few-
Shot Picking on
PDB-5xnl

Figure A.8: ROC Curves
for Few-Shot
Picking on
PDB-5xnl

Model AP AROC
crYOLO 0.689 0.894
BoxNet mask 0.812 0.819
HydraPicker 0.991 0.999

Table A.3: Measurements
for Few-Shot
Picking on
PDB-5xnl

Figure A.9: A Sample of a Micrograph with Particle Pickings from PDB-5xnl. The ground truth
is depicted in green. From left to right, the results for fine-tuned models of crYOLO,
BoxNet mask, and HydraPicker are depicted in red. Here we only show the picks with
a confidence higher than a set threshold.
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Figure A.10: Precision-
Recall Curves
for Few-Shot
Picking on
PDB-5vy5

Figure A.11: ROC Curves
for Few-Shot
Picking on
PDB-5vy5

Model AP AROC
crYOLO 0.493 0.709
BoxNet mask 0.576 0.804
HydraPicker 0.731 0.933

Table A.4: Measurements
for Few-Shot
Picking on
PDB-5vy5

Figure A.12: A Sample of a Micrograph with Particle Pickings from PDB-5vy5. The ground truth
is depicted in green. From left to right, the results for fine-tuned models of crYOLO,
BoxNet mask, and HydraPicker are depicted in red. Here we only show the picks
with a confidence higher than a set threshold.
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Figure A.13: Precision-
Recall Curves
for Few-Shot
Picking on
PDB-5w3l

Figure A.14: ROC Curves
for Few-Shot
Picking on
PDB-5w3l

Model AP AROC
crYOLO 0.769 0.948
BoxNet mask 0.824 0.825
HydraPicker 0.970 0.979

Table A.5: Measurements
for Few-Shot
Picking on
PDB-5w3l

Figure A.15: A Sample of a Micrograph with Particle Pickings from PDB-5w3l. The ground truth
is depicted in green. From left to right, the results for crYOLO, BoxNet mask, and
HydraPicker are depicted in red. Here we only show the picks with a confidence
higher than a set threshold.
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Figure A.16: Precision-
Recall Curves
for Few-Shot
Picking on
PDB-6b44

Figure A.17: ROC Curves
for Few-Shot
Picking on
PDB-6b44

Model AP AROC
crYOLO 0.870 0.924
BoxNet mask 0.812 0.884
HydraPicker 0.926 0.979

Table A.6: Measurements
for Few-Shot
Picking on
PDB-6b44

Figure A.18: A Sample of a Micrograph with Particle Pickings from PDB-6b44. The ground truth
is depicted in green. From left to right, the results for fine-tuned models of crYOLO,
BoxNet mask, and HydraPicker are depicted in red. Here we only show the picks
with a confidence higher than a set threshold.
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Figure A.19: Precision-
Recall Curves
for Few-Shot
Picking on
PDB-6b7n

Figure A.20: ROC Curves
for Few-Shot
Picking on
PDB-6b7n

Model AP AROC
crYOLO 0.721 0.826
BoxNet mask 0.797 0.878
HydraPicker 0.898 0.987

Table A.7: Measurements
for Few-Shot
Picking on
PDB-6b7n

Figure A.21: A Sample of a Micrograph with Particle Pickings from PDB-6b7n. The ground truth
is depicted in green. From left to right, the results for fine-tuned models of crYOLO,
BoxNet mask, and HydraPicker are depicted in red. Here we only show the picks
with a confidence higher than a set threshold.

48



Appendix B

Per Dataset Measurements on All

Datasets and Methods

Here we have provided per dataset measurements on source datasets and on target datasets,

both in zero-shot picking and few-shot picking for all the methods discussed in this study.

49



Access Code Gen AP Gen AROC Spec AP Spec AROC crYOLO AP crYOLO AROC BoxNet AP BoxNet AROC BoxNet mask AP BoxNet mask AROC
EMPIAR-10017 0.93 0.986 0.932 0.986 0.816 0.883 0.842 0.931 0.809 0.896
EMPIAR-10077 0.858 0.98 0.859 0.98 0.714 0.845 0.521 0.721 0.524 0.701
EMPIAR-10078 0.962 0.973 0.962 0.973 0.977 0.986 0.71 0.792 0.666 0.724
EMPIAR-10081 0.95 0.994 0.952 0.994 0.945 0.973 0.872 0.89 0.858 0.87
EMPIAR-10084 0.71 0.91 0.749 0.922 0.431 0.692 0.558 0.707 0.462 0.615
EMPIAR-10089 0.98 0.995 0.98 0.995 0.876 0.927 0.467 0.638 0.461 0.623
EMPIAR-10097 0.753 0.978 0.756 0.978 0.623 0.824 0.615 0.863 0.66 0.878
EMPIAR-10122 0.918 0.988 0.918 0.988 0.854 0.934 0.72 0.835 0.466 0.631
EMPIAR-10153 0.973 0.998 0.973 0.998 0.831 0.948 0.841 0.945 0.818 0.935
EMPIAR-10156 0.887 0.965 0.885 0.965 0.794 0.887 0.684 0.859 0.636 0.727
gk 1 0.846 0.976 0.853 0.977 0.762 0.908 0.602 0.775 0.57 0.693
hh 2 0.878 0.961 0.877 0.961 0.882 0.939 0.695 0.719 0.669 0.687
lf 1 0.922 0.975 0.92 0.973 0.8 0.868 0.739 0.828 0.708 0.796
PDB-1sa0 0.913 0.98 0.912 0.98 0.681 0.813 0.564 0.68 0.635 0.722
PDB-2gtl 0.774 0.939 0.753 0.929 0.389 0.62 0.69 0.828 0.629 0.782
PDB-3j9i 0.923 0.985 0.923 0.985 0.878 0.97 0.877 0.933 0.893 0.942
PDB-4zor 0.99 0.992 0.991 0.992 0.972 0.975 0.763 0.768 0.523 0.539
PDB-5foj 0.574 0.865 0.586 0.872 0.116 0.333 0.136 0.409 0.207 0.486
PDB-5mmi 1 1 0.999 1 0.836 0.89 0.712 0.789 0.764 0.796
PDB-5ngm 0.968 0.974 0.969 0.974 0.826 0.88 0.825 0.851 0.8 0.817
PDB-5w3s 0.824 0.971 0.821 0.969 0.591 0.781 0.783 0.925 0.814 0.951
PDB-5xwy 0.751 0.922 0.755 0.924 0.373 0.565 0.53 0.687 0.563 0.708
PDB-5y6p 0.949 0.958 0.949 0.958 0.853 0.888 0.605 0.625 0.472 0.472
PDB-6az1 0.999 1 1 1 0.914 0.941 0.828 0.844 0.881 0.891
PDB-6bco 0.839 0.979 0.84 0.981 0.587 0.793 0.768 0.909 0.706 0.839
PDB-6bcq 0.879 0.892 0.872 0.888 0.78 0.81 0.442 0.485 0.493 0.531
PDB-6bcx 0.963 0.988 0.964 0.988 0.822 0.864 0.761 0.818 0.722 0.777
PDB-6bhu 0.851 0.952 0.851 0.952 0.566 0.724 0.597 0.72 0.622 0.739
PDB-6bqv 0.878 0.952 0.88 0.952 0.861 0.944 0.731 0.784 0.739 0.791
ss 1 0.816 0.932 0.822 0.933 0.757 0.864 0.509 0.602 0.444 0.519

Table B.1: Per Dataset Measurements on Source Datasets. Results for HydraPicker using the generalized head and the specialized
heads are shown separately as “Gen” and “Spec”.
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Access Code HydraPicker AP HydraPicker AROC crYOLO AP crYOLO AROC BoxNet AP boxnet AROC boxnet mask AP boxnet mask AROC 7-models AP 7-models AROC
PDB-2wri 0.869 0.992 0.858 0.931 0.759 0.857 0.651 0.721 0.856 0.991
PDB-4hhb 0.591 0.883 0.132 0.339 0.382 0.709 0.414 0.704 0.73 0.929
PDB-5vy5 0.7 0.923 0.334 0.57 0.491 0.746 0.555 0.791 0.636 0.885
PDB-5w3l 0.894 0.951 0.953 0.956 0.861 0.864 0.296 0.296 0.873 0.949
PDB-5xnl 0.976 0.992 0.9 0.943 0.716 0.74 0.827 0.842 0.975 0.998
PDB-6b7n 0.894 0.983 0.62 0.76 0.741 0.842 0.806 0.875 0.853 0.963
PDB-6b44 0.905 0.976 0.844 0.912 0.851 0.904 0.846 0.903 0.864 0.973

Table B.2: Per Dataset Measurements for Zero-Shot Picking. Tests using seven independent single-head HydraPicker models trained
on few micrographs of target datasets are also provided as “7 models”.

Access Code HydraPicker AP HydraPicker AROC crYOLO AP crYOLO AROC BoxNet AP BoxNet AROC BoxNet mask AP BoxNet mask AROC 7-models AP 7-models AROC
PDB-2wri 0.921 0.995 0.638 0.889 0.829 0.926 0.765 0.884 0.856 0.991
PDB-4hhb 0.758 0.942 0.256 0.458 0.524 0.77 0.506 0.752 0.73 0.929
PDB-5vy5 0.731 0.933 0.493 0.709 0.536 0.794 0.576 0.804 0.636 0.885
PDB-5w3l 0.97 0.979 0.769 0.948 0.783 0.786 0.824 0.825 0.873 0.949
PDB-5xnl 0.991 0.999 0.689 0.894 0.816 0.842 0.812 0.819 0.975 0.998
PDB-6b7n 0.898 0.987 0.721 0.826 0.788 0.867 0.797 0.878 0.853 0.963
PDB-6b44 0.926 0.979 0.87 0.924 0.795 0.87 0.812 0.884 0.864 0.973

Table B.3: Per Dataset Measurements for Few-Shot Picking. Tests using seven independent single-head HydraPicker models trained
on few micrographs of target datasets are also provided as “7 models”.
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