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Abstract 

 

Terrestrial Laser Scanning (TLS) is a ground-based, active imaging method that rapidly 

acquires accurate, highly dense three-dimensional point cloud of object surfaces by laser 

range finding. For fully utilizing its benefits, developing a robust method to classify 

many objects of interests from huge amounts of laser point clouds is urgently required. 

However, classifying massive TLS data faces many challenges, such as complex urban 

scene, partial data acquisition from occlusion. To make an automatic, accurate and robust 

TLS data classification, we present a line-based multi-range asymmetric Conditional 

Random Field algorithm.  

The first contribution is to propose a line-base TLS data classification method. 

In this thesis, we are interested in seven classes: building, roof, pedestrian road (PR), tree, 

low man-made object (LMO), vehicle road (VR), and low vegetation (LV). The line-

based classification is implemented in each scan profile, which follows the line profiling 

nature of laser scanning mechanism. It is rather straightforward to extract lines in each 

scan profile, and the appearance of scanned objects can be characterized using lines. Ten 

conventional local classifiers are tested, including popular generative and discriminative 

classifiers, and experimental results validate that the line-based method can achieve 

satisfying classification performance. However, local classifiers implement labeling task 

on individual line independently of its neighborhood, the inference of which often suffers 

from similar local appearance across different object classes. The second contribution is 

to propose a multi-range asymmetric Conditional Random Field (maCRF) model, which 
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uses object context as post-classification to improve the performance of a local generative 

classifier. The maCRF incorporates appearance, local smoothness constraint, and global 

scene layout regularity together into a probabilistic graphical model. The local 

smoothness enforces that lines in a local area to have the same class label, while scene 

layout favours an asymmetric regularity of spatial arrangement between different object 

classes within long-range, which is considered both in vertical (“above-bellow” relation) 

and horizontal (“front-behind”) directions. The asymmetric regularity allows capturing 

directional spatial arrangement between pairwise objects (e.g. it allows ground is lower 

than building, not vice-versa). The third contribution is to extend the maCRF model by 

adding across scan profile context, which is called Across scan profile Multi-range 

Asymmetric Conditional Random Field (amaCRF) model. Due to the sweeping nature of 

laser scanning, the sequentially acquired TLS data has strong spatial dependency, and the 

across scan profile context can provide more contextual information. The final 

contribution is to propose a sequential classification strategy. Along the sweeping 

direction of laser scanning, amaCRF models were sequentially constructed. By 

dynamically updating posterior probability of common scan profiles, contextual 

information propagates through adjacent scan profiles.  

The proposed methods are finally evaluated using datasets collected at two 

different sites, York Village and York Blvd. And the experimental results validated the 

advantage using multi-range contexts and sequential processing. As line extraction is 

implemented in each scan profile, the line-based method has great potential on real-time 

TLS data classification. Due to the limited hardware condition, implementing the 



 iv 

algorithm in a real-time environment is not available. Thus we simulate the line-based 

real-time classification using off-time TLS data. 
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Chapter 1  

Introduction 

1.1 Problem Domain 

1.1.1 Research Context 

Municipal infrastructure refers to the fundamental facilities and systems that serve for the 

public. Typical infrastructures include public buildings, transportation networks, bridges, 

train/bus stations, education facilities, and hospital service, etc. Urbanization is the global 

trend but the growing urban population brings challenges to municipal infrastructure 

management. The “State of World Population 2014”, published by the United Nations 

Population Fund (UNPF) that infrastructure shortage is a significant problem in 

developing counties, especially those counties with fast population growth (UNPFA, 

2014). Every day, new urban infrastructures are built while existing infrastructures 

deteriorate, which poses a great demand for a sustainable management of municipal 

infrastructure system, including construction, monitoring, and maintenance. A sustainable 

municipal infrastructure management system enables city governments and related civic 

service provides better services to the residences. Many governments have realized the 

significance of a sustainable municipal infrastructure system, and have already taken 

actions, such as Canada’s National Guide to Sustainable Municipal Infrastructure 

(Boudreau and Brynildsen, 2003), and Singapore’s Future Cities Laboratory (FCL) 

(Axhausen, 2011). 
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Risk assessment of infrastructures is one of the key elements of an infrastructure 

management system. A 3D municipal infrastructure system can significantly reduce the 

amount of cognitive effort, achieve a rapid response to plausible risks, and improve the 

efficiency of the decision-making process (Kolbe et al. 2005, Zlatanova 2008). As one of 

essential components of a municipal infrastructure system, 3D urban modeling is a 

crucial work. Recently, 3D photo-realistic urban modeling, especially the 3D building 

modeling has been attracting much attention from photogrammetric and computer vision 

communities as there is an increasing demand for urban modeling applications, such as 

urban planning, augmented reality and individual navigation. In 3D city visualization, the 

same city object needs to be represented with different geometric complexities according 

to users’ request. The Level of Detail (LOD) is usually used to describe the geometric 

complexity of a 3D building, and allows the geometry of objects to be represented in 

varying accuracies and details (Emgard and Zlatanova, 2008). Lee and Nevatia (2003) 

proposed a hierarchical representation structure of 3D building models for 3D urban 

reconstruction, in which the visualization quality of the building model increases when 

LOD level upgrades. The coarsest LOD0 is essentially a 2.5D Digital Terrain Model 

(DTM), and building models in LOD0 do not contain volume. In the LOD1 level, 

building models are referred to as a block with flat roof structures. Both the outer facade 

and roof of the buildings at LOD2 level can be represented with multiple faces. 

Compared with lower-level models, LOD3 goes further by representing more detailed 

facade geometries, such as wall, roof, door, window, sidewall, window sill .etc. The 

LOD4 model completes a LOD3 model by adding interior structures.  
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For modeling realistic facilities, capturing digitized 3D geometric and textual 

information is the first step. Photogrammetry has been and is still used as the main 

method of collecting geo-spatial information of Earth surfaces over the past century. 

Photogrammetry is passive remote sensing technology, and recovers 3D geometric and 

photogrammetric information of real world by matching stereo pair images (Wolf et al., 

2000). Typical products of photogrammetry-based methods include digital elevation 

model (DEM), digital ortho-image model (DOM), digital raster model (DRM), and 

digital linear graph (DLG), which have been widely used for urban planning and 

management. However, the main drawback of photogrammetric workflow is the low 

efficiency in generating dense 3D coordinator from stereoscopic pictures and somtimes-

manual work (Alshawabkeh, Y., 2006). Recently, laser scanning compensates for this 

drawback of photogrammetry by providing direct 3D data and has become a standard tool 

for 3D data collection.  

Airborne laser scanning (ALS) has been used for surveying and mapping since the 

1980s, such as forest surveying (Rutzinger et al., 2008; Vehmas  et al, 2009; Zhang  and 

Sohn, 2010; Kantola et al, 2013), digital surface modeling (Kraus and Pfeifer 1998). 

Since ALS collects data from bird's-eye perspective, it can capture roofs of buildings 

efficiently but only get part of building facade that is essential for LOD3 model. Due to 

close range, high accuracy and cost-effectiveness, Terrestrial Laser Scanning (TLS) has 

been rapidly adopted for collecting massive urban street-view data. According to the 

platform carrying laser scanner, it can be categorized as tripod based (static TLS) or 
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vehicle based (Mobile TLS). Both of them could provide rich geometric information of 

building facades for producing realistic LOD3 city models (Pfeifer and Briese, 2007). 

As the TLS is a relative young technology for infrastructure surveying, many 

problems on both hardware and software need to be solved. Popular research topics 

related with TLS data processing are calibration (Lichti  et al., 2005; Schulz, 2007), 

multiple station registration (Al-Manasir and Fraser, 2006; Dold and Brenner, 2006; 

Barnea and Filin, 2007), geo-referencing (Lichti  et al., 2005; Reshetyuk, 2009), 

integration of ALS and TLS (Böhm and Haala, 2005; Bremer and Sass, 2012), 

segmentation (Boulaassal et al., 2007; Moosmann et al., 2009; Wang and Shan, 2009; 

Aijazi et al, 2013), and classification (Belton and Lichti, 2006; Lim and Suter, 2008; Lim 

and Suter, 2009; Munoz et al., 2009; Pu and Vosselman, 2009; Brodu and Lague, 2013; 

Luo and Sohn, 2013; Luo and Sohn, 2014). 

1.1.2 Problem Statement 

According to spatial entity to label, classification algorithms for TLS data can be 

categorized into three types: point-based (Triebel, et al, 2006; Munoz et al, 2008), line-

based (Manandhar and Shibasaki, 2001; Zhao et al., 2010) and surface-based (Belton and 

Lichti, 2006; Pu and Vosselman, 2009). The point-based method directly labels 

individual laser points. Though both line-based and surface-based methods partition the 

point cloud into homogeneous segments, such as line, plane, and cylinder firstly, and then 

label these segments. Since single laser point does not provide any semantic information 

about the scanned objects; therefore, point-based classification method has higher risk of 

misclassification than line-based classification. Although surface-based method reduces 
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computational cost by reducing the number of spatial entities to be labeled, it is still 

computational expensive in surface segmentation, which requires constructing adjacent 

relationship in 3D space. In contrast, line segmentation is implemented in 2D space. This 

advantage in computational efficiency of line-based method has been approved by (Jiang 

and Bunke, 1994). Indeed, extracting line in profiling data is more straightforward where 

the appearance of scanned objects can be well-characterized using lines. Moreover, as a 

higher level geometric primitive, lines carry more sematic information than single point 

about the scanned objects. Therefore we finally chose lines as geometric primitive for 

TLS data classification. The line-based classification method starts with extracting lines 

in each scan profile and subsequently labels these lines based on features vector. 

Object recognition from massive TLS data still faces many challenges, such as 

complex urban scene, appearance variations, occlusions and various point density with 

range. For instances, the urban street scene is composed of various objects such as 

building facade that can include walls, windows, doors, columns, balconies, etc. 

Appearance variations means the same class could have great variation on appearance, 

for example, different tree species have different shapes (Figure 1.1(a)) and structures 

and building at different locations have different architectural styles (Figure 1.1(b)). In 

IQmulus & TerraMobilita mobile laser scanning data, pedestrian class can be further 

categorized into seven subdivision such as: still pedestrian, walking pedestrian, running 

pedestrian, stroller pedestrian, holding pedestrian, leaning pedestrian and other pedestrian 

(Vallet et al., 2015). 
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Figure 1.1: Examples of objects in terrestrial laser scanning data. Color setting: 

green-tree; brown-building; orange-roof. 

 

Due to the limit of line-of-sight of static laser scanning, some objects are occluded 

by other objects that are closer to the laser scanner, which results in some holes in the 

occluded object. It is observed in Figure 1.1(b) that trees are in front of buildings and thus 

many tree-shape holes are founded in the building area. Occlusion reduces the 

information about the objects of interest and brings problem for further data processing. 

The point density varies with the range between laser scanner and objects. The 

point density decreases when the distance between the object and the laser scanner 

increases. The various point density will make the same type of objects have different 

geometric appearance when the distance changes. 

(a) 

(b) 
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All of problems mentioned above will cause the problem of feature ambiguity, 

which is also called feature overlap. Feature distribution of different classes could 

overlap in the feature space, which results in a non-linear separable classification 

problem(Lalonde et al., 2005). Building classifiers only relying on these features with 

serious ambiguity poses risk of misclassification (Trappenberg and Back, 2000).  

A popular solution to solve the problem of feature ambiguity is applying object 

context, or context for short, which can be defined as dependencies or correlation among 

spatial entities (such as points, lines, or surfaces) in a scene. With context, a spatial entity 

is perceived associated with its surrounding neighbors rather than independently. 

Classifiers that do not consider context are called local classifier and those considering 

context are called context based classifiers. Markov Random Field (MRF) was proposed 

by Clifford (1990), and is a commonly used context based model. The MRF model has 

been approved to be effective on laser scanning data classification (Anguelov et al., 2005; 

Triebel et al., 2006; Munoz et al., 2008; Zhang and Sohn; Häselich et al., 2011). However, 

MRF can only maximize the local label homogeneity between adjacent entities, but fails 

to capture those relations at global level. For example, MRF can model the relations as 

“the building is likely to be neighbor with the building”, but is unable to express 

interactions between different objects, such as “the building is above the ground but 

below the roof”. Therefore, a MRF based method is probably to produce an over-

smoothness (minority objects are misclassified as the class that its surrounding majority 

objects are) classification result (Schindler, 2012). 
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To avoid the over-smoothness problem, the global object scene layout is usually 

considered. The scene layout corresponds to the relative locations of objects in a scene, 

and assumes that image (or a point cloud) is not a random collection of independent 

pixels (or points), but follows some rules on spatial arrangement. With the prior 

knowledge on scene layout, it is expected to estimate what types of objects could be 

above or below building, and so on. The scene layout can be modeled as a co-occurrence 

matrix, but it is more frequently modeled as data-dependant interaction potential function 

in a CRF model. Many achievements has been made on applying scene layout for object 

recognition from images (Winn and Shotton, 2006; Heesch and Petrou, 2010; Jahangiri et 

al., 2010; Ding et al., 2014). But just a few publications focus on applying scene layout 

on TLS data classification. Pu and Vosselman (2009) applied manually defined scene 

layout rules on classifying TLS data. Although such rule-based method is easily 

implemented and achieved satisfying classification result, but, it cannot cover all the rules 

that govern object layout, let alone conditions behind these rules.  

 All contexts mentioned above, local smoothness and scene layout provide 

contextual information on different scales. Each single context contains partial contextual 

information, so relying only on a single context could be risky as “part of the evidence is 

spent to specify the model” (Leamer, 1978). It is promising to combine all types of 

contextual information together in one CRF model.  
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1.2 Research Objectives 

The main objective of this thesis is to develop an automatic, accurate and robust 

classification algorithm for TLS data processing. Accordingly, the specific objectives are 

as follows: 

1. Develop a line-based TLS data classification algorithm. We will explore the 

potential of lines as the geometric primitive for TLS data classification. The lines 

extraction is based on the “line profiling” nature of laser scanning. Each scan 

profile is considered as a stream of sequentially observed laser points, and those 

neighboring points that have small range difference were merged into a line. The 

line is the highest level geometric primitive that can be extracted from profiling 

data, so that the line primitives are expected to be optimal for characterizing street 

objects and gaining computational benefits. As line extraction is implemented 

within each scan profile, it is also suitable for a real-time point cloud processing. 

2. Enhance classification accuracy using multi-range contexts. As mentioned 

previously, complex urban scene, appearance variations, occlusions and various 

point density with range can result in the problem of features ambiguity. Relying 

only on these features with ambiguity, conventional local classifiers cannot 

properly identify the boundaries between classes. To improve the classification 

performance of local classifier, multi-range (short range and long range) contexts 

are introduced. The short range context imposes local smoothness constraint that 

neighboring lines are likely to have the same class label. While the long range 

context imposes scene layout regularity. The scene layout indicates spatial 
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arrangements of objects in the space, both in vertical (“above-below” relation) 

and horizontal (“front-behind”) directions. Moreover, local smoothness constraint 

is also considered between lines at adjacent scan profiles, which makes lines gain 

additional contextual information.  

3. Enhance classification accuracy using context propagation.  The acquisition of 

laser scanning data can be regarded as the process that a set of vertical scan 

profiles are sequentially obtained along the azimuth direction. Thus, object can be 

viewed as “growing” along the direction that laser scanner sweeps, and so the 

class label also can be propagated in the spatial domain. To make the contextual 

information propagate from one scan profile to other scan profiles that far away, a 

sequential processing can be used. Each time, posterior of the previous multi-

range based classifier is used as association term of the next multi-range based, so 

that posterior probability is dynamically updated and confidence gets stronger and 

stronger. 

1.3 Methodology Overview  

In this thesis, we are interested in classifying static terrestrial laser scanning data. The 

raw data we get from the laser scanner include 3D coordinates (X, Y, Z), range, azimuth 

angle and zenith angle. Line is used as the primitive entity of TLS data classification. The 

whole TLS data was firstly split into a set of vertical scan profiles according to azimuth 

angle. Points in each scan profile were further segmented into a set of lines based on 

range analysis (Manandhar and Shibasaki, 2001) and the Douglas-Peucker algorithm 

(Hershberger and Snoeyink, 1992). Then multi-scale features were extracted for each 
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line, including local appearance, circle- based and column-based features. Then the 

Principle Component Analysis (Krzanowski, 2000) was applied to reduce the feature 

dimension. To validate the effectiveness of line based TLS data classification, both 

generative and discriminative classifiers were tested, including Naïve Bayes (Bishop, 

2006), Multivariate Gaussian (Bishop, 2006), Gaussian Mixture Model (Bishop, 2006), 

K-Nearest Neighbor (Bishop, 2006), Logistic Regression (Menard, S., 2002), Support 

Vector Machine (Burges, 1998), Artificial Neural Network (Bendiktsson et al., 1990), 

Decision Tree (Quinlan, 1986), and two Decision Tree based ensembles, Random Forest 

(Breiman, 2001) and Adaptive Boosting (Freund et al., 1995).  

In order to overcome the problem of feature ambiguities in local classifiers, multi-

range contexts along scan profile were used, including short range context that enforces 

local smoothness, as well as the long range vertical and horizontal context that provide 

priori information of scene-layout compatibility. The three types of adjacent relations of 

lines were defined with the assistant of a grid system. At first, the scan profile was 

projected into 2D space (XY-Z) and then the 2D space was quantized in a grid along the 

Z and XY directions, with cell size of 0.5m by 0.5m. Neighbor searching of a line is 

based on neighboring relations of cells. In particular, we adopted an asymmetric 

interaction potential to capture directional scene layout (e.g. ground is lower than 

building, not vice-versa). To integrate context into a classification problem, Conditional 

Random Filed (Lafferty et al., 2001) was used. Finally all the three different contexts are 

integrated together in the multi-range asymmetric CRF (maCRF) model. To compare the 
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effect of different types of contexts and validate the advantage of multi-range context, 

three single range CRF models were also constructed.   

The maCRF was also extended to across scan profiles, which is called across scan 

profile multi-range asymmetric CRF (amaCRF). The amaCRF graph was built on three 

consecutive scan profiles; and four types edges are considered, short range, long range 

vertical and horizontal, as well as across scan profile edge. To make the contextual 

information propagate from one scan profile to other scan profiles that indirectly connect 

with it, a sequential processing was used (amaCRF+). Each time, posterior of the 

previous amaCRF classifier is used as association term of the next amaCRF, so that 

posterior probability is dynamically updated and confidence gets stronger and stronger. 

 There are two types of parameters in each of the five CRF models: parameters in 

each potential term, and parameters weighting the relative influence of potential terms. 

Learning all of the parameters simultaneously in each CRF models is still a challenge; 

thus, parameter learning was divided into two stages. At first, parameters in association 

and each interaction terms were learned individually, following which the weights of 

association and interaction terms were learned using Stochastic Gradient Descent 

(Vishwanathan et al., 2006). Given learned parameters, the loopy belief propagation (Frey 

et al., 1998), a variant of belief propagation (BP), was used for inference; and the final 

class label was selected by maxizing node belief. 

Finally the proposed classifier was tested on several TLS data collected in York 

Village, Toronto. The performance of classification was evaluated both qualitatively and 

quantitatively. Quantitative measure includes confusion matrix, overall accuracy, 
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precision, recall and F1-score. To track how different types of context affect the 

classification result, one representative scan profile was selected for comparative analysis. 

In order to examine which classes are sensitive to which type of context, label transition 

analysis was analyzed, which is based on comparing label change from local classifier to 

CRF model. 

To test the whether the function of multi-range context is dependent on 

association terms, both output of GMM and SVM were used as association term. To 

validate that the algorithm is not only work on a specific scene, another TLS data were 

tested, collected at York Blvd, Toronto.  

1.4 Outline 

Chapter 2: We present literature review on mechanism of terrestrial laser scanning 

technology and popular classification methods. Comparison of various classification 

methods are discussed, including rule-based methods verses machine learning methods, 

generative classifiers verses discriminative classifiers, local classifiers verses context 

based graphical models, MRFs verses CRFs. In particular, the information loss 

challenges in TLS data classification and potential of scene layout for enhancing 

classification performance is discussed. 

Chapter 3: At first, data prepossessing for line-based classification will be 

introduced, including technique characteristics of the experimental laser scanner, data 

collection, data preprocessing, line segment extraction, and feature generation. Principle, 

learning and inference of three generative classifiers and seven discriminative classifiers 
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are presented. Finally, the ten classifiers are tested on TLS data collected at York Village, 

and performances of these classifiers are compared.  

Chapter 4: We propose a multi-range asymmetric CRF model (maCRF) to 

enhance classification performance. Limitation of local classifier is discussed first using 

the experimental result of GMM for example. Then three types of object context within 

along scan profile are exploited: short range context that enforces local smoothness, as 

well as long range vertical and horizontal context that provide priori information of scene 

layout compatibility of objects. Three single range CRF models and the integrated multi-

range asymmetric CRF model are presented. The output of GMM is used as association 

term of the four CRF models. Performances of the four CRF models are evaluated using 

the same experimental data, and compared with the results of GMM classifier. 

Chapter 5: The maCRF model is extended from only along scan profile contexts 

to the across scan profile context (amaCRF). Furthermore, a sequential knowledge 

propagation method (amaCRF+) is proposed to make contextual information propagate 

through adjacent scan profiles. To validate that the multi-range context CRF model is not 

sensitive to the association term, output of GMM (generative) was replaced with SVM 

(discriminative). To validate that the multi-range context CRF model is not sensitive to 

dataset, TLS data collected at a different site, York Blvd, was also tested. 

Chapter 6: conclusions of this study and directions of future works. 



 15 

Chapter 2  

Background 

2.1 Terrestrial Laser Scanning Technology 

2.1.1 Laser Scanning Mapping 

Since the first laser instrument for distance measurement was invented in 1966, laser 

scanning has been the standard for a wide range of applications (Heritage and Large, 

2009). LiDAR, which stands for Light Detection and Ranging, is an active remote 

sensing technology for detecting the surrounding environment. Laser scanning is an 

effective way of capturing surface information of targeted objects. Compared with 

traditional surveying and mapping technologies, laser scanning mapping provides 

advantages like high accuracy, fast collection and cost-efficiency. It has been widely used 

for civil surveying and mapping, such as high-resolution topographic mapping (Kraus 

and Pfeifer 1998), various infrastructure modeling (Kim and Sohn, 2010; Shapovalov et 

al., 2010) and forest studies (Rutzinger et al., 2008; Vehmas  et al, 2009; Zhang and Sohn, 

2010) , etc.  

A typical laser scanning system consists of a laser scanner, and some additional 

onboard equipment for positioning and navigation, such as an onboard Global Position 

System (GPS) and Inertial Navigation System (INS) system (Wehr and Lohr, 1999). The 

GPS is used to translate laser system coordinates to the global geographic coordinates. 

The INS is used to estimate the attitudes of a moving rigid body by measuring the angular 

velocities. The laser scanner sends out laser pulses to a targeted region and then receives 
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signal reflected by the surface it encounters. By comparing the sending and reflected 

signal, the range between laser scanner and the object of interest can be calculated. To get 

the 3D coordinates of objects, the range value needs to be combined with position and 

orientation, from GPS and INS respectively. This set of points with coordinates is usually 

called “point cloud”.  

The ranging technologies using a laser can be classified into two groups: phase 

comparison and time pulse method (Shan and Toth, 2009). In the phase comparison 

method, the scanning system transmits a continuous wave (CW) of laser radiation. The 

ranges between the laser scanner and objects are determined by comparing the 

transmitted and received wave patterns. The laser ranging system using a CW is usually 

used in terrestrial LiDAR systems aiming to measure relatively short distances. The 

drawback of the CW system is that the phase difference between reflected and emitted 

signals is measured by comparing them, but the integer number of wavelengths cannot be 

determined by the signal difference. It is known as the ambiguity resolution problem, 

which is similar to the GPS carrier-phase ambiguity problem. In modern systems, the 

problem is solved by making many changes to the wavelength (Shan and Toth, 2009). 

Second, ‘time pulse method’ transmits discrete pulses instead of the CW and records time 

difference between transmitted and reflected pulses to determine the distance for the 

round trip (Baltsavias, 1999; Wehr and Lohr, 1999). Usually, when the pulse is reflected 

from the specific targets such as grounds, buildings, and trees, the received pulses whose 

energy is higher than a predetermined threshold value can be detected. The detected pulse 

is recorded against the time between the signal emission and its reception in a graph, 
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which is known as the waveform. Since the speed of light is accurately known, the 

accuracy of the laser range is dominantly affected by the quality of the time 

measurement.  

In the 1980s, NASA launched the first laser altimetry system, called Airborne 

Topographic Mapper, while the first commercial airborne LiDAR system was developed 

by 1995 at Optech Incorporation, Canada. In recent years, with the continuing 

improvement in accuracy and density of laser measurement, more accurate positioning 

and navigation system, as well as more advanced solutions for data processing, laser 

scanning has showed its potential in surveying and mapping (Vosselman and Maas, 

2010).  

2.1.2 Introduction of Terrestrial Laser Scanning 

A laser scanner put on the platform of an airplane is called an airborne laser scanner 

(ALS). Due to rapid, accurate and dense data acquisition, ALS has been widely applied 

for DEM modeling (Kraus and Pfeifer 1998), forest inventory investigation (Rutzinger et 

al., 2008; Vehmas  et al, 2009; Zhang  and Sohn, 2010; Kantola et al, 2013), 3D power 

line modeling (Kim and Sohn, 2010), 3D city modeling (Shapovalov et al., 2010). There 

is an increasing demand for fine 3D urban object modelling, which aims to capture full 

geometric details of objects, such as roof, façade, even the interior structure. However, 

ALS collects data from the bird’s eye view, and cannot completely cover details at the 

ground level, like building facades. Therefore, the ground-based terrestrial laser scanning 

(TLS) might be able to provide complementary measurements for ALS, by placing the 

laser scanner on the top of a tripod or a moving vehicle. Because of its high level of 
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surveying accuracy, terrestrial laser scanning is feasible for all kinds of detailed 3D 

documentation, such as digital factory, virtual reality, architecture, civic engineering and 

culture heritage, plant design and automation systems.   

A laser scanner sends out signals toward a specific direction and receives the 

reflected signal, so only one point is detected at a time. To capture a broad view, the laser 

scanner changes beam emitting direction to sweep through the whole targeted area; laser 

beam direction change can be achieved by a system of rotating mirror or rotating the laser 

source itself (Vosselman and Maas, 2010). However, due to the limited view of static 

laser scanning, the background region is occluded by the foreground objects. This 

occlusion prevents the targeted area from being completely scanned, and poses a big 

challenge for object recognition.  

The terrestrial laser scanner used in this research is RIEGL LMS Z-390i, which 

uses technology of TOF. RIEGL LMS Z-390i is a long range TLS scanner and its range 

varies between 1.5 m to 400 m. The system of rotating mirror is a two-axis system and 

allows measurement conducted simultaneously both along vertical and horizontal 

direction. The field of view covers 360 degrees horizontally and 80 degrees vertically. 

The minimum horizontal and vertical angular stepwidths are both 0.002 degrees. Table 

2.1 presents some technical specifications of the device (Riegl, 2010).  

 

 

 



 19 

Table 2.1: Technical specifications of RIEGL LMS Z-390i 

 RIEGL LMS Z-390i 

Measurement principle Time of flight 

Range 1.5m – 400m 

Acquisition rate 11000 pts/sec 

Horizontal FOV  360 degrees 

Vertical FOV  80 degrees 

Angular stepwidth 0.002 degrees 

 

The scanner is controlled by RiSCAN PRO software, which provides complete 

data collection services, including sensor configuration, data acquisition, visualization, 

and manipulation. Direct measurements for each laser return include range, horizontal 

angles, and vertical angles. The RiSCAN PRO software is able to automatically calculate 

3D coordinates from these direct measurements. Finally, data collected by the sensor is 

transferred to a computer via USB connection. 

2.1.3 Terrestrial Laser Scanning Data Classification 

With the development of laser scanning and related technology, TLS has been rapidly 

adopted for urban street data acquisition. Classification is a necessary step for further 

application, but classifying such complex urban street scenes in an automated manner 

still remains as a challenging vision task. According to the primitive spatial entity, TLS 

data classification can be categorized into point-based classification (Triebel, et al, 2006; 

Munoz et al, 2008), line-based classification (Manandhar and Shibasaki, 2001; Zhao et 
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al., 2010; Hu and Ye, 2013) and surface-based classification (Belton and Lichti, 2007; Pu 

and Vosselman, 2009).  

As regard the features used for classification, commonly used features include 

spectral features and geometric features. Spectral features provide information on 

physical properties of objects. Intensity is typical spectral information; it is dependent on 

reflectivity and scattering characteristics of object surface (Pfeifer et al., 2007). Imagery 

from an attached camera also can provide additional spectral features; it usually needs to 

be registered with the point clouds (Forkuo and King, 2004). However, the laser scanner 

we used has a problem of outputting intensity, so this research relies purely on geometric 

information that is derived from 3D coordinates of point clouds. 

Geometric feature can be extracted based only on a single spatial entity (e.g., 

point, line, and surface) without considering its neighborhood. Another type of feature is 

neighborhood-based feature, which provides contextual information. The neighborhood 

can be selected by searching neighbors in a pre-defined region (Niemeyer, et al., 2012; 

Kim and Sohn, 2010), or k nearest neighbors (Munoz et al., 2008; Niemeyer et al., 2011, 

Schmidt et al., 2012) are popular methods. Given the neighborhood, geometric features 

can be calculated, such as eigenvalue based features (Belton and Lichti, 2006), hough 

transformation based features (Kim and Sohn, 2010), point density based features 

(Rutzinger et al, 2008), and features based projected 2D space (Weinmann et al., 2013).   

When features extraction is done, classifiers can be built based on these features. 

There are two primary classification strategies, rule-based classification and machine 

learning. 
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2.1.3.1 Rule Based Classification 

Rule based methods usually implement classification by converting prior expert 

knowledge to simple “if this, then that” clause (Forlani et al., 2006; Goulette et al., 2006; 

Pu and Vosselman, 2009; Lehtomäki et al., 2010; Aijazi et al., 2013). Forlani et al. (2006) 

applied a set of hierarchically predefined rules to classify segmented laser scanning data 

into bare terrain, building, vegetation, courtyard, and water from ALS data; these rules 

were based on geometric and topological properties (e.g., regions exceeding a size of 

200000 m
2
 were classified as terrain). Goulette et al. (2006) detected ground from 

vehicle-based TLS data by assuming that ground points correspond to the peak of 

histogram of vertical coordinates. After removing ground, building and tree were then 

recognized by detecting peaks in the histogram of horizontal coordinates. Pu and 

Vosselman (2009) manually defined classification rules based on point segments’ 

characteristics, such as size, position, orientation, and topological relations. In Lehtomäki 

et al. (2010), vertical pole-like objects were detected by fitting circle and arc models from 

horizontal slices of point clouds. Candidate circles can be classified as pole only if they 

fulfil all requirements on length, shape, orientation, etc. Authors claimed that thresholds 

they used need to be adjusted according to the real data. Aijazi et al. (2013) classified 

super-voxels into ground and other five non-ground objects using both geometrical 

models (e.g., roads represent a low flat plane, while the buildings are represented as large 

vertical blocks) and predefined rules (e.g., barycenters of tree and vegetation are greater 

than geometrical centers of them).  
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These rule based methods have many advantages: they are easily designed and 

implemented; the inference rules can be modified and updated according to real data; 

they do not require labeled training data. However, classification performance of rule 

based methods is highly dependent on the choice of features and thresholds; thus rule 

makers should have sufficient prior knowledge about the target classes. Unfortunately, 

rule makers often cannot discover all the rules that govern objects, let alone the various 

conditions behind these rules. In contrast, machine learning is able to learn classification 

rules automatically from labeled data; they also can be implemented and updated easily. 

2.1.3.2 Machine Learning  

Machine learning based laser scanning classification has attracted more and more 

attention over recent years. Supervised classification method is one of the most popular 

machine learning strategies and has been widely applied for object recognition. 

Supervised methods learn statistical rules automatically from labeled training data, and 

then generalize these rules on unseen data (Kotsiantis, 2007). Supervised methods can be 

categorized into “generative classifiers” and “discriminative classifiers”. Generative 

classifiers model joint distributions of class label and features and provide rigorous 

framework to combine prior knowledge and observed data. Generative classifiers can 

freely generate new labeled instances according to these joint distributions. Many 

generative classifiers have been used for laser scanning data classification, such as Naïve 

Bayes (Premebida et al., 2009; Posner et al., 2009), Gaussian Mixture Model (Charaniya 

et al., 2004; Lalonde et al., 2006; Vandapel et al., 2004; Luo and Sohn, 2013), and 

Bayesian Network (Brunn and Weidner, 1997).  
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 The Naïve Bayes classifier makes the assumption that each attribute of the feature 

vector is independent, and the likelihood is modeled as the product of class conditional 

probability of each attribute (Premebida et al., 2009), which is often modeled using 

Gaussian distribution. However, the class conditional probability is usually very complex, 

so single Gaussian distribution cannot fit it well. An alternative is Gaussian Mixture 

Model (GMM), which decomposes a distribution using linear combination of several 

Gaussian distributions (Charaniya et al., 2004; Lalonde et al., 2006). Parameters in the 

GMM are usually estimated using the classic Expectation Maximization (EM) algorithm 

(Dempster et al., 1977). If given sufficient expert knowledge on the classification 

problem domain, Bayesian Network is a proper choice; it models direct dependencies 

and local distributions between variables (Brunn and Weidner, 1997).  

 On the other hand, the “discriminative classifiers” are concerned with finding the 

boundaries between different classes, and directly model the posterior probability. 

Discriminative classifiers, such as k-Nearest Neighbour (Vehmas et al., 2009; 

Golovinskiy et al., 2009), Logistic Regression (Vehmas et al., 2009; Saxena et al., 2008), 

Support Vector Machine (Posner et al., 2007; Nüchter and Hertzberg, 2008; Golovinskiy 

et al., 2009; Himmelsbach et al., 2009; Brodu and Lague; 2012), Decision tree 

(Matikainen et al, 2007), Neural Network (Nguyen et al., 2005; Priestnall et al., 2000; 

Prokhorov, 2009) have been applied for laser scanning data classification.  

 K-nearest neighbour is a non-parametric method and assigns to a new instance 

with the majority class of its k nearest training samples (Cover and Hart, 1967). Nearest 

neighbour methods are easy to implement, but they are rather sensitive to the training 
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data (Vehmas et al., 2009), and choice of the number of neighbors (Golovinskiy et al., 

2009). Logistic regression is a basic parametric method for binary classification and uses 

logistic transformation to make the relationship between the posterior probability and 

linear combination of features (Hosmer and Lemeshow, 2004; Saxena et al., 2008). More 

recently, Support Vector Machines (SVM) attracts more attention as an alternative for 

laser scanning data classification (Posner et al., 2007; Nüchter and Hertzberg, 2008; 

Golovinskiy et al., 2009; Himmelsbach et al., 2009; Brodu and Lague; 2012).The 

principle of SVM is maximizing the margin, which is defined as the shortest distance 

from the separating hyperplane to the closest positive (negative) example (Burges, 1998). 

However, the linear decision boundary found by the classic linear SVM has risk of 

misclassification if the dataset is not linearly separable, thus kernel function is often used 

to find a non-linear separating hyperplane by mapping original features into a new high-

dimension space (Wang, 2005). An Artificial Neural Networks (ANN) is a computational 

model inspired by the mechanism of the human neurons. It is comprised of densely 

interconnected adaptive simple processing elements (called artificial neurons or nodes), 

which are capable of performing massively parallel computations for data processing and 

knowledge representation. Variants of ANN, such as Hopfield Neural Network (HNN) 

and Recurrent Neural Network (RNN) have shown its potential in classifying laser 

scanning data (Basheer and Hajmeer, 2000; Prokhorov, 2009).  

Recently, more attention has been turned to ensemble learning (Drucker et al, 

1994), which increase the accuracy of single classifier by combining results of some 

weak classifiers (Galar et al., 2012). Commonly used ensemble classifiers can be 
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categorized into bagging and boosting. In Breiman (1996), the concept of bootstrap 

aggregation was introduced, and the strategy using bootstrap to generate weak classifiers 

is called bagging. Random forest is a typical bagging method that constructs a set of 

decision trees using bootstrap. In addition to resampling, candidate features for splitting 

at each node are also randomly chosen, which increases independency of trees (Liaw and 

Wiener, 2002). Random forest has achieved good prediction result in urban scene 

classification (Chehata et al., 2009), power line corridor recognition (Kim and Sohn, 

2010), forest type classification (Kantola et al., 2013) from laser scanning data. Instead of 

randomly sampling training data and combining classifiers with equal vote as the bagging 

method, the boosting method uses a weighted sample to focus learning on those samples 

that misclassified by previous weak classifiers, and finally combines results of weak 

classifiers using weighted vote (Freund et al., 1999). The adaptive boosting (Adaboost) is 

a typical boosting model, and has been applied to classify laser scanning data (Lodha et 

al., 2007).  

2.2 Context Based Object Recognition 

The machine learning based methods mentioned in section 2.1 are called local classifier 

because they only use appearance features, without considering relations between objects.  

Appearance variation, occlusion, various point density with range, all of which cause the 

problem of feature ambiguity. Relying only on these features with ambiguity, local 

classifiers have risk of misclassification.  

Contextual information, or context for short, has been proved to be able to remove 

misclassification errors of local classifiers by considering relations of objects. Strat 
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(1993) defined the context as any and all information that may influence the way a scene 

and the objects within it are perceived. Therefore, data collected for the same object using 

different sensors, time of data collection, attributes of local region, and global scene 

layout of objects are all parts of context. The context can be defined at visual perception 

level and objective statistical level. Visual perception is the ability to interpret the 

surrounding environment by processing information that is contained in visible light; 

illusions (such as the Muller-Lyer illusion) and Stroop phenomenon are typical 

modalities of visual perceptual context (Toussaint, 1978). Meanwhile, the statistical 

context is defined under an elegant probabilistic framework (Song, 1999). In this 

research, we utilized the statistical method to model context.  

2.2.1 Object Context 

Object context in this research is indicates dependencies or correlations among entities 

(line) in a scene. With context, a line is perceived associated with its surrounding 

neighbors rather than independently. Galleguillos and Belongie (2010) categorized the 

statistical context used for object recognition into three types: semantic (probability), 

spatial (position) and scale (size).  

Semantic context indicates the occurrence probability that an object can be found 

in a specific scene but not others. Early studies on semantic context mainly focused on 

manually-made rules, but current research prefers to extract context automatically from 

labeled training data. The symmetric, nonnegative co-occurrence matrix is a typical form 

of semantic context. Each entry of the co-occurrence matrix represents the number of 

times that a given class occurs in a particular relation to another another class. 
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Rabinovich et al. (2007) used this type of co-occurrence matrix among segment labels to 

enhance classification performance. Soh and Tsatsoulis (1999) defined the gray-level 

spatial dependence over pixels using a gray-level co-occurrence matrix (GLCM), where 

each entry P(i,j) of the GLCM corresponds  with the number of co-occurrence of the pair 

of grey level i and j at a distance of d.  

Spatial context specifies the likelihood of finding an object at some position. The 

spatial context can be defined based on absolute position (Shotton et al., 2006; Shotton et 

al., 2009; Bo et al., 2011; Liu et al., 2011; Zitnick et al., 2013) or relative position (Gould 

et al., 2013; Zitnick et al., 2013) in a scene. Shotton et al. (2006) encoded the probability 

of a class occurs at the specific location in the image as the form of a look-up table. 

Gould et al. (2013) used non-parametric relative location maps over super-pixels as a 

global feature, which not only allows modeling simple relative location relations (above, 

beside, or enclosed), but also complex relationships, such as both sky and car are found 

above road, but car tends to be much closer than sky. Zitnick et al. (2013) incorporated 

both absolute location prior and relative location prior in their probabilistic model.  

Scale context refers to prior information about the most likely sizes at which 

objects might appear in the scene (Torralba, 2003). Meta-data (e.g. position, orientation, 

geometric horizon, and map) of cameras is able to generate hypothesis about the scene in 

which object’s configurations are consistent with a global context (Strat and Fischler, 

1991). Scale context is the hardest relation to access, since it requires more detailed 

information about the objects in the scene (Galleguillos and Belongie, 2010).   
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Actually, the boundaries between different types of context are not strictly defined. 

Most of publication we reviewed above perhaps used one or two explicit types of context. 

A critical contribution of this research is exploiting scene layout of object to improve 

classification; the scene layout can be sematic context or spatial context. While images 

have scaling problem because object size varies with the focal length, the TLS scanner 

captures direct 3D coordinate of target objects; thus, the scaling context is of no benefit 

and was not considered.  

2.2.2 Scene Layout Prior 

The scene layout corresponds to the relative locations of objects in a scene. An image (or 

a point cloud) is not a random collection of independent pixels (or points), but follows 

some rules on spatial arrangement. The spatial arrangement of objects in urban 

environment is rather clear and strict, e.g. roof is on the top of building facade, and 

building is behind of tree. With the prior knowledge on scene layout, it is expect to 

estimate what types of objects could be above or below building, and so on. 

Many achievements have been made on applying scene layout for object 

recognition from images (Winn and Shotton, 2006; Heesch and Petrou, 2010; Jahangiri et 

al., 2010; Ding et al., 2014). Winn and Shotton (2006) modeled scene layout 

(above/bellow/left/right) over pixels using asymmetric pairwise potential. In Gould et al. 

(2008), layout of objects was modeled as relative location probability maps over pixels, 

which were based on the first-stage classification using appearance-based feature; and the 

final label prediction was made by combining appearance-based feature and contextual 

features extracted from relative location probability maps. Heesch and Petrou (2010) was 
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interested in modeling the probability distribution over labels for a segmented region 

given labels of its six local neighboring regions: above, bellow, left, right, as well as 

regions containing and being contained by the current region. Jahangiri et al. (2010) 

incorporated five different scene layout relations between segmented region pairs in one 

probabilistic model, including relative vertical and horizontal orientation, containment 

relation, and the ratio of width and height. In Desai et al. (2011), an image was 

represented as a collection of overlapping windows at multiple scales, and spatial relation 

between these windows was considered, such as above, below, overlapping, next-to, near, 

and far. Label layout filter (LLF) was proposed by Ding et al. (2014) to model the class 

distribution behavior and visual context appearance of labels over multi-scale segmented 

regions, such as location distribution of each class in the image, or the relative distance 

and orientation between two classes. The LLF combines label compatibility, spatial 

closeness (distance), and feature similarity on all pairs of pixels from the image scene in 

one potential term in forms of appearance kernel and smoothness kernel.  

However, not too many was done on applying scene-layout to classify laser point 

cloud. Pu and Vosselman (2009) manually defined object’s layout based on size, 

position, orientation, etc., from human knowledge and then apply these predefined rules 

on classifying TLS data. As it is mentioned above, although such rule based method is 

easily implemented and achieved satisfying classification result, it cannot cover all the 

rules that govern object layout, let alone conditions behind these rules. Instead, we used 

supervised training to learn scene layout rules automatically from labeled training data. 
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In this research, the scene layout specifies the relative location of lines in both the 

vertical and horizontal directions. The vertical scene layout was considered an “above-

below” relation, such as building is bellow roof but above the pedestrian road. The 

horizontal scene layout was modeled as a “front-behind” relation, with respect to the 

distance between lines and laser scanner center, such as tree is in front of building, but 

behind of vehicle road. 

2.3 Probabilistic Graphical Model 

There exist two methods to utilize contextual information in a classification, contextual 

features and contextual classifiers. Contextual features are usually derived from a local or 

global neighborhood surrounding the interest region that is being analyzed (Haralick et 

al., 2013). Contextual features could be extracted directly from unlabeled data (Kim and 

Sohn, 2010; Niemeyer, et al., 2012), or based on an initial classification result that relies 

only on appearance features (Gould et al., 2008; Jahangiri et al., 2010). Contextual 

features are finally combined with appearance features to make a final decision using any 

classifier. Instead of modeling contextual information as features, contextual classifiers 

incorporate contextual information directly into a probabilistic graphical model.   

2.3.1 Probabilistic Graphical Model 

Probabilistic graphical model, or graphical model in short, gives a multivariate statistical 

modeling based on both the graph theory and probability theory (Koller and Friedman, 

2009). By considering dependency of variables, the graphical model greatly simplifies 

the design of a complex probabilistic system, while the probability theory models 
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dependency of variables using potential functions. Thus, a graphical model refers to a 

family of probability distributions associated with the graph that can be parameterized by 

graph factorization. It has been widely applied to many fields, such as image processing, 

social network analysis, bioinformatics, marketing analysis, etc.  

There are two elements in a graph, nodes and edges. The nodes in the graph are 

random variables, which can be discrete (take one of predefined finite number of values) 

or continuous (take one of infinite number of values). As classification is a problem to 

predict states of a discrete variable, all graphical models reviewed in this thesis are 

discrete graphical models. Edge represents the statistical dependencies between random 

variables. These dependencies could be directed or undirected, corresponding 

respectively with directed graph and undirected graph. Directed graph is consists of many 

subsets of nodes based on “parent-child” relations, which can be modeled using 

conditional probabilities. Typical directed graph models includes Bayesian Network, 

Hidden Markov Model (HMM), etc. Based on the idea of causality, directed graphical 

models have a simple causal interpretation (Pearl, 2000); however, if the some variables 

related with causality are not observed, an analysis of directed graphical models 

involving only the observed variables can be highly misleading (Andersson, et al., 1999). 

The undirected graphical model is targeted to model the problem given little causal 

structure. This thesis only focuses on discussion of undirected graphical model. 

2.3.2 Markov Random Field 

Undirected graphical model is also known as Markov Random Field (Clifford, 1990). Let 

G(V, E) be an undirected graph, where V is the set of nodes, which corresponds to 



 32 

random variable Y, and E is the set of edges. The existence of an edge e=(vi, vj ) indicates 

a dependency relation between two random variable vi, vj, and the absence of an edge 

between two nodes implies that they are conditionally independent given all other 

random variables in the graph (Wallach, 2004). Clique is the basic subset of the 

undirected graph graph and nodes inside a clique are completely connected. Let C denote 

a collection of cliques of the graph, let ψc denote a nonnegative potential function for a 

given clique c. According to the Hammersley-Clifford theorem (Hammersley and 

Clifford, 1971), if a random field Y has the local Markov property, p(Y) can be written as 

a Gibbs distribution 
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where Z is a normalization term, which is obtained by summing the product of the 

potential function over the collection of cliques C.  

There exist many publication on apply MRF for laser scanning data classification 

(Anguelov et al., 2005; Triebel et al., 2006; Munoz et al., 2008; Zhang and Sohn, 2010; 

Häselich et al., 2011). Wellington et al. (2005) classified vehicle-based lasser scanning 

data into ground and obstacle using MRF with a prior on smooth ground and class 

continuity. Zhang and Sohn (2010) formulated detecting single tree from ALS data as a 

problem of energy minimization using MRF. In Häselich et al. (2011), 3D laser data was 

segmented into a 2D grid first, and then applied MRF to enforce a local smoothness 

(2.1) 
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constraint. The Potts model is usually used as the interaction potential to encourage 

adjacent points to have the same class label (Häselich et al., 2011). However, the Potts 

model is set constantly and restricted only to the class labels. Therefore, a MRF based 

method is probably to produce an over-smoothness classification result. Schindler (2012) 

did detailed experimental comparison on classifiers with and without smoothness 

assumption and found that smoothness prior improved the classification accuracy up to 

33% in presented data, but also confirmed that all smoothness based methods had over-

smoothness effect.  

A variant of MRF, Associative Markov network (AMN) has been recently studied 

for classifying laser scanning data. In AMN model, the pairwise potential is set as a 

contrast-sensitive Potts model, value of homogeneous relation is not 1 but can be a 

function of edge features, and pairwise potential between different classes is still set to 0 

(Anguelov et al., 2005; Triebel et al., 2006; Munoz et al., 2008). Because interaction 

potential is associated with feature vector, it can reduce the risk of over-smoothness more 

or less.  But the same as Potts model based MRF model, it still fails to capture the 

relations that neighboring nodes have different classes. For example, they can model the 

relations as “the building is likely to be neighbor with the roof”, but is unable to express 

interactions between different objects, such as “the building is likely to be neighbor with 

the roof but lower than roof”. By capturing dependencies between different labels and 

features simultaneously, the restriction of MRF is overcome by Conditional Random 

Field (CRF), which allows interaction potential terms conditioned on class label as well 

as global observations data (Kumar and Hebert, 2006). 
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2.3.3 Conditional Random Field 

The Conditional Random Filed (CRF) is an undirected graphical model that was firstly 

proposed by Lafferty et al. (2001) to labelling sequence data. CRF model has shown its 

confidence in text mining (Lafferty et al., 2001; Pang and Lee, 2008), image processing 

(Kumar and Hebert, 2003; He, et al., 2004), and biomedical science (Settles, 2004).  

As a discriminative model, instead of modeling the joint probability, CRF directly 

models the conditional distribution over class label Y give observation X. Lafferty et al. 

(2001) defined the conditional probability of a CRF model as a normalized product of 

potential functions, 
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where ψc is potential function, which defines the compatibility among variables for a 

given clique c. The larger the potential value is, the more confidence the configuration 

gets. Compared with the potential function of MRF, CRF designs potential function as a 

data-dependent function (Kumar and Hebert, 2003; He, et al., 2004). If the maximal 

clique number is two, it is called pairwise potential; while if more than two, it is called 

high-order potential, examples of which can be found in (Munoz et al., 2009) and 

(Wegner et al, 2013). In this research, we only consider pairwise potential. There are two 

types of potential functions in a pairwise CRF model, node potentials and pairwise 

potential.  

(2.2) 



 35 

Parameters of potential functions of a CRF are usually unknown, and can be 

learned from a training data. Parameter learning of a CRF refers to the procedure of 

recovering model parameters that best fit the training data. Various methods have been 

used for training CRF, including maximum log-likelohood (Vishwanathan et al., 2006), 

maximum pseudo likelihood (Liao, 2006), and Logitboost Based Training (Vail et al., 

2007). The inference of a CRF refers to computing the marginal distributions of each 

hidden variables or Maximum A-Posterior given parameters and observations. Common 

inference methods for CRF include Loopy Belief Propagation (Frey et al., 1998), and 

Markov Chain Monte Carlo (Liao, 2006).  

Recently, many works on classifying laser scanning point using CRFs have been 

reported. Munoz et al. (2008) classified mobile laser data into five classes, wire, 

pole/trunk, scatter, ground and facade using feature-dependant pairwise potential, which 

is named Directional Associative Markov Networks (Directional AMN). Munoz et al. 

(2009) used a high-order CRF model, which further improved classification performance 

by the previous Directional AMN model. Shapovalov et al. (2010) classified airborne 

laser scanning data using non-associative Markov Network, in which the interaction term 

is modeled using Naïve Bayes classifier and so it is able to capture all types of relations 

between classes. Experiment results of (Niemeyer et al., 2011) validated the advantage of 

CRF over MRF on classifying Airborne LiDAR data; the flat-roofed part that MRF failed 

to detect was exactly extracted by the proposed CRF nearly without error.  

However, these aforementioned CRF models only consider local context between 

closely neighboring points or segments, which could still mislead incorrect smooth label 
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configuration. Moreover, close-range neighbor searching perhaps fail when the data is 

partially observed. Thus, considering both regional and global context can be a solution 

to overcome this limitation. He et al. (2004) firstly proposed a multi-scale CRF model for 

image recognition, which used a multilayer perceptual fashion, modeling local, regional 

and global label compatibilities. Lim and Suter (2008) and Lim and Suter 

(2009) proposed multi-scale Conditional Random Fields to classify 3D outdoor terrestrial 

laser scanning, and the multi-scale contexts include connections between points within 

each super-voxel, and connections between super-voxels.  

2.4 Chapter Summary 

Object recognition from massive TLS data still faces many challenges, such as 

appearance variations, occlusions, various point density with range, which cause the 

problem of feature Ambiguity. Relying only on these features with ambiguity, local 

classifiers have risk of misclassification. Object context has shown its potential to 

improve the classification performance by considering the label interactions of 

neighboring objects, such as local context and global context. Scene layout is a type of 

global context and provides information on spatial arrangement of object in the space; 

however, automatically learning the scene layout of objects from terrestrial laser scanning 

data is still problem. Moreover, there is a need to combing local and global context in a 

probabilistic graphical model.  
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Chapter 3  

Line-based TLS Data Classification 

This chapter presents a line-based TLS data classification method. Existing methods on 

TLS data classification using different spatial entities and the advantage of line-based 

method will be discussed at the beginning of this chapter. Afterwards, the workflow of 

line-based TLS data classification is presented in section 3.1 and 3.2. The entire TLS was 

firstly split into a set of vertical scan profiles and then line segments were extracted in 

each scan profile. Two types of features were extracted for line-based classification: local 

features and contextual features. In order to validate the effectiveness of line-based TLS 

classification, both generative and discriminative classifiers were tested. Ten classifiers 

were designed, including Naïve Bayes (NB), Multivariate Gaussian (MG), Gaussian 

Mixture Model(GMM), K-Nearest Neighbor (KNN), Logistic Regression (LR), Support 

Vector Machine (SVM), Artificial Neural Network (ANN), Decision Tree (DT), and two 

Decision Tree based ensembles, Random Forest (RF) and Adaptive Boosting (AdaBoost). 

These classifier were then evaluated using TLS data collected in the residence regions of 

York University, Toronto. The performance of these classifiers was then evaluated both 

qualitatively and quantitatively. Quantitative measurements include confusion matrix, 

accuracy, precision, recall and F1-score. The experimental results show that all classifiers 

were efficient for line-based TLS data classification and achieved satisfying accuracy. 

Limitations of these classifiers are also discussed in the end.  
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3.1 Line-based Classification 

According to spatial entity to label, classification methods for TLS data can be 

categorised into three types: point-based (Triebel, et al, 2006; Munoz et al, 2008), line-

based (Manandhar and Shibasaki, 2001; Zhao et al., 2010) and surface-based (Belton and 

Lichti, 2006; Pu and Vosselman, 2009). The point-based method directly labels 

individual laser points; meanwhile both line-based and surface-based methods partition 

the point cloud into homogeneous segments firstly, such as line, plane, and cylinder, and 

then label these segments. Since a TLS scanner collects data by rapidly generating 2D 

profile scans of objects, the appearance of scanned objects can be characterized using 

lines in each scan profile. Therefore it is rather straightforward to extract lines and 

construct line adjacent graph in each scan profile. The line-based classification method 

starts with extracting line segments in each scan profile and subsequently labels these line 

segments based on linear features vector. 

3.1.1 Motivation of Line-based Classification 

Compared with single laser point, the line segment is higher-level geometric primitive 

and carries more semantic information; thus point-based method is not considered in this 

thesis. Compared with surface-based method, the line-based method is computational 

efficient for massive TLS data classification. Although surface-based method reduces 

computational cost by reducing the number of spatial entities to be labeled, segmenting 

large amounts of point clouds into surfaces still requires constructing adjacent 

relationship over points. Therefore, searching and storing neighborhood information 

needs a large amount of memory and produces a high computational load. These 
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techniques are not efficient for massive TLS data processing, let alone real time 

processing. In contrast, line-based method utilises the profiling nature of the laser 

scanning data. This advantage in computational efficiency has been approved by (Jiang 

and Bunke, 1994), in which line segments were extracted for range data processing. 

Moreover, most of objects can be well characterized using lines in each vertical scan 

profile. Lastly, because of the high point density, lines can be easily extracted from 

terrestrial laser scanning data.  

Many efforts have been made on line segment extraction from laser scanning data 

classification. Axelsson (1999) divided ALS scan profile into line segments based on 

second derivatives analysis, and classified them using knowledge-based method. In 

Manandhar and Shibasaki (2001), objects with smooth surface, such as building and 

ground, were detected from TLS data by extracting horizontal and vertical line segments 

using range analysis. Hebel and Stilla (2008) detected building facade and roof from ALS 

data by extracting straight line segments using Random sample consensus (RANSAC) 

algorithm. Zhao et al. (2010) collected data using vehicle based single-row laser scanner 

and extracted line segments within each scan profile to characterize building and roads. 

Hu and Ye (2013) used the Douglas-Peucker algorithm to divide ALS scan profile into 

line segments. Instead of using hardware-generated scan profiles, Sithole and Vosselman 

(2003) manually defined two orthogonal scan profiles by slicing the ALS point cloud 

along x and y. Following this, points in each profile were split into line segments based 

on connectivity and continuity analyses.  
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All publications mentioned above extracted line segments from vertical TLS scan 

profiles (vertically slice the TLS data), but horizontal scan profiles (horizontally slice the 

TLS data) were also considered. Horizontal scan profiles are cross-section made by TLS 

data and pre-defined horizontal planes. In horizontal scan profiles, pole-like objects, such 

as truck and lamp post, is close to circular, and can be detected by fitting circle and arcs 

(Forsman, 2001; Aschoff and Spiecker, 2004; Bienert et al., 2007; ). Building facade can 

be detected by fitting line segment (Lehtomäki et al., 2010).  

In this study, we extracted line segments using range analysis referring to 

Manandhar and Shibasaki (2001). Firstly, the TLS data was split into a set of vertical 

scan profiles. Next, each scan profile was partitioned into line segments using range 

analysis. The Douglas-Peucker algorithm (Hershberger and Snoeyink, 1992) was then 

applied as a post-processing. The classification was finally implemented by labeling these 

line segments. 

3.1.2 Scan Profile Generation 

Prior to line segment extraction, the TLS data was firstly split into a set of vertical scan 

profiles. Each scan profile was considered a stream of points. The scanning TLS data is 

assumed to be sequentially observed in a discrete-time fashion, which is denoted by 
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The SPn in the Equation 3.1 denotes the n-th scan profile, and Pi,j denotes the     j-

th observation in the i-th scan profile. To generate vertical scan profile, the tripod where 

laser scanner is put above should be horizontally adjusted, and laser scanner body also 

need to be vertically adjusted; otherwise, this method does not guarantee vertical scan 

profiles. The width of each scan profile is set as the scanning angle precision, here 0.05 

degree (refers to the horizontal alignment). Figure 3.1(a) shows an example of one 

vertical scan profile. For further processing, the points were then projected into XY-Z 2D 

space. The coordinate of XY dimension is the square root of X square and Y square.  

3.1.3 Line Segment Extraction 

Once vertical scan profiles are ready, line segments can be then extracted from each scan 

profile. Referring to the method suggested by Manandhar and Shibasaki (2001), line 

segments were extracted based on range analysis; range is the Euclidian distance between 

individual laser point and the laser scanner. Since this range analysis method is based on 

acquisition order of laser scanning, points within each scan profile were firstly sorted 

according to zenith angle. 

Most urban objects have very visible shapes that can be well characterized with 

line segments. It is observed that structured objects, like planar (building, facade, road) 

and cylinder (lamp post) objects, typically have continuous and smooth appearances. 

Therefore, neighboring points reflected from them have approximate range values. On 

the contrary, points located at the edge of an object have large range difference from 

previous and following observed points. In this research, points have large range 

differences from neighboring points were defined as “scattered points” and points having 
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small range differences with neighboring points were defined as “smooth points”. Given 

point Pi, and its previous and following observation Pi-1 and Pi+1, the range difference of 

point Pi is calculated as 
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where Ri, Ri-1, Ri+1 are the range of Pi, Pi-1, Pi+1 respectively. Points with range difference 

greater than 0.5 meters (empirical threshold) were considered scattered points, while 

other points were considered smooth points. Figure 3.1 (b) shows an example of scattered 

points (blue) and smooth points (red). Most points from structured objects, such as 

building, ground, etc., are smooth points, and only the edge points are scattered points. 

Conversely, scattered points appear more frequently in unstructured objects, such as tree, 

as laser pulse could penetrates them due to the “hole” inside of such objects.  

Sequentially connected smooth points were then grouped as a single point cluster. 

Although points in each cluster do not make a straight line, they do show strong linear 

characteristic so that they are called line segment, or line in short in this thesis. Figure 

3.1(c) shows the result of line extraction using range analysis, and line were rendered 

using different color. 

 

 

 

 

(3.2) 
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Figure 3.1: Examples of line extraction. (a) Laser point in scan profile, (b) Range 

difference analysis result, Red: smooth points; Blue: scattered points, (c) Line segment 

extraction result. 

However, under-segmentation problem was found where some lines contain 

points from multiple objects. For example, if there is no object in front of the building, 

the boundary between building and ground is rather smooth. As a result, the points 

observed from the building and points from ground were grouped into one line (see the 

blue line in Figure 3.2(a)). In order to fix this issue, the Douglas–Peucker algorithm was 

then applied as post-processing. The line that passes through the endpoints of each line 

segments was termed “baseline”, and the distance between each member point and the 

baseline was calculated. If the maximum distance was greater than a certain selected 

threshold (0.1 meter here), the line was subdivided into two lines at the maximum 

distance point. The procedure was recursively implemented until no line met the 

subdivision requirement. It is observed that the long blue line in Figure 3.2(a) was 

divided into one blue line and one green line, which is presented in Figure 3.2(b).  

(a) (b) (c) 



 44 

 

Figure 3.2: Post-processing using the Douglas–Peucker algorithm. (a) The blue line 

captures points both from building and ground, (b) After line segment subdivision, 

building points and ground points are separated. 

3.2 Linear Feature Extraction 

Feature provides discriminative information between classes. To classify the lines, two 

types of features were extracted: local and contextual. Both circle-based and vertical 

column-based neighborhoods were used to compute contextual features. 

3.2.1 Local Features 

Local features characterize the local appearance of a line segment. They were extracted 

based only on a single line. The elevation (z) is expected to efficiently separate ground, 

building, and other low-rise objects on the ground; thus three local features were 

extracted based elevation: 1) maximum height (z); 2) minimum height (z); 3) averaged 

height (z). To extract linear characteristics, all member points of a line were fit into one 

straight line using the least square line fitting method. The following additional four 

(a) (b) 
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features were extracted based on the fitted line: 4) length (maximum extension in the 

major direction); 5) mean absolute residual; 6) standard deviation of residual; and 7) 

orientation (angle between the fitted line and z axis). Length can be used to separate large 

objects (ground, building, etc.) and small objects (tree leafs, etc.); the residual measures 

the roughness of each line; the orientation is expected to separate horizontal objects and 

vertical objects.  

3.2.2 Contextual Features 

Contextual features can provide the grouping characteristics of a line and its surrounding 

neighbours. In this study, two types of neighboring systems were used to extract context 

features: circle-based (Figure 3.3(a)) and vertical column-based (Figure 3.3 (b)). Figure 

3.3 (a) illustrates an example of circle-based neighborhood system, which is a circle with 

1m radius at the centre of a line centroid (black dot). Lines whose centroids fall inside the 

circle (both red and pink dots in Figure 3.3 (a)) are considered as neighbours of the 

current line of interest. Figure 3.3 (b) presents the vertical column-based neighboring 

system. For this method, a scan profile was quantized into a set of non-overlapping 

vertical columns (rectangle area between dotted blue lines) with 0.5m in width. 

Subsequently, neighboring lines were searched within the vertical column (blue filled 

area) into which the current line falls.  

Once two neighboring systems were generated for a line segment, seven 

contextual features were computed. These include: 1) maximum z; 2) sum of line length. 

Points belong to the line and its surrounding neighbours were fitted into one straight line 

and the following three features are extracted from the fitted line: 3) mean residual; 4) 
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standard deviation; 5) orientation (angle between the fitted line and z axis). The other two 

feature are: 6) point density (point number in the line group) and 7) line density (line 

number in the line group). Therefore, two types of neighbourhood systems produced a 

total of fourteen contextual features. 

 

 

Figure 3.3: Neighborhood selection for context feature. (a) circle-based neighborhood, 

(b) vertical column-based neighborhood. 

3.2.3 Feature Selection 

A total of twenty-one features (seven local features and fourteen contextual features) 

were extracted as described in the previous section. More features bring more 

discriminative information for classification. However, the high-dimensional features are 

usually highly correlated and bring computational complexity problem. To avoid such as 

issue, principle component analysis (PCA) was applied to reduce the feature 

dimensionality. Adopting the cumulative energy (90%) criteria proposed by Krzanowski 

(2000), we finally chose the eight most significant principle components for 

classification. It is noted that in order to equally balance the impact of features, original 
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features were normalized using z-score before applying PCA algorithm, which 

causes distribution to have a mean of zero and standard deviation of one.  

3.3 Generative Classifiers 

The line-based object recognition from TLS data was modeled as supervised 

classification problem. Given a set of labeled training data and observed feature vectors, 

the supervised classification method is able to induce a statistical model that can label 

unseen data. Supervised classifiers can be categorized into generative classifiers and 

discriminative classifiers according to the way they model posterior probability. 

Generative classifiers estimate the underlying generalized joint probability distribution 

over the class label y and feature vector x; the posterior probability p(y|x) is then 

calculated using Bayes rule, and the class label is finally determined by maximizing the 

posterior. On the other hand, discriminative classifier directly models the posterior 

probability. In other words, generative classifiers aim to model which area of the feature 

space is covered by each class, and discriminative classifiers aim to find a good decision 

boundary between classes. Detailed comparison of the two methods can be found in 

Jordan (2002), which used Naïve Bayes classifier and linear logistic regression as 

examples. In this study, we used both generative (section 3.3) and discriminative (section 

3.4) algorithms to test the effectiveness of line-based classification.  

 Joint distribution modeling is the most significant aspect of generative classifiers. 

Generative classifiers factorize the joint distribution in the form of product of likelihood 

p(x|y) and prior p(y). Likelihood p(x|y) models the distribution of feature vector given the 

class label, which is also called class conditional probability. The prior provides 
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information about how likely a specified class is expected to be seen before it is actually 

observed. Bayes’ theorem provides an elegant probabilistic framework to model the 

posterior probability with the concepts of likelihood and prior. To classify a new instance 

xi, generative classifier estimates probability of the new instance belonging to each class 

as follows:  
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where P(xi) is the probability of observation data, regardless of its class label. P(xi) is 

estimated by marginalizing the joint distribution over all classes. 
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Since the denominator is a scale-factor to normalize the density, it is always 

dropped in practice and hence the posterior is proportional with the joint probability as 

follows: 
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Prior can be regarded as an uncertainty variable, so it can be modeled using a 

distribution, such as Gaussian distribution (Bishop, 2006; Lawrence, 1998). However, the 

distribution of prior was more often selected on the basis of mathematical convenience 

rather than as a reflection of any prior beliefs (Bishop, 2006). Since reliable prior 

probabilities are not easily available in practice, Bayesian classifier usually makes an 

assumption that prior probabilities are equal (Kumar et al., 2011). Thus, in this thesis, 

priors were assumed equal and posterior expression was identical to the following 

expression: 
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This indicates that final decision was made solely based on maximizing 

likelihood. Actually, the three generative classifiers used in this thesis differ mainly in 

likelihood modeling. Generative classifiers individually model likelihood for each class, 

and the accuracy of likelihood estimation increases with the amount of training data 

available. Since the prior of each class is equally assumed and the likelihood estimation 

of each class is not affected by imbalanced training, we did not consider balanced 

training in learning generative classifiers. 

3.3.1 Naïve Bayes（NB） 

The Naïve Bayes (NB) algorithm is one of the most popular Bayesian classifiers. NB 

makes the conditional independence assumption that attributes of feature vectors are 

(3.6) 
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independent of each other given the class label. Thus, likelihood P(𝑥𝑖|yi) equals to the 

production of conditional probabilities of each attribute x
k 

𝑖  given the class yi according to 
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Due to this independence assumption, correlations of attributes are ignored and so 

the computational complexity of NB is considered very low when compared with other 

supervised classification algorithm. Despite the simplifying assumption, NB classifier 

still gives high classification accuracy in practice. Moreover, NB is not sensitive to 

irrelevant feature. 

Gaussian distribution is often used to model likelihood. A single-variable 

Gaussian distribution has two parameters, mean and standard deviation. The Gaussian 

distribution of single real-valued variable x is defined as a quadratic function of the 

variable x, mean μ and standard deviation σ as follows: 
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Here, the maximum likelihood estimation (MLE) was used to learn the parameters 

of Gaussian distribution. Given a set of data {x1, …, xn}, the likelihood function is 

defined as the joint density of all samples as 
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It is quite difficult to directly maximize this likelihood function; as an easier 

alternative, the log-likelihood function is often used. As logarithm is a monotonic 

function, maximizing log-likelihood will also maximize likelihood. The log-likelihood is 

written as  
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MLE estimates parameters by differentiating log-likelihood with respect to each 

parameter. Partial derivative of μ and σ are such that 
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The final estimation of μ and σ are the following formulation:  

 

(3.10) 

(3.11) 

(3.9) 

(3.12) 
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3.3.2 Multivariate Gaussian (MG) 

The independence assumption of NB has advantage in computation reduction, but it 

difficult to judge attributes of feature are dependent or not in practice. As such, the 

performance of NB usually is not satisfying in the domains with correlated features. In 

this case, multivariate Gaussian distribution is able to capture the correlation of features, 

and the corresponding classifier is termed as multivariate Gaussian classifier (MG). A K-

variate Gaussian distribution is parameterized by mean vector µ and a variance Σ as 

follows:  
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MLE was also used to learn parameters in multivariate Gaussian distribution. 

Given a set of data {x1, …, xn}, log-likelihood of the data is written as 
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(3.15) 

(3.13) 

(3.14) 

(3.16) 
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Taking partial derivative with respect to µ and Σ, and then setting these 

parameters to zero, solution of µ is the same as Equation 3.13, and Σ is given as 
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3.3.3 Gaussian Mixture Model (GMM) 

The two methods discussed earlier do not fit well in distributions that do not follow 

normal distribution or have highly complex distributions. In said situations, the Gaussian 

Mixture Model (GMM) is an alternative. GMM is a linear combination of several 

Gaussian distributions. It provides an attractive semi-parametric framework to 

approximate unknown distributions based on available data (McLachlan and Peel, 2000). 

GMM has been widely applied in many areas, such as speaker identification (Reynolds, 

1995), image segmentation (Zhang et al., 2001), and image texture detection (Permuter, 

et al., 2003). The mixture Gaussian approximation is a farily appropriate method for 

modeling complex likelihood. The GMM density function is given by  
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where N(x ; μk, Σk) is the k-th Gaussian mixture component, αk is the prior that xi is 

produced by the component Nk, and K indicates the total number of mixture components. 

The value of αk ranges from 0 to 1, and sum of {α1,… αK } equals 1. The parameters 

θ={α1,…, αK, μ1,…, μK, Σ1,…, ΣK} define the Gaussian mixture probability density 

function.  

In this thesis, the well-known Expectation Maximization (EM) algorithm was 

used for parameter estimation of GMM. Given n independent samples generated from a 

GMM distribution, the log-likelihood function was written as 
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Firstly, the partial derivative of the log-likelihood function with respect to the 

mean μk was taken and set to zero. 
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However, the log-likelihood function is not a linear function with respect to 

parameters, so this partial derivative expression is difficult to optimize and cannot 

achieve a closed form solution. This problem results from incomplete data that we do not 

know which Gaussian component is responsible for the generation of each training 

(3.20) 

(3.21) 
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sample. EM algorithm was introduced by Dempster (1977) and yields a closed form 

solution to the estimation issue with incomplete data (McLachlan and Peel, 2000) by 

artificially completing the data with additional pseudo data. EM is an iterative algorithm 

with two steps in each iteration, the Expectation-step (or E-step) and the Maximization-

step (or M-step). Starting with an initial model by K-means clustering or any other 

initialization method, the EM algorithm alternates between the E-step and M-step.  

The E-step computes the expected value of the complete log-likelihood, 

conditioned on the training data and the current parameter estimate θt. The partial 

derivative with respect to mean μk can be written as 
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where p(k|xi,ϴ
t
) is the posterior probability that data xi belongs to the k-th Gaussian 

component given the current estimate, which is also called membership probability. The 

membership probability provides knowledge on which sample are generated from which 

Gaussian mixture component.  

The “M-step” improves the current model by maximizing expected log-likelihood 

found on the E-step. Maximization is implemented and parameters are updated as follows: 

(3.22) 

(3.23) 
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The EM algorithm has been approved to be stable, and converge to an ML estimate 

(Zhang et al., 2001). At each iteration, the parameter update made an increase in the 

likelihood function until a local maximum is found. Another issue of using GMM is that 

mixture component number K is unknown in most conditions. (Figueiredo and Jain, 

2002) summarized existing methods on finding the optimal mixture component number. 

In this research, five-fold cross validation was used to choose the optimal K.  

3.4 Discriminative Classifiers 

Instead of modeling joint distribution, discriminative classifiers directly optimize the 

posterior probability p(y|x). Discriminative classifiers lack the elegant probabilistic 

concepts of priors, structure, and uncertainty of generative classifiers; instead, penalty 

functions, regularization, kernels etc., are often used (Jebara, T., 2012). This section 

(3.24) 

(3.25) 

(3.26) 
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introduces adopted discriminative classifiers used for line-based classification, including 

k-nearest neighbour (KNN), logistic regression (LR), support vector machine (SVM), 

decision tree (DT), artificial neural network (ANN), random forest (RF) and adaptive 

boosting (AdaBoost).  

 Training data is often imbalanced that sample size of each class is not equal. 

Many recent publications have pointed out that the decision boundary of a discriminative 

classifier skews towards the minority class for imbalanced training data, which results in 

high misclassification error of minority classes (Chawla et al, 2004; Imam et al, 2006). 

To avoid this risk, we used balanced training data to train these discriminative classifiers; 

however we did not compare the performance of balanced training and imbalanced 

training. 

3.4.1 K-Nearest Neighbors (KNN) 

KNN assumes that an instance tends to have a similar label with training samples that are 

similar to it. It is a typical non-parametric classification model. Let T = {t1, t2, …, tn} 

denote the set of labelled training samples, and S = {s1, s2, . . . , sk} be the set of k nearest 

training samples to a test instance t according to some similarity measurements. In such 

case, the KNN assigns the sample t to the class that occurs most frequently among the k 

nearest training samples. 

Commonly used similarity measurement methods include Euclidean distance, 

Mahalanobis distance and Minkowski distance. Euclidean distance is suitable for 

continuous variables, while the other methods are better for categorical variables. Since 

all features extracted for line classification are continuous, Euclidean distance was used 
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for distance measurement. Assuming that each feature vectore x is an M dimensional 

vector, Euclidean distance between test instance t and i-th training samples was 

calculated as  
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The only parameter that can adjust the complexity of KNN is k, the number of 

nearest neighbors. KNN is sensitive to value of k (Golovinskiy et al., 2009). The 

larger k is, the smoother the classification boundary and the less the misclassification risk; 

however, a large k often brings problem in computational efficiency. Moreover, the value 

of k is dependent on the training sample, and changing the position of a few training 

samples could significantly change the decision boundary. Here the five-fold cross 

validation method was used to select the optimal k. The Figure 3.4 shows the averaged 

test accuracy when the number of neighbors iterates from one to twenty. As the value of k 

increases, averaged test accuracy also increases, but the amount of improvement becomes 

less and less after ten. Therefore, we chose the 10NN model.  

(3.27) 
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Figure 3.4: Averaged test accuracy over 5-fold cross validation. The value 

 Of K (Gaussian mixture component number) ranges from 1 to 20. 

3.4.2 Logistic Regression (LR) 

Logistic Regression is a parametric method for binary classification that uses logistic 

transformation between the posterior probability and the linear combination of 

observation data (Menard, S., 2002). If x is the feature vector, and C={C1,C2} as the class 

label, then the posterior probability of class C1 can be written as a logistic function of the 

linear combination of x as follows: 
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where w is the model parameter, and p(y=C2|x) = 1- p(y=C1|x). Logistic function is a 

monotonic, s-shaped, continuous function between 0 and 1.  

Maximum likelihood was used to estimate parameters of the LR model. Given a 

set of training data {(x1, y1) ,…, (xn, yn)}, let yi=1 when the sample takes class label C1, 

(3.28) 
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and let yi=0 when the sample takes class label C2.The likelihood function is defined as 

follows:  
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After taking a logarithm, the log-likelihood function was written as 
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The log likelihood function is convex (Rennie, 2005) and traditional method of 

estimating parameter is to set the first-order derivative with respect to each parameter 

equal to zero. Unfortunately, there is no known closed-form way to estimate the 

parameters in LR. Thus an iterative algorithm, such as gradient descent, needs to be used. 

Gradient descent requires estimation of the partial derivative. Partial derivative of the j-th 

parameter wj is written as follows:  
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Once an initial setting of w0 is chosen, it can be updated at each iteration as 

follows:  
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where α is the stepsize. Standard LR is designed for binary classification, and cannot be 

directly used for multiclass problems. There are many solution to apply logistic 

regression to multi-class classification, such as softmax regression, “one-against-all” and 

“one-against-one” (Bishop, 2006). The “one against all” strategy was chosen in this thesis 

project. The “one against all” strategy builds one LR for each class, which is trained to 

distinguish one class from all remaining classes, and the label of a new instance is 

determined by the maximizing posterior.  

3.4.3 Support Vector Machine (SVM) 

The LR algorithm focuses on maximizing the likelihood function that considering the all 

training samples. On the contrary, the SVM classifier attempts to find the separating 

hyperplane that maximizes the margin (the support vectors), which is defined as the 

shortest distance from the separating hyperplane to the closest positive (negative) 

example (Burges, 1998). SVM solely considers points near the margin, instead of the 

entire training data.  

Given a set of training data {(x1, y1) ,…, (xn, yn)}, where xi is the feature vector 

and yi ϵ Y={-1, +1}is class label, let the separating hyperplane be defined by a vector w 

(3.32) 
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with a bias w0. The vector w makes wx+w0≥+1 when class label is +1 and wx+w0≤ -1 

when class label is -1. There are many possible hyperplanes that can separate the two 

classes, but there is only one optimal hyperplane that represents the largest separation. 

Finding optimal hyperplane can be modeled as a convex quadratic programming problem 

as follows: min ||w
2
||/2, subject to yi(wx+w0)≥+1. Because the training set is often not 

linearly separable in real applications, a set of variables called slack variables ξi were 

introduced into the marginal maximization function as follows:  
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where C is a regularisation parameter. Using a Lagrangian formulation, the above 

quadratic programming problem can be translated to the following dual problem.  
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where αi represents the i-th Lagrange multiplier. Under this formulation, the equation of 

the optimal hyperplane discriminant function was then written as following:  
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where S is the set of marginal points. According to Mercer’s theorem, the inner product 

of the vectors in the mapping space, can be expressed as a function of the inner products 

of the corresponding vectors in the original space (Mercer, 1909), which is also called the 

"kernel trick". The equation can be expressed using kernel function as follows:  
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The kernel function plays an important role in SVM because it maps original 

features into higher dimension space, which could alter a non-linear separable problem 

into a linear separable problem. Common kernel functions used in SVM include 

polynomial function, Gaussian radial basis function (RBF), and sigmoid function, etc. In 

this thesis project, we used the LibSVM package to implement SVM and chose BRF 

kernel. More detail on parameter estimations of LibSVM can be found in Chang and Lin 

(2011). The SVM was primarily designed to solve binary classification problems. To 

solve the multiclass problem, the “one against all” strategy was adopted. 

However, the decision function in a Traditional SVM classifier produces a 

categorical value, not a continuous posterior probability that is suitable for association 

term. To convert the output of the decision function to a posterior probability, we used a 

modified version of the method in Wu et al. (2004). 

(3.37) 

 (3.38) 
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3.4.4 Artificial Neural Networks (ANN) 

The human brain is a powerful decision making system with millions of neuron 

connected in a complex way. It is composed of multiple parallel layers of neurons, such 

that each neuron in any given layer receives input signals from all neurons in the previous 

layer and sends out different output signals to all neurons in the next layer. By training 

and memorizing the interaction of neurons across layers, the human brain is able to 

process information from outside and makes appropriate response. An artificial neural 

network (ANN) is a computational model whose design is inspired by the mechanism of 

the human neurons. 

 

 

Figure 3.5: Typical structure of ANN with three layers. 

 

 A typical ANN consists of three main parts: the input layer, the hidden layer(s), 

and the output layer. The graphical representation of ANNs are abstractly illustrated in 

Figure 3.5. Although the figure depicts only a single hidden layer, there can be multiple 

hidden layers in an ANN. The activation functions and the weights are not shown. The 

input layer consists of the ANN’s inputs (x), which is feature vector. The hidden layer 

Input layer Hidden layer Output layer 
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consists of many hidden neurons, which take in a set of weighted inputs and apply an 

activation function to their sum. The most commonly used activation function is logistic 

function, which was accordingly adopted in this thesis. The output from the k-th hidden 

node hk is given by 
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where wik is the weight between the i-th input node xi and the k-th hidden node, and b is 

the bias. The output layer receives the weighted inputs from the hidden layer neurons, 

and then provides the final prediction result, which can be written as  
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where αk is the weight of the k-th hidden node for the final output, and c is the bias term. 

There are two significant variables need to be considered when working with ANNs: the 

number of hidden layers and the number of neurons for each hidden layer. As 

(Bendiktsson et al., 1990) demonstrated that a single hidden layer ANN has good 

potential, we also decide to use single hidden layer ANN. Referring to Kolmogorov's 

theorem ANN (Kůrková, V., 1992), we chose the number of neurons for each hidden 

layer as 2n+1, where n is the number of neurons in input layer. 

(3.39) 

(3.40) 
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 The backpropagation algorithm is a commonly used iterative method for training 

ANN. Given an initial weight and training sample, errors, the difference between actual 

and predicted results, that occurred in the output units are calculated; then they pass 

backwards, first to the hidden layer and then to the input layer. At each iteration, a 

gradient descent search is performed to adjust the weights that minimize the error. 

Further details about the backpropagation algorithm can be found in (Rumelhart et al., 

1995).  

3.4.5 Decision Tree (DT) 

The decision tree is one of the most widely used inductive inference algorithm. It is a 

non-parametric classifier, and is based on a “divide and conquer” strategy, which is 

learned by recursively dividing the feature space from a training data (Quinlan, 1986). 

Decision tree has many advantages over other traditional supervised classification 

algorithm. Firstly, it is a non-parametric method, thus it does not require any assumptions 

about the distributions of the input data. As well, it is not a “black box” like a neural 

network, so we can convert decision tree into classification rules that easy to understand 

for non-experts.  

A typical learned decision tree consists of three types of nodes: one root node, a 

set of interior nodes, and terminal nodes, which are also called “leaves”. A new instance 

starts from the root node, and travels down to its consecutive branch node by testing the 

feature specified by the current node. This process is repeated until it meets a terminal 

node. According to which terminal node that it falls into, the final label of the new 

instance is determined. 
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Popular decision tree algorithms include ID3, C4.5 and classification and 

regression tree (CART). These trees mainly differ in the splitting criteria; the ID3 and 

C4.5 use information theory to split the training samples, while CART uses the Gini 

index. A critical issue of decision tree is how to select the splitting threshold. For 

categorical features, the test values are simply the different possible categories; for 

continuous features, the data need to be sorted at each node and the threshold is obtained 

by choosing the split between two consecutive values that maximize the criteria. In this 

research, the Gini index was used and we were concerned with only continues features.  

Another critical issue is tree pruning, which is necessary to avoid over-fitting 

(1987). A fully grown tree is able to classify all training data correctly, but it has potential 

risk of over-fitting when the training data is noisy, bias or too small. In this research, we 

terminated tree growth if the number of instances fall below a specified threshold, which 

was selected using 5-fold cross validation. Figure 3.6 shows the averaged test accuracy of 

the five folds when the minimum leaf size varies from one to twenty. When the minimum 

leaf size exceeds twelve, averaged test accuracy becomes stable; thus, minimum leaf size 

of DT was chosen as 12.  
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Figure 3.6: Averaged test accuracy over 5-fold cross validation as different 

minimum leaf size was selected. 

3.4.6 Random Forest (RF) 

Recently, ensemble classification has gathered increasing amount of attention from the 

machine learning community. The fundamental idea is that a combination of multiple 

classifiers can perform better than each the individual classifier alone. The final 

combined classifier is called the ensemble, and the member classifiers are called as base 

models, each of which could be any traditional machine learning model, such as decision 

tree or Naïve Bayes classifier. The ensemble can be regarded as a weighted combination 

of these base models as shown in Equation 3.41.  
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where wk is the weight of the k-th base learner. The variance error of ensemble can be 

decreased by reducing the correlations of base models, increasing the number of base 

models, or improving the performance of a single base model (Hsieh, 2009). Two most 

popular ensemble techniques are bagging and boosting.  

The bagging method generates base models by making multiple bootstrap training 

sets from the original training set. These bootstrap training sets are randomly drawn with 

replacement, and each of them is used to train a different base classifier. Finally the 

outputs of these individual base classifiers are combined to make a majority voting. A 

representative bagging ensemble method is Random Forest (RF) algorithm, which was 

proposed by Breiman (2001). The word “random” has two types of meaning, random 

sampling (bootstrap aggregation) and random feature selection, both of which reduce the 

correlations of base models. It is named “forest” because this ensemble classifier consists 

of many binary decision trees.  

There are two important parameters in RF: the number of trees, and the number of 

features selected at each node. In theory, the larger the number of trees, the better 

performance RF has, but this also increases computational complexity. As a result, in this 

study the number of trees was set 100 as Breiman (2001) suggested. If the number of 

features is too small, performance of individual tree will decrease, but if the number used 

is too large, the correlation between trees increases. Therefore, Breiman (2001) suggested 

a middle value, the square root of the total number of features. The critical tree pruning in 

DT is no longer considered here because over-fitting risk is supposed to be prevented by 
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the random aspects of RF. Given the training data and determined parameters, the 

learning of each tree in RF is the same as decision tree learning in section 3.4.6. 

Once the forest is learned, a new instance runs across all the trees in the forest. 

Each tree votes a prediction label, and votes from all trees are then combined to make a 

majority voting.  

3.4.7 Adaptive Boosting (AdaBoost) 

Instead of random sampling of training data and combining classifiers with equal vote as 

in the bagging method, the boosting method uses a weighted sample to focus learning on 

misclassified samples by the previous weak classifier and finally combines all classifiers 

using a weighted vote (Freund et al., 1995). Base models in the bagging method are 

independent, but in the boosting algorithm, base model is highly dependent on the 

previous one, and focuses on the previous model’s errors. Adaboost was proposed by 

Freund and Schapire (1995), and was reported in (Freund and Schapire, 1995; Freund and 

Schapire, 1996) as the most successful boosting algorithm. Boosting algorithm has two 

main concerns: how to update sample weights at each boosting round, and how to 

combine these weak base models into a single prediction rule. AdaBoost addressed these 

two questions by selecting a special parameter α on each round for both updating the 

sample weight and assigning voting weight for each base model.  

Given a training set {(x1, y1), … , (xn, yn)}, where xi is the feature vector and yi ϵ 

Y={-1, +1} is class label. The first step is initializing the weights of all training samples, 

for which equally weighting is commonly used. The weight of the i-th training sample on 

round t is denoted Dt(i). On each round t = 1, …T, the weights of incorrectly classified 
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samples under hypothesis model ht are increased so that the model is forced to focus 

more on these hard samples in next round. The error of a hypothesis model ht is measured 

by summarizing the weights of the misclassified training examples as follows: 

 

)]([)(
1

itt

n

i

tt xhyiD 


  

 

AdaBoost chooses a parameter αt, which is specifically selected by minimizing 

the training error of the combinational classifier. αt is based on the error ϵt as follows: 
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The sample weights are then updated using the rule in Eqaution (3.44). The rule 

increases the weight of misclassified samples by ht, and decreases the weight of correctly 

classified samples.  
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After T updates, the final hypothesis H(x) is a weighted voting of the T weak 

hypotheses as  

(3.42) 

(3.43) 

(3.44) 
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It is noted that AdaBoost was originally designed for binary classification 

problems. There are several methods of extending AdaBoost to the multiclass case, such 

as AdaBoost-M1 (Freund and Schapire, 1995), Stagewise Additive Modeling using a 

Multi-class Exponential loss function (SAMME) suggested by Zhu et al. (2009), and 

AdaBoost-Cost (Mukherjee and Schapire, 2011). In this thesis, SAMME was used to 

solve the multiclass Adaboost classification; further details about SAMME can be found 

in Zhu et al. (2009).  

3.5 Experiment Results 

The effectiveness of line-based TLS classification was validated using ten classifiers 

mentioned in section 3.3 and section 3.4, with two TLS data sets. For each classifier, the 

two-fold cross validation was used to test its generalization ability. Since the number of 

mixture number of GMM and number of neighbor of KNN need to be fixed before model 

learning, they were selected using five-fold cross validation only on one piece of data, 

YV1, which is introduced in section 3.5.1.   

 The three generative classifiers were implemented using Matlab software; while 

the discriminative classifiers were implemented using open source packages. 

Implementation of the artificial neural network refers the R package “nnet” (Ripley et al., 

2015), and implementation of other discriminative classifiers refer to scikit-learn package 

(3.45) 
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(Pedregosa et al., 2011). This package provides existing function, but parameters of each 

classifier were still tuned based on the experimental data.  

3.5.1 Experimental Data 

The data set was collected at two different sites, on Kidd Terrace (Figure 3.7), York 

village community, Toronto. The two datasets are noted as YV1 and YV2 respectively. 

Both of them show typical North American residential street views, where two or three 

story houses are built densely along the street. Architectural styles of buildings, tree 

species of the two sites are different. And both of them have a problem of occlusion. 

 

 

Figure 3.7: Real scene of the York Village Data. 

The experimental dataset is categorized into seven classes: building, roof, 

pedestrian road (PR), tree, low man-made object (LMO), vehicle road (VR), and low 

vegetation (LV). The Table 3.1 presents the object categorization and description of each 

class. 
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Table 3.1: Object categorization of experimental dataset. 

Class  Objects belong to the class 

Building Building façade 

Roof Roof 

Pedestrian Road(PR) Grass land + Pedestrian roads 

Tree Tree 

Low Man-made object (LMO) Car, Pedestrian, Garbage bin, Steps, Fence, Railing 

Vehicle Road(VR) Vehicle road 

Low Vegetation(LV) Bush, flower 

 

To collect TLS data, the RIEGL LMS Z390i laser scanner was put on a Leica 

tripod, which was adjusted at a horizontal plane using levelling adaptor in advance. Due 

to safety concerns, it is not possible to put laser scanner in the center of street to collect 

panoramic point cloud. Thus, the laser scanner was put on the pedestrian walk and 

scanned objects on the other side; the distance between the laser scanner and building 

facade ranged from 20 to 70 meters. Both vertical and horizontal scanning angular 

precision were set to 0.05 degree. The horizontal view of field determines the data 

acquisition time and the number of points. Because only one side of street needed to be 

scanned at a time, the horizontal view of field was smaller than 180 degrees. A 50 meter 

street requires about 30 minutes for surveying, and generates around 2 million points.  

To transfer coordination of a point cloud from the scanner coordinate system to 

the geodetic coordinate system, geo-reference is required. As this research mainly 

focuses on TLS data classification, geo-reference was not considered. Instead, before 

mounting the laser scanner, the tripod was adjusted to be at a horizontal plane using the 

levelling adaptor as previously mentioned.  
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Both of the two datasets have about three million points, and they were split into 

2810 and 2580 scan profiles respectively. Finally, about 105620 lines were extracted 

from the data YV1 and 100648 lines from the data YV2. Table 3.2 summarizes the total 

number of spatial entities extracted from the two datasets.  

 

Table 3.2: Number of laser point, scan profile, line segment in York Village dataset. 

Spatial entities YV1 YV2 

Laser scanning point 3,294,337 3,087,301 

Scan profiles 2,810 2,580 

Line segments 105,620 100,648 

 

Local features and contextual features were then extracted for each line, and PCA 

was used to reduce feature dimension into eight. When feature is ready, classifiers can be 

learned. The two-fold cross validation method was used to evaluate the performance of 

10 classifiers. Each classifier was learned from one dataset and then tested on the 

remaining dataset, which was repeated two times. Classification performance was 

measured individually, and was also averaged. At first, all points were manually labeled 

and then ground truth of each line was assigned to be the majority of its member points’ 

labels. Because of varying point density and occlusion, it was difficult to visually identify 

the nature of some points. Therefore, these ambiguous points were labeled ‘unknown’ 

and were not used for performance evaluation. The percentage of “unknown” point is 

lower than 1%. Both qualitative (section 3.5.2) and quantitative (section 3.5.3) analyses 

were done.  
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3.5.2 Qualitative Analysis 

GMM and SVM were selected as representatives of generative and discriminative 

classifiers. The classification results of both GMM and SVM over the data YV2 are 

presented respectively in Figure 3.8(a) and 3.8(b), while Figure 3.8(c) shows the ground 

truth. Most lines from building, roof, pedestrian road and vehicle road were correctly 

classified. However some misclassification errors were apparent in the result. We 

categorized the misclassification errors into two types, local inconsistency and incorrect 

scene layout. Red bounded regions in Figure 3.8(a) and Figure 3.8(b) show examples of 

local inconsistency, in which a few of building lines were misclassified as tree or roof, 

which is also called pepper and salt noise. Blue bounded regions in Figure 3.8(a) and 

Figure 3.8(b) shows examples of incorrect scene layout, in which the roof was found 

below building and the tree was surrounded by building. These misclassification errors 

result from ambiguities in appearance feature among classes in varying vision conditions, 

which could affect the distinguish ability. As local classifier only relying on local 

appearance, it has big risk of misclassification.  
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Figure 3.8: Classification result of GMM, SVM and ground truth.  (a) classification 

result of GMM; (b) classification result of SVM; (c) ground truth. 

(a) 

(b) 

(c) 
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3.5.3 Quantitative Analysis 

Five classical evaluation metrics were used to quantitatively measure the classification 

performance, namely confusion matrix, accuracy, precision, recall and F1 score. Of these, 

the last four were derived from the confusion matrix. All quantitative measurements in 

this research are based on lines not on points.  

The confusion matrix is an effective way to quantitatively visualize the 

classification performance. A confusion matrix shows the number of correct (diagonal 

elements) and incorrect (off-diagonal elements) predictions made by the classifier 

compared with the data’s ground truth. The matrix is k by k, where k is the number of 

class types. Each row represents the instances in a predicted class and each column 

represents the instances in an actual class. Non-diagonal elements at row i column j 

indicates the number of true class i misclassified as class j. GMM and SVM over data 

YV2 were selected as representatives of generative and discriminative classifiers, and 

confusion matrices of them are presented respectively in Table3.3 and Table3.4. It is 

observed that misclassification errors mainly occurred in distinguishing building and roof, 

building and tree, building and LMO, tree and LV, LV and LMO, etc. 
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Table 3.3: Confusion matrix of GMM classifier of data YV2. 

  
Prediction 

Building Roof PR Tree LMO VR LV 

G
ro

u
n

d
 T

ru
th

 Building 35537 1654 20 1674 686 0 284 

Roof 892 2860 0 0 0 0 0 

PR 138 0 12678 732 860 426 2113 

Tree 1186 8 6 8341 226 0 1356 

LMO 742 0 282 290 6241 68 1771 

VR 6 0 967 1 58 6727 59 

LV 197 0 185 2555 673 3 8003 

 

Table 3.4: Confusion matrix of SVM classifier of data YV2. 

  
Prediction 

Building Roof PR Tree LMO VR LV 

G
ro

u
n

d
 T

ru
th

 Building 38288 684 3 411 314 0 155 

Roof 1009 2743 0 0 0 0 0 

PR 94 0 14276 49 701 218 1609 

Tree 2574 0 7 7532 123 0 887 

LMO 579 0 327 91 6693 28 1676 

VR 2 0 1049 0 49 6712 6 

LV 334 0 180 1261 333 0 9508 

 

Accuracy measures the average performance of all classes. It is the proportion of the sum 

of correct predictions (diagonal elements) to the total amount of data, and is defined as 

follows: 
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(3.46) 
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Figure 3.9 presents the averaged train / test accuracy of the 10 classifiers. An 

averaged accuracy was calculated based on overall data that combines YV1 and YV2 

data. Comparing train and test accuracy, it is observed that all classifiers did not have 

high over-fitting risk, except for RF and AdaBoost. Based on comparison of test accuracy, 

GMM (79.76%) showed the best performance of the generative classifiers, followed by 

MG (69.64%) and NB (68.26%). Among discriminative classifiers, SVM with RBF 

kernel (85.60%) had the best performance, followed by AdaBoost (84.62%), RF 

(84.43%), 10NN (83.71%), DT (79.70%), LR (79.00%), and ANN (77.06%). The 

averaged accuracy over all ten classifier was 79.19%. As well, on the whole, 

discriminative classifiers performed better than generative classifiers. As expected, the 

two decision tree based ensemble methods were better than single decision tree.  

 

 

Figure 3.9: Averaged accuracy of ten classifiers. 
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The accuracy measures the overall correctness of all classes, and consequently it 

fails to measure the performance of any single class. So we also used recall and precision 

to evaluate the performance of each single class. Precision, which is also called producer 

accuracy, measures the percentage of objects that are correctly classified as “building” 

from all the objects that truly are “building”. It is defined by 
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Table 3.5 presents the precision of each class in 10 classifiers. All classifiers 

achieved high precision on building. The averaged precisions of PR and VR are higher 

than 80%, but precision greatly varies with classifiers. For example, the precision of VR 

is 94.31% in AdaBoost, but falls down to 60.12% in MG. LV and Tree also showed 

satisfying precision. Precision of roof is rather sensitive to different classifier, with 

maximum precision in 86.46% (RF) and minimum precision of 39.38% (MG).  

The recall, which is also called user accuracy, is the proportion of objects that are 

correctly classified as “building” from all the objects that are predicted as “building”. 

Recall is defined by  
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Table 3.6 presents the recall of each class in 10 classifiers. Building still lead the 

precision rank, but were also sensitive to different classifiers, with maximum recall of 

95.54% (RF) and minimum recall of 68.46%. The averaged recalls of VR and PR were over 

80%. The averaged recalls of other classes were not as high as those classes mentioned 

above, but still over 60%. 

Table 3.5: Precision of each class in ten classifiers. 

Classifier Building Roof PR Tree LMO VR LV 

NB 0.8792 0.4657 0.7765 0.4303 0.5805 0.7657 0.5598 

MG 0.9417 0.3938 0.8262 0.5076 0.6822 0.6012 0.5844 

GMM 0.9189 0.6588 0.8936 0.6059 0.6589 0.8752 0.6479 

10NN 0.9049 0.8346 0.8384 0.7255 0.7611 0.9152 0.7083 

LR 0.9251 0.6043 0.7887 0.6254 0.6971 0.8818 0.6372 

SVM 0.9099 0.8440 0.8429 0.8088 0.7807 0.9397 0.7396 

ANN 0.8653 0.6528 0.7278 0.6333 0.7038 0.8908 0.6268 

DT 0.8757 0.7174 0.8019 0.6943 0.6653 0.8840 0.6655 

RF 0.8816 0.8646 0.8599 0.7772 0.7666 0.9366 0.7342 

AdaBoost 0.8949 0.8515 0.8672 0.7787 0.7492 0.9431 0.7172 

Average 0.8997 0.6887 0.8223 0.6587 0.7046 0.8633 0.6621 

 

Table 3.6: Recall of each class in ten classifiers. 

Classifier Building Roof PR Tree LMO VR LV 

NB 0.6846 0.7250 0.6804 0.6674 0.4656 0.7963 0.7760 

MG 0.6919 0.8810 0.5609 0.7825 0.5672 0.9366 0.7346 

GMM 0.8637 0.8018 0.7699 0.7527 0.6941 0.8904 0.6978 

10NN 0.9309 0.6958 0.8784 0.6986 0.6843 0.8891 0.7221 

LR 0.8637 0.7478 0.8038 0.6752 0.7200 0.8446 0.6616 

SVM 0.9506 0.7091 0.8944 0.7227 0.7433 0.8773 0.7279 

ANN 0.9075 0.4807 0.8160 0.5776 0.7061 0.7887 0.5590 

DT 0.9190 0.6135 0.8222 0.6472 0.6252 0.8653 0.6441 

RF 0.9554 0.6033 0.8753 0.6832 0.6976 0.9015 0.7339 

AdaBoost 0.9474 0.6295 0.8752 0.6946 0.7177 0.8996 0.7429 

Average 0.8997 0.6887 0.8223 0.6587 0.7046 0.8633 0.6621 
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Individual precision and recall cannot describe the entire performance of a 

classifier, thus F1 score that combines both precision and recall, was introduced. Thus F1 

score is also called the harmonic mean of precision and recall, and is calculated as 

follows:  

 

recallprecision

recallprecision
scoreF




1  

 

Averaged F1 score of each class in 10 classifiers was presented in Table 3.7. 

Building (0.8819) had the highest F1-score, followed by two types of roads, VR (0.8619) 

and PR (0.8063); all the three classes were effectively detected by all classifiers. Other 

four classes had satisfying F1 scores, between 0.65 and 0.70. 

 

Table 3.7: F1 score of each class in 10 classifiers. 

Classifier Building Roof PR Tree LMO VR LV 

NB 0.7698 0.5671 0.7253 0.5233 0.5167 0.7807 0.6504 

MG 0.7977 0.5443 0.6682 0.6158 0.6194 0.7323 0.6509 

GMM 0.8905 0.7233 0.8271 0.6714 0.6761 0.8827 0.6719 

10NN 0.9177 0.7589 0.8579 0.7118 0.7207 0.9020 0.7152 

LR 0.8934 0.6685 0.7962 0.6493 0.7084 0.8628 0.6492 

SVM 0.9298 0.7706 0.8679 0.7633 0.7616 0.9074 0.7337 

ANN 0.8859 0.5537 0.7694 0.6042 0.7049 0.8367 0.5910 

DT 0.8968 0.6614 0.8119 0.6699 0.6446 0.8745 0.6546 

RF 0.9171 0.7107 0.8676 0.7272 0.7305 0.9187 0.7341 

AdaBoost 0.9204 0.7239 0.8712 0.7342 0.7331 0.9208 0.7298 

Average 0.8819 0.6682 0.8063 0.6670 0.6816 0.8619 0.6781 

 

(3.49) 
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3.6 Chapter Summary 

To summarize, in this chapter, a line-based TLS data classification method was proposed. 

Firstly the lines were extracted from each vertical scan profile. Ten popular generative 

and discriminative classifiers were then used to validate the effectiveness of line-based 

method. For each classifier, two-fold cross validation was used to test its generalization 

ability; each classifier was learned from one dataset and then tested on the remaining 

dataset, which was repeated two times. The experiment results showed that all ten 

classifier achieved satisfying accuracy, with averaged accuracy of the ten classifiers of 

79.19%.  

However, the limitations of the classifier were also observed in classification 

errors that result from similar local appearance, which is a typical drawback of using 

local classifier. Misclassification errors are mainly found between building and roof, 

building and tree, building and LMO, tree and LV, LV and LMO, among other classes. 

When feature distribution of one class is not clearly discriminated from another, which is 

presented in figure, misclassification tends to occur. Even if the overlapping area is 

limited on the training data level, this does not necessarily hold with the test data.  

To improve the classification performance of local classifier, object context will 

be considered in next Chapter.  
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Chapter 4  

Along Scan Profile Conditional Random 

Field 

This chapter demonstrates that the performance of local appearance based classifier can 

be improved by considering multi-range contexts in conditional random field (CRF) 

model. Since the context is only considered in each scan profile, all CRF models 

proposed in this chapter are along scan profile CRFs. Firstly, the limitations of local 

classifier were discussed using classification results of GMM as an example of. Then 

three types of object context were exploited: short range context that enforces local 

smoothness, as well as the long range vertical and horizontal context that provide priori 

information of scene-layout compatibility. To examine the effect of different contexts, 

three single range CRF models were separately constructed. The final goal is to integrate 

multi-range asymmetric contexts in one CRF model, which is called maCRF. The 

posterior probability of GMM was used as association term for each of the four CRF 

models. To evaluate the advantage of multi-range context, the four CRF models were 

tested on the York Village data using cross-validation, and their classification 

performance was evaluated and compared.  

 

 

 

 



 86 

4.1 Methodology Overview 

Classification is the problem of identifying corresponding class label that belongs to an 

“entity” (e.g., point, line and plane in laser point space) with given observations 

(“features”). A typical approach uses information at a local level without considering the 

object context, only relying on apparent features to differentiate the object from the 

others; this approach is called local classifier. Local classifiers are classic supervised 

classification methods and have already been proved to be efficient for classifying TLS 

data, details of which were presented in Chapter 3.  

However, due to ambiguities in appearances of objects and varying vision 

conditions, overlap between the territories of multiple classes in feature space can be 

found. The overlapping of feature distribution causes one class to be not clearly 

discriminated from others, and thus classification errors are anticipated by local 

classifiers. Figure 4.1 presents height distributions of seven classes. It is noticed that 

overlapping problem is very serious, which results in a non-linear separable classification 

problem. If only these apparent features are used to building supervised classifier, there 

will be a risk of misclassification, which was validated by experimental results in the 

Chapter 3. From the experimental results of the Chapter 3, it is observed that 

misclassification errors were mainly from building and roof, building and tree, low 

vegetation and tree, low vegetation and pedestrian road.  
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Figure 4.1: Height distributions of seven classes. 

 

Recent work on object context has shown its power in improving classification 

performance when it collaborates with local appearance features (Gamba and Dell'Acqua, 

2003; Oliva and Torralba, 2007). Object context makes assumptions on spatial 

consistency or compatibility of objects, which compensates for insufficient information 

of local appearance features (Oliva and Torralba, 2007). A natural and simple method to 

apply contextual assumption is taking post-processing on existing classification output, 

such as k×k filtering window, to make a smoother result (Gamba and Dell'Acqua, 2003). 

This filtering window based method is easy to implement in practice, but always brings 

the risk of over-smoothness.  

Another way applying contextual assumption is to directly impose spatial 

dependence between adjacent entities in a classifier. Conditional Random Field (CRF) is 

a well-known classifier that enables the modelling of object dependence and local 

appearance in a single model (Lafferty et al., 2001; Kumar and Hebert, 2003; He, et al., 

2004). A commonly used spatial dependency is local smoothness, which maximizes the 
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local label homogeneity between adjacent entities. The first CRF model we developed is 

short range CRF (srCRF) that enforce local smoothness and emphasizes on local label 

consistency. However, the srCRF fails to captures the long range global dependency of 

objects. Moreover, because of occlusion, some lines do not have even short range 

neighbor. 

Therefore, another type of spatial dependency was also exploited, the regularity of 

spatial arrangement between long range adjacent objects, which is a global prior on 

scene-layout. For instance, the pedestrian road is usually below its adjacent objects, like 

building and tree, and trees or lamp post is generally closer to vehicle road than building. 

Such scene-layout spatial dependency was modeled as pairwise interaction potential in 

vertical and horizontal direction respectively, corresponding CRF models of which were 

called long range vertical CRF (lrCRF(V)) and long range horizontal CRF (lrCRF(H)). In 

particular, we adopted an asymmetric interaction potential to capture directional scene 

layout (e.g. it allows ground is lower than building, not vice-versa).  

Then the power of all three different context sources were integrated together 

(short range, long range vertical and long range horizontal) with local appearance in one 

single CRF model, which is called multi-range asymmetric CRF (maCRF). Following the 

work of Chapter 3, we selected the line primitive as the entity for constructing CRF 

models and each CRF model was built within each scan profile; the adjacent relations 

between lines were constructed with the assistance of a grid. Finally, the four classifiers 

were tested on TLS data, and their performances were both qualitative and quantitatively 

analyzed. 
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4.2 Line Adjacent Graph 

In a CRF model, dependent relations of nodes are defined by an adjacent graph. To 

construct a graph, the first thing needs to be considered is how to defined neighboring 

relation between classification primitives. Defining adjacent relation in image space can 

be based on the grid pattern. In pixel based image classification, neighbours of a pixel 

can be searched for using standard 4-connected neighborhood (Kumar and Hebert, 2006; 

Shotton et al., 2006) or 8-connected neighborhood (He et al., 2004). In super-pixel based 

image classification, an adjacent relation is defined when two super-pixels share part of 

boundary (Gould, et al., 2008). However, graph construction methods for image do not 

work for laser scanning data, because laser scanning data does not conform to a regular 

grid pattern and point distribution is very sparse. Delaunay triangulation (DT) and k 

nearest neighbours are commonly used methods to build adjacent connections between 

laser points. Delaunay triangulation (implemented in 2D space in cited publications) is a 

popular method for finding nearest neighbors, and has already been used for laser 

scanning data processing, such as planar faces detection (Vosselman, 1999), surface 

reconstruction (Gopi et al., 2000), and segmentation (Hyyppa et al., 2001). In recent work 

by Douillard et al. (2008), an adjacent graph of the CRF model was determined via 

Delaunay triangulation over laser points. Another popular method for building adjacent 

graphs over laser points is k nearest neighbours, which adds all the edges that connecting 

with k nearest neighbours in spherical space (Munoz et al., 2008; Niemeyer et al., 2011, 

Schmidt et al., 2012), vertical cylindrical space (Niemeyer, et al., 2012), or some 

projected 2D space (Shapovalov et al., 2010).  
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The above two methods are effective in finding short ranges nearest neighbors, 

but fail to capture long range neighbors. Li and Huttenlocher (2008) proposed a sparse 

long-range random field (SLRF) model, which represents interactions between distant 

pixels using sparse edges with a clique size of three. In Lim and Suter (2009), points from 

neighboring super-pixels were defined as long range neighbors. In the recent work of 

Najafi, et al. (2014), point segments were projected on the ground plane and segments 

with more than 50% overlapping on this ground plane were considered as high-order 

neighbors.  

In this research, the adjacent relations of lines were defined with the assistant of a 

grid system. Firstly, the points were then projected into XY-Z 2D space. The coordinate 

of XY dimension is the square root of X square and Y square. Then the 2D space was 

quantized along the Z and XY directions in a grid, with cell size of 0.5m by 0.5m. All the 

cells that a line passes through were regarded as cells occupied by the line. Figure 4.2 

presents the quantized grid and gives a few example of the line-cell occupancy relations. 

 

Figure 4.2: Example of grid system and line-cell occupancy relations. The occupied 

cells of each lines are marked in yellow. 
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In this research, we considered short range, long range vertical and long range 

horizontal neighbours. Neighbor searching of a line in this research is based on the grid, 

and can be divided into three steps. Firstly, cells that a line occupies were queried. 

Secondly, neighboring cells for all occupied cells were searched according to a 

predefined rule, such as 8-connected neighborhood. Lines pass those neighboring cells 

were neighbors the current line. The neighbor finding is visualized in Figure 4.3. Given 

an occupied cell (yellow), the 8-connected cells and the current occupied are considered 

as short range neighbors. Outside the 8-connected neighborhood, cells right above and 

right below (blue) are potential long range vertical neighbors, while cells at the left and 

right (purple) are considered as potential long range horizontal neighbors.  

 

 

Figure 4.3: Multi-range neighborhood searching for each cell. Each types of neighbor 

are marked using different color. 
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4.3 Short Range CRF (srCRF) 

The short range CRF makes a smooth assumption that objects in a given local 

neighbourhood tend to have the same class label. At first, graph construction of srCRF 

will be introduced. To conduct a comparative research, outputs of local classifiers were 

used as association potential. From the experimental results of chapter 3, the output of 

GMM classifier was used as input of association term. The interaction potential of srCRF 

was designed as Potts model.  

4.3.1 Graph Construction  

Let GS = (V, ES) be a short range graph, each of which node, v ϵ V represents a line 

segment (centroid of a line) extracted from one scan profile. Its node adjacency relation, 

eS ϵ ES was constructed if a line passes the occupied cells of the other line or the 8-

connected neighboring cells of these occupied cells, which is illustrated in Figure 4.3. 

Lines pass red cells are considered as short-range neighbor of the line occupies the 

yellow cell. It is noted that, in contrast with a graph model represented in image space, 

our line-based graph does not follow a regular grid pattern. 

Given the fundamental theorem of random fields, the conditional distribution over 

the labels Y given observed data X in the graph Gs is defined in Equation 4.1. 
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where Ai(X, yi) is the association potential, which measures the probability that class label 

yi is assigned to a single node i given global observations X, without considering a 

relational regularity (interaction) with other nodes; Sij(X, yi, yj) is the short range potential 

and measures how the labels at neighboring nodes (yi, yj) interact given the observation X; 

λ and α are the corresponding weights of potential terms; and ZS is the normalization term 

(partition function), which is always computed using a forward-backward algorithm. 

4.3.2 Association Potential 

The association potential term in Equation 4.1 encodes the cost of assigning label yi to 

node i given observation xi, and it corresponds to a log posterior probability. Generalized 

linear models, which is a quadratic expansion of all node features in order to find a more 

accurate quadratic decision surface instead of a linear one, is often used to model 

associate potential (Kumar and Hebert, 2006). Theoretically, the posterior probability of 

any classifier can be used, generative or discriminative classifier, such as multilayer 

perceptron (He et al., 2004), support vector machines (Najafi, et al., 2014). Recently 

random forests attract more and more attention for modeling association potential, and 

posterior probability of each class is assigned proportionally to the number of trees voting 

for the class label (Shapovalov, et al., 2010; Fröhlich, et al., 2013).  

To make a comparative research, the log posterior probability of GMM was used 

as associate potentials of the srCRF model. 
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where i indicates a line segment.  

4.3.3 Interaction Potential 

The interaction potential measures how compatible the labels of neighboring objects are, 

given the observation. In general, arbitrary non-negative functions can be designed as 

CRF interaction potential. The Potts model (Ising model for binary classification) is a 

widely used interaction potential, which is extensively used for modeling random fields 

(Winkler, 2003). The Potts model enforces an assumption of constant smoothing of 

labels, and penalizes when neighboring objects have different class labels. The Potts 

model is easy to design and implement; thus it was used to model interaction term in this 

research. For each short range edge connecting two nodes i and j, the energy of short 

range interaction potential Sij is expressed as below: 
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4.4 Long Range CRF 

The Potts model in srCRF is based on the assumption that smooth distribution of objects 

in space, and neighboring lines tend to have the same class label. This assumption 

achieved excellent classification performance in (Anguelov et al., 2005; Kumar and 

Hebert, 2006; Munoz et al., 2008). However, the distribution of urban objects in space 

tends to follow some underlying organization rules rather than being randomly placed or 

(4.3) 
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following only a simple homogeneous rule. Moreover, because of occlusion, some lines 

do not even have short range neighbor. Compared with spatial relation at short range, 

long range neighbor searching can connect an isolated line with other lines far apart. 

More importantly, long range level relation can provided global context in spatial 

arrangement. Scene layout is a commonly used long range global context; it provides 

strong spatial contextual cues as for where and how objects are expected to be found in 

the space (Bao, et al., 2011). In this research, scene layouts of urban objects were 

considered in both vertical (“above-below” relation) and horizontal direction (“front-

behind” relation). To model the directional scene layout of objects, asymmetric 

interaction potentials were designed.   

4.4.1 Scene Layout  

The scene layout corresponds to the relative locations of objects in a scene. It answers 

questions such as: which objects are expected to be above and below another object in 

urban environment? Pu and Vosselman (2009) manually defined scene layout rules of 

objects based on size (e.g., wall has the largest size), position (e.g., roof always on the top 

of walls), orientation (e.g., walls are vertical and roofs are never vertical), etc. These 

predefined rules were then applied in classifying segmented TLS data. Such unsupervised 

rules learning does not require labeled training data, and rules inference can be modified 

and updated. So rule based method is easily made and implemented. However, the major 

issue of this method is that it cannot cover all the rules that govern object layout, let alone 

the conditions behind these rules. In contrast, supervised training is able to learn scene-

layout rules automatically from labeled data and can also be updated easily. The learning 
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of the underlying object scene layouts can be modeled to be a problem of optimizing 

objective functions that incorporate the layout structure, the layout parameters, and the 

appearance. Once the learned model is ready, posterior probabilities for all possible label 

configurations are estimated and the final label can be decided by maximum a posterior. 

Winn and Shotton (2006) modeled four types of relative location relations 

(above/below/left/right) over pixels using asymmetric pairwise potential, whilst also 

propagating long-range spatial constraints using only local pairwise interactions. The 

parameters of the asymmetric pairwise potentials were learned using cross-validation, 

using a search over a sensible range of positive values. In Gould et al. (2008), the layouts 

of objects were modeled as non-parametric relative location probability maps over pixels, 

from the statistics of first-stage classification results that only based an appearance 

features. The final classifier was trained using both appearance-based features and 

contextual features from relative location probability maps. Heesch and Petrou (2010) 

modeled scene layout as the conditional distribution of a segmented region, given the 

objects in its six local neighboring regions, above, below, left, right, as well as regions 

containing and being contained by the current region. Jahangiri et al. (2010) defined three 

types of scene layout between segmented region pairs, relative vertical or horizontal 

orientation, and containment relation. Potentials of relative vertical and horizontal 

orientation were modeled as sine and cosine functions respectively with respect to the 

angle between two regions. The potential of other relations were formulated as a Potts 

model. Ding et al. (2014) modeled scene layout using the label layout filter (LLF), which 

provides local context clues like 1) which classes exist around certain position, 2) the 
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proportion of each class, and 3) difference distances and orientations of the context 

connections implied by different forms of region. 

In summary, the principle of scene layout is that the relative location of objects in 

urban environments is not arbitrary but follows some rules. In this research, we modeled 

scene layouts of objects in both vertical and horizontal direction. Vertical scene layout is 

rather strong in urban environments because of the function of objects. For example, roof 

is designed to protect people and their possessions inside of a building from climatic 

elements, and so should be above the building. Because almost all of daily human activity 

happens above the ground, as the main activity region, buildings are above ground. 

Therefore, vertical scene layout is modeled as a “above-below” relation, such as building 

is below roof but above the ground. Along the scanning direction, objects are also placed 

in order, and horizontal scene layouts are modeled as a “front-behind” relation. For 

example, tree is in front of building, but behind vehicle road. Remaining part of this 

section will introduce the detail how vertical and horizontal scene layouts were modeled 

in CRF. 

4.4.2 Long Range Vertical CRF (lrCRF(V)) 

4.4.2.1 Graph Construction  

Let GLV = (V, ELV) be a long-range vertical graph over lines. Each line is regarded as one 

node in GLV, v ϵ V represents lines extracted from one scan profile, and its node adjacency 

relation, eLV ϵ ELV was constructed if a long range vertically neighboring relation is found. 

The “above-below” relation in the vertical direction between adjacent objects was 
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considered here. A line finds its long range vertical neighbors upward and downward as 

shown in Figure 4.3. Rather than using a completely connected graph, a sparse long range 

graph was constructed, similar with Li and Huttenlocher (2008). After excluding those 

short range neighboring cells, lines with the two nearest (both upward and downward) 

were selected as its long range vertical neighbors. Thus, the maximum number of long 

range neighbors corresponds to four (2 upward and 2 downward). Please note that some 

lines may not have any long range neighbors. The conditional distribution over labels Y 

given observed data X in GLV can be defined as follows: 
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where Ai(X, yi) is the association potential; LVij(X, yi, yj) is the long range vertical 

potential that penalizes incorrect spatial arrangement between labels of neighboring 

nodes; and ZLV is the normalization term. 

4.4.2.2 Association and Interaction Potential  

To compare the performance of local classifier versus CRF model, and effect of different 

context, the association term of each CRF model used prediction result from the same 

local classifier. The log posterior probabilities of GMM classifier was used as the 

associate potential of each CRF model respectively. Thus, association potential modeling 

of this lrCRF(V) model and other following CRF models will be explained, details of 

which can be found in section 4.3.2. 

(4.4) 
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As regards the long range interaction, it encodes the scene layout between objects. 

Seven classes make forty-nine class pairs, and so forty-nine interaction potentials are 

needed. It is not effective and reliable to define so many interaction potentials manually 

based on human knowledge. Therefore, we modeled interaction potentials as posterior of 

a forty-nine-class classifier, which allows scene layout to be learned statistically from 

training data. As the frequency of each class pair varies a lot, it generates an unbalanced 

training data. Discriminative classifier is rather sensitive to training data; thus, we chose a 

generative classifier to model the long range vertical interaction.  

 The vertical long-range interaction term was formulated as the log posterior of a 

multivariate Gaussian classifier, which is described in Equation 4.5.  

 

∑
∈,∈

),(),|(

),(),|(

)|,(log(),,(

LyLy

belowabovebelowaboveij

belowabovebelowaboveij

ijbelowabovejiijij

bellowabove

kylyPkylyuP

kylyPkylyuP

ukylyPyyuLV








 

 

where(yi, yj) is a pair of lines forming an edge in GLV; yabove is defined if one of (yi, yj) is 

placed higher than the other, otherwise as ybelow.  

Equation 4.5 estimates the probability of yabove labelled as l, given edge feature uij 

and ybelow labelled as k. In Equation 4.5, the prior probability measures what can be found 

above the given object. P (yabove= l, ybelow=k) is the co-occurrence rate of class l that is 

placed above class k. This prior was calculated over all label pairs, which represents a 

priori knowledge of spatial arrangements between object pairs. This statistically-derived 

(4.5) 
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knowledge was formed in a look-up table shown in Figure 4.4(a). The likelihood in 

Equation 4.5 is the probability distribution of edge feature uij given a configuration of 

that class l is above class k, which quantitatively measures how class l can be found 

above class k. The edge feature uij is a six dimension vector, {|hi+hj|, |oi+oj|, |li+lj|, |hi-hj|, 

|oi-oj|, |li-lj|}, h, mean height; o, orientation; l, length. We assumed that the likelihood 

follows a multivariate Gaussian distribution (mean vector: μl,k; covariance matrix Σl,k), 

which described in Equation 4.6. The normalization term is a marginal probability over 

yabove. Figure 4.4(b) gives an example of probability distribution of height difference 

when one low man-made object (LMO) is below other objects. The x-axis represents the 

value of the height difference. 
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Figure 4.4: Prior and likelihood estimation for vertical interaction term. (a) Look-up 

table: row i is below column j; (b) probability distribution of height difference when 

LMO is placed below the other objects. 

 

We used asymmetric pairwise interactive potential to reflect the directional scene 

layout between adjacent long range objects. Firstly, there is no evidence show that the 

look-up table is symmetric. Moreover, there is no direct symmetric mathematic relation 

between likelihoods of symmetric class-pairs. The asymmetric prior and likelihood 

finally generates asymmetric long range potential Lij(x, yi, yj) ≠ Lji (x, yj, yi). With the 

asymmetric interaction potential design, when node i is above node j, the lrCRF(V) 

model encourages the configuration of {yi= building, yj= LMO}, but penalizes the 

configuration {yj=building, yi= LMO}. 

(a)       (b) 
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4.4.3 Long Range Horizontal CRF (lrCRF(H)) 

4.4.3.1 Graph Construction  

Let GLH = (V, ELH) be a long-range horizontal graph over line segments. Each line is 

regarded as one node in GLV, v ϵ V represents lines extracted from one scan profile, and 

its node adjacency relation, eLH ϵ ELH was constructed if a long range horizontally 

neighboring relation is found.The scene layout in horizontal direction between adjacent 

object is considered as “front-and-behind” relation respect to the distance to laser scanner 

center. Long range horizontal neighbors were searched both forward and backward, as it 

is shown in Figure 4.3. To make a sparse connection graph, excluding those short range 

neighboring cells, only the two nearest (both forward and backward) lines were selected. 

Similar with long range vertical neighbors, the maximum number of long range 

horizontal neighbors is four. The conditional distribution over labels Y given observed 

data X in GL can be now defined as below: 
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where Ai(X, yi) is the association potential; LHij(X, yi, yj) is the long range horizontal 

potential that penalizes incorrect scene layout compatibility in horizontal direction, such 

as building is closer to laser scanner than tree. ZLH is the normalization term. 

(4.7) 
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4.4.3.2 Association and Interaction Potential  

The lrCRF(H) model shares the same association term with srCRF and lrCRF(V), details 

of which can be found in section 4.3.2. As regard the horizontal long-range interaction, it 

was also designed as the log posterior probability of a forty-nine-class classifier. The 

interaction potential design is showed in Equation 4.8.  
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where(yi, yj) is a pair of lines forming an edge in GLH; yfront is defined if one of (yi, yj) is 

placed closer than the other, otherwise as ybehind. The equation 4.8 estimates the 

probability of yfront labelled as l, given edge feature uij and ybehind labelled as k. In Equation 

4.8, P (ybehind = l, yfront =k) models a co-occurrence rate of class l that is placed behind of 

class k. The same as vertical context, prior was calculated over all label pairs and its look-

up table is shown in Figure 4.5 (a). The likelihood in Equation 4.8 is the probability 

distribution of edge feature uij given a configuration of that class l is behind class k. The 

design of horizontal edge feature is the same as vertical edge features, vij = {|ri+rj|, |oi+oj|, 

|li+lj|, |ri-rj|, |oi-oj|, |li-lj|}, r, range; o, orientation; l, length. The likelihood is estimated 

using multivariate Gaussian distribution (mean vector: μl,k; covariance matrix Σl,k) 

described in Equation 4.9. The normalization term is a marginal probability over yabove. 

Figure 4.5 (b) shows the distribution of range difference when one object is behind the 

(4.8) 
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tree; the x axis represents value of range difference. If a class is not found behind tree, 

such as building, its distribution can be seen. 
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The long range horizontal interaction term is also asymmetric. For example, given 

the condition that node i is closer than node j, the asymmetric potential encourages the 

configuration of {yi= tree, yj= building} but penalizes the configuration of {yi= building, 

yj=tree}. 

 

 

Figure 4.5: Prior and likelihood estimation for horizontal interaction term. (a) Look-

up table: row i is in front of column j; (b) probability distribution of range difference 

when other objects is placed behind tree. 

(a)      (b)      

(4.9) 
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4.5 Multi-Range CRF 

The short range and long range context, in vertical and horizontal direction provide 

different contextual information on different scales. Each single context contains partial 

contextual information, so relying only on a single context could be risky as “part of the 

evidence is spent to specify the model” (Leamer, 1978). It is promising to combine all 

three types of contextual information together. The combination can 1) maximize the 

smoothness between short-range nodes; 2) maximize the regularity of spatial dependency 

between objects in long range nodes; and 3) consider asymmetric properties of scene 

layout regularity. In this research, two multiple range context combination strategies were 

adopted, the product combination of multiple CRF classifiers, a single CRF model with 

multiple range.  

4.5.1 Product Combination of Multiple CRF Classifiers 

Combining the predictions of different classifiers could significantly improve 

classification performance. There exist two combination rules, average combination and 

product combination (Kittler, et al., 1998). The posterior of average combination is 

computed by averaging the estimated posterior probabilities of multiple classifiers. 

Average combination is simple to implement and has already been proven effective 

(Taniguchi and Tresp, 1997). Unlike the averaging combination, the product combination 

is based on a Bayesian foundation, so it is more robust. Product combination makes 

independent assumptions between classifiers and estimates posterior by multiplying the 

posteriors of these classifiers (Tax, et al., 2000).  
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Supposing that there exist K classifiers and L possible class labels, the product 

combination rule is defined as follows:  
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where Mk is the k-th classifier, x is the feature vector of new instance and y is 

corresponding class label. The k-th classifier Mk produces posterior P(y=l|x, Mk) and 

p(Mk|x) is the prior of Mk. Here, the influence of each classifier was set equally and the 

product rule can be re-written as 
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Thus, to combine the effect of multi-range contexts, label predictions from three 

CRF models were firstly individually estimated, and the final posterior probability was 

accomplished by combining their prediction results as follows: 
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where PS(Y|X), PLV(Y|X), PLH(Y|X) are the posterior of srCRF, lrCRF(V) and lrCRF(H) 

model respectively, and PM(Y|X)is the final posterior.  

4.5.2 Single Integrated Model 

The assumption of the product combination is that the three classifiers are independent. 

However, because the three CRF models were learned from the same training data, they 

couldn’t be absolutely independent. Moreover, since the three CRF classifiers share the 

same association term, the correlation of them is not weak. Thus, it is not appropriate to 

enforce an independent assumption on these three CRF classifiers. 

Another issue is that product combination decreases the influence of interaction 

terms. Posterior probability of the product combination is showed in Equation 4.13. The 

expansion form of the Equation 4.13 can be written as Equation 4.14. From the Equation 

4.14, it is clear that the combination classifier relies heavily on the association term, 

while influence of interaction terms decreases relatively. 
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To overcome this limitation of product combination, a multi-range asymmetric 

CRF model (maCRF) was developed, which integrated multi range object context in a 

single CRF model, including short range smoothness constraint, and long range scene 

layout both in vertical and horizontal direction. The maCRF model incorporates 

appearance, local smoothness and global scene layout in a single unified model, which is 

defined as follows:  
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where X is the entire observation and Y is the global label configuration. V is the set of 

nodes. Es, ELV, ELH are the sets of short range edges, vertical long range edges and 

horizontal long range edges respectively. A, I
S
, I

LV,
 I

LH,
 are the short range potential, 

vertical long range potential, and horizontal long range potential respectively, while λ, α, 

β, γ are corresponding weights. Ai measures the likelihood of node i belong to certain 

class. I
S
 is the pairwise potential and makes a local smoothness constraint. I

LV
 is the 

pairwise compatible potential and makes scene layout constraint in vertical direction and 

I
LH 

makes constraints in horizontal direction.  

In this jointly integrated model, multi-range neighborhood searching is the same 

as in each single range CRF model. Association term Ai is still the log posterior of local 

(4.15) 
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classifier. Design of the three interaction terms I
S
, I

LV
, I

LH
 are the same as those in 

individual CRF model. 

 

4.6 Training and Inference of CRF 

Parameters in CRF models can be learned by maximizing the conditional likelihood of 

true class labels given the training data. However, because partial derivative is a non-

linear function with respect to each parameter, direct maximization of likelihood cannot 

provide a closed form for CRF model learning. Instead, iterative numerical optimization 

techniques, like gradient descent, are popularly used to find the local maximum 

conditional likelihood. At each iteration, parameters are updated on the basis of the 

gradient. In practice, the gradient requires some manual adjustment and this adjustment is 

called learning rate (or step size). Choosing a proper learning rate and schedule is rather 

difficult. In practice learning rate is either set to a small enough constant value that gives 

stable convergence, or adaptively updated as learning progresses that makes cost function 

converge faster (Bowling and Veloso, 2002). In this research, we prefer to get a stable 

convergence result and so finally chose a small constant learning rate, 0.0001. 

 Traditional gradient descent computes the gradient using the whole dataset, which 

is also called batch gradient descent. Since batch method uses the “true” gradient 

direction for parameter update, it moves directly towards an optimum solution, either 

local or global. As batch method has to scan through the entire training set before taking 

a single step, it is not computationally efficient to train a large and redundant dataset. As 

an alternative to reduce computation complexity, Besag (1986) proposed a pseudo-

likelihood estimation method, which used parameter learning of markov random field as 



 110 

an example. The pseudo-likelihood normalizes over the possible labels at each node, 

rather than directly maximizing the conditional likelihood over entire image. Entire 

training dataset can be divided into small pieces and each piece is trained independently. 

Instead of updating parameters until they have scanned the entire training set, it takes a 

small step in the direction given by the gradient of one piece only, thus it converges 

faster. When the amount of training data tends to infinity, the pseudo-likelihood coincides 

with that of the “true” likelihood (Winkler, 1995).  

 As a variant of pseudo-likelihood estimation, the stochastic gradient descent 

(SGD) method is an alternative for parameter estimation of CRFs (Vishwanathan et al., 

2006). SGD updates parameter after looking at a randomly selected subset of the training 

set, thus the stochastic gradient descent (SGD) algorithm is a drastic simplification. The 

SGD approximation speeds up the convergence and make training more efficient even on 

large and redundant data sets. It makes a balance between convergence quality and speed. 

In order to accelerate the parameter learning training, Vishwanathan et al. (2006) also 

used the gain vector adaptation, and experimental results validated its advantages. Thus, 

parameter estimation of all CRF models in this research adopted the SGD algorithm 

following (Vishwanathan et al., 2006). As all the four CRF models were built in single 

scan profile, parameters were updated when a randomly selected scan profile was 

scanned. 

 There are two types of parameters in each of the four CRF models: parameters in 

each potential term, and parameters weighting the relative influence of potential terms. 

As both association term and long range interaction terms are complex quadratic 
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functions, learning all of the parameters simultaneously in each of four proposed CRF 

models using SGD is still a challenge. Some previous research simplified the parameter 

learning by assuming each potential term has equal influence, and assigning them with 

equal weight (Shotton et al., 2006; Rabinovich et al., 2007; Gould et al., 2008). Instead of 

making such an ad-hoc assumption, the two-stage training is a more commonly used that 

parameters of each potential term and weights of potentials are is separately learned. This 

method does not guarantee an optimal estimation, but it usually archives satisfying 

estimation (Lafferty et al., 2001; He, et al., 2004; Yang, et al., 2010). In this research, 

parameter learning in CRF model was divided into two stages. At first, parameters in 

association and each interaction terms were learned individually, following which the 

weights of association and interaction terms were learned. 

4.6.1 Training the Association and Interaction Potentials 

As regards association term, parameters of GMM were estimated using EM algorithm, 

detail of which can be found in section 3.3.2. Because short range interaction terms in 

srCRF were designed as exponents of the Potts model that is an identical matrix, no 

parameter needs to be learned. As long range vertical and horizontal interaction terms 

were designed as log posterior of a forty-nine-class multivariate Gaussian classifier, prior 

and likelihood need to be estimated. The prior was obtained from a look-up table, which 

is a frequency table of co-occurrence rate over forty-nine class pairs. The likelihood was 

designed as a multivariate Gaussian distribution, parameters of which were estimated 

using classic Maximum Likelihood (ML) algorithm. 
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4.6.2 Training the Weight of Potential Terms 

Once all parameters in association and interaction terms are known, the weight of each 

term {λ, α, β, γ} can be learned using stochastic gradient descent. The joint conditional 

probability (likelihood function) over the whole training sample is given in Equation 

4.16. Optimal parameters can be found by maximizing the likelihood function. Due to the 

monotonic property of logarithm, the log-likelihood function has the same maximizing 

argument with original likelihood function. Because maCRF model integrates interaction 

terms from other three single range CRF models, weight estimation of maCRF was used 

as an example. Log-likelihood function of the maCRF is written as:  
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 Maximum likelihood estimates parameters by differentiating the likelihood 

function with respect to parameter. Equation 4.17 gives the partial derivative of short 

range interaction weight.  
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(4.16) 

(4.17) 
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where g
t 

α, Θ
t
 are respectively the partial derivative of α and parameter set after t updates. 

The integral of posterior probability P(Y|X, yi, yj, Θ
t
) and short range interaction can be 

regarded the expectation of short range interaction of edge eij given the parameter Θ
t 
over 

all possible labeling, which is noted as E(P(Y|X, yi, yj, Θ
t
)). Computation of this 

expectation is actually a graph inference is given the current parameters. Thus, the partial 

derivative of short range interaction weight can be rewritten as follows: 
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It is observed from Equation 4.18 that the computation complexity of gradient is 

mainly from the computation of expectation of edge interaction. As the SGD calculates 

gradient from a randomly selected scan profile rather than the whole training data, it 

greatly reduces the computational complexity. The parameter can be updated when 

gradient is given as follows: 

 

ηαα
t

α

tt *=1+ g-
 

 

To make the log-likelihood function converges stably, the learning rate η should 

be set small enough. The learning rate was set as 0.0001 for all weights in each CRF 

model. In a similar way, the gradient of long range vertical and horizontal interaction 

term can be estimates as follows:   

(4.19) 

(4.18) 
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 The weights {λ, α, β, γ} can be scaled up or down, and the scaling does not affect 

CRF inference. However, to make the weights converge faster, weight of association 

term was fixed to 1 in all CRF models. 

4.6.3 Inference 

Once parameter estimation is done, the next step is to find the most likely label 

configuration Y for given entire observations X and parameter Θ, which is also called 

inference. Belief propagation (BP) is a message passing algorithm proposed by Pearl 

(1988) for inference of a graphical model, such as Bayesian Networks (Huang and 

Darwiche, 1996) and Markov Random fields (Smyth, 1997). The BP algorithm finds 

marginal distributions over nodes in the graph. It guarantees exact inference when the 

graph structure is a tree, but possibly does not converge when the graph has loops.  The 

algorithm is then sometimes called “loopy” belief propagation (LBP), because graphs 

typically contain cycles (or loops), and the LBP has been reported effective in solving 

graphs with cycles (Murphy et al., 1999). Since all four CRF models in this research have 

cyclic structure, the LBP was used for inference. Implementation of the LBP algorithm 

referred to the open source code provided by Schmidt (2007). And the final decision was 

made on each single node by maximizing the marginal node belief.  

(4.20) 

(4.21) 

https://en.wikipedia.org/wiki/Cycle_(graph_theory)
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 LBP works by sending messages along the edges of the graph. Message is the 

confidence that a node believes one of its neighboring nodes takes certain label. As CRF 

is an undirected graph, message passes in both directions of an edge. LBP is an iterative 

algorithm, so messages are updated iteratively until convergence. Any vector of real-

valued can be set to initial messages, and a typical method is to assign equal value over 

all the possible class labels. The messages node i sends to node j about the confidence 

that node i believe node j take a label l can be initialize as follows: 

 

Llymsg jij /1)( → 
 

 

where L is The dimension of the message, which is the same as the number of possible 

class labels. To update message, there exist two strategies, max-product (Pearl, 1988) and 

sum-product (Mooij, 2007). Weiss (1997) compared the performance of sum-product and 

max-product on a “toy” turbo code problem, and found that sum-product is signicantly 

better than max-product when implemented on the nonconvergent cases, because max-

product method usually tends to produce a discontinuous gradient estimate. Thus, we 

used the sum-product update algorithm in this research. The message sent from a node i 

to another node j by an edge eij is updated using sum-product update algorithm as 

follows:  
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where Φi is the unary factor (association term); Ψi,j is the pairwise factor (interaction 

term). When the edge is short range edge, the pairwise factor can be calculated using 

Equation 4.25.  
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 To make numerical stability, and to avoid overflow or underflow, the message 

was normalized to sum to 1.  
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 Actually, the LBP algorithm does not guarantee that the message converge to a 

fixed point after any number of iterations. However, under relatively mild conditions, it 

may guarantee the existence of fixed points. Even if the fixed points not be unique, the 

LBP still gives a reasonable set of approximations to the correct marginal distributions in 

practice. In this research, the convergence condition was set as that the sum of absolute 

difference of old and newly updated messages over the entire graph is small than 0.0001. 

Moreover, to avoid infinite iterative loops, the maximum iteration number was set as 100. 

Experiment results showed that only 5 scan profiles was found not converged.  

(4.24) 

(4.25) 

(4.26) 
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 Once the message update terminates, the marginal probability (node belief) of 

each node can be computed by multiplying its own potential with all the messages it 

receives from its neighbors as follows:  
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 And the final label decision is made by maximizing the node belief. 
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l
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4.7 Experiment Results 

To evaluate the importance of multi-range contexts, we conducted a comparative analysis 

of classification results obtained from five different classifiers: 1) local classifier without 

label interactions, and four CRF models; 2) with short-range interaction (srCRF); 3) with 

long-range vertical interaction (lrCRF(V)); 4) with long-range horizontal interaction 

(lrCRF(H)); and 5) with integrated multi-range model (maCRF). The five classifiers were 

tested on the same experimental data that used in Chapter 3, YV1 and YV2. More detail 

(4.27) 

(4.28) 

(4.29) 
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about the experimental data can be found in section 3.5.1. The two-fold cross validation 

was used. For each classifier, model parameters were learned using one of the datasets, 

while the other site was used for testing the learned classification model. Each CRF 

model was implemented using Matlab and C++. Implementation of parameter learning 

and inference referred the UGM code (Schmidt, 2007). Classification performance was 

measured on each site and then averaged.  

Short range, long range vertical and horizontal neighbors were searched for each 

line within scan profile. Edge number for each type of context is presented in Table 4.1. 

It shows that short range edge has the largest edge density, followed by long range 

vertical edge and long range horizontal edge. There were 260579 short range edges 

extracted between 1056020 lines in the data YV1, and one node has about 2.5 short 

ranges in average; while one node has about 1.6 long range vertical edges and only 0.2 

edges in average. The data YV2 has similar result.   

 

Table 4.1: Total number of the spatial entities extracted from York Village datasets. 

Nodes and Edges YV1 YV2 

Line segment 105,620 100,648 

Short range edge 260,579 277,584 

Long range vertical edge 158,276 156,023 

Long range horizontal edge 18,787 16,463 

 

Short range energy was Potts model, and so there is no parameter need to be 

trained in the energy term. For long range vertical and horizontal potential, two forty-

nine-class classifiers were trained respectively. When parameters in each potential were 
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known, weight of each term can be learned using SGD algorithm. As it is mentioned in 

section 4.6.2, the weight of association term was fixed to 1. Figure 4.6 shows weight of 

each term versus iteration number using SGD algorithm to train maCRF model on data 

YV1. The vertical axis indicates the weight value and the horizontal axis indicates the 

iteration number. In this figure, weight of long range vertical interaction (LongRange(V)) 

converges rather faster, maybe because the number of long range edge is stable across 

scan profiles. Weight of short range interaction (LongRange) fluctuates in a small 

shrinking range, which perhaps results from varying short range edge number. Due to 

small amount of edge, weight of long range horizontal interaction (LongRange(H)) has a 

large value. Although the weight learning of maCRF did not converged at fixed points, 

but they were still considered converge since because the fluctuation ranges were rather 

small.  

 

Figure 4.6: Parameter learning of maCRF model using SGD algorithm on data 

YV1. 

Iteration number 
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4.7.1 Qualitative Analysis 

Figure 4.7 presents the classification results of the four CRF models (output of GMM 

was used as association term) of the data YV2. Generally speaking, the three context-

based classifiers achieved better classification quality than GMM classifier (can be found 

in Chapter 3). Figure 4.7(a) shows the srCRF is able to makes smoothness effect in the 

local region (e.g., less salt-pepper noise in facade region). Figure 4.7(b) shows that the 

lrCRF(V) rectifies some spatial arrangement errors in vertical direction (e.g., roof is 

below building as well as tree inside of building). Horizontal context is not that strong as 

short range context and vertical context, but we still can find some rectification (e.g., 

most of errors that vehicle road behind pedestrian road were removed) in Figure 4.7(c). 

Combining contexts of multiple ranges in a single graphical model, the maCRF had the 

best classification quality.  
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Figure 4.7: Classification result of the four CRFs of the data YV2. (a) srCRF; (b) 

lrCRF(V); (c) lrCRF(H); (d) maCRF. 

(a) 

(b) 

(c) 

(d) 
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To track how the local smoothness constraint and long range scene-layout effect 

the classification, one representative scan profile selected for comparative analysis, which 

is showed in Figure 4.8. Compared to the other classifiers, Figure 4.8(e) indicates that 

maCRF model yields significant improvement in line-based classification compared to 

the other classifiers. It can be observed in Figure 4.8(a) that GMM-EM produced the 

largest commission errors between building and tree, building and LMO and tree and 

LMO. It is clear to see that tree appears inside building and building locates inside a 

building, which is always called “salt and pepper” noise in image processing. Figure 

4.8(b) shows some portion of those commission errors were rectified by srCRF through 

enforcing local regularities. Benefited from label interaction with many neighbors, noise 

lines surrounded by dominant neighborhood of tree and building are likely to be effected 

by local smoothness constraint. However, the smoothness constraint could fails if a 

misclassified line has only a few short range neighbor or even worse that some lines are 

isolated because of the occlusion problem. Moreover, the short range interaction makes a 

local smoothness but it did not work effectively to guarantee global spatial arrangement. 

For instance, srCRF does greatly rectify the “salt and pepper” noise but still produced 

spatial arrangement errors such “trees are placed on building façade” and “building are 

placed at the treetops” (see Figure 4.8(b)). It is noted that the objects in different scan 

profile could have different appearance and effect of multi-range context on different 

scan profile are different as well. 
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Figure 4.8: Example of single scan profile analysis with different context.  (a)-(e) 

respectively present the classification result of GMM-EM classifier, srCRF, lrCRF(V), 

lrCRF(H) and maCRF; (f) represents the ground truth. 

(a) (b) 

(c) (d) 

(e) (f) 
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The long range CRF models assume scene-layout constraints on vertical by 

considering long range interactions of line segments. lrCRF(V) model makes vertical 

spatial arrangement constraint and lrCRF(H) model makes horizontal spatial arrangement 

constraint. As shown in Figure 4.8(c), lrCRF(V) is able to rectify the spatial arrangement 

error between tree and building by introducing and “above-below” relation prior and 

feature likelihood of each relation. Horizontal spatial arrangement does not allow tree 

behind building, so some building lines that misclassified as tree by GMM were rectified 

by lrCRF(H), which is showed in Figure 4.8(d). However, we also found that long range 

context was able to rectify some scene layout errors, but failed to correct inconsistence in 

local region. 

So far, single range CRF models have showed their respective benefits and 

limitations. By considering local smoothness and global scene layout together, the 

combined maCRF model was expected to makes objects interact simultaneously with 

their neighbors of multiple ranges. As showed in Figure 4.8(e), maCRF produced the 

most accurate classification results the result, which is in accordance with the 

expectation. 

In order to examine which classes are sensitive to which type of context, label 

transition analysis was done. The label transition analysis is based on comparing label 

change from local classifier to CRF model. There are three types label transitions, False 

to False (local classifier gives false label and CRF models gives another false label), True 

to False (local classifier gives true label and CRF models gives false label) and False to 

True (local classifier gives false label and CRF models gives true label); and they are 
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marked in blue, red and green respectively in each label transition figure. False to True is 

positive transition and the other are negative transition. The numbers of negative and 

positive transition from GMM classifier to each CRF classifier over the data YV2 are 

presented in Table 4.2. Details of label transitions from GMM to each CRF model are 

showed in Figure 4.9, Figure 4.10, Figure 4.11, and Figure 4.12 respectively. 

 

Table 4.2: Positive and negative transition from GMM to each CRF classifier. 

Classifier Total Negtive Positve Negtive rate Positve rate 
srCRF 11959 5488 6471 45.89 54.11 

lrCRF(V) 13438 4501 8937 33.49 66.51 
lrCRF(H) 4985 2228 2757 44.69 55.31 
maCRF 12247 3061 9186 24.99 75.01 

 

Figure 4.9 presents label transition from GMM to srCRF. The local smoothness 

constraint works rather well on rectify true low vegetation that misclassified as tree, but 

not very significantly on other misclassification errors.  

Figure 4.10 presents label transition from GMM to lrCRF(V). It is observed that 

building and tree, low vegetation and tree, roof and building, building and low man-made 

object, were positively affected by the long range vertical scene layout constraint.  

Figure 4.11 presents label transition from GMM to lrCRF(H). Commission errors 

between tree and low vegetation, pedestrian road and vehicle road, pedestrian road and 

low vegetation, low man-made object and low vegetation were more sensitive to 

horizontal scene layout constraint. 
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Figure 4.9: Label transition from GMM to srCRF. 

 

 

 

 

Figure 4.10: Label transition from GMM to lrCRF(V). 
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Figure 4.11: Label transition from GMM to lrCRF(H). 

 

Figure 4.12 presents label transition from GMM to maCRF. It is clear to see that 

positive transition was the dominant label change (75%). Table4.1 shows the total 

number of label transition of maCRF is less than that of lrCRF(V), but the number of 

positive transition is more than that of lrCRF(V); and this result validates that by 

combining multi-range interaction, maCRF is able to integrate advantages of each single 

range context.  
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Figure 4.12: Label transition from GMM to maCRF. 

 

4.7.2 Quantitative Analysis 

By comparing prediction result and ground truth, confusion matrix was created for each 

context based classifier. Based on confusion matrix, overall accuracy, per class precision, 

recall and F1-score were computed. Following the experiment setup of Chapter3, two 

fold cross validation was used. Test accuracy of GMM and the four CRF models on each 

data and the averaged accuracy were presented in Table4.3. Confusion matrix of the four 

CRF models on data YV2 were presented in Table 4.4, Table 4.5, Table 4.6 and Table 4.7 

respectively.  

From Table 4.3, it is obvious to see the advantage of contextual information; all 

five contextual classifiers showed higher accuracy than the GMM classifier. By combing 

multiple range interaction, maCRF improved its classification accuracy by 6.25% 

compared with GMM. The long range vertical constraints worked better than long range 
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horizontal constraints. One possible reason is that the placement of objects in horizontal 

direction is not stable. For example, both curb and garbage bin are low man-made object, 

but curb is in front of pedestrian road and garbage bin is behind of pedestrian road. 

Another reason is from the nature of single view laser scanning that if there is an object 

already reflect laser signal back, the laser cannot capture objects behind it, which makes 

the objects have less connection in the horizontal direction.  

 

Table 4.3: Test accuracy of GMM and the four CRF models. 

Classifier YV1 YV2 Averaged 

GMM-EM 79.53 79.98 79.76 

srCRF 82.05 81.73 81.89 

lrCRF(V) 86.13 85.04 85.59 

lrCRF(H) 80.25 80.41 80.33 

maCRF 86.51 85.79 86.01 

 

Table 4.4: Confusion matrix of srCRF classifier on data YV2. 

  Prediction 

Building Roof PR Tree LMO VR LV 

G
ro

u
n

d
 T

ru
th

 Building 36590 1428 65 674 848 0 384 

Roof 1158 2592 1 0 0 1 0 

PR 193 0 13106 99 900 449 2108 

Tree 2404 2 152 7128 198 0 1232 

LMO 751 0 570 113 6181 58 1722 

VR 18 0 784 6 88 6814 69 

LV 276 0 349 805 449 1 9739 
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Table 4.5: Confusion matrix of lrCRF(V) classifier on data YV2. 

  Prediction 

Building Roof PR Tree LMO VR LV 

G
ro

u
n

d
 T

ru
th

 Building 37450 1414 4 93 884 0 144 

Roof 590 3162 0 0 0 0 0 

PR 273 0 12272 596 946 404 2364 

Tree 515 1 33 10122 22 0 423 

LMO 580 0 234 30 7410 53 1088 

VR 9 0 730 22 91 6852 75 

LV 596 0 98 2396 328 0 8201 

 

Table 4.6: Confusion matrix of lrCRF(H) classifier on data YV2. 

  Prediction 

Building Roof PR Tree LMO VR LV 

G
ro

u
n

d
 T

ru
th

 Building 34735 2285 15 1622 935 0 397 

Roof 724 3028 0 0 0 0 0 

PR 100 0 12429 291 998 432 2605 

Tree 912 3 29 9167 172 0 833 

LMO 519 0 245 365 6286 70 1910 

VR 1 0 503 1 169 7092 13 

LV 157 0 105 2746 531 0 8080 

 

Table 4.7: Confusion matrix of maCRF classifier on data YV2. 

  Prediction 

Building Roof PR Tree LMO VR LV 

G
ro

u
n

d
 T

ru
th

 Building 38047 917 5 159 543 0 184 

Roof 815 2937 0 0 0 0 0 

PR 158 0 13069 813 700 376 1831 

Tree 240 2 7 10498 56 0 320 

LMO 630 0 266 62 6929 63 1444 

VR 6 0 1008 0 65 6682 57 

LV 189 0 119 2865 377 1 8065 

 

Figure 4.13, Figure 4.14 and Figure 4.15 present precision, recall, and F1-score 

respectively on the data YV2. Precisions of roof and tree benefited most from multi-range 
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context, improved more than 10% compared with GMM; improvement of other five 

classes were not significant but still can be observed. Recalls of most objects were 

improved by multi-range context; but recalls of VR decreased a little. As regards F1-

score, all objects had higher value in maCRF than in GMM. It is also observed that 

maCRF does not guarantee that every class has better performance than that in each 

single range CRF model. For example, lrCRF(V) produced the best F1-score for tree, 

rather than maCRF.  

 

 

Figure 4.13: Precision of each class in five methods. 

Building Roof PR Tree LMO VR LV

GMM 91.83 63.25 89.67 61.36 71.37 93.12 58.91

srCRF 91.50 69.08 77.76 64.12 65.79 87.59 83.82

lrCRF(V) 93.59 69.08 91.78 76.34 76.54 93.75 66.70

lrCRF(H) 93.50 56.96 93.27 64.59 69.15 93.39 58.39

maCRF 94.92 76.17 90.29 72.92 79.92 93.82 67.77
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Figure 4.14: Recall of each class in five methods. 

 

 

 

 

Figure 4.15: F1-Score of each class in five methods. 

 

Building Roof PR Tree LMO VR LV

GMM 89.17 76.23 74.81 74.99 66.44 86.05 68.90

srCRF 88.40 64.45 87.22 80.77 71.34 93.05 63.85

lrCRF(V) 93.65 84.28 72.81 91.06 78.87 88.08 70.58

lrCRF(H) 73.74 76.23 74.81 74.99 66.44 86.05 68.90

maCRF 95.46 78.28 77.12 94.38 73.76 85.47 69.43
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4.8 Chapter Summary 

In this chapter, limitation of local classifier was first discussed. Then the detail of the 

proposed multi-range asymmetric CRF model model was given. The proposed maCRF 

model introduces short-range and long-range (both vertical and horizontal) interactions 

among labels as well as observed features. By maximizing object label agreement 

according to the contextual coherence, maCRF model compensates for ambiguity in local 

appearance of objects. Classification performance of GMM-EM, single range context 

based CRF models (srCRF, lrCRF(V) and lrCRF(H)), and the multi-range integrated 

maCRF were evaluated. Our experimental results showed that maCRF performed the 

best, which validates the advantages of multi-range context constraints.  

 The proposed maCRF model considers multi-range contexts only in each scan 

profile, but neglect the contextual information between adjacent scan profiles. In the next 

chapter, the contextual information across scan profiles will be discussed. 

 

 

 

 

 

 

 

 

 



 134 

Chapter 5  

Across Scan Profile Conditional Random 

Filed 

In the chapter 4, the maCRF model only considers object contexts along scan profile, but 

neglects the dependency between objects at neighboring scan profiles. It assumes that 

lines at adjacent scan profiles are independently, which is not coincident with the actual 

facts. Because of the sweeping nature of laser scanning, the sequentially acquired TLS 

data has strong spatial dependency, which can provide additional contextual information. 

Thus, we propose the across scan profile multi-range asymmetric CRF model (amaCRF), 

which is built over every three consecutive scan profiles. The amaCRF model is an 

extension of the previous maCRF model by introducing an additional across scan profile 

context enforces local homogeneity constraints on lines at adjacent scan profiles. Finally 

we proposed a sequential classification strategy that allows contextual information 

propagate through adjacent scan profiles, which is called amaCRF+. Along the sweeping 

direction, amaCRF models are sequentially constructed, and the posteriors of the 

previous amaCRF are used as association term of the next amaCRF model; thus 

posteriors of those lines at overlapping scan profiles of the two amaCRF can be 

sequentially updated. 

Three additional experiments were implemented. In order to validate that the multi-

range context is independent with association terms, output of SVM is tested as 

association term. To validate that the algorithm does not only work on a specific scene, 
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data collected at York Blvd was also tested. And finally, classifiers trained from York 

Village dataset were tested on the York Blvd dataset. 

5.1 Context between Scan Profile 

Label propagation has attracted much attention to object recognition from video sequence. 

Because of the strong correlation between consecutive frames, priors of object context 

are possible to be propagated from some early observed frame to other late observed 

frames. Semi-supervised method is often used for label propagation in video sequences, 

and the propagation engine can be invoked by a few manfully labelled frames. Zhu and 

Ghahramani (2002) first formulated the label propagation problem as a problem of 

assigning soft labels to nodes of a fully connected graph with few labelled nodes; labels 

were propagated with a combination of random walk and clamping. In contrast, as a 

sequential data, the label propagation problem is more naturally modelled using directed 

graphs, such as Hidden Markove Random Field (Badrinarayanan, et al. ， 2010; 

Vijayanarasimhan and Grauman, 2012).  

As semi-supervised label propagation methods usually require an amount of hand 

labeled as input, the propagation result is highly dependent on the input labels and there 

is no guarantee to an optimal result (Vijayanarasimhan and Grauman, 2012). Therefore, 

many researchers turn to find automatic inference solutions without human intervention. 

In Yang and Rosenhahn (2014), trajectory of foreground object (human being, animal, 

etc.) in video image was defined as a sequence of space-time points. A spatial-temporal 

graph was formulated over pixels in the same frame and trajectories across frames. 
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Trajectory clustering potentials in the spatial-temporal CRF model was designed as 

Laplacian matrix to encourage coherent labeling of trajectories across neighboring frames.  

As the sequential acquisition nature of laser scanning data, label also can be 

propagated both in the spatial and temporal domain. In Vale and Mota (2004), acquisition 

of airborne LiDAR data was treated as a set of sequentially collected vertical sweep; it 

detects the power line anomaly based on the assumption that power line points “grows” 

along the direction that airplane moves and potential anomaly is found when power line 

points tracking across vertical sweeps fails. The detection by tracking method belongs to 

template matching, so that the final results needs additional manual intervention. In 

Stamos et al. (2012), each vertical scan profile was considered as a stream of observation 

and points were sequentially connected by from top to down. A three state (vertical 

object, horizontal object and vegetation) HMM model was built based on the assumption 

that label transits from one state to another can be characterised a shift pattern of surface 

normal. However, the label propagation was only implemented along scan profile.  

Label propagation in this research is closer to Vale and Mota (2004) because we 

consider the label consistence across scan profiles. It is assumed that object “grows” 

along the direction that laser scanner sweeps and forces neighboring lines at neighboring 

scan profiles to have the same class label. By considering TLS data as a sequence, 

contextual information propagates through adjacent scan profiles.  

5.2 Across Scan Profile CRF Model 

In Chapter 3 and 4, entire laser scanning data was split into a set of sequentially observed 

scan profiles. The space width of each scan profile can be defined as follows:  
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θrπd =  

 

where r is the distance between laser scanner and objects; θ is the angular width of one 

scan profile. The space width is not a fixed value but proportional with the distance r. 

Take distance in 50m away for example, the space width can be calculated as:

cmmmd m 4.4044.0)180/05.0(*50*14.320  .The ranges of most objects in the 

experimental data are within 50m, thus maximal space width of each scan profile is less 

than 4.4cm, which is rather small compared with urban objects size. The space width of 

each scan profile is so small that objects can “grows” along the direction that laser 

scanner sweeps. 

5.2.1 Graph Construction  

The proposed across scan profile multi-range asymmetric CRF (amaCRF) is an extension 

of the previous maCRF model, details of which can be found in Chapter 4. The amaCRF 

model is built over every three consecutive scan profiles. Following the line adjacent 

graph constructing method in Chapter4, adjacent relations of lines were created with 

assistance of grid system, which is depicted in Figure 5.1. Let GA = (V, E) be an 

undirected graph, each of which node v ϵ V, which represents line sets from the three 

consecutive scan profiles. There are four types edges, short range edge (eS), long range 

vertical edge (eLV), long range horizontal edge (eLH) and across scan profile edge (eA). In 

Figure 5.1, the four types of edges are marked using red, blue, purple and black 

respectively. The first three types of edges are line relation along scan profile, and they 

 

 

(5.1) 
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were constructed using the same method as described in Chapter 4. Construction of 

across scan profile edge will be introduced in the following paragraph. 

To find out across scan profile edge, the grid system was used. Because the space 

width of scan profile is rather small, grid system of neighboring scan profiles can be 

regarded as the same. Suppose there is line l at s-th scan profile (middle) and it passes the 

cell [i, j] (yellow), cells at corresponding position and their 4-connected neighborhood in 

the previous (left) and the following (right) scan profile are considered as across scan 

profile cell neighbors (black). Lines pass these cells are across scan profile neighbors of 

the line l. Figure5.2 presents an example of the line adjacent graph of the amaCRF model 

over three consecutive scan profiles.  

 

 

Figure 5.1: Across and along scan profile neighborhood. 

Current cell                

Short range neighbor 

Long range vertical neighbor 

Long range horizontal neighbor 

Across scan profile neighbor 
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Given the across scan profile graph, the conditional distribution over the labels Y 

given observed data X in the graph GA can be defined as follows:  
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where X is the entire observation and Y is the entire label configuration. Es, ELV, ELH are 

sets of short range edges, vertical long range edges and horizontal long range edges 

respectively within scan profile, while EA is the set across scan profile edges. A, I
S
, I

LV,
 

I
LH,

 I
A 

are the short range potential, vertical long range potential, horizontal long range 

potential and across scan profile potential respectively. λ, α, β, γ, δ are corresponding 

weighting coefficients of potential terms. 

 

Figure 5.2: Example of across/with scan profile multi-range graph. 

Short range edge 

Long range vertical edge 

Long range horizontal edge 

Across scan profile edge 

 (5.2) 
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5.2.2 Potential Design  

There are five potential terms in the Equation 5.1. To make a comparative research, 

association term, short and each long rang interaction potential keep the same format as 

they are expressed in the maCRF model. To model the compatibility of lines across scan 

profiles, the classic Potts model was used. The energy value is set to zero if two 

neighboring lines are given different labels and set to 1 when they are assigned the same 

label. For each across scan profile edge connecting two nodes i and j, the interaction 

potential is expressed as below: 
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5.2.3 Parameter Learning and Inference 

There are two types of parameters in the across scan profile maCRF model: parameters in 

each potential term, and parameters weighting the relative influence of potential terms. 

We used the same parameter learning strategy as maCRF model used. At first, parameters 

in association and each interaction potential term were learned individually, following 

which the weights of these terms were learned. Short range and across scan profiles 

interaction potentials are non-parametric model. Parameters of long range vertical and 

horizontal interaction terms were respectively learned using the Maximum Likelihood 

method. When all parameters in all potential terms are known, the weights of potential 

(5.3) 
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terms {λ, α, β, γ, δ} were jointly learned using the SGD algorithm. The log-likelihood 

function of the across scan profile maCRF model can be written as 
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 In order to make the parameters fast converge to an optimal point, the weight of 

association term λ is set as 1. SGD is an iterative optimization algorithm, and parameters 

are updates based on gradients that are computed given current parameters. Equation 5.5 

– 5.8 gives partial derivative of each interaction weight. Detail of parameter learning can 

be found in Chapter 4.  
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 Given the parameters, inference was implemented using the LBP algorithm, 

which is a standard iterative message passing algorithm for graphs with cycles and has 

been validated effective in Chapter 4.  

5.3 Context Propagation through Adjacent Scan Profile  

The graph of across scan profile maCRF (amaCRF) model is built over every three 

consecutive scan profiles, which is depicted in Figure 5.3. In Figure 5.3, each plane 

represents one scan profile. These amaCRF graphs are independent each other; for 

example, scan profiles in the amaCRF(1) model do not have any connection with scan 

profiles in the amaCRF(2) model. Thus, contextual information only can be propagated in 

scan profiles within the same amaCRF model. Although the amaCRF model considers 

object context across scan profiles, but each scan profiles only has chance to be 

connected with its closet neighboring scan profiles.  

 

 

Figure 5.3: Each amaCRF model is independent with each other. 

 

To let contextual information propagated from one scan profile to its neighbors 

far away, an intuitive way is putting all scan profiles between in one amaCRF. This 

SP2               SP3               SP1               SP5               SP6               SP4               SP3k-1               SP3k              SP3k-2 

…     

amaCRF(1) amaCRF(2) amaCRF(k) 
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method does construct the connection between them, but inference of a large graph will 

be rather computational complex when the two scan profiles are too far away. Therefore, 

we proposed a sequential processing method, amaCRF+ to make contextual information 

flows between adjacent scan profiles. The “sequential” here does not mean the proposed 

CRF model is a directed graphical model, but means that CRF models are sequentially 

constructed and output of the previous model is used as the input of the next CRF model.  

This sequential processing method makes contextual information propagates through 

adjacent scan profiles by dynamically updating posterior probability. Figure 5.4 depicts 

the sequential processing method taking the first five scan profiles as an example. We 

will focus more on how posteriors of lines at the third scan profile are updated.  

In Figure 5.4, the color indicates how many times posterior provability has been 

updated; the darker the color, more times of update is implemented. Before applying CRF 

model, posterior probabilities of lines at the third scan profile are from a local classifier 

(e.g., GMM and SVM). At time T1, the first, second and third scan profiles are selected 

to construct the first amaCRF model, which is noted amaCRF(1,2,3). After implementing 

the amaCRF(1,2,3) model, posteriors of lines at the third scan profile are updated the first 

time, and posterior is noted as CRF
(1)

. Then log posterior of CRF
(1) 

is used as association 

term of the amaCRF(2,3,4) model, and posteriors of lines at the third scan profile are 

updated again, which is noted as CRF
(2)

. Finally, log posterior of CRF
(2) 

is used as 

association term of the amaCRF(3,4,5) model and posteriors of lines at the third scan 

profile are updated the third time, which is noted as as CRF
(3)

. In this manner, outputs of 

the previous amaCRF model are used as association potential of the next amaCRF model 



 144 

so that posterior of those common scan profiles of the two amaCRF model can be 

dynamically updated. It is observed that except for the first two and the last two scan 

profiles, lines in all other scan profiles have three chances to update posterior probability.  

Since the output of amaCRF(1,2,3) contributes to amaCRF(2,3,4), it is conclude 

that contextual information of the first scan profile is propagated to the fourth scan profile 

through the second and third scan profiles. The rest can be done in the same manner so 

that contextual information of the first scan profile can be propagated to the last scan 

profile. 

 

Figure 5.4: Contextual information propagates through adjacent scan profiles. 
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In most case, there should be one scan profile that already updated two times, one 

scan profile that already updated one times and one scan profile that never been updated. 

We can write the posterior of the sequential amaCRF model as follows:  
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where P(Y|X) is the posterior of sequential amaCRF model. P
(0)

(yi|X), P
(1)

(yi|X) and 

P
(2)

(yi|X) are posteriors updated zero, one and two times update; and λ
(0), 

λ
(1),

 and λ
(2)

are 

corresponding weights. V
(0), 

V
(1),

 and V
(2)

 are node set of three scan profile, and the upper 

index notes how many time posterior has been updated. E
 

S, E
 

LV, E
 

LH, E
 

A are respectively 

the edge set of short range, long range vertical / horizontal along scan profile and across 

scan profile edge set, and α, β, γ and δ are corresponding weights. Compared with non-

sequential amaCRF model, the sequential method updates association terms gradually, 

but does not change the graph structure and interaction potential design of amaCRF 

model. To simplify the model, we assume that three types of posteriors have equal weight 

and so it has the same equation as amaCRF model. Therefore, under this assumption, 

parameters of amaCRF model can be shared with the sequential amaCRF model. For 

inference, the sequential amaCRF model also used the LBP algorithm.  

(5.9) 
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5.4 Experiments of Across Scan Profiles CRF models  

In this chapter, two models were proposed, amaCRF and an improved model using 

sequential label propagation, sequential amaCRF model. To validate the advantages of 

context of across scan profile and sequential knowledge propagation, the two models 

were tested on the same datasets that we already used in previous chapters. Each CRF 

model was implemented using Matlab and C++. Implementation of parameter learning 

and inference referred the UGM code (Schmidt, 2007). Scan line number, line segment 

number and number of short range, long range vertical and horizontal edge, and across 

scan profile edges of each dataset are presented in Table 5.1.  

 

Table 5.1: Total number of the spatial entities extracted from York Village datasets. 

Nodes and edges YV1 YV2 

Scan line  2810 2580 

Line segment  105,620 100,648 

Short range edge 260,579 277,584 

Long range vertical edge 158,276 156,023 

Long range horizontal edge  18,787 16, 463 

Across scan profile edges  167,098 169,832 

 

Parameters in amaCRF model were learned using SGD, and the parameter 

learning on the data YV1 is showed in Figure 5.5. The horizontal axis indicates the 

iteration number and vertical axis indicates weight value. There are 2810 scan profiles in 

the training data, and it is observed that weights converge very fast and get stable after 

scanning the entire dataset 10 times.   
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Figure 5.5: Parameter learning of maCRF model on data YV1. X-axis is the 

interation number and Y-axis is the weight value.  

 

Classification results of the two amaCRF models on the data YV2 are presented 

in Figure 5.6. Compared with classification result of maCRF, which is presented in the 

Figure 4.6(d), the amaCRF model removes most of “pepper and salt” noises on facade 

area (Figure 5.6(a)). It is also observed that those area with serious occlusion is more 

likely to be affected by the across scan profile. Using sequential processing, classification 

quality is further improved (Figure 5.6(b)).  
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Figure 5.6: Classification result of the amaCRF model and sequential processing on the 

data YV2. (a) amaCRF model; (b) amaCRF+ model.  

 

Test accuracies of GMM, maCRF and two amaCRF models on data YV1 and 

YV2 are shown in Table 5.2. Compared with maCRF, the amaCRF improved the 

classification accuracy by 1.29%, and the sequential processing improved further by 

2.05%. Compared with GMM classifier, the amaCRF+ improved the accuracy up to 

around 10%. 

 

 

(a) 

(b) 
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Table 5.2: Test Accuracy of sequential CRF Models.  

Classifier YV1 YV2 Averaged Improvement 

GMM 79.53 79.98 79.76 
 

maCRF 86.51 85.79 86.01 +6.25 

amaCRF 87.01 87.79 87.40 +7.64 

amaCRF+ 89.10 89.79 89.45 +9.69 

 

5.5 Additional Experiments 

In this section, we will study potential generalization ability of the proposed multi-range 

asymmetric CRF models and the sequential processing. The objective of the additional 

experiments is to investigate whether the proposed classifier is dependent on association 

term, and whether the proposed classifier is dependent on the scene type.  

5.5.1 SVM Based CRFs 

GMM and SVM are champions of generative classifiers and discriminative classifiers 

respectively. But in previous CRF models, we only used output of GMM as input of the 

association term. Although experimental results validated the advantage of using multi-

range contexts, a question comes up: is the context only compatible with the output of 

generative classifiers? To address this problem, the first experiment is replacing the 

output of GMM with output of SVM. To convert the output of the decision function to a 

posterior probability, we used a modified version of the method in Wu et al. (2004). 

Given the posterior probabilities of SVM classifier, six SVM-based CRF models, srCRF, 

lrCRF(V), lrCRF(H), maCRF, amaCRF and amaCRF+ was modeled. The conditional 
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distribution over the labels Y given observed data X in the across scan profile amaCRF 

graph GA can be defined as follows:  
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Parameter learning of amaCRF model on the data YV1 is showed in Figure 5.5. 

The horizontal axis indicates the iteration number and vertical axis indicates weight 

value. It is observed that weights start to converge after scanning through the entire 

training data three times, which is even faster than the GMM-based amaCRF model.  

 

 

Figure 5.7: Parameter learning of the amaCRF model (SVM) on data YV1. X-axis is 

the interation number and Y-axis is the weight value.  

(5.10) 
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Test accuracies of SVM and the six SVM-based CRF models on data YV1 and 

YV2 are presented in Table 5.3. It is observed that effect of multi-range contexts and 

sequential processing of SVM-based CRF models are similar with those GMM-based 

CRF models. 

 Table 5.3: Test Accuracy of sequential CRF Models.  

Classifier YB1 YL2 Averaged 

SVM 85.19 85.32 85.26 

srCRF 86.82 86.77 86.80 

lrCRF(V) 88.62 88.51 88.57 

lrCRF(H) 86.32 85.81 86.07 

maCRF 89.72 89.85 89.78 

amaCRF 90.03 90.14 90.09 

amaCRF+ 90.18 90.36 90.27 

 

Classification results of SVM and the sequential amaCRF model on the data YV2 

are presented in Figure 5.8. As a local classifier, SVM produced a result with visible 

misclassification errors (Figure 5.8(a)). Considering multi-range contexts and sequential 

processing, most of local inconsistence errors were removed (Figure 5.8(b)). It is 

concluded that the proposed multi-range based CRF models are not sensitive to 

association term. It is noticed that since the SVM already gives high classification 

accuracy, the improvement space of multi-range and sequential processing is very limited. 

 



 152 

 

 

Figure 5.8: Classification result of the SVM-based amaCRF model and sequential 

processing on the data YV2. (a) amaCRF model; (b) sequential processing. 

5.5.2 York Blvd Datasets 

The second generation is applying the proposed classification algorithms on different 

dataset. The new dataset was collected at two different sites, on York Blvd, York 

University campus, Toronto. The two datasets are noted as YB1 and YB2 respectively. 

YB1 locates at the north of the York Blvd, and mainly covers the south facade of York 

(a) 

(b) 
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Lanes Mall. YB1 locates at the south of the York Blvd, and mainly covers the north 

facade of the Center for film and Theatre. Different from York Village dataset, building 

roofs in York Blvd datasets are flat so that roof is not visible in the TLS data and we have 

only six classes: building, pedestrian road (PR), tree, low man-made object (LMO), 

vehicle road (VR), and low vegetation (LV). Scene type of York Village and York Blvd 

data are different, such as Architectural style of building, tree species. 

 

 

Figure 5.9: Surveying locations of York Blvd Dataset. Dataset was collected at two 

different locations (red pentagram) of York Blvd. 

The two York Blvd datasets were collected using RIEGL LMS Z390i laser 

scanner and all dataset acquisition setup is the same as York Village dataset. All 

thresholds of data processing, including scan profile generation, line extraction, feature 

extraction and line adjacent neighboring searching are also the same as York Village 
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dataset. Table 3.1 summarizes the number of spatial entities extracted from the two 

datasets.  

 

Table 5.4: Total number of the spatial entities extracted from York Blvd datasets. 

Spatial entities YB1 YB2 

Laser points 3,673,257 3,484,462 

Scan profiles 2,800 2,600 

Line segments 152,978 162,053 

Short range edge 579,872 582,341 

Long range vertical edge 400,299 408,247 

Long range horizontal edge 9,687 15,274 

Across scan profile edge 410,244 413,192 

 

We still used the two-fold cross validation to evaluate the performance of 

proposed classifiers on York Blvd dataset. We only tested the amaCRF and sequential 

processing methods. Both GMM and SVM were used as association terms of the two 

CRF models. Classification results of the GMM and GMM-based amaCRF model with 

sequential processing on the data YB2 is presented in Figure 5.10. Classification errors of 

GMM were mainly found between building and tree, low vegetation and low man-made 

object.  Most of these errors were removed after applying the multi-range contexts and 

sequential processing. We still found the many lines of pedestrian road were 

misclassified as vehicle road using GMM, and unfortunately they cannot be effectively 

rectified by using multi-range contexts and sequential processing, which need to be 

further examined. SVM and SVM-based CRFs had similar results as GMM and GMM-

based CRFs had, and classification results on the data YB2 are presented in Figure 5.11.  



 155 

 
 

Figure 5.10: Classification results of the GMM and GMM-based amaCRF model 

with sequential processing on the data YB2. (a) Ground truth; (b) GMM; (c) GMM-

based amaCRF model with sequential processing. 

(a) 

(b) 

(c) 
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Figure 5.11: Classification results of the SVM and SVM-based amaCRF model with 

sequential processing on the data YB2. (a) SVM; (b) SVM-based amaCRF model with 

sequential processing. 

 

Test accuracy of the local classifiers and CRF models on the two York Blvd 

datasets are presented in Table 5.4. Although the two local classifiers, GMM and SVM, 

already make high classification performance, improvement still can be achieved by 

amaCRF and sequential processing. Compared with GMM, the GMM-based amaCRF 

with sequential processing improved averaged test accuracy by 4.36%. Compared with 

(a) 

(b) 
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SVM, the SVMM-based amaCRF with sequential processing improved averaged test 

accuracy by 3.38%.  

 

Table 5.5: Test Accuracy of the proposed classifiers on York Blvd datasets.  

Classifier YB1 YB2 Averaged 

GMM 88.27 89.19 88.73 

GMM based amaCRF 92.25 92.71 92.48 

GMM based amaCRF+ 92.93 93.24 93.09 

SVM 89.73 90.16 89.95 

SVM based amaCRF 92.92 93.23 93.08 

SVM based amaCRF+ 93.18 93.47 93.33 

 

5.5.3 Train Classifiers using York Village Dataset and Test on York Blvd 
Dataset 

Training and testing datasets in the previous experiments were collected at the same 

street. In the third additional experiment, training and testing datasets were collected at 

different streets. Classifiers were trained from the YV1 data and then tested on the York 

Blvd datasets, both YB1 and YB2. There are seven types of objects in the York Village 

data (building, roof, PR, tree, LMO, VR, LV), and only six types of objects in the York 

Blvd data (building, PR, tree, LMO, VR, LV). Because the York Village data has the 

class “roof” that does not appear in York Blvd data, testing classification performance of 

York Village data using the classifiers trained from York Blvd dataset was not 

implemented.  

Four classifiers, GMM, SVM, GMM based amaCRF+ and CRF based amaCRF+ 

were trained from the YV1 data, and then were tested on YB1 and YB2. Classification 
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accuracy of their performance is shown in the Table 5.6. Performance of the local 

classifiers on the YB1 data is not very high, but higher than 60%. But performance of the 

local classifiers on the YB1 data is rather bad, lower than 50%. The amaCRF+ improved 

the classification performance of local classifiers on the YB1 data, but achieved even 

worse performance than local classifiers on the data YB2. Thus, this additional 

experimental does not validate that the multi-range context and the sequential modeling 

method can improve classification performance of local classifier.  

 

Table 5.6: Test Accuracy of York Blvd dataset using Classifiers Trained from YV1 

dataset.  

Classifier YB1 YB2 

GMM 64.42% 48.91% 

GMM based amaCRF+ 65.16% 35.30% 

SVM 67.61% 47.63% 

SVM based amaCRF+ 69.58% 34.17% 

 

The classification results of GMM and GMM based amaCRF+ on the data YB1 

and YB2 are presented in the Figure 5.12. It is observed that amaCRF+ always can make 

a more coherent classification result on building facade area both in data YB1 and YB2. 

Some building lines were misclassified as roof in GMM, and then these misclassification 

errors were removed by amaCRF+. However, many tree lines that correctly classified in 

GMM were misclassified as building by amaCRF+.  
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Figure 5.12: Classification results of York Blvd datasets using classifiers trained 

from data YV1. (a) GMM of YB1; (b) amaCRF+ of YB1; (c) GMM of YB2; (b) 

amaCRF+ of YB2. 

(a) 

(b) 

(c) 

(d) 
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Figure5.13: Sideview of classification results of YB1 data.  (a) GMM; (b) amaCRF+. 

 

Sideview of the classification results of YB1 data are presented in the Figure 5.13. 

In the Figure 5.13(a), tree has serious misclassification problem using GMM. Those high 

tree lines were misclassified as building or roof, and those low tree lines were 

misclassified as low vegetation. This problem could result from that trees in the test data 

are different from the trees in the training data, such as species, structure, especially the 

height. Tree height in testing data is double of that in the training data, so that it is similar 

(a) 

(b) 
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with building in the training data; therefore the high tree lines have risk to be classified as 

building. And low tree lines in testing data have more similar height distribution with low 

vegetation, and this perhaps the reason that why many of them were misclassified as low 

vegetation. In the Figure 5.13(b), it is observed that amaCRF+ rectified most of 

misclassification errors in building, low man-made objects (bus); however, 

misclassification problem of tree is even worse.  

Two representative scan profiles were selected from YB1 data for further 

analysis, which are noted as SP-A and SP-B are presented in the Figure 5.13 and the 

Figure 5.14 respectively.  

 

Figure 5.14. classification results of the scan profile SP-A.  (a) GMM; (b) amaCRF+; (c) 

ground truth. 

(a) (b) 

(c) 
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In the scan profile SP-A, only a few lines were incorrectly classified by GMM (Figure 

5.14(a)), and then they were rectified by considering neighbors in along and across scan 

profiles (Figure 5.14(a)). In the scan profile SP-B, because most of tree lines were 

misclassified as building using GMM (Figure 5.15(a)), those correctly classified tree 

lines were affected by the misclassified majority and then changed the label from true to 

flase after applying amaCRF+ (Figure 5.15(b)).  

 

 

Figure 5.15: Sideview of classification results of YB1 data.  (a) GMM; (b) amaCRF+. 

From analysis of the two scan profiles, it is concluded that the multi-range contexts 

do enforce constraints on local smoothness and global scene layout; however the effect of 

(a) (b) 

(c) 
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the multi-range contexts is related with the association term (local classifier) as well. 

When local classifier achieves a satisfying classification performance, applying multi-

range contexts can further improve the classification accuracy; otherwise, when local 

classifier is weak, applying multi-range contexts has the risk of decreasing the 

classification accuracy. 

5.6 Chapter Summary 

In this chapter, the maCRF model was extended to across scan profile, which is called 

across scan profile multi-range CRF (amaCRF) model. The amaCRF model incorporates 

contexts along scan profile (short range, long range vertical and horizontal) and across 

scan profile context into a unified probabilistic graphical model. The amaCRF model is 

built over every three consecutive scan profiles and contextual information one scan 

profiles can be propagated to adjacent scan profile through across scan profile edges; 

however, scan profiles at different amaCRF models are absolutely 

independent.  Therefore, we proposed a sequential processing method (amaCRF+), which 

allows contextual information propagate through adjacent scan profiles. Along the 

sweeping direction, amaCRF models are sequentially constructed. The posteriors of the 

previous amaCRF are used as association term of the next amaCRF model so that 

posteriors of those lines at overlapping scan profiles can be updated. In this way, 

contextual information of the first scan profile can be propagated to the last scan profile. 

The experiment results showed that the amaCRF and amaCRF improved success rate of 

GMM by 2% and 4% respectively.  
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We also examined the generalization ability of the proposed methods. To validate 

that the multi-range context CRF model is not dependent on the association term, output 

of GMM was replaced by the output of SVM. Experiment results showed that SVM-

based CRF models can achieve similar classification improvement as GMM did. The 

algorithm was also tested using another TLS data, which was collected at York Blvd, and 

the experimental results verify that the proposed algorithm has good generalization 

ability, not only work on specific scene. Finally, classifiers trained from York Village 

were tested on York Blvd data. Although the experimental results do not validate that 

multi-range contexts and sequential modeling is able to improve the classification 

performance, the effect of local smoothness and global scene layout enforced by multi-

range contexts can be observed.  
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Chapter 6  

Discussions  

This thesis aims to achieve two primary objectives for addressing the research problems 

to label urban street scenes from massive laser point clouds acquired by TLS. On one 

hand, the study focused on the design and implementation of an automatic, accurate and 

robust classifier, which can be employed for a real-time laser point cloud processing. In 

this study frame, a concept of “per-scan profile” classification, following the scanning 

nature of range profiler such as TLS was proposed. On the other hand, the thesis 

discussed significant roles of spatial context and regularities for improving the 

performance achieved by conventional local classifiers. This spatial regularity has been 

studied in the framework of CRF. These objectives were achieved by developing three 

major methods presented in this thesis: (1) implemented a new “per-scan profile” 

classifier, which characterize key street objects with apparent and context linear features 

and validate the effectiveness of “per-scan profile” classifier using ten different 

generative and discriminative classifiers; (2) proposed a multi-range asymmetric CRF 

model (maCRF), which augments spatial layout compatibility by integrating multi-range 

smoothness (short, long range vertical and long range horizontal) in CRF; and finally (3) 

extended maCRF by labeling point clouds, not only along scan profile, but also across 

scan profiles; and proposed two classifiers, called amaCRF and amaCRF+ by updating 

the posterior probability of label decision through non-overlapping (amaCRF) or 

overlapping (amaCRF+) sequential processing scheme. This chapter will give an 
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overview of this research and discuss our conclusions on this subject, and then the future 

directions could follow. 

6.1 Conclusions 

In this research, we proposed a line based multi-range asymmetric CRF (maCRF) model, 

which is aimed at real-time TLS data classification. This work can be decomposed into 

three parts as follows: 

1. Line-based object representation 

We explored the potential of lines as the geometric primitive for classification 

purpose. In our “per-san profile” classification scheme, we believe that the line 

primitives are optimal for characterizing street objects and gaining computational 

benefits. In this study, the lines were extracted from each vertical scan profile. 

Each scan profile was considered as a stream of observed points, and those points 

that have similar range were merged into a line. To avoid the “under-

segmentation”, the Douglas–Peucker algorithm was then applied as a post-

processing for splitting the under-segmented line into separate lines. The line 

extraction result shows that as high as 99% points can be represented by the lines, 

and all types of object we are interested in are well characterized by line 

primitives.  

2. Line-based TLS data classification (Local Classifier) 

To classify the extracted line primitives, we implemented local classifiers by 

proposing two types of line-based features (i.e., apparent features and contextual 

features). Two neighboring systems (circle-based and vertical column-based) 
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were used for extracting context features. The total thirty-five features were 

reduced into eight dimensions using PCA algorithm. Based on these features, we 

designed and implemented 10 different local line-based classifiers covering both 

generative and discriminative ones, which include NB, MG, GMM, KNN, LR, 

SVM, ANN, DT, and two ensembles based on decision tree, RF and AdaBoost. 

The performance of these classifiers was then quantitatively evaluated using 

confusion matrix, accuracy, precision, recall and F1-score. The strongest 

classifiers achieved accuracy up to 85.60% (SVM with RBF kernel), while the 

weakest classifier achieved accuracy in 68.82% (NB). We observed that the 

averaged classification accuracy over all the ten classifier is as high as 79.19%. 

The overall experimental results suggested that the line-based local classifiers are 

efficient to produce reasonable classification outcomes. However, the labeling 

errors produced by the local classifiers are locally irregulars, which do not follow 

compatible spatial relations amongst objects. For instance, tree objects labeled by 

the local classifiers are often found in the middle of building facades. We 

concluded this local labeling irregularity was caused by the locality of 

neighboring smoothness implemented in the local classifiers and resolved by 

introducing another type of regularity, such as layout compatibility amongst 

spatial objects. These problem observations lead to the development of multi-

range and layout compatible context (regularity) within the framework of CRF for 

improving classification results in this thesis.    
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3. Along scan profile CRF model(maCRF) 

As local classifiers are trained only relying on apparent features, they are likely to 

produce misclassification errors when two classes overlap in the feature space. To 

overcome the limitations of local classifiers, we proposed multi-range and 

asymmetric CRF (maCRF), which augments the semantic context between 

adjacent labels, not only considering the local homogeneity, but also in sparse 

neighboring system (long range).  This context augmentation considers both local 

labeling homogeneity and implicit regularity of spatial layout relations amongst 

objects.  Two types of contexts were used, short range and long range context. 

The short range context imposes local smoothness constraint that neighboring 

lines are likely to have the same class label. While the long range context forces 

regularity on scene layout that objects follow some specific spatial arrangements 

along each scan profile, both in vertical and horizontal directions. Rather than 

using predefined rules, the scene-layout compatibility functions are automatically 

learned from training data. The experiment results validated three multi-range and 

asymmetric context regularity terms contributed to the improvement of the 

performance of local classifier (GMM-EM). We observed that all context terms 

provided positive effects to the classification results. However, we found that 

each type of context terms affect the classification differently. Especially, the 

vertical layout compatibility term provided the most benefits to improve the 

classification results, higher than 5% success rate compared to the horizontal 

term. We believe that more scene complexity (more numbers of objects, relations 
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and occlusion) is present in the horizontal direction, which is likely to cause more 

ambiguity to impose spatial layout regularity compared to in the vertical direction. 

The experimental result also suggests the integrated multi-range CRF model 

combine benefits of all three single contexts and makes the best classification 

performance by improving 8% classification compared to the local classifier 

(GMM-EM).  

4. Across scan profile CRF model (amaCRF and amaCRF+) 

TLS typically scans the scenes, not only in vertical direction, but also horizontal 

direction as well. We extended the capacity of maCRF to classify laser point 

clouds by propagating label probability estimated within each vertical scan profile 

into across scan profiles. For achieving this goal, we proposed two multi-range 

asymmetric CRF models, called amaCRF and amaCRF+. These two classifiers 

were developed based on the same frame of maCRF, but are different each other 

with respect to the ways of label propagation. The amaCRF model was built over 

every three consecutive scan profiles. Compared to maCRF, the amaCRF model 

enforces its label decision with additional context regularity from neighbours 

along scan profiles. The experimental results demonstrated that the classification 

quality produced by amaCRF was greatly improved, especially over occluded 

regions compared to maCRF.  

However, the amaCRF limits its labeling decision only within three scan profiles 

involved in the local graphical model construction. To address this limitation, we 

proposed amaCRF+, which allows sequential propagation of semantic knowledge 
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across CRF models. In amaCRF+ scheme, amaCRF models were sequentially 

constructed and adjacent models share identical scan profiles. The posteriors of 

the previous amaCRF were used as the association term of its next amaCRF 

model so that posteriors of those lines at overlapping scan profiles can be updated. 

In this way, contextual information of the first scan profile can be propagated to 

the last scan profile. The experiment results suggested that by dynamically 

updating posteriors, classification confidence of each line get stronger, which 

leads to additional gains of classification performance compared to maCRF and 

amaCRF. We observed this performance improvement is more obvious when 

GMM (representative of generative classifier) was used as a local classifier 

compared to SVM (representative of discriminative classifier). 

6.2 Future Work 

Upon summarizing and highlighting the contributions of this doctoral research 

project, it is essential to identify the limitation of current methodology design and address 

them appropriately in future considerations.  

1. Application to real-time classification 

In recent years, many engineering applications using TLS requires real-time 

scene understanding for supporting on-site decision making, such as for 

autonomous car, unmanned vehicle and robot navigation, sense-and-avoid 

decision, facility risk monitoring and emergency response. In this thesis, our 

along and across scan profile CRFs were designed for providing computational 

benefits by limiting labeling spaces to per-scan profiles and thus suit for a real-
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time point cloud processing. Also, our experimental results demonstrated the 

effectiveness and satisfactory classification performance of the proposed 

classifiers. However, in this thesis, the implementation of our classification 

methods wasn’t realized in a truly real-time mode (on-board processing 

integrated with laser scanners). In our future research, we will implement our 

proposed classifiers tightly coupled with laser scanning hardware and evaluate its 

effectiveness for supporting emerging on-the-go decision applications in a truly 

real-time environment.     

2. Generalization of classification methods 

In this thesis, we designed, implemented and validated several new classifiers, 

but for targeting a limited numbers of street objects within certain limited 

environments. In a short-term, we plan to further investigate the sensitivity of our 

proposed classifiers to: 1) different scene types and complexity; 2) various point 

density; and 3) different laser scanning mechanism. Thus we will investigate how 

these variations from our current experimental setting might produce different 

quality and density of line-based object representation and thus lead to non-

optimal classification results. In this regard, our future research efforts will focus 

on the adaptive design of line-based object representation, which performance 

will be more robust to the variations of point density and scanning mechanism. In 

addition, we will investigate an intelligent fusion of object representation to 

combine the line primitives with others such as points and surfaces; and also 

incorporate various attributes including colors and intensity within current 
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classification models. In a long-term, we will extend our classification methods 

to mobile and airborne applications, enabling the real-time scene classification.   

3. Optimization of parameters 

Many parameters were manually set in this research, such as the threshold (0.5m) 

to separated scattered point and smoothness points, the threshold (0.1m) of 

Douglas-Peucker algorithm, radius (1m) of circle-based neighboring system, 

width (0.5m) of column-based neighboring system, and size of cell (0.5m by 

0.5m) in the grid system. Although this ad-hoc parameter setting achieved 

satisfying results, it does not guarantee to optimal results. Therefore, these 

parameters will be chosen using optimization methods.  

4. High-order scene layout regularity 

In this research, we modeled the scene layout regularity using pairwise potential 

functions (first-order dependency). The first-order dependency can only allow to 

model relations between two nodes, like “building is on top of ground” or “roof 

is on top of building”. In reality, one spatial object have much complex layout 

relations with multiple objects, which is difficult to be interpreted through the 

pairwise context. In our future work, we will consider a strategy to increase the 

power of object layout context, which depends on a large number of entities by 

implementing a high-order potential function in our current graphical models. 

Defined over multiple entities, the higher-order potential function will be able to 

model complex interaction between objects, such as “building is on top of ground 

but also below of roof”. 
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