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Abstract

Most visual crowd counting methods rely on training with labeled data to learn

a mapping between features in the image and the number of people in the scene.

However, the exact nature of this mapping may change as a function of differ-

ent scene and viewing conditions, limiting the ability of such supervised systems

to generalize to novel conditions, and thus preventing broad deployment. Here

I propose an alternative, unsupervised strategy anchored on a 3D simulation that

automatically learns how groups of people appear in the image and adapts to the

signal processing parameters of the current viewing scenario. To implement this

3D strategy, knowledge of the camera parameters is required. Most methods for

automatic camera calibration make assumptions about regularities in scene struc-

ture or motion patterns, which do not always apply. I propose a novel motion-

based approach for recovering camera tilt that does not require tracking. Having

an automatic camera calibration method allows for the implementation of an ac-

curate crowd counting algorithm that reasons in 3D. The system is evaluated on

various datasets and compared against state-of-art methods.
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Chapter 1

Introduction

There is a great amount of research in the field of computer vision devoted to

studying images and videos of isolated objects or humans. Although this is a crit-

ical first step for many computer vision tasks, such as object recognition, tracking

and segmentation, it is important to note that this case is not representative of the

real world. In real world scenarios, humans and objects usually appear in groups.

Hence, studying and implementing models that are able to handle the challenges

of crowds is becoming increasingly essential.

Recently, there has been a growing interest in the computer vision community

in crowd behaviour analysis. The field has a wide range of application domains,

including crowd counting, pedestrian tracking, abnormal activity detection, crowd

management, design of public spaces and graphical crowd simulation. However,

the problem is a highly complex one. With a large number of people in a scene,

the number of simultaneous interactions between those individuals increases. Ad-

ditionally, a number of typical computer vision tasks, such as detection, segmen-

tation and tracking, become hard to perform reliably in a crowded scene due to the
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high level of occlusion and low resolution per individual. With this level of com-

plexity, methods for automated crowd analytics should exploit new techniques

that scale well and take into consideration the unique challenges of crowd scenes.

The ultimate goal of automated crowd analytics is to extract all possible prop-

erties and characteristics of the crowd, e.g. member count, major directions of

motion, degree of coherency among its members, social groups, among others.

Computing each of these properties represents a complex computer vision task on

its own. For my thesis work, I focus on one specific task: crowd counting. The

count of crowd members is a basic and essential piece of information to character-

ize any given crowd regardless of the application domain. Systems that perform

other crowd analysis tasks such as social group identification or anomaly detection

could utilize such knowledge to give a more informative description of a crowd.

Crowd counting is a challenging task mainly due to effects of perspective dis-

tortion, high degree of occlusion and clustering of people. Prior methods proposed

the use of labeled training data to learn the mapping between clusters of people

observed as foreground image blobs and the count in a certain scene. While this

approach might lead to highly accurate results for a given scenario, it is not ex-

pected to generalize well to new scenes with different conditions. To handle fur-

ther complications introduced by occlusion and perspective distortion 3D scene

geometry has to be taken into account. Most prior work uses ’perspective maps’

to account for distance scaling over the image. However, this technique does not

fully account for the occlusion process. Clusters high in the image tend to oc-

clude each other, complicating the mapping between cluster size in the image and

the true count. Here I propose an efficient, fully unsupervised method for crowd

counting that handles the aforementioned issues by applying a simple simulation

2



technique in 3D. Evaluation experiments show that the method achieves state-of-

the-art results, has remarkably low bias and scales easily to denser crowds while

not requiring any supervised training.

Reasoning in 3D requires knowledge about camera pose and parameters. In

a typical scenario, camera roll is small and focal length is known or can be es-

timated, so that the critical remaining unknown is camera tilt. Existing methods

in the literature for camera pose estimation typically rely on the following to re-

cover camera parameters: 1) prior knowledge of static features such as families of

straight parallel lines, curves or orthogonal structure in the scene or 2) detecting

and tracking local features or active agents such as pedestrians and vehicles in the

scene to extract straight line motion trajectories or 3) a combination of both. Here

I show that in the case of crowded scenes relying on such features proves to be

unreliable because 1) structural cues are often not present, confounded by irreg-

ularities or not easily detected due to occlusions and shadows, 2) the assumption

of straight line motion can only be found in a very restricted set of scenarios such

as highway scenes, and 3) successful detection and tracking of objects is often

impossible due to the high degree of occlusion and low resolution per individual

in crowded scenes.

This motivated the first part of my thesis work: developing a novel method

for recovery of camera tilt. The method relies upon simple analysis of low level

motion features, avoiding all dependencies mentioned above. Additionally, it is

completely unsupervised and can therefore be applied without modification to a

wide range of scene conditions. Results show that, where state-of-the-art camera

calibration methods fail, the proposed method accurately recovers camera pose. I

further show that the estimated camera tilt can be used to support an unsupervised
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method for crowd counting, the second contribution of my thesis.

1.1 Document Layout

This thesis is organized as follows. In Chapter 2, I present a novel method for esti-

mating camera pose from motion. An analysis of the camera calibration literature

is given in Section 2.2, highlighting gaps and limitations. I summarize the con-

tributions of my work in Section 2.3. In Section 2.4, I discuss the camera model

and the geometry assumed throughout the algorithm. A detailed description of

the algorithm is given in Section 2.5. In Section 2.6 I present the datasets used

for the experimental evaluation of the proposed method. Performance evaluation

results are described in Section 2.7. In Section 2.8, evaluation results, possible

limitations and future work are discussed.

In Chapter 3 of this thesis I present my work on people count estimation in

crowded scenes. I introduce the problem of crowd counting in Section 3.1 and

put my work in context by analyzing related work in literature in Section 3.2. A

summary of contributions is given in Section 3.3. Section 3.4 gives a detailed de-

scription of the method proposed. I present the datasets used for the experimental

evaluation of the proposed method in Section 3.5. Performance evaluation results

are described in Section 3.6. Limitations and future work of the proposed method

are discussed in Section 3.7.

Finally, I discuss implications of my thesis work as well as identify areas for

future work in Chapter 4.
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Chapter 2

Estimating Camera Pose from

Motion without Tracking

2.1 Introduction

A major challenge for automatic video analytics is the geometric distortion in-

duced by projection to the image, which complicates almost all tasks, including

object detection, velocity estimation and crowd analysis. For many systems, cam-

era roll is small and focal length is known or can be estimated, so that the critical

remaining unknown is camera tilt. If camera tilt can be estimated, imagery can be

rectified to remove the effects of projection, allowing unbiased analysis.
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2.2 Prior Work

2.2.1 Mapping the 2D Image Plane to the 3D World

To perform successful camera calibration, a transformation between 2D coordi-

nates in the image plane and the corresponding 3D real world coordinates is re-

quired. Such transformation is only possible with knowledge of a set of intrinsic

(focal length, scale factors, distortion coefficients, and coordinates of the principal

point) and extrinsic parameters (camera height, pan angle, tilt angle, and roll an-

gle) of the camera system. Typically, intrinsic parameters remain constant over the

period of camera operation, and can therefore be calibrated prior to installation,

with the exception of the focal length, which can be varied to provide different

views of the scene. On the other hand, extrinsic parameters may be changed with

the use of Pan-tilt-zoom (PTZ) cameras. To solve for those parameters, existing

auto-calibration methods compute vanishing points (i.e. points, where parallel

lines in the world meet in the image), which makes the system of equations solv-

able. Those methods differ in the number of vanishing points computed: In theory,

one vanishing point is sufficient, assuming a priori knowledge of the other param-

eters. On the other extreme, some methods compute three vanishing points, to

avoid dependence on known parameters. For the purpose of my thesis, I will cat-

egorize existing auto-calibration algorithms, based on the type of scene features

used to compute vanishing points.

2.2.2 Pose Estimation from Structure in Static Images

Auto-calibration and rectification algorithms typically rely upon prior knowledge

of static features such as families of straight parallel lines, curves [11] or orthogo-
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nal structure [21, 26, 45, 46, 13] in the scene from which vanishing points can be

computed. For those algorithms, successful detection of those structural features

is key to recovering camera pose accurately. However in many situations these

static features are not present, are confounded by irregularities or are not easily

detected due to occlusions and shadows (e.g., 2.1(a)), which results in failure of

this type of methods.

2.2.3 Pose Estimation from Motion Information

An alternative or complementary approach is to use motion information from the

active agents such as pedestrians and vehicles in the scene. This approach has

been applied to traffic analysis. For example, Zhang [49] estimated two vanish-

ing points from vehicle shape and then used motion information to distinguish

between the two corresponding principal axes. Zhang et al [50] detected and

classified moving objects to estimate two horizontal vanishing points from vehi-

cles and a vertical vanishing point from the orientation of pedestrians in the scene.

Dubska et al [16] tracked local feature points to obtain straight motion trajectories

that could be used to estimate one ground plane vanishing point.

Pedestrian motion has also been used for auto-calibration. For example, Kuo

et al [30] estimated camera parameters from sequences of co-planar key-point

features projecting from the main joints of a walking human. However, this ap-

proach has only been demonstrated using motion-capture data; reliable automatic

detection of these key points from surveillance video in crowded scenes would be

challenging. The human tracking approach of Lv et al [33] is potentially more

feasible for real-world scenes as it does not require joint structure to be identified.

However it does still require accurate segmentation of individual human forms
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and identification of their principal axes to estimate vertical, as well as accurate

detection of feet and head positions and tracking over time to estimate the horizon

line. Bose et al [3] reported a more general approach to auto-calibration based on

tracking multiple objects (pedestrians or cars). The method does not require any

form of shape analysis, and hence does not depend upon an exact segmentation

of the moving objects. However, it does require that these objects be tracked over

time, and assumes that the tracked objects are moving at constant speed along

straight trajectories in the scene. Limitations of this category of methods are:

1. The assumption of straight line motion of active agents, which restricts the

application domain to very specific scenarios like highway scenes.

2. Dependence on detection and tracking of objects or local features, which

is a computationally expensive task, but most importantly it can rarely be

performed reliably in crowded scenes, due to occlusions and low resolution

per individuals.

2.3 Summary of Contributions

In this part of my thesis work, I present a novel method for recovering camera

pose, specifically tilt, based on a very simple analysis of the motion field. The

proposed method does not involve explicit computation of vanishing points. To

the best of my knowledge, there has been no prior work done on using low level

motion features to recover camera pose without explicitly searching for orthogo-

nal directions to compute vanishing points. The method is anchored on a relatively

general assumption of zero correlation of speed with position in the direction pro-
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(a)

(b)

(c)

Figure 2.1: a) Sample frame from marathon dataset, b) Corresponding optical flow

field, c) Scatter plot of speed (magnitude of optical flow vectors) vs y coordinate.

(y increases upward.)
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jecting to the vertical axis of the image. Advantages of the proposed approach

include:

1. No dependence on the visibility of regular static structures in the scene.

2. No requirements that moving objects be segmented.

3. No dependence on object shape analysis.

4. No requirement that objects or features be tracked over time.

5. No assumption that objects move in the same direction.

6. No assumption that individual motions are linear or constant speed.

7. No dependence on learned parameters, meaning that the approach can be

applied to a broad range of situations without retraining.

Fig. 2.1 illustrates the idea behind the approach. Despite stationary motion

statistics over the right portion of the ground plane (top), the oblique angle of

the camera induces a projective distortion on the optic flow (center), resulting in

a decline in image speed with height in the image. This statistical relationship

can be captured with a simple affine model (bottom). The strength of this affine

relationship generally increases with the camera tilt angle φ relative to the ground

surface normal (Fig. 2.2). Given an estimate φ̂ of the tilt angle, the optic flow

field can be re-rendered in rectified coordinates and this should result in a reduced

correlation between image speed and height in the image. Thus the tilt angle

can be estimated by gradient descent on the variance in the rectified optic flow

explained by the affine model.

I stress that this algorithm makes no assumption about the azimuthal angle of

the camera relative to the motion in the scene. To verify this, I evaluate perfor-

mance for a variety of motion scenarios: In the first and third scenes of Fig. 2.6,
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image motion is primarily along the y-axis of the camera frame, in the second

scene it is in diverse directions, and in the final scene the dominant motion is at

roughly 20 deg counter-clockwise from the x-axis, i.e., much closer to the x-axis

than the y-axis.

2.4 Geometry

I assume a camera with known focal length, a central principal point, square pixels

and zero skew. (Other values for these parameters could easily be incorporated or

calibrated out if measured in the lab.) I also assume negligible camera roll, which

is reasonable for many installations. In principal, this method could be generalized

to estimate camera roll by searching for the direction in the image that maximizes

the correlation with image speed, but I have not yet explored this possibility.

I assume a planar horizontal ground surface and adopt a right-hand world co-

ordinate system [X, Y, Z] where the Z-axis is in the upward normal direction (Fig.

2.2 a). Without loss of generality, I locate the origin of the world coordinate sys-

tem at the intersection of the optical axis of the camera with the ground plane, and

assume that the x-axis of the image coordinate system aligns with the X axis of

the world coordinate system, so that the y-axis of the image is the projection of

the Y -axis of the world frame.

Under these conditions, a point [X, Y ]T on the ground plane projects to a point

[x, y]T on the image plane according to [20]

λ[x, y, 1]T = H[X, Y, 1]T , (2.1)
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Figure 2.2: a) I seek to estimate the camera tilt angle φ. The light grey lines

demarcate the field of view of the camera. The X axis of the world coordinate

system and the x axis in the image plane are aligned and pointing in the direction

perpendicular to the paper surface. b) Rectified plan view of the ground surface (

φ = 0) seen from a height D.
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where λ is a scaling factor and the homography H is given by

H =


f 0 0

0 f cosφ 0

0 sinφ D

 (2.2)

Here f is the focal length in pixels, D is the distance of the optical centre of

the camera from the ground plane along the optic axis, and φ is the tilt angle of

the camera relative to the ground plane: φ = 0 when the camera points straight

down at the ground surface and increases to π/2 as the camera tilts up toward the

horizon.

Conversely, points in the image can be back projected to the ground plane

using the inverse of this homography, [X, Y, 1]T = λH−1[x, y, 1]T , where

H−1 =


f−1 0 0

0 (f cosφ)−1 0

0 −(fD)−1 tanφ 1
D

 (2.3)

In Euclidean coordinates this backprojection can be written as: X

Y

 =
f/D

1− y/yh

 x

y/ cosφ

 , (2.4)

where yh = f cotφ is the image projection of the horizon.

As a final step, I can apply the homographyH of Eqn. (2.2) with a tilt angle of

φ = 0 to the scene points [X, Y ]T computed using (2.4), transferring these scene

points to image points [xr, yr]
T taken by a “bird’s eye” virtual camera, yielding a

rectified plan view of the ground surface seen from a height D (Figure 2.2 b): xr

yr

 =
1

1− y/yh

 x

y/ cosφ

 (2.5)
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Figure 2.3: Algorithm overview

Taking the time derivative, I can compute the rectified optic flow field:

vr =

 x′r

y′r

 =
1

(1− y/yh)2

 (1− y/yh)x′ + (x/yh)y′

y′/ cosφ

 (2.6)

The key assumption is that the average rectified speed vr = |vr| is invariant

with the vertical image coordinate. Thus an estimate of the tilt angle φ can be

evaluated by measuring the correlation of vr (xr, yr|φ) with yr.

2.5 Algorithm

Figure 2.3 provides an overview of the algorithm. The system estimates the tilt

angle value using an iterative approach. The input to the system are the motion

fields of a sequence of frames. At each iteration, the motion vectors are projected

to the hypothesized rectification plane using the current tilt estimate. Next, the
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correlation of the rectified speeds with the height in the rectified image plane is

measured using a linear regression model. The proportion of variance explained

by the current model is then evaluated as the objective function. Finally a new

estimate for the tilt angle value φ is computed in a gradient descent fashion to

minimize the objective function.

2.5.1 Objective Function

Given an estimate φ̂ of the tilt angle, I can compute the rectified speeds vr
(
xr, yr|φ̂

)
.

To assess correlation with yr I use the simple affine model v̂r = ayr + b and deter-

mine maximum likelihood estimates of the parameters (a, b) by linear regression.

The strength of this correlation is measured by the proportion of variance R2
(
φ̂
)

explained by the model, given the estimated tilt φ̂:

R2
(
φ̂
)

= 1−
E
[
(vr − v̂r)2

]
E
[
(vr − v̄r)2

] , (2.7)

where v̄r is the average rectified speed over the rectified image. I seek the tilt

angle φ∗ that minimizes R2
(
φ̂
)

.

2.5.2 Optimization

The tilt angle φ∗ is estimated by iterative minimization of Eqn. 2.7 using MAT-

LAB’s fminsearch (Nelder-Mead simplex method). In my experiments I repeat

the search from a coarse regular sampling of initial estimates 0 ≤ φ̂ ≤ π/2, se-

lecting the φ∗ that yields the minimum R2. However in practice I find that given

sufficient input data (> 100 frames) the error function is convex and a single

search initiated at φ̂ = π/4 suffices.
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(a) (b)

(c) (d)

Figure 2.4: Analysis of algorithm dependence on key variables, for the highway

dataset. Shading and error bars indicate standard error of the mean. (a-c) show

results using the optic flow algorithm of Xu et al [48]. (a), (b) and (d) show results

for 300-frame sequences. a) Average proportion of variance R2 explained by the

affine model as a function of the optic flow threshold p. b) Average tilt error

of trackless algorithm as a function of the optic flow threshold p. The red dot

indicates the threshold p chosen automatically by the algorithm. c) Average tilt

error of trackless algorithm as a function of the number of video frames analyzed.

d) Average tilt error of trackless algorithm based on the optical flow algorithms of

Xu et al [48] and Drulea & Nedevschi[15].
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2.5.3 Optical Flow Computation

I employ the optical flow algorithm of Xu et al [48]: Fig. 2.1(b) shows an example

for the marathon dataset. Since I am only concerned with motion on the ground

plane, motion vectors above the current estimate of the horizon ŷh = f cot φ̂ are

ignored.

Ground plane motion will generally be sparse and spatially interleaved with

noise due to small environmental motions, camera vibration etc. that does not

correlate with yr and thus could reduce accuracy. This problem can be mitigated

by filtering out all but the largest p% of motion vectors from each image frame:

Fig. 2.5 shows an example for the marathon data set. However, this leaves the

problem of estimating the optimal threshold p.

To avoid supervised learning of this parameter, which may not generalize to

novel scenarios, I employ an adaptive method to select p individually for each

video sequence. In particular, I select the p (0 < p ≤ 100) that maximizes R2(0),

the variance in unrectified image speed v (x, y) explained by correlation with the

vertical image coordinate y (Fig. 2.1(c)). Fig. 2.4(a) shows that for the highway

dataset, the proportion of variance explained peaks when a relatively small frac-

tion (around 4%) of the motion vectors are employed . Fig. 2.4(b) shows that by

this threshold yields nearly minimal error in the tilt angle estimate. Thus by se-

lecting the threshold that maximizes variance explained in the unrectified image,

I adaptively optimize the accuracy of the algorithm.

Dependence on the optic flow method employed is also evaluated (Fig 2.4(d)).

I evaluate the methods of Xu et al [48] and Drulea & Nedevschi[15], both highly

ranked on the Middlebury dataset [2]. While both work reasonably well, I find the

algorithm of Xu et al [48] more accurate for this application and dataset.
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Fig. 2.4(c) shows how accuracy varies as a function of integration time. For

the highway dataset, performance is very good for durations of 50 frames (1.7 sec)

or more.

Figure 2.5: Example optical flow vector field from the marathon dataset, before

(left) and after (right) noise removal. The automatically selected speed threshold

is p=28%.

2.6 Datasets

I evaluate the proposed method on 4 diverse datasets (Fig. 2.6) recorded with

3 different camera/lens systems to assess the generality of the approach: 1) a

highway scene where the moving agents are vehicles, 2) an outdoor campus scene

where the moving agents are pedestrians, 3) an urban marathon scene where the

moving agents are runners and 4) an indoor scene where the moving agents are
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Dataset Focal length (pixels) True tilt angle (deg)

Highway 174 87.8

Outdoor Pedestrian 953 81.0

Marathon 700 76.4

Indoor 584 60.7

Table 2.1: Parameters of the four datasets.

pedestrians. All camera/lens systems were calibrated in the lab using a standard

calibration procedure to determine focal length f (Table 2.2). Each dataset was

partitioned into 5 clips of 300 frames each.

The highway dataset was recorded with a Point Grey Cricket camera equipped

with a wide-angle lens at 30 fps and down-sampled to 275 × 155 pixels. Ground

truth camera tilt angle φ = 87.8 deg was estimated manually from the horizon

image height yh using the relation yh = f cotφ (Eqn. 2.4). The average speed

threshold p over the five independent experiments, selected automatically (Sec-

tion 2.5.3), was 2% for this dataset. Average run time per sequence was 32 sec

(excluding optical flow computation).

The outdoor pedestrian dataset was recorded with a Point Grey Cricket cam-

era equipped with a 16 mm lens at 30 fps. The frames were down-sampled to

320 × 165 pixels. A digital inclinometer was used to measure ground truth tilt

angle: φ = 81.0 degrees. The average speed threshold p over the five indepen-

dent experiments, selected automatically (Section 2.5.3), was 10% for this dataset.

Average run time per sequence was 115 sec (excluding optical flow computation).

The marathon dataset was recorded with a Canon EOS Rebel T3i camera
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equipped with a 40 mm lens at 30 fps. The frames were cropped and down-

sampled to 324× 156 pixels. A digital inclinometer was used to measure ground

truth tilt angle: φ = 76.4 degrees. The average speed threshold p over the five in-

dependent experiments, selected automatically (Section 2.5.3), was 28% for this

dataset. Average run time per sequence was 125 sec (excluding optical flow com-

putation).

The indoor dataset was recorded with a Canon EOS Rebel T3i camera equipped

with a 40 mm lens at 30 fps. The frames were down-sampled to 320 × 182 pix-

els. A digital inclinometer was used to measure ground truth tilt angle: φ = 60.7

degrees. The average speed threshold p over the five independent experiments,

selected automatically (Section 2.5.3), was 5% for this dataset. Average run time

per sequence was 105 sec (excluding optical flow computation).

2.7 Evaluation

2.7.1 Implementation

I employed the optical flow method of Xu et al [48] (code downloaded from www.

cse.cuhk.edu.hk/leojia/projects/flow), with parameters matching

those used by the authors for evaluation on the Middlebury Benchmark: regular-

ization strength: 6, occlusion handling: 1 and large motion: 0. The average run

time for optical flow computation is 45 sec per frame. I implemented the proposed

algorithm in MATLAB and have not yet optimized the code for speed (run times

listed below). All experiments were conducted on a 4-core desktop computer.
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Figure 2.6: Sample frames and example rectifications computed using the pro-

posed trackless method for the highway, outdoor pedestrian, marathon and indoor

datasets. 21



2.7.2 Evaluation & Comparison with Static Methods

Fig. 2.7 shows the quantitative performance of the proposed method on the four

datasets and Fig. 2.6 shows example rectifications based on these estimated tilt

angles. I was able to secure code directly from the authors of three prior meth-

ods that use static features (lines or curves) to estimate vanishing points and tilt

angle [11, 45, 47]; Fig. 2.7 shows the performance of these prior static methods

alongside mine.

Highway Dataset

Mean absolute error for my method was 1.06 deg, much better than the methods

of Tal & Elder and Wildenauer & Hanbury (4.73 deg and 55.28 deg, respectively),

but somewhat worse than the method of Corral-Soto & Elder (0.55 deg), which I

note was designed specifically for highway applications.

The average speed threshold p over the five independent experiments, selected

automatically (Section 2.5.3), was 2% for this dataset. Average run time per se-

quence was 32 sec (excluding optical flow computation).

Outdoor Pedestrian Dataset

Mean absolute error for my method was only 0.46 deg. I note that the proposed

method is highly accurate here despite the substantial variations in the directions

and speeds of motion of the pedestrians in this video, highlighting the fact that

my method does not require that motions of individual agents be similar. The

relatively large errors produced by the prior static methods evaluated (6.53, 3.05,

23.41 deg) presumably reflect the relative sparseness of static regularities in the

scene.
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Figure 2.7: Performance of the proposed method compared with three state-of-

the-art static methods from Corral-Soto & Elder [11], Tal & Elder [45] and Wilde-

nauer & Hanbury [47] on (a) the highway dataset, (b) the outdoor pedestrian

dataset, (c) the marathon dataset and d) the indoor dataset.

The average speed threshold p over the five independent experiments, selected

automatically (Section 2.5.3), was 10% for this dataset. Average run time per

sequence was 115 sec (excluding optical flow computation).
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Marathon Dataset

Mean absolute error for my method was 1.48 deg, substantially better than com-

peting static methods (10.45, 11.35 and 19.99 deg). Again, this superiority reflects

the relatively strong motion signals and sparseness of clear static cues such as par-

allel lines and curves.

The average speed threshold p over the five independent experiments, selected

automatically (Section 2.5.3), was 28% for this dataset. Average run time per

sequence was 125 sec (excluding optical flow computation).

Indoor Dataset

Mean absolute error for my method was 0.68 deg, substantially outperforming

competing static methods (1.45, 28.22 and 6.35 deg). Note that in this dataset

the dominant direction of motion is roughly 20 degrees counterclockwise from

the x-axis of the image. The excellent performance of the proposed algorithm for

this example illustrates the invariance of the method to the dominant direction of

motion.

The average speed threshold p over the five independent experiments, selected

automatically (Section 2.5.3), was 5% for this dataset. Average run time per se-

quence was 105 sec (excluding optical flow computation).

2.7.3 Comparison with Motion-Based Methods

It would be ideal to compare the proposed method with the prior motion-based

methods from Dubska et al [16] and Zhang et al [50] directly on a common dataset

as well. Unfortunately, despite contacting authors I was unable to obtain code or
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Table 2.2: Experimental results of the proposed method on four datasets.

Dataset True tilt angle (deg) p (%) Mean error (deg)

Highway 87.8 2 1.06

Outdoor Pedestrian 81.0 10 0.46

Marathon 76.4 28 1.48

Indoor 60.7 5 0.68

datasets used for either method. The best I can do at this stage is to compare

performance of these prior algorithms on their proprietary datasets, as reported

by the authors, with the performance of the proposed algorithm on my dataset.

(I caution that since there could be systematic differences in the difficulty of the

datasets, this comparison should not be used to formally rank the algorithms.)

Comparison with these prior motion-based methods is further complicated by

the fact that in this prior work the authors did not have ground truth tilt estimates.

Instead, they manually identified point pairs in the image known to lie in a hor-

izontal plane and to be equidistant in the scene, and then computed the average

absolute percentage deviation of the distances in the rectified imagery from their

mean: a more accurate homography estimate should lead to lower average devia-

tion.

Since equidistant horizontal point pairs are not easily identifiable in my pedes-

trian and marathon datasets, attention was restricted to the highway dataset. I

identified 8 point pairs, each pair projecting from fixed points at the same height

on the same vehicle, over 10 consecutive frames. I then projected these points
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Figure 2.8: Performance of the proposed method on the highway dataset com-

pared with two state-of-the-art motion-based methods from Dubska et al [16] and

Zhang et al [50] on different datasets. a) Mean absolute deviation of point pairs

(%), b) Maximum absolute deviation of point pairs (%).

to the rectified image using the estimated homography matrix and measured the

mean absolute deviation of their separation over the 10 frames, as in Dubska et

al [16].

Fig. 2.8 shows mean absolute deviation of distance between point pairs in

rectified imagery for my algorithm on the highway dataset, compared with the

errors reported by Dubska et al [16] and Zhang et al [50] on their respective

datasets. I find that by this measure the proposed method has a mean error of

2.6%, lying between the performance reported by Dubska et al [16] (1.18%) and

that reported by Zhang et al [50] (6%) on their respective datasets. However,

my method appears to have higher reliability, with a maximum error rate of only

3.2%, compared to 5.5% for the method of Dubska et al [16] and 18% for the

26



method of Zhang et al [50]. I emphasize that the proposed method also does not

require explicit tracking or vanishing point estimation, as required by these prior

methods, and thus has potentially lower computational requirements and greater

generality.

2.8 Discussion

The proposed trackless motion-based method for camera tilt estimation was found

to work reliably over four very different camera/lens systems, scenes, active agents

and patterns of motion, with average absolute tilt errors ranging from 0.46 to 1.48

deg. For the highway dataset the static method of Corral-Soto & Elder [11] based

on curve parallelism was found to be slightly more accurate. This dataset rep-

resents an ideal case scenario for the method of Corral-Soto & Elder, where the

family of parallel lane markings are clearly visible. My motion-based method per-

forms almost as well (0.55 deg vs 1.06 deg error) and much better than the other

two state-of-the-art static methods (4.73 deg and 55.28 deg error) I assessed[45,

47] .

For the other three datasets (outdoor pedestrian, marathon and indoor) where

parallel families of lines and curves are either not as clearly visible or occluded

by moving agents, the proposed method outperformed all three methods based on

static structural features [45, 11, 47] by a large margin, highlighting the relative

generality of the proposed approach.

Unfortunately direct comparison of the proposed trackless motion-based method

against prior motion-based methods from Dubska et al [16] and Zhang et al [50]

was not possible due to lack of a common dataset and/or shared code. How-
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ever, informal comparison on different but similar datasets (Fig. 2.8) suggests

that for traffic data, my approach may be comparable to the method of Dubska et

al (higher mean error, lower max error) and much better than the method of Zhang

et al. I also note that these two competing motion-based approaches depend upon

explicit appearance modeling, feature tracking and vanishing point estimation,

and have been tailored specifically to traffic applications. The proposed approach,

on the other hand, works for general dynamic scenes on a ground plane and does

not require explicit tracking or vanishing point estimation.

Just as static methods do poorly when regular static features are sparse, motion-

based methods such as the trackless method proposed here will do less well when

motion is sparse. Characterizing exactly how performance varies with sparsity of

motion remains a topic for future work, however note that the automatic method

for denoising the optic flow field selects as little as 2% of optic flow vectors with

good results, suggesting that dense motion is not necessarily required. Further-

more, in a motion-based method, the quality of the estimate can be improved

continuously over time as additional independent motion vectors are observed,

something that is not possible for static methods. However, since there will always

be some scenes where static methods work best and others where motion-based

methods work best, the ultimate system would likely employ both approaches and

arbitrate between them on a case-by-case basis.

In future work, I intend to characterize the accuracy of the method as a func-

tion of motion density and to extend the method to recover roll angle by searching

for the direction in the image that maximizes the correlation with image speed.

Another goal is to develop compatible methods for estimating focal length, im-

portant for camera installations employing zoom lenses. However this will, I be-
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lieve, entail stronger assumptions on the pattern of motions, for example, that the

average flow field is parallel in the scene.
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Chapter 3

Unsupervised Crowd Counting

3.1 Introduction

Automatic systems for estimating the number of people in a visual scene have

applications in urban planning, transportation, event management, retail, security,

emergency response and disaster management. The problem can be challenging

for a number of reasons: 1) the projected size of people in the scene varies over

the image depending upon camera parameters, not all of which may be known

accurately, 2) inevitable errors in signal processing may lead to partial detection

(Fig. 3.1), 3) people in the scene will often overlap on projection and thus be

detected as a single cluster rather than individuals, 4) due to variations in pose and

distance, detailed features of the human body may not be discriminable, making

it difficult to accurately parse these clusters( Fig. 3.1), and 5) the computational

budget is typically limited by the need to run at frame rate.

Here I propose to meet these challenges by embracing two key principles: 1)

Reasoning in 3D and 2) Unsupervised adaptive processing.
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(a) (b)

Figure 3.1: (a) High density frame from PETS 2009 dataset. (b) Background

subtraction

3.1.1 Reasoning in 3D

Reasoning in 3D is crucial for accurate crowd counting, for two reasons. First,

to produce reliable estimates, stationarity assumptions must be made, and while

such assumptions can be reasonable in scene (e.g., ground plane) coordinates,

they are generally not reasonable in the image, due to the effects of projection.

For example, for a scene where people are uniformly distributed over the ground

plane, their projected size falls and their density typically rises higher in the image

due to perspective projection. Second, the occlusions caused by projection are a

central complication of crowd estimation, and these can only be properly modeled

in 3D.

While prior work has incorporated elements of 3D reasoning (see below), in

most cases this has amounted only to inverse scaling with estimated distance,

which does not adequately handle occlusion. Attempts to incorporate more com-

plete 3D modeling, on the other hand, have suffered from the combinatorial com-
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plexity of considering all possible configurations of people in the scene, ruling out

frame rate deployment. One of my key contributions is to show that the computa-

tionally intensive component of the problem can be solved offline using a simple

sampling technique, limiting run time computations to simple one-shot feature

estimation and linear estimation.

3.1.2 Unsupervised Adaptive Processing

A second key problem is that, due to inevitable errors in assumptions and param-

eter estimates as well as signal processing noise, theoretical predictions of how

people should appear in the image will tend to be systematically biased. For ex-

ample, errors in background subtraction may tend to miss the head and/or feet of

people in the scene, making image segments smaller than predicted.

It is tempting to try to reduce this bias through standard supervised methods.

Indeed, most prior methods use training videos annotated with the number and

usually the location of the people in the scene to learn a regressor that predicts the

number of people in each frame from a collection of image features. The difficulty

is that the statistical relationships learned may be quite specific to the particular

viewing geometry (distance, camera tilt, focal length) and photometric conditions

(illumination, background colours) as well as the signal processing parameters

(camera resolution, noise) of the training data set, and thus may not generalize

well to new scenes.

To avoid this problem, I propose a novel unsupervised adaptive method that

fine-tunes a model for the mapping between people in the scene and observations

in the image. Combining this adaptive method with a novel 3D simulation ap-

proach leads to a fast and accurate crowd estimation algorithm with remarkably
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low bias.

3.2 Prior Work

It is important to be clear on the goal. Some prior work (e.g., [37, 39]), aims

only to report some relative measure of crowd density. Here, I focus on the more

challenging problem of crowd counting, i.e., estimating the absolute number of

people in each frame of the scene. To place my work in context, I focus on two

key issues: reasoning in 3D and unsupervised adaptive processing.

3.2.1 Reasoning in 3D

The importance of accounting for the effects of 3D perspective projection has

long been recognized, however mainly this has consisted of weighting pixels by

‘perspective maps’ that take into account distance scaling over the image. Early

attempts used manually [37, 34] or automatically [32] labelled features to compute

the perspective map, while later methods [41, 4, 10, 9, 19] have tended to use

camera calibration data.

Unfortunately, perspective scaling does not fully account for the complexities

of occlusion: clusters of people, especially when seen higher in the image, tend

to occlude each other (Fig. 3.1), and as a consequence the number of people in

an image cluster can vary in a complex way with the size of the image cluster.

Failing to account for this effect will lead to systematic bias.

Ryan et al. [42] addressed this problem by explicitly incorporating the angle

of the view vector with respect to the ground plane as a predictor of the size of

the crowd within a standard supervised regression framework. However, their
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approach requires annotation of each individual within each frame of the training

dataset, and is subject to the limitations of supervised approaches (see below).

There are also several prior studies that attempt to address the occlusion prob-

lem through a more complete 3D modeling of the scene. Zhao [51] employed

3D human models consisting of four ellipsoids (accounting for head, torso and

legs), matching to detected foreground regions. Because individuals are explicitly

modeled as 3D objects in the scene, the effects of occlusion can be factored in.

However, due to the combinatorial nature of the problem, the method is computa-

tionally intensive, making it infeasible for real-time applications for large crowds.

Moreover, as crowd density increases, the discriminability between different pos-

sible configurations is expected to decline.

Kilambi et al. [27, 28] (also see Fehr et al. [18]) avoided this computational

complexity by modeling image segments as aggregates, back-projecting to head

and ground planes (Fig. 3.2b) to identify the ground plane footprint representing

the 3D extent of the group, and thus properly accounting for occlusion. However,

the method requires labelled training data and supervision to compute the back-

projected area of individual people, and this computation assumes all people to

be of exactly the same height. Estimation of the number of people in a group

further relies on the assumption that individuals in a group are separated by a gap

of exactly one foot. Neither of these assumptions will be correct in practice.

One way of overcoming these limitations is through direct simulation. Dong et

al. [14] used 3D motion capture data of walking humans and rendered the models

to the image to compute an average 2D human shape. They then simulated the im-

age appearance of groups of people in the scene. Aside from the motion capture,

this approach does not require supervision. However, this lack of supervision also
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means that there is no mechanism to account for variations in the appearance of

image segments due to partial failures in background subtraction and noise. Also,

group size was limited to six individuals: it is unclear whether the method could

generalize to larger crowds.

3.2.2 Unsupervised Adaptive Processing

Most prior methods for crowd estimation are supervised [35, 7, 8, 22, 31, 27, 29,

38, 14, 5, 25, 28, 1, 6, 10, 9, 42, 19, 44, 24, 40]. A training dataset is hand-labelled,

at least with the number of people in each frame and usually with their locations

within the frame. Features of the image (e.g., keypoints, blob descriptors) are then

used as predictors and a regressor is learned that can predict the number of people

in a frame. As has been noted previously [42] this approach can be problematic,

as the regressor may learn an appropriate mapping for the training dataset, but

this mapping may not generalize to new scenes, new cameras and new viewing

geometries (e.g., tilt angles).

Acknowledging this problem, a few groups have proposed methods that do

not involve explicit training [36, 41, 4]. The key problem here is clustering and

occlusion in densely crowded scenes. Without supervision, some general principle

must be identified that allows features in a connected cluster or blob in the image

to be mapped to an estimate of the number of people in the cluster.

Celik et al. [4] fit segments in the image with perspective-scaled rectangular

models of fixed size. However this approach is likely to lead to bias, as there is no

way to adjust the model based on biases in the observed data (e.g., missing heads

or feet), and occlusions and clustering are not handled explicitly.

If the trajectories of individuals can be assumed to be independent, small clus-
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ters of features can potentially be tracked over time while each individual is in the

field of view [36]. In this way, temporary clusters formed in the image can be dis-

ambiguated by integration over time. However this approach does not generalize

to dense crowds or social groups, where individuals may walk in close proximity

with very similar trajectories.

Rittscher et al. [41] have attempted to improve individuation within clusters by

using an adaptive mixture model over rectangular shapes approximating individ-

uals within a cluster. The height and width of the shapes are governed by a Gaus-

sian prior, allowing some adaptability. However, the parameters of the prior must

still be selected empirically in advance, reducing generality. Moreover, while the

proposed system was never evaluated on (and likely was not intended for) crowd

counting per se, as for other individuation approaches [36, 51, 31, 14, 44], it is

likely to break down for larger and more dense crowds where occlusions obscure

individual features, and may also become computationally prohibitive for large

crowds.

3.3 Summary of Contributions

In this chapter, I propose an efficient, fully unsupervised method for crowd count-

ing that handles issues of clustering and occlusion by reasoning in 3D. Following

Kilambi et al [27, 28], both perspective scaling and occlusions are accounted for

by projecting to the ground plane. However, rather than using training data to learn

a fixed model of the appearance of an individual in the image and fixing the spac-

ing between individuals, an adaptive method is used to learn a distribution over

the appearance of individuals back-projected to the ground plane. As in Dong et
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al [14], I use a 3D simulation approach to learn, in unsupervised fashion, how to

relate image observations to numbers of people. However, to simplify the analy-

sis the effects of perspective projection are factored out by learning the mapping

from detected segments to numbers of people in ground plane coordinates, and

simpler features of these segments are used that will generalize to dense crowds.

Finally, an adaptive unsupervised method for learning the distribution of individ-

ual appearance will account for signal processing noise and errors, avoiding the

bias that would otherwise result from hardwiring the human model. The method

is fast because the simulation need only be done periodically, as an unsupervised

recalibration, while inference amounts to detection of connected segments (back-

ground subtraction), back-projection of these to form ground plane footprints, ex-

traction of simple features of these footprints, and linear prediction of the number

of people in each group.

To summarize, my primary contributions are:

1. A novel, adaptive, unsupervised method for learning the back-projected ap-

pearance of individuals in the scene.

2. A novel unsupervised 3D simulation method that learns how to map back-

projected segments to numbers of people.

The advantages of the resulting system are:

1. Parameter-free and unsupervised, allowing generalization to arbitrary scenes,

activities, cameras and viewing geometries.

2. Full accounting of the effects of perspective projection and occlusion.

3. Efficient and scalable to arbitrary crowd sizes.
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3.4 Algorithm

3.4.1 Overview

Detection of people in the image is based on background subtraction, as is com-

mon in crowd estimation systems [43]. Analysis of the resulting foreground seg-

ments then unfolds in two stages: an unsupervised learning stage and an infer-

ence stage (Fig. 3.3). For present purposes I assume that internal and external

camera parameters have been fully identified, as is the norm [43]. In practice,

many pan/tilt cameras do not provide motor encoder feedback, however there are

a number of good auto-calibration methods for estimating tilt angle online (e.g.,

[47, 45, 11]) that can be incorporated into the unsupervised learning stage. In

the evaluations (Section 3.6) I compare crowd estimation accuracy based on full

camera pre-calibration with accuracy using the method proposed in Chapter 2 for

camera pose estimation to assess the impact of online calibration errors.

3.4.2 Foreground Segment Detection

I employ the background subtraction algorithm of Elder et al. [17], which is based

on a pixel-wise two-component Gaussian mixture model estimated online using

an approximation of the EM algorithm. The algorithm operates in the 2D colour

subspace spanned by the second and third principal components of the colour

distribution, and thus achieves a degree of insensitivity to shadows. Pixels with

foreground probability greater than 0.5 are labelled as foreground, and segments

are identified as eight-connected foreground regions. Fig. 3.4 shows an example

frame on the indoor pedestrian dataset.

Partial inactivity or colour similarities between foreground and background
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Figure 3.3: Algorithm overview

can lead to fragmentation of single individuals into disconnected image segments

(Fig. 3.5(b)). To correct for this problem, I take advantage of domain constraints

and camera calibration. Specifically all small segments are identified that, when

back-projected to the scene, have vertical subtense less than half a normative hu-

man height of 1.7m. These small segments are considered candidate fragments

and are therefore iteratively dilated until reaching half height. If through dila-

tion a segment has merged with one or more other segments, these segments are

assume to project from the same individual/group and the new merged and di-

lated segment is retained (Fig. 3.5(c)). If no merger has occurred, the segment is

assumed to have no partner fragments and is restored to its original state. Note

that 1) isolated segments and larger segments are unaffected by this selective di-

lation (Fig. 3.5(c)) and 2) nominal height is only used here as a rough bound to

improve segmentation - heights are more accurately modeled in the auto scaling

phase described below.
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Figure 3.4: (a) Sample frame from indoor pedestrian dataset. (b) Background

subtraction result.
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Figure 3.5: Selective dilation to correct for fragmentation.
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3.4.3 Unsupervised Learning

The goal of the unsupervised learning stage of the algorithm is to learn, with-

out labelled training data, how to relate foreground segments in the image to the

number of people in the scene. In my experiments, the unsupervised learning and

inference stages of the algorithm operate on the same sequence of video frames.

(As the method is unsupervised, there is no risk of over-fitting.) In a deployed sys-

tem running continuously, the unsupervised learning stage would only be invoked

periodically to recalibrate the system. The unsupervised learning stage consists

of three sequenced computations: auto-scaling, 3D simulation and feature extrac-

tion.

Auto-Scaling

Assuming that individuals detected in the image can be mapped directly to a single

normative human height in the scene is risky for several reasons. First, human

height varies broadly, especially when children are considered. Second, even the

best background subtraction algorithm will miss some extremal pixels, leading

to segments smaller than predicted, and at other times may include false positive

pixels projecting from shadows, leading to segments larger than predicted. In

prior work this problem is handled by supervised learning, but this is also risky,

as results may not generalize across datasets.

Here I take an unsupervised, adaptive approach based upon the image seg-

ments that have been thus far observed. The strategy of the approach is to identify

segments that are likely to contain only one individual, and then to use these seg-

ments to fine-tune the scaling of the system.

I first compute an upper bound on the 3D height h and width w of each
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Figure 3.6: Example of auto-scaling, using the indoor pedestrian dataset. (a)

Histogram of square root of the segment areas. (b) Plot of the normalized Jarque-

Bera test statistic. (c) Height histogram of image segments below the cutoff point.
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back-projected segment. For segments greater than a normative back-projected

height of 1.7m, I assume that the bottom pixel projects from the ground plane.

For smaller segments, the middle of the segment is assumed to project from the

normative mid-body plane (0.85m height). Then, assuming that all pixels of the

segment project from the same horizontal distance allows us to estimate back-

projected height and width of the segment. Note that the height estimate will

be a loose bound for larger segments projecting from groups of individuals, but

will tend to be a tight bound for small segments projecting from an individual or

part of an individual, and it is these that are most important here (see below). I

then use the square root of the product of height and width
√
hw to represent the

scale of the back-projected segment. The resulting distribution of back-projected

scales (Fig. 3.6(a)) will generally be composed of a mixture of components from

groups of different sizes (number of individuals), but clearly the left part of the

distribution will be dominated by groups of size 1 (singletons). The objective is to

estimate this component of the mixture, in order to scale the whole distribution.

To do this, I appeal to the central limit theorem, and assume that this compo-

nent will be close to normal. Thus the Jarque-Bera test statistic [23] is computed

for subsets of the distribution on a series of intervals [0, s] as the maximum scale

s is varied from 0 to the maximum scale observed. The Jarque-Bera statistic is

essentially a weighted sum of skewness and kurtosis, and thus tends to 0 as the

distribution approaches normality (Fig. 3.6(b)). It can thus be used to find an ap-

propriate upper cutoff point for the singleton distribution. Selecting all segments

below this cutoff allows to compute estimates of the heights for all singletons (Fig.

3.6(c)).

This method for identifying singleton segments will not always be correct:
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there may be some group segments that are only partially detected and fall under

the threshold, while some singleton segments may cast long shadows and exceed

the threshold. However, here I rely only upon the approximate correctness of the

statistics of the singleton density, which will serve as a generative distribution to

sample from in the simulation phase.

3D Simulation

Fig. 3.7 illustrates the 3D simulation process. The fine-tuned distribution of

heights estimated by auto-scaling (Step 1) reflects the portion of the human body

that was successfully detected. In many cases, this will only reflect part of the

full extent of the body, as smaller parts (e.g., head and feet) are often not fully de-

tected. I roughly model this detected portion of the body as a 3D prolate spheroid

(ellipsoid with circular symmetry about the major axis), with a 3:1 ratio of the

vertical major axis to horizontal minor axes. Sampling from the height distribu-

tion thus yields a distribution of ellipsoids of various sizes. In order to simulate

crowds, I can now sample fairly from this distribution, placing each ellipsoid ran-

domly and uniformly over the ground plane (Step 2). Sampled ellipsoids that

intersect with existing ellipsoids are discarded. Since it is not known which por-

tion of the body was successfully detected, all ellipsoids taller than a normative

height of 1.7m are placed on the ground plane, and all ellipsoids less than this

height centred at a mid-body height of 1.7/2 = 0.85m above the ground plane.

For the experiments reported here crowds from n = 1...200 people are simulated,

repeating the simulation 20 times.

In order to relate this to image measurements, these ellipsoids are projected to

the image (Step 3). To simplify this step slightly, the projection is approximated
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Figure 3.7: Simulation.

here as orthographic, so that each ellipsoid projects as a vertical ellipse. (Prior

work suggests that a simple ellipse model can work as well as more complicated

body models [14].) Note that this forward projection stage is crucial to modeling

the occlusion process: ellipsoids representing distinct individuals in the scene may

project to intersecting ellipses in the image, forming larger group segments (Step

4, Fig. 3.8(a)). Both the shape and size of these segments will tend to vary with

their radial position on the ground plane and hence their height in the image. To

factor this variation out, these segments are back-projected to the ground plane,

using an adaptation of the method of Kilambi et al [27, 28] (Fig. 3.2 b).

Specifically, each image segment was partitioned into 10 vertical slices of

equal width. Slices that back-project to less than a normative height of 1.7m

are localized to a point on the ground plane given by horizontal coordinates of

the back-projection of the midpoint of the slice to the mid-body plane (0.85).

For slices that back-project to a height exceeding 1.7m, the top pixel is back-

projected to the head plane at height 1.7m and the bottom pixel is back-projected

to the ground plane. Projecting the top pixel vertically from the head plane to
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Figure 3.8: (a) Image segments formed by occlusions of ellipsoidal models of hu-

man bodies in the simulated scene. (b) Back-projected ground plane footprints.

Width and length of a footprint are calculated relative to the ground plane projec-

tion of the view vector. 47



the ground plane thus delimits a radial slice on the ground plane, and sweeping

through all 10 slices of the image segment traces a sequence of contiguous slices

on the ground plane which together form a polygonal ground plane footprint (Step

5, Fig. 3.8(b)). These footprints are expected to be roughly invariant to the loca-

tion of the group within the scene, and thus variation in the size of the footprint

can be largely attributed to the number of individuals within the group.

Feature Extraction

This 3D simulation is used to learn a simple model relating the size of the ground

plane footprint to the number of people generating it. Here three simple size

features are used : the width w of the footprint in the direction normal to the

ground plane projection of the view vector, the length l of the footprint in the

direction of the ground plane projection of the view vector, and the area A of the

footprint (Fig. 3.8b). The number of individuals in the segment is then predicted

as a linear regression on these three variables. Fig. 3.9 shows the projection of

this regression on the three variables: from these plots it is clear that the footprint

area carries the most information regarding the number of people in the segment.

3.4.4 Inference

Once unsupervised learning is complete, inference is relatively straightforward

and fast. Detected segments are back-projected to the ground plane as in sim-

ulation, and width, length and area features of the ground plane footprints are

computed. These features are then entered into the regression model to compute

the estimated number of people in the segment. Summing over all segments in the

image yields an estimate of the number of people in the frame.
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Figure 3.9: Simulated training data for three variables: (a) area, (b)width and

(c)length.
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3.5 Datasets

Two datasets are used to evaluate the proposed method. The first dataset is an

indoor pedestrian dataset of 170 annotated frames (sample frame shown in Fig.

3.4) recorded with a Canon EOS Rebel T3i camera equipped with a 40mm lens

at 30 fps. The frames were down-sampled to 320 × 182 pixels. The camera/lens

system was calibrated in the lab using a standard calibration procedure. The tripod

level was used to zero the camera roll and a digital inclinometer was used to

accurately measure tilt angle at the scene: φ = 60.7 deg. Camera height was

measured with a tape measure and found to be 10.3m. The number of people per

frame in this dataset ranges from n = 5− 16.

The second dataset is the public PETS 2009 dataset, available at www.cvg.

rdg.ac.uk/PETS2009. I selected this dataset as it is the most commonly used

to evaluate recent crowd estimation algorithms. Specifically, I evaluated on two

sequences of the dataset: 1) View 1 of the S1.L1.13-59 sequence, reporting results

for region of interest R0 defined by the original PETS 2009 challenge. 2) View 1

of the challenging S1.L2.14-06 sequence, which involves a very dense crowd with

high occlusion levels. Results are reported on the R1 region of interest, defined

by the original PETS 2009 challenge. I used the available camera calibration data.

The number of people in these sequences ranges from n = 0− 38 per frame.

3.6 Evaluation

The system was implemented in unoptimized MATLAB code. I am confident the

method will run in real-time when ported to C. All experiments were conducted

on a 4-core desktop computer (3.40 GHz CPU).
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Table 3.1: Summary of performance of the proposed method on three datasets. n̄

denotes the mean ground truth count per frame.

Dataset n̄ MAE MAE (%) Bias Bias (%)

Indoor Pedestrian dataset 9.02 1.04 11.50 0.39 4.30

PETS S1.L1.13-59 15.95 1.97 12.35 -1.2 -7.90

PETS S1.L2.14-06 11.2 2.13 12.2 1.86 9.8

3.6.1 Indoor Pedestrian dataset

Figure 3.10(a) shows the estimated number of people in each frame over time,

compared to ground truth. The method performs well, with a mean absolute error

(MAE) of 1.04 people per frame (11.50%), and a remarkably low bias (mean

signed error) of 0.39 people per frame (4.30%) (Table 3.1). Average runtime for

count estimation was 0.04sec per frame.

I used this dataset to assess the contributions of the three features (width,

length, area) of the ground plane footprints (Table 3.2). Not surprisingly, the

footprint area appears to be most important, but the length and width features also

contribute, at least for this dataset.

I also analyzed the feasibility of using the system in combination with an auto

camera calibration algorithm. The automatic method for estimating tilt angle from

Chapter 2 is employed. The algorithm yielded a tilt estimate for this dataset of

60.02 deg, representing an error of 0.68 deg. Using this biased tilt estimate in-

creased the MAE from 1.04 to 1.19 people per frame, a fairly graceful degrada-

tion. This suggests that the method may be reasonably robust to such errors.
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Figure 3.10: Performance of the proposed algorithm over time. (a) Indoor pedes-

trians dataset. (b) PETS S1.L1.13-59 sequence. (c) PETS S1.L2.14-06 sequence
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Table 3.2: Performance on indoor pedestrian dataset for different combinations of

ground plane footprint features.

Feature MAE (per frame)

Width 1.96

Length 1.83

Area 1.44

Width + Length 1.65

Area + Width 1.4

Area+ Length 1.13

All 1.04

3.6.2 PETS 2009

Figure 3.10(b-c) shows the estimated number of people in each frame over time,

compared to ground truth, and Table 3.1 summarizes performance in terms of

MAE and bias. MAE and bias for PETS S1.L1.13-59 are comparable to the indoor

pedestrian dataset in percentage terms, but somewhat higher for the S1.L2.14-06

dataset. Average runtime for count estimation was 0.31 sec per frame.

Table 3.3 compares the proposed method against state-of-art methods that have

reported accuracy on these PETS datasets. The proposed algorithm outperforms

all prior methods except for Jeong [24] on the first sequence and the supervised

regression method proposed by Conte [9] on both sequences. I note, however,

that Conte’s results involve temporal smoothing of the count. Median temporal

smoothing of my results with a window size of 36 frames also leads to improve-
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Table 3.3: Comparison (MAE per frame) with previous algorithms on two PETS

2009 datasets.

Method S1.L1.13-59 S1.L2.14-06

Albiol [1] 3.86 5.14

Fradi [19] 3.16 2.89

Conte [10] 2.24 4.66

Subburaman [44] 2.08 2.4

Jeong [24] 1.88 –

Conte [9] 1.59 1.99

Proposed method 1.97 2.13

Proposed method + temporal smoothing 1.7 1.9

ment (Table 3.3). More importantly, given its unsupervised nature, I expect that

the proposed method will generalize more readily to a broad range of conditions

(different cameras, tilt angles, illumination etc.). This is already suggested by its

strong performance on both indoor and outdoor datasets.

3.7 Discussion

For accurate crowd understanding, the effects of perspective projection must be

accurately accounted for. Most prior work handles scaling but not the effects of

occlusion. Systems that attempt to model occlusion tend to break down for larger,

denser crowds, require extensive supervised training, and make unreasonable as-

sumptions about the people in the scene. In this chapter I have shown that through
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a periodic 3D recalibrating simulation of the scene, the effects of perspective pro-

jection and occlusion can be accurately accounted for. A key to accuracy is to

exploit the appearance of singletons in the dataset that allow the simulation to be

properly scaled. The result is a highly efficient inference method that does not

require training, has remarkably low bias and scales easily to denser crowds.

One potential limitation of this work is that it requires the observation of one

or more singleton (image segment projecting from a single person). In very dense

crowds, this may not occur. However, I stress that this is only necessary for the

periodic unsupervised learning phase. In extended surveillance scenarios, recali-

bration can be timed to coincide with sparser crowds, automatically detected by

analyzing the distribution of back-projected segment heights.

I see many opportunities to improve the method. In the 3D simulation all

smaller ellipsoids are centered at mid-body height. A more accurate regression

model might be learned by randomizing the vertical offset of these smaller ellip-

soids uniformly between ground plane and head plane contact. I also intend to

relax the prolate spheroid model to allow more general triaxial ellipsoids, learn-

ing (without supervision) a distribution over the three distinct axis dimensions

that best explains the observed singleton image segments. The proposed system

uses width, length and area features of the ground plane footprints as predictors

of the number of people in the segment. I have not systematically explored other

features - there may be additional information in the shape of the footprint that

would improve performance.

Finally, tracking image segments over time would allow counts to be smoothed

independently for each segment and this might yield greater accuracy.
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Chapter 4

Conclusion

There is a growing interest from many application domains such as surveillance,

urban planning, transportation and public management to migrate from laser tech-

nology and LIDAR systems to using cameras equipped with computer vision soft-

ware for accomplishing various surveillance and data collection tasks. This high-

lights the importance of developing computer vision methods that function suc-

cessfully and reliably in real world applications. Specifically, methods that gener-

alize well to different scenarios with minimal assumptions on regularities in struc-

ture, motion patterns and appearance are desirable in that context. While most

surveillance cameras are pan-tilt-zoom cameras the majority are not equipped

with encoders that can inform computer vision algorithms of the current pose

of the camera. Thus auto calibration methods are critical in real world applica-

tions. Those requirements outline the key elements of the proposed work: An

accurate auto calibration algorithm to provide updated camera pose information

coupled with an efficient unsupervised crowd counting method, that generalizes

well to various scenes and conditions. Accordingly, a crucial part of the evaluation
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in Chapter 3 is measuring the effect of employing the proposed auto calibration

method on the counting accuracy. Such systems can be deployed in various pub-

lic places like shopping malls, public transportation stations and sport stadiums

to provide accurate crowd counts. This information is critical for a wide range

of tasks such as enforcing maximum capacity regulations or crowd and disaster

management. Integration with a more general crowd behavior analysis system

will facilitate further tasks such as social analysis on crowds and detecting major

motion patterns.

In this thesis I presented a method for efficient crowd counting that is fully

unsupervised and relies upon occasional 3D simulation of the scene to learn the

mapping between simple features of foreground regions and the count of people.

While most prior methods use perspective maps that correct for distance scaling

but do not fully account for occlusion effects, I propose a framework for modeling

those effects in 3D by projecting the simulated agents to the image plane and

then back-projecting to a footprint region in the ground plane. An algorithm for

automatically adapting to signal processing errors in foreground detection allows

the system to generalize well to different scenarios. Finally, by avoiding detection

and tracking of individual human features the algorithm can easily scale to large

numbers of people.

Utilizing 3D geometry requires knowledge about camera parameters. While

most existing methods for automatic camera calibration rely on structural scene

information, specific motion patterns or object tracking to solve this problem,

those features are not necessarily present in unstructured crowded scenes or can-

not be reliably detected. Here, I present a novel and very general method for re-

covering camera tilt from image motion in an unsupervised manner. Unlike prior
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methods, the proposed algorithm does not depend upon the visibility of regular

static structures in the scene and does not require segmentation, shape analysis or

feature tracking, thus reducing the required computation. This method does not

require that objects move in the same direction or at constant velocities. Rather, it

rests on the much more general assumption of zero correlation of speed with po-

sition in the direction projecting to the vertical axis of the image. A novel method

for automatically and adaptively selecting the optimal subset of motion vectors

generated by the objects moving in the scene means that the algorithm does not

require training and is completely parameter free. This allows the algorithm to be

applied to diverse scenarios without reconfiguration.

4.1 Future Work

In Chapters 2 and 3 I discussed opportunities for improvements to the proposed

methods for camera pose estimation and crowd counting, respectively. Future

work for the former includes extending the method to recover roll angle and devel-

oping complementary methods for focal length estimation. Further improvements

on the crowd counting method include incorporating a more complex spheroid

model, exploring further ground plane footprint features and tracking image seg-

ments over time.

More generally, I see various directions for building up on this work. Cur-

rently, I assume a uniform distribution of people over the ground plane. In reality,

density usually varies across the scene depending upon different factors like the

environment and the social groups within the crowd. Thus the system could be

extended to learn the distribution of people in the scene. This can be used as an
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output of the system to facilitate further crowd analysis tasks such as social group

identification and abnormality detection. Moreover, the learned distribution over

the ground plane could be incorporated into the 3D simulation stage to simulate a

crowd that is more similar to the crowd in the input images.

The auto-calibration method has been evaluated on datasets with different

crowd densities ranging from sparse crowds, e.g. Indoor Pedestrian dataset, to

extremely dense crowds, e.g. Marathon dataset. However, the crowd counting

method has been evaluated on sparse and moderate density crowds. Evaluation

on extremely dense crowd datasets such as the Marathon dataset was difficult due

to the need for ground truth data in the form of people count per frame, which is

a laborious task for images with such large number of people. Additionally, pub-

licly available large scale crowd datasets do not provide focal length and camera

height parameters, which are input to the proposed system. Future work could

include performance evaluation of the proposed system on the Marathon dataset

after obtaining the ground truth data. This will determine the applicability of the

system for massive crowd management tasks.

Finally, integrating the output of the camera pose estimation and the crowd

analysis methods with a more general system for 3D simulation of urban scenes,

e.g. Corral-Soto et al [12], would allow for improved interpretation and visualiza-

tion of scene dynamics.
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