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Abstract

Recently, the negative ion photoelectron spectrum of CO−3 was reported and the second lowest

energy band is assigned to the close-lying 3E′′ and 3E′ states that undergo Jahn-Teller distortions

(Chem. Sci., 2016, 7, 1142). This assignment is based on the Born-Oppenheimer approximation

and the assumption of a static Jahn-Teller effect that distorts the CO3 structure from D3h to C2v

symmetry. In this work, we employ a 4 states 6 modes vibronic coupling model to investigate the

triplet band and uncover the dynamic and non-adiabatic nature of the Jahn-Teller and pseudo-

Jahn-Teller interactions in the triplet states. The apparent four peaks progression in the band is

studied in depth, and is found to consist of more than four transitions. By comparing the simulated

spectra using the full model and the reduced-dimension 2 states 2 modes models, we characterize

those transitions. The origin of the complexities of the spectrum is traced to the C-O nonbonding

character of the orbitals that lose electron in the photo-detachment process. Methodology-wise, we

derive and present the formalisms for arbitrary order expansions of all bimodal trigonal Jahn-Teller

and pseudo-Jahn-Teller Hamiltonians in vibrational coordinates.
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I. INTRODUCTION

Carbon trioxide (CO3) was proposed to be an intermediate in photoreactions involving

CO2 in 1960s.1,2 Its existence was confirmed shortly after by IR spectroscopy.3–5 The molecule

is of interest in atmospheric chemistry and astrochemistry. It participates in the quenching of

the highly reactive 1D state of O atom by CO2.6 It also participates in the 18O enrichment in

CO2 in the atmospheres of Mars.7,8 There has been a dispute on its ground state structure

symmetry, C2v vs. D3h.9,10 Recent computational results unanimously pointed to a C2v

ground state structure.11–13 Liu et al. pointed out the hidden-Jahn-Teller14 origin of this

distortion:12 the strong Jahn-Teller interaction of a high-lying 1E ′ state generates minima

of C2v symmetry in the ground state potential energy surface, and the minima are lower in

energy than the 1A′1 state at the undistorted D3h structure. The D3h and C2v structures

are separated by a 0.22 eV barrier, which is high enough to let both structures coexist and

be spectroscopically observable.12 Being a member of the C(CH2)3−nOn series, the study of

CO3 also provides insight into how the isoelectronic but more electronegative substitution

of the peripheral CH2 groups of trimethylenemethane modifies the electronic structure of

this prototypical diradical.15

Despite the importance of CO3, relatively few studies have been dedicated to this

molecule, especially when compared to NO3, which has one more electron and also fea-

tures rich Jahn-Teller (JT) and pseudo-Jahn-Teller (pJT) interactions.16–25 Only till two

years ago, the first vibronic spectrum of CO3 was obtained using the negative ion pho-

toelectron (NIPE) spectroscopic technique in a work participated by two of us (B.C. and

X.B.W.).15 Photo-detachment spectrum of the 2A′2 state of CO−3 was recorded, with transi-

tions to both singlet and triplet manifolds of CO3. The adiabatic electron affinity and the

adiabatic energy gap between the singlet ground state and the lowest triplet state of CO3

were accurately measured to be 4.06 and 0.77 eV, respectively. In the same study, theoretical

simulations were carried out to facilitate the understanding of the complicated NIPE spec-

trum. The simulations were based on the Born-Oppenheimer (BO) approximation. Under

this approximation, the JT effects of the two lowest triplet states, 3E ′′ and 3E ′, are assumed

to be static: (1) within each of the 3E ′′ and 3E ′ states, the molecular vibrational motion is

assumed to be localized at one of the distorted C2v minima of the adiabatic potential energy

surface (APES); (2) within each pair of JT-split states, only transitions to the one with low
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energy, whose APES has minima, are considered.

This model needs to be improved. First, the previous simulation resulted in a 4 peaks

vibrational progression with a 560 cm−1 interval, which was assigned to O-C-O bending on

the 3A1 APES, the 3A1 being the low-lying state in the JT-splitting of the 3E ′ term. However,

the JT distortion energies (EJT s) of the 3E ′′ and 3E ′ states, which are the energy differences

between the undistorted D3h and the distorted C2v structures, were estimated to be smaller

than 3 kcal/mol, which is about 1000 cm−1. The shallow well of ∼ 1000 cm−1 on the APES

can accommodate only one vibrationally excited level with the 560 cm−1 fundamental wave

number, taking into account the zero point vibrational energy, i.e., ((1 + 1/2)×560 = 840 <

1000 cm−1). The second and third vibrational excited states, which were supposed to give

the third and fourth peaks in the progression, would be higher in energy than the conical

intersection. With their vibrational wave packets sampling the conical intersection, the BO

approximation, on which the simulation was based, must break down.26 Second, although

the high-lying state of a JT pair does not have a minimum on its APES, it does contribute

to the vibronic spectrum. For instance, the Slonczewski resonances arise from excitations

to the high-lying state.27 These two main concerns motivate us to reinvestigate the vibronic

spectrum involving the two triplet E-type states, focusing on the dynamic and non-adiabatic

nature of their JT and pJT interactions.

Another motivation of this work is methodology-wise. CO3 is in trigonal symmetry. Yes,

the molecule’s ground state adopts a C2v structure. However, in terms of vibronic interaction,

it is more convenient to consider it as a distortion from the parental D3h symmetry. As this

study is dedicated to the JT and pJT effects of a trigonal molecule, we take this opportunity

to present the general formalisms of JT and pJT Hamiltonian operators in all 6 trigonal

symmetries.

In a JT or pJT problem, the relevant Hamiltonian operator (which can be of a molecule

or of a local formation in solid) is represented using a reduced resolution of identity of a set

of symmetry-adapted, vibrationally coupled diabatic states.28,29 The slow variation of the

diabatic states with respect to nuclear distortion determines that the resultant Hamiltonian

matrix elements can be expanded as Taylor series of symmetry-adapted vibrational coordi-

nates.30–37 While the expansions are traditionally38 truncated at the second order and the

resultant Hamiltonians can describe JT and pJT interactions to a qualitative accuracy, a

growing number of studies, both theoretical and experimental, have shown inadequacies of
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the low-order expansions.17,22,23,38–48

Motivated by the importance of the high-order expansions, we endeavour to derive general

expansion formulas of the JT and pJT Hamiltonian operators up to arbitrary order.49–52 In

Ref. 52, we propose an idea to summarize all bimodal JT and pJT Hamiltonian expansion

formulas in one class of axial symmetries (tetragonal there) in a small number of tables: one

table of eigenvalues of symmetry operators for independent Hamiltonian matrix elements,

Int (n/2) + 1 tables of root expansion formulas, and 2 (Int (n/2) + 1) tables of constraints

that are applied to the root expansions. Here, n indicates the order of the principal symmetry

axis (e.g., 4 for tetragonal symmetries) and Intmeans taking the integer part of its argument.

Following the same logic, we have derived expansion formulas for all 908 bimodal JT and pJT

Hamiltonians in the 6 trigonal symmetries (C3, C3h, D3, C3v, D3h, and D3d) in Section S1

in the Supplementary Information (SI). The formalisms are summarized in Tables S1-S7

(1 + 3 (Int (3/2) + 1) = 7). The detailed procedure of obtaining the expansion formulas

relevant to the CO3 JT and pJT problems under consideration is given in Section S2 to

demonstrate how to use the presented formalisms. Due to the ubiquity of trigonal JT and

pJT problems, the broad applicability of the presented formalisms is evident.

This paper is organized as follows. In Section II, the expansion formulas of the JT and pJT

Hamiltonians of interest, the vibronic model, and technical details of the quantum chemistry

calculations and quantum dynamic simulations involved are introduced. In Section III, the

simulation results of the JT and pJT interactions that give the lowest triplet band of the

CO−3 NIPE spectrum are presented and discussed. Section IV concludes the paper.

II. METHODOLOGIES

A. Vibronic Hamiltonian operator

The vibronic Hamiltonian operator of the JT and pJT interactions of the 3E ′′ and 3E ′

states take the form of

Ĥ = T̂N1
4×4

+


HX′′X′′ HX′′Y ′′ HX′′X′ HX′′Y ′

HY ′′Y ′′ HY ′′X′ HY ′′Y ′

HX′X′ HX′Y ′

HY ′Y ′

 . (1)

5



The two real diabatic components of the E-type states are labelled as X and Y . T̂N is the

nuclear kinetic operator for the 6 vibrational degrees of freedom, and it is multiplied to the

4 × 4 unit matrix in any diabatic representation. In the following electronic Hamiltonian

matrix in the diabatic representation, which is a symmetric matrix, only the upper triangle

is given. Vibronic coupling is represented by the dependence of those matrix elements on

nuclear configurations, i.e., the vibrational coordinates.

C O

O

O C
OO

O

a1'  stretching (s1) a2"  umbrella (s2)

C O

O

O

e'x stretching (s3)

C O

O

O

e'y stretching (s4)

C O

O

O

e'x bending (s5)

C O

O

O

e'y bending (s6)

FIG. 1. The six symmetry-adapted internal vibrational modes of CO3. In the e′x stretching and

the e′y bending vibration, the motions along the long arrows are twice of those along the short

arrows.

The six symmetry-adapted vibrational modes of CO3 are shown in Figure 1. The irre-

ducible representations (irreps) that they belong to and their coordinates (s1−6) are given

below them. Their mathematical expressions in the internal coordinates (bond lengths, bond

angles, and the pyramidal angle) are well known (e.g., see Table I in Ref. 53) and are not

repeated. The stretching coordinates s1,3,4 have length unit, and the pyramidalizing and

bending coordinates s2,5,6 have angular units. The reference structure with s1−6 = 0 is the

CO−3 ground state D3h structure optimized at the U-B3LYP/aug-cc-pVTZ level,54–56 with a

1.272 Å CO bond length. The same basis set is used in all electronic structure calculations

in this work, which are performed using the GAMESS-US program package.57,58

Adopting a similar approximation as in Ref. 59, each Hij element is expressed as a hier-

archical expansion in terms of functions of lower dimensions of the vibrational coordinates:

Hij (s1−6) = Hij (0) +Hij (s1) +Hij (s2, s3, s4) +Hij (s2, s5, s6)−Hij (s2)

+Hij (s3, s4, s5, s6)−Hij (s3, s4)−Hij (s5, s6) . (2)

Hij (0) is just a quantity obtained at the reference structure, withHi 6=j (0) = 0 and Hii (0) be-

ing the energies of the E-type states. Due to symmetry, only the diagonal Hii (s1) 6= 0. These

diabatic potentials are represented by Morse potential functions (Eq. S3 and Figure S4) and
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the double degeneracies of the E-type states remain along s1. The symmetry-adapted ex-

pansion formulas of Hij (s2, s3, s4) and Hij (s3, s4, s5, s6) are given in Eqs. S9, S14, and S18.

They are readily obtained using Tables S1-S7. The convenience of using the presented JT

and pJT formalisms, which are correct, complete, and concise, is manifested. Hij (s2, s5, s6)

shares the same expansion formula with Hij (s2, s3, s4). Hij (s3, s4) and Hij (s5, s6) are ob-

tained by setting s2 = 0 in the respective 3-D expansions. Hij (s2) is obtained by setting

s3 = s4 = 0 in Hij (s2, s3, s4). The subtractions in Eq. 2 are to remove the duplicate terms

in the final expansion.

The numerical values of Hij (s1), Hij (s2, s3, s4), Hij (s2, s5, s6), and Hij (s3, s4, s5, s6)

are obtained by running general multi-configurational quasi-degenerate perturbation the-

ory (GMC-QDPT)60–62 calculations (averaging all four triplet component states) and dia-

batizations34,35,63 on the respective single- and multi-dimensional grids of the vibrational

coordinates. The Morse functions and the expansions are then fitted against the numerical

data to obtain their parameters. 6-th order expansions are used for the Hij (s2, s3, s4)s and

Hij (s2, s5, s6)s, while 4th order expansions are used for the Hij (s3, s4, s5, s6)s. Some terms

are dropped when overfitting occurs. The orders of the expansions are determined by the

fitting errors. We stop increasing the order when the fitting error is smaller than or compa-

rable to the 40 meV resolution of the experimental spectrum. Some examples of the fitting

errors are shown in Section Section S3. The FORTRAN subroutine that generates the H

matrix in Eq. 1 with inputs of s1−6 is available upon request.

B. Active spaces and configurations of the relevant states

The active space of the GMC-QDPT calculations for the Hij (s2−6)s includes all valence π

orbitals and O σ lone pair orbitals, and the electrons occupying them (7o10e for CO3; 7o11e

for CO−3 ). These orbitals and the main configurations of the states under consideration are

shown in Figure 2. An attempt has been made to include the third lowest-lying triplet state,

the 3A′2 state, in the vibronic model to see whether there is any pJT interactions between

this state and the two E-type states. The pJT interactions are found to be too weak to

make any substantial change in the simulate spectrum of the lowest triplet band, the A

band in the notation of Ref. 15. The 7o10e GMC-QDPT calculation shows that the 3A′2

state lies 0.73 and 0.66 eV above the 3E ′′ and 3E ′ states, respectively. These relatively large
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FIG. 2. The active orbitals and the main configurations of the states under consideration. The O

atom labels in the e′y orbital plotting are used for latter discussion. The B3LYP orbital energies

in eV calculated at the D3h reference structure for the CO3
1A′1 ground state are given under the

orbitals.

energy gaps may help prevent significant pJT interactions. More importantly, the 3E ′′-3A′2

pJT interaction requires an e′′ mode, which is absent in CO3. Symmetry-wise, the 3E ′-3A′2

pJT interaction can be induced by the e′ modes. However, the two states are coupled by

a 2-electron integral, which is relatively less dependent on nuclear configuration distortion

than 1-electron integrals. The pJT interaction is hence expected to be small. Actually, for

genuine diabatic states that have two different occupied spin orbitals, their pJT interaction

is zero.28 The photo-detachment to the 3A′2 state itself is forbidden, because it involves

removing one electron from the e′′ shell, and exciting another electron from the e′′ to the a′2

orbital. The norm of the Dyson orbital in this two-electron process is zero. Since the 3A′2

state does not contribute to the A band directly or indirectly, it is ignored in the following

discussion.

The configurations in the figure show that the photo-detachments to the 3E ′′ and 3E ′

states mainly occur by removing an electron from the e′′ and e′ orbitals, respectively. These

orbitals feature C-O nonbonding character, as evidenced by their relatively small 0.26 eV

difference in B3LYP orbital energies in Figure 2. The change of the CO bond lengths in

the photo-detachments is hence not expected to be substantial, leaving the CO σ bonding

(antibonding) orbitals more close to be doubly occupied (unoccupied). It is thus reasonable

8



not to include the C-O σ bonding and nonbonding orbitals in the active space in calculating

Hij (s2−6)s. The occupancies of the C-O σ bonding and antibonding orbitals are more

fractional along the a′1 CO stretching. Therefore, in the calculations for the Hii (s1)s, all

valence orbitals and electrons are included in the active space (13o16e for CO3; 13o17e for

CO−3 ).

C. Nuclear kinetic operator

In constructing the kinetic operator T̂N , we follow the same approximation as for PH+
3

in Ref. 59, i.e.,

T̂N =
1

2
P̂

T
GP̂ , (3)

with P̂ being a column vector of the conjugate momentum operators of s1−6 ( h̄
i

∂
∂sk

) and a

constant metric matrix G, whose elements are evaluated at the D3h reference structure and

are given in Eq. S19. The constant G approximation works well for PH+
3 . It is expected

to work even better for CO3, considering that the planar structure is the minimum of all

diabatic potentials along s2, while it is the maximum of the 2E diabatic potential of PH+
3 .

As shown later, the APES derived from the 3E ′′ state has a maximum at the reference

structure (Figure 5). However, the two symmetric minima are shallow and are located close

to the reference structure. The pyramidal distortion is thus by no means significant. Also,

the heavy nuclear masses of the O nuclei (compared to the protons in PH+
3 ) help to reduce

the distortion from the reference structure.

D. Simulation of the NIPE spectrum using the 4 states 6 modes vibronic model

The vibrational ground state of CO−3 is obtained by propagating an initial 6-D (s1−6)

Gaussian wave packet on the anion’s 2A′2 ground state APES in imaginary time. A 100i fs

propagation is found to be enough to converge to the vibrational ground state. The 2A′2

APES takes the same function form of any of the diagonal Hii (s1−6)s mentioned above,

and its parameters (in total 34 parameters) are obtained in a similar way. The same T̂N

with the constant G matrix is used in the propagation. The resultant adiabatic vibronic

state is labelled as |0〉 |2A′2〉 with the 0 indicating the vibrational ground state. The photo-
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detachment is simulated by acting the formal dipole operator

µ̂ = µE′′ (|X ′′〉+ |Y ′′〉)
〈

2A′2
∣∣+ µE′ (|X ′〉+ |Y ′〉)

〈
2A′2
∣∣+ h.c. (4)

on |0〉 |2A′2〉. h.c. stands for hermitian conjugate of the explicitly given part of the operator.

This corresponds to the Condon approximation. Associated with this approximation is the

assumption that the ejected electron propagate in the totally symmetric s wave. The angular

distribution of the photoelectron is beyond the scope of this work and this assumption does

not impair our conclusions on the nature of the JT and pJT interactions of the triplet states.

The amplitudes of µE′′ and µE′ for detachments to the 3E ′′ and 3E ′ states are approximately

determined by the norms of the respective Dyson orbitals.64 Using the GMC-QDPT wave

functions of the states at the reference structure, we calculate the Dyson orbitals and their

norms, which give the relation µE′ = 1.2µE′′ . We have hence determined the photo-detached

vibronic state, |Ψ (0)〉 = |0〉 (|X ′′〉+ |Y ′′〉+ 1.2 |X ′〉+ 1.2 |Y ′〉) up to a normalization factor.

The transition dipole moments are matrix elements between the MOs shown in Figure 2 and

scattering waves of the ejected electron, whose values determine the actual µE′/µE′′ ratio.

The 1.2 obtained using the norms of the Dyson orbitals is an approximate ratio. We treat

the ratio as an adjustable parameter around this value. As shown below, the ratio of 1.6

gives a better theory-experiment agreement.

After being normalized, this initial state is propagated in real time using the vibronic

Hamiltonian operator in Eq. 1, and its autocorrelation function is calculated,

C (t) = 〈Ψ (0)| e−iĤt |Ψ (0)〉 . (5)

Fourier transform of C (t) gives the simulated vibronic spectrum of the lowest triplet band,

I (ω) =

∫ ∞
0

C (t) eiωtg (t) dt. (6)

The damping function

g (t) = cos

(
πt

2T

)
Θ

(
1− |t|

T

)
e−Γ|t| (7)

is multiplied to the integrand to remove the spurious oscillation due to the finite propagation

time T and to account for the finite resolution in experiment. Θ is the heaviside step function.

1/Γ = 33 fs is chosen, in accordance with the 40 meV resolution of the NIPE reported in

Ref. 15. T = 500 fs is chosen and it is found to be enough to converge the simulated

spectrum.
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All the propagations (both in real and imaginary time) and the Fourier transform are

performed using the multi-configurational time-dependent Hartree (MCTDH) program pack-

age.65–67 Vibrational wave packets are expressed using harmonic oscillator type of discrete

variable representation (DVR), with the ranges of the coordinates large enough so that the

propagated vibronic states have no amplitude near the boundaries. The ranges of s1−6, the

numbers of grid points and single particle functions are given in Table S8. The convergences

with respect to the numbers of grid points and single particle functions are shown in Fig-

ure S7. The least occupied natural orbitals in the MCTDH simulations are small (close to

10−3). For the reduced-dimension 3E ′′ ⊗ e′, 3E ′ ⊗ e′, and (3E ′′ +3 E ′) ⊗ a′′2 models, diago-

nalizations of the low-dimension vibronic Hamiltonian matrices are performed to obtain the

eigenstates and the spectra.

III. RESULTS AND DISCUSSIONS

A. Qualitative understandings of the JT and pJT interactions based on reduced-

dimension models

With the knowledge of the eigenstates and eigenenergies of a vibronic Hamiltonian, we

can completely decipher the relevant vibronic spectrum. Although it is unrealistic to solve

the Schrödinger Equation for the full (3E ′′ +3 E ′)⊗ (a′1 + a′′2 + e′ + e′) problem, insights into

the spectrum can be obtained by considering the JT- and pJT-active vibrational modes

individually.

1. The E ⊗ e′-type problems, with the e′ bending mode

We first investigate the 3E ′′ ⊗ e′ and 3E ′ ⊗ e′ JT problems, with the e′ bending mode.

The 1-D cuts of the 4 component states’ APESs along s5 are shown in Figure 3(a). The

vertical 3E ′′ energy is taken as the 0 reference, and the vertical 3E ′ energy is calculated to

be 0.074 eV higher using the 7o10e active space. This small gap is reasonable, as both the

e′ and the e′′ orbitals are mainly C-O nonbonding orbitals. There is some O-O net bonding

character in the e′ orbitals (more obvious in the e′x orbital plot in Figure 2) so that their

energies are lower than those of the e′′ orbitals (Figure 2, again) and it takes extra energy
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to remove an electron from this shell. The 3E ′ state is thus higher in energy.

The 3E ′ state has a much larger JT distortion energy (EJT = 0.149 eV) than the 3E ′′

state (EJT = 0.003 eV). This difference in EJT is explained by the different O-O bond-

ing/antibonding characters of the e′ and e′′ orbitals. The e′ orbitals (Figure 2), with in-plane

O-O bonding and antibonding character, have their energies more sensitive to the in-plane e′

bending motion than the e′′ π orbitals. For instance, when s5 changes from 0◦ to 10◦, the e′x

and e′y orbital energies change by 0.165 and −0.145 eV, while the e′′x and e′′y energies change

only by 0.088 and −0.066 eV. These orbital energy changes are obtained from the complete

active space self-consistent field (CASSCF) step of the 7o10e GMC-QDPT calculation, not

the B3LYP energies shown in Figure 2. We use CASSCF orbital energies here because we

can only obtain diabatic molecular orbitals with this method. This inconsistency in method

does not blur the trend of the orbital energy variations. With a hole in the e′ shell, the

3E ′ state loses the balance of the stabilization and destabilization of the e′ orbitals. Its

two component states are hence stabilized and destabilized more substantially than the 3E ′′

counterparts along the e′ bending. Please note that along s5 (and s3 too), the diabatic states

are just reordered at different ranges of the coordinate, instead of being mixed, to give the

adiabatic states.

Specifically, in the positive s5 direction (following the arrows of the e′x binding mode in

Figure 1), the e′y orbital is stabilized by losing O2-O3 σ antibonding character and gaining

O1-O2 and O1-O3 σ bonding character (see the e′y orbital in Figure 2 and the numbering

of the O atoms there). Oppositely, the e′x orbital loses O2-O3 (gains O1-O2 an O1-O3) σ

bonding (antibonding) character and is destabilized. It is thus the |Y ′〉 state that has a

singly occupied e′x and a doubly occupied e′y orbital that forms the low-lying adiabatic state

in the positive s5 direction, while the |X ′〉 component with the opposite occupation scheme

in the e′ shell forms the high-lying adiabatic state. In the negative s5 direction, the energy

ordering of the two component states is reversed.

For the 3E ′′ state, it is the |X ′′〉 (|Y ′′〉) component state with a doubly occupied e′′x

(e′′y) and a singly occupied e′′y (e′′x) orbital forms the low-lying adiabatic state in the positive

(negative) s5 direction. This is contradictory to the expectation based on the fact that the e′′x

(e′′y) orbital is destabilized (stabilized) in the positive s5 direction, since the former features

O1-O2,3 antibonding character and O2-O3 bonding character, while the latter features O2-O3

antibonding character only. However, these π O-O bonding and antibonding characters are
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weaker than the σ counterparts in the e′ orbitals. Consequently, the small orbital energy

changes do not dominate the component states’ energy changes along the bending motion.
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FIG. 3. (a) The 1-D cuts of the adiabatic potential energy surfaces derived from the 3E′′ and 3E′

states along s5; (b) comparison of the calculated 3E′′ ⊗ e′ vibronic spectrum with the e′ bending

mode and those obtained based on the BO approximation; (c) the same as (b) but for the 3E′ state;

the low-lying APESs of the (d)3E′′⊗e′-bending problem and (e) the 3E′⊗e′-bending problem. The

vertical 3E′′ energy is taken as the reference zero energy in (a), (d), and (e). The CO−3 e′-bending

ground state energy is taken as the reference zero energy in (b) an (c). The minimum energy

troughs are between the two red contour lines in (d) and between the two black contour lines in

(e). The C2v minima and saddle points are indicated by “M” and “S”, respectively. Their bond

angles are shown beside the APESs. Please note the three-fold symmetries of the APESs and there

are hence three symmetry-connected minima and three saddle points within each panel.

Figure 3(a) also shows that the two minima on the positive and negative s5 of each of the

low-lying 3E ′′ and 3E ′ APESs are close in energy. They only differ by 0.0006 eV and 0.0083

eV, respectively, in the 3E ′′ and 3E ′ APESs. The full 3-D plots of the APESs are given in

Figures 3(d) and (e). The two minima correspond to two C2v structures, one is a true minima

on the s5-s6 2-D space while the other a saddle point.28 The C2v structures are shown beside
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the APESs. Due to the trigonal symmetry, there are three such minima and three such

saddle points on the 2-D space and they are connected by a trough on the APES, on which

the pseudo-rotation on the s5-s6 plane occurs. The < 0.01 eV barrier is unlikely to statically

trap the configuration in one of the C2v minima, which is the assumption made in Ref. 15 in

simulating the A band of the CO−3 NIPE spectrum. The almost barrier-less trough allows

hinder-less pseudo-rotation around the conical intersection, resulting in significant geometric

phase effects.68–72 One consequence is that the vibronic ground state of this JT problem is

an E-type doubly degenerate state (vide infra),73,74 instead of an A-type non-degenerate

state, which is anticipated based on the BO approximation. All these features of the APESs

determine the dynamic nature of the JT effects of the two E states, which are far beyond

structural distortion. Another interesting observation in Figure 3(a) is the crossing of the

3E ′′ and 3E ′ APESs around the minimum of the former. This low-lying degeneracy indicates

a significant vibronic coupling between the two states through the a′′2 umbrella mode, which

further complicates the CO−3 NIPE spectrum.

The comparisons of the simulated spectra obtained using the E⊗e′-type JT models (fully

vibronic) and those obtained based on the BO approximation (adiabatic) directly manifest

the dynamic and non-adiabatic nature of the e′ bending associated to the 3E ′′ and 3E ′ states.

The comparisons are shown in Figures 3(b) and (c) for the 3E ′′ and 3E ′ states, respectively.

The energies in the abscissas correspond to the detachment energies to the triplet manifolds

with all modes other than the e′-bending are frozen. The intensities are estimated as the

modular square of the overlap between the e′ bending vibrational functions of the anion’s

ground state and those of the JT vibronic eigenstates. The energies, irreps, and transition

intensities of the lowest 10 vibronic eigenstates (counting each of the E-type component

state) of the reduced-dimension models are listed in Table 1. 10 states are enough to show

the energetic relations between eigenstates of E- and A-type irreps, which are of interest.24,73

Due to the Condon approximation and the symmetry of the transition dipole operator in

Eq. 4, only states of E ′′ and E ′ irreps have nonzero intensities.

The difference between the fully vibronic and adiabatic spectra is obvious. By “adiabatic

spectra”, we mean the spectra obtained assuming vibrational motions to occur on separate

APESs without geometric phase correction and diagonal BO correction. For the 3E ′′ state

(Figure 3(b)), there is only one significant transition to the ground vibronic state, which

is of E ′′ irrep. The double degeneracy of this state is reflected by the close to 2 intensity,
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TABLE 1. The lowest 10a vibronic eigenstates of the E⊗ e′-type reduced-dimension models: their

energies, symmetries, and intensities in NIPE spectrum

3E′′ ⊗ e′-bending 3E′′ ⊗ e′-stretching

Energy / eV (cm−1) Symmetry Intensityb Energy / eV (cm−1) Symmetry Intensityb

4.839 (0) E′′ 0.9643 4.806 (0) E′′ 0.8411

4.913 (597) A′′1 0 4.934 (1032) A′′1 0

4.923 (678) E′′ 0.0224 5.025 (1766) E′′ 0.1304

4.926 (702) A′′2 0 5.028 (1791) A′′2 0

4.993 (1242) E′′ 0.0033 5.129 (2605) E′′ 0.0092

5.002 (1315) A′′2 0 5.198 (3162) A′′1 0

5.006 (1347) A′′1 0 5.230 (3420) E′′ 0.0164

3E′ ⊗ e′-bending 3E′ ⊗ e′-stretching

Energy / eV (cm−1) Symmetry Intensityb Energy / eV (cm−1) Symmetry Intensityb

4.741 (0) E′ 0.3265 4.878 (0) E′ 0.8004

4.765 (194) A′2 0 4.993 (928) A′1 0

4.777 (290) A′1 0 5.089 (1702) A′2 0

4.811 (565) E′ 0.0244 5.091 (1718) E′ 0.1481

4.840 (798) E′ 0.1710 5.183 (2460) E′ 0.0106

4.865 (1000) E′ 0.0248 5.253 (3025) A′1 0

a Counting each E-type component state. b The tabulated intensities of E′′ and E′ vibronic states are for

each of the doubly degenerate components. They are multiplied by 2 in Figures 3(b),(c) and

Figures 4(b),(c).

as the transition dipole moment from the 2A′2 to each of the E component states has been

taken to be 1. Such a one peak spectrum is consistent with the small magnitudes of EJT

and bending distortion of the 3E ′′ state shown in Figure 3(a). This degenerate transition

splits to two peaks in the BO approximation, corresponding to the transitions to the lowest

vibrational states on the two 3E ′′ APESs. This degenerate ground vibronic state is 0.073

eV lower in energy than the following non-degenerate state, which is of A′′1 irrep (Table 1).
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The lack of triply degenerate ground vibronic state is a direct evidence of the incapability

of the barriers in the minimum energy trough to trap the configuration at one of the C2v

minima.24,28,73 The dynamic nature of the JT problem is evident.

The fully vibronic energy levels also indicate the non-adiabatic nature of the JT problem.

If the JT problem is only dynamic but adiabatic, i.e., that the vibrational motion remains on

one APES although it samples all three minima, the eigenenergies must follow the pattern

of

E (E) < (E (A1) , E (A2)) < E (E) < (E (A1) , E (A2)) · · · , (8)

i.e., alternating energy levels of one E-type and two A-type states. The orderings of the A1-

and A2-type states is uncertain.73 This pattern is obviously not followed by the eigenenergies

of the 3E ′′ ⊗ e′-bending problem in Table 1. The non-adiabatic nature of the JT problem

is evident. Please note that the non-degeneracy between the A1- and A2-type vibronic

eigenstates in Table 1 does not indicate large barriers on the minimum energy trough.

Whenever the minimum energy trough is non-circular, i.e., the vibronic angular momentum

is not conserved, the A1-A2 degeneracy is lifted. Figures 3(d),(e) and 4(d),(e) clearly show

non-circular minimum energy troughs for the reduced-dimension E ⊗ e′-type problems.

For the 3E ′ state (Figure 3(c)), there are more peaks in the fully vibronic and adiabatic

spectra. This is consistent with the state’s more significant JT coupling shown in Figure 3(a).

The peak of the lowest fully vibronic state and the peak of the lowest state in the BO

approximation are seen at similar energy. This is typical for large JT coupling, for which

the vibrational motion of the ground vibronic state is mainly confined to the minimum

energy trough.26,28 However, the former arises from the doubly degenerate vibronic state of

E ′ irrep, while the latter a non-degenerate A′1 vibronic state. For the fully vibronic model,

the E ′ vibronic ground state is 0.024 eV lower in energy than the following non-degenerate

A′2 state (Table 1); again, there is no static configuration confinement at one of the C2v

minima. As the energy increases, the vibrational motion is more likely to sample the conical

intersection and the fully vibronic becomes more different from the adiabatic spectrum. The

non-adiabaticity of the 3E ′ ⊗ e′-bending JT coupling is corroborated by the energy levels

shown in Table 1. The first four levels follow the pattern in Eq. 8, and can be understood as

arising from vibrational motion on the 3E ′ deep low-lying APES. However, this pattern does

not continue into the following two E ′ levels, in which the vibrational motion has enough
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energy to sample the conical intersection and thus is not confined on one APES.

2. The E ⊗ e′-type problems, with the e′ stretching mode

Similar analysis of APESs and comparisons of fully vibronic and adiabatic spectra are

performed for the two E⊗e′-type reduced-dimension problems, with the e′ stretching mode.

The results are presented in Figure 4 and the respective lowest 10 energy levels are included

in Table 1. Similar EJT s are obtained for the two states, 0.027 eV for 3E ′′ and 0.025 eV for

3E ′. Apparently, the e′x and e′′x orbitals are stabilized through gaining O2-O3 bonding and

losing O1-O2,3 antibonding character in the positive s3 direction (following the arrows of the

e′x stretching mode in Figure 1), while the e′y and e′′y orbitals are destabilized. In consistence

with this trend, the |X ′〉 component state with the (e′x)2 (e′y)1
occupation forms the low-

lying adiabatic state in the positive s3 direction, while the |Y ′〉 component state with the

(e′x)1 (e′y)2
occupation forms the low-lying adiabatic state in the negative s3 direction. Note

that the e′x stretching does not affect the overlaps of the O in-plane p orbitals as much as

the e′x bending. Correspondingly, the 3E ′ EJT is 5 times smaller in the stretching than in

the bending. The energy ordering of the 3E ′′ components, however, is opposite again to the

prediction based on the orbital energy changes. The |Y ′′〉 (|X ′′〉) component is lower in the

positive (negative) direction. This inconsistence is attributed to the inclusion of dynamic

correlation effect, which dominates over the variation of the orbital energies. The compo-

nents do follow the predicted energy ordering at the complete active space configuration

interaction (CAS-CI) level. The inconsistence emerges only when the dynamic correlation

is introduced at the GMC-QDPT level.

The energy differences between the minima on the positive and negative s3 direction are

0.011 eV for both the low-lying APESs of the two E-type states. They are slightly larger

than the counterparts for the e′ bending. However, they are still small and are unlikely

to statically trap the structure at the C2v minima in the positive s3 direction. Hinder-less

pseudo-rotations on the minimum energy troughs are anticipated. The full 3-D plots of

the low-lying APESs are given in Figures 4(d) and (e), where the minimum troughs are

clearly seen. The crossings between the high-lying 3E ′′ APES and the low-lying 3E ′ APES

at the minimum trough of the former shown in Figure 4(a) also indicates their non-adiabatic

vibronic coupling through the a′′2 mode.
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FIG. 4. (a) The 1-D cuts of the adiabatic potential energy surfaces derived from the 3E′′ and 3E′

states along s3; (b) comparison of the calculated 3E′′⊗ e′ vibronic spectrum with the e′ stretching

mode and those obtained based on the BO approximation; (c) the same as (b) but for the 3E′

state; the low-lying APESs of the (d)3E′′ ⊗ e′-stretching problem and (e) the 3E′ ⊗ e′-stretching

problem. The vertical 3E′′ energy is taken as the reference zero energy in (a), (d), and (e). The e′

stretching ground state energy of the CO−3
2A′2 state is taken as the reference zero energy in (b)

an (c). The minimum energy troughs pass through the three yellow contour circles in both panels.

The C2v minima and saddle points are indicated by “M” and “S”, respectively. Their bond lengths

in Å are shown beside the APESs. Please note the three-fold symmetries of the APESs and there

are hence three symmetry-connected minima and and three saddle points within each panel.

The differences between the fully vibronic simulated spectra and the adiabatic ones are

evidently shown in Figure 4(b) and (c). The energies in the abscissas correspond to the

photo-detachment energies to the triplet manifolds with all modes other than the e′ stretch-

ing are frozen. They can be compared with the energies in Figures 3(b) and (c). As shown

in Table 1, the ground states of the two E ⊗ e′-stretching JT problems are both doubly

degenerate, with their energies 0.13 and 0.12 eV lower than the following non-degenerate

A′′1 and A′1 vibronic states in the 3E ′′ and 3E ′ cases, respectively. This again reflects the ab-
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sence of static configuration confinement at one of the C2v minima and the dynamic nature

of the JT problems. The levels of the vibronic eigenstates do not follow the pattern in Eq. 8

and manifests the non-adiabatic nature of the JT problems. The similar spectral profiles in

Figures 4(b) and (c) are consistent with the parallel relation between APESs of the 3E ′′ and

3E ′ states in Figure 4(a).

From these reduced-dimension E ⊗ e′-type problems, we can safely conclude that the

static and adiabatic JT picture of CO3 being trapped at one of the C2v minima of the triplet

states is inapplicable. The inclusion of more modes in the JT problems generally lowers

the energies of the conical intersections, since now they can relax their energies along the

respective degenerate seams of the 3E ′′ and 3E ′ states.26 Also, more conical intersections

appear after we consider the 3E ′′-3E ′ coupling, i.e., the crossings of the two states’ APESs

in Figures 3(a) and 4(a). These two aspects increase the non-adiabaticity of the vibrational

motions of the two triplet states.

3. The
(

3E′′ +3 E′
)
⊗ a′′2 problem

To have a sketchy picture of the strength of the pJT interaction between the 3E ′′ and

3E ′ states, we also look into the (3E ′′ +3 E ′) ⊗ a′′2 reduced-dimension pJT problem. The

results are shown in Figure 5. The a′′2 umbrella mode is the only vibration that couples the

two states. In Figure 5(a), we clearly see that this pJT interaction softens the low APES

in comparison to the 3E ′′ diabatic energy surface, so that it has two shallow minima at

s2 = ±0.03 radian. The conversion of the stationary point at s2 = 0 from a minimum to a

maximum indicates a strong pJT interaction. Correspondingly, the high APES is hardened.

The fully vibronic simulated spectrum of this pJT interaction is shown in Figure 5(b).

µE′ = 1.2µE′′ is used in the simulation. For the bright states in the fully vibronic model,

their intensity arise either from µE′′ or µE′ , but never together. This is because the two states

are coupled by terms with odd powers of s2. Therefore, within a fully vibronic eigenstate,

if the vibrational function multiplied to 3E ′′ is s2-even and has a nonzero Franck-Condon

factor with the CO−3 vibrational ground state, the vibrational function multiplied to 3E ′

must be s2-odd, giving no contribution to the state’s intensity. And vice versa. We hence

label the peaks of the fully vibronic spectrum using purple and green colours to indicate

their intensities arising from µE′′ and µE′ , respectively. There are three such peaks that
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FIG. 5. (a) The 1-D cuts of the diabatic potential energy surface of the 3E′′ an 3E′ states and

the APESs derived from their pJT interaction along s2 (the coupling between the two states are

shown in Figure S8); (b) comparison of the calculated
(

3E′′ +3 E′
)
⊗ a′′2 vibronic spectrum and

those obtained based on the BO approximation. The vertical 3E′′ energy is taken as the reference

zero energy in (a). The a′′2 umbrella vibrational ground state energy of the CO−3
2A′2 state is taken

as the reference zero energy in (b).

have substantial intensities. In contrast, there is only one intense peak in each of the two

spectra for transitions to the low and high adiabatic states.

Clearly, even without the e′ distortions, the a′′2 umbrella mode has induced a non-adiabatic

pJT interaction between the 3E ′′ and 3E ′ states. As mentioned above, when the crossings

of the 3E ′′ and 3E ′ APESs along the e′ distortions are considered, the 3E ′′-3E ′ coupling

is more non-adiabatic. This is just a manifestation of the multimode effect in enhancing

non-adiabaticity.26 Given the dynamic and non-adiabatic nature of the JT and pJT effects

in the triplet states, and the mode-mode combination in enhancing the non-adiabaticity, it

is necessary to study the A band of the NIPE spectrum using the fully vibronic model that

include all the JT- and pJT-active modes.

B. Simulation of the A band using the 4 states 6 modes model

We then use the full vibronic models that include all 4 states (counting each component

state) and all 6 vibrational modes (counting each component mode) to simulate the A band
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of the CO−3 NIPE spectrum. The results are shown in Figure 6(a), in comparison with the

experiment. The comparison for the low photon energy portion of the spectrum from 4.8 to

5.0 eV, for which the vibronic model is expected to be more accurate, is given in Figure S9.

In addition to the µE′ = 1.2µE′′ obtained from the Dyson orbital calculation, we also use

µE′ = 1.6µE′′ for comparison. Using the 13o17e and 13o16e active spaces for the anion and

the neutral molecule, respectively, we calculate the vertical photo-detachment energy from

the 2A′2 state to the 3E ′′ state to be 4.83 eV. Subtracting the 0.32 eV zero point vibrational

energy of the anion, which is obtained from the imaginary time propagation, and adding the

0.24 eV energy of the first peak in the simulated A band relative to the vertical 3E ′′ energy,

the photo-detachment energy that gives the first A band peak is estimated to be 4.75 eV,

which is in satisfactory agreement with the 4.83 eV experimental value.

In Figure 6, we slightly shift the simulated A band by 0.08 eV so that its first peak is

aligned with the first A band peak in the experiment. The simulated and experimental

bands span a similar range of energy. According to Ref. 15, the most significant feature

of the experimental spectrum is the progression of 560 cm−1 in the first four peaks, which

are highlighted by the calibrator in the figure (also see Figure 1 of Ref. 15). We label the

four peaks in the simulated spectrum that correspond to the progression by their intervals,

which are smaller but not far from 560 cm−1. Considering the complexity of the problem and

the model, this error is acceptable. In fact, with the amplification of the the experimental

spectrum, we can see that there are more than 4 peaks in this range of energy. For instance,

there is a shoulder peak on the red side of the second progression peak, which is highlighted

by a red circle in Figure 6(a). In our simulation, this transition has a more pronounced

intensity but is at the right position. Overall, the 560 cm−1 progression should be viewed

as a simplification of the spectrum. Our simulation cannot reproduce some of the fine

structures in the “progression”. There are two peaks around 4.95-4.98 eV and another two

peaks around 5.01-5.05 eV in the experimental spectrum, while the simulation gives only

one in each of the respective energy ranges.

The intensities of the transitions are likewise interesting. Using µE′ = 1.2µE′′ in the

simulation, the 510 peak is much more intense than the 0 peak. Their intensities are closer

and are more comparable to the experiment when µE′ = 1.6µE′′ is used. At the D3h reference

structure, the GMC-QDPT wave functions are identical to the reference states obtained in

the preparatory CAS-CI calculation, i.e., there is no dynamic correlation correction to the
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FIG. 6. (a) Simulated A band of the NIPE spectrum using two different ratios of the transition

dipole moments to the two triplet states, in comparison with the experimental spectrum; (b)

decomposition of the simulated spectrum to contributions of the two triplet states; (c) similar to

(b) but with the a′′2-induced 3E′′-3E′ coupling being turned off. The numbers in (a) by the peaks

are the energy intervals (in cm−1) between the denoted peaks and the previous denoted peaks in

the simulated spectra.

wave functions. The Dyson orbitals obtained using the wave functions may not give accurate

enough intensities.

Both the µ ratios give the 490 and 540 simulated peaks with too low intensities compared

to the experiment. One possible reason for this inconsistence is the negligence of the con-

tribution of singlet states to the A band. Our 7o10e calculation shows that at the reference

structure, the lowest singlet excited state of CO3 is a 1E ′′ state, lying 1 eV above the 1A′1

ground state (compared to 0.97 eV reported in Ref. 12). The 1E ′′ state shares a similar elec-

tronic configuration with the 3E ′′ state, with a spin-flipping. Adding the 1 eV to the 4.08 eV

maximum peak of the X band of the NIPE spectrum, which arises from photo-detachment

to the 1A′1 ground state (here we just use the D3h irrep symbol for convenience, knowing that
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it actually adopts a C2v structure), we can roughly estimate the vertical photo-detachment

to the 1E ′′ state occurs at 5.08 eV. The JT interaction of the 1E ′′ state may give vibronic

states that contribute to the NIPE signals around 5.0 eV, where the 490 and 500 peaks are

located. In addition to enhancing the intensities, the 1E ′′ state may be responsible for the

missing fine structures mentioned above in this range of energy. In short, contrary to the

original assignment, the A band should not purely arise from the triplet states. The 1E ′′

state’s contribution to this band is an interesting subject for a future study.

To decompose the contributions of the 3E ′′ and 3E ′ states to the A band, we perform

two simulations with µE′′ and µE′ being set to 0, respectively. The results are shown in

Figure 6(b). 1/Γ = 132 fs is used in the damping function g(t) (Eq. 7) to enhance the

resolution of the spectra to 10 meV, so that we can have a better idea of how many transitions

are hidden under the broad peaks in Figure 6(a). Similar simulations are carried out with

the a′′2-mode-induced 3E ′′-3E ′ coupling being turned off, so that we can probe the role of the

pJT interaction. The results are shown in Figure 6(c). As anticipated, the lowest 0 peak

arises from the 3E ′ state, which gives the lowest energy along the e′ bending in Figure 3(a).

Comparing the relative positions of the peaks in the fully vibronic simulated spectra of the

E ⊗ e′-type reduced models in Figures 3(b),(c) and 4(b),(c), it is natural to associate the 0

peak to the ground states of the 3E ′⊗e′-bending and -stretching JT interactions. Please note

that the separate ground states of the 2 reduced-dimension models combine to contribute

to the same ground state of the full model.

The 510 peak and its shoulder peak on the red side mainly arise from transitions to the

3E ′′ state, i.e., the combination of the ground states of the 3E ′′⊗ e′-bending and -stretching

JT interactions. The 3E ′ state also contribute to those two peaks around 4.9 eV. These

contributions are likely to arise from the 3E ′⊗ e′-bending excited states that give the purple

peaks between 4.8 and 4.9 eV in Figure 3(c). The comparison of Figures 6(b) and (c) shows

that the (3E ′′ +3 E ′)⊗ a′′2 coupling splits the intense transition to the ground vibronic state

of 3E ′′ to the 510 peak and the shoulder peak. Without the pJT interaction, there would

certainly be no such a shoulder peak.

The 490 and 540 peaks consist of more (but not overwhelmingly) 3E ′ contributions. It

is difficult to characterize them more than saying that they contain the 3E ′ ⊗ e′-stretching

excited state shown as the second purple peak in 4(c). The purple peak is located 0.2 eV

higher than the ground state purple peak, which is consistent with the positions of the 490

23



and 540 peaks relative to the 0 peak. The comparison of Figures 6(b) and (c) indicates that

the 3E ′′ contributions to these two peaks arise from the pJT interaction. The two 3E ′′ peaks

at 5.1-5.2 eV can be associated to the 3E ′′⊗ e′-stretching excited state that gives the purple

peak at 5.02 eV in Figure 4(b). This state is split to two transitions when the two sets of e′

modes are considered together. They are likely to contribute to the two peaks highlighted

by black circles in Figure 6(a).

Overall, the comparison of the two panels in Figure 6 shows a typical feature of non-

adiabatic JT vibronic spectra, that “most peaks ... are accumulations of lines rather than

single vibronic lines.”26 For instance, recalling each transition to an eigenstate of the vibronic

Hamiltonian can only be induced by either the 3E ′′ or the 3E ′ contribution to that state,

we count 6 bright states (2 purple peaks an 4 green peaks) in 4.80-4.92 eV in Figure 6(b).

Altogether, they give three peaks, the 0 peak, the 510 peak, and its shoulder peak, in

Figure 6(a).

The intercalation of the 3E ′′ and 3E ′ contributions to the spectrum originate from: (1)

the small energy gap between the vertical photo-detachment energies of the two states (3E ′

higher by 0.074 eV); (2) the more significant JT distortion of the 3E ′ state that reverses

the energy ordering set by the small gap. The original understanding of the apparent

560 cm−1 progression as e′-bending progression on a single triplet state APES is certainly

an oversimplification. We mention in passing that the a′1 stretching mode is a spectator for

the A band transitions (see Figure S10). This is again due to the mainly C-O nonbonding

character of the e′ and e′′ orbitals. Removing electrons from them does not alter the CO

bond lengths substantially. Actually, the Morse potentials of the two states along s1 have

their minima shifted only by 0.021 Å from the minimum of the potential of the anion. This

is equal to only a (0.021/
√

3 =) 0.012 Å increase in the CO bond lengths.

IV. CONCLUSIONS

In this work, we have made two contributions. First, we have derived the general expan-

sion formulas for all bimodal Jahn-Teller and pseudo-Jahn-Teller Hamiltonian operators in

all the 6 trigonal symmetries. In total, 908 problems are covered, and the formulas can be

easily extended to handle problems that involve more than two modes. The formalisms are

summarized in 7 tables. They are correct, complete, concise, and convenient to use. Second,
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we employ the formulas and perform multi-reference perturbation theory calculations to

develop a 4 states 6 modes fully vibronic model to study the Jahn-Teller and pseudo-Jahn-

Teller interactions of the 3E ′′ and 3E ′ states of CO3, the molecule’s triplet manifold with the

lowest energy. The reduced-dimension models with only the e′ bending or stretching mode

are employed to investigate the Jahn-Teller interactions of the two E-type states, which are

found to be of dynamic and non-adiabatic nature. A reduced model with only the a′′2 um-

brella mode reveals the non-adiabatic nature of the pseudo-Jahn-Teller interaction between

the 3E ′′ and 3E ′ states. All these are explained by the fact that the e′ and e′′ orbitals from

which an electron is extracted are mainly C-O nonbonding orbitals, so that the Jahn-Teller

distortion energies are in general not large. Also, the barriers on the minimum energy trough

of the adiabatic potential energy surfaces of the Jahn-Teller problems are so small that the

e′ bending and stretching modes can dynamically sample all three minima of C2v symmetry.

Using the 4 states 6 modes model Hamiltonian operator and quantum molecular dynamics

method, we simulate the A band of the negative ion photoelectron spectrum of CO−3 , which

has been assigned to transitions to the 3E ′′ and 3E ′ states. The simulated spectrum is

in satisfactory agreement with the experiment. The apparent 4 peaks progression with a

560 cm−1 interval in the experimental spectrum is largely reproduced. Consistent with the

dynamic and non-adiabatic nature of the Jahn-Teller and pseudo-Jahn-Teller interactions,

this progression cannot be described as transitions to different vibrational states on a single

adiabatic potential energy surface. Indeed, it consists of more than four transitions, and

the transitions are induced intercalatedly by the contributions of the 3E ′′ and 3E ′ states to

the transition dipole moment. By comparing the reduced-dimension simulated spectra and

the full spectrum, we characterize the transitions in the progression. Our calculations also

point out the possible contributions of the lowest singlet excited state, the 1E ′′ state, to the

A band. We hope that this work will stimulate more studies in the vibronic interactions of

CO3, which is similar to the popular NO3 and is of importance in atmospheric chemistry

and astrochemistry.
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