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Abstract

Mosquito-borne diseases (MBD), such as West Nile virus (WNV), dengue, and Zika virus,

have become a significant global health burden for human society. Complex factors, in-

cluding weather conditions, anthropogenic land use and vector-virus-host interactions,

greatly affect the mosquito abundance and distribution, and the disease transmission pro-

cess. In this dissertation, I will investigate the mosquito population dynamics and trans-

mission dynamics of MBDs, and explore how these factors play roles in the MBDs. Partic-

ularly, we use WNV and Culex mosquitoes (WNV vectors) in the Region of Peel, Ontario,

Canada, as an example for this study.

We first study single species population models for the mosquito and the bird respec-

tively. For mosquitoes, we take into account the contribution of the mosquito feeding

preference to the oviposition and the intraspecific competition among preadult mosquitoes.

For birds, we summarize the impacts of bird species, migration and age states on the trans-

mission of WNV and explore the influence of WNV on bird populations.

Then we establish a model to track the number of mosquitoes collected in a trap, pre-
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dict mosquito trap counts and real adult mosquito population in an effective trapping zone.

We consider the trapping mechanism of a CDC light trap and collecting procedure, and

show how weather, mosquito and host selecting behaviors affect the trap counts.

To explore the transmission dynamics of WNV, we develop a single-season mosquito-

bird model considering stormwater management ponds, temperature and precipitation. We

reveal that moderate temperature and precipitation, weaker intraspecific competition will

increase the mosquito population and consequently the potential for an outbreak. This

work can be used to guide WNV programs in local health units where monitoring standing

water and larviciding is often used to control mosquito populations and the spread of WNV.

To investigate backward bifurcation, threshold dynamics and outbreak recurrence mech-

anisms, we propose improved mosquito-bird compartment models. We define a new risk

index to characterize the potential risk of WNV infections. We also develop the risk as-

sessment criteria, which can be helpful to determine the risk level if there is an outbreak.

Our evaluation results are generally consistent with results based on the minimum infec-

tion rate.
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1 Introduction

1.1 Mosquito-borne diseases

Mosquito-borne diseases (MBDs) are diseases caused by parasites, viruses and bacte-

ria including Chikungunya virus, dengue virus, Eastern Equine Encephalitis virus (EEEV),

Japanese Encephalitis (JE) virus, La Crosse Encephalitis virus (LACV), Malaria, St. Louis

Encephalitis virus (SLEV), West Nile virus (WNV), Yellow Fever and Zika virus diseases

(Zika). Diseases are transmitted by the bite of an infected mosquito from one human or

animal to another (World Health Organization (2017), Centers for Disease Control and

Prevention (2016b)).

MBDs have made a substantial contribution to the global burden for human society;

around 700 million people get infected each year and over a million die from MBDs

(Caraballo and King (2014)). Transmission and distribution of MBDs are determined by

mosquito species, transmission cycles, demographic and social factors. For most MBDs,

there is no vaccine against human infections and no specific treatment for diseases. Trans-
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mission, symptoms, distribution and treatment of Chikungunya, dengue virus, WNV and

other seven MBDs are presented in Table 1.1.

Table 1.1: Mosquito-borne diseases (Centers for Disease

Control and Prevention (2016b), Centers for Disease Control

and Prevention (2018), Public Health Ontario (2014), Ben-

nett et al. (2008), Kopp et al. (2013), World Health Organi-

zation (2016))

Chikungunya virus

Transmission Transmitted between people by Aedes aegypti and Aedes albopictus

mosquitoes

Symptoms Fever and joint pain (most common symptoms), muscle pain,

headache, nausea, fatigue and rash

Distribution Africa, Asia, Europe, and the Indian and Pacific Oceans, Americas

Treatment No vaccine to prevent or medicine to treat chikungunya virus infec-

tion

Dengue virus

Transmission Transmitted between people by Aedes aegypti and Aedes albopictus

mosquitoes
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Symptoms High fever and at least two of the following: severe headache and eye

pain (behind eyes), joint pain, muscle and/or bone pain, rash, mild

bleeding manifestation (e.g., nose or gum bleed, petechiae, or easy

bruising), low white cell count

Distribution The tropics and subtropics, Asia, the Pacific, the Americas, Africa,

and the Caribbean

Treatment No specific medication for treatment of a dengue infection

Eastern Equine Encephalitis virus (EEEV)

Transmission maintained in a cycle involving Culiseta melanura mosquitoes and

avian hosts; horses and humans ( transmitted by Aedes, Coquillet-

tidia, and Culex species) are dead-end hosts.

Symptoms No apparent illness for most persons infected with EEEV; severe

cases of EEE (involving encephalitis, an inflammation of the brain)

beginning with the sudden onset of headache, high fever, chills, and

vomiting, then may progress into disorientation, seizures, or coma.

Distribution United States (most cases occurring in the Atlantic and Gulf Coast

states) and southeastern Canada
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Treatment No human vaccine against EEEV infection or specific treatment for

EEE

Japanese Encephalitis (JE)

Transmission Circulating between Culex species mosquitoes (particularly Culex tri-

taeniorhynchus mosquitoes) and vertebrate hosts, mainly pigs and

wading birds; humans are incidental or dead-end hosts.

Symptoms Most human infections are asymptomatic or mild symptoms (fever

and headache), a small percentage of infections develop inflammation

of the brain (encephalitis), with symptoms including sudden onset of

headache, high fever, disorientation, coma, tremors and convulsions.

Distribution Asia and the western Pacific, primarily in rural agricultural areas and

periurban settings

Treatment JE vaccine is available, there is no specific treatment for JE. patient.

La Crosse Encephalitis virus (LCEV)

Transmission maintained in a cycle between Aedes triseriatus (the eastern treehole

mosquito) and vertebrate hosts (especially small mammals such as

chipmunks and squirrels) in deciduous forest habitats; humans are

incidental or dead-end hosts.
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Symptoms No apparent symptoms for many human infections; initial symptoms

of the illness include fever, headache, nausea, vomiting, and tired-

ness; some develop severe neuroinvasive disease often involving en-

cephalitis and including seizures, coma, and paralysis.

Distribution North America (the upper Midwestern and mid-Atlantic and south-

eastern states in the US)

Treatment No vaccine against LACV infection or specific treatment for LACV

infection

Malaria

Transmission Transmitted between people by Anopheles mosquitoes

Symptoms Very sick with high fevers, shaking chills, and flu-like illness

Distribution Mostly in poor, tropical and subtropical areas of the world

Treatment Most drugs used in treatment are active against the parasite forms in

the blood.

St. Louis Encephalitis virus (SLEV)

Transmission circulating between Culex species mosquitoes and birds; humans and

other mammals are dead-end hosts.
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Symptoms No apparent illness for most human infections; clinical infections

range in severity from mild nonspecific febrile illnesses to meningitis

or encephalitis.

Distribution America and Argentina

Treatment No vaccines to prevent nor medications to treat SLEV

West Nile virus (WNV)

Transmission Maintained in a cycle between birds and Culex mosquitoes (in partic-

ular Cx. Pipiens and Cx. Restuans); human and other mammals are

dead-end hosts.

Symptoms No symptoms for most (around 80%) human infections, about 20% of

human infections develop West Nile fever with symptoms including

fever, headache, tiredness, and body aches, nausea, vomiting, occa-

sionally with a skin rash (on the trunk of the body) and swollen lymph

glands. The symptoms of severe diseases (also called neuroinvasive

diseases, such as West Nile encephalitis or meningitis or West Nile

poliomyelitis) include a headache, high fever, neck stiffness, stupor,

disorientation, coma, tremors, convulsions, muscle weakness, and

paralysis.

Distribution Africa, Asia, Australia, the Middle East, Europe and North America
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Treatment No WNV vaccines are licensed for use in humans, there is no specific

treatment for WNV disease.

Yellow Fever

Transmission Transmitted to people primarily by Aedes or Haemagogus species

mosquitoes

Symptoms Illness ranging from a fever with aches and pains to severe liver dis-

ease with bleeding and yellowing skin (jaundice)

Distribution Tropical and subtropical areas of Africa and South America

Treatment A safe and effective yellow fever vaccine has been available for more

than 80 years, while there is no medicine to treat or cure the infection.

Zika virus diseases (Zika)

Transmission Transmitted to people primarily from the bite of an infected Aedes

species mosquitoes (Ae. aegypti and Ae. albopictus); Zika can be

passed through sex; Zika can be passed from a pregnant woman to

her fetus.

Symptoms No symptoms or generally mild symptoms include fever, rash,

headache, joint pain, conjunctivitis (red eyes), muscle pain. Infec-

tion during pregnancy can cause a birth defect (microcephaly) and

other severe fetal brain defects.
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Distribution Africa, the Americas, Asia and the Pacific

Treatment No vaccine to prevent or medicine to treat Zika

Due to globalization, environmental and other complex factors such as unplanned ur-

banization, the emerging and reemerging of MBDs have become more and more frequent.

For instance, climate warming can influence pathogen transmission, extending and trans-

mission season, intensifying the transmission severity and leading diseases to emerge in

regions and countries where they were previously unknown. Since 2014, major outbreaks

of Chikungunya, dengue, malaria, yellow fever and Zika have occurred in many coun-

tries, causing human suffering from diseases, resulting in human deaths and overwhelming

health systems (World Health Organization (2017)).

Thus it is of great significance to study and understand the transmission dynamics of

MBDs, the threshold conditions for triggering an outbreak (emerging) and mechanisms

of recurrence (reemerging) of MBDs. The major MBDs of public health importance in

Ontario is WNV and we will use WNV in the Region of Peel, Ontario, Canada, as an

example for the study.
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1.2 West Nile virus

West Nile virus is primarily a bird pathogen and a mosquito-borne arbovirus belonging

to the genus Flavivirus, and not all species of mosquitoes are responsible for the transmis-

sion of WNV: only WNV vector mosquito species are capable of carrying and transmitting

WNV. The female mosquito gets infected by feeding on the blood of birds carrying the

virus and then transmits the virus to humans and other animals through the bite. Humans

and other mammals are dead-end hosts whereby they can become infected, while they

do not spread the infection. WNV is the most widely distributed emerging arbovirus. It

was first isolated in a woman in the West Nile district of Uganda in 1937 and it is now

widespread in Africa, Asia, Australia, the Middle East, Europe and North America (World

Health Organization (2016), Rappole (2000), Campbell et al. (2002)). In North Amer-

ica, since the first case was detected in New York city in 1999, the virus spread rapidly

throughout the continent and it appeared in Ontario in 2001 (Nash et al. (2001), Toronto

and Region Conservation Authority (2014)).

In Ontario, the number of human infection cases fluctuates from year to year, driven

by complex factors including vector-virus-host interactions, international commerce and

travel, biological factors (such as the abundance of WNV vector mosquitoes, migration of

birds and distribution of hosts) and climate factors (Kramer et al. (2008), Epstein (2001)).

The incidence and distribution of WNV will be driven and altered by global warming and
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the accompanying alteration in weather patterns. Factors other than weather and climate

will contribute to outbreaks of WNV as well. Local environmental conditions and anthro-

pogenic land use can enhance the potential for mosquito breeding in urban settings, such

as the stormwater management pond (Epstein (2001)).

Most human infections with WNV are subclinical leading to no symptoms but approx-

imately 20% of human infections will develop West Nile fever with symptoms of fever,

headache, body aches, nausea, and vomiting etc. Some severe cases result in neurologi-

cal disease (World Health Organization (2016)). However, there is no specific treatment

or vaccine for West Nile virus infection in humans. Infected people with mild symptoms

usually recover themselves. For serious cases, treatment with supportive therapies, such as

fluids, medication and breathing, are necessary. Considering that WNV is most commonly

transmitted to humans by mosquitoes, the best method to reduce the risk of WNV infec-

tion is mosquito control, and the mosquito surveillance becomes essential to monitor the

mosquito abundance and virus activities (World Health Organization (2016), Government

of Canada (2015)).

Mosquito control manages the abundance of mosquitoes to reduce their damage to hu-

man health. The mosquito typically goes through four stages of its life cycle, the first

three aquatic stages (egg, larva, pupa) occur in water and the last aerial stage is adult.

Based on the features of the mosquito life cycle, different practices are applied to control
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the mosquito population. The priority one is monitoring mosquito abundance, including

monitoring abundance of larvae and adult mosquitoes. With monitoring and surveillance

data, public health needs to evaluate the WNV activities in a particular area, assess the

risk of infection, predict and catch an early warning signal for a potential outbreak, and

decides if, when, where and how to reduce the risk of infection by education and commu-

nity outreach or using mosquito control measures, such as source reduction (elimination

of mosquito breeding grounds), biocontrol (the use of mosquito natural enemies), larvicid-

ing and adulticiding (Campbell et al. (2002), Florida Coordinating Council on Mosquito

Control (1998), Government of Canada (2018)).

In Ontario, the Toronto and Region Conservation Authority (TRCA) has launched a

WNV Monitoring Program in the Greater Toronto Area (GTA) since 2003. The pro-

gram is to conduct WNV mosquito larvae monitoring and surveillance for the presence of

WNV vector mosquitoes in selected natural wetlands and stormwater management ponds

(SWMP) on TRCA lands, where Culex pipiens and Culex restuans are two principal vec-

tors of WNV, in particular Culex pipiens – an urban mosquito species (Kilpatrick et al.

(2005), Hamer et al. (2009), Toronto and Region Conservation Authority (2014)). Lar-

val mosquito surveillance and monitoring was undertaken in 36 wetlands and 9 SWMP

over the last 5 years. The program results reveal that the majority of the mosquito larvae

collected in natural wetlands are non-vectors for WNV, while the mosquitoes collected

11



from SWMP are principally vector species and the predominant vector species was Culex

pipiens.

Like other health units in Ontario, the Region of Peel Public Health has been run-

ning a mosquito surveillance program since 2001. This program aims at monitoring adult

mosquito abundance associated with WNV, determining the level of WNV activity among

these species and using this information to access the risk for transmitting the virus to

humans and make decisions in the prevention and control of WNV (Molaei et al. (2006)).

Adult mosquitoes will continue to be collected weekly from mosquito traps at 31 fixed lo-

cations throughout the Region of Peel, with a minimum of one trap per ward across Peel,

from mid-June to early October. In the program, CDC (Centre for Disease Control) light

traps are operated (Brown et al. (2008), Region of Peel (2012)).

1.3 Current modeling and literature review

Mathematical models for mosquito abundance and the transmission of WNV have been

studied extensively (Lewis et al. (2006a), Shaman and Day (2007), Shaman et al. (2006),

Wan and Zhu (2014), and others). To simulate the population dynamics of immature and

adult Culex mosquitoes in the Northeastern US, Gong et al. (2011) developed climate-

based models and revealed a strong correlation between the timing of early population

increases and decreases in late summer. Also, a predictive statistical model for WNV
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mosquito abundance was proposed by Wang et al. (2011). In this model, the influence

of weather conditions (temperature and precipitation) on mosquito populations was inves-

tigated and it came to the conclusion that WNV vector population on any day could be

predicted with mean degree-days > 9oC over the 11 preceding days and precipitation 35

days before.

To describe the evolution of the virus, a difference equation model incorporating pes-

ticide spraying was formulated in Thomas and Urena (2001), whose results indicated the

virus can be eliminated by a specific amount of spraying. Wonham et al. (2004) proposed a

single-season ordinary differential equation model on WNV transmission and showed that

mosquito control would prevent the WNV outbreak, while bird control would have the

opposite reaction. Lewis et al. (2006b) presented a comparative study of the discrete and

continuous time model and showed that the basic reproduction number calculation was

largely determined by assumptions on mosquito feeding efficiency. Cruz-Pacheco et al.

(2005) established a mathematical model for the WNV transmission in the mosquito-avian

population, combined with experimental and field data, damped oscillations approaching

the bird endemic value was shown in numerical simulations. Bowman et al. (2005) devel-

oped a dynamical model in a mosquito-bird-human community to assess mosquito reduc-

tion strategies and personal protection against WNV. Fan et al. (2010) established a delay

differential equation model with temperature for the WNV transmission in the mosquito-
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avian population, and the results illustrated that the maturation time, as well as the vertical

transmission in mosquitoes, affects peaks of the infectious mosquitoes substantially. Be-

sides these dynamical model, Ruiz et al. (2010) applied spatial and statistical modeling

techniques to show that spatial and temporal patterns of mosquito infection in an area of

northeastern Illinois are quite influenced by changing weather conditions.

To study the occurrence of the WNV outbreak, Castillo-Chavez and Song (2004) illus-

trated conditions for the occurrence of a backward bifurcation in dynamical models and

claimed that only reducing the basic reproduction number to less than one was not enough

to eliminate a disease owing to the backward bifurcation. Jiang et al. (2009) suggested that

it was worth considering the initial state of WNV rather than only the basic reproduction

number to study the prevalence of WNV. Wan and Zhu (2010) concluded that backward

bifurcation in WNV transmission model in mosquito-avian population could lead to the

existence of a sub-threshold condition of the outbreak of the virus; moreover, the higher

WNV induced mortality rate of avian host determined the existence of backward bifur-

cation. Blayneh et al. (2010) developed a WNV transmission model among mosquitoes,

birds and humans, the results also indicated that due to the backward bifurcation, R0 less

than unity might not always be sufficient to control WNV. Abdelrazec et al. (2014) studied

a WNV transmission dynamical model among mosquitoes and two reservoir hosts (corvids

and non-corvids) and concluded that estimation of the epidemic of WNV was more accu-
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rate when classifying the birds into different species and including other mammals, and

verified that higher death rate of birds due to WNV could explain the phenomenon of the

backward bifurcation.

1.4 Objectives of the research

The overall goal of this dissertation is to investigate the dynamics of mosquito abun-

dance and transmission of MBDs. Considering biological factors (such as host feeding

preferences of mosquitoes, migration of birds), environmental factors (such as tempera-

ture, precipitation and SWMP) and vector-virus-host interactions, we propose mosquito

population models and transmission models to predict the vector abundance, to analyze

the influence of environmental factors on the mosquito population and the transmission, to

evaluate the potential risk of the occurrence of the outbreaks, and to control mosquito and

the disease spread. In particular, this research study is carried out using Culex mosquitoes

and WNV in the Region of Peel, Ontario, Canada, as an example.

In Chapter 1, we present the background of MBDs, particularly WNV, and current

mosquito population models and WNV transmission models. Then we focus on single

species population models for mosquitoes and birds in Chapter 2. We incorporate the host

feeding preference of mosquitoes and migrations of birds in our models, and analyze the

dynamics of these single species population models.
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In Chapter 3, based on the adult mosquito trapped count surveillance data and daily

weather data, we first define an effective trapping zone of a CDC light trap and establish

a model to describe the mosquito reproduction and development, and to depict the mech-

anism of mosquitoes being collected by traps. We show how weather, mosquito and host

selecting behaviours affect the total mosquito population in the effective trapping zone as

well as the trap counts, where parameters are estimated based on partial surveillance data.

Our models can be used to predict the true mosquito abundance of the region rather than

the trap counts only.

Then we develop a system of ordinary differential equations to model the impact of

SWMP as well as weather conditions on the transmission of WNV between mosquito and

bird populations in a single season in Chapter 4. The idea on the incorporation of SWMP

impact is achieved by applying the intraspecific competition: the abundance of larvae

is closely related to intraspecific competition, and intraspecific competition is associated

with standing water – the habitat of larvae, furthermore, the standing water comes from

the water in SWMP. We analyze the existence and stability of equilibrium points of the

models and apply daily temperature and precipitation in the GTA into our model. The

numerical simulations display that a smaller intraspecific competition rate leads to a larger

mosquito population and more infectious birds and mosquitoes. Additionally, an excess of

rainfall will control the vector population and reduce the peak value of infectious vectors
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and birds.

In Chapter 5, we propose improved mosquito-bird transmission models to study the

outbreak threshold dynamics and recurrence mechanisms using dynamical systems and

bifurcation theory. We develop a novel risk index and the risk assessment criteria to char-

acterize the potential risk of infections and an early warning for an outbreak. For the

risk index, it’s a more comprehensive tool compared to infection rate to evaluate the local

WNV activity patterns. For the risk assessment criteria, it can be used to determine the

risk level for the occurrence of a WNV outbreak, even if the basic reproduction number is

less than one. We extend our results by applying the risk assessment criteria to the GTA,

and the evaluation results are consistent with the results based on the minimum infection

rate (MIR). In Chapter 6, we conclude the dissertation and provide future work.
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2 Dynamical models for single species population

2.1 Mosquito population model

To delineate the reproduction of mosquitoes in models, a constant birth rate, i.e., per

capita recruitment rate of mosquitoes rm, has been adopted by numerous studies, such

as Shaman and Day (2007), Shaman et al. (2006), Wan and Zhu (2010), Wonham et al.

(2004) and Abdelrazec et al. (2014). In Rubel et al. (2008), the birth rate is represented by

the scaled biting rate that describes the reciprocal of the mosquito gonotrophic cycle. To

depict the restriction of the blood meal resource for mosquito reproduction, Wan and Zhu

(2014) and Fan et al. (2010) used a Ricker function rm = rMe−αM (M is the population

of female mosquitoes), where the blood resource is reflected by an independent parameter

α rather than hosts themselves. In this chapter, we consider the influence of mosquito

feeding preferences on the mosquito population model.
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2.1.1 Mosquito feeding preference

Host feeding preferences vary among mosquito species: some mosquito species are

generalists and express opportunistic feeding behaviour, while others are specialists and

feed preferentially on selected hosts (Rizzoli et al. (2015), Burkett-Cadena et al. (2008),

Farajollahi et al. (2011)).

Host preference of mosquitoes is affected by both intrinsic (a genetic basis) and extrin-

sic factors. Many species express inherent traits in host preference, such as a preference for

birds or mammals, which cannot be predicted based upon the extrinsic determinants alone

(Hassan et al. (2003), Kilpatrick et al. (2006a), Kilpatrick et al. (2006b)). Nonetheless,

the inherent host preference can be overridden by environmental circumstances such as

season, mosquito nutritional state ( e.g., physiological factors (hunger) and physical abun-

dance of available hosts), host behaviour (like defensive behaviour) or mosquito learning

over time (Takken and Verhulst (2013), Hassan et al. (2003), Hamer et al. (2011), Thie-

mann et al. (2011), Savage et al. (2007), Rizzoli et al. (2015)). The reason to explain this

phenomenon is that the principal strategy of the mosquito is to safeguard reproduction, for

which blood source is required. Under such circumstances, mosquitoes will lower their

host preference threshold and may feed on a non-preferred host (Chilaka et al. (2012)).

Many Culex species have a preference for feeding on birds, and birds availability

plays a significant role in Culex species feeding. The abundance of birds often fluctuates
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throughout the year due to migration. When the availability of the preferred host declines,

Culex species may switch to other hosts, like humans and other mammals (Kilpatrick et al.

(2006b), Simpson et al. (2012), Takken and Verhulst (2013), Thiemann et al. (2011)).

For example, Cx. nigripalpus switches from birds to deer between winter and summer

(Edman and Taylor (1968), Takken and Verhulst (2013)). Cx. tarsalis in California feeds

on mammals as well in the winter rather than just feeding on birds in the summer (Simpson

et al. (2012), Thiemann et al. (2011), Takken and Verhulst (2013)). For Cx. pipiens, its

feeding patterns change over the season even though its genetic predisposition does not

change (Kilpatrick et al. (2007)).

Host feeding preferences influence the transmission of diseases in a more complex

way. Some Culex species, such as Cx. pipiens, prefer feeding on specific birds (Kilpatrick

et al. (2006b)). This preference plays a crucial role in the peak and intensity of WNV

in Culex mosquitoes and in modelling WNV transmission dynamics and predicting out-

breaks (Farajollahi et al. (2011), Simpson et al. (2012), Rizzoli et al. (2015)). A good

understanding of feeding preferences can provide a deeper insight into bites distribution

on hosts and the maintenance and transmission of WNV and other pathogens (Thiemann

et al. (2011)). Shifting from preferred avian hosts to mammals including humans can in-

crease WNV transmission to humans (Kilpatrick et al. (2006b)), and this increasing WNV

transmission to humans will stop when humans, dead-end hosts, become a large propor-
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tion of hosts, making the transmission inefficient (Farajollahi et al. (2011), Takken and

Verhulst (2013)).

Hence, Culex mosquitoes shifting feeding preference on humans can both exacerbate

and suppress the transmission of WNV to humans, with the net effect based on other as-

pects of transmission such as vector abundance and competence, and host competence

(Kilpatrick et al. (2007)). Contrasted with WNV, humans are amplification hosts of some

pathogens, such as dengue virus and malaria, and vectors of these viruses feeding on

humans will increase both exposure of humans and the probability of an epidemic (Kil-

patrick et al. (2007), Townson and Nathan (2008), Farajollahi et al. (2011)). The influence

of mosquito feeding preference in WNV transmission is quite complicated and worth tak-

ing into account to well study the transmission dynamics and evaluate the risk of human

infection.

2.1.2 Model formulation

Generally, female mosquitoes bite hosts and extract the blood to develop and nourish

eggs. Based on this biological feature, the birth rate (or named the oviposition rate) rm

depends on the per capita biting rate of mosquitoes bm, conversion rate of each bite c (the

number of eggs developed from a bite), and the number of available hosts H providing

blood meals for female mosquitoes to oviposit (Reisen et al. (2006b)). Therefore, we
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describe mosquito birth rate rm = r(bm, c,H) as a function of bm, c and H .

In general, for the per capita birth rate r(bm, c,H), we can assume

(A1) r(bm, c,H) ≥ 0 for bm > 0, c > 0, H ≥ 0 and limH→0+ r(bm, c,H) = (bm, c, 0) =

0 and limH→∞ r(bm, c,H) = r1, where r1 is the maximum per capita birth rate due

to the sufficient hosts providing plentiful blood resources. If no host provides blood

meals for mosquito, no egg will be laid for reproduction.

(A2) ∂r(bm,c,H)
∂H

≥ 0. The more hosts are available for female mosquitoes, the more blood

resources support mosquitoes laying more eggs. When the population of available

hosts is sufficient large, more hosts will not promotes the reproduction of eggs, since

bites have reached saturation.

(A3) ∂r(bm,c,H)
∂bm

> 0, limbm→0+ r(bm, c,H) = 0 and limbm→∞ r(bm, c,H) = r1. The per

capita birth rate of mosquitoes is an increasing function of bm, which is bounded by

0 and r1 for any H > 0, c > 0.

(A4) ∂r(bm,c,H)
∂c

> 0, limc→0+ r(bm, c,H) = 0 and limc→∞ r(bm, c,H) = r1. The per

capita birth rate of mosquitoes is an increasing function of c, which is bounded by 0

and r1 for any H > 0, bm > 0.

Here r(bm, c,H) is a more general form. If hosts are sufficiently in abundance, it is

reasonable to assume that rm is constant. That means the constant birth rate is a limit state
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of the general birth rate r(bm, c,H) when hosts are greatly abundant.

According to assumptions (A1) - (A4), different functions can be applied to formulate

the recruitment rate. For instance,

(E1) r(bm, c,H) = r1cbmH
a+cbmH

for all r1, bm, c, a > 0.

(E2) r(bm, c,H) = r1cbmH2

a+cbmH2 for all r1, bm, c, a > 0.

Figure 2.1: Two cases of mosquito birth rate r(bm, c,H)

Based on the life cycle of the mosquito, the mosquito can be divided into the aquatic

stage (also named the preadult mosquito encompassing egg, larva and pupa) and aerial

stage (adult). We will consider intraspecific competition among preadult mosquitoes. In-

traspecific competition is an interaction in population ecology, the effects of intraspecific
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competition are density dependent (Begon et al. (2006)). Members of the same species

compete for limited resources required for survival and development (Amundsen et al.

(2007)). Particularly for insects, density-dependent competition among juveniles is usu-

ally related to increased juvenile mortality, delayed maturity and reduced adult size (Ag-

new et al. (2002)). Competition among larvae is an influential factor in regulating the

growth of mosquito populations Agnew et al. (2000). For instance, Culex pipiens experi-

ence density-dependent reductions in growth and survival at the larval stage (Rajagopalan

et al. (1976), Mpho et al. (2000), Reiskind et al. (2004), Agnew et al. (2000)).

The logistic growth equation is used to model intraspecific competition in biological

systems. It depicts the reciprocal relation between the carrying capacity and the intraspe-

cific competition rate (Tsoularis and Wallace (2002)). For Culex mosquitoes, the intraspe-

cific competition rate can be assumed to be relevant to any element of competition like the

size of standing water and the density of nutrients, and competitive interactions are within

and between both female and male mosquitoes (Agnew et al. (2000)).

To formulate the model, we let L(t) andM(t) be the population of preadult mosquitoes

and female adult mosquitoes at time t respectively, and the proportion of the female

mosquitoes is p. Mosquito birth rate r(bm, c,H) can be chosen as (E1), (E2) or other

functions satisfying assumptions (A1) - (A4). The preadult mosquitoes and female adults

per capita mortality rate are dl and dm respectively. The intraspecific competition rate
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among preadult mosquitoes is κ and mosquitoes per capita maturation rate from aquatic

stage to adult is δ. Also, we denote the population of available hosts as H that can be

birds, humans or other mammals. Then mosquito population is modelled as
dL(t)
dt

= r(bm, c,H)M(t)− δL(t)− dlL(t)− κL(t)2,

dM(t)
dt

= pδL(t)− dmM(t).

(2.1)

Table 2.1: Parameters in the mosquito population model

(2.1)

Par. Interpretation Range (day−1) Ref.

bm Female adult mosquitoes per

capita biting rate

(0.2− 0.75) Abdelrazec et al. (2014)

c Per bite conversion rate (the

number of eggs developed

from a bite)

r(bm, c,H) Mosquitoes per capita birth

rate

(0.036− 42.5) Wonham et al. (2004)

δ Mosquitos per capita matu-

ration rate from preadult to

adult

(0.051− 0.093) Wonham et al. (2004)
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dl Preadult mosquitoes per

capita mortality rate

(0.213− 16.9) Wonham et al. (2004)

κ Intraspecific competition rate

of preadult mosquitoes

(0− 1)

p Proportion of females in all

preadult mosquitoes

(0− 1)

dm Female adult mosquitoes per

capita mortality rate

(0.016− 0.07) Wonham et al. (2004)

If r(bm, c,H) < (dl+δ)dm
pδ

, model (2.1) has a trivial equilibrium point E0 = (0, 0) which

is locally stable. If r > (dl+w)dm
pδ

, in addition to an unstable trivial equilibrium E0, sys-

tem (2.1) also has a locally stable positive equilibrium point E1 = ( r(bm,c,H)pδ−dldm−dmδ
dmκ

,

pδ[r(bm,c,H)pδ−dldm−dmδ]
d2mκ

). In biological view, a relative low birth rate, less than (dl+δ)dm
pδ

,

leads to the mosquito dying out. Contrarily, a large birth rate, greater than (dl+δ)dm
pδ

, will

sustain mosquito population to a stable state E1. As the birth rate of mosquitoes increases

along with the population of available host increasing, sufficient host populations provid-

ing enough blood resource can ensure the survival of mosquitoes. Intraspecific compe-

tition exerts an opposite effect for the growth and development of mosquitoes; when the

intraspecific competition is fierce (κ is quite large), the immature mosquito population will
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decrease, resulting in the reduction of total mosquitoes.

2.2 Bird population model including WNV circulation

Usually, because that infected mosquitoes do not recover before dying naturally and

do not die of WNV (Bowman et al. (2005)), WNV is not incorporated into the mosquito

population model. However, for avian hosts, WNV has a non-negligible influence on

their populations. Different species of birds have different competence in transmitting

and amplifying the disease. Some infected birds develop high levels of the virus in their

bloodstream. For example, American crow (Corvus brachyrhynchos) has a high reser-

voir competence to spread the virus (Hamer et al. (2009)). Cruz-Pacheco et al. (2005)

also estimated the basic production number for several species of birds and Abdelrazec

et al. (2014) illuminated that avian species diversity in the transmission system is worth

considering for more accurate epidemic estimation. Here we summarize the contribution

of bird species (corvids and non-corvids), migration and age stages (nestlings, hatch-year

birds and adult birds) to the transmission of WNV, and we build and analyze a population

model of birds considering the horizontal transmission.
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2.2.1 The impact of bird species, migration and age stages on WNV transmission

In North America, more than 300 species of birds are found involved in WNV (Ab-

delrazec et al. (2014)). Members of the family Corvids (crows, jays and ravens) are espe-

cially important because they develop severe illness and their extremely elevated viremias

effectively amplify WNV and increase transmission rates to epidemic levels (Reisen et al.

(2006a). Reed et al. (2003)). Also particularly high mortality rates or relatively strong

population declines, associated with WNV, have been noted in corvids (Reed et al. (2003),

Petersen and Marfin (2002), Work et al. (1955). Komar et al. (2003a), McLean (2006),

Koenig et al. (2007)). In the Region of Peel, Ontario from 2003 to 2005, the great majority

of WNV positive dead birds are corvids (Zimmer (2005), Abdelrazec et al. (2014)). For

a long time after WNV was discovered in North America in 1999, the mortality rate of

corvid species had been the hallmark of the ongoing epidemic and served to assess infec-

tion risk (Campbell et al. (2002), Kipp et al. (2006)). While recent years, some regions are

no longer collecting dead birds for testing since WNV is well established and mortality in

birds is not an effective indicator of infection any more (Centers for Disease Control and

Prevention (2015c)). Only considering the corvids who have high mortality rates is not

enough, we should also take into account non-corvids with lower WNV induced mortality

rates.

Other than mosquito bites (or in the absence of mosquitoes), birds can become in-
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fected by WNV via a variety of routes and the potential of maintaining the transmission

cycle may differ in different species (World Health Organization (2016)). One possible

route is that some birds consume infected prey items such as insects, other birds and small

mammals. Viremia usually occurs after ingesting infected organisms, and this may affect

the incidence of WNV infection for raptors (Nemeth et al. (2006)). Another route may

be the direct transmission (horizontal transmission) between certain bird species (McLean

et al. (2001), Langevin et al. (2001), Komar et al. (2003a), Kipp et al. (2006), Reisen et al.

(2009)). Birds are involved in transmission by close contacts with other infected birds,

in the absence of mosquito-borne transmission (Komar et al. (2003a)). This horizontal

transmission is a result of emitting particles in oral or cloacal secretions, which may con-

taminate food and water, or may directly contact another susceptible organism (Kipp et al.

(2006)). Also, this contact transmission occurs in communal roosting populations during

the breeding season (Komar et al. (2003a)).

The seasonal bird migration is a spectacular phenomenon of nature. In Western Hemi-

sphere, each autumn approximately 5 billion birds, over 300 species, migrate from North

America to Central and South America (Gill (1994), Reed et al. (2003)). With the strongly

seasonal climate of North America, abundant breeding habitat and food supplies are acces-

sible for these bird species in the spring and summer, but are not available to sustain birds’

year-round requirements. Thus these birds breed in Canada and the United States and
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spend the winter in warmer regions including the West Indies, Central and South America

(Reed et al. (2003)).

Bird migration plays a critical role in the geographic spread of WNV and establishment

of new endemic foci at great distances from where an infection was acquired. Migratory

birds have been highly linked with serving as transport agents to spread WNV (Reed et al.

(2003), Rappole (2000), Dusek et al. (2009), Peterson et al. (2003), McLean (2006)), and

the outbreak sites of WNV coincides with major birds migratory routes (Reed et al. (2003),

World Health Organization (2016)). In North America, the temporal and spatial pattern

and rapidity of continental spread of WNV matched the semiannual migratory movements

of a huge number of birds (McLean (2006)). Migratory birds flying back and forth between

Central/South America and Canada/the United State in the fall and spring can be the best

explanation for the westward movement of WNV in Canada and the United States (Gubler

(2007)).

For migratory birds, most long-distance migrants consist of a series of shorter flights.

From the viewpoint of WNV transmission, stopovers during the migrants are important

since they give more possibilities for the close intermingling of species (Gill (1994), Wh-

eye et al. (1988), Reed et al. (2003)). Certainly, the starting place and the terminal of

migrants are also significant for the spread of the disease. WNV antibodies have been sam-

pled in both migratory and non-migratory bird species on wintering and breeding grounds
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(Farfán-Ale et al. (2004), Komar et al. (2001), Komar et al. (2003b), Dusek et al. (2009)).

Around 300 native and exotic, free-ranging and captive bird species have been tested pos-

itive for WNV in the United States (McLean (2006), Centers for Disease Control and

Prevention and others (2015)).

Understanding migration patterns for hundreds of bird species is largely conducive

to predict and control the spread of WNV by wild birds in North American. Neverthe-

less, patterns of migration for wild birds between species are highly complex and clearly

describing patterns for all these species seems unreachable. Even for the same species,

the patterns differ for distinct populations (Reed et al. (2003)). Thus, different migration

patterns should be based on different bird populations.

In addition to bird species and migration, determining the host competence on different

age stages (nestlings, hatch-year and adult birds) can be of great help for studying the

transmission of WNV (Kilpatrick et al. (2007)). It has been revealed that hatch-year birds

are as key amplifiers and transmitters of WNV, which is associated with increasing human

infection risk (Hamer et al. (2008), VanDalen et al. (2013)). Serological results only from

hatch-year birds were considered reliable and were used to confirm infected bird cases

during sampling years (Komar et al. (2003a), Nemeth et al. (2009), Levine et al. (2017)).

Hatch-year birds, particularly nestlings, may be especially important to WNV ampli-

fication and other avian arbovirus transmissions (Caillout et al. (2013b), Caillout et al.
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(2013a)). Nestlings represent the immunologically naive avian population, spend lots of

their time in a fixed location and may be greatly attractive to mosquitoes since they ac-

cumulate and give off a large amount of carbon dioxide and heat (Caillout et al. (2013b),

Loss et al. (2009), Caillout et al. (2013a)). Nestlings are seemingly more susceptible to

mosquito bites than adults because of being confined to nests, lacking the protective feather

coverage of adults, an inability to avoid mosquitoes attack through a flight, exposing weak

defensive behavior, or other factors (Caillout et al. (2013b), Griffing et al. (2007), Loss

et al. (2009), Caillout et al. (2013a), Lindgren et al. (2009), Loss et al. (2009)).

Additionally, compared to adult birds, nestlings have an increased duration or intensity

of viremia, which may largely contribute to mosquito infection (Mahmood et al. (2004),

Loss et al. (2009)). Also, the antibody prevalence of adult birds is higher than juveniles’

(Hamer et al. (2008), Lampman et al. (2013)) and juveniles have a higher antibody decay

rate than adults (McKee et al. (2015)). In turn, WNV has an important influence on some

nestlings, mortality among nestlings of Black-crowned night herons may be because of

WNV to some degree (Reisen et al. (2009)). Furthermore, Griffing et al. (2007) suggested

that early-breeding-season nestling birds may suffer less risk of exposure to arbovirus

since the prevalence of the viruses rise in the late season. At the end of the nesting sea-

son, a reduction in nestling hosts makes few remaining nestlings experience quite greater

mosquito burden, which increases vector abundance by increasing mosquitoes per capita
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biting rates (Caillout et al. (2013b), Caillout et al. (2013a)). After avian dispersal from

nests, WNV vector species shifts hosts from birds to humans and other mammals, lead-

ing to increased human WNV incidence (Hamer et al. (2009), Kilpatrick et al. (2006b),

Caillout et al. (2013b)).

However, some other work showed that nestlings play a limited or no role in WNV

transmission (Loss et al. (2009), Caillout et al. (2013a)). Mosquito landing rates on adult

American robins were higher and landing rates on nestlings were reduced due to parental

brooding (Griffing et al. (2007)).

For hatch-year birds excluding nestlings, i.e., first-year birds that have fledged the nest,

they were found vital to WNV amplification in the Chicago, IL area in 2005-2006; the

appearance of first-year birds, providing a large population of susceptible hosts, coincides

with WNV amplification (Loss et al. (2009), Hamer et al. (2008)). Other than above

findings, Ringia et al. (2004) found that antibodies to WNV in adult and hatch-year birds

did not differ significantly.

The different conclusions on the role of nestlings, hatch-year and adults birds in WNV

transmission may be a result of differences in temporal and spatial factors of studies/samples,

in bird species or environmental conditions.
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2.2.2 Model formulation

We develop a bird population model including WNV circulation. The bird population

can be any species and the recruitment rate rb can be any kind of inputs like the birth

or migration of birds or both. Let Bs(t), Bi(t) and Br(t) be the population of suscep-

tible, infected and recovery birds at time t respectively. We denote ηb as the horizontal

transmission rate from infected birds to susceptible birds, then this transmission term is

ηbBs(t)Bi(t). The mortality rate and recovery rate associated with WNV is µb and γb re-

spectively. Aside from the bird recruitment, natural death of the bird demographic is also

included. Then the bird population model is

dBs(t)
dt

= rb − ηbBs(t)Bi(t)− dbBs(t),

dBi(t)
dt

= ηbBs(t)Bi(t)− µbBi(t)− γbBi(t)− dbBi(t),

dBr(t)
dt

= γbBi(t)− dbBr(t)

(2.1)

Table 2.2: Parameters in the bird population model (2.1)

Par. Interpretation Range (day−1) Ref.

rb Recruitment rate of birds (800− 1100) Abdelrazec et al. (2014)

db Birds per capita natural death

rate

(10−4 − 10−3) Abdelrazec et al. (2014)
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µb Birds per capita mortality rate

due to WNV

(0.2− 0.3) Abdelrazec et al. (2014)

γb Birds per capita recovery rate

from WNV

(0− 0.1) Abdelrazec et al. (2014)

ηb WNV transmission probabil-

ity from birds to birds

Bird population system (2.1) has up to two equilibria. If the basic reproduction number

R0 = rbηb
db(µ+γ+db)

< 1, a unique and locally stable disease free equilibrium point (DFE)

E0 = ( rb
db
, 0, 0) exists. If R0 > 1,in addition to an unstable DFE E0, a positive equilibrium

E1 = (µb+γb+db
ηb

, rbηb−db(µb+γb+db)
ηb(µb+γb+db)

, γb[rbηb−db(µb+γb+db)]
ηbdb(µb+γb+db)

) exits and it is locally stable.
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3 Estimating population sizes for Culex mosquitoes

using the weekly CDC light trap counts

3.1 Introduction

Certain species of mosquitoes play a crucial role in transmitting and spreading of

mosquito-borne diseases (MBDs). They carry and transmit diseases from one human or

animal to another, causing significant human death each year (World Health Organization

(2018)). Currently, over ten major MBDs are transmitted by more than eleven mosquito

species (Centers for Disease Control and Prevention (2016b)). There is currently no spe-

cific treatment or vaccine for most of MBDs including West Nile Virus (WNV), dengue

and Zika. For all the MBDs, vector control is recognized as the most effective method, and

it is of paramount importance to control mosquito in limiting or reducing the endemic of

MBDs and the risk of human infections (World Health Organization (2016), Government

of Canada (2015), Hemingway and Ranson (2000), Qi et al. (2008)).
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Culex mosquitoes have been one of the major vectors of arbovirus. They are accepted

as the principal vectors of WNV, they are also responsible for carrying and transmitting

other viruses, such as Japanese encephalitis, Venezuelan equine encephalitis, Filariasis

(Service (2008)). Even for Zika virus, an emerging MBD that was declared a global emer-

gency by the World Health Organization, it is recently reported that Cx. quinquefascia-

tus can be a potential vector for Zika virus (Centers for Disease Control and Prevention

(2016a), Guedes et al. (2017), Dodson and Rasgon (2017)). Many female Culex species

prefer feeding on birds, and the abundance of birds often fluctuates throughout the year

due to migration. When the availability of the preferred host declines, Culex species may

switch to other hosts, like humans or other mammals (McLaughlin and Focks (1990),

Kilpatrick et al. (2007), Service (2008), Kilpatrick et al. (2006b), Hamer et al. (2009),

Burkett-Cadena et al. (2008), Kilpatrick et al. (2006a), Hassan et al. (2003), Takken and

Verhulst (2013), Rizzoli et al. (2015), Thiemann et al. (2011), Hamer et al. (2011), Savage

et al. (2007), Chilaka et al. (2012)).

With the emerging of WNV in Southern Ontario, public health units in Ontario have set

up mosquito surveillance programs to monitor the abundance and distribution of mosquito

species, in particular, Culex mosquitoes. The mosquito surveillance program can moni-

tor changes in mosquito populations, detect mosquito-borne diseases, evaluate the level

of virus activity (local virus severity), monitor the emerging of new invasive species of
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mosquitoes, decide whether control efforts are needed and determine what control mea-

sures need to be conducted (Region of Peel (2011), Michigan Mosquito Control Associa-

tion (2018), Moore et al. (1993)).

Like other health units in Ontario, the Region of Peel Public Health has been running

a mosquito surveillance program since 2001. Adult mosquitoes are collected weekly from

mid-June to early October from mosquito traps at 31 fixed locations. The trapping season

may change depending on the weather and surveillance results. Mosquitoes are trapped

and collected using CDC (Centre for Disease Control) light traps (Region of Peel (2011),

Region of Peel (2006), Region of Peel (2015), Region of Peel (2016), Region of Peel

(2013), Region of Peel (2002)).

The CDC light traps are widely used to capture live mosquitoes in arbovirus studies

(Centers for Disease Control and Prevention (2015a)). By mimicking hosts, the trap emits

carbon dioxide and light, as baits to attract host-seeking female adult mosquitoes, then

the mosquitoes are typically sucked into a net or holder (Region of Peel (2011), Region

of Peel (2006), Lines et al. (1991), Newhouse et al. (1966), Brown et al. (2008), Mboera

et al. (1998), Burkett et al. (2001), Reisen et al. (2000), McLaughlin and Focks (1990),

Kilpatrick et al. (2007)). In the Region of Peel, traps are set up in the afternoon (2:00

pm) and then mosquitoes are collected from traps the following morning (9:00 am) (Karki

et al. (2016)). Collected mosquitoes are placed in a container with dry ice to kill them and
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are packed and shipped to a laboratory service provider for counting, speciation and PCR

viral testing (Region of Peel (2015), Region of Peel (2016), Region of Peel (2013)).

As shown in Fig. 3.1 for the trap counts for the period of 2003 until 2015, the trap

counts vary between different traps in the same year (Fig. 3.1(a)), and counts can change

dramatically in different years for the same trap (Fig. 3.1(b)). The weekly trap counts

supply a rough measurement for mosquito abundance, and the PCR viral test results give

a reasonable risk level of WNV in the region. For the case in Peel, Wang et al. (2011)

used trap counts and developed a predictive statistical model incorporating temperature

and precipitation for mosquito abundance.

(a) Trap counts for different traps in 2015 (b) Trap counts for a same trap in different years

(2003-2015)

Figure 3.1: Variations of trap count data for different traps or in different years

To estimate mosquito population size, it was usually implemented through mark-release-

39



recapture (MRR) experiments. Based on the principle of the Fisher-Ford method, Cianci

et al. (2013) applied a logistic regression model to MRR data to estimate mosquito popu-

lations. Villela et al. (2017) designed Bayesian biodemographic models to fit MRR data

to estimate abundance. In Epopa et al. (2017), authors carried out sequential MRR exper-

iments and estimated mosquito population size using MRR data and Bayesian analyses of

the Fisher-Ford model.

Besides population estimation models based on MRR data, other numerous models

have been proposed to investigate the development and population dynamics of mosquitoes.

Climate-dependent matrix population models were developed to describe Culex pipens

and Aedes vexans and other mosquito population dynamics (Lončarić and Hackenberger

(2013), Schaeffer et al. (2008)). To simulate the population dynamics of immature and

adult Culex mosquitoes in the Northeastern US, Gong et al. (2011) developed climate-

based models and revealed a strong correlation between the timing of early population

increases and decreases in late summer.

Nonetheless, as far as we know, there is no available work taking into account the trap-

ping mosquito mechanism in a dynamical model. Even if some work has used trap counts

in their modeling studies, the results are just a prediction of average mosquito abundance

rather than the real population of a region. Furthermore, trapping counts from the surveil-

lance program are closely related to and influenced by many climatic and environmental
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complex factors, for instance, temperature, precipitation, wind patterns, the locations of

traps, the behavior, availability and distribution of blood-meal hosts, and the mosquito

feeding preferences. All these contribute to technical difficulties of estimating the popula-

tion size.

In this work, we will define an effective trapping zone (ETZ) of a CDC light trap.

Then we will propose a predictive population dynamical model for mosquitoes. We will

incorporate the trapping mechanism of a CDC light trap and collecting procedure in the

model. Moreover, the role of blood meal hosts and mosquito biting feeding preference

will be considered. Based on weekly surveillance trap counts data and local daily weather

data, we estimate parameters involved in the model, then predict total mosquito population

in the ETZ as well as mosquito trap counts.

3.2 Method

First, we define an effective trapping zone (ETZ) for a trap. ETZ is needed for calcu-

lating real mosquito abundance by our predictive model. Inputting trap counts provides

the total mosquito population of the ETZ rather than only the information provided by trap

counts.

In an ETZ, we will establish a general dynamical trap count model by treating the trap

as a special human host for Culex mosquitoes, incorporating feeding preference, reproduc-
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tion and development of Culex mosquitoes in the zone, and the trapping mechanism of the

trap. All these contribute to estimating the total number of mosquitoes in the ETZ using

trap counts.

To characterize and predict weekly trap counts and the Culex mosquito population in

an ETZ in the Region of Peel, we will modify the general model and propose a specific

model for the Region of Peel. In particular, we will classify the blood meals hosts in

the Region of Peel into humans, non-humans (including birds and other mammals), and

regard the CDC light traps as fake humans (mimic humans to attract mosquitoes). For

Culex females, they have different feeding preferences on these different types of hosts,

meanwhile, the available number of different types of hosts will shift mosquitoes feeding

preferences. Also, we consider the impact of local weather factors, the temperature and

precipitation are main factors impacting the development of Culex mosquitoes and con-

sidered in the model. By using the daily local weather data and weekly mosquito trap

counts from the surveillance program, we can estimate the parameters involved. We test

and verify the models using historical data, and predict trap counts and population sizes of

Culex mosquitoes in an ETZ.

42



3.2.1 Effective trapping zone of a CDC light trap

The effective trapping zone (ETZ) of a CDC light trap can be considered as a circular

zone with radius RETZ . Generally, mosquito development and abundance are influenced

by weather factors, such as temperature, precipitation, humidity and wind, in time and

space (Region of Peel (2016), Mullen and Durden (2009), Wang et al. (2017), Shaman

and Day (2007), Rubel et al. (2008), De Meillon et al. (1967), Gong et al. (2011)). Driven

by weather conditions, more mosquitoes will be trapped when there are more adults host-

seeking mosquitoes. Also, the population of mosquitoes in the trapping zone and mosquito

trap counts reach their peaks around the same time (same day). The peak value (occurring

at time tp) of total female Culex mosquitoes in the trapping zone is denoted as Mtotalp; at

the same time tp, the number of collected mosquitoes is Mcollectp .

For a trap, we assume that it can effectively capture all female Culex mosquitoes in

the circular area with radius Rtrap and the trap at the center. Rtrap is closely related to

mosquito flight capacity, which is greatly influenced by landscape structure, meteorologi-

cal conditions and wind (Greenberg et al. (2012), Ciota et al. (2012), Hamer et al. (2014),

Cianci et al. (2013), Villela et al. (2017)). When seeking a blood meal, female mosquitoes

fly about 25 feet or less off the ground and field trials show that relocating traps distances

of only 25 feet (7.62 m) can significantly change the number of mosquitoes collected (Ser-

vice (1980), Reisen et al. (2006b)).
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We further assume that the population of female Culex mosquitoes are proportional to

the size of their living areas, with the relationship

Mcollectp

πR2
trap

=
Mtotalp

πR2
ETZ

. (3.1)

Derived from (3.1), the radius of the ETZ of a trap is

RETZ =

√
Mtotalp

Mcollectp

Rtrap. (3.2)

RETZ is proportional to Rtrap. Therefore the area of the effective trapping zone (ETZ)

of a trap is

AETZ = πR2
ETZ =

Mtotalp

Mcollectp

πR2
trap. (3.3)

Increasing the total mosquito population Mtotalp , the radius Rtrap or decreasing the

collected mosquitoes Mcollectp leads to an increase in the radius of the effective trapping

zone and increasing the area of the ETZ.

3.2.2 A general model

The life cycle of Culex mosquitoes goes through two stages: aquatic (including eggs,

larvae and pupae) and aerial adult. Adult mosquitoes will be attracted and captured by

traps. Let L(t) be the population of female aquatic-stage Culex mosquitoes at time t,

Mtotal(t) be total female adult mosquitoes at time t, and Mcollect(t) be the number of

collected female adult mosquitoes at time t.
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Figure 3.2: Flow chart of the model. Hosts (B,A,H) provide blood meals for female

adults (outside a trap) to reproduce offspring, the immature mosquitoes develop into adults,

and some adults are captured by the trap.

In an ETZ, only female adult mosquitoes outside a trap (Mtotal(t) −Mcollect(t)) can

produce offspring. The function and capability of a trap for trapping mosquitoes can be

measured by the amount of carbon dioxide and light emitted. We treat the amount of these

emissions as the population of mimicked fake hosts, that is, the higher the capability is,

the more fake hosts the trap can mimic.

We also consider Culex mosquitoes feeding preferences among the diversity of host

species. From Fig. 3.2, eL, dlL and κL2 are outputs of the compartment L due to mat-

uration, mortality and intraspecific competition respectively. Total adult mosquitoes de-

crease due to natural mortality dmM and a proportion of adults to be captured by a trap
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C(Mtotal, B,A,H). The trap will be emptied with collection rate Mcollect(t)
uc

. Then a gen-

eral model to describe female Culex mosquito development and mechanism of trapping

and collecting is

dL(t)
dt

= r(b, c, B,H,A)[Mtotal(t)−Mcollect(t)]− eL(t)− dlL(t)− κL2
t ,

dMtotal(t)
dt

= eL(t)− dmMtotal(t)− g(t)C(Mtotal(t), B,A,H),

dMcollect(t)
dt

= g(t)C(Mtotal(t), B,A,H)− f(t)Mcollect(t)
uc

,

(3.4)

where g(t) and f(t) are indicator functions: g(t) is defined as (3.12) to indicate on which

day to set a trap and f(t) is defined as (3.13) to indicate on which day to collect trapped

mosquitoes.

Mosquito feeding preferences, reproduction rate r(b, c, B,H,A), mosquitoes being

trapped rateC(Mtotal(t), B,A,H) and collected rate Mcollect(t))
uc

are derived in the following

subsections 3.2.2.1 - 3.2.2.4. The definitions and values of the parameters used in the

model (3.4) are summarized in Table 3.1.

Table 3.1: Parameters in the general model (3.4)

Par. Interpretation

b Female adult mosquitoes per capita biting rate

c Egg production rate per bite

B Bird population of a given region providing real blood meal resource
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H Human population of a given region providing real blood meal resource

A Other mammal population of a given region providing real blood meal re-

source

p1 Genetic feeding preference on birds

p2 Genetic feeding preference on other mammals

p3 Genetic feeding preference on humans

p4 Genetic feeding preference on fake hosts

pB Actual feeding preference on birds

pA Actual feeding preference on other mammals

pH Actual feeding preference on humans

pF Actual feeding preference on fake hosts

qB The probability that a bite on birds is efficient (the probability of a successful

bite on birds)

qA The probability that a bite on other mammals is efficient

qH The probability that a bite on humans is efficient

qc The probability of mosquitoes attracted by a trap is successfully captured

B̂ The number of birds at which actual feeding preference on birds is equal to

genetic one
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Â The number of other mammals at which actual feeding preference on mam-

mals is equal to genetic one

Ĥ The number of humans at which actual feeding preference on humans is equal

to genetic one

r Female mosquitoes per capita reproduction (egg-laying) rate, also denoted as

r(b, c, B,A,H) (3.11) as it is related to mosquito biting rate, egg production

rate per bite and host populations

e Female mosquitoes per capita maturation rate from aquatic stages to adult

dl Female preadult mosquitoes per capita mortality rate

κ Intraspecific competition rate of female preadult mosquitoes

dm Female adult mosquitoes per capita mortality rate

C Female mosquitoes being trapped rate, also denoted as C(Mtotal, B,A,H) as

it is related to total mosquito and host populations

uc The time taken to collect trapped mosquitoes

3.2.2.1 Culex Mosquito Feeding preferences

Based on previous chapters, Culex mosquitoes usually exhibit host feeding prefer-

ences. If the population of available preferred hosts declines, they may change their pref-

erences on other hosts. We will consider this characteristic of mosquitoes in our model.
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We define Culex mosquito biting rate b as the average number of bites per mosquito

per day (day, used as the unit of time for the modeling). Mosquitoes inherent prefer-

ences (without influence by environmental factors) for feeding on hosts are reflected by

the probability of a bite distributed to available hosts. For each bite, a genetic preference

on birds, other mammals, humans, and fake hosts (represented by a trap) are the proba-

bility p1 (birds), p2 (other mammals), p3 (humans) and p4 (fake hosts) respectively with

0 < pi < 1(i = 1, 2, 3, 4) and
∑4

i=1 pi = 1.

Host abundance is an important extrinsic factor influencing Culex mosquito feed-

ing preferences. We will combine genetic preferences (intrinsic determinants) and host

abundance (extrinsic determinant) to give actual preferences exhibited by female Culex

mosquitoes. The priority is to sort genetic preference based on degrees of preference.

Obviously, the first biting choice is birds and it can be assumed for the rest satisfying

p1 > p2 > p3 > p4 (McLaughlin and Focks (1990), Service (2008), Kilpatrick et al.

(2007), Kilpatrick et al. (2006b), Hamer et al. (2009), Burkett-Cadena et al. (2008), Kil-

patrick et al. (2006a), Hassan et al. (2003), Takken and Verhulst (2013), Rizzoli et al.

(2015), Thiemann et al. (2011), Hamer et al. (2011), Savage et al. (2007)). We define

actual preferences on birds, other mammals, humans, and fake hosts are pB, pA, pH and

pF with 0 < pB, pA, pH , pF < 1 and pB + pA + pH + pF = 1.

Based on the characteristics of Culex mosquito feeding preferences (McLaughlin and
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Focks (1990), Service (2008), Kilpatrick et al. (2007)), we also assume that 1) actual

preference on birds pB is a function of bird population B, and the genetic preference on

birds p1 does not depend onB, and B̂ is the particular value ofB that satisfies pB(B̂) = p1;

2) pB is increasing, particularly, pB will be less than p1 if the number of birds B is less

than B̂; 3) actual preference on birds is zero if there is no bird. The relationship between

pB and p1 is

pB = w(B, B̂)p1, (3.5)

different functions satisfying assumptions 1) - 3) can be applied to formulate w(B, B̂), for

instance,

1)w(B, B̂) =
B

B̂
, (3.6)

2)w(B, B̂) = log(B̂+1) (B + 1).

The next preferred host are other mammals. Except birds, the sum of the rest of the

actual preferences is (1 − pB). The ratio of inherent preference on other mammals A

among non-birds (A+H + F ) is p2
p2+p3+p4

. We assume that actual preference pA is equal

to (1 − pB) p2
p2+p3+p4

(without extrinsic influences) when other mammals A is Â, pA will

less than (1 − pB) p2
p2+p3+p4

if the number of other mammals A is less than Â, and the

relationship between them is

pA = w(A, Â)(1− pB)
p2

p2 + p3 + p4

. (3.7)
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Similarly, w(A, Â) can be

1)w(A, Â) =
A

Â
, (3.8)

2)w(A, Â) = log(Â+1) (A+ 1).

For humans and fake hosts, they will share the rest of the actual preferences (1 −

pB − pA). We still assume that when the population of human H is Ĥ , the ratio of actual

preference between humans and other hosts is equal to the intrinsic one, meaning pH :

pF = p3 : p4. If the human population H is less than Ĥ , pH will be less than preference

(1− pB − pA) p3
p3+p4

determined by intrinsic factor. The relationship between pH and p3 is

pH = w(H, Ĥ)(1− pB − pA)
p3

p3 + p4

, (3.9)

Again, w(H, Ĥ) can be

1)w(H, Ĥ) =
H

Ĥ
, (3.10)

2)w(H, Ĥ) = log(Ĥ+1) (H + 1).

Then mosquito actual feeding reference on fake hosts is pF = (1− pB − pA − pH).

3.2.2.2 Per capita reproduction rate r(b, c, B,A,H)

Not every bite of mosquitoes is efficient. A bite on birds is efficient/successful with

probability qB; similarly, the probability that a bite is efficient on humans and other mam-

mals are qH and qA respectively.
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The average number of bites per mosquito per day b, multiplied by the actual feed-

ing preference pB and a successful biting probability qB, is efficient average bites of a

mosquito on birds per day bpBqB. In the same manner, a mosquito succeeds biting other

mammals and humans in average bpAqA, bpHqH times per day, respectively.

Apparently, only by biting real hosts (including birds, other mammals and humans)

can female mosquitoes produce offspring. Bites on all real hosts per mosquito is (bpBqB +

bpAqA+bpHqH), simplifying as b(pBqB+pAqA+pHqH). After taking blood meals, female

adults use nutrients (such as proteins) obtained from the blood to carry out egg production

(Takken and Verhulst (2013)). In Mullen and Durden (2009), the mosquito egg-laying rate

is delineated by a scaled mosquito biting rate (i.e., a scaling factor times biting rate). Here

we use c to represent egg production rate per bite. With b(pBqB + pAqA + pHqH) bites,

the number of eggs laid by a mosquito is cb(pBqB + pAqA + pHqH), which is females per

capita reproduction rate, i.e.,

r(b, c, B,H,A) = cb(pBqB + pAqA + pHqH). (3.11)

3.2.2.3 Adult mosquitoes being trapped rate C(Mtotal, B,A,H)

If mosquitoes get close to a trap and bite fake hosts (mimicked by the trap), they may

be captured by a trap. First, we decide the number of mosquitoes biting fake hosts. With

Mtotal(t) female mosquito individuals, total bites on fake hosts is Mtotal(t)× bpF per day.

52



Combining the definition of the biting rate b, the number of mosquitoes attracted by a trap

per day is Mtotal(t)×bpF
b

= pFMtotal(t).

Not every mosquito attracted by a trap will be successfully captured, as they strug-

gle against traps. We assume that the probability of mosquitoes successfully captured is

qc(0 ≤ qc ≤ 1). Let C(Mtotal, B,A,H) denote the rate of adult mosquitoes being trapped.

Then the form of C(Mtotal, B,A,H) can be one of following:

1)C(Mtotal, B,A,H) = qcpFMtotal(t). A linear increasing trapped rate with mosquito

density is assumed.

2) C(Mtotal, B,A,H) = qcM̄cpFMtotal(t)
a+pFMtotal(t)

, which is an increasing function that saturates.

That is without successfully trapping probability qc, mosquitoes that a trap can hold has

a finite positive limit M̄c as Mtotal approaches infinity. The space of a trap is limited and

cannot contain an infinite number of mosquitoes.

Traps are not operated every day, we need to modify the mosquitoes trapped term

C(Mtotal(t)) to reflect this discontinuity. We introduce function g(t), which is a sign

function in the form

g(t) =


1, if a trap is operated on tth day,

0, otherwise.

(3.12)

Particularly, if traps are set daily, we just set g(t) = 1 for all t in (3.12).
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3.2.2.4 Trapped mosquitoes being collected rate

To incorporate the process of mosquito collection in a dynamical model, we add an

output representing collection for Mcollect(t) compartment. In particular, we set up a time

point as a start of one day, for example, we set 9:00 am as the point. Mcollect(t) is the

mosquito population at time 9:00 am on the tth day. We trap mosquitoes on the ith day

(one day) means we trap mosquitoes from 9:00 am on the ith day to next day 9:00 am.

Under this set-up, if we collect mosquito on the ith day, with collection starting at 9:00 am

on the ith day. We assume it takes uc day (uc× 24 hours) to collect mosquitoes, uc is short

and during this period no mosquitoes enter the trap. Then the mosquito population in a

trap decreases from Mcollect(t) to 0 during uc day. This change rate (trapped mosquitoes

being collected rate) should be 0−Mcollect(t)
uc

, a trap is empty after each collection. Again,

we introduce the function f(t) to describe on which day to collect mosquitoes (to empty a

trap)

f(t) =


1, if mosquitoes being collected on tth day,

0, otherwise.

(3.13)

3.2.3 A specific model for the Region of Peel

In the Region of Peel, mosquitoes are trapped and collected weekly. Specifically, traps

are operated at 2:00pm on one afternoon and mosquitoes are collected at 9:00 am next
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morning in each week (trapping for 19 hours). Here we use the 24-hour mode to approx-

imate the 19-hours, since the period (9:00 am-2:00 pm on the same day) is a short time

frame when female Culex mosquitoes are least likely to bite (Rozendaal (1997)). Thus, we

modify f(t) in the general model (3.4) and obtain the following model for the Peel region

dL(t)
dt

= r(b, c, B,H,A)[Mtotal(t)−Mcollect(t)]− eL(t)− dlL(t)− κL2
t ,

dMtotal(t)
dt

= eL(t)− dmMtotal(t)− g(t)C(Mtotal(t), B,A,H),

dMcollect(t)
dt

= g(t)C(Mtotal(t), B,A,H)− g(t− 1)Mcollect(t)
uc

,

(3.14)

where g(t) is the form (3.12) representing when to set a trap, f(t) = g(t − 1) represents

that mosquitoes are collected from the trap on the next day. If a trap is set on the ith

day, g(t) = 1 when t = i, then f(t + 1) = g(t) = 1, that is, collection is operated on

the (i + 1)th day. Thus it is reasonable to use g(t − 1) (to replace f(t)) to indicate that

mosquitoes in this trap are collected next day.

Temperature and precipitation have profound effects on mosquito abundance in time

and space (Mullen and Durden (2009)). Temperature is influential on the Culex mosquito

biting rate, maturation and mortality rate (Gong et al. (2011), Rubel et al. (2008), De Meil-

lon et al. (1967), Otero et al. (2006), Dohm et al. (2002), Møller (2013), Service (1980),

Reisen et al. (2006b)). Precipitation influences the intraspecific competition among pread-

ult mosquitoes by changing the abundance and type of aquatic habitats (Shaman and Day

(2007)). Based on our previous work and research (Wang et al. (2017), Gong et al. (2011),
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Rubel et al. (2008), De Meillon et al. (1967), Otero et al. (2006)), we adopt temperature

(T ) and precipitation (P )-dependent functions in the following:

b(T ) =
0.344

1 + 1.231 exp(−0.184(T − 20))
,

e(T ) =
(T + 273.15)exp(47.42(T−25)

T+273.15
)

1192.6[1 + exp(59.6(T−25.45)
T+273.15

)]
,

dl(T ) = 1− Sl exp[−(
T − Tl
V arT l

)2], (3.15)

dm(T ) = 1− Sm exp[−(
T − Tm
V arTm

)2],

κ(P ) =
(1 + ρ)κ̄

1 + ρ exp[−( P−Pl
V arPl

)2]
.

Replacing constant parameters in the model (3.14) by (3.15), we obtain a system driven

by temperature and precipitation. Then we do numerical simulations to show how to

predict total female Culex mosquitoes in a region based on trapped mosquitoes. Weather

data (temperature and precipitation) is from June to October in 2015 gathered from Toronto

Pearson International Airport Station Government of Canada (2011). The maturation rate

e depends on the arithmetic mean of previous 11 days’ temperature and other weather-

dependent parameters depend on daily weather data Wang et al. (2017). Trapped Culex

mosquitoes are collected from a trap located in the Region of Peel.
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3.3 Results

We first qualitatively analyze a corresponding continuous system of (3.4) by equaliza-

tion. Then we carry out numerical simulations to analyze the dynamics of the model.

3.3.1 Model analysis

Before numerically analyzing the dynamics of the system (3.4), it is instructive to

qualitatively analyze its continuous system by equalization. In specific, the processes of

trapping and collecting mosquitoes once a week is averaged to seven days of a week, that

is, mosquitoes are trapped and data are collected every day (in this case, f(t) = g(t) = 1).

Then this continuous system is

dL(t)
dt

= r(b, c, B,H,A)[Mtotal(t)−Mcollect(t)]− eL(t)− dlL(t)− κL2
t ,

dMtotal(t)
dt

= eL(t)− dmMtotal(t)− C(Mtotal(t), B,A,H),

dMcollect(t)
dt

= C(Mtotal(t), B,A,H)− Mcollect(t)
uc

,

(3.1)

For the system (3.1), all compartments need to be non-negative for all time t and all

parameters should be positive. Then the model is mathematically and ecologically well-

posed and studied in the invariant region:

D = {(L,Mtotal,Mcollect) ∈ R3|L,Mtotal,Mcollect ≥ 0}. (3.2)
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For simplification, we use r to represent r(b, c, B,H,A), then the analysis is carried out in

the following two cases.

3.3.1.1 Linear female mosquitoes being trapped rate

The system (3.1) with linear being trapped rate C(Mtotal, B,A,H) = qcpFMtotal(t)

has up to two nonnegative equilibrium points.

Trivial equilibrium point

The model has a trivial equilibrium which is denoted by E0 = (0, 0, 0). The stability

of E0 depends on the basic offspring number Q0:

Q0 =
er(1− qcpFuc)

(e+ dl)(dm + qcpF )
, (3.3)

it presents the average expected number of alive newborn mosquitoes produced by a sin-

gle female mosquito during its life time. Ecologically, it is interpreted as the fraction of

newborn immature mosquitoes survived and emerged into adults er
e+dl

, multiplied by the

successful survival and not being captured by a trap 1−qcpFuc
dm+qcpF

.

Theorem 3.3.1. The trivial equilibriumE0 of the system (3.1) with linear female mosquitoes

being trapped rate is locally asymptotically stable if Q0 < 1, and unstable if Q0 > 1.
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Proof. The Jacobian matrix of the system (3.1) at E0 is

J(E−) =


−e− dl r −r

e −dm − qcpF 0

0 qcpF − 1
uc

 , (3.4)

with the corresponding characteristic equation

λ3 + a2λ
2 + a1λ+ a0 = 0, (3.5)

where

a2 = e+ dl + dm + qcpF +
1

uc
,

a1 =
1

uc
(e+ dl + dm + qcpF ) + (e+ dl)(dm + qcpF )− er,

a0 =
1

uc
(e+ dl)(dm + qcpF )(1−Q0). (3.6)

Applying the Routh-Hurwitz criteria, E0 is locally asymptotically stable if

a2 > 0, a0 > 0 & a1a2 − a0 > 0. (3.7)

Rewriting a1a2 − a0, we have

a1a2 − a0 = (e+ dl + dm + qcpF )uca0 +
1

u2
c

[(e+ dl + dm + qcpF )uc + 1][e

+ dl + dm + qcpF (1− eru2
c)]. (3.8)

It is apparent that a2 > 0 since all parameters are positive. When Q0 < 1, a0 > 0, and

combining with 1 − eru2
c > 0 (based on the magnitudes of the parameters in Table 3.3),
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we also obtain a1a2 − a3 > 0. Thus, the trivial equilibrium E0 is locally asymptotically

stable if Q0 < 1.

If Q0 > 1, then a0 < 0, the characteristic equation (3.5) has roots with positive real

part. Hence, E0 is unstable.

Non-trivial equilibrium point

IfQ0 > 1, the system (3.1) also has a positive equilibriumE1 = (L1,Mtotal1 ,Mcollect1)

with Mtotal1 = e[er(1−qcpFuc)−(e+dl)(dm+qcpF )]
κ(dm+qcpF )2

, L1 = dm+qcpF
eMtotal1

, Mcollect1 = qcpFucMtotal1 .

Theorem 3.3.2. The equilibrium point E1 of the system (3.1) is locally asymptotically

stable if Q0 > 1.

Proof. The Jacobian matrix of the system (3.1) at E1 is

J(E−) =


er(qcpFuc−1)+uca0

z
r −r

e −z 0

0 qcpF − 1
uc

 , (3.9)

where z = dm+qcpF and a0 is represented in (3.6). The characteristic equation associated

to matrix (3.9) is

λ3 + b2λ
2 + b1λ+ b0 = 0, (3.10)
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where

b2 =
1

zuc
[z(zuc + 1) + eruc(1− qcpFuc)− a0u

2
c ], (3.11)

b1 =
1

zuc
[er + z2 − (erqcpF + a0)uc(zuc + 1)],

b0 = −a0.

Again, we use Routh-Hurwitz criteria to investigate the stability of E1. E1 is locally

asymptotically stable if

b2 > 0, b0 > 0 & b1b2 − b0 > 0, (3.12)

in specific,

b1b2 − b0 =
1

(z2u2
c

{u3
ca

2
0(zuc + 1)− uca0[2zucdm + 2zqcpFuc(1− eru2

c)

+ 2eruc(1− qcpFuc) + zu2
c(er + z2 + z)] + [qcpF (1− eru2

c) (3.13)

+ uc(er + z2) + dm][zqcpF (1− eru2
c) + zdm + er(1− qcpFuc)]}.

By the definition of Q0 (3.3) and Theorem 3.3.1, 1− qcpFuc > 0 & a0 < 0 whenever

Q0 > 1. Also, all parameters are positive and 1 − eru2
c > 0 (which has been shown in

Theorem 3.3.1 ), then all conditions of (3.12) are satisfied, thus, the equilibrium point E1

is locally asymptotically stable.
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3.3.1.2 Nonlinear female mosquitoes being trapped rate

Any nonnegative equilibrium of the system (3.1) with nonlinear female mosquitoes be-

ing trapped rate C(Mtotal, B,A,H) = qcM̄cpFMtotal(t)
a+pFMtotal(t)

can be expressed as Ẽ = (L̃, M̃total,

M̃collect) satisfying

M̃total(k3M̃
3
total + k2M̃

2
total + k1M̃total + k0) = 0,

L̃ =
dm(a+ pFM̃total)M̃total + qcM̃cpFM̃total

e(a+ pFM̃total

, (3.14)

M̃collect =
ucqcM̃cpFM̃total

a+ pFM̃total

,

where

k3 = κd2
mp

2
F ,

k2 = pF [2κdm(adm + qcM̄cpF ) + epF (dldm + dme− er)], (3.15)

k1 = κ(adm + qcM̄cpF )2 + eqcM̄cp
2
F (ucer + dl + e) + 2aepF (dldm + dme− er),

k0 = ae[(dl + e)(adm + qcM̄cpF )− er(a− ucqcM̄cpF )].

Trivial equilibrium point

The system (3.1) with nonlinear trapped rate has a trivial equilibrium point E0 =

(0, 0, 0) and we calculate the basic offspring number Q0:

Q0 =
er(a− qcM̄cpFuc)

(e+ dl)(adm + qcM̄cpF )
. (3.16)
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Theorem 3.3.3. The trivial equilibrium E0 of the system (3.1) with nonlinear female

mosquitoes being trapped rate is locally asymptotically stable if Q0 < 1, and unstable

if Q0 > 1.

Proof. The Jacobian matrix of the system (3.1) at E0 is

J(E0) =


−(e+ dl) r −r

e −(dm + qcM̄cpF )
a

0

0 qcM̄cpF
a

− 1
uc

 , (3.17)

with the eigenvalues satisfying the characteristic equation

λ3 + â2λ
2 + â1λ+ â0 = 0, (3.18)

where

â2 =e+ dl + dm +
qcM̄cpF

a
+

1

uc
, (3.19)

â1 =
1

uc
(e+ dl + dm + qcpF ) +

1

auc
{[(e+ dl)uc + 1](adm + qcM̄cpF qcpF )

+ a(e+ dl)} − er,

â0 =
1

auc
(e+ dl)(adm + qcM̄cpF )(1−Q0).

Applying the Routh-Hurwitz criteria, E0 is locally asymptotically stable if

â2 > 0, â0 > 0 & â1â2 − â0 > 0, (3.20)
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where

â1â2 − â0 =
qcM̄cpF [e(1− ruc) + (e+ 2dl + 2dm)]

auc

+
(qcM̄cpF )2 + a2(e+ dl + dm)2

a2uc
(3.21)

+
[qcM̄cpF + a(e+ dl + dm)][u2

c(e+ dl)(adm + qcM̄cpF ) + a(1− eru2
c)]

a2u2
c

.

â2 > 0 as all parameters are positive, and â0 > 0 when Q0 < 1. By the magnitudes of

the parameters in Table 3.3, we have (1− ruc) > 0 and 1− eru2
c > 0, then â1â2− â3 > 0.

Thus, the trivial equilibrium E0 is locally asymptotically stable if Q0 < 1. Contrarily,

Q0 > 1 contributes to â0 < 0, then characteristic equation (3.18) has roots with positive

real part, and E0 is unstable.

Non-trivial equilibrium point

k3 > 0 is due to the positivity of all parameters, and rewriting the coefficients (3.15)

of the equation (3.14), we have

k0 = ae(e+ dl)(adm + qcM̄cpF )(1−Q0). (3.22)

By Descartes’ Rule of Signs, we have following situations: S1) IfQ0 < 1, the equation

(3.14) has 2 or 0 real root(s); S2) If Q0 > 1, the equation (3.14) has 3 or 1 real root(s).

Considering the ecological reality, we only care about the existence of positive equilibria

when parameters in the model (3.1) are positive.
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Furthermore, if er ≤ dldm + dme, no positive equilibrium exists. If er > dldm + dme,

we reorganize k3M̃
3
total + k2M̃

2
total + k1M̃total + k0 = 0 in (3.14) in terms of a,

s2a
2 + s1a+ s0 = 0 (3.23)

where

s2 =M̃2
totalp

2
F [M̃totald

2
mκ+ e(dldm + dme− er)], (3.24)

s1 =M̃total[2M̃totalκdmpF (dm + qc + pF ) + eqcp
2
F (ucer + dl + e)

+ 2epF (dldm + dme− er)],

s0 =M̃totalκ(qcpF + dm)2 + eqcpF (ucer + dl + e) + e(dldm + dme− er).

For the equation (3.23), if no positive root a exists when M̃total > 0, we can conclude

that there is no positive M̃total satisfying the the equation (3.14). Then we consider the

following two cases.

Case 1: If M̃total ≥ e(er−dldm−dme)
d2mκ

, then s2 ≥ 0, s1 > 0 and s0 > 0, which indicates

there is no positive a satisfying (3.23).

Case 2: If 0 < M̃total <
e(er−dldm−dme)

d2mκ
, then s2 < 0. The discriminant of (3.23)

s2
1 − 4s2s0 =M̃2

totale
2q2
cp

4
F [4κrM̃total((ucdm + 1)) + (ucer + dl + e)2]

>0, (3.25)

then equation (5.22) has two distinguished roots a.
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1. If Q0 < 1, s0 > 0, then a unique positive parameter a exists.

2. If Q0 > 1, − e2pF
8κdm(dm+qcpF )

[qcpF (ucer + dl + e) + 2(dldm + dme − er)]2 < s1 <

e2p2F qc
κd3m

(dldm + dme − er)(−dmucer + dldm + dme − 2er). s1 reaches the minimum

when M̃total = − e
4κdm(dm+qcpF ))

[qcpF (ucer + dl + e) + 2(dldm + dme − er)], s1 reaches

the maximum when M̃total = e
d2mκ

(er − dldm − dme). s1 < 0 when 0 < M̃total <

− e
2κdm (dm+qcpF )

[qcpF (ucer+dl+e) + 2(dldm+dme−er)], s1 > 0 when− e
2κdm (dm+qcpF )

[

qcpF (ucer + dl + e) + 2(dldm + dme− er)] < M̃total <
e

d2mκ
(er − dldm − dme).

Also e[qcpF (ucer+dl+e)+(dldm+dme−er)] < s0 < − epF qc
d2m

[(dldm+dme−er)(dm+

qcpF )−dmer(1+dmuc)]. s0 < 0 when 0 < M̃total < − e
κ(dm+qcpF )2)

[qcpF (ucer+dl+e)+

(dldm+dme−er)], s0 > 0 when− e
κ(dm+qcpF )2

[qcpF (ucer+dl+e)+(dldm+dme−er)] <

M̃total <
e

d2mκ
(er − dldm − dme).

Then we have that when − e
κ(dm+qcpF )2

[qcpF (ucer + dl + e) + (dldm + dme− er)] <

M̃total <
e

d2mκ
(er − dldm − dme), a unique positive parameter a exists, and we summarize

the results in Table 3.2.

Therefore, we obtain that positive equilibrium point(s) may exist in the following

two cases: 1) positive equilibrium point(s) with 0 < M̃total <
e(er−dldm−dme)

d2mκ
may ex-

ist when er > dldm + dme and Q0 < 1 are satisfied; 2) positive equilibrium point(s) with

−e
κ(dm+qcpF )2

[qcpF (ucer + dl + e) + (dldm + dme − er)] < M̃total <
e(er−dldm−dme)

d2mκ
may

exist when er > dldm + dme and Q0 > 1 are satisfied. The exact number of positive
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Table 3.2: The existence of positive a depending on the sign of s1 & s0

M̃total s1 s0 Positive a(
0, −e

κ(dm+qcpF )2
[qcpF (ucer + dl + e) + (dldm + dme− er)]

]
< 0 < 0 @( −e

κ(dm+qcpF )2
[qcpF (ucer + dl + e) + (dldm + dme −

er)], −e
2κ(dm+qcpF )2

[qcpF (ucer+dl+e)+2(dldm+dme−er)]
]

*

≤ 0 > 0 ∃

( −e
2κ(dm+qcpF )2

[qcpF (ucer + dl + e) + 2(dldm + dme −

er)], e
d2mκ

(er − dldm − dme)
) > 0 > 0 ∃

* − e
κ(dm+qcpF )2

[qcpF (ucer+dl+e)+(dldm+dme−er)] < − e
2κ(dm+qcpF )2

[qcpF (ucer+dl+

e)+2(dldm+dme−er)], since− e
κ(dm+qcpF )2

[qcpF (ucer+dl+e)+(dldm+dme−er)]−

(− e
2κ(dm+qcpF )2

[qcpF (ucer + dl + e) + 2(dldm + dme− er)]) = − eqcpF
2κdm(dm+qcpF )2

< 0.

equilibriums needs to be considered in future work.

3.4 Sensitivity analysis, parameter estimation and numerical simula-

tions

First, we do the sensitivity analysis of each parameter on the three output variables,

the population of the preadult female, the adult female and the collected female. Then

combining model (3.1) with parameters in (3.15) and weekly trapped Culex mosquito data,

we obtained estimated values of parameters. Then adopting these estimated parameters,
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we present the population of aquatic-stage females and total females in the ETZ, and the

number of trapped mosquitoes and collected data.

3.4.1 Sensitivity analysis

To do the sensitivity analysis of each parameter in the system (3.1) (with a trapped

rate in the form of C(Mtotal, B,A,H) = qcpFMtotal(t)) on the three critical output vari-

ables, L(t), Mtotal(t) and Mcollect(t). Specifically, we evaluate partial rank correlation

coefficients (PRCCs) between each input parameter and the output variable, using Latin

hypercube sampling (LHS) with 3000 samples (Marino et al. (2008)). Due to the absence

of available data and a priori information on the distributions of input parameters, we

choose uniform distributions for each parameter with corresponding baseline and range in

Table 3.3. When g(t) = 0 parameters related to trapping and collecting procedures have

no effect on three output variables. To obtain the sensitivity analysis of these parameters

on female mosquito abundance, we choose g(t) = 1 in the analysis. Also, we treated the

reproduction rate r as one parameter rather than split it into several parameters.

Table 3.3: Parameters analyzed in sensitivity analysis (1)

Par. Description Baseline & Range (day−1)
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r The female per capita reproduction (egg-laying)

rate

0.6 & [0.036, 42.5]

e The female per capita maturation rate (the

preadult to the adult)

0.06 & [0.051, 0.093]

dl The preadult female per capita mortality rate 0.4 & [0.213, 16.9]

κ Intraspecific competition rate of the preadult fe-

male

0.005 & [0, 1]

dm The adult female per capita mortality rate 0.05 & [0.016, 0.07]

pF Actual feeding preference on fake hosts 0.3 & [0, 0.4]

qc The probability of mosquitoes being success-

fully captured

0.1313 & [0, 0.8]

uc The time taken to collect trapped mosquitoes 0.0035 & [0, 0.0148]

To address how the number of bird, human and other animal hosts affect mosquito

abundance, we look deep into the reproduction procedure, decompose the reproduction

rate r and carry out the sensitivity analysis of parameters c, b, B, A and H in system

(3.1) (with trapped rate in the form C(Mtotal, B,A,H) = qcpFMtotal(t)) on the critical

output variables, L(t), Mtotal(t) and Mcollect(t). We evaluated partial rank correlation

coefficients (PRCCs) between each of these input parameters and output variable, using
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Latin hypercube sampling (LHS) with 3000 samples (Marino et al. (2008)); we chose

uniform distributions for each parameter (corresponding baseline and range in Table (3.4)

because of the absence of available data and a priori information on the distributions of

input parameters.

Table 3.4: Parameters analyzed in sensitivity analysis (2)

Par. Description Baseline & Range (day−1)

c Egg production rate per bite 2.325 & [0.1, 6]

b Female adult mosquitoes per capita biting rate 0.5 & [0.2, 0.75]

B The population of birds in a region 40 & [10, 200]

A The population of other mammals in a region 50 & [10, 150]

H The population of humans in a region 5 & [1, 15]

Sensitivity analysis (Fig. 3.3) shows that mosquito reproduction rate r, maturation

rate e, mortality rates dl and dm, intraspecific competition rate κ have significant impacts

(with p− value < 0.05) on both preadult and adult female mosquito population L(t) and

Mtotal(t), while only slight impacts on Mcollect(t). Reversely, Mcollect(t) is sensitive to the

rest of the three parameters pF , qc and uc, but not for L(t) and Mtotal(t).

Sensitivity analysis (Fig. 3.4) indicates all of these five parameters significantly in-

fluence (with p − value < 0.05) preadult, adult and collected female mosquito popula-
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Figure 3.3: Performance of LHS/PRCC on the model (3.1) with input parameters r, e, dl,

κ, dm, pF , qc and uc. Parameters with a PRCC significantly (p < 0.05) different from zero

are indicated with (∗).

Figure 3.4: Performance of LHS/PRCC on the model (3.1) with input parameters c, b,

B, A and H . Parameters with a PRCC significantly (p < 0.05) different from zero are

indicated with (∗).
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tions. Egg reproduction rate per bite c and mosquito biting rate b have positive impacts

on all mosquito populations, the increase of c and b results in the increase of the mosquito

population. While for host populations, they affect three classes of mosquitoes in dif-

ferent ways. Host populations including birds (B), humans (H) and other mammals (A)

positively influences preadult and adult mosquitoes and negatively influences collected

mosquitoes. This is in accordance with what is expected: more host abundance (B,A,H)

provides more blood meals, which promotes mosquito reproduction. More real hosts, the

priority choice for host-seeking female mosquitoes, lead to fewer adults being attracted

and collected by traps (fake hosts).

3.4.2 Parameter estimation

Model realities strongly depend on the assumed parameters and having an accurate

estimation of parameters is critical. Since there are multiple parameters involved in the

model, we first classify the parameters into groups based on their functions: one group is

related to trapping and collecting process (uc, qc and pF ), another group is the temperature-

dependent parameters.

To make use of the weekly trapping counts (data) to estimate the total number of

mosquitoes in one area, the parameters uc, qc and pF are fitted to the data.

For the temperature or precipitation dependent parameters, the optimal temperatures
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(Tl, Tm) for survival and corresponding survival rates (Sl, Sm) of Culex mosquitoes are

fixed no matter where they live. The variance of temperature and precipitation V arT and

V arP is also fixed and is calculated with daily weather data. The component of reproduc-

tion rate c(pBqB + pAqA + pHqH), denoted as c̄, largely depends on host demographics in

different locations. Also, the precipitation level Pl varies along with locations. Thus c̄ and

Pl still need to be estimated with different trap locations.

Five months’ trap count data (June - October) are available to estimate unknown pa-

rameters c̄, Pl, uc, qc and pF . Here trap count data is weekly trapped female Culex

mosquitoes obtained from a specific trap located in the Region of Peel health unit. To

remove variation and fill in missing data values, we smooth trap count data. Smoothed

weekly trapped count data is obtained by averaging previous, current and next week trap

counts. Then the estimation is carried out by minimizing the difference between the ob-

served trap count data and our model produced resultsMcollect(t). Except parameters c̄, Pl,

uc, qc and pF , other parameters are given in Table 3.5. Considering the following model

validation, we only use four months’ trap count data to estimate the parameters and treat

remaining months as a validation set. In particular, we have five approaches to choose

four months’ count data to estimate parameters: A1 (June, July, August, September), A2

(June, July, August, October), A3 (June, July, September, October), A4 (June, August,

September, October), A5 (July, August, September, October). For each approach, we can
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obtain a corresponding set of estimated values (in Table 3.5).

Table 3.5: Values of fixed and estimated parameters

Fixed par. Sl Sm Tl Tm ρ κ̄

Value 0.95 0.93 17 23 9 0.001

Est. par. c̄ Pl uc qc pF

Value - A1 5.825 1.125 0.01 0.675 0.2875

Value - A2 5.825 2.375 0.0002 0.925 0.2875

Value - A3 4.45 5.875 0.0027 0.8155 0.225

Value - A4 4.3876 3 0.0061 0.925 0.2875

Value - A5 5.3719 6 0.0178 0.9328 0.2876

3.4.3 Model validation

We carry out cross-validation against real trap count data. We implement the validation

in five ways where we divide the original data into a training set and a validation set. These

five ways correspond to five sets of estimations, i.e., W1 (training set: A1, validation set:

October’s), W2 (training set: A2, validation set: September’s), W3 (training set: A3,

validation set: August’s), W4 (training set: A4, validation set: July’s), W5 (training set:
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A5, validation set: June’s). We adopt fixed parameter values and five sets of estimated

parameter values (Table 3.5) in the model (3.14) to simulate the population of female

preadult, adult and trapped mosquitoes from July to October.

By comparing all simulated and real trap count data in validation sets (Fig. 3.5), we

find that our simulated results can identify trends in mosquito abundance. The errors

between simulated results and real data may be due to more complex factors than just

temperature and precipitation.

For the third and fourth set validation W3 and W4, the error of estimations is a little

larger, indicating that trap count data in July and August (the period during which mosquito

abundance is increasing) is more helpful to produce an accurate estimation. In general, our

model is a reasonable representation of the actual system.

3.5 Estimated female mosquito population during surveillance sea-

son

Based on the validated model (3.14), we can obtain a more accurate estimation of the

mosquito population. It is apparent that if more information is used we could have more

accurate estimations. We estimated parameters c̄, Pl, uc, qc and pF by using trap count

data of all five months (June - October). Moreover, we have simulated the model with

two different trapped rate forms. With trapped rate in the form C(Mtotal, B,A,H) =
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(a) W1: October’s trap count data is validation set (b) W2: September’s trap count data is validation

set

(c) W3: August’s trap count data is validation set (d) W4: July’s trap count data is validation set

Figure 3.5: Model validations against real trap count data with five pairs (training set &

validation set) of data sets (W1, W2, W3, W4, W5).
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(e) W5: June’s trap count data is validation set

Figure 3.5: (Cont.) Model validations against real trap count data with five pairs (training

set & validation set) of data sets (W1, W2, W3, W4, W5).

qcpFMtotal(t), the results are shown in Fig. 3.6 and Fig. 3.7. With trapped rate in the form

C(Mtotal, B,A,H) = qcM̄cpFMtotal(t)
a+pFMtotal(t)

, the results are shown in Fig. 3.8 and Fig. 3.9.

Results (Fig. 3.6 - Fig. 3.9) show that two trapped rates can be used to fit observed

data of trapped Culex mosquitoes and to predict total Culex mosquito population. The

changes of total Culex mosquito abundance with these two trapped rates reveal the same

trends, only peak values are different (Fig. 3.6 vs. Fig. 3.8). Moreover, the initial size of

mosquitoes (including pre-adult mosquitoes, adults and trapped mosquitoes) has a notable

influence on mosquito abundance around the first month (0-30 days), nevertheless, this

influence will not last until the end of October. Hence the trend of mosquito development

will be affected by the population of mosquitoes at the starting point, while this effect
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will weaken gradually and the trend will be determined much more by temperature and

precipitation (based on the comparison of (a) and (b) in Fig. 3.6 - Fig. 3.9). These results

are consistent with the growth and reproduction of mosquitoes in nature.

Effective Trapping Zone (ETZ) We apply the definition of the ETZ of a trap for the

Peel region model. We adopt Rtrap = 7.62m (Curtis Dyna-fog (2013)) as an example to

calculate the ETZ of a trap. With linear trapped rate, from Fig. 3.6 and Fig. 3.7, one

can find tp is around 70, Mcollectp ≈ 70 and Mtotalp ≈ 650. Based on (3.2), the radius of

effective trapping zone of the trapRETZ = 23.22m and the area of this ETZ is 1693.85m2.

Similarly, with nonlinear trapped rate and from Fig. 3.8 and Fig. 3.9, Mcollectp ≈ 70 and

Mtotalp ≈ 600, we have RETZ = 22.31m and the area of this ETZ is 1563.55m2.

(a) (b)

Figure 3.6: Predicted total preadult female Culex mosquitoes and adult Culex females with

linear trapped rate with different initial population size (a larger initial size in 3.6(b)). The

unit of time is day−1 and the starting time point 0 representing June 1, 2015.
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(a) (b)

Figure 3.7: Simulated trapped Culex mosquitoes and real collected mosquitoes with linear

trapped rate with different initial population size (a larger initial size in 3.7(b)). The unit

of time is day−1 and the starting time point 0 representing June 1, 2015.

3.6 Discussion

This research has found that the accurate estimation of the ETZ is largely dependent on

Rtrap (female Culex mosquitoes within Rtrap radius can all be captured). A greater Rtrap

reflects a higher efficiency of a trap and a larger area of the zone. Rtrap can be influenced

by many factors, such as trapping mosquito capability of a CDC light trap, trap location,

weather conditions (like windy or storming). For example, a strong wind will blow away

mosquitoes and a consequent decrease of trapped mosquitoes, in this case, Rtrap will be

smaller compared to one with windless weather. If we have access to an accurate real
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(a) (b)

Figure 3.8: Predicted total preadult female Culex mosquitoes and adult Culex females with

nonlinear trapped rate with different initial population size (a larger initial size in 3.8(b)).

The unit of time is day−1 and the starting time point 0 representing June 1, 2015.

Rtrap, we can define an accurate ETZ and more accurately predict real mosquito popula-

tion size or density in the ETZ.

Based on sensitivity analysis (Fig. 3.3), increasing the female per capita reproduction

rate, maturation rate, or decreasing the preadult female per capita mortality rate, intraspe-

cific competition rate and the adult mosquito per capita mortality rate can lead to an in-

crease in preadult and adult population. Increasing actual mosquito feeding preference on

fake hosts, the probability of mosquitoes being successfully captured and the time spent

on collecting trapped mosquitoes is helpful to capture more mosquitoes.

To look into the influence of weather on the mosquito abundance, we investigate the
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(a) (b)

Figure 3.9: Simulated trapped Culex mosquitoes and real collected mosquitoes with non-

linear trapped rate with different initial population size (a larger initial size in 3.9(b)). The

unit of time is day−1 and the starting time point 0 representing June 1, 2015.

variation of female mosquito populations during short periods. From Fig. 3.10 - Fig. 3.12,

we find that the overall trends of predicted total preadult, adult female Culex mosquitoes

and trapped females are in accordance with the changes of temperature. Moreover, the

preadult female Culex mosquitoes are more sensitive to temperature, the subtle up-and-

downs of preadult females agree with the fluctuation of temperature. Hence the preadult

female Culex mosquitoes are driven by temperature, which explains that mosquito popu-

lations vary from year to year with some years having multiple peaks (since temperatures

have multiple peaks) and some years the peak coming earlier. Moreover, we find that there

are lags between the variation of temperature and mosquito populations (Fig. 3.10 - Fig.
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3.12).

(a) (b)

Figure 3.10: Predicted total preadult, adult female Culex mosquitoes and trapped females

over daily average temperature and precipitation during a period in mid-July. 3.10(a) with

a linear trapped rate, 3.10(b) with a nonlinear trapped rate.

Based on the specific model for the Region of Peel (3.14) (where parameters are esti-

mated based on previously known trap count data) and weather forecasts, we can predict

not only weekly trap counts but also mosquito population in the ETZ.

For the traps in the Region of Peel, we use the first three-month (June-August) trap

count data to estimate unknown parameters, then use the model (with the linear trapped

rate or nonlinear trapped rate) and the following week (the first week of September)

weather data to predict mosquito abundance. We can obtain a good prediction of fol-
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(a) (b)

Figure 3.11: Predicted total preadult, adult female Culex mosquitoes and trapped females

over daily average temperature and precipitation during late August and early September.

3.11(a) with a linear trapped rate, 3.11(b) with a nonlinear trapped rate.

lowing week trap counts and total mosquito populations (with the linear trapped rate (Fig.

3.13(a)) or nonlinear trapped rate (Fig. 3.13(b)). Comparing predicted results (red dashed

curve) of our model and observed data (corresponding green solid curve), our model can

provide a relatively accurate prediction. Similarly, we can predict the total mosquito popu-

lation size encompassing preadult and adult mosquitoes (dashed yellow and purple curve)

in the ETZ.

This predictive model is useful for mosquito surveillance programs. It can be used to

improve the accuracy of mosquito abundance estimation and provide real population data
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(a) (b)

Figure 3.12: Predicted total preadult, adult female Culex mosquitoes and trapped females

over daily average temperature and precipitation in the middle of September. 3.12(a) with

a linear trapped rate, 3.12(b) with a nonlinear trapped rate.

of mosquitoes in the ETZ. This more accurate information will greatly help health units to

make decisions on mosquito control, to decide what actions should be taken based on pre-

dicted mosquito abundance. If the predictions indicate that a large number of mosquitoes

are expected then larviciding or adultciding can be considered to rapidly and effectively

control mosquitoes. The results of this model will also improve the assessment of the risk

of related MBD infections. When the model predicts a higher mosquito population, media

and education on individual protection from mosquito bites are also important.

In our models, female mosquitoes per capita reproduction rate r(b, c, B,A,H) and fe-
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(a) (b)

Figure 3.13: Prediction of following week trap counts, total preadult and adult female

mosquitoes, based on model (3.14) with corresponding weather data (weather forecasts)

and 3.13(a) with a linear trapped rate, 3.13(b) with a nonlinear trapped rate.

male mosquitoes being trapped rate C(Mtotal, B,A,H) are influenced and determined by

the species (here we roughly classify as birds, humans and other mammals), the abundance

and the distribution of hosts. With the information of hosts in different trap locations, we

can calculate these two rates for corresponding locations respectively, then use them in

our model to predict future real mosquito abundance considering the influence of loca-

tions, however, this has not been achieved due to the lack of information of hosts.

Although the hosts’ information is not included in this work, we can use this model to

estimate and obtain some information related to hosts. In this model, we used trap count
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data to estimate the parameter c̄ (a component of r(b, c, B,A,H)) and qc & pF (compo-

nents of C(Mtotal, B,A,H)). For a region with a trap, c̄ reveals the components structure

of hosts and the mosquitoes feeding preferences in a qualitative aspect. qc indicates the

performance of the trap, a higher value of qc characterizes a higher efficiency of the trap.

pF is the mosquito feeding preference on the trap which is treated as a fake host. Usually,

pF is between 0 and 1, since the summation of mosquito feeding preferences on all hosts

is 1. If pF = 0, which means compared to other hosts, fake host (a trap) has no attrac-

tiveness, female mosquitoes are surrounded by enough reals hosts and no one will come

to the trap. If pF = 1, which means all mosquitoes prefer and come to feed on the fake

host, one possible reason is that no real hosts are available, or the emissions (like lights or

carbon dioxide) given off by a trap is really strong and mosquitoes greatly like them, then

the trap can entice all mosquitoes to it. These two extreme cases are too rare to happen,

in general, a larger pF means less mosquito feeding preferences on the real hosts, thus we

can indirectly get mosquito feeding preferences on the real hosts based on the value of pF .

Combining these three parameters together, it provides a better view of hosts. For in-

stance, for two different locations, we obtain two sets of estimated values of parameters c̄,

qc and pF using our model, if the difference between the two sets are relatively small, then

the hosts structures (the abundances and distributions) in these two locations are similar,

or maybe some great diversities of hosts exist, but the influence of hosts on the mosquitoes
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is similar. Hence we could also use estimations of these parameters to make a comparison

of hosts in different locations.

Additionally, estimations of these parameters can help us to identify the changes of

host structures. For example, at one location, we use the first three-month trap count data

to fit the model to get parameter value set S1, and first four-month trap count data to get

set S2. Comparing set S1 and S2, a big difference of values indicates a host demographic

shifts. We can use our model to monitor the host demographic changes in this way.

For a more accurate prediction of the mosquito population, it is better to consider the

host demographic change. For each new prediction, all history trap count data is used

to fit parameters, then these updated fitted parameters, latest historic trap count data and

weather forecast serve as model input, to output prediction result.

The mosquito surveillance program in the Region of Peel is carried out each week and

the preventative actions are made based on the weekly trap count data. It is admitted that

daily trap count data is more accurate and reliable than a weekly one to be used for surveil-

lance program, hourly one is even better. However, daily or hourly trapping mechanism

is not implemented when considering economics, and weekly trapping is most adopted.

Then what about setting up traps biweekly? Is it still a feasible approach to obtain accept-

able trap data based on biweekly trapping and collecting mechanism? To answer these

questions, we modified the model for the Region of Peel and carry out numerical simu-
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(a) (b)

Figure 3.14: Prediction of trap counts, total preadult and adult female mosquitoes, based

on biweekly trapping mechanism and with linear trapped rate and corresponding weather

data (weather forecasts). The unit of time is day−1 and the starting time point 0 represent-

ing June 1, 2015. 3.14(a) shows comparison of biweekly trap counts and weekly collected

data, 3.14(b) shows prediction of mosquito abundance with biweekly trapping mechanism.

lations. Specifically, all parameters are unchanged, only traps being operated weekly is

modified into being operated biweekly, that is, the nonzero f(t) and g(t) appear biweekly.

Comparing biweekly predicated trap counts with weekly collected data (Fig. 3.14(a)), the

number of collected mosquitoes biweekly is relatively more than the weekly’s in the late

period of surveillance period, and it delays the appearance of trap count peak and ampli-

fies the peak values. Also, the peak values of mosquito population size (Fig. 3.14(b)) are

enlarged when operating the traps biweekly (compared with Fig. 3.8(a)). Hence, biweekly
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trap count data may exaggerate the mosquito population density, which may lead to unnec-

essary operations on mosquito control. In this situation, setting up traps biweekly cannot

be an economic approach compared with weekly one, since the costs due to overpredic-

tions of mosquito abundance can offset, or even be higher than the costs of operating trap

one more time every two weeks. Therefore, setting up traps weekly is a relatively good

approach for mosquito monitoring and surveillance program.
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4 The impact of weather and stormwater management

ponds on the transmission of West Nile virus

4.1 Introduction

West Nile virus (WNV) is the most widely distributed emerging arbovirus. In North

America, the first WNV case was detected in New York City in 1999; the virus spread

rapidly throughout the continent and appeared in Ontario in 2001 (Nash et al. (2001),

Toronto and Region Conservation Authority (2014)). Since 2001 human infections have

occurred yearly in Ontario, the number of cases varies based on the time at which WNV

becomes endemic and the peak value of infections (Fig. 4.1). The variations of the annual

human infection may be due to a number of complex factors including vector-virus-host in-

teractions, the increase in urbanization and agriculture, climatic factors, and anthropogenic

land use such as the stormwater management ponds (SWMP) (Kramer et al. (2008), Ep-

stein (2001)).
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Figure 4.1: Human infections in the Greater Toronto Area from June to October, 2002-

2011 (Data from Public Health Ontario)

SWMP, including wet ponds and dry ponds, are artificial ponds designed to collect,

retain and filter stormwater runoff (Toronto Water (2015)). In Ontario, municipalities first

began implementing wet ponds as part of their stormwater infrastructure in the late 1980s.

Currently, there are over 1000 SWMP and wetlands in the Greater Toronto Area (GTA)

(Toronto and Region Conservation Authority and CH2M Hill Canada Ltd. (2016)). Im-

properly designed, operated, and maintained SWMP can be conducive to creating standing

water. Particularly for wet ponds that maintain a permanent pool of water, shallow zones

of these ponds may be an attractive fertile breeding site for the female Culex mosquitoes.

Thus the SWMP, along with temperature, precipitation and wind patterns, can contribute
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to supporting the growth and development of mosquitoes that are competent WNV vectors.

The Toronto and Region Conservation Authority (TRCA) has been running a WNV

mosquito larval monitoring and surveillance program in natural wetlands and SWMP

on TRCA lands in the Greater Toronto Area since 2003. Their results showed that the

mosquitoes collected from these SWMP were principally WNV vector species, predom-

inantly Culex pipiens. SWMP can be used to predict adult mosquito emergence and the

potential for human infections (Toronto and Region Conservation Authority (2014)). Re-

search also indicates that larval abundance is related to temperature and precipitation as

well (Gardner et al. (2012)).

Lots of research also has been done on mathematical modeling for mosquito abundance

and the transmission of WNV (Lewis et al. (2006a), Abdelrazec et al. (2014), Fan et al.

(2010), Lewis et al. (2006b)). An ordinary differential equation model in Wonham et al.

(2004) showed that mosquito control can prevent a WNV outbreak. Gong et al. (2011)

developed climate-based models to simulate the population dynamics of immature and

adult Culex mosquitoes in the Northeastern US, and revealed a strong correlation between

the timing of early population increases and decreases in late summer. Additionally, the

influence of weather conditions on the mosquito population or infection were studied in

Wang et al. (2011) and Ruiz et al. (2010).

Previous mathematical modelling has failed to take into account the SWMP impact in a
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dynamical model. The purpose of this research was to develop a single-season dynamical

model between mosquito and bird populations to explore the influences of SWMP and

weather conditions on vector abundance and the transmission of WNV.

The better understanding of the mechanism of a WNV outbreak and having a more

reliable evaluation of transmission risk will greatly help to control the spread of the virus

and human infections. In our work, we will build a WNV transmission model among

mosquitoes and birds. We will split mosquitoes population into two stages, furthermore,

we consider the intraspecific competition of mosquitoes in the aquatic stage. We will yield

new insights into the transmission of WNV and the threshold conditions of a WNV out-

break. Moreover, we will propose a novel index to assess the risk of WNV transmission.

4.2 Mosquito-bird model without weather factors

In order to explore the influence of SWMP on the mosquito population and WNV

transmission, we consider the intraspecific competition and applied it in aquatic stages of

mosquitoes: the abundance of preadult is closely related to intraspecific competition, and

intraspecific competition is associated with standing water developed from the water in

SWMP. We combined the vector mosquitoes and the host birds and established a single-

season compartmental model.
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4.2.1 Model formulation

Due to WNV circulating between mosquitoes and birds and being established as a

seasonal epidemic in North America, we extended the mosquito-bird model in Wonham

et al. (2004) and developed a single-season ordinary differential equation model on WNV

transmission in the mosquito-bird population. For the mosquito population, we adopt the

two-stage Culex mosquito model (2.1) in Chapter 2 with constant birth rate rm, assume

preadult mosquitoes includes both female and male with the sex ratio 1 : 1 (Tejerina

et al. (2009), Tun-Lin et al. (2000), Yasuno and Tonn (1970)) and competitive interactions

are within and between both female and male (Agnew et al. (2000)). For intraspecific

competition, we assume it is only related to the size of standing water, and other factors

such as density of nutrients and oxygen are fixed. Adult female mosquitoes are classified

into susceptible, exposed and infectious compartments. For avian hosts, more than 300

species of birds are involved in the WNV transmission in North America (Reed et al.

(2003)). Here focusing on the effects of SWMP and for simplicity, we regard all birds

as one family and classified the family into susceptible, infectious, recovered and dead

compartments. In this single-season (from spring to autumn) model, it is reasonable that

the demographic dynamics of mosquitoes is considered but not for birds. We further make

assumptions that vertical transmission in mosquitoes and horizontal transmission in birds

are small and neglected (Wonham et al. (2004)). For an accurate estimation of WNV
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epidemic, we consider mammals which are dead-end hosts also providing blood meals

for mosquitoes (Abdelrazec et al. (2014)). Then our model (all parameters are defined in

Table 4.1) is

dLm
dt

= rm(Sm + Em + Im)− δLm − dlLm − κL2
m,

dMm

dt
= 1

2
δLm − d̃mMm,

dSm
dt

= 1
2
δLm − bmβmSm Ib

Nb+A
− dmSm,

dEm
dt

= bmβmSm
Ib

Nb+A
− kEm − dmEm,

dIm
dt

= kEm − dmIm,

dSb
dt

= −bmβbIm Sb
Nb+A

,

dIb
dt

= bmβbIm
Sb

Nb+A
− µIb − γIb,

dRb
dt

= γIb,

dXb
dt

= µIb,

(4.1)

Lm(t) = the population of preadult WNV vector mosquitoes at time t,

Mm(t) = the population of male adults developed from the preadult stages at time t,

Sm(t), Em(t) & Im(t) = the population of susceptible, exposed and infectious fe-

male mosquitoes respectively at time t,
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Sb(t), Ib(t),Rb(t) &Xb(t) = the population of susceptible, infectious, recovered and

dead birds respectively at time t,

A = the total mammals that mosquitoes feed on for blood meals,

Nb = Sb + Ib +Rb.

Table 4.1: Parameters in the WNV transmission model (4.1)

Par. Interpretation Baseline & Range (day−1)

rm Mosquitoes per capita birth rate (or

oviposition rate)

0.6 (0.036, 42.5) (Wonham et al. (2004))

δ Mosquitoes per capita maturation

rate from preadult stages to adult

0.06 (0.051, 0.093) (Wonham et al. (2004))

dl Preadult mosquitoes per capita

mortality rate

0.4 (0.213, 16.9) (Wonham et al. (2004))

κ Intraspecific competition rate of

preadult mosquitoes

0.005 (0, 1)

bm Female adult mosquitoes per capita

biting rate

0.5 (0.2, 0.75) (Abdelrazec et al. (2014))

βm WNV transmission probability

from birds to mosquitoes

0.12 (0.02, 0.24) (Wonham et al. (2004))
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dm Female adult mosquitoes per capita

mortality rate

0.05 (0.016, 0.07) (Wonham et al. (2004))

d̃m Male adult mosquitoes per capita

mortality rate

0.05 (0.016, 0.07) (Wonham et al. (2004))

k Female adult mosquitoes per capita

transition rate from exposed to in-

fected

0.09 (0.087, 0.125) (Wonham et al. (2004))

βb WNV transmission probability

from mosquitoes to birds

0.84 (0.8, 1.0) (Wonham et al. (2004))

µ Birds per capita mortality rate due

to WNV

0.127 (0.125, 0.2) (Wonham et al. (2004))

γ Birds per capita recovery rate from

WNV

0.001 (0, 0.2) (Abdelrazec et al. (2014))

4.2.2 Basic properties of the transmission model

The model (4.1) has up to two disease-free equilibrium (DFE) points. The number

of DFE points is determined by the sign of rmδ
2dm
− (dl + δ) which means the effect of

intraspecific competition on the rate of change of preadult mosquito population.

If rmδ
2dm
− (dl + δ) < 0, the model has a unique equilibrium point E0 = (0, 0, 0, 0, 0, Sb0 ,
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0, 0, 0), where Sb0 is any given initial density of birds. The E0 has eigenvalues 0 (multi-

plicity 3), −dm, −d̃m, −(dm + k), −(µ+ γ) and the roots of the equation:

2λ2 + 2(dl + dm + δ)λ+ 2dldm + 2dmδ − rmδ = 0. (4.2)

All parameters are positive in a biological sense, all the roots of (4.2) have negative real

parts, and DFE E0 is locally stable.

If rmδ
2dm
− (dl + δ) > 0, that is besides the death and the maturation working on reducing

the rate of change of Lm, intraspecific competition is also involved in playing a part, then

the model (4.1) has two DFE E1 = (Lm0 ,Mm0 , Sm0 , 0, 0, Sb0 , 0, 0, 0) as well as E0, where

Lm0 =
rmδ
2dm
−(dl+δ)

κ
, Mm0 =

δ[ rmδ
2dm
−(dl+δ)]

2d̃mκ
, Sm0 =

δ[ rmδ
2dm
−(dl+δ)]

2dmκ
and Sb0 is any given initial

density of birds. E0 has a positive real part eigenvalue due to (4.2), thus E0 is unstable.

The local stability of E1 is determined by the basic reproduction number R0 which can be

obtained from the next generation matrix for the system (4.1).

Using the notation of van den Driessche and Watmough (2002), with the infected vari-

ables (Em, Im, Ib) in the model (4.1), F denotes the rate of new infections and V denotes

the rate of transfer out of each compartment,

F =


bmβmSm

Ib
Nb+A

0

bmβbIm
Sb

Nb+A

 ,V =


kEm + dmEm

−kEm + dmIm

µIb + γIb

 ,
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The corresponding linearized matrices at the DFE E1 are

F =


0 0 bmβm

Sm0

Nb0+A

0 0 0

0 bmβb
Sb0

Nb0+A
0

 , V =


k + dm 0 0

−k dm 0

0 0 µ+ γ

 .

Then the basic reproduction number R0 is defined as the spectral radius of the matrix

FV −1,

R0 =

√
bmβm

Sm0
Nb0

+A
k

k+dm

(µ+γ)

bmβb
Sb0

Nb0
+A

dm
. (4.3)

In biological view, R0 gives the expected number of new infections produced by a single

infective mosquito or bird when introduced into a susceptible population. The first term

under the square root of R0 performs as the spread of WNV from birds to mosquitoes;

the transmission probability from birds to mosquitoes (bmβm) multiplied by the number

of initially susceptible female mosquitoes per host ( Sm0

Nb0+A
) surviving the exposed period

( k
k+dm

), multiplied by the birds infectious lifespan ( 1
µ+γ

). The second term represents

transmission of WNV from birds to mosquitoes, that is the transmission probability (bmβb)

multiplied by the number of initially susceptible birds per host ( Sb0
Nb0+A

) times the adult

female mosquito infectious lifespan ( 1
dm

). The square root in R0 provides the geometric

mean for an average individual of both species combined (Wonham et al. (2004)).

When R0 < 1, E1 is locally stable, when R0 > 1, E1 is unstable (van den Driessche

and Watmough (2002)). We also find that κ, reflecting the role of SWMP, only affects the
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stability of E1. Other aspects related to SWMP, such as the surroundings and the size of a

pond, still only influence κ and the stability of E1 accordingly. Furthermore, the threshold

level of the intraspecific competition related to SWMP derived from the threshold R0 = 1

is

κ =
b2
mSb0βmkβbδ[rmδ − 2dm(dl + δ)]

4(Nb0 + A)2d3
m(µ+ γ)(k + dm)

.
= κ∗. (4.4)

If the intraspecific competition is not strong (κ < κ∗), for instance, a pond is located

among plants where fertilizers are applied, this pond receiving many nutrients can favor

submersed aquatic vegetation and algae blooms, which create more ideal habitats for lar-

vae and hence weaken the intraspecific competition, then E1 is unstable and the disease

introduction will lead to an outbreak. Otherwise, strong competition (κ > κ∗) results in

controlling mosquito abundance and even preventing a WNV outbreak.

4.3 Mosquito-bird model incorporating temperature and precipita-

tion

Environmental factors, especially temperature and precipitation, largely impact the

transmission of mosquito-borne pathogens by affecting the infection rate of the virus as

well as mosquito and host abundance in time and space (Mullen and Durden (2009)). To

incorporate weather factors, we first identify critical input parameters of this model by
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performing the sensitivity analysis. Then we extend the transmission model (4.1) into

a weather-driven model, where SWMP in conjunction with precipitation determines the

water habitat for larvae and the weather data from June to October gathered from Toronto

Pearson International Airport Station (Government of Canada (2006)).

4.3.0.1 Sensitivity analysis

We first identify which input parameters significantly contribute to model outcomes.

The identification is implemented by studying the sensitivity analysis of each parameter in

system (4.1) on the two critical output variables, the population of adult mosquitoes Nm

(Nm = Mm+Sm+Em+Im) and the basic reproduction numberR0 (4.3). Specifically, we

evaluate partial rank correlation coefficients (PRCCs) between each input parameter and

the output variable, using Latin hypercube sampling (LHS) with 3000 samples (Marino

et al. (2008)). Due to the absence of available data and a priori information on the dis-

tributions of input parameters, we choose uniform distributions for each parameter with

corresponding range in Table 4.1.

Sensitivity analysis (Fig. 4.2) indicates that Culex mosquito biting rate, oviposition

rate, maturation rate, mortality rates and intraspecific competition rate significantly influ-

ence both mosquito abundance Nm and an indicator of local WNV activity level R0, and

we incorporate temperature and precipitation into these six critical input parameters to
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Figure 4.2: Performance of LHS/PRCC on the model (4.1). Parameters with a PRCC

significantly (p < 0.05) different from zero are indicated with (∗).

reflect the effect of weather factors.

4.3.0.2 Temperature-dependent parameters

Temperature can affect infection, dissemination, and transmission rates for lots of ar-

boviruses, including WNV (Dohm et al. (2002)). Temporal changes in the efficacy of

transmission essentially depict the seasonality of WNV activity, and this process is de-

scribed in Reisen et al. (2006b) by presenting the temperature dependence of the duration

of the development cycle of mosquitoes comprising blood meal as well as development

and deposition of eggs, known as the gonotrophic cycle. Yasuno and Tonn (1970) reveals
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that temperature variations are influential in biting activity. Reisen et al. (2006b) indicates

that biting rate is the reciprocal of the gonotrophic cycle depending on the temperature.

Based on this work, Rubel et al. (2008) delineates the biting rate (Fig. 4.3(a)) as

bm(T ) =
0.344

1 + 1.231 exp(−0.184(T − 20))
, (4.1)

where T is the temperature in degrees Celsius.

Beyond the biting rate relying on the temperature, the seasonality of the mosquito-

population cycle is a consequence of the temperature dependent birth and mortality rates.

The birth rate of Culex larvae, also called oviposition rate of female mosquitoes, also

named as the egg-deposition rate of Culex mosquitoes, is developed by the scaled recip-

rocal of the gonotrophic cycle as logistic (S-shaped) function (Rubel et al. (2008)) (Fig.

4.3(b))

rm(T ) = cbm(T ), (4.2)

where bm(T ) is the biting rate defined in (4.1). A feasible way to determine the scaling

factor c is that the average birth rate r̄m(T ) is a fixed value, for instance c = 2.325 if

r̄m(T ) = 0.537 day−1 (Rubel et al. (2008)).

Temperature variations also affect the duration of the immature stages significantly,

which influences the maturation rate (development rate) from the preadult to the adult

(De Meillon et al. (1967)). Accounting for the thermal requirements of the mosquito
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(a) bm(T ) (b) rm(T )

Figure 4.3: The biting rate and the birth rate of mosquitoes

development, the maturation rate of Culex mosquitoes (Fig 4.4(a)) is proposed by the

Sharpe & DeMichele equation

δ(T ) = A
T + 273.15

298.15

exp[ HA
1.987

( 1
298.15

− 1
T+273.15

)]

1 + exp[ HH
1.987

( 1
TH
− 1

T+273.15
)]
, (4.3)

where four parameters (A, HA, HH, TH) are constants which reflect the individual ther-

modynamic characteristics of the organism’s control enzyme system and T is the temper-

ature in units of Celsius (Sharpe and DeMichele (1977), Rueda et al. (1990)). Specifically

for Culex pipiens and Culex restuans in Gong et al. (2011), four parameters are estimated

as (A, HA, HH, TH) = (0.25, 28094, 35362, 298.6).

Logistic function is also fitted to temperature-dependent maturation rate from the aquatic

stages to adults, where the maturation rate is treated as the birth rate for adults, and the
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function or the population parameters are of similar shape to larvae’s, while the difference

is that one order of magnitude lower than those for larval mosquitoes (Rubel et al. (2008)).

Then maturation rate in logistic function form (Fig. 4.4(b)) is

δ(T ) =
rm(T )

10
. (4.4)

(a) δ(t) (4.3) (Gong et al. (2011)) (b) δ(t) (4.4) (Rubel et al. (2008))

Figure 4.4: The maturation rate of mosquitoes from preadult stages to adult stage in dif-

ferent forms

With above two forms of the maturation rate, we adopt the Sharpe & DeMichele equa-

tion (4.3) to our model. (4.3) in Gong et al. (2011) describes the maturation rate of Culex

pipiens and Culex restuans associated with the temperature in New York site Freeville.

(4.4) was obtained by fitting temperature data and Culex tarsalis data from the Coachella
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and San Joaquin Valleys of California (Rubel et al. (2008), Reisen (1995)). The Coachella

and San Joaquin Valleys of California is located near the Pacific coast of the southwest-

ern US whose geographical factors and climatic conditions are different to GTA’s to some

degree. In contrast with valleys in California, Freeville is much closer to GTA and its

weather conditions more resemble GTA’s.

Temperature is as well an important determinant for the mortality rates of mosquitoes

and a U-shaped function is feasible description to reflect this relation. A quadratic func-

tion was selected to describe the mortality rates of immature and adult Culex mosquitoes

in Rubel et al. (2008). A quadratic function was used to delineate both larva and adult

mortality rates with one order of magnitude difference (Fig. 4.5(c))

dl(T ) = 0.0025T 2 − 0.094T + 1.0257, (4.5)

dm(T ) =
dl(T )

10
. (4.6)

In Shaman et al. (2006), the mortality rate (Fig. 4.5(b)) for larvae as well as adults

varies as an empirically derived function of temperature in the form of

d(T ) = (−4.4 + 1.31T − 0.03T 2)−1, (4.7)

where T is the temperature in degrees Celsius.

In addition to direct depiction of the temperature impact on mosquito mortality rates,

temperature can affect the mortality rates through the survival rates by the relationship sur-
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vival rate = 1− death rate (Gong et al. (2011)). The Gaussian function is a proper choice to

approximate the shape of the survival rate with respect to temperature (Otero et al. (2006))

and was backed qualitatively by field and laboratory trials (Gong et al. (2011)). In the light

of this, mortality rates of the mosquitos (Fig. 4.5(a)) relative to the temperature read as

dl(T ) = 1− Sl exp[−(
T − Tl
V arT l

)2], (4.8)

dm(T ) = 1− Sm exp[−(
T − Tm
V arTm

)2], (4.9)

where Sl and Sm are survival rates at Tl and Tm (i.e., optimal temperature for survival of

preadult and adult mosquitoes) respectively. V arT l and V arTm are variances of daily wa-

ter temperature and air temperature respectively, and T , Tl and Tm are in degrees Celsius.

(a) (4.5) (Rubel et al. (2008)) (b) (4.7) (Shaman et al. (2006)) (c) (4.8) (Gong et al. (2011))

Figure 4.5: The mortality rate of mosquitoes in different form

Similarly, the selection of mortality rates is also based on data of geographic position
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and weather conditions used for developing mortality rates in literature, we choose (4.8)

accounting for the following reasons: (4.7) is employed to depict the population dynamics

of Anopheles walkeri (Shaman et al. (2006)), which is different from the WNV vectors

– Culex mosquitoes; (4.5) and (4.8) all applied to Culex species, (4.8) is our choice due

to the same reason in selection of maturation rate, i.e., data used to establish (4.8) was

collected in New York site Freeville with more similar geographic and weather conditions

to GTA’s.

4.3.1 Precipitation-dependent parameter

Precipitation influences the mosquito life cycle in two principal aspects: 1) the in-

creased near-surface humidity related to precipitation promotes mosquito flight activity

and host-seeking behavior, and 2) precipitation can change the abundance and type of

aquatic habitats where mosquitoes oviposit and the subsequent development of the im-

mature stages (Shaman and Day (2007)). In our study we primarily take into account

the second influence associated with the SWMP, in particular, precipitation in conjunction

with SWMP has a profound effect on the intraspecific competition rate κ (Lončarić and

Hackenberger (2013)).

Some work has been done concerning the influence of precipitation on the abundance

of floodwater mosquitoes such as Aedes vexans and Aedes cinereus. For instance, the pop-
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ulation of Aedes vexans largely depends upon the availability of precipitation and flood-

water pools (Miller et al. (2002)). An increase in the surface of the flooded area enlarges

breeding sites and enhances egg hatching and subsequent larval survival. With Aedes vex-

ans biological characteristics, the carrying capacity for larvae is improving as precipitation

increases. Specifically for carrying capacity K(WL) = K0Kf (WL), Kf (WL) is carry-

ing capacity coefficient and monotone increasing with respect to the water level and K0 is

the carrying capacity when there is no flood (Lončarić and Hackenberger (2013)).

While for the nonfloodwater species Culex mosquitoes, the females oviposit only upon

standing water, and the eggs are not drying resistant (Lončarić and Hackenberger (2013)).

Some studies of WNV systems have found positive associations between precipitation

and mosquito abundance, that is higher-than-average levels of precipitation can result in

mosquito outbreaks and potential disease outbreaks (Takeda et al. (2003), Landesman et al.

(2007)). However other existing work indicates that an excess of precipitation may actu-

ally impose a restriction on vector production (Shaman (2002), Ruiz et al. (2010)). Apart

from these, the quantitative results of Gardner et al. (2012) are consistent with the hy-

pothesis that moderate precipitation is indispensable to provide habitats for Culex larvae

depositing eggs and development, nevertheless, an excess of precipitation plays an oppo-

site role on accelerating immature abundance. These distinguished conclusions may be

due to various reasons, such as temporal variations, regional disparity and human factors.
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Based upon larvae data from TRCA, weather data in the GTA (Government of Canada

(2006)), one can find: more precipitation leading to a larger habitat for larvae does not hold

all the time, since too much rain will dilute or even refresh the standing water which in

turn reduces larval habitats; certainly, the moderate amount of precipitation will increase

the abundance of habitats. In this case, the approximate description of the carrying ca-

pacity function relative to precipitation resembled the Gaussian function and we adopt the

relation

K(P ) = K∗Kf (P ),

with differences that we replace the water level by daily total precipitation P , K∗ is the

carrying capacity with the optimal precipitation and carrying capacity coefficient Kf (P )

is taken a form similar to the temperature-dependent survival rate:

Kf (P ) =
1

1 + ρ
(1 + ρ exp[−(

P − Pl
V arPl

)2]).

Combined the intraspecific competition rate in logistic growth equation (i.e., inverse

relation between carrying capacity and intraspecific competition), we propose a precipitation-

dependent instraspecific competition rate (Fig. 4.6)

κ(P ) =
(1 + ρ)κ∗

1 + ρ exp[−( P−Pl
V arPl

)2]
(4.10)

where κ∗ = 1
K∗ and κ∗ is the smallest intraspecific competition rate when there is optimal

amount of rain Pl for larvae development, V arPl is variance of P (t). ρ > 0 is the scaling
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factor to reflect the influence degree of precipitation on κ and consequently the amplitude

of variation of the κ, moreover, (1 + ρ)κ∗ represents the maximum value of κ with con-

straint 0 < (1 + ρ)κ∗ < 1 . Both ρ and κ∗ are largely dependent on the properties of

SWMP itself, like the size and depth of the pond as well as the amount of precipitation.

Figure 4.6: The intraspecific competition rate among preadult mosquitoes

4.3.2 Formulation of the model

To formulate the transmission model with weather factors, we assume that the mean

daily temperature of breeding sites is equal to the mean daily temperature of the air because

of a lack of water temperature data. Replacing parameters bm, rm, δ, dl, dm and κ in
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(4.1) by bm(T )(4.1), rm(T ) (4.2), δ(T ) (4.3), dl(T ) (4.8), dm(T ) (4.9) and κ(P ) (4.10)

respectively, and d̃m(T ) = 1 − Sm̃ exp[−( T−Tm̃
V arTm̃

)2], then we have the following weather

driven model and all parameters are defined in Table. 4.2.

dLm
dt

= rm(T )(Sm + Em + Im)− δ(T )Lm − dl(T )Lm − κ(P )L2
m,

dMm

dt
= 1

2
δ(T )Lm − d̃m(T )Mm,

dSm
dt

= 1
2
δ(T )Lm − bm(T )βmSm

Ib
Nb
− dm(T )Sm,

dEm
dt

= bm(T )βmSm
Ib
Nb
− kEm − dm(T )Em,

dIm
dt

= kEm − dm(T )Im,

dSb
dt

= −bm(T )βbIm
Sb
Nb
,

dIb
dt

= bm(T )βbIm
Sb
Nb
− µIb − γIb,

dRb
dt

= γIb,

dXb
dt

= µIb.

(4.11)

For the model with the daily changing temperature and precipitation, we replace the

fixed temperature T and precipitation P in (4.11) by T (t) and P (t), and simulate the

transmission dynamics based on weather data (Fig. 4.7). Here the maturation rate is

treated specially since it relies on the average temperature of several days, while other

weather-dependent parameters only depend on the temperature or precipitation of a single

day. More specifically, the maturation rate on nth day is influenced by the arithmetic
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Figure 4.7: Weather variations from June to October in 2006 in the GTA

means of daily mean temperature of 11 days before the nth day (Wang et al. (2011)), i.e.,

1
11

n−11∑
i=n−1

Ti, other parameters are only related to Tn or Pn, where Ti and Pi are the daily

mean temperature and daily total precipitation on ith day respectively. To determine the

influence of precipitation, we select three distinguished patterns of precipitation: normal

precipitation, heavy precipitation (30mm more daily) and heavier precipitation (60mm

more daily). The three different patterns are applied to a single month – July or September,

as the mosquito population, infectious mosquitoes and birds are increasing in July and

decreasing in September.
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Table 4.2: Temperature-dependent and precipitation-

dependent parameters in the model (4.11)

Par. Interpretation Range

c the scaling factor associated with biting

rate

2.325 (Rubel et al. (2008))

AA parameters related to the individual 0.25 (Gong et al. (2011))

HA thermodynamic characteristics 28094 (Gong et al. (2011))

HH of the organisms control 35362 (Gong et al. (2011))

TH enzyme system 298.6 (Gong et al. (2011))

Tl optimal temperature for survival of pread-

ult mosquitoesa

17 (Gong et al. (2011))

Tm optimal temperature for survival of fe-

male adult mosquitoesa

23 (Gong et al. (2011))

Tm̃ optimal temperature for survival of male

adult mosquitoesa

23 (Gong et al. (2011))

Sl survival rates of preadult mosquitoes with

Tl

0.6− 0.95 (Gong et al. (2011))
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Sm survival rates of female adult mosquitoes

with Tm

0.6− 0.95 (Gong et al. (2011))

Sm̃ survival rates male adult mosquitoes with

Tm̃

0.6− 0.95 (Gong et al. (2011))

V arT l variance of T (t)b

V arTm variance of T (t)b

V arTm̃ variance of T (t)b

Pl optimal amount of precipitation 5 (Government of Canada (2006))

κ̄ intraspecific competition rate when P =

Pl

0− 1c

ρ > 0 the scaling factor to reflect the amplitude

of the κd

V arPl variance of P (t)d,e

a All temperature parameters are in degrees Celsius (Gong et al. (2011), Rubel et al. (2008),

Rueda et al. (1990), Sharpe and DeMichele (1977)).

b,eCalculated with temperature and precipitation data in the GTA.

c Derived from reciprocal of carrying capacity ranging from 1 to any positive integer.

d (1 + ρ)κ̄ represents the maximum value of κ with the constraint 0 < (1 + ρ)κ̄ < 1.
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For fixed temperature and precipitation, one can still obtain the basic reproduction

number

R̂0 =

√√√√√bm(T )βm

δ(T )[
rm(T )δ(T )
2dm(T )

−(dl(T )+δ(T ))]

2dm(T )κ(P )

Nb0

k
k+dm(T )

(µ+ γ)

bm(T )βb
dm(T )

, (4.12)

and the threshold R̂0 = 1 plays a significant role on the outbreak of the WNV.

To look deep into the influence of precipitation on R̂0, we have

∂R̂0

∂P
=
∂R̂0

∂κ

∂κ

∂P
=
∂R̂0

∂κ

2κ2ρ(P − Pl) exp[−( P−Pl
V arPl

)2]

V ar2
pl(1 + ρ)κ∗

, (4.13)

it is apparent that ∂R̂0

∂κ
< 0 and accordingly ∂R̂0

∂P
> 0 when P < Pl, ∂R̂0

∂P
< 0 when P > Pl,

moreover lim
P→∞

∂R̂0

∂P
= 0. That is, R̂0 increases as precipitation P increases starting from 0,

and once crossing the optimal value Pl, R̂0 begins to decrease and gradually approaches a

constant. In consequence, when other factors (except P ) are fixed, the closer the amount

of rain gets to Pl, the higher the probability of occurrence of WNV outbreak.

Both κ∗ and ρ are indicators to reflect the properties of SWMP and we investigate how

each of them acts on R̂0. Similarly,

∂R̂0

∂κ∗
=
∂R̂0

∂κ

1 + ρ

1 + ρ exp[−( P−Pl
V arPl

)2]
< 0,

∂R̂0

∂ρ
=
∂R̂0

∂κ

κ∗(1− exp[−( P−Pl
V arPl

)2])

(1 + ρ exp[−( P−Pl
V arPl

)2])2
≤ 0,

and lim
ρ→∞

∂R̂0

∂ρ
= 0. The increase of κ∗ or ρ leads to R̂0 decreasing, where R̂0 approaches

a constant when ρ is sufficient large and a special case is that R̂0 is a always constant
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if P = Pl no matter how ρ changes. Thenceforth, it may prevent the WNV outbreak

occurring if κ∗ or ρ (when P 6= Pl) is large enough.

As weather conditions changing with time, we replace the fixed temperature T and

precipitation P by T (t) and P (t). In this case, the ordinary differential equations char-

acterize the transmission dynamics of the WNV and population dynamics of vectors and

hosts with time-dependent weather factors, numerical simulations exhibit these dynamics

when actual weather is taken into consideration. Apparently, at a specific time point, the

model with changing weather conditions is exactly the model (4.11).

4.4 Numerical simulations

Numerical simulations display the influence of each parameter of the system (4.1) on

the outcome variables Nm and R0, the impact of precipitation and SWMP on the transmis-

sion of WNV and the vector population, where both fixed weather conditions and time-

dependent weather conditions are included.

Sensitivity analysis (Fig. 4.2) shows mosquito oviposition rate rm, maturation rate δ,

mortality rates dl and dm, intraspecific competition rate κ and biting rate bm have signifi-

cant impacts (with p-value< 0.05) on both mosquito populationNm and indicator of local

WNV severity R0. For other parameters, R0 is also sensitive to WNV transmission proba-

bility βm and βb, bird transition rate from the exposed to the infected k and WNV induced
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mortality rate µ, while these parameters have only slight impacts on Nm. Decreasing rm,

δ and bm or increasing dl, κ and dm can lead to the simultaneous decrease in Nm and R0,

which is beneficial to control mosquitoes and WNV transmission.

Incorporating weather factors in these critical parameters, when weather conditions do

not change with time (Fig. 4.8), too high or too low temperature or a heaver precipita-

tion will decrease the basic reproduction number R̂0, leading to a lower risk of WNV. For

SWMP, a larger intraspecific competition rate κ̄ and a larger scaling factor ρ can make

the R̂0 less than one, controlling the vector abundance and the WNV transmission. In

Fig. 4.8(b) and 4.8(c), R̂0 > 1 is for a small part of parameter space, and R̂0 increases

rapidly in these fringe conditions. That is when the intraspecific competition among pread-

ult mosquitoes is weak, for instance with less restriction of habitats, (i.e., with sufficient

standing water in the pond), more mosquitoes will be developed and involved in WNV

transmission, leading to a high potential of WNV outbreak. Particularly, when the in-

traspecific competition barely exists, reproduction of mosquitoes will increase dramati-

cally.

Taking the daily temperature and precipitation into consideration, the intraspecific

competition will control the development of the vector and consequently hinder the trans-

mission of WNV to some extent. In Fig. 4.9(b), a strong intraspecific competition will

shrink the peak of infectious mosquitoes from around 23 to 3. A larger ρ has a slight influ-
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(a) Weather conditions (b) SWMP properties

(c) Precipitation with κ̄ of SWMP (d) Precipitation with ρ of SWMP

Figure 4.8: Variation of basic reproduction number R̂0 along with combinations of weather

conditions or SWMP properties
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(a) The impact of κ̄ on total adult mosquitoes
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(b) The impact of κ̄ on infectious female

mosquitoes and birds

Figure 4.9: The impact of κ̄ on the mosquito abundance and transmission of WNV

ence to decrease the vector abundance and the spread of WNV, and this influence exhibits

only at the peaks of total mosquitoes, infectious birds and mosquitoes (Fig. 4.10). Fig.

4.11 indicates that an excess of precipitation can actually impose restrictions on vector

production and WNV spread in the population.

4.5 Discussion

This research has demonstrated that temperature, precipitation, and intraspecific com-

petition among preadult mosquitoes in SWMP are key factors in predicting the WNV

vector abundance and the occurrence of WNV in the bird population. Then for these fac-

tors, proactive measures can be taken to control mosquitoes and the spread of WNV. The
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(a) The impact of ρ on total adult mosquitoes
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Figure 4.10: The impact of ρ on the mosquito abundance and the transmission of WNV

measures for increasing the intraspecific competition of larvae in SWMP include clearing

stagnant water in shallow regions of SWMP, preventing excess nutrients and pollutants

from entering the pond, using mechanical aerators to generate water movement, introduc-

ing top feeding fish or other predators (Ladd B (2003)). Also, based on weather forecasts

and our weather-driven model, the prediction of vector abundance and WNV activity will

be useful for public health to make decision in the prevention and control of WNV, such as

the use of larvicides and pesticides and encouraging individuals to take personal protection

measures including wearing long sleeves and using an insect repellent containing DEET.

Certainly, regular monitoring of the vector population in SWMP from May to September

is critical to guide the choice of these prevention and control measures.

121



0 20 40 60 80 100 120 140 160

t

0

50

100

150

200

250

T
o

ta
l 
a

d
u

lt
 m

o
s
q

u
it
o

 p
o

p
u

la
ti
o

n

Normal precipitation
Heavy precipitation (30mm more)
Heavier precipitation (60mm more)

(a) Total adult mosquito population

0 20 40 60 80 100 120 140 160

t

0

50

100

150

200

250

T
o

ta
l 
a

d
u

lt
 m

o
s
q

u
it
o

 p
o

p
u

la
ti
o

n

Normal precipitation
Heavy precipitation (30mm more)
Heavier precipitation (60mm more)

(b) Total adult mosquito population

0 20 40 60 80 100 120 140 160
0

1

2

3

4

5

6

t

In
fe

c
ti
o
u
s
 f
e
m

a
le

 m
o
s
q
u
it
o
 p

o
p
u
la

ti
o
n

 

 

Normal precipitation

Heavy precipitation (30mm more)

Heavier precipitation (60mm more)

(c) Infectious female mosquito population
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Figure 4.11: The impact of precipitation on the mosquito abundance and the transmission of

WNV with κ̄ = 0.0007 & ρ = 9. (a), (c) and (e) are based on different patterns of precipitation in

July, (b), (d) and (f) are based on different patterns of precipitation in September.
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(e) Infectious bird population
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Figure 4.11: (Cont.) The impact of precipitation on the mosquito abundance and the transmission

of WNV with κ̄ = 0.0007 & ρ = 9. (a), (c) and (e) are based on different patterns of precipitation

in July, (b), (d) and (f) are based on different patterns of precipitation in September.

In model (4.1), when the intraspecific competition is weak, with the rate less than

κ∗, virus introduction can lead to an outbreak of WNV and actions to control the spread

of the disease would be needed. When a rate greater than κ∗ occurs, the abundance of

larvae and infected mosquitoes decrease due to fierce intraspecific competition, and there

are not adequate mosquitoes available to act as a vector of WNV to spread the disease.

In model (4.11), the intraspecific competition varies with respect to the time-dependent

precipitation. In such situation, the intraspecific competition can be stronger or weaker

at different times, and one cannot simply conclude that vector populations and the WNV

transmission will be persistently controlled or not since the effects of the intraspecific
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competition will change over time as well.

Temperature and precipitation combined are complex. Fig. 4.8(a) depicts how weather

conditions influence the occurrence of a WNV outbreak when considering a specific SWMP

(κ̄ and ρ are constants). With suitable temperature (20− 30◦C) an outbreak of WNV will

occur, regardless of precipitation. While if the temperature is lower or higher than the

suitable range, moderate precipitation (0 − 30mm) will enhance the potential occurrence

of a WNV outbreak. Under the same weather conditions, habitats for SWMP can differ for

egg deposition and larval development, leading to the different basic reproduction number

(Fig. 4.8(b)). The intraspecific competition rate κ̄ plays a principal role on R̂0. A larger

κ̄, such as a deeper pond having more adequate surface water movement, will suppress

the reproduction of the mosquitoes and accordingly prevent a WNV outbreak. The effects

of precipitation on SWMP and the spread of WNV is of great importance. Under mod-

erate temperature, the interaction effects of precipitation and SWMP is depicted in Fig.

4.8(c) and Fig. 4.8(d). Moderate precipitation (0 − 30mm) will provide more standing

water to promote the transmission of WNV; otherwise, too much precipitation, for a pond

which is sensitive to precipitation, will dilute or eliminate standing water and result in the

prevention of a disease outbreak.

Moderate precipitation promotes the spread of the virus and increases vector abun-

dance (Fig. 4.11), nevertheless, excess precipitation plays a role in controlling the trans-
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mission of WNV and vector abundance. The impact of precipitation is more remark-

able in July, with heavier precipitation (60mm or more daily), the number of total female

mosquitoes will decrease rather than rise. A possible explanation is that the temperature

in July is more suitable for mosquito development and the spread of disease. In Septem-

ber the weather cools and does not support mosquito survival. When the temperature is

suitable for the development of mosquitoes, heavy precipitation suppresses the mosquito

population, while moderate precipitation and suitable temperature indicates a need to mon-

itor the mosquito abundance and reduce mosquito populations through larviciding. If the

temperature is low, precipitation may have little impact on mosquito development.

Frequently monitoring and surveillance activities are needed when the temperature is

warm, higher than 20◦C. Under such temperature modes, if accompanied by moderate

precipitation, it is more likely to trigger the reproduction of WNV vectors and the spread

of the virus in the following few days. In this situation, some control actions such as

larviciding may be taken to control mosquito abundance in a timely manner. While, if

precipitation is quite heavy, there may not be a need to take action to reduce larvae since

heavy precipitation will dilute standing water and reduce habitats for larvae. It is worth

noting that following such weather patterns, monitoring WNV larvae in SWMP is still

needed due to moderate temperatures, but concentrated efforts on larviciding are likely

unnecessary. Additionally, applications of aeration and larvicide in the middle of the sea-
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son may be more effective than applications in the spring or fall, as the weather at this time

is suitable for the development of WNV vectors.

Usually, a region has multiple SWMP and the characteristics of these ponds also play a

role in the transmission of WNV. Each SWMP has an intraspecific competition rate and the

harmonic mean (HM) of all these competition rates serves as a representative of all SWMP

in the whole region. With the same effect of intraspecific competition rate, a larger HM

contributes to decreasing larval populations and infectious mosquitoes and birds. More-

over, to increase the HM, the most effective way is to take actions on the pond in which

the intraspecific competition rate is smallest. For instance, a region with several SWMP,

the size of stagnant surface water, the concentration of organics, the population of preda-

tors and the existence of vegetation will differ in each pond. An economical and effective

strategy to control larvae is targeting the SWMP with the weakest intraspecific competi-

tion, i.e. the pond holding more standing water with plenty of organics, free of predators

and within areas of some vegetation. Applying proactive measures, such as adding top

feeding fish and clearing the water body will alleviate the overall severity of WNV and

mosquito population. Fig. 4.12 shows that for a region possessing three SWMP with dif-

ferent intraspecific competition rates, only increasing the smallest one κ̄1 of SWMP 1 from

0.00004 to 0.0002 could reduce the number of total mosquitoes and infectious vectors and

hosts for the overall region.
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Figure 4.12: Mosquito abundance and the transmission of WNV in a region with three

SWMP. Case 1: SWMP 1: κ̄1 = 0.00004, SWMP 2: κ̄2 = 0.0005 & SWMP 3: κ̄3 =

0.002; Case 2: SWMP 1: κ̄1 = 0.0002, SWMP 2: κ̄2 = 0.0005 & SWMP 3: κ̄3 = 0.002.

This work provides insight into how to predict and control mosquito abundance and the

transmission of WNV based on temperature, precipitation and SWMP in a region. Mea-

sures to promote intraspecific competition among preadult mosquitoes, such as refreshing

the shallow regions of water in a pond and using aeration to make wave action or water

movement, can be taken to reduce the mosquito population and spread of WNV.
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5 Bifurcation and threshold dynamics of compartmental

models for WNV

5.1 Introduction

West Nile Virus (WNV), the most widely distributed emerging arbovirus, circulates

between mosquitoes and birds. WNV was first isolated in a woman in the West Nile dis-

trict of Uganda in 1937 and it is now widespread in Africa, Asia, Australia, the Middle

East, Europe and North America (World Health Organization (2016), Rappole (2000),

Campbell et al. (2002)). In North America, WNV was first detected in New York city in

1999, then it spread and appeared in southern Ontario in 2001. Since then, infections in

hosts (particularly birds and humans) occurred yearly in Ontario and phenomena presented

were differently. For instance, in the Region of Peel in Ontario (Fig. 5.12), the outbreak of

bird infections occurred again in 2005, three years after the first outbreak in 2002; human

cases were reported in 2002 and 2003, and appeared again after the human-infection-free
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Figure 5.1: Infections in hosts in the Region of Peel, 2002-2008

year 2004. Numerous factors can contribute to the variation of the annual host infections.

Notably, weather pattern alterations and climatic change will greatly influence the inci-

dence and distribution of WNV. Other factors, including the host distribution and social

characteristics of involving communities, conduce to triggering an outbreak of WNV in

the Region of Peel.

The rapidly spread and the outbreaks of WNV has placed a burden on public health

and healthcare systems (Nash et al. (2001), Toronto and Region Conservation Authority

(2014)). All these necessitate a concerted global effort to investigate the transmission

of WNV, study the mechanism of triggering mechanisms for an outbreak of WNV and

combat to control and prevent its spread. Mosquito control is recognized as the most

effective way to prevent mosquito-borne diseases (Wilke and Marrelli (2015)), which is
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also obtained by the classical ”Ross model”, it showed that malaria can be controlled by

reducing mosquito numbers below a certain figure (Transmission threshold) (Ross (1915),

Mandal et al. (2011)).

Then WNV mosquito monitoring and surveillance programs have been run by public

health. With surveillance data, public health evaluates the WNV activities in a particular

area, assesses the risk of infection, predicts and catches an early warning signal for a po-

tential outbreak, and decides if, when, where and how to reduce the risk of infection by

using mosquito control measures, or education and community outreach (Government of

Canada (2018)). Usually, programs incorporate the infection rate (IR) into their mosquito-

based evaluation of local WNV activity patterns (Centers for Disease Control and Preven-

tion (2015b)). The estimates of the IR are obtained in different ways such as minimum

infection rate (MIR) and maximum likelihood estimation (MLE) (Gu et al. (2003), Centers

for Disease Control and Prevention (2015b)), bias-corrected likelihood methods (Centers

for Disease Control and Prevention (2015b)). Peel public health launched a mosquito

monitoring and surveillance program in 2001 and MIR was adopted in their program for

assessing the risk of WNV. Fig. 5.2 shows the weekly WNV vector abundance and MIR in

the Region Peel from 2002 to 2008. Similarly, the mosquito populations and MIR varied

yearly, such as high MIR in 2002 and a huge number of mosquito populations in 2008.

The data helps them to make a decision like whether to control mosquito and what action
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(a) (b)

Figure 5.2: Weekly mosquito abundance, weekly MIR in the Region of Peel, 2002-2008.

The horizontal axis in 5.2(a) and 5.2(b) is the week number, starting from 25th week and

ending with 39th week.

should be taken to prevent an outbreak.

In addition to the surveillance programs launched by public health, extensive research

has been done to understand the transmission dynamics of WNV in compartmental mod-

els. In the literature (Thomas and Urena (2001), Wonham et al. (2004), Bowman et al.

(2005), Lewis et al. (2006b), et al.), the basic reproduction number R0 serves as a crucial

threshold for the occurrence of an outbreak, in particular, R0 being less than unity is nec-

essary to prevent WNV prevailing, then reducing the basic reproduction number has been

a goal for preventing an outbreak. Some other work (Castillo-Chavez and Song (2004),

Jiang et al. (2009), Wan and Zhu (2010), Blayneh et al. (2010), Abdelrazec et al. (2014),

et al.) elucidated that the basic reproduction number itself is not sufficient to describe
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whether an outbreak of WNV will occur or not and to control WNV.

For public health, estimates of the IR (like MIR) they adopted are simple to carry out

and applied to assess and predict the risk, however, only depending on estimates of the

IR to evaluate the local WNV activity and risk of infection is not enough to provide solid

and accurate results (Bustamante and Lord (2010)). How to use models and data to better

characterize the transmission dynamics, the risk of infection and an early warning signal

for an outbreak draws more attention. For mathematical researches, previous work has

revealed that the occurrence of outbreaks greatly depends on the initial population state

due to the existence of backward bifurcation, however, no real application verified the

relationship between the initial population state and the occurrence of an outbreak, which

needs a further and deeper study.

In our work, we establish WNV transmission models between mosquitoes and birds.

We yield new insights into the applications of backward bifurcation and the threshold

conditions of a WNV outbreak. Different ratios of vectors and hosts in the initial state,

such as the ratio of mosquitoes and birds, the proportion of infected mosquitoes in all

mosquitoes and the proportion of infected birds in all birds, will indicate the potential

of a WNV outbreak. In the biological sense, the sum of indirect infection (the new bird

infection) by a single bird infection and direct infection (the new mosquito infection) by a

single bird infection less than the sum of two dead bird infections due to the disease will
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lead to the occurrence of backward bifurcation. Also, we propose a novel index and the

risk assessment criteria to characterize the potential risk of infections and an early warning

for an outbreak. Moreover, we verify the results based on the risk assessment criteria for

early warning of outbreaks and MIR results during 2002-2008 in the Greater Toronto Area

(GTA).

5.2 Compartmental models for WNV

We start with a simplified mosquito-bird model that includes susceptible/infected mosquitoes

and birds respectively, which provides a clear and deep vision of the mechanism of out-

break occurrence. Then we extend the model to a more general and comprehensive case:

splitting mosquitoes population into aquatic and aerial stages, involving recovery bird pop-

ulations and without the assumption of a constant mosquito population size.

5.2.1 A simplified WNV transmission model

For mosquito populations, we only consider the dynamics of female mosquitoes since

only females are responsible for transmitting and spreading the virus. Sm(t) and Im(t)

are the population of susceptible and infectious female mosquitoes at time t respectively.

Particularly, the reproduction rate is interpreted by the scaled female adult mosquitoes

per capita biting rate (Rubel et al. (2008)) and the vertical transmission in mosquitoes is
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ignored (Wonham et al. (2004), Fan et al. (2010)).

For bird populations, the primary hosts are birds and we denote the population of

susceptible, infectious at time t as Sb(t) and Ib(t), and the total bird population is Nb =

(Sb + Ib). We regard all birds as one family for simplicity and consider the demographic

dynamics of birds including migrations and reproduction. The horizontal transmission in

birds is also neglected (McLean (2006)). In addition to birds, WNV mosquitoes also feed

on mammals (denoted as A) like humans and horses (Abdelrazec et al. (2014)).

The cross-infection rate is interpreted using mass action incidence normalized by total

host population (Nb + A) and the mosquito-bird transmission dynamics is modelled as

dSm
dt

= rm(Sm + Im)− bmβmSm Ib
Nb+A

− dmSm,

dIm
dt

= bmβmSm
Ib

Nb+A
− dmIm,

dSb
dt

= rb − bmβbIm Sb
Nb+A

− dbSb,

dIb
dt

= bmβbIm
Sb

Nb+A
− µIb − dbIb.

(5.1)

Table 5.1: Parameters in a simplified WNV transmission

model (5.1)

Par. Interpretation Range (day−1)
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rm Female mosquitoes per capita birth

rate

0.036− 42.5 (Wonham et al. (2004))

bm Female adult mosquitoes per capita

biting rate

0.03− 0.16 (Wonham et al. (2004))

dm Female mosquitoes per capita mor-

tality rate

0.016− 0.07 (Wonham et al. (2004))

rb Recruitment rate of birds 800− 1100 (Abdelrazec et al. (2014))

βb WNV transmission probability

from mosquitoes to birds

0.8− 1.0 (Wonham et al. (2004))

µ Birds per capita mortality rate due

to WNV and the recovery

0.125− 0.2 (Wonham et al. (2004))

db Birds per capita natural death rate 10−4 − 10−3 (Abdelrazec et al. (2014))

We assume birth rate rm is equal to natural mortality rate of mosquitoes dm (Abdelrazec

et al. (2016)), then mosquitoes sustain a constant population size, denoted Nm. Then the
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model is reduced to

dIm
dt

= bmβm(Nm − Im) Ib
Nb+A

− dmIm,

dSb
dt

= rb − bmβbIm Sb
Nb+A

− dbSb,

dIb
dt

= bmβbIm
Sb

Nb+A
− µIb − dbIb.

(5.2)

5.2.1.1 Existence and stability of equilibrium points

The disease free equilibrium is E0 = (0, rb
db
, 0). Using the next generation matrix

method, the basic reproduction number is

R0 =

√
bmβmNm

(
rb
db

+A)(µ+db)

bmβb
rb
db

(
rb
db

+A)dm
. (5.3)

Theorem 5.2.1. For the system (5.2), the disease free equilibrium E0 = (0, rb
db
, 0) always

exists. Denote c2 = −µ(µ+ db)(bmβmdb− dmµ), c1 = (µ+ db)((bmβmdb− 2dmµ)(Adb +

rb)+ bmdbβbβmNm), c0 = dm(Adb+ rb)
2(µ+db)−Nmb

2
mdbrbβbβm, and ∆ = c2

1−4c2c0.

If we suppose dmµ− bmβmdb > 0,

1. If R0 > 1, there exists a unique endemic equilibrium E+.

2. IfR0 = 1, there exists a unique endemic equilibriumE+ provided c1 < 0; otherwise

there is no endemic equilibrium.

3. If R0 < 1, and

(a) if − 2c2rb
µ+db

+
√

∆ < c1 < 0 and ∆ > 0, there exist two endemic equilibria E− and

E+;
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(b) if − 2c2rb
µ+db

< c1 < 0 and ∆ = 0, these two endemic equilibria coalesce into E∗;

(c) otherwise, there is no endemic equilibrium.

Proof. Ib coordinates of E− and E+ are determined by

g(Ib) =c2I
2
b + c1Ib + c0, (5.4)

and Sb = rb−(µ+db)Ib
db

. We focus on the positive equilibrium and the each components of

the equilibrium should be positive, then 0 < Ib <
rb

µ+db
needs to be satisfied.

Obviously, the roots of g(Ib) = 0 are

I−b =
−c1 −

√
∆

2c2

, I+
b =

−c1 +
√

∆

2c2

, with ∆ = c2
1 − 4c2c0. (5.5)

Adopting the expression for R0 in (5.3), we rewrite c0 as

c0 = dm(Adb + rb)
2(µ+ db)(1−R2

0). (5.6)

Theorem 5.2.2. For the system (5.2), if there exists one simple endemic equilibrium E+,

it is locally stable. If there exist two simple endemic equilibria E− and E+, then E− with

low endemicity is unstable and E+ with high endemicity is locally stable.

Proof. The stability of endemic equilibrium is determined by the sign of the real part of

the roots for the equation

h(λ) = λ3 + a2λ
2 + a1λ+ a0 = 0, (5.7)
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with

a2 =
Ibbmβm + Imbmβb

(Nb + A)
+ 2db + dm + µ,

a1 =
(db + µ)(Ibbmβm + Imbmβb − µIb) + bm(Ibdbβm + Imdmβb)

(Nb + A)

b2
mβmβbIbIm
(Nb + A)2

+ db(µ+ db + dm), (5.8)

a0 =
db + µ

(Nb + A)2
[(Ibbmβm + (Nb + A)dm)(Imbmβb − Ibµ)

+ Ib(Nb + A)(bmβmdb − dmµ)].

For any endemic equilibrium Ẽ(Ĩm, S̃b, Ĩb), it is evident that a2 > 0 with all positive

parameters. Moreover, a0 at Ẽ in (5.8) can be expressed in terms of c2 and c1 in Theorem

5.2.1,

a0 =
Ĩb(2c2Ĩb + c1)

db(Ñb + A)2
(5.9)

If R0 ≥ 1, by Theorem 5.2.1 we have an unique endemic equilibrium E+, based on

(5.5), a0 > 0 at E+. Similarly, if R0 < 1, taking into account Theorem 5.2.1 and (5.5),

we get a0 < 0 at E− and a0 > 0 at E+. By Routh-Hurwitz criterion, not all the roots of

h(λ) = 0 at E− have negative real parts and E− is unstable.

As for E+ in all above cases, having known a0 > 0, we still need a1a2 − a0 > 0 to

make sure all roots of h(λ) = 0 have negative real parts.
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We calculate

a1a2 − a0 =
l1 + l2

(N+
b + A)3

,

where

l1 = db(2db + dm + µ)(db + dm + µ)(N+
b + A)3 + [Ibbmβmdb(4db + 3dm + 4µ)

+ Ibµ(bmβmdm + bmβmµ+ dbdm + dmµ) + Imbmβbdm(3db + dm + µ)](N+
b + A)2

+ [I2
b b

2
mβ

2
m(2db + µ) + 2IbImb

2
mβmβb(dm + µ+ 2db) + I2

mb
2
mβ

2
bdm](N+

b + A)

+ IbImb
2
mβmβb(Ibbmβm + Imbmβb),

l2 = [d2
b(3Imbmβb − 2Ibµ) + dbµ(4Imbmβb − 3Ibµ) + µ2(Imbmβb − Ibµ)](N+

b + A)2

+ Imbmβb(db + µ)(Imbmβb − Ibµ)(N+
b + A).

As E+ and all parameters are positive, l1 > 0. Furthermore, bmβmdb − dmµ < 0

(Theorem 5.2.1) and a0 > 0 in (5.8) imply that Imbmβb − Ibµ > 0, accordingly l2 > 0.

Therefore a1a2 − a0 > 0 and E+ is locally stable.

Theorem 5.2.3. Moreover, for unstable EEP E−, only one eigenvalue has a positive real

part.

Proof. By Routh-Hurwitz condition, the number of roots with positive real part for h(λ) =

0 (5.7) at E− is equal to the number of sign changes in the sequence 1, a2, a1a2−a0
a2

, a0. By

Theorem 5.2.2, we have 1 > 0, a2 > 0 and a0 < 0, whatever the sign of a1a2−a0
a2

is, the
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number of sign changes is exactly one, therefore only one root of h(λ) = 0 has a positive

real part.

5.2.2 Local stable manifold of E−

We can find the local stable manifold of unstable E− = (I−m, S
−
b , I

−
b ) by taking the

following steps.

1. Bring E− to the origin.

By the transformation x = Im − I−m, y = Sb − S−b and z = Ib − I−b , we obtain the

system


ẋ

ẏ

ż

 = J(E−)


x

y

z

+



i+j+k=2∑
i,j,k∈N

lijkx
iyjzk

i+j+k=2∑
i,j,k∈N

pijkx
iyjzk

i+j+k=2∑
i,j,k∈N

qijkx
iyjzk


+O(|x, y, z|3), (5.10)

where

J(E−) =


− bmβmI

−
b

N−
b +A

− dm − dmI
−
m

N−
b +A

bmβmS
−
m−dmI−m

N−
b +A

− bmβbS
−
b

N−
b +A

(µ+db)I
−
b −bmβbI

−
m

N−
b +A

− db
(µ+db)I

−
b

N−
b +A

bmβbS
−
b

N−
b +A

−(µ+db)I
−
b +bmβbI

−
m

N−
b +A

− (µ+db)I
−
b

N−
b +A

− (µ+ db)


(5.11)

is Jacobian matrix at E−.
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2. Transform J(E−) to its Jordan normal form.

Using λ to represent any eigenvalues of J(E−), we get the corresponding eigenvec-

tor is

V (λ) =

[
s(I−mdmµ+ S−mbmβmdb + S−mbmβmλ)

(db + µ)[I−b bm + (N−b + A)(dm + λ)]
,−s(λ+ db + µ)

db + λ
, s

]′
, ∀s ∈ R.

By Theorem 5.2.3, use λ1, λ2 < 0, λ3 > 0 represent three eigenvalues of J(E−) and

corresponding eigenvectors are V1 = V (λ1), V2 = V (λ2) and V3 = V (λ3). Then let
x

y

z

 = P


X

Y

Z

 , P = [V1, V2, V3], (5.12)

the system (5.10) becomes
Ẋ

Ẏ

Ż

 =


λ1 0 0

0 λ2 0

0 0 λ3




X

Y

Z

+



i+j+k=2∑
i,j,k∈N

LijkX
iY jZk

i+j+k=2∑
i,j,k∈N

PijkX
iY jZk

i+j+k=2∑
i,j,k∈N

QijkX
iY jZk


+O(|X, Y, Z|3).

(5.13)

3. Calculate the local stable manifold M s.

By stable manifold theorem, let

Z(t) = h(X(t), Y (t)) = h20X(t)2 + h11X(t)Y (t) + h02Y (t)2
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+ h30X(t)3 + h21X(t)2Y (t) + h12X(t)Y (t)2 + h03Y (t)3

+O(|X(t), Y (t)|4).

Since Ms is invariant, we have

Z(t)

dt
=
dh(X(t), Y (t))

dt
,

that is

Ż = 2h20XẊ + h11ẊY + h11XẎ + 2h02Y Ẏ + 3h30X
2Ẋ + 2h21XẊY

+ h21X
2Ẏ + h12ẊY

2 + 2h12XY Ẏ + 3h03Y
2Ẏ +O(|X, Y |4).

We simplify it as

Ż = (2h20X + h11Y + 3h30X
2 + 2h21XY + h12Y

2)Ẋ

+ (h11X + 2h02Y + h21X
2 + 2h12XY + 3h03Y

2)Ẏ

+O(|X, Y |4).

⇒

λ3h(X, Y ) +

i+j+k=2∑
i,j,k∈N

QijkX
iY jh(X, Y )k +O(|X, Y, h(X, Y )|3)

= (2h20X + h11Y + 3h30X
2 + 2h21XY + h12Y

2)[λ1X

+

i+j+k=2∑
i,j,k∈N

LijkX
iY jh(X, Y )k] + (h11X + 2h02Y + h21X

2 + 2h12XY

142



+ 3h03Y
2)[λ2Y +

i+j+k=2∑
i,j,k∈N

PijkX
iY jh(X, Y )k] +O(|X, Y |4).

⇒

λ3[h20X
2 + h11XY + h02Y

2 + h30X
3 + h21X

2Y + h12XY
2 + h03Y

3

+O(|X, Y |4)] +

i+j+k=2∑
i,j,k∈N

QijkX
iY jh(X, Y )k +O(|X, Y, h(X, Y )|3)

= (2h20X + h11Y + 3h30X
2 + 2h21XY + h12Y

2)[λ1X

+

i+j+k=2∑
i,j,k∈N

LijkX
iY jh(X, Y )k] + (h11X + 2h02Y + h21X

2 + 2h12XY

+ 3h03Y
2)[λ2Y +

i+j+k=2∑
i,j,k∈N

PijkX
iY jh(X, Y )k] +O(|X, Y |4).

Matching coefficients of terms X2, XY and Y 2, we have

X2 : λ3h20 +Q200 = 2h20λ1

XY : λ3h11 +Q110 = h11λ1 + h11λ2

Y 2 : λ3h02 +Q020 = 2h02λ2

and obtain

h20 =
Q200

2λ1 − λ3

, h11 =
Q110

λ1 + λ2 − λ3

, h02 =
Q020

2λ2 − λ3

.

Moreover, we can obtain the expression of Q200, Q110 and Q200 with calculations.
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For the simplification, we introduce the notation vij , (i = 1, 2, 3, j = 1, 2) satisfying

V1 = [v11, v12, 1]′

=

[
(I−mdmµ+ S−mbmβmdb + S−mbmβmλ1)

(db + µ)[I−b bm + (N−b + A)(dm + λ1)]
,−λ1 + db + µ

db + λ1

, 1

]′
,

V2 = [v21, v22, 1]′

=

[
(I−mdmµ+ S−mbmβmdb + S−mbmβmλ2)

(db + µ)[I−b bm + (N−b + A)(dm + λ2)]
,−λ2 + db + µ

db + λ2

, 1

]′
,

V3 = [v31, v32, 1]′ ,

=

[
(I−mdmµ+ S−mbmβmdb + S−mbmβmλ3)

(db + µ)[I−b bm + (N−b + A)(dm + λ3)]
,−λ3 + db + µ

db + λ3

, 1

]′
.

Carry out transformations (5.10) and (5.12) for the system (5.2), we obtain

Q200 =
1

W (N−b + A)
[(v22 − v12) bm βm v11 + (v11 − v21) bm βb v11 v12

+ (v11 v22 − v12 v21) bm βb v11 v12] +
(v12 + 1)

W
(
N−b + A

)2 (v12 v21

−v11 v22 − v11 + v21)
[
bm βb

(
I−m v12 + S−b v11

)
− I−b (v12 + 1) (µ

+db)] +
(v12 + 1) (v22 − v12)

W
(
N−b + A

)2

[(
−I−b v11 +Nm − I−m

)
bm βm

− (v12 + 1) dm I−m
]
,

Q110 =
1

W
(
N−b + A

) [(v11 v22 + v12 v21) (v11 v22 − v12 v21 + v11 − v21) bm βb

+ (v22 − v12) (v11 + v21) bm βm] +
(v11v22 − v12v21 + v11 − v21)

W
(
N−b + A

)2 [2(µ
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+ db)(v22 + 1)(v12 + 1)I−b − bmβbI
−
m(2v12v22 + v12 + v22)]

+
bm (v11 v22 + v12 v21 + v11 + v21)

W
(
N−b + A

)2 [(v12 − v22) βm I
−
b − (v11 v22

−v12 v21 + v11 − v21) βb S
−
b ] +

(v12 − v22)

W
(
N−b + A

)2 [2 (v22 + 1) (v12

+1) dm I−m − (v22 + v12 + 2)
(
Nm − I−m

)
bm βm],

Q020 =
1

W
(
N−b + A

) [(v22 − v12) bm βm v21 + (v11 v22 − v12 v21) bm βb v21 v22]

+
(v22 + 1) (v22 − v12)

W
(
N−b + A

)2

[
− (v22 + 1) dm I−m + bm βm

(
−I−b v21 +Nm

−I−m
)]

+ (v11 − v21) bm βb v21 v22 +
(v22 + 1)

W
(
N−b + A

)2 (v12 v21 − v11 v22

−v11 + v21)
[(
I−mv22 + S−b v21

)
bm βb − I−b (v22 + 1) (µ+ db)

]
,

with

W = v11 v22 − v11 v32 − v12 v21 + v12 v31 + v21 v32,

N−b = S−b + I−b .

Then the local stable manifold Ms is

Z(t) =
Q200

2λ1 − λ3

X(t)2 +
Q110

λ1 + λ2 − λ3

X(t)Y (t) +
Q020

2λ2 − λ3

Y (t)2

+O(|X(t), Y (t)|3). (5.14)

Now we choose a set of parameter values bm = 0.2, βm = 0.04, A = 5, dm = 0.016,

rb = 2, βb = 0.8, db = 0.001, µ = 0.8, Nm = 1000. Based on Theorem 5.2.1, Theorem
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5.2.2 and Theorem 5.2.3, the system has a locally stable disease free equilibrium E0 =

(0, 2000, 0) and two endemic equilibria, E− = (13.04593757, 83.128484, 2.393098023)

is unstable and E+ = (130.8805745, 0.791158, 2.495891189) is locally stable. By (5.14),

we could determine the local stable manifold Ms at E− and it is approximated as

Φ(Im, Sb, Ib) = 7892.203556Im − 965.2218999Sb + 1757.114565Ib − 28208.17652

+ 8.989883276I2
m + 1.532643609ImSb − 37.45173910ImIb − 8.561563901I2

b

+ 0.04625202185S2
b − 5.097399576SbIb +O(|Im, Sb, Ib|3) = 0. (5.15)

The local stable manifoldMs separates the space {(Im, Sb, Ib)|Im > 0, Sb > 0, Ib > 0}

into three parts (Fig 5.4): I = {(Im, Sb, Ib)|Φ(Im, Sb, Ib) > 0}, II = {(Im, Sb, Ib)|Φ(Im, Sb,

Ib) < 0} and Ms = {(Im, Sb, Ib)|Φ(Im, Sb, Ib) = 0} itself.

When the initial point is in I, the trajectory will approach to endemic equilibrium E+

(Fig. 5.5, Fig. 5.6), when the initial point is in II, the trajectory will approach the Sb-axis

(Fig. 5.5, Fig. 5.6), which means the disease will die out. In such a situation, we could

define I as the region with high risk of infections, contrarily, II as the region with low risk

of infections.

When the initial value of Im, Sb, Ib are in I, the disease cannot be eradicated even

though the basic reproduction number R0 < 1. Hence the basic reproduction number is

not enough to be used to measure the intensity of the virus transmission or as an indicator

for evaluating the risk of infections. We develop following assessments to evaluate the
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Figure 5.3: The phase portraits
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Figure 5.4: The local stable manifold, I and II
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Figure 5.5: The phase portrait and the local stable manifold (1)

Figure 5.6: The phase portrait and the local stable manifold (2)
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pattern and the risk of the disease spread.

Risk Assessment Criteria

To evaluate the intensity of the virus transmission, based on transmission model (5.2), if

1. R0 > 1, the risk level is high;

2. R0 < 1 & initial values are in I = {(Im, Sb, Ib)|Φ(Im, Sb, Ib) > 0}, the risk level is

high;

3. R0 < 1 & initial values are in II = {(Im, Sb, Ib)|Φ(Im, Sb, Ib) < 0}, the risk level is low.

5.3 A comprehensive WNV transmission model

We extend the simplified model to a more general case. For vector populations, we sep-

arate mosquito populations into preadult and adult two compartments and adopt mosquito

population model (2.1). Particularly, we use L(t) be the population of preadult WNV vec-

tor mosquitoes encompassing all aquatic stages at time t. For host populations, we also

consider recovered birds and denote the population of recovered birds at time t as Rb(t),

then the total bird population is Nb = (Sb + Ib +Rb). For the cross-infection rate between

birds and mosquitoes, we assume that mosquito searching is efficient even when host den-

sities are low, the disease transmission rate depends on the proportion of susceptible or

infected birds rather than the actual density of birds (Bowman et al. (2005), Lewis et al.
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(2006b)). Then the cross-infection rate is still interpreted using mass action incidence

normalized by total host population (Nb + A) and the transmission dynamics is

dL
dt

= cbm(Sm + Im)− δL− dlL− κL2,

dSm
dt

= δL− bmβmSm Ib
Nb+A

− dmSm,

dIm
dt

= bmβmSm
Ib

Nb+A
− dmIm,

dSb
dt

= rb − bmβbIm Sb
Nb+A

− dbSb,

dIb
dt

= bmβbIm
Sb

Nb+A
− µIb − γIb − dbIb,

dRb
dt

= γIb − dbRb.

(5.1)

Table 5.2: Parameters in a comprehensive WNV transmis-

sion model (5.1)

Par. Interpretation Range (day−1)

c the scaling factor associated with biting rate 2.325

bm Female adult mosquitoes per capita biting rate 0.03− 0.16

δ Mosquitos per capita maturation rate from preadult to

adult

0.051− 0.093

dl Preadult mosquitoes per capita mortality rate 0.213− 16.9

κ Intraspecific competition rate of preadult mosquitoes 0− 1
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βm WNV transmission probability from birds to

mosquitoes

0.02− 0.24

dm Female adult mosquitoes per capita mortality rate 0.016− 0.07

rb Recruitment rate of birds 800− 1100

βb WNV transmission probability from mosquitoes to

birds

0.8− 1.0

µ Birds per capita mortality rate due to WNV 0.125− 0.2

γ Birds per capita recovery rate from WNV 0− 0.2

db Birds per capita natural death rate 10−4 − 10−3

This model is an improved one based on our previous work (Wang et al. (2017)). To

reflect that adult female mosquitoes feed on hosts to obtain proteins for egg production,

the reproduction rate is proportional to mosquito biting rate. The representative aspects of

intraspecific competition are extended, here the intraspecific competition can be related to

any possible factors like the density of nutrients and oxygen, rather than only the size of

standing water. For avian hosts, the demographic is considered, with natural birth/death

and migration.
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5.3.1 Disease-free equilibrium points

The model (5.1) has up to two disease-free equilibrium (DFE) points. The number of

DFE points is determined by the sign of cbmδ
dm
− (dl + δ).

If cbmδ
dm
− (dl + δ) < 0, the change rate of preadult has been negative even without

considering intraspecific competition and the model has a unique equilibrium point E0 =

(0, 0, 0, rb
db
, 0, 0), The E0 has eigenvalues−dm, −db(multiplicity 2), −(µ+ γ+ db) and the

roots of the equation:

−λ2 − (dl + dm + δ)λ+
cbmδ

dm
− (dl + δ) = 0. (5.2)

All parameters are positive in a biological sense, all the roots of (5.2) have negative real

parts, and DFE E0 is locally stable.

If cbmδ
dm
− (dl + δ) > 0, that is, intraspecific competition as well as the death and

the maturation reduce the change rate of L, then the model (5.1) has two DFE E1 =

(L0, Sm0 , 0,
rb
db
, 0, 0) as well as E0, where L0 =

cbmδ
dm
−(dl+δ)

κ
, Sm0 =

δ[ cbmδ
dm
−(dl+δ)]

dmκ
. By

(5.2), E0 has a positive real part eigenvalue and E0 is unstable. The local stability of E1

is determined by the basic reproduction number R0 which can be obtained from the next

generation matrix for the system (5.1).

Using the notation of van den Driessche and Watmough (2002), with the infected vari-

ables (Im, Ib) in the model (5.1), F denotes the rate of new infections and V denotes the
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rate of transfer between compartments,

F =

 bmβmSm
Ib

Nb+A

bmβbIm
Sb

Nb+A

 ,V =

 dmIm

(µ+ γ + db)Ib

 ,
The corresponding linearized matrices at the DFE E1 are

F =

 0
βmbmSm0

Nb0+A

bmβbbm
rb
dB

Nb0+A
0

 , V =

 dm 0

0 µ+ γ + db

 .
Then the basic reproduction number R0 is defined as the spectral radius of the matrix

FV −1,

R0 =

√
bmβm

Sm0
rb
db

+A

(µ+γ+db)

bmβb

rb
db

rb
db

+A

dm
,

(5.3)

where Sm0 = δL
dm

=
δ[ cbmδ

dm
−(dl+δ)]

dmκ
.

In the biological view, R0 gives the expected number of new infections produced by a

single infective mosquito or bird when introduced into a susceptible population. The first

term under the square root ofR0 performs as the spread of WNV from birds to mosquitoes;

the transmission probability from birds to mosquitoes (bmβm) multiplied by the number of

initially susceptible female mosquitoes per host ( Sm0
rb
db

+A
) multiplied by the birds infectious

lifespan ( 1
µ+γ+db

). The second term represents transmission of WNV from mosquitoes

to birds, that is the transmission probability (bmβb) multiplied by the number of initially

susceptible birds per host (
rb
db

rb
db

+A
) times the adult female mosquito infectious lifespan ( 1

dm
).
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The square root in R0 provides the geometric mean for an average individual of both

species combined (Wonham et al. (2004), Bowman et al. (2005), Heffernan et al. (2005)).

For system (5.1), the disease-free equilibrium E1 is locally asymptotically stable if

R0 < 1 and unstable if R0 > 1 (van den Driessche and Watmough (2002)).

5.3.2 Endemic equilibrium points

In order to obtain all possible endemical equilibrium points, we set the right hand side

of system (5.1) equal to zero:

cbm(Sm + Im)− δL− dlL− κL2 = 0 (5.4)

δL− bmβmSm
Ib

Sb + Ib +Rb + A
− dmSm = 0 (5.5)

bmβmSm
Ib

Sb + Ib +Rb + A
− dmIm = 0 (5.6)

rb − bmβbIm
Sb

Sb + Ib +Rb + A
− dbSb = 0 (5.7)

bmβbIm
Sb

Sb + Ib +Rb + A
− µIb − γIb − dbIb = 0 (5.8)

γIb − dbRb = 0 (5.9)

By (5.4), (5.5) and (5.6), we have L =
cbmδ
dm
−(dl+δ)

κ
and Sm + Im = δL

dm
. We explore

the positive equilibria and from L > 0 we have cbmδ
dm
− (dl + δ) > 0. Additionally, the

coordinates of an endemic equilibrium point need to satisfy
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Sb =
rb − (µ+ γ + db)Ib

db
, (5.10)

Rb =
γIb
db
.

We also get that

Sm =
δL(Sb + Ib +Rb + A)

Ibbmβm + dm(Sb + Ib +Rb + A)
, (5.11)

Im =
(rb − dbSb)(Sb + Ib +Rb + A)

bmβbSb
.

Combine with (5.6), if an endemic equation exists, the coordinate of Ib is the positive

root of quadratic equation

g(Ib) = c2I
2
b + c1Ib + c0, (5.12)

where

c2 =− (µ+ γ + db)dmµ(bmβmdb − dmµ),

c1 =(µ+ γ + db)(b
2
mdbβbβmδL+ dm(bmβmdb − 2dmµ)(Adb + rb)), (5.13)

c0 =d2
m(Adb + rb)

2(µ+ γ + db)− Lb2
mdbrbβbβmδ.

Adopting the expression for R0 in (5.3), we rewrite c0 in (5.13) as

c0 = d2
m(Adb + rb)

2(µ+ γ + db)(1−R2
0). (5.14)
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Furthermore, as we study the positive equilibrium, the positiveness of other compo-

nents of the equilibrium should also be guaranteed. Accounting for (5.10) and (5.11), it

also requires that the coordinate Ib satisfying the inequality

Ib <
rb

µ+ γ + db
. (5.15)

We have dmµ−bmβbdb > 0, consequently c2 > 0 and the discriminant for the quadratic

equation (5.12) is

∆ = c2
1 − 4c2c0 (5.16)

= C(e2L
2 + e1L+ e0),

where

C = db(µ+ γ + db)b
2
mβm,

e2 = b2
mdbβ

2
bβmδ

2(µ+ γ + db), (5.17)

e1 = 2dmβbδ[((µ+ γ + db)(bmβmdb − 2dmµ)(Adb + rb)

+ 2µrb(−bmβmdb + dmµ)],

e0 = dbd
2
mβm(µ+ γ + db)(Adb + rb)

2.

If R0 > 1, then c0 < 0 and (5.12) always has a unique positive root

I+
b =

−c1 +
√

∆

2c2

, (5.18)
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and I+
b < rb

µ+γ+db
since g(I+

b ) > 0, we denote the corresponding equilibrium by E+.

If R0 = 1, then c0 = 0; when c1 < 0, the equation has one positive root

I+
b = −c1

c2

. (5.19)

Similarly, it also meets requirement (5.15) and its corresponding equilibrium is denoted as

E+.

For R0 < 1, we have c0 > 0 and (5.12) has up to two positive roots when ∆ ≥ 0.

If ∆ > 0 and − c1
2c2

> 0, we obtain two positive roots

I−b =
−c1 −

√
∆

2c2

, I+
b =

−c1 +
√

∆

2c2

, (5.20)

In this case, g( rb
µ+γ+db

) > 0 is not enough to make sure Sb > 0, we also needs

rb
µ+ γ + db

> − c1

2c2

,

and we use E− and E+ to represent corresponding two equilibria.

If ∆ = 0 and − c1
2c2

> 0, these two equilibria coalesce into E∗. It is easy to get

I∗b = − c1
2c2

and the inequality in (5.15) is satisfied.

Theorem 5.3.1. For the system (5.1), if we suppose dmµ− bmβbdb > 0,

1. The disease free equilibrium E0 always exists.

2. If cbmδ
dm
− (dl + δ) > 0,

(1) There exists one more disease free equilibrium E1.
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(2) If R0 > 1, there exists a unique endemic equilibrium E+.

(3) If R0 = 1, there exists a unique endemic equilibrium E+ provided c1 < 0; other-

wise there is no endemic equilibrium.

(4) If R0 < 1, and

(a) if − 2c2rb
µ+γ+db

< c1 < 0 and ∆ > 0, there exist two endemic equilibrium E− and

E+;

(b) if − 2c2rb
µ+γ+db

< c1 < 0 and ∆ = 0, these two endemic equilibrium coalesce into

E∗;

(c) otherwise, there is no endemic equilibrium.

3. Otherwise, there is no more disease-free equilibrium and no endemic equilibrium.

5.3.3 Local stability of E− and E+

Turning to the local stability of the endemic equilibria in the system (5.1) and by Ja-

cobian matrix at any equilibrium point, we calculate the eigenvalues as −db and roots of

equation

h1(λ)h2(λ) = 0, (5.21)

where

h1(λ) = λ2 + (2κL+ dl + dm + δ)λ+ κdmL,
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h2(λ) = λ3 + a2λ
2 + a1λ+ a0,

a2 =
Ibbmβm + Imbmβb

(Nb + A)
+ 2db + dm + µ+ γ,

a1 =
b2
mβmβb(IbIm − SbSm)

(Nb + A)2
+

1

(Nb + A)
[(µ+ γ + db)(Ibbmβm

+ Imbmβb − µIb) + bm(Ibdbβm + Imdmβb)]

+ (µ+ γ + db)(db + dm) + dmdb, (5.22)

a0 =
1

(Nb + A)2
[−(bmβbSb(Smbmdbβm + Imdmµ))

+ (µ+ γ + db)(Ibbmβm + (Nb + A)dm)(Imbmβb

+ (Nb + A)db − Ibµ)].

Apparently, the two roots of h1(λ) = 0 have negative real parts sinceL =
cbmδ
dm
−(dl+δ)

κ
>

0. Hence, the stability of endemic equilibrium is determined by the sign of roots for the

equation h2(λ) = 0.

Theorem 5.3.2. For the system (5.1), if there exists one simple endemic equilibrium E+,

it is locally stable. If there exist two simple endemic equilibria E− and E+, then E− with

low endemicity is unstable and E+ with high endemicity is locally stable.

Proof. The proof is achieved with the help of Routh-Hurwitz criterion. For any endemic

equilibrium Ẽ(L̃, S̃m, Ĩm, S̃b, Ĩb, R̃b), it is evident that a2 > 0 with all positive parameters.
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By (5.4), (5.5) and (5.6), a0 at Ẽ can be simplified as

a0 =
(µ+ γ + db)Ĩb

dbdm(Ñb + A)2
[−2dmµ(bmdbβm − dmµ)Ĩb (5.23)

+ b2
mdbβbβmδL+ dm(bmdbβm − 2dmµ)(Adb + rb)].

Interestingly, a0 in (5.23) can be expressed in terms of c2 and c1 in (5.13)

a0 =
Ĩb

dbdm(Ñb + A)2
(2c2Ĩb + c1). (5.24)

If R0 ≥ 1, by Theorem 5.3.1 we have an unique endemic equilibrium E+. Moreover,

from (5.18) and (5.19), we obtain that a0 > 0 at E+. Similarly, if R0 < 1, taking into

account Theorem 5.3.1 and the Ib coordinate of E− and E+ in (5.20), we get a0 < 0 at

E− and a > 0 at E+.

By Routh-Hurwitz criterion, the roots of h2(λ) = 0 at E− have different signs and E−

is unstable. As forE+ in all above cases, having known a0 > 0, we still need a1a2−a0 > 0

to make sure all roots of h2(λ) = 0 have negative real parts.

Still applying (5.4), (5.5) and (5.6) at E+, we have

a1a2 − a0 =
l1 + l2 + l3
(N+

b + A)3
,

where

l1 = [I+
mbmβb(I

+
b bmβm + dm(N+

b + A)) + I+
b bmβm(N+

b + A)(2db + µ+ γ)
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+ dbdm(N+
b + A)2][I+

b bmβm + I+
mbmβb + (N+

b + A)(2db + dm + µ+ γ)],

l2 = (N+
b + A)(db + µ+ γ)[I+

mbmβb + (N+
b + A)db − I+

b µ][I+
mbmβb

+ (N+
b + A)(2db + µ+ γ)],

l3 = Sbbmβb(N
+
b + A)(S+

mbmdbβm + I+
mdmµ).

As E+ and all parameters are positive, l1 > 0 and l3 > 0. Furthermore, a0 > 0 in

(5.22) implies that I+
mbmβb + (N+

b + A)db − I+
b µ > 0, accordingly l2 > 0. Therefore

a1a2 − a0 > 0 and E+ is locally stable.

5.3.4 Backward bifurcation

By Theorem 5.3.1 and setting the discriminant ∆ equal to zero, one can solved for the

critical value of R0, and denote Rc
0 = R0|∆=0,

−2rbc2
µ+γ+db

<c1<0
, then we get

Rc
0 =

√
rbβ2

md
2
bb

2
m

M
, (5.25)

where

M = (µ+ γ + db)[2dm(2dmµ− bmdbβm)(Adb + rb)− b2
mdbβmβbδL]

+ 4dmµrb(bmdbβm − dmµ)

> 0.
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Further from Rc
0 < R0 < 1, we can obtain

κ ∈

2e2

[
cbmδ
dm
− (dl + δ)

]
−e1 +

√
e2

1 − 4e2e0

,
2e2

[
cbmδ
dm
− (dl + δ)

]
−e1 −

√
e2

1 − 4e2e0

 , (5.26)

where e2, e1 and e0 are expressed in (5.17), e1 < 0 fromM > 0 and−e1−
√
e2

1 − 4e2e0 >

0.

Theorem 5.3.3. For the system (5.1), consider all the parameters are positive. When

bifurcation parameter R0 = 1, the system (5.1) undergoes a backward bifurcation if

bmβm
Sm0

( rb
db

+ A)dm

bmβb
db

+
bmβm
dm

< 2
µ

db
. (5.27)

From the biological point of view, the sum of indirect infection (the new bird infection)

by a single bird infection and direct infection (the new mosquito infection) by a single bird

infection is less than the the sum of two dead bird infections due to the disease. For the

indirect infection, the transmission probability from birds to mosquitoes (bmβm) multiplied

by the number of initially susceptible female mosquitoes per host ( Sm0
rb
db

+A
) multiplied by the

mosquito infectious lifespan ( 1
dm

), then these new infectious mosquitoes bmβm
Sm0

(
rb
db

+A)dm

transmit the virus (bmβb) to birds multiplied by bird lifespan ( 1
db

). The direct infection is an

infected bird multiplied by the transmission probability from birds to mosquitoes (bmβm)

and the mosquito infectious lifespan ( 1
dm

).

Proof. We apply the Theorem 4.1 in Castillo-Chavez and Song (2004) to show the occur-

rence of the backward bifurcation for the system (5.1).
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Using the same notation as in Castillo-Chavez and Song (2004), let x1 = L, x2 = Sm,

x3 = Im, x4 = Sb, x5 = Ib, x6 = Rb. Then the system (5.1) can be written as dX
dt

= F (X),

with X = (x1, x2, x3, x4, x5, x6)′ and F = (f1, f2, f3, f4, f5, f6)′. Further, we denote

φ = βmb
2
mδβbrbdbL− d2

m(µ+ γ + db)(Adb + rb)
2,

accordingly φ ≥ 0 if and only if R0 ≥ 1, and φ < 0 if and only if R0 < 1.

Then we can obtain following the Jacobian matrix of the system (5.1) at E1 (denoting

X1 = E1) with condition φ = 0,

−2d2mκ(Adb+rb)
2(µ+γ+db)

b2mdbrbβbβmδ
− dl − δ cbm cbm 0 0 0

δ −dm 0 0 −dm(Adb+rb)(µ+γ+db)
bmrbβb

0

0 0 −dm 0 dm(Adb+rb)(µ+γ+db)
bmrbβb

0

0 0 − βbbmrb
Adb+rb

−db 0 0

0 0 βbbmrb
Adb+rb

0 −µ− γ − db 0

0 0 0 0 γ −db



.

From the Jacobian matrix, a straightforward calculation yields the characteristic equa-

tion

P (λ) = λ(λ+ db)
2[λ+ (db + dm + µ+ γ)][λ2

+ (
2cbmδ

dm
− dl − δ + dm)λ+ dm(

cbmδ

dm
− dl − δ)].

Apparently, the Jacobian matrix has a simple zero eigenvalue and the rest eigenvalues
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have negative real parts due to cbmδ
dm
− (dl + δ) > 0. Thus we can adopt the Theorem in

Castillo-Chavez and Song (2004) to analyze the dynamics of the system (5.1).

One can get that the Jacobian matrix has a right eigenvector ω and a left eigenvector ν

associated with 0 eigenvalue respectively. Particularly, for any positive ω6 and nu3,

ω = (0, −db(µ+ γd − b)(Adb + rb)ω6

bmrbβbγ
,
db(µ+ γd − b)(Adb + rb)ω6

bmrbβbγ
,

− (µ+ γ + db)ω6

γ
,
dbω6

γ
, ω6)′,

ν = (0, 0, ν3, 0,
dm(Adb + rb)ν3

βbbmrb
, 0).

Let a and b be the coefficients defined in Theorem 4.1 (Castillo-Chavez and Song

(2004)) in the form

a =
6∑

k,i,j

νkωiωj
∂2fk
∂xi∂xj

(X1, 0),

b =
6∑
k,i

νkωi
∂2fk
∂xi∂φ

(X1, 0).

By straightforward calculation, we have

a =− 2d2
bω

2
6ν3[dm(µ+ γ + db)(Adb + rb) + rb(bmdbβm − 2dmµ)]

bmβbγ2r2
b

,

b =
d2
bω6ν3

rbbmβbdmγ(Adb + rb)
> 0.

Figuring out that coefficient b is always positive, the system (5.1) will undergo a back-

ward bifurcation if the coefficient a > 0 as well, that is the following condition needs to
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be satisfied,

dm(µ+ γ + db)(Adb + rb) + rb(bmdbβm − 2dmµ) < 0, (5.28)

furthermore, it can be rewritten as

1 +
rbbmβm

dm(µ+ γ + db)(A+ rb
db

)
<

2 rb
db
µ

(µ+ γ + db)(A+ rb
db

)
. (5.29)

Combining with R0 = 1, we have

bmβm
Sm0
rb
db

+A

(µ+ γ + db)

bmβb

rb
db

rb
db

+A

dm
+

rbbmβm
dm(µ+ γ + db)(A+ rb

db
)
<

2 rb
db
µ

(µ+ γ + db)(A+ rb
db

)
, (5.30)

reorganizing the (5.30), we obtain

bmβm
Sm0

( rb
db

+ A)dm

bmβb
db

+
bmβm
dm

< 2
µ

db
. (5.31)

Theorem 5.3.4. When Rc
0 < R0 < 1, only one eigenvalue of E− has a positive real part.

Proof. To verify the number of eigenvalues with positive real part at E− is one, we need

to check the sign of real parts for all eigenvalues. we have shown that E− has eigenvalues

−db and two roots with negative real parts of h1(λ) = 0 in (5.21), the rest are the roots of

h2(λ) = 0 in (5.22). By Routh-Hurwitz condition, the number of roots with positive real

part for h2(λ) = 0 is equal to the number of sign changes in the sequence 1, a2, a1a2−a0
a2

,

a0. By Theorem 5.3.2, one can get 1 > 0, a2 > 0 and a0 < 0, whatever the sign of a1a2−a0
a2
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is, the number of sign changes is exactly one, therefore only one root of h2(λ) = 0 has a

positive real part.

5.3.5 Local stable manifold of E−

We can obtain the local stable manifold at E− with following steps.

1. Bring E− to the origin.

By the transformation y1 = L− L−, y2 = Sm − S−m, y3 = Im − I−m, y4 = Sb − S−b ,

y5 = Ib − I−b , y6 = Rb − R−b and denote Y = [y1, y2, y3, y4, y5, y6]′, we obtain the

system

Ẏ = J(E−)Y +G1(|Y |2) +O(|Y |3), (5.32)

where J(E−) is Jacobian matrix at E−,

G1(|Y |2) =

 ∑
ji=2∑

i∈K,ji∈N

l{JI}Πy
ji
i ,

∑
ji=2∑

i∈K,ji∈N

m{JI}Πy
ji
i ,

∑
ji=2∑

i∈K,ji∈N

n{JI}Πy
ji
i ,

∑
ji=2∑

i∈K,ji∈N

o{JI}Πy
ji
i ,

∑
ji=2∑

i∈K,ji∈N

p{JI}Πy
ji
i ,

∑
ji=2∑

i∈K,ji∈N

q{JI}Πy
ji
i

′ ,
with set K = {1, 2, 3, 4, 5, 6}, {JI} = j1j2j3j4j5j6.

2. Transform J(E−) to its Jordan normal form.

By Theorem 5.2.3, use λ1, λ2, λ3, λ4, λ5 < 0, λ6 > 0 represent six eigenvalues of
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J(E−) and corresponding eigenvectors are Vi = V (λi), (i = 1, ..., 6). Then let

Y = PZ, Z = [z1, z2, z3, z4, z5, z6]′, P = [V1, V2, V3, V4, V5, V6], (5.33)

the system (5.10) becomes

Ż =



λ1 0 0 0 0 0

0 λ2 0 0 0 0

0 0 λ3 0 0 0

0 0 0 λ4 0 0

0 0 0 0 λ5 0

0 0 0 0 0 λ6



Z +G2(|Z|2) +O(|Z|3), (5.34)

where

G2(|Z|2) =

 ∑
ji=2∑

i∈K,ji∈N

L{JI}Πz
ji
i ,

∑
ji=2∑

i∈K,ji∈N

M{JI}Πz
ji
i ,

∑
ji=2∑

i∈K,ji∈N

N{JI}Πz
ji
i ,

∑
ji=2∑

i∈K,ji∈N

O{JI}Πz
ji
i ,

∑
ji=2∑

i∈K,ji∈N

P{JI}Πz
ji
i ,

∑
ji=2∑

i∈K,ji∈N

Q{JI}Πz
ji
i

′ ,
with set K = {1, 2, 3, 4, 5, 6}, {JI} = j1j2j3j4j5j6.

3. Calculate the local stable manifold M s.

By stable manifold theorem, let
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z6(t) = H(z1(t), z2(t), z3(t), z4(t), z5(t))

= h20000z1(t)2 + h02000z2(t)2 + h00200z3(t)2 + h00020z4(t)2 + h00002z5(t)2

+ h11000z1(t)z2(t) + h10100z1(t)z3(t) + h10010z1(t)z4(t) + h10001z1(t)z5(t)

+ h01100z2(t)z3(t) + h01010z2(t)z4(t) + h01001z2(t)z5(t) + h00110z3(t)z4(t)

+ h00101z3(t)z5(t) + h00011z4(t)z5(t) +O(|z1(t), z2(t), z3(t), z4(t), z5(t)|3).

Since Ms is invariant, we have

z6(t)

dt
=
dH(z1(t), z2(t), z3(t), z4(t), z5(t))

dt
,

then match the coefficients of each term on the both sides of equal sign, we could

obtain hk1k2k3k4k5(ki{i=1,...,5} ∈ N &
5∑
i=1

ki = 2) in term of λi(i = 1, ..., 6) and

Q{j1j2j3j4j5j6}(ji ∈ N &
6∑
i=1

ji = 2):

h20000 = Q200000

2λ1−λ6 , h02000 = Q020000

2λ2−λ6 , h00200 = Q002000

2λ3−λ6 ,

h00020 = Q000200

2λ4−λ6 , h00002 = Q000020

2λ5−λ6 , h11000 = Q110000

λ1+λ2−λ6 ,

h10100 = Q101000

λ1+λ3−λ6 , h10010 = Q100100

λ1+λ4−λ6 , h10001 = Q100010

λ1+λ5−λ6 ,

h01100 = Q011000

λ2+λ3−λ6 , h01010 = Q010100

λ2+λ4−λ6 , h01001 = Q010010

λ2+λ5−λ6 ,

h00110 = Q001100

λ3+λ4−λ6 , h00101 = Q001010

λ3+λ5−λ6 , h00011 = Q000110

λ4+λ5−λ6 .

(5.35)
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Then the local stable manifold Ms is

z6(t) =
Q200000

2λ1 − λ6

z1(t)2 +
Q020000

2λ2 − λ6

z2(t)2 +
Q002000

2λ3 − λ6

z3(t)2 +
Q000200

2λ4 − λ6

z4(t)2

+
Q000020

2λ5 − λ6

z5(t)2 +
Q110000

λ1 + λ2 − λ6

z1(t)z2(t) +
Q101000

λ1 + λ3 − λ6

z1(t)z3(t)

+
Q100100

λ1 + λ4 − λ6

z1(t)z4(t) +
Q100010

λ1 + λ5 − λ6

z1(t)z5(t) +
Q011000

λ2 + λ3 − λ6

z2(t)z3(t)

+
Q010100

λ2 + λ4 − λ6

z2(t)z4(t) +
Q010010

λ2 + λ5 − λ6

z2(t)z5(t) +
Q001100

λ3 + λ4 − λ6

z3(t)z4(t)

+
Q001010

λ3 + λ5 − λ6

z3(t)z5(t) +
Q000110

λ4 + λ5 − λ6

z4(t)z5(t)

+O(|z1(t), z2(t), z3(t), z4(t), z5(t)|3). (5.36)

Now we choose a set of parameter values c = 3, bm = 0.2, δ = 0.53, dl = 0.6,

κ = 0.011, βm = 0.04, A = 5, dm = 0.018, rb = 1.3, βb = 0.8, db = 0.0001, µ = 0.15,

γ = 0.1. By Theorem 5.3.1 and Theorem 5.3.2, the system has a locally stable disease free

equilibrium E1 = (1503.333334, 44264.81482, 0, 13000, 0, 0) and two endemic equilibria,

E− = (1503.333334, 44262.94641, 1.86842, 10296.04958, 1.081147708, 1081.147708) is

unstable and E+ = (1503.333334, 44260.1706, 4.64423, 7329.212192, 2.26740816,

2267.40816) is locally stable. By (5.36), we could determine the local stable manifold

Ms at E− and it is approximated as

Φ̃(L, Sm, Im, Sb, Ib, Rb) = −2.097324027× 10−7IbIm − 5.243309986× 10−7ImRb

− 5.499881399× 104Ib − 1.764578440× 10−8L+ 1.357368031× 10−12LSb
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− 9.8081782918× 10−20ImL− 1.140726416× 10−4Sm − 5.499881422× 104Sb

− 2.097323995× 10−7ImSb + 10.57669504RbSb + 1.357368028× 10−12IbL

− 3.66040946× 10−23LSm + 10.576695× IbRb − 1.374970355105Rb

+ 2.115339009S2
b − 6.429287425× 10−23L2 + 8.774818569× 10−11IbSm

+ 2.115338991I2
b − 6.32165998× 10−18ImSm − 7.772186201× 10−15I2

m

+ 13.2208688R2
b − 1.106445065× 10−21S2

m + 2.726521193× 10−3Im

+ 2.193704647× 10−10RbSm + 8.774818586× 10−11SbSm + 4.230678IbSb

+ 3393.420078LRb + 3.574922924× 108 +O(|L, Sm, Im, Sb, Ib, Rb|3) = 0. (5.37)

The local stable manifoldMs separates the space {(L, Sm, Im, Sb, Ib, Rb)|L > 0, Sm >

0, Im > 0, Sb > 0, Ib > 0, Rb > 0} into three parts: I = {(L, Sm, Im, Sb, Ib, Rb)|(L, Sm, Im,

Sb, Ib, Rb) > 0 & Φ̃(L, Sm, Im, Sb, Ib, Rb) > 0}, II = {(L, Sm, Im, Sb, Ib, Rb)|(L, Sm, Im,

Sb, Ib, Rb) > 0& Φ̃(L, Sm, Im, Sb, Ib, Rb) < 0} andMs = {(L, Sm, Im, Sb, Ib, Rb)|(L, Sm,

Im, Sb, Ib, Rb) > 0 & Φ̃(L, Sm, Im, Sb, Ib, Rb) = 0} itself.

When the initial point is in I, the trajectory will go to endemic equilibrium E+, when

the initial point is in II, the trajectory will approach the Sb-axis, which means the disease

will die out. Then we could define I as the region with high risk of infections, contrarily,

II as the region with low risk of infections.
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Risk Assessment Criteria

To evaluate the intensity of the virus transmission, based on transmission model (5.1), if

1. R0 > 1, the risk level is high;

2. R0 < 1 & initial values are in I = {(L, Sm, Im, Sb, Ib, Rb)|(L, Sm, Im, Sb, Ib, Rb) > 0

& Φ̃(L, Sm, Im, Sb, Ib, Rb) > 0}, the risk level is high;

3. R0 < 1 & initial values are in II = {(L, Sm, Im, Sb, Ib, Rb)|(L, Sm, Im, Sb, Ib, Rb) > 0

& Φ̃(L, Sm, Im, Sb, Ib, Rb) < 0}, the risk level is low.

5.4 Risk assessments

True Infection Rate (IR) can be determined by testing individual mosquitoes but this

is time-consuming and expensive. Instead, testing sets of pooled mosquitoes of the same

species is an easier and more cost-effective approach. A common practice of testing sets

of pooled mosquitoes is using Minimum infection rate (MIR) to estimate infection rate

(Condotta et al. (2004)). MIR is calculated (Rao and Durvasula (2013), Mullen and Dur-

den (2009), Centers for Disease Control and Prevention (2015b), Public Health Ontario

(2018)):

MIR =
Number of positive pools

Number of mosquitoes tested
× 1000.

It is the simplest estimate and by definition, MIR aims at defining the lower limit of

infection rate. When infection rates are low and/or pool size small, MIR provides good
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estimates of the true infection rate because one makes an assumption that a positive pool

contains only one infected mosquito or the chance of more than one infected individual

in a positive pool is negligible (Centers for Disease Control and Prevention (2015b), Gu

et al. (2004), Walter et al. (1980), Gu et al. (2003)). MIR has been widely used for WNV

by public health and researchers (Centers for Disease Control and Prevention (2015b),

Bernard et al. (2001), Kulasekera et al. (2001), Rutledge et al. (2003), Gu and Novak

(2004), etc).

The basic reproduction number R0 of WNV gives the expected number of new infec-

tions produced by a single infective mosquito or bird when introduced into a susceptible

population, and is used to measure the transmission potential of a disease (van den Driess-

che and Watmough (2002), Bowman et al. (2005), Bacaer (2007), Dietz (1993), etc). The

magnitude of R0 allows one to determine the amount of effort which is necessary either to

prevent an epidemic or to eliminate an infection from a population (Dietz (1993)).

By (5.3), we have known the first term under the square root of R0 represents the

number of susceptible mosquitoes become infected when introducing one infective bird

(denoted as 1Ib0 ), the second term represents the number of bird infections by one infective

mosquito (denoted as 1Im0
). R0 is calculated at disease free equilibrium, that is at initial

time t = 0, all birds and all mosquitoes are susceptible, namely Nb0 = rb
db

= Sb0 and
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Nm0 = Sm0 . Then we can rewrite the basic reproduction number as

R0 =

√√√√1Ib0 bmβm
Sm0

Nb0+A

(µ+ γ + db)

1Im0
bmβb

Sb0
Nb0+A

dm
, (5.1)

5.4.1 Novel risk index Rrisk(t)

Analogously, we develop a novel index serving as an indicator of risk of infection at

any time t. Furthermore, Im(t), Ib(t) are infective mosquitoes and birds at time t respec-

tively, Nb(t) is total number of birds at time t. One susceptible mosquito and bird are

denoted as 1sm and 1sb respectively.

Rrisk(t) =

√√√√Ib(t)bmβm
1sm

Nb(t)+A

(µ+ γ + db)

Im(t)bmβb
1sb

Nb(t)+A

dm
,

=

√
Ib(t)bmβm

(µ+ γ + db)(Nb(t) + A)

Im(t)bmβb
dm(Nb(t) + A)

. (5.2)

Rrisk(t) can be served to describe the expected number of infections distributed to

infect a single susceptible individual, namely to evaluate the potential of an individual

becoming an infection at time t. The first term under the square root represents that one

susceptible mosquito in what manner to become infectious when there are Ib(t) infectious

birds. The second term performs as the potential of a susceptible bird getting infected

when surrounded by Im(t) number infectious mosquitoes. Then the square root provides

the geometric mean for an average individual of both species combined.
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Figure 5.7: Comparison of Rrisk(t) and IR(t)

Here we will compare Rrisk(t) and IR(t) based on model (5.1). Apparently by defini-

tion, IR(t) = Im(t)
Nm(t)

, where Nm(t) is total female mosquito population. We also introduce

WNV infection in the bird population, i.e. proportion of infectious birds PIb(t) = Ib(t)
Nb(t)

.

Fig. 5.7(a) indicates that Rrisk(t) and IR(t) have the same trend to depict the risk

of WNV transmission, that is the risk declines as time goes on. Also, the proportion

of infectious birds PIb(t) has this decreasing trend. In Fig. 5.7(b), the overall trend of

Rrisk(t), same as IR(t), is decreasing. However, at the initial time period, IR(t) declines

directly, while Rrisk(t) increases first, then it begins to decrease, in accordance with the

trend of PIb(t). Facing the situation that the infection rate of mosquitoes mildly decrease

while the percentage of infectious birds increases sharply, it is improper to come to the

conclusion that the risk of WNV infection is decreasing. Hence only the infection rate
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being an indicator of risk is not enough.

By the definition (5.2) and simulation (Fig. 5.7), one can figure out that the novel index

Rrisk(t) reveals the information of the prevalence of WNV infection in both mosquito and

bird populations. Furthermore, rewrite Rrisk(t) in the form

Rrisk(t) =

√
b2
mβmβb

dm(µ+ γ + db)

Im(t)

Nm(t)

Ib(t)

Nb(t) + A

Nm(t)

Nb(t) + A
,

and denote α = b2mβmβb
dm(µ+γ+db)

, rIbh(t) = Ib(t)
Nb(t)+A

and rmh(t) = Nm(t)
Nb(t)+A

, the relationship

between Rrisk(t) and IR(t) is

Rrisk(t) =
√
α · IR(t) · rIbh(t) · rmh(t). (5.3)

For Rrisk(t), IR(t) is used in conjunction with parameter α, the ratio of infectious

birds to total hosts rIbh(t) and the ratio of total female mosquitoes to total hosts rmh(t)

when evaluating local WNV activity patterns. Rrisk(t), a more informative index, can also

serve as a public health measure to evaluate WNV severity.

Usually, public health use MIR to estimate the infection rate IR. Replacing IR(t) in

(5.3) by MIR(t), we obtain a special case

Rrisk(t) =
√
α ·MIR(t) · rIbh(t) · rmh(t). (5.4)
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5.4.2 Risk assessment criteria

Another approach to evaluate the severity of WNV transmission is based on the risk

assessment criteria in Section 5.3.5, we apply the risk assessment criteria to the GTA to

verify the occurrence of the WNV outbreaks. In particular, the criteria is carried out based

on the comprehensive model (5.1) and corresponding Φ̃(L, Sm, Im, Sb, Ib, Rb) in (5.37) is

used. The sign of Φ̃(L, Sm, Im, Sb, Ib, Rb) depends on the values of L, Sm, Im, Sb, Ib and

Rb.

To obtain the sign of Φ̃(L, Sm, Im, Sb, Ib, Rb), the ideal situation is directly substitute

collected data of each compartment. However, this cannot be realized due to the lack

of available data for all compartments. We deal with this case by using ratios among

mosquitoes and birds. Denote Nm : Nb = pmb, L : Nm = plm, Im : Nm = pim,

Ib : Nb = pib and Rb : Nb = prb, then the local stable manifold Ms (5.37) is equivalent to

Φ̃(Nb, pmb, plm, pim, pib, prb) = 0 (5.5)

with

Φ̃(Nb, pmb, plm, pim, pib, prb) (5.6)

= 9.804517882× 10−5 pim plmpmb
2Nb2 − 2.036052047× 103 plm pmbprb Nb

2

+ 3.147302214× 108 pim pmbprb Nb
2 − 1.316222788× 105 prbpmb Nb

2

+ 6.429287425× 10−8 plm
2pmb

2Nb2 − 2.727661919× 1012 pim pmb Nb (5.7)
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+ 0.631944709× 10−2 pim pmb
2Nb2 + 3.21414 pib pim pmbNb

2 − 8.7748186× 105pmbN
2
b

+ 2.098201477× 108 pim pmb Nb
2 + 1.106445065× 10−6 pmb

2Nb2 + 1.8× 107 pib Nb
2

− 4.759512769× 1015 prb
2Nb2 − 6.346017022× 1015 prb Nb

2 − 2.3× 1011 pib Nb

− 1.357368031× 103 plm pmb Nb
2 − 2.115339009× 1015 Nb2 + 2.2× 107 pibprb Nb

2

+ 7.765865647 pim
2pmb

2Nb2 + 1.76457844× 107 plm pmb Nb + 1.7× 10−4 pibpmb Nb
2

+ 1.140726416× 109 pmb Nb + 8.249822128× 1019 prb Nb + 5.499881422× 1019 Nb

+ 3× 10−6 pib plm pmbNb
2 + 3.66040946× 10−8 plm pmb

2Nb2 − 3.574922924× 1023

+O(|plmpmbNb, (1− pim)pmb Nb, pim pmb Nb, (1− pib − prb)Nb, pibNb, prbNb|3).

Usually, the ratio of mosquito population to bird population, the ratio of preadult

mosquitoes to adult mosquitoes and the total population size of bird in a region during

the same time period (such as July) are not change much year. Then we fix these three

variables and obtain the following local stable manifold Ms

Φ̃(pim, pib, prb) = 0 (5.8)

with

Φ̃(pim, pib, prb)

= 2.832571993× 1023pimprb − 3.25491161× 1024prb + 1.078963694× 1023pim

+ 6.989279082× 1021pim
2 − 4.283561492× 1024prb

2 + 1.98× 1016pibprb
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− 6.125136134× 1023 + 9.327153× 1015pib + 2.892726× 1015pibpim . (5.9)

By the Risk Assessment Criteria, whenR0 < 1, we need to check the sign of Φ̃(pim, pib,

prb) (5.9), where both mosquito data as well as bird data is needed. Then we verify the cri-

teria using seven years data from 2002 to 2008 since no bird data is available after 2008. To

use the risk assessment criteria, the results greatly depend on the initial states of variables.

Here, we use the mosquito and bird data in July as the initial values since the increase of

mosquito population noticeably starts in July (Wang et al. (2017)) and infected mosquito

data is first collected in July. The proportion of recovered birds are relatively small (since

vectors begin to increase and are not enough to transmit WNV in July, the infected birds

are relative less, let alone recovered birds), then we assign a very small value for the ratio

of the recoveries birds to the total bird population. Then we use data in July in Fig. 5.8

and the risk assessment criteria to predict the WNV outbreak, where the positive sign of Φ̃

(when R0 < 1) serves as an early warning signal for the WNV outbreaks.

From Fig. 5.8, both bird and mosquito infections in 2002 and 2005 are apparently

more than the other years, the basic reproduction number can be greater than one in other

modellings, directly indicating the occurrence of WNV outbreaks. While for the other

years (2003, 2004, 2006-08), R0 is not enough to be used for early warning of outbreaks,

then predictions need to be made by the sign of Φ̃ based on the second case of the risk

assessment criteria. Here, our model is set up with the basic reproduction R0 < 1, and we
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Figure 5.8: Yearly WNV bird infections and positive mosquito pools in July, Region of

Peel, 2002-2008

will do predictions based on the sign of Φ̃ for all seven years (including 2002 and 2005)

and results is shown by sign function in terms of Φ̃ (Fig. 5.9).

The results indicate the high risk that WNV outbreaks would occur in 2002, 2003

and 2005, which is consistent in the real situations that outbreaks really occurred in these

four years (shown in Fig. 5.10, where mosquito data and bird data is stacked each year

providing a more apparent verification). Hence the risk assessment criteria are a good tool

to predict and serving as an early warning signal for the WNV outbreaks. Even though

the initial infection states in the year 2003, 2004 and 2006 and 2008 are very similar, the

predicted results obtained using the Risk Assessment Criteria are different. Our criteria

not only reflects the dependence on the initial states but also characterizes the mechanism
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Figure 5.9: The sign of Φ̃ using data in July as initial values, Region of Peel, 2002-2008;

red bubble represents Φ̃ > 0 and indicates the risk level of outbreak occurring is high,

green bubble represents Φ̃ < 0 and indicates the risk level of outbreak occurring is low.

Figure 5.10: Yearly WNV bird infections and positive mosquito pools (stacked column),

Region of Peel, 2002-2008
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of outbreaks occurring, its predicted results are accurate and can be regarded as a new

reliable tool in the WNV surveillance program.

Moreover, we apply the risk assessment criteria to all five regions in the GTA and com-

pare the results with corresponding annual MIR from 2002 to 2008 (Fig. 5.11). Usually,

positive mosquitoes are detected and collected in July and can be directly used, with some

exception, such as Halton region’s in 2004. For these cases, the initial values based on

July’s is not enough, the data of a week in which positive mosquitoes are first collected is

used by averaging it. For instance, the first collected positive mosquito data (denoted as

M+H04) in 2004 in Halton was obtained in the third week of August, then the initial value

of positive mosquitoes for Halton region in 2004 is chosen as M+H04/3. Each region

has its own risk assessment criteria due to the difference in abundance and distribution of

vectors and hosts, thus we can compare the results for the same region in different years.

Based on the risk assessment criteria, the positive sign of Φ̃ indicates a high level for the

occurrence of an outbreak, generally in accordance with a larger MIR result correspond-

ingly. There are some exceptions, for the Region of York in 2003, the MIR result and

annual infections (Fig. 5.12(d)) reveal a high WNV intensity, while the risk assessment

criteria result is not. One possible reason is that the lack of initial positive mosquito data

in July and August in 2003 in York leading to this inaccurate indication. In the year of

2007 in the city Toronto, the Region of Halton and the Region of Peel, the results based
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Figure 5.11: The comparison of the results based on risk assessment criteria and yearly

MIR in five regions of the GTA, 2002-2008

on the risk assessment criteria indicate a low risk level for an outbreak occurring, while

the MIR results (compared with other years’ results) are relatively large. To look into the

contradictory results, we present annual infections in these three regions in Fig. 5.12(a)

- Fig. 5.12(c), we obtain that infections in these regions in 2007 are in small numbers,

hence our risk assessment criteria provides more accurate results.
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(a) (b)

(c) (d)

Figure 5.12: Yearly WNV bird infections and positive mosquito pools in the GTA, 2002-

2008.
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6 Conclusions and future work

Mosquito-borne diseases, such as WNV, dengue, and Zika virus, have become a sig-

nificant global health burden for human society. Complex factors, including weather

conditions, anthropogenic land use and vector-virus-host interactions, greatly affect the

mosquito abundance and distribution, and the disease transmission process as well. Thus

studying the mosquito population dynamics and transmission dynamics of MBDs, under-

standing how these factors play roles in the MBDs is of great significance. We use WNV

and Culex mosquitoes (WNV vectors) in the Region of Peel, Ontario, Canada, as an ex-

ample for this research study.

We introduce the background of MBDs, particularly WNV, and current mathematical

modelling of mosquitoes and transmissions in Chapter 1. In Chapter 2, we study single-

species population models for the mosquito and the bird respectively. For mosquitoes, the

blood resources are indispensable for the reproduction, which is worth considering to esti-

mate mosquito abundance. We first summarize the host feeding preferences of mosquitoes,

then we propose a general aquatic-aerial two stages mosquito population model. In the
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model, we take into account the contribution of the mosquito feeding preference to the

oviposition rate and the intraspecific competition among preadult mosquitoes. We ob-

tained that relative high birth rate can ensure the survival of mosquitoes and intraspecific

competition exerts an opposite effect for the growth and development of mosquitoes. For

birds, we summarize the role of birds in the transmission of WNV, in particular, the im-

pacts of bird species, migration and age states on the transmission. To explore the influence

of WNV on bird populations, we build a bird population model considering the horizontal

transmission of WNV and reveal that positive equilibrium exists and is locally stable when

the basic reproduction number is greater than one.

For the model estimating the population size of Culex mosquitoes in Chapter 3, we

define an effective trapping zone of a CDC light trap and propose a model to predict real

mosquito populations in the surrounding area. In our model, we consider the trapping

mechanism of a CDC light trap and collecting procedure and used the trap counts in the

Region of Peel to develop and validate the model. This type of modelling is useful for

predictions of the mosquito population for control measures in public health practice. This

work has also considered the temperature, precipitation, and mosquito feeding preference

factors.

In Chapter 4, we establish single-season WNV transmission dynamical models and

find that moderate temperature and precipitation will increase the potential of the basic
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reproduction number being greater than one, increasing the mosquito population and con-

sequently the potential for an outbreak of WNV. On the contrary, an excess of precipitation

will control the vector population and reduce the peak value of infectious mosquitoes and

birds. A smaller intraspecific competition rate (an indicator of the SWMP properties) leads

to a larger mosquito population and more infectious birds and mosquitoes. This work can

be used to guide WNV programs in local health units where monitoring standing water

and larviciding is often used to control mosquito populations and the spread of WNV.

Based on the WNV transmission model in the previous chapter, we improve and build

compartmental models to investigate backward bifurcation and threshold dynamics for the

WNV outbreaks in Chapter 5. The existence of backward bifurcation reveals that the basic

reproduction number less than one is not enough to prevent the WNV outbreak occurring.

Then we propose new approaches to characterize the potential risk of infections and an

early warning for an outbreak. We develop a novel risk indexRrisk, a more comprehensive

tool compared to infection rate, to evaluate the local WNV activity patterns. In addition,

we set up a risk assessment criteria: the basic reproduction number R0 greater than one

still indicates a high risk level for the occurrence of WNV outbreaks; when R0 is less than

one, there are two possible results as well, that is, the high level or the low level. Whether

the level is high or low is determined by the initial states of vectors and hosts, whether

they enter into the high risk region I or in the low risk region II, in other words, risk levels
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depend on the sign of Φ̃ we established. Then we apply the risk assessment criteria to the

GTA and verify the evaluation results based on the criteria is consistent with MIR results.

In the end, we conclude the entire research dissertation and give some prospective points

for the future work of this research in Chapter 6.

In the dissertation, using the WNV as an example, we have modelled, analyzed, pre-

dicted and controlled the transmission dynamics of mosquito-borne diseases. In addition

to what we have done, there still are some extensions and improvements are worth taking

into account in the future work.

Firstly, besides temperature and precipitation, other factors influence mosquito abun-

dance and WNV transmission. For example, wind patterns, elevation and landscape im-

pact the efficiency of traps, the mosquito abundance as well as the transmission. These

factors will be considered in the model estimating mosquito population in Chapter 2 and

the WNV transmission model in Chapter 3 and Chapter 4 in the future.

Secondly, we will make collaboration with the Wild Life to provide a better estimation

of mosquito populations. When the data of host distribution and the population is avail-

able, we can incorporate bird data as well as traps count data into the mosquito population

model in Chapter 3 to predict true mosquito abundance in different regions. Also, the

model output in Chapter 4 is not validated due to the lack of available infection data for

birds, additional research needs to be conducted in the future to overcome this issue.
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Thirdly, an extension of bird migration such as seasonal migratory movements of birds,

more than just constant migration is worth further investigations in Chapter 2 and Chapter

5. The classification of birds based on their capability of transmitting virus or age states

needs to be considered as well.

Fourthly, we will enhance the collaboration with public health, using our models and

surveillance program data for the predictions and helping them make decisions on the

control of vectors and prevention of diseases. Also, we will use the observed surveillance

data to improve the accuracy of our models.

Lastly, the extending of the mosquito model and transmission models to estimate the

population of other mosquito species such as Anopheles and Aedes species, to study other

mosquito-borne diseases such as Malaria, Zika and Dengue fever can be taken into ac-

count.

188



Bibliography

Abdelrazec, A., Bélair, J., Shan, C., and Zhu, H. (2016). Modeling the spread and control
of dengue with limited public health resources. Mathematical Biosciences, 271:136–
145.

Abdelrazec, A., Lenhart, S., and Zhu, H. (2014). Transmission dynamics of West Nile
virus in mosquitoes and corvids and non-corvids. Journal of Mathematical Biology,
68(6):1553–1582.

Agnew, P., Haussy, C., and Michalakis, Y. (2000). Effects of density and larval competition
on selected life history traits of Culex pipiens quinquefasciatus (Diptera: Culicidae). J.
Med. Entomol, 37(5):732–735.

Agnew, P., Hide, M., Sidobre, C., and Michalakis, Y. (2002). A minimalist approach to
the effects of density-dependent competition on insect life-history traits. Ecological
Entomology, 27(4):396–402.

Amundsen, P.-A., Knudsen, R., and Klemetsen, A. (2007). Intraspecific competition and
density dependence of food consumption and growth in Arctic charr. Journal of Animal
Ecology, 76(1):149–158.

Bacaer, N. (2007). Approximation of the basic reproduction number R0 for vector-
borne diseases with a periodic vector population. Bulletin of Mathematical Biology,
69(3):1067–1091.

Begon, M., Townsend, C. R., and Harper, J. L. (2006). Ecology: from individuals to
ecosystems. Number Sirsi) i9781405111171.

Bennett, R. S., Cress, C. M., Ward, J. M., Firestone, C.-Y., Murphy, B. R., and Whitehead,
S. S. (2008). La Crosse virus infectivity, pathogenesis, and immunogenicity in mice and
monkeys. Virology Journal, 5(1):25.

189



Bernard, K. A., Maffei, J. G., Jones, S. A., Kauffman, E. B., Ebel, G., Dupuis 2nd, A.,
Ngo, K. A., Nicholas, D. C., Young, D. M., Shi, P.-Y., et al. (2001). West Nile virus
infection in birds and mosquitoes, New York State, 2000. Emerging Infectious Diseases,
7(4):679.

Blayneh, K. W., Gumel, A. B., Lenhart, S., and Clayton, T. (2010). Backward bifurcation
and optimal control in transmission dynamics of West Nile virus. Bulletin of Mathemat-
ical Biology, 72(4):1006–1028.

Bowman, C., Gumel, A., van den Driessche, P., Wu, J., and Zhu, H. (2005). A math-
ematical model for assessing control strategies against West Nile virus. Bulletin of
Mathematical Biology, 67(5):1107–1133.

Brown, H. E., Paladini, M., Cook, R. A., Kline, D., Barnard, D., and Fish, D. (2008). Ef-
fectiveness of mosquito traps in measuring species abundance and composition. Journal
of Medical Entomology, 45(3):517–521.

Burkett, D. A., Lee, W. J., Lee, K. W., Kim, H. C., Lee, H. I., Lee, J. S., Shin, E., Wirtz,
R. A., Cho, H. W., Claborn, D. M., et al. (2001). Light, carbon dioxide, and octenol-
baited mosquito trap and host-seeking activity evaluations for mosquitoes in a malarious
area of the Republic of Korea. Journal of the American Mosquito Control Association,
17(3):196–205.

Burkett-Cadena, N. D., Graham, S. P., Hassan, H. K., Guyer, C., Eubanks, M. D., Katholi,
C. R., and Unnasch, T. R. (2008). Blood feeding patterns of potential arbovirus vec-
tors of the genus Culex targeting ectothermic hosts. The American Journal of Tropical
Medicine and Hygiene, 79(5):809–815.

Bustamante, D. M. and Lord, C. C. (2010). Sources of error in the estimation of mosquito
infection rates used to assess risk of arbovirus transmission. The American Journal of
Tropical Medicine and Hygiene, 82(6):1172–1184.

Caillout, K., Robertson, C., Wheeler, D., Komar, N., and Bulluck, L. (2013a). Vector
contact rates on Eastern bluebird nestlings do not indicate West Nile virus transmission
in Henrico County, Virginia, USA. International Journal of Environmental Research
and Public Health, 10(12):6366–6379.

Caillout, K. A., Riggan, A. E., Bulluck, L. P., Carlson, J. C., and Sabo, R. T. (2013b).
Nesting bird “ host funnel ” increases mosquito-bird contact rate. Journal of Medical
Entomology, 50(2):462–466.

190



Campbell, G. L., Marfin, A. A., Lanciotti, R. S., and Gubler, D. J. (2002). West Nile virus.
The Lancet Infectious Diseases, 2(9):519–529.

Caraballo, H. and King, K. (2014). Emergency department management of mosquito-
borne illness: malaria, dengue, and West Nile virus. Emergency Medicine Practice,
16(5):1–23.

Castillo-Chavez, C. and Song, B. (2004). Dynamical models of tuberculosis and their
applications. Mathematical Biosciences and Engineering, 1(2):361–404.

Centers for Disease Control and Prevention (2015a). Mosquito light trap. Available at
https://www.cdc.gov/museum/history/mosquito.html.

Centers for Disease Control and Prevention (2015b). Mosquito surveillance soft-
ware. Available at https://www.cdc.gov/westnile/resourcepages/
mosqsurvsoft.html.

Centers for Disease Control and Prevention (2015c). West Nile virus & dead birds. Avail-
able at https://www.cdc.gov/westnile/faq/deadbirds.html.

Centers for Disease Control and Prevention (2016a). Emerging infectious diseases.
Available at https://wwwnc.cdc.gov/eid/article/22/10/16-1082_
article.

Centers for Disease Control and Prevention (2016b). Other mosquito-borne dis-
eases. Available at https://www.cdc.gov/niosh/topics/outdoor/
mosquito-borne/other.html.

Centers for Disease Control and Prevention (2018). Mosquito-borne diseases. Available
at https://www.cdc.gov/niosh/topics/outdoor/mosquito-borne/
default.html.

Centers for Disease Control and Prevention and others (2015). Species of dead birds
in which West Nile virus has been detected, United States,1999-2012. CDC, Atlanta,
Georgia: http://www. cdc. gov/westnile/resources/pdfs/birdspecies1999-2012. pdf Ac-
cessed, 20.

Chilaka, N., Perkins, E., and Tripet, F. (2012). Visual and olfactory associative learning in
the malaria vector Anopheles gambiae sensu stricto. Malaria Journal, 11(1):27.

Cianci, D., Broek, J. V. D., Caputo, B., Marini, F., Torre, A. D., Heester-
beek, H., and Hartemink, N. (2013). Estimating mosquito population size from
mark–release–recapture data. Journal of Medical Entomology, 50(3):533–542.

191

https://www.cdc.gov/museum/history/mosquito.html
https://www.cdc.gov/westnile/resourcepages/mosqsurvsoft.html
https://www.cdc.gov/westnile/resourcepages/mosqsurvsoft.html
https://www.cdc.gov/westnile/faq/deadbirds.html
https://wwwnc.cdc.gov/eid/article/22/10/16-1082_article
https://wwwnc.cdc.gov/eid/article/22/10/16-1082_article
https://www.cdc.gov/niosh/topics/outdoor/mosquito-borne/other.html
https://www.cdc.gov/niosh/topics/outdoor/mosquito-borne/other.html
https://www.cdc.gov/niosh/topics/outdoor/mosquito-borne/default.html
https://www.cdc.gov/niosh/topics/outdoor/mosquito-borne/default.html


Ciota, A. T., Drummond, C. L., Ruby, M. A., Drobnack, J., Ebel, G. D., and Kramer,
L. D. (2012). Dispersal of Culex mosquitoes (Diptera: Culicidae) from a wastewater
treatment facility. Journal of Medical Entomology, 49(1):35–42.

Condotta, S. A., Hunter, F. F., and Bidochka, M. J. (2004). West Nile virus infection
rates in pooled and individual mosquito samples. Vector-Borne & Zoonotic Diseases,
4(3):198–203.

Cruz-Pacheco, G., Esteva, L., Montaño-Hirose, J. A., and Vargas, C. (2005). Modelling
the dynamics of West Nile Virus. Bulletin of Mathematical Biology, 67(6):1157–1172.

Curtis Dyna-fog (2013). CDC Light Trap 2506 Manual. Available at
http://www.dynafog.com/wp-content/uploads/2015/07/
Light-Trap-2506-Manual-June-12-2013.pdf.

De Meillon, B., Sebastian, A., and Khan, Z. (1967). The duration of egg, larval and
pupal stages of Culex pipiens fatigans in Rangoon, Burma. Bulletin of the World Health
Organization, 36(1):7.

Dietz, K. (1993). The estimation of the basic reproduction number for infectious diseases.
Statistical Methods in Medical Research, 2(1):23–41.

Dodson, B. L. and Rasgon, J. L. (2017). Vector competence of Anopheles and Culex
mosquitoes for Zika virus. PeerJ, 5:e3096.

Dohm, D. J., O’Guinn, M. L., and Turell, M. J. (2002). Effect of environmental temper-
ature on the ability of Culex pipiens (Diptera: Culicidae) to transmit West Nile virus.
Journal of Medical Entomology, 39(1):221–225.

Dusek, R. J., McLean, R. G., Kramer, L. D., Ubico, S. R., II, A. P. D., Ebel, G. D., and
Guptill, S. C. (2009). Prevalence of West Nile virus in migratory birds during spring and
fall migration. American Journal of Tropical Medicine and Hygiene, 81(6):1151–1158.

Edman, J. D. and Taylor, D. J. (1968). Culex nigripalpus: seasonal shift in the bird-
mammal feeding ratio in a mosquito vector of human encephalitis. Science, 161:67–68.

Epopa, P. S., Millogo, A. A., Collins, C. M., North, A., Tripet, F., Benedict, M. Q., and Di-
abate, A. (2017). The use of sequential mark-release-recapture experiments to estimate
population size, survival and dispersal of male mosquitoes of the Anopheles gambiae
complex in Bana, a west African humid Savannah Village. Parasites & Vectors, 10(1).

192

http://www.dynafog.com/wp-content/uploads/2015/07/Light-Trap-2506-Manual-June-12-2013.pdf
http://www.dynafog.com/wp-content/uploads/2015/07/Light-Trap-2506-Manual-June-12-2013.pdf


Epstein, P. R. (2001). West Nile virus and the climate. Journal of Urban Health: Bulletin
of the New York Academy of Medicine, 78(2):367–371.

Fan, G., Liu, J., van den Driessche, P., Wu, J., and Zhu, H. (2010). The impact of matu-
ration delay of mosquitoes on the transmission of West Nile virus. Mathematical Bio-
sciences, 228(2):119–126.

Farajollahi, A., Fonseca, D. M., Kramer, L. D., and Kilpatrick, A. M. (2011). “Bird
biting” mosquitoes and human disease: A review of the role of Culex pipiens complex
mosquitoes in epidemiology. Infection, Genetics and Evolution, 11(7):1577–1585.

Farfán-Ale, J. A., Blitvich, B. J., Loroño-Pino, M. A., Marlenee, N. L., Rosado-Paredes,
E. P., Garcı́a-Rejón, J. E., Flores-Flores, L. F., Chulim-Perera, L., López-Uribe, M.,
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