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Abstract

Volatility is the key of the option price in the stock market. Changes in volatility will dra-

matically lead to changes of the option price.

One of the most important volatilities is historical volatility (HV ). The HV is essen-

tially the annualized standard deviation of the first order difference of logarithm of the asset

price. Therefore, changes in HV in finance may be detected by the variance change detection

methods in statistics.

We propose a weighted sum of powers of variances method to detect single change in

HV . It is noted that this method only examines if there is one single change-point in the

data sequence. In the second part of the dissertation, we propose the empirical Bayesian

information criterion (emBIC) method to detect multiple change-points simultaneously. The

empirical BIC method can not only detect change-points in HV , but also in mean, and mean-

and-variance. Simulation study shows that both of the above methods perform very well. We

also apply these methods to detect changes in HV by using real stock data.

Another important volatility is the implied volatility (IV ). IV is the volatility of asset

implied by the market option price based on Black-Sholes model [Black and Scholes, 1973].

The long term IV and HV have totally different behaviours. We find the optimal time range

by using the emBIC method aforementioned above. We explain the long term IV behaviour

by interest rate risk and capital charge in the last part of the dissertation.
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1 Introduction and Outline

1.1 Volatility, Historical Volatility and Implied Volatility

Volatility is a measure of uncertainty about the returns provided by the stock [Hull, 2011].

There are two most important volatilities in the market: historical volatility (HV ) and implied

volatility (IV ).

HV is the volatility of the underlying asset over a period observed in the past or called

realized volatility:

σHV =
√

252 ·

√√√√ 1

n− 1

n∑
t=1

(rt − r̄)2, (1.1)

where rt = log (St/St−1), St is the asset price at day t, r̄ = rt/n, and 252 is the approximate

trading days per year. It is easy to see that HV is essentially an annualized standard deviation

of the first order difference of logarithm of the asset price.

[Figlewski, 1997] pointed out that better forecasts are normally obtained if we ignore term

r̄ in (1.1). Also setting n instead of n − 1 hardly affects results if n is large, while it makes

calculation more convenient. Therefore we can redefine HV as:

σ∗HV =

√√√√252

n

n∑
t=1

r2
t . (1.2)

In the dissertation, we use (1.2) to calculate the HV .

IV is the volatility of underlying asset implied by the market price of the option based on

the Black-Scholes (BS) model [Black and Scholes, 1973].

The BS model assumes that there is a riskless asset with expected return µ and constant

volatility σ. The dynamics of the price S of the underlying asset are

dS = µSdt+ σSdBt,

where Bt is a standard Brownian motion and satisfies

dBt = ε
√
dt

with ε being the normally distributed with mean 0 and variance 1.
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Let G = logS. By Ito lemma [Ito, 1951], we can obtain

d logS = (µ− 1

2
σ2)dt+ σdBt.

Therefore, the dynamics of price S can be expressed as

ST = S0 exp{(µ− 1

2
σ2)T + σBT}.

Thus, (logST/S0) has a normal distribution with mean (µ− σ2/2)T and variance σ2T .

In the dissertation, the call option refers to the European call option. A call option allows

the holder to buy the asset at a certain price in a prefixed day. The certain price is the strike

price. The prefixed day is the expiration day. The call option price C can be expressed as:

C = E[e−rT (ST −K, 0)+],

where r is risk free interest rate, ST is the price of asset at time T , and K is the strike price.

If we know the distribution of ST , we can calculate the option price directly. Considering the

BS model, ST has a log-normal distribution. Therefore, the call option price can be calculated

by

C = S0N(d1)−Ke−rTN(d2), (1.3)

where S0 is the asset price at time 0, r is risk free interest rate, T is expired time, N(·) is the

cdf of standard normal distribution, and

d1 =
log(S0/K) + (r + σ2/2)/T

σ
√
T

,

d2 = d1 − σ
√
T

with σ being the volatility of the asset.

By the BS model, the call option price is calculated by (1.3), in which all parameters except

volatility (σ) can be observed in the market. If we treat call option price C as a function of

σ, i.e. C = f(σ), then σ can be calculated by the inverse function of C, i.e. σ = f−1(C).

Therefore, we call the volatility σ implied by the market price of the option based on the BS

model as implied volatility.
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1.2 Changes in Volatility

The volatility is the key of the option price in the stock market. Changes in volatility will

dramatically lead to changes in the option price.

(1.1) shows that the HV is essentially the annualized standard deviation of the first order

difference of logarithm of the asset price. Therefore, changes in HV may be detected by the

variance change detection methods in statistics.

Time series models have been widely used to test change-points in variance in earlier

years, see [Wichern et al., 1976]’s first-order autoregressive time series model, and [Tsay,

1988]’s ARIMA model. Detecting changes by Bayesian framework is also popular, see [Inclan,

1993], [Barry and Hartigan, 1993], [Lavielle, 2005], etc.. A well-known method in this field is

called CUSUM of squares introduced by [Inclan and Tiao, 1994]. They used the cumulative

sum of squares of a series of uncorrelated random variables to find change-points in variance.

Furthermore, penalized likelihood approach introduced by [Yao, 1988] is also widely used.

[Chen and Gupta, 2012] illustrated the likelihood approach and BIC Informational approach

in their book (See Appendix [A-1] in details).

Let Xi, i = 1, 2, . . . , n, be a sequence of independent random variables with mean 0 and

σi. For the single change-point detection in variance, the corresponding hypotheses are:

Null hypothesis: H0 : σ1 = σ2 = · · · = σn

and

Alternative hypothesis: H1 : σ1 = · · · = σk 6= σk+1 = · · · = σn,

, where 1 < k < n is unknown.

Assume Xi, i = 1, 2, . . . , n, is a sequence of independently and identically distributed

(I.I.D.) random variables with mean 0 and variance σ2
i , i = 1, 2, . . . , , n. If there exists a k∗

such that

σ2
i =

{
σ2

1 if 1 ≤ i ≤ k∗,

σ2
n if k∗ < i ≤ n

with σ2
1 6= σ2

n, then we say k∗ is the change-point in variance.
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For multiple change-point detection, the corresponding null and alternative hypotheses are

respectively:

H0 : σ1 = σ2 = · · · = σn

and

H1 : σ1 = · · · = σj1 6= σj1+1 = · · · = σj2 6= · · · 6= σjK+1 = · · · = σn,

where 1 < j1 < · · · < jK < n are unknown positive integers and K is the number of change-

points. If K 6= 0, we call each ji (i = 1, · · · , K) a change-point location, and (j1, · · · , jK ;K) a

configuration of change-points in the data sample. If K = 0, we say that there is no change-

point. In case of multiple changes in variance, the change-points j1, · · · , jK and the number

of change-points K are all unknown, and need to be estimated.

Allowing for occurrence of multiple change-points in the data is a more realistic approach.

[Vostrikova, 1981] proposed a binary segmentation procedure (BSP) in which a single change-

point detection method is first applied to find the most significant change-point in the data

sequence, which accordingly divides the sequence into two sub-ones; this method is then

repeatedly applied to each sub-sequence; and each of further sub-sequences until no more

significant change-point can be detected. [Chen and Gupta, 1997] applied the BSP to test

and locate multiple variance change-points, where the problem was formulated as testing a

sequence of change-point hypotheses by using Schwarz Bayesian information criterion (SIC

or BIC). [Inclan and Tiao, 1994] used a statistic of cumulative sums of squares to test and

locate multiple variance change-points in a sequential way similar to BSP. It is not difficult

to see that BSP can be implemented to detect multiple change-points of a parameter other

than the variance one. However, an undesirable feature of BSP is no guarantee of satisfactory

size and power in the associated sequential testing: Once it does not reject the hypothesis of

no change-point in a segment it will be impossible to detect change-points in any subsequent

sub-segment; also once a data point is wrongly detected as a change-point at certain stage

there is no chance for the error to be revoked under BSP in the subsequent stages.

Instead of using the binary segmentation procedure one can perform sequential testing of

multiple change-points by progressively testing “H0: the data sequence has ` change-points”

versus “Ha: the data sequence has `+1 change-points”, ` = 0, 1, 2, . . .. [Bai and Perron, 2003]
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developed such a procedure for analyzing models with multiple structural changes, where a

dynamic programming algorithm was used to reduce the computation load.

Optimally estimating the number and locations of changes is unequivocally an impor-

tant task in analysis of multiple change-points. This leads to the development of several

model selection approaches, including e.g. the Schwarz Bayesian information criterion (SIC

or BIC) by [Yao, 1988], unbiased SIC by [Chen and Gupta, 1997], the minimum description

length (MDL) criterion by [Davis et al., 2006] and the Akaike’s information criterion (AIC) by

citepKurozumiTuvaandorj2011. While these criteria have been shown to possess some good

asymptotic properties related to consistency and asymptotic unbiasedness under regularity

conditions, they tend to overestimate the number of change-points in finite sample situations.

Implementing these criteria for estimating multiple change-points is a difficult optimization

problem because the number of possible change-points configurations is up to 2n−1 for a se-

quence of n data points. [Davis et al., 2006] developed a genetic algorithm (GA) for this

optimization resulting in excellent empirical properties in a number of situations; but as said

in that paper, the expectation of GA working well depends on one’s belief in Darwin’s Theory

of Natural Selection. A different procedure was proposed in [Lavielle, 2005] and [Lavielle and

Teyssiere, 2006] to estimate the number of change-points. This procedure computes a criterion

function J(K) and choose the best K as the maximum number at which the second order

difference of J(K) is greater than a pre-specified threshold. Since the behaviour of J(K) is

mostly data-dependent, it can be a difficult task to determine this pre-specified threshold. A

brief review on methods for estimating the number of change-points is provided in section 4

of [Aue and Horváthe, 2013] and references therein.

1.3 Long Term Implied Volatility Behaviour

It is well known that IV and HV have different behaviours. IV is the volatility of underlying

asset implied by the market price of the option based on BS model while HV is the volatility

of underlying asset over a period observed in the past or called realized volatility. The long

term option market IV observed e.g. for 5-year, 10-year, 15-year or longer, tends to increase

after 5-year term, while HV tends to decrease over the terms until it converges to a relatively

stable level. For example, on the day of Dec 13, 2011, IV s of 5-year, 10-year and 15-year are
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28.87%, 30.38%, 31.37%, respectively, while corresponding HV s are 26.62%, 22.01%, 21.41%.

It is in general that long term IV is higher than corresponding HV and long term IV increases

as the length of the term increases, but HV behaves oppositely.

[Eraker, 2008] studied a general equilibrium model based on long-run risk to explain the

volatility premium of 1-year difference between IV and HV . [Bollerslev et al., 2008] and

[Zhou, 2010] explained the difference as time-varying economic uncertainty. Also it has been

interpreted as the risk aversion by several researchers like [Bakshi and Madan, 2006] and

[Bollerslev et al., 2011].

All researchers mentioned above explain why the difference exists, but why does the dif-

ference increase as the length of the term increases? In fact, it is the same question as why

IV tends to increase after a 5-year term since HV is relatively stable after a 5-year term.

[Tehranchi, 2010] gave some theoretical explanation. He proved that a long term implied

volatility cannot fall when the expired time goes to infinity by using Dybvig-Ingersoll-Ross

theorem [Dybvig et al., 1996] that says a long zero-coupon rate never fall. [Heston, 1993] pro-

posed a stochastic volatility model, which has very similar form as the CIR [Cox, Ingersolla

and Ross, 1985] interest rate model. It is essentially the BS model with all assumptions except

the stochastic volatility. All of these studies fail to point out into real drivers of the pricing,

hedging costs from interest rate risk, cost of capital required for writing derivatives, and some

possible other factors such as credit valuation adjustment.

Both [Tehranchi, 2010]’s theory and [Heston, 1993]’s model mentioned above are based

on the constant risk free interest rate. [Bakshi et al., 2000] pointed out: It is a common

understanding in the literature that stochastic interest rates may not be important for the

pricing and hedging of short-term options, but should be so for long-term options. They

indicated interest rate risk may affect the long term option pricing but they did not go further

to explain the behaviour of the implied volatility term structure.

After examining long term interest rate and IV in the market, we find that the long term

IV may not be related to the long term interest rate at the same day. It can be seen from

Table 1 that for both June 13 and November 8, 2011, index values, long term IV s and HV s

are almost the same, however the long term interest on June 13, 2011 is much higher than

the one on November 8, 2011. Also by examining the IV market, it becomes clear that long

6



term IV s are much more stable than the shorter term IV s. This phenomenon tells us that

the long term IV should be related to the long run average interest rates.

Table 1: Long Term IV , HV and Interest Rate

Date Index IV 5 IV 10 IV 15 HV 5 HV 10 HV 15 IR5Y IR10 IR20 IR30

13/06/2011 1271.83 23.02% 26.84% 30.15% 25.04% 21.42% 20.77% 1.59% 3.00% 3.89% 4.20%

08/11/2011 1275.92 27.01% 28.38% 30.02% 26.37% 21.90% 21.31% 0.92% 2.10% 2.84% 3.13%

To capture interest rate risk, we use a widely adopted short interest rate model that

describes a process of the interest rate rt. A stochastic differential equation for rt has the

form

drt = µr(t)dt+ vr(t)dBt,

where µr(t) is the drift term, vr(t) is the diffusion term, and Bt is the Brownian motion term.

To capture interest rate risk in options, we price long term options by a system of two

stochastic variables: underlying equity and short interest rate. We assume that the underlying

equity follows Black-Scholes model [Black and Scholes, 1973] with short interest rate, i.e.

dSt = rtStdt+ σsStdB1,

drt = µr(t)dt+ vr(t)dB2,

dB1dB2 = ρdt,

where St is the asset price, rt is the interest rate, σs is the asset volatility, dB1 and dB2 are

both Brownian motions with correlation ρ.

Furthermore, we find the capital charge for options has some impact on IV . Without loss

of generality, we assume all capital requirements for the call option and corresponding hedging

strategy exactly meet the Basel III regulatory (see Chapter 4.1.5).

Finally we find there are three most important factors which affect the long term IV

behaviour: market expectation for long run average interest rate, equity volatility and capital

charge. We can conclude that market expectation for long run average interest rate dominates

the behaviour of long term IV .
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1.4 Purpose and Outline of the Dissertation

The main purpose of this dissertation is to solve some volatility problems in finance by using

statistical tools. We want to find change-points in volatility by proposing some statistical

methods. We intend to explain long term implied volatility behaviour.

In Chapter 2, we propose a statistical method for detecting a single change-point in volatil-

ity. In Chapter 3, we present a statistical method for locating multiple change-points simul-

taneously. In Chapter 4, we first find an optimal time range in terms of change-points in

volatility by the method introduced in Chapter 3. We then explain the long term implied

volatility behaviour. In Chapter 5, we summarize this dissertation and discuss future re-

search.
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2 Historical Volatility Change Detection by Weighted

Power of Variance

In this chapter, we propose a procedure to detect and estimate single change-point in historical

volatility. HV is essentially an annualized standard deviation of the first order difference of

logarithm of the asset price. Therefore, a change in HV can be detected by using a variance

change detection method.

The basic idea is inspired by the well-known Jensen’s inequality [Jensen, 1906]:

f(αt1 + βt2) ≤ αf(t1) + βf(t2),

where f is a convex function and α > 0, β > 0, and α + β = 1.

Let the function f(t) = tλ, where t > 0 and λ > 1. Put α = k/n, β = (n− k)/n, t1 = σ2
k,

and t2 = σ2
n−k, where 1 < k < n. According to Jensen’s inequality, we have(

k

n
σ2
k +

n− k
n

σ2
n−k

)λ
≤ k

n

(
σ2
k

)λ
+
n− k
n

(
σ2
n−k
)λ
.

Let σ2 = k
n
σ2
k + n−k

n
σ2
n−k, then for λ > 1,

k

n
(σ2

k)
λ +

n− k
n

(σ2
n−k)

λ ≥ (σ2)λ.

Thus we can propose a method for detecting single change-point in variance, which is named

as the weighted sum of powers of variances (WSPV).

This chapter is organized as follows. Section 2.1 introduces weighted sum of powers of

variances (WSPV) method. Section 2.2 lists the assumptions, and gives preliminary lemmas

needed in the rest of the chapter. Section 2.3 states main results, proof and asymptotic

property. Modified weighted sum of powers of variances (MWSPV) is introduced in Section

2.4. Simulation study and a real data analysis are provided in Section 2.5. Section 2.6 extends

this method to a general form, i.e., the generalized weighted sum of functions of variances.
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2.1 Weighted Sum of Powers of Variances (WSPV)

Let Xi be a sequence of I.I.D. random variables with constant mean 0 and variance σ2
i ,

i = 1, 2, . . . , n, respectively. We assume that

0 < σ2
i <∞ and 0 < E[X4

i ] <∞. (2.1)

For the single change-point detection problem, the corresponding hypothesis tests are the null

hypothesis H0 : σ1 = · · · = σn = σ versus the alternative hypothesis H1 : σ1 = · · · = σk 6=
σk+1 = · · · = σn, where 1 < k < n is unknown.

Assume there exists one change-point k∗ such that

σ2
i =

{
σ2

1 if 1 ≤ i ≤ k∗

σ2
n if k∗ < i ≤ n,

where σ2
1 6= σ2

n.

We define vλ,k as weighted sum of powers of variances (WSPV):

vλ,k = k(σ̂2
1,k)

λ + (n− k)(σ̂2
n,k)

λ − n(σ̂2)λ, (2.2)

where 1 < k < n, λ is the power, σ̂2
1,k is maximum likelihood estimator (MLE) of σ2

1, σ̂2
n,k is

the MLE of σ2
n under H1, and σ̂2 is the MLE of σ2 under H0, which are

σ̂2
1,k =

∑k
i=1 x

2
i

k
, σ̂2

n,k =

∑n
i=k+1 x

2
i

n− k
, σ̂2 =

∑n
i=1 x

2
i

n
. (2.3)

We define k̂ as

k̂ = arg max
k
{vλ,k}, λ > 1 or λ < 0

and

k̂ = arg min
k
{vλ,k}, 0 < λ < 1.

Here is an example. We generate a sequence of 500 normal random variables. The first

300 variables have mean 0 and variance 1. The remaining 200 have mean 0 and variance 3.

Figure 1 shows the behaviour of vλ,k when λ = 2. The maximum value of vλ,k comes up at k̂.
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Figure 1: Behaviour of WSPV When λ > 1

2.2 Preliminaries

We apply a three-term Taylor expansion for (σ̂2
1,k)

λ,(σ̂2
n,k)

λ, and (σ̂2)λ in (2.2), respectively:

(σ̂2
1,k)

λ =(σ2
1)λ + λ(σ2

1)λ−1(σ̂2
1,k − σ2

1) +
1

2!
λ(λ− 1)(σ2

1)λ−2(σ̂2
1,k − σ2

1)2

+
1

3!
λ(λ− 1)(λ− 2)(σ2

η1,k
)λ−3(σ̂2

1,k − σ2
1)3,

(σ̂2
n,k)

λ =(σ2
n)λ + λ(σ2

n)λ−1(σ̂2
n,k − σ2

n) +
1

2!
λ(λ− 1)(σ2

n)λ−2(σ̂2
n,k − σ2

n)2

+
1

3!
λ(λ− 1)(λ− 2)(σ2

ηn,k
)λ−3(σ̂2

n,k − σ2
n)3,

(σ̂2)λ =(σ2)λ + λ(σ2)λ−1(σ̂2 − σ2) +
1

2!
λ(λ− 1)(σ2)λ−2(σ̂2 − σ2)2

+
1

3!
λ(λ− 1)(λ− 2)(σ2

η)
λ−3(σ̂2 − σ2)3,

where σ2
η1,k
∈ (min(σ̂2

1,k, σ
2
1),max(σ̂2

1,k, σ
2
1)), σ2

ηn,k
∈ (min(σ̂2

n,k, σ
2
n),max(σ̂2

n,k, σ
2
n)), and

σ2
η ∈ (min(σ̂2, σ2),max(σ̂2, σ2)).

11



Denote

ξ1,k =
k

3!
λ(λ− 1)(λ− 2)(σ2

η1,k
)λ−3(σ̂2

1,k − σ2
1)3,

ξn,k =
n− k

3!
λ(λ− 1)(λ− 2)(σ2

ηn,k
)λ−3(σ̂2

n,k − σ2
n)3,

ξ =
n

3!
λ(λ− 1)(λ− 2)(σ2

η)
λ−3(σ̂2 − σ2)3.

Lemma 2.1 Let Xi, i = 1, 2, . . . , n be a sequence of I.I.D. random variables with E[Xi] = 0

and E[X2
i ] = 1. Let Sk =

k∑
i=1

Xi, then

lim
n→∞

(2 log log n)−1/2 max
1≤k≤n

|Sk|√
k

= 1 a.s..

See [Chen, 2013] (1.6) for proof.

Lemma 2.2 Let Xi, i = 1, 2, . . . , n be a sequence of I.I.D. random variables with E[Xi] = 0

and E[X2
i ] = σ2

i . Assume (2.1) holds, ξ, ξ1,k, ξn,k are denoted as above, then we have

(i) lim
n→∞

n1/2(log log n)−3/2ξ = Op(1),

(ii) max
1<k<n

k1/2(log log n)−3/2ξ1,k = Op(1),

(iii) max
1<k<n

(n− k)1/2(log log n)−3/2ξn,k = Op(1).

Proof.

(i) Under H0, let δ2 = V ar(X2
1 ). Since E[X4

1 ] <∞ and E[X2
1 ] = σ2 <∞,

δ2 = V ar(X2
1 ) = E[X4

i ]− E[X2
i ]2 = E[X4

i ]− σ4 <∞. (2.4)

By the law of the iterated logarithm, we have

lim sup
n→∞

∑n
i=1X

2
i − nσ2

δ
√

2n log log n
= 1 a.s..

It is

lim sup
n→∞

(σ̂2 − σ2)

δ
√

2 log log n/n
= 1 a.s..

Therefore

n1/2(log log n)−1/2|σ̂2 − σ2| = Op(1). (2.5)

12



Then

n3/2(log log n)−3/2|σ̂2 − σ2|3 = Op(1).

Thus

n1/2(log log n)−3/2 n

3!
λ(λ− 1)(λ− 2)(σ2

η)
λ−3|(σ̂2 − σ2)3| = Op(1),

which is n1/2(log log n)−3/2|ξ| = Op(1). (i) is proved.

(ii) Under H1, let δ2
1 = V ar(X2

1 ). By (2.4), we have δ2
1 < +∞. Let Zi = (X2

i −
σ2
i )/
√
V ar(X2

i ), then we have E[Zi] = 0 and E[Z2
i ] = 1. By Lemma 2.1, we have

lim
n→∞

(2 log log n)−1/2 max
1<k<n

|
k∑
i=1

Zi|
√
k

= 1 a.s.. (2.6)

We know

σ̂2
1,k − σ2

1 =

k∑
i=1

(Xi − σ2
1)

k
=

k∑
i=1

(Xi − σ2
1)/δ1

k/δ1

=

k∑
i=1

Zi

k/δ1

,

i.e.,
k∑
i=1

Zi = k(σ̂2
1,k − σ2

1)/δ1. Put it into (2.6), we obtain

max
1<k<n

k1/2(log log n)−1/2|σ̂2
1,k − σ2

1| = Op(1). (2.7)

Therefore

max
1<k<n

k3/2(log log n)−3/2|σ̂2
1,k − σ2

1|3 = Op(1).

Thus

max
1<k<n

k1/2(log log n)−3/2 k

3!
λ(λ− 1)(λ− 2)(σ2

η)
λ−3|σ̂2

1,k − σ2
1|3 = Op(1),

which is max1<k<n k
1/2(log log n)−3/2|ξ1,k| = Op(1). (ii) is proved.

(iii) Similarly as proof of (ii), we obtain (iii).

Lemma 2.3 Assume (2.1) holds, ξ, ξ1,k, ξn,k are denoted as above, then we have

(i) lim
n→∞

[a(log n)]2ξ − (b(log n) + x)2 P→ −∞,

(ii)[a(log n)]2 max
1<k<n

(ξ1,k + ξn,k)− (b(log n) + x)2 P→ −∞.

13



where a(log n) = (2 log log n)1/2, b(log n) = 2 log log n + 1
2

log log log n− log Γ(1
2
), and x is for

any real number, x ∈ R.

Proof.

(i)

As n→∞,

[a(log n)]2ξ

[b(log n)]2
≤ (2 log log n)n−1/2(log log n)3/2(n1/2(log log n)−3/2ξ)

(2 log log n)2

=
(log log n)1/2(n1/2(log log n)−3/2ξ)

2n1/2
.

By (2.5), we know n1/2(log log n)−3/2|ξ| = Op(1), then

lim
n→∞

[a(log n)]2ξ

[b(log n)]2
P→ 0.

Hence for any x ∈ R,

[a(log n)]2ξ − (b(log n) + x)2 P→ −∞

It is (i).

(ii) As log n ≤ k < n,

max
logn≤k<n

[a(log n)]2ξ1,k

[b(log n)]2
≤ max

logn≤k<n

(2 log log n)k1/2(log log n)−3/2ξ1,k

(2 log log n)2k1/2(log log n)−3/2

= max
logn≤k<n

(log log n)1/2

2k1/2
k1/2(log log n)−3/2ξ1,k

≤ (log log n)1/2

2(log n)1/2
max

logn≤k<n
k1/2(log log n)−3/2ξ1,k.

By (2.7), max1<k<n k
1/2(log log n)−3/2|ξ1,k| = Op(1), we can obtain

max
logn≤k<n

[a(log n)]2ξ1,k

[b(log n)]2
P→ 0. (2.8)

As 1 < k < log n,

max
1<k<logn

[a(log n)]2ξ1,k

[b(log n)]2
≤ max

1<k<logn

(2 log log n)k1/2(log log log n)−3/2ξ1,k

(2 log log n)2k1/2(log log log n)−3/2

= max
1<k<logn

(log log log n)3/2

(2 log log n)k1/2
k1/2(log log log n)−3/2ξ1,k.
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By (2.7), we can obtain

max
1<k<logn

k1/2(log log log n)−3/2|ξ1,k| = Op(1)

Also we have

lim
n→∞

(log log log n)3/2

log log n
→ 0.

Hence

max
1<k<logn

[a(log n)]2ξ1,k

[b(log n)]2
P→ 0. (2.9)

Combine (2.8) and (2.9), we obtain

[a(log n)]2 max
1<k<n

ξ1,k − (b(log n) + x)2 P→ −∞.

Similarly we can obtain

[a(log n)]2 max
1<k<n

ξn,k − (b(log n) + x)2 P→ −∞.

Hence

[a(log n)]2 max
1<k<n

(ξ1,k + ξn,k)− (b(log n) + x)2 P→ −∞.

(ii) is proved.

2.3 Asymptotic Properties

Theorem 2.1 Let Xi, i = 1, 2, . . . , n be a sequence of I.I.D. random variables with mean 0

and variance σ2
i . Assume (2.1) holds, and σ̂2

1,k, σ̂
2
n,k and σ̂2 are defined in (2.3). Then

[
1

σ̂2
(
k(n− k)

2n2
)1/2](

k(n− k)

n
)1/2(σ̂2

1,k − σ̂2
n,k)

D→ B0,

where B0 is a Brownian bridge.

Proof.

[
1

σ̂2
(
k(n− k)

2n2
)1/2](

k(n− k)

n
)1/2(σ̂2

1,k − σ̂2
n,k)

=

√
n/2

n2σ̂2
k(n− k)(σ̂2

1,k − σ̂2
n,k) =

√
n/2

n
∑n

i=1 x
2
i

((n− k)
k∑
i=1

x2
i − k

n∑
i=k+1

x2
i )

=

√
n/2

n
∑n

i=1 x
2
i

(n
k∑
i=1

x2
i − k

n∑
i=1

x2
i ) =

√
n/2(

∑k
i=1 x

2
i∑n

i=1 x
2
i

− k

n
)
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Let B =
√
n/2(

∑k
i=1 x

2
i∑n

i=1 x
2
i
− k

n
), then B is exactly CUSUM introduced by [Inclan and Tiao, 1994]

and they already proved that B
D→ B0 in their paper.

Theorem 2.1 is proved.

Theorem 2.2 Let Xi, i = 1, 2, . . . , n be a sequence of I.I.D. random variables with mean 0

and variance σ2
i . Assume (2.1) holds. When λ = 2, we have

lim
n→∞

P{a(log n) ·
max(v

1/2
2,k )

21/2σ̂2
− b(log n) ≤ x} = exp(−2e−x), (2.10)

where a(log n) = (2 log log n)1/2 and b(log n) = 2 log log n+ 1
2

log log log n− log Γ(1
2
).

Proof.

When λ = 2, (2.2) goes to

v2,k = k(σ̂2
1,k)

2 + (n− k)(σ̂2
n,k)

2 − n(σ̂2)2.

Denote σ̂2
1,k = A

k
and σ̂2

n,k = B
n−k . We can easily obtain

v2,k = k(
A

k
)2 + (n− k)(

B

n− k
)2 − n(

A+B

n
)2 =

A2

k
+

B2

n− k
− (A+B)2

n

=
(n− k)nA2 + knB2 − k(n− k)(A2 + 2AB +B2)

kn(n− k)

=
(nA)2 + (kA)2 + (kB)2 − 2knA2 − 2knAB + 2k2AB

kn(n− k)

=
(nA− kA− kB)2

kn(n− k)
=

((n− k)A− kB)2

kn(n− k)
=
k(n− k)

n
(
A

k
− B

n− k
)2

=
k(n− k)

n
(σ̂2

1,k − σ̂2
n,k)

2.

Therefore, we have

v
1/2
2,k = (

k(n− k)

n
)1/2

∣∣σ̂2
1,k − σ̂2

n,k

∣∣ .
Let Bn = [ 1

σ̂2 (k(n−k)
2n2 )1/2](k(n−k)

n
)1/2(σ̂2

1,k − σ̂2
n,k), then Bn

D→ B0 by Theorem 2.1, where

B0 is a Brownian bridge. Let δ =
√
V ar(X2

i ) < +∞ under H0, and define U(0) = U(1) =

U(n− 1) = U(n) = 0 and

U(k) =
k(n− k)

2δn3/2
(σ̂1,k − σ̂2,k), 1 < k < n.
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By Theorem 2.4.7 and Eg. 2.4.3 of [Csörgo and Horváth, 1997], we have

max
1<k<n

|U(k)| D→ sup
0<t<1

|B(t)|,

where B(t) is a Brownian bridge. Let 0 < t = k/n < 1 and we define U∗(t) as

U∗(t) =
n1/2t(1− t)

2δ
(σ̂1,k − σ̂2,k) = U(k).

By Theorem 2.4.9 of [Csörgo and Horváth, 1997], we have

lim
n→∞

P{a(log n) · sup
0<t<1

|U∗(t)|/(t(1− t))1/2 − b(log n) ≤ x} = exp(−2e−x).

for all x, where a(log n) = (2 log log n)1/2 and b(log n) = 2 log log n+ 1
2

log log log n− log Γ(1
2
).

After comparing U(k) and Bn, we find the only difference is δ in U(k) and σ̂2 in Bn.

However neither δ nor σ̂2 can affect the distribution of U(k) or Bn, since both of them

converge to a Brownian bridge in distribution. Therefore, we have

lim
n→∞

P{a(log n) · sup
0<t<1

|Bn|/(t(1− t))1/2 − b(log n) ≤ x} = exp(−2e−x).

After substituting t by k/n, the probability limit above goes to (2.10).

Theorem 2.2 is proved.

Theorem 2.3 Let Xi, i = 1, 2, . . . , n be a sequence of I.I.D. random variables with mean 0

and variance σ2
i . Assume (2.1) holds. Under H0, σ

2
1 = σ2

n = σ2, as λ > 1 or λ < 0, we have

lim
n→∞

P{a2(log n) · max(vλ,k)

2σ̂4
≤ 1

2
λ(λ− 1)(σ̂n

2)λ−2(b(log n) + x)2} = exp(−2e−x). (2.11)

Proof.

After applying a three-term Taylor expansion for (σ̂2
1,k)

λ,(σ̂2
n,k)

λ, and (σ̂2)λ in vλ,k, we

obtain

vλ,k = k(σ̂2
1,k)

λ + (n− k)(σ̂2
n,k)

λ − n(σ̂2)λ

=
1

2
λ(λ− 1)(σ2)λ−2[k(σ̂2

1,k)
2 + (n− k)(σ̂2

n,k)
2 − n(σ̂2)2] + (ξ1,k + ξn,k − ξ)

=
1

2
λ(λ− 1)(σ2)λ−2v2,k + (ξ1,k + ξn,k − ξ).
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where

ξ1,k =
k

3!
λ(λ− 1)(λ− 2)(σ2

η1,k
)λ−3(σ̂2

1,k − σ2
1)3,

ξn,k =
n− k

3!
λ(λ− 1)(λ− 2)(σ2

ηn,k
)λ−3(σ̂2

n,k − σ2
n)3,

ξ =
n

3!
λ(λ− 1)(λ− 2)(σ2

η)
λ−3(σ̂2 − σ2)3.

Therefore

max{vλ,k} = max{k(σ̂2
1,k)

λ + (n− k)(σ̂2
n,k)

λ − n(σ̂2)λ}

= max{1

2
λ(λ− 1)(σ2)λ−2v2,k + (ξ1,k + ξn,k − ξ)}. (2.12)

By Lemma 2.3, we know [a(log n)]2 max1<k<n(ξ1,k + ξn,k − ξ) − (b(log n) + x)2 P→ −∞, then

combine (2.12) and (2.10) in Theorem 2.2, we obtain:

lim
n→∞

P{a2(log n) · max(vλ,k)

2σ̂4
≤ 1

2
λ(λ− 1)(σ̂2)λ−2(b(log n) + x)2} = exp(−2e−x).

Theorem 2.3 is proved.

The significance level α can be applied here based on (2.11), i.e.:

1−α = lim
n→∞

P{a2(log n)·max(vλ,k)

2σ̂4
≤ 1

2
λ(λ−1)(σ̂2)λ−2(b(log n)+x)2} = exp(−2e−x). (2.13)

The asymptotic critical value Cλ,α can be derived from (2.13):

Cλ,α = σ̂2λλ(λ− 1)
(2 log log n+ 1

2
log log log n− log Γ(1

2
)− log log(1− α)−1/2)2

2 log log n
(2.14)

which satisfies

P (max{vλ,k} > Cλ,α) = α.

As 0 < λ < 1, by the same way above, we can obtain

min{vλ,k} = min{1

2
λ(λ− 1)(σ2)λ−2(v2,k) + ξ1,k + ξ − ξ} < 0

and

P (min{vλ,k} < Cλ,α) = α.

where Cλ,α is calculated as same as (2.14), but note Cλ,α < 0 here.
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2.4 Modified Weighted Sum of Powers of Variances (MWSPV)

The simulation study in Section 2.5.1 shows if sample size is small, the results are not good

enough since the critical value is based on the large sample size. It also shows when the sample

size is small, absolute value of the critical value is slightly larger than it should be, and when

sample size is large, the critical value works as well as it should be. It tells us that an extra

term may add here to improve WSPV’s performance. The extra term should satisfy when

sample size is small, absolute value of WSPV is a little bit larger, and when sample size is

large, it won’t affect value of WSPV.

According to Lemma 2.3, the impact of term (ξ + ξ1,k − ξn,k) on the critical value can be

ignored as n→∞. However, if the sample size is small, it may have a big impact on critical

value. Recall Lemma 2.2, n1/2(log log n)−3/2ξ = Op(1). We see that the extra term ξ could be

approximately proportional to (log log n)3/2n−1/2. Based on this idea, we set up the modified

weighted sum of powers of variances MWSPV v′λ,k:

v′λ,k = k(σ̂2
1,k)

λ + (n− k)(σ̂2
n,k)

λ − n(σ̂2)λ + sgn(λ)γ(log log n)3/2n−1/2(σ̂2)λ, (2.15)

where sign(λ) ≡ I(λ > 1 or λ < 0)− I(0 < λ < 1) and γ is a parameter to adjust the value of

MWSPV.

Remark

• After comparing v′λ,k in (2.15) with vλ,k in (2.2), we can easily see that the MWSPV

finds exactly the same change-point position as the WSPV does regardless of significance

level since the penalty term is not related to k.

• When sample size n is smaller or say less than 200, the penalty term in the MWSPV has

some big impact on v′λ,k. Therefore, the MWSPV can catch more change-points than

the WSPV does in case of small sample size.

• When sample size n is larger, the MWSPV and the WSPV should have almost the

same performance since the penalty term goes to 0 when n goes to infinity. Simulation

results show when n is larger than 200, the MWSPV and the WSPV have almost same

performance.
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The empirical value of λ in WSPV can be found by simulations. The hyperparameter

γ adjusts the penalty term in MWSPV which becomes WSPV when γ = 0. A proper data-

adaptive specification of the γ value is therefore very important. Our empirical study suggests

this can be effectively achieved by setting γ = qν where qν is the level ν sample percentile of

certain standardized data sequence deemed not containing any change-point. Such standard-

ized sequence can be constructed in the following way: first, execute WSPV, i.e. MWSPV is

run with γ = 0. Second, each segment in the partition is standardized by subtracting its sam-

ple mean and being divided by its sample standard deviation, i.e. the z-scores of each segment

are calculated. The absolute values of the resultant z-scores give the referred standardized

sequence. Common values of level ν are 0.9, 0.95 and 0.99.

2.5 Simulation Study and Real Data Analysis

• In order to see how accurate our method works, we measure the distance (D) between

the detected change-point and the real change-point. We think D < 10 is successful

detections.

• Numbers in tables of simulation parts are percentage of the successful detections based

on 10,000 simulations.

• The optimal λ are developed by the simulation study in Chapter 2.5.1. The standardized

sample percentile ν = 0.95 and ν = 0.99 are tested in MWSPV, respectively.

2.5.1 WSPV Simulation

A sequence of I.I.D. normal variables with mean 0 and variance σ2
i , i = 1, . . . , n are set here.

Different sample size n, 50, 100 and 200 are tested.

For no change-points (No CP) cases, samples are I.I.D. normal variables with mean 0 and

variance 1. For one change-point (One CP) test, the position (τ) of the change-point is set

to 0.5. Variance before and after change-point are 1 and 4. Table 2 shows percentage of

successfully detecting.

In case of No CP, λ = 0.1 and λ = 0.5 are the best, while in case of One CP, λ = −0.1

20



and λ = 0.1 are the best. Obviously, λ = 0.1 is the best choice we can make.

Table 2: Change-points Test for WSPV with Different λ

λ

CP Size -2 -1 -0.5 -0.1 0.1 0.5 0.9 1.1 2 3

50 62.0 80.9 91.9 98.7 99.6 99.7 99.5 99.3 96.7 91.5

No CP 100 61.1 81.1 91.6 98.4 99.5 99.6 99.2 99.0 95.7 89.6

200 60.8 81.0 91.6 98.2 99.3 99.3 99.0 98.7 95.2 88.2

50 39.6 46.2 47.7 45.5 42.4 35.4 29.4 27.1 20.5 20.5

One CP 100 48.5 69.7 79.4 82.5 82.2 80.0 75.8 73.3 61.3 48.7

τ = 0.5 200 57.0 81.7 89.3 90.9 90.6 89.6 87.2 85.4 73.8 58.3

Note: unit in table is percentage(%)

2.5.2 MWSPV Simulation

We choose λ = 0.1 for both WSPV and MWSPV. The standardized sample percentile ν = 0.95

and ν = 0.99 are tested in MWSPV, respectively. We estimate γ by the method introduced

in Chapter 2.4.

We compare WSPV and MWSPV with other methods, like CUSUM by Inclan and Tian

[Inclan and Tiao, 1994] and BIC-type method by Chen and Gupta [Chen and Gupta, 2012],

both of which are briefly described in [A-1], at the same significance level 0.05. Inclan and Tian

[Inclan and Tiao, 1994] calculated the empirically critical values in their CUSUM paper and

we use such empirical values at significance level 0.05 to do simulations. All results obtained

below are based on 10,000 simulations.

Table 3 shows percentage of successful detections for No CP cases. 95% standardized

sample percentile value makes the Type I error under 5 % no matter how big the sample size

is. Type I error for the 99% standardized sample percentile value depends on the sample size.

Type I error around 5% when sample size is as large as 200, and when sample size is as small

as 50, the type I error is controlled under 10%.

Table 4 shows test results based on different sample size and variance change. The position

(τ) of the change-point is set to be 0.3, 0.5 or 0.7. Variance change 1 vs 3 and 1 vs 4 are used
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Table 3: No Change-point Test for MWSPV

MWSPV

Size ν = 0.95 ν = 0.99 BIC CUSUM

50 95.8 90.5 99.3 97.6

100 96.6 92.7 99.1 94.7

200 96.9 94.3 98.9 95.0

Note: unit in table is percentage(%)

to test method’s applicability.

Table 4: Power Test under α = 0.05 for One Change-point

Var Change σ1 : σn = 1 :
√
3 σ1 : σn = 1 : 2

MWSPV MWSPV

Size τ ν = 0.95 ν = 0.99 BICCUSUM ν = 0.95 ν = 0.99 BICCUSUM

0.3 29.9 40.3 11.5 7.2 50.1 60.7 25.3 13.3

50 0.5 43.4 51.4 21.7 47.0 67.1 73.9 44.2 69.9

0.7 42.2 50.1 21.8 52.4 65.3 72.0 43.4 75.0

0.3 57.6 63.9 39.2 39.7 81.5 84.4 70.2 57.5

100 0.5 69.2 72.8 56.4 76.4 87.0 88.0 82.5 85.5

0.7 67.2 71.3 53.1 81.9 86.8 87.9 80.8 93.8

0.3 78.8 79.5 75.6 55.3 90.1 90.1 90.1 60.9

200 0.5 81.0 81.2 80.3 78.0 90.6 90.6 90.9 83.5

0.7 81.0 81.4 79.3 86.8 91.2 91.2 91.3 93.8

Note: unit in table is percentage(%)

After thousands of simulations, we can draw following conclusions:

• When sample size is large, WSPV is as good as MWSPV.

• When sample size is smaller than 200, MWSPV is much better than WSPV, especially,

when both changes in variance and sample size are small.

• When sample size is small, MWSPV works better than BIC method. When sample size

is as large as or larger than 200, MWSPV works as well as BIC does.
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• MWSPV works consistently no matter where the change-point is, however detection of

CUSUM highly depends on the location of change-point. When the former variance is

less than the latter variance and location of change-point is within the first half, MWSPV

works much better than CUSUM, and when change-point is around the middle, MWSPV

works slightly better than CUSUM, and when change-point is within the second half,

CUSUM is slightly better than MWSPV.

2.5.3 Multiple Change-Points Detection

In the real world, we often face multiple change-points cases. To extend MWSPV to multiple

change-points case, we apply a binary segmentation procedure:

• Step 1: Find the most significant change-point in data by MWSPV.

• Step 2: Split the data into 2 parts from the change-point found at Step 1.

• Step 3: Reapply MWSPV to 2 subsamples to check the change-point in each segment.

• Step 4: Repeat Step 1-3 until no change-point is found in any segment.

2.5.4 Real Data Analysis: IBM Stock Prices

In 1976, [Box and Jenkins, 1976] presented a time series data, IBM common stock daily

closing prices from 17th May, 1961 to 2nd November, 1962. We transform it by the first order

difference of logarithm and use MWSPV to analyze it with λ = 0.1.

The Figure 2 shows the first order difference of logarithm IBM stock closing prices. It looks

like there is a change-point around 230 while others are not very clear. By MWSPV, we easily

find the first one at point 235. Once we find the first one, we split the data into two parts

from the first change-point 235 and then reapply MWSPV to that two parts. Between points

235 and 368, we find point 279. Between points 1 and 235, we find something interesting. We

find the point 8 by setting sample percentile level ν = 0.99 while no change-point is found by

setting ν = 0.95. Table 5 shows difference in HV between different parts. HV before point 8

is 1.8 times higher than HV after point 8, i.e. around 3.3 times higher in variance. Also we
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know by simulation when sample size is around 200, Type I error of MWSPV is around 5%.

Therefore we think point 8 is a change-point. After that, we continue to check if there is any

change-point between existing change-points, but we cannot find any further change-points.

Finally we obtain three change-points at 8, 235 and 279 in the data.

Figure 2: Historical Volatility Change Detection of IBM Stock Prices by MWSPV Algorithm

Table 5: Historical Volatility Change in Different Time Range

Position 1-8 9-235 236-279 280-368

HV 1.67 0.92 3.65 1.94

Note: unit in table is 10−2

This famous series data have been analyzed by some researchers. [Wichern et al., 1976]

used ARIMA (1,1,0) to find two change-points, 180 and 235. [Tsay, 1988] used ARIMA(0,1,1)

to detect the change-point at 237. CUSUM finds change-points at 235 and 279 while BIC-type

method find change-points at 235 and 281.

2.6 Extensions: Generalized Weighted Variance

Since WSPV is essentially a function of σ̂2
1,k and σ̂2

n,k, we are very interested if we can extend

this concept to general case.
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We redefine k̂ as

k̂ =

arg max
1<k<n

{vk} if g(·) is convex,

arg min
1<k<n

{vk} if g(·) is concave.

Also we redefine vk as

vk = k · g(σ̂2
1,k) + (n− k) · g(σ̂2

n,k)− n · g(σ̂2),

where σ̂2
1,k and σ̂2

n,k are defined as before, g(·) is either convex or concave function globally.

Finally we redefine vk̂ as

vk̂ =

max
1<k<n

(vk) if g(·) is convex

min
1<k<n

(vk) if g(·) is concave.

Let g(·) = log(·). Since logarithm function is concave function, k̂ can be calculated by

k̂ = arg min
1<k<n

{vk}.

where

vk = k · log(σ̂2
1,k) + (n− k) · log(σ̂2

n,k)− n · log(σ̂2). (2.16)

Denote v1 = (−vk̂)1/2, then v1 is likelihood procedure approach. [Chen and Gupta, 2012]

showed that

lim
n→∞

P [a(logn)v1 − b(logn) ≤ x] = exp{−2e−x}

where a(log n) = (2 log log n)1/2 and b(log n) = 2 log log n+ 1
2

log log log n− log Γ(1
2
).

[Schwarz, 1978] introduced Schwarz Information Criterion(SIC or BIC) for model selection.

Based on the principle of BIC, we can define

v2 = vk̂ + log n

where vk̂ is defined by (2.16). [Chen and Gupta, 2012] introduced it as BIC-typed statistic.

In terms of principle of BIC, we accept H0 if v2 < 0. Furthermore, [Chen and Gupta, 2012]

set up a critical value cα(≥ 0). H0 is accepted when v2 < cα rather than v2 < 0. They also

estimated the critical value cα based on both significance level α and sample size.
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Conclusion

The WSPV has very good performance to find change-point in variance. The MWSPV highly

improves the performance of the WSPV and has better performance than BIC and CUSUM

in the most of cases when sample size is small (less than 200). When sample size is larger,

MWSPV is comparable to other single change-point detection methods.
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3 Multiple Historical Volatility Change Detection by

Empirical Bayesian Information Criteria

In Chapter 2, we introduce the method which just can find single change-point in HV . How-

ever, allowing for occurrence of multiple change-points in HV is a more realistic approach. A

binary segmentation procedure has two major problems: Once it does not reject the hypothesis

of no change-point in a segment it will be impossible to detect change-points in any subse-

quent sub-segment; also once a data point is wrongly detected as a change-point at certain

stage there is no chance for the error to be revoked. Instead of using the binary segmentation

procedure, in this chapter, we propose an emBIC method to find multiple change-points si-

multaneously. Furthermore, this method can not only detect changes in HV , but also other

changes like mean changes or mean and variance changes.

Many developments of Markov chain Monte Carlo (MCMC) since 1990’s have enabled

Bayesian methods to be effective for analysis of multiple change-points. Under a Bayesian

setup, number and locations of change-point are estimated simultaneously by the posterior

distributions via MCMC computing. [Barry and Hartigan, 1993] used a product partition prior

distribution to construct a Bayesian change-points model, and used Gibbs sampler, which they

called Markov sampling, to estimate the posterior distribution of change-points locations and

sizes. Instead of using the product partition prior distribution one can use a multivariate

discrete prior defined on the change-points indicator process V1, · · · , Vn corresponding to the

data Y1, · · · , Yn, where Vi = 1 if i is a change-point location and Vi = 0 otherwise. Inde-

pendent Bernoulli prior distributions were used for the Vi’s in [Lavielle and Lebarbier, 2001]

for instance, while a truncated Poisson on
∑n

i=1 Vi was used in [Kim and Cheon, 2010]. In

addition to multiple change-points, other parameters and/or hyper-parameters in a Bayesian

model also need to be estimated. Due to the parameterization complication in many Bayesian

models, estimating these parameters often entails dedicated Monte Carlo methods, such as

hybrid MCMC, reversible jump MCMC, stochastic approximation expectation-maximization

(SAEM) ([Delyon et al., 1999]), stochastic approximation Monte Carlo (SAMC) ([Liang et

al. (2007)]), and annealing stochastic approximation Monte Carlo (ASAMC) ([Liang, 2007])

etc.. See [Kim and Cheon, 2010] for more discussions on this. Computations involved in these

Monte Carlo methods are usually very intensive. The parameterization complication needs to
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be carefully treated as it can cause further difficulties on interpreting the simulation results

of some posterior distributions ([Lavielle and Lebarbier, 2001]).

Motivated by the aforementioned research we propose a new statistical procedure to si-

multaneously estimate the change-points configuration and the associated parameters. In the

procedure, we use empirical Bayesian and maximum likelihood principles to first derive a

model selection or change-points selection criterion which we call emBIC (standing for em-

pirical Bayesian information criterion). In developing the emBIC we choose a special product

partition distribution as the non-informative prior for the change-points indicator process,

and use the maximum likelihood estimates for the parameters in the model. The resultant

emBIC tends to achieve the minimum when the model correctly specifies all change-points.

The optimal change-points configuration is thus naturally defined as the one minimizing the

emBIC. We estimate the optimal change-points configuration by inducing a multivariate dis-

crete distribution on the change-points indicator process and generating Markov chains from

the induced distribution using the Gibbs sampler. The optimal change-points configuration

is the mode of the induced distribution by definition. Therefore, the optimal change-points

configuration has the highest probability to appear in a generated Markov chain; and accord-

ingly can be accurately and efficiently estimated by a stochastic optimization method. Our

proposed procedure combines the advantages of both Bayesian and model selection approaches

for multiple change-points, yet the MCMC computing it requires is relatively simple and less

intensive. The procedure is expected to work in general multiple change-points problems with

different statistical models involved. For the sake of clear and concrete presentation, we will

use only examples of mean and variance changes to illustrate.

This chapter is organized as follows. In section 3.1 we derive a general form of emBIC

for multiple change-points estimation. We provide specific forms of emBIC in cases of mean

and variance change-points, and discuss their connections with related existent methods. In

section 3.2 we show how a Gibbs sampler engineered stochastic sampling and search method

is used to operate the change-points estimation based on emBIC and other related methods

in a computationally feasible way. We also derive some asymptotic properties on convergence

and efficiency of the stochastic sampling and search method. In section 3.3 we address various

computing and diagnosis issues associated with the use of the proposed and other methods in
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practice. We provide a simulation study and two applications involving finance and genetics

real data in section 3.4. The chapter ends with concluding remarks in section 3.5.

3.1 An Empirical Bayesian Information Criterion

3.1.1 General Case of Multiple Change-points

Consider a sequence of independent random variables Y1, · · · , Yn with parameters θ1, · · · , θn.

The parameter θi can be multi-dimensional but its dimension dim(θi) ≡ d is assumed fixed.

Let

θ1 = · · · = θj1 = φ1 6= θj1+1 = · · · = θj2 = φ2 6= · · · 6= θjK+1 = · · · = θn = φK+1.

where φK = (φ1, · · · , φK+1) specifies the distinct values of θn = (θ1, · · · , θn). Both φK and

the change-points configuration (j1, · · · , jK ;K) are unknown and need to be estimated, but

both have different conceptual meanings: φK is treated as an unknown vector parameter with

unknown length while (j1, · · · , jK ;K) is regarded as a latent random vector or latent data.

Denote Yns = (Yj(s−1)+1, · · · , Yjs) and yns = (yj(s−1)+1, · · · , yjs) its realization, where s =

1, · · · , K+ 1. According to the change-points configuration (j1, · · · , jK ;K) the data sequence

Yn = (Y1, · · · , Yn) can be partitioned into K + 1 segments Yn1, · · · ,Yn(K+1). Let fns(yns|φs)
be the joint pdf of Yns which involves the sth parameter φs. The joint pdf of Y1, · · · , Yn given

the change-points configuration is then

fn(yn|θn; j1, · · · , jK ;K) =
K+1∏
s=1

fns(yns|φs), where yn = (y1, · · · , yn). (3.1)

Note that in obtaining (3.1) there is no need of mutual independence in Y1, · · · , Yn. Rather,

only the mutual independence among the K + 1 segments is assumed.

The latent data (j1, · · · , jK ;K) can be equivalently represented by an indicator random

process Vn = (V1, · · · , Vn) for simplicity of presentation, where Vi = 1 if i = js for some

s ∈ {1, · · · , K} and Vi = 0 otherwise; i = 1, · · · , n. Note Vn ≡ 0 and
∑n−1

i=1 Vi = K according

to our notations on change-points. Both (j1, · · · , jK ;K) and (V1, · · · , Vn) determine the same

partition of Y1, · · · , Yn giving Yn1, · · · , Yn(K+1). Thus we can use the idea of product partition

29



probability distribution in [Barry and Hartigan, 1993] to model the latent data. Namely

Pr(V1, · · · , Vn) = Pr(j1, · · · , jK ;K) = Pr(j1, · · · , jK |K) · Pr(K).

Note that when dim(θi) ≡ d = 1 the number of possible configurations of (j1, · · · , jK ;K) given

K is
(
n−1
K

)
= (n−1)!

K!(n−1−K)!
; and conditional on K each such configuration may be equally likely

a priori. Assigning a prior distribution to K is not so obvious. We initially used a hierarchical

Bayesian approach where a binomial(n− 1, ξ) distribution is assumed for K given ξ, and ξ is

assumed a beta(a, b) distribution. By this approach it can be shown that

Pr(K) =
(n− 1)(n−1)

K(K)(n− 1−K)(n−1−K)
· (K + a− 1)(K)(n− 1−K + b− 1)(n−1−K)

(n− 1 + a+ b− 1)(n−1)

where x(m) = x(x − 1) · · · (x − m + 1) is an order m factorial power function with m ≥ 1

being a natural number. The hyper-parameters a and b need to be specified for this Pr(K) to

be usable, which is difficult in practice. However it implies Pr(K) = 1
n

when a = b = 1 and

Pr(K) is related to
(
n−1
K

)
in certain manner in general.

This discussion suggests a simplified approach which introduces a tuning parameter γ and

assumes

Pr(j1, · · · , jK |K) ∝
(
n− 1

K

)−1

and Pr(K) ∝
(
n− 1

K

)1−γ

, γ ≥ 0 (3.2)

where Pr(K) is a constant when γ = 1; positively related to
(
n−1
K

)
when 0 < γ < 1; and neg-

atively related to
(
n−1
K

)
when γ > 1. A γ ∈ [0, 2 log n] seems sufficient in practice (Section 3.3

for more detail). Now only γ needs to be specified in order to use (3.2).

It is not difficult to see that (3.2) can be extended by replacing 1 and γ there with d and

dγ respectively when d > 1. It follows that

Pr(V1, · · · , Vn) = Pr(j1, · · · , jK ;K) ∝

[
n−1∑
k=0

(
n− 1

k

)d−dγ]−1(
n− 1

K

)−dγ
. (3.3)

From (3.1) and (3.3) the joint probability density function of (Y1, · · · , Yn; j1, · · · , jK ;K) is

fn(yn; j1, · · · , jK ;K|θn) ∝
K+1∏
s=1

fns(yns|φs) ·

[
n−1∑
k=0

(
n− 1

k

)d−dγ]−1(
n− 1

K

)−dγ
, (3.4)
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which is also the complete data likelihood function of φK = (φ1, · · · , φK+1).

[Schwarz, 1978] derived SIC by using a conditional uniform prior distribution on the pa-

rameter space and a Laplace approximation for the likelihood function. [Yao, 1988] applied

SIC to multiple change-points problem which has resulted in the following criterion function

called BIC using our notations

BIC(Vn) ≡ BIC(j1, · · · , jK ;K) = −
K+1∑
s=1

log fns(yns|φ̂ns) +
d

2
(K + 1) log n (3.5)

where φ̂ns is the maximum likelihood estimator of φs. The BIC estimator of the change-points

is defined as V̆n ≡ (j̆1, · · · , j̆K̆ ; K̆n) = argmin BIC(Vn) ≡ argmin BIC(j1, · · · , jK ;K).

Applying the spirit of BIC aforementioned to the complete data likelihood function (3.4),

we obtain the following empirical Bayesian information criterion (emBIC) function

emBICγ(Vn)≡emBICγ(j1,· · · , jK ;K)=−
K+1∑
s=1

log fns(yns|φ̂ns) + dγ log

(
n−1

K

)
+
d

2
(K+1)log n

(3.6)

where we do not include log
∑n−1

k=0

(
n−1
k

)d−dγ
, a constant not affecting change-points selection.

The best estimator of the change-points configuration is the one minimizing emBICγ, i.e.

V̂n ≡ (ĵ1, · · · , ĵK̂ ; K̂n) = argmin emBICγ(Vn) ≡ argmin emBICγ(j1, · · · , jK ;K) (3.7)

BIC (3.5) in the context of multiple change-points selection has been proved, under some

standard conditions, to be asymptotically consistent in selecting the true change-points by

[Yao, 1988]. It is well known that the key condition for a consistent model selection criterion

is that its penalty term, e.g. d
2
(K+1) log n in (3.5), is of an order between o(n) and O(log log n)

and is an increasing function of model dimension, see [Hannan and Quinn, 1979]. The two

penalty terms in emBICγ (3.6) satisfies this condition. Therefore emBIC is also consistent; its

proof can be done by following the same line as in [Yao, 1988] but will not be detailed here

as it is not the focus of this chapter.

Even though BIC is asymptotically consistent, it has been found to have tendency to

over-estimate the true number of change-points in finite sample situations. This can be seen

in the simulations in [Bai and Perron, 2003], [Lavielle, 2005] and [Lavielle and Teyssiere,

2006], for example. Our simulation study in section 3.4 will also confirm this. We expect
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the extra penalty term dγ log
(
n−1
K

)
in emBICγ (3.6) will effectively correct this finite-sample

over-estimation.

A different extension of BIC for detecting multiple change-points is the penalized contrast

(PC) of the form PC(Vn) ≡ PC(j1, · · · , jK ;K) = J(Vn; yn) + βpen(Vn) given by [Lavielle,

2005]. Here J(Vn; yn) measures the fitness of the change-points configuration Vn to the data

yn = (y1, · · · , yn), with the minus maximum log-likelihood function being a special form of

J(Vn; yn). The penalty term pen(Vn) depends K only. The penalization parameter β adjusts

the trade-off between J(Vn; yn) and pen(Vn), and is estimated according to the maximum

likelihood principle which may require an adaptive intensive-computing procedure called the

stochastic approximation expectation-maximization (SAEM) algorithm introduced by [Delyon

et al., 1999]. In the case of Gaussian mean change-points problem, where J(Vn; yn) is chosen

to be the minus twice maximum log-likelihood times the constant variance σ2, [Birge and

Massart, 2001] showed that a penalty term of the form pen(Vn) = (K + 1)(1 + c log n
K+1

)

and β = 2σ2

n
is optimal for minimizing the mean sum of squares of residuals. An empirical

estimate of c = 2.5 was suggested for practical use. It is easy to see that the penalty term

βpen(Vn) here is asymptotically equivalent to the penalty dγ log
(
n−1
K

)
+ d

2
(K+ 1) log n in

(3.6). [Lavielle, 2005] used the above penalty function given by [Birge and Massart, 2001]

for the variance change-points problem as well, and he called the value of the change-points

configuration minimizing the penalized contrast function the MPC estimator, being denoted

here as Ṽn ≡ (j̃1, · · · , j̃K̃ ; K̃) = argmin PC(Vn) ≡ argmin PC(j1, · · · , jK ;K).

3.1.2 Special Cases on Mean and Variance Change-points

It is interesting to see how emBIC, BIC and penalized contrast (PC) will perform in some

common but important cases of multiple change-points. The cases that we focus on are

C1. mean change-points, with constant unknown variance σ2; i.e. φs = µs, s = 1, · · · , K+1;

C2. variance change-points, with constant unknown mean µ; i.e. φs = σ2
s , s = 1, · · · , K + 1;

C3. mean-variance change-points; i.e. φs = (µs, σ
2
s), s = 1, · · · , K + 1.
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For ease of presentation we now assume the data points Y1, · · · , Yn are i.i.d. normal random

variables. The formulas derived based on this assumption can still be used in situations

where this assumption does not hold, but their validities are subject to their robustness and

large-sample properties.

Consider case C1 first. It is easy to see that the MLE of each µs given the change-

points configuration is µ̂ns = Y ns, which is the sample mean of the sth segment. The MLE

of σ2 given the change-points configuration is σ̂2
0nK = n−1S(j1, · · · , jK) with S(j1 · · · , jK) =∑K+1

s=1

∑js
i=j(s−1)+1(Yi−Y ns)

2 being the total sum of squared residuals. By (3.6) and a straight-

forward calculation emBIC for case C1 is, up to an additive constant,

emBIC1γ(Vn) ≡ emBIC1γ(j1, · · · , jK ;K)

=
1

2
log σ̂2

0nK + γ log

(
n− 1

K

)
+

1

2
(K + 1) log n.

Also BIC for case C1 is, up to an additive constant,

BIC1(Vn) ≡ BIC1(j1, · · · , jK ;K) =
1

2
log σ̂2

0nK +
1

2
(K + 1) log n.

The penalized contrast function for case C1 can be similarly found to be

PC1(Vn) ≡ PC1(j1, · · · , jK ;K) = σ̂2
0nK +

2σ̂2
0nK

n
(K + 1)

(
1 + c log

n

K + 1

)
based on normal log-likelihood.

Now consider case C2. The log-likelihood function is

logL2(µ;σ2
1, · · · , σ2

K+1) = −
K+1∑
s=1

js − j(s−1)

2
log σ2

s +
1

2σ2
s

js∑
i=j(s−1)+1

(Yi − µ)2

 . (3.8)

The MLE of (µ, σ2
1, · · · , σ2

K+1) can be found to satisfy

µ̂0nK =

[
K+1∑
s=1

js−j(s−1)

σ̂2
ns

]−1 K+1∑
s=1

js∑
i=j(s−1)+1

Yi
σ̂2
ns

and σ̂2
ns =

∑js
i=j(s−1)+1(Yi − µ̂0nK)2

js−j(s−1)

, (3.9)

s = 1, · · · , K + 1, which can be computed using Newton’s iteration method. By (3.6), (3.8)

and (3.9), emBIC for case C2 is, up to an additive constant,

emBIC2γ(Vn) ≡ emBIC2γ(j1, · · · , jK ;K)

=
1

2

K+1∑
s=1

(js − j(s−1)) log σ̂2
ns + γ log

(
n−1

K

)
+

1

2
(K + 1) log n.
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Also BIC for case C2 is, up to an additive constant,

BIC2(Vn) ≡ BIC2(j1, · · · , jK ;K) =
1

2

K+1∑
s=1

(js − j(s−1)) log σ̂2
ns +

1

2
(K + 1) log n.

[Lavielle, 2005] gave a penalized contrast function for case C2 as

PC2(Vn) ≡ PC2(j1, · · · , jK ;K) =
1

n

K+1∑
s=1

log

(∑js
i=j(s−1)+1(Yi − Ȳn)2

js − j(s−1)

)js−j(s−1)

+ β(K + 1)

(3.10)

where Ȳn = 1
n

∑n
i=1 Yi. Instead of assigning a single value for β and using (3.10) to esti-

mate (j1, · · · , jK) and K simultaneously, [Lavielle, 2005] proposed to estimate (j1, · · · , jK),

for each possible K given, by (j̃1, · · · , j̃K) that minimised (3.10) at β = 0. The estimate

(j̃1, · · · , j̃K) can be computed by using a dynamic programming algorithm. He then found that

argminK PC2(j̃1, · · · , j̃K ;K), as a function of β, varied with β according to a step-decreasing

function. By exploiting the curvature property of this function, he was able to develop a

heuristic approach to estimate the optimal K without actually using β in the computing

involved.

Finally we consider case C3. It is easy to see that emBIC for case C3, up to an additive

constant is

emBIC3γ(Vn) ≡ emBIC3γ(j1, · · · , jK ;K)

=
1

2

K+1∑
s=1

log

(∑js
i=j(s−1)+1(Yi − Y ns)

2

js − j(s−1)

)js−j(s−1)

+ 2γ log

(
n−1

K

)
+ (K+1) log n. (3.11)

Also BIC for case C3 is, up to an additive constant,

BIC3(Vn) ≡ BIC3(j1, · · · , jK ;K)

=
1

2

K+1∑
s=1

log

(∑js
i=j(s−1)+1(Yi − Y ns)

2

js − j(s−1)

)js−j(s−1)

+ (K + 1) log n. (3.12)

And the normal log-likelihood based penalized contrast function for case C3 is

PC3(Vn) ≡ PC3(j1, · · · , jK ;K) =
1

2

K+1∑
s=1

log

(∑js
i=j(s−1)+1(Yi − Y ns)

2

js − j(s−1)

)js−j(s−1)

+ β(K+1)

(3.13)

Again, (3.13) is not used to estimate (j1, · · · , jK) and K simultaneously, as indicated in

[Lavielle, 2005].
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3.2 Iterative Stochastic Search of Change-points

3.2.1 Computational Challenges and Existent Methods

Given a change-points selection criterion such as emBIC, BIC or PC, the underlying change-

points configuration is estimated as the one that minimises the criterion. But it is not straight-

forward to actually use such a criterion to compute the configuration estimate. Note that in

theory there are
(
n−1
K

)
possible configurations for each given K for a sequence of n data points.

Thus there are in total
∑n−1

K=0

(
n−1
K

)
= 2n−1 possible change-points configurations in the data.

It is computationally infeasible, even when the sample size n is moderately large, to evaluate

the criterion function for all 2n−1 configurations to find the best change-points estimation.

[Vostrikova, 1981] proposed a hypothesis testing based sequential binary segmentation

procedure to compute the significant change-points in the data. The procedure first finds a

significant change-point by a test with null against one change-point hypotheses. Once such

a change-point is detected at a given significance level, use it to divide the data into two

sub-sequences. The procedure then tests for significant change-point in each sub-sequence;

and if a significant change-point is found, use it to divide the associated sub-sequence into

two further sub-sequences. The procedure continues this way until no significant change-

point can be found and no sub-sequence can be further divided. For such a sequential testing

procedure, it is usually difficult to balance the overall power of the procedure against its overall

significance levels, and also against the involved computing expenses. Another drawback of

such a procedure is its inability to recover any underlying change-point once this point is failed

to be detected at some stage. Further, such a procedure tends to over-estimate the number

of change-points ([Lavielle and Teyssiere, 2006]). Nevertheless, many papers have used the

binary segmentation or similar sequential procedures to search for multiple change-points. See

e.g. [Bai and Perron, 2003], [Chen and Gupta, 1997], and [Inclan and Tiao, 1994].

In particular, [Chen and Gupta, 1997] used the binary segmentation procedure to imple-

ment a BIC induced sequential test on multiple variance change-points detection. Their BIC

induced test can also deal with change-points of a general parameter of dimension d. We

now briefly describe their test in the context of general parameter change-points. Let SIC(n)

be the value of BIC calculated when assuming no change-point in the data Y1, · · · , Yn; and
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SIC(j), 1 < j < n, be that when assuming one change-point at location j. Note we use SIC(·)
here to distinguish it from BIC(Vn) in (3.5) where K change-points are assumed. The null

hypothesis of no change-point will be rejected at significance level α if

SIC(n) ≥ min
1<j<n

SIC(j) + cnα, (3.14)

and accordingly j̆ = argmin1<j<n SIC(j) is used to estimate the location of the significant

change-point detected. Here cnα is the right-tail level α critical value for the asymptotic

distribution of SIC(n)−min1<j<n SIC(j) under the null hypothesis. By Theorem 3.1 of [Chen

and Gupta, 1997] and Theorem 1.3.1 of [Csörgo and Horváth, 1997], it can be shown that

cnα =
1

2

{
− 1

a(log n)
log log[1− α + exp(−2eb(logn))]−1/2 +

b(log n)

a(log n)

}2

− d

2
log n, (3.15)

where

a(log n) = (2 log log n)1/2 and b(log n) = 2 log log n+
d

2
log log log n− log Γ(

d

2
) (3.16)

with Γ(·) being the gamma function. Note that n in (3.14) refers to the size of the data

segment being tested in the binary segmentation procedure.

As mentioned in section 3.1, [Lavielle, 2005] used an intensive computing procedure to

calculate the MPC estimate of the change-points configuration. The procedure involved both

a dynamic programming algorithm for computing the contrast function and a heuristic deter-

mination of the penalization parameter β and the number of change-points K.

[Lavielle, 2005] also proposed to estimate the change-points configuration Vn by maximiz-

ing its posterior distribution

P (Vn|yn;α, β) ∝ e−α[J(Vn;yn)+β·pen(Vn)], α > 0;

and called the resultant estimate the maximum a posteriori (MAP) estimate. This Bayesian

approach involves using SAEM for estimating (α, β) and simulated annealing for estimating

Vn and K, which has been found to be computationally slow and tends to produce worse

results than the MPC approach.
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3.2.2 Change-points Sampling and Search by Gibbs Sampler

Now we propose a different computing procedure for finding the change-points configuration

that minimises the empirical Bayesian information criterion emBIC derived in section 3.1.

We will show that the new procedure is computationally efficient, easy to implement and

interpret, and possesses some optimality properties under regularity conditions.

We now Use the indicator process Vn defined in section 3.1 to represent the change-points

configuration. It is easy to see that the estimate V̂n in (3.7), which minimizes the emBICγ(Vn)

given by (3.6), is also the one that maximizes the following probability function

PemBICτγ(Vn) = D(yn; τ, γ) exp{−τ · emBICγ(Vn)}, (3.17)

where D(yn; τ, γ) =
[∑

Vn
exp{−τ · emBICγ(Vn)}

]−1
is the normalization constant. Note

PemBICτγ(Vn) is deemed to be a joint probability mass function of the latent binary random

vector Vn = (V1, · · · , Vn) given the observed data Y1 = y1, · · · , Yn = yn. This implies that, if

we can generate samples of Vn from (3.17), V̂n would have the highest probability among all

possible values of Vn to appear in the samples, and tend to appear early in the samples. Hence

the empirical distribution of the generated Vn samples can be used to consistently estimate

V̂n. In particular we can either use the empirical marginal distributions of V1, · · · , Vn−1 (note

Vn ≡ 0) based on the samples, or do finite search over the samples, to find the optimal Vn

in the samples. This optimal Vn is expected to converge to V̂n very quickly when sufficient

samples are generated; and will eventually converge to the true change-points configuration

in the data when n → ∞. Comparing to an exhaustive search to find V̂n, which involves

enumerating all 2n−1 possible configurations of Vn, the search based on generating random

samples from (3.17) requires just a fractional amount of the computing for enumeration.

The normalization constant D(yn; τ, γ), which is actually a function of yn and (τ, γ), in-

volves enumerating 2n−1 terms thus cannot be easily evaluated when n is large. Hence it is

difficult to generate random samples from PemBICτγ(Vn) directly. However, a Markov chain

Monte Carlo method can be used to generate random samples in such a situation. In par-

ticular, the Gibbs sampler ( [Casella and George, 1992]) can be used here in a very simple

manner, because the conditional distributions PemBICτγ(Vi|V−i), which are required in using

the Gibbs sampler, are Bernoulli ones with easily computable probabilities of “success”. Here
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V−i = (V1:(i−1),V(i+1):n), i = 1, · · · , n− 1; and Vi:j = (Vi, · · · , Vj) if i ≤ j and = ∅ otherwise.

It is easy to see that the conditional probability mass function of Vi given V−i is

PemBICτγ(Vi|V−i) =
e−τ ·emBICγ(Vn)

e−τ ·emBICγ(V1:(i−1),Vi=1,V(i+1):n) + e−τ ·emBICγ(V1:(i−1),Vi=0,V(i+1):n)
, (3.18)

i = 1, · · · , n− 1, which does not involve the intractable D(yn; τ, γ).

We propose to compute the change-points configuration estimate based on the samples that

are generated from PemBICτγ(Vn) by using the Gibbs sampler. Our computing procedure is

described by the following algorithm.

Algorithm 1. Gibbs sampler + emBIC for detecting change-points

• Arbitrarily choose a starting indicator vector V
(0)
n = (V

(0)
1 , · · · , V (0)

n−1, 0). For example,

take (V
(0)

1 , · · · , V (0)
n−1) to be generated from Bernoulli(0.2), or set each V

(0)
i to 1 if i is a

multiple of 10 and 0 otherwise, etc..

• Generate V
(`)
i from the probability mass function PemBICτγ(Vi|V(`)

1:(i−1),V
(`−1)
(i+1):n), where

i = 1, · · · , n− 1 and ` = 1, · · · , L, sequentially for given L, τ and γ.

• Return the sampled sequence {V(1)
n , · · · ,V(L)

n } where V
(l)
n = (V

(`)
1 , · · · , V (`)

n−1, 0).

• Compute the marginal empirical distribution for each component of V1:(n−1). This is

equivalent to computing the marginal sampling probabilities p
(L)
i = 1

L

∑L
`=1 V

(`)
i , i =

1, · · · , n− 1. Then determine V∗Ln = (V ∗L1 , · · · , V ∗Ln−1, 0), where V ∗Li = 1 if p
(L)
i > p∗ and

V ∗Li = 0 otherwise, with p∗ being a given threshold probability (e.g. p∗ = 0.5). Note

that the empirical distribution of any function of Vn can be similarly computed.

• The generated V
(`)
i values result in (n − 1)L vectors of Vn, each being of the form

(V
(`)

1 , · · · , V (`)
i , V

(`−1)
i+1 , · · · , V (`−1)

n−1 , 0); i = 1, · · · , n − 1 and ` = 1, · · · , L. Compute the

emBIC for these vectors; denote the results as emBIC(1,1)
γ , · · · , emBIC(n−1,L)

γ . Also com-

pute V+L
n = arg min{emBIC(i,`)

γ ; 1 ≤ i ≤ n− 1, 1 ≤ ` ≤ L}. Note (V+L
n , emBICγ(V

+L
n ))

should have little difference from (V∗Ln , emBICγ(V
∗L
n )) when L is sufficiently large. We

use V∗Ln as the change-points configuration estimate if emBICγ(V
∗L
n ) < emBICγ(V

+L
n );

and use V+L
n otherwise.
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In section 3.2.3 we will reason that, under regularity conditions, both V∗Ln and V+L
n con-

verge to V̂n almost surely when L→∞, and further converge to the true population change-

points configuration almost surely when n→∞. In section 3.3 we will provide detail on how

to implement Algorithm 1; and will address practice issues, e.g. how to choose L, τ , γ and p∗

etc.. At the moment we would like to just provide the following remark.

Remark 1. [Qian, 1999] introduced the idea of combining the Gibbs sampler with a vari-

able selection criterion and performing variable selection by iterative sampling and stochastic

search. This idea was later used in [Qian and Field, 2002] for logistic regression variable

selection; in [Qian and Zhao, 2007] for autoregressive moving average (ARMA) time series

variable selection; and in [Cui et al., 2010] for general estimating equation variable selection.

The context in which we apply this idea here is very different from the aforementioned ones.

For example, the model space in which we are to find the change-points is that of the latent

indicator process (V1, · · · , Vn−1), which depends on the sample size of the data. This is in

contrast to the model space in variable selection which does not depend on the sample size.

Gibbs sampler can also be used with the BIC induced test of [Chen and Gupta, 1997] for

change-points detection. The key is to replace (3.18) by the conditional probability function

PtBICτα(Vi = 1|V−i) =
1

1 + eτ [BIC(V1:(i−1),Vi=1,V(i+1):n)+cnα−BIC(V1:(i−1),Vi=0,V(i+1):n)]
(3.19)

and PtBICτα(Vi = 0|V−i) = 1 − PtBICτα(Vi = 1|V−i), i = 1, · · · , n − 1, where BIC(Vn) is

given by (3.5) and cnα is given by (3.15). The joint probability mass function resulting in

(3.19) is

PtBICτα(Vn) = D′(yn; τ, α) exp{−τ · tBICα(Vn)} (3.20)

where

tBICα(Vn) = −
K+1∑
s=1

log fs(ys|φ̂s) +
d

2
(K + 1) log n+Kcnα = BIC(Vn) + cnα

n−1∑
i=1

Vi. (3.21)

Now it amounts to finding the change-points configuration minimizing tBICα(Vn) rather than

minimizing BIC(Vn). The computing is processed through the following algorithm.

Algorithm 2. Gibbs sampler + BIC induced test for detecting change-points
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• Arbitrarily choose a starting indicator vector V
(0)
n = (V

(0)
1 , · · · , V (0)

n−1, 0). For example,

take (V
(0)

1 , · · · , V (0)
n−1) to be generated from Bernoulli(0.2), or set each V

(0)
i to 1 if i is a

multiple of 10 and 0 otherwise, etc..

• Generate V
(`)
i from the Bernoulli probability function PtBICτα(Vi|V(`)

1:(i−1),V
(`−1)
(i+1):n),

where i = 1, · · · , n− 1 and ` = 1, · · · , L, sequentially for given L, τ and α.

• Return the sampled sequence {V(1)
n , · · · ,V(L)

n } where V
(l)
n = (V

(`)
1 , · · · , V (`)

n−1, 0).

• Compute the marginal empirical distribution for each component of V1:(n−1). This is

equivalent to computing the marginal sampling probabilities p̆
(L)
i = 1

L

∑L
`=1 V

(`)
i , i =

1, · · · , n− 1. Then determine V̆∗Ln = (V̆ ∗L1 , · · · , V̆ ∗Ln−1, 0), where V̆ ∗Li = 1 if p̆
(L)
i > p∗ and

V̆ ∗Li = 0 otherwise, with p∗ being a given threshold probability (e.g. p∗ = 0.5). The

empirical distribution of any function of Vn can be similarly computed.

• The generated V
(`)
i values result in (n − 1)L vectors of Vn, each being of the form

(V
(`)

1 , · · · , V (`)
i , V

(`−1)
i+1 , · · · , V (`−1)

n−1 , 0); i = 1, · · · , n − 1 and ` = 1, · · · , L. Compute the

tBIC values for these vectors; denote the results as tBIC(1,1)
α , · · · , tBIC(n−1,L)

α . Also

compute V̆+L
n = arg min{tBIC(i,`)

α ; 1 ≤ i ≤ n− 1, 1 ≤ ` ≤ L}. Note (V̆+L
n , tBICα(V̆+L

n ))

should have little difference from (V̆∗Ln , tBICα(V̆∗Ln )) when L is sufficiently large. We

use V̆∗Ln as the change-points configuration estimate if tBICα(V̆∗Ln ) < tBICα(V̆+L
n ); and

use V̆+L
n otherwise.

As for Algorithm 1, it can be similarly reasoned that, under regularity conditions, both V̆∗Ln

and V̆+L
n converge almost surely to the change-points configuration minimizing tBICα(Vn)

in (3.21) when L → ∞, and further converge to the true population change-points configu-

ration almost surely when n → ∞. Both V̆∗Ln and V̆+L
n are expected to be asymptotically

equivalent to the solution of the binary segmentation procedure of [Chen and Gupta, 1997]

as being summarized in section 3.2.1. But Algorithm 2 gives an iterative stochastic search

procedure, which does not have those difficult finite-sample issues of the binary segmentation

and sequential procedures as mentioned in section 3.2.1. In section 3.3 we will discuss on how

to implement Algorithm 2; and will address practice issues, e.g. how to choose L, τ , α and p∗

etc..
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Clearly, an algorithm combining Gibbs sampler with BIC in a way similar to that in

Algorithms 1 and 2 can be formulated to detect change-points. The resultant algorithm

would generate random samples from PBICτ (Vn) ∝ exp{−τ · BIC(Vn)}. But we will not

proceed with it since BIC tends to over-detect change-points.

MCMC including the Gibbs sampler were combined with the penalty contrast function

to estimate the change-points by [Lavielle and Lebarbier, 2001] in a maximum a posteriori

(MAP) approach. The combination is done in a much more complicated framework than the

one presented in Algorithms 1 and 2, yet the resultant MAP estimates are not as good as the

MPC ones. The penalty contrast framework does not allow for a simple integration with the

Gibbs sampler as well as MCMC.

3.2.3 Asymptotic Optimality of Gibbs Sampler Plus emBIC or tBIC

The sequence {V(1)
n , · · · ,V(L)

n } generated by each of Algorithms 1 and 2 is a Markov chain

rather than a sequence of i.i.d. samples. It can be verified the generated Markov chain is

aperiodic, irreducible and reversible; thus it is uniformly ergodic and converges to its stationary

distribution given by (3.17) or (3.20) as L → ∞. Hence by the ergodicity theorem [Robert

and Richardson, 1998, p.2] the change-points detected by Algorithm 1 or 2 converge to that

defined by minimizing emBIC or tBIC almost surely as L→∞ with respect to the probability

space defined by (3.17) or (3.20). The change-points minimizing emBIC or tBIC, although

can be proved to be strongly consistent using e.g. [Yao, 1988], are not necessarily the same

as the true population change-points associated with the data. So it is of interest to see how

likely the true population change-points can be detected by Algorithms 1 and 2.

First we need to establish the concept of true population change-points. Recall that the

data is Yn = (Yn1, · · · , Ynn), which can be sampled from a random process {X(t), t ∈ (0, 1]}
such that Yni = X(i/n), i = 1, · · · , n. Suppose there exist K0 constants t1, · · · , tK0 satisfying

0 = t0 < t1 < t2 < · · · < tK0 < tK0+1 = 1, and K0 + 1 distinct probability distributions

F1, · · · , FK0+1 such that X(t)
d
= Fk for any t ∈ (tk−1, tk], k = 1, · · · , K0 + 1. It is easy to see

that t1, · · · , tK0 are the true population change-points of the random process X(t), and we

formally call them the population fraction change-points of the data Yn1, · · · , Ynn. [Yao, 1988]

has shown that the BIC estimator Ǩn of K0 is strongly consistent, i.e. Ǩn
a.s.→ K0 as n → ∞
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under regularity conditions. This strong consistency can be extended to the emBIC and tBIC

estimators of K0 following a similar proof. Note that, although being strongly consistent, the

BIC estimator Ǩn tends to overestimate K0 in finite sample situations.

Given a number kn, K0 ≤ kn ≤ n − 1, let ĵ1, · · · , ĵkn be the kn most probable change-

points of Yn obtained from minimizing emBIC or tBIC. It is easy to see that ĵ1, · · · , ĵkn are

just the maximum likelihood estimates. Following the asymptotic techniques in [Shi et al.,

2009] and [Qian et al., 2014], it is not difficult to show that, when kn ≥ K0, there exists a

size K0 subset {s1, · · · , sK0} of {1, · · · , kn} such that |n−1ĵnsi − ti| = o(n−1q(n)) a.s. for any

q(n) ↑ ∞, i = 1, · · · , K0. Namely, (ĵ1, · · · , ĵkn ; kn), with possible redundancy, almost surely

gives a correct configuration of the true population change-points. Using these techniques one

can also show that the difference between the maximum log-likelihood of the data over the

configuration (ĵ1, · · · , ĵkn ; kn) and that over the true population change-points configuration

is of order O(log log n) a.s.. And this difference would be of order O(n) a.s. if (ĵ1, · · · , ĵkn ; kn)

does not give a correct configuration (e.g. if kn < K0).

For n data points Yn1, · · · , Ynn, the set of all possible configurations of change-points

can be denoted as
⋃n−1
k=0 Snk = {∅}

⋃(⋃n−1
k=1{(j1, · · · , jk) : 1 ≤ j1 < · · · < jk ≤ n− 1}

)
, which

contains 2n−1 − 1 non-empty elements. With the discussions so far, we can divide
⋃n−1
k=0 Snk

into two subsets Mn(ε) and its complement Mc
n(ε) for any ε > 0 sufficiently small and n

sufficiently large. Here

Mn(ε) = {(j1, · · · , jkn ; kn) : K0 ≤ kn ≤ n− 1; 1 ≤ j1 < · · · < jkn ≤ n− 1;

and for any s = 1, · · · , K0, there exists exactly one sn ∈ {1, · · · , kn}

such that |n−1jsn − ts| < ε.}

It is easy to see that the cardinality of Mn(ε) is |Mn(ε)| = 2n−1−K0 if ε is sufficiently small

and n is sufficiently large such that 0 < ε < (2n)−1; and each configuration inMn(ε) covers all

true population change-points of the data but may also contain some non-change-points. The

cardinality of Mc
n(ε) can be found to be 2n−1 − 2n−1−K0 = 2n−1(1 − 2−K0) if ε is sufficiently

small and n is sufficiently large such that 0 < ε < (2n)−1. We single out a particular subset

of Mn(ε), which is

M0n(ε) = {(J1, · · · , JK0) : 1 ≤ J1 < · · · < JK0 ≤ n− 1; |n−1Jk − tk| < ε, k = 1, · · ·, K0.}
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Note M0n(ε) = {∅} if K0 = 0, otherwise M0n(ε) contains only the true configuration of the

change-points if ε is sufficiently small and n is sufficiently large such that 0 < ε < (2n)−1.

Following the above discussions on Mn(ε) and Mc
n(ε), we can reasonably assume the

following two conditions hold for the maximum log-likelihood function for the data Yn.

(A.1) For any (j1, · · · , jkn ; kn) ∈ Mn(ε) and (j′1, · · · , j′k′n ; k′n) ∈ Mn(ε) with 0 < ε < (2n)−1

and n sufficiently large∣∣∣∣∣∣
kn+1∑
s=1

log fns(Yns | φ̂ns)−
k′n+1∑
s′=1

log fns′(Yns′ | φ̂ns′)

∣∣∣∣∣∣ � log log n a.s., where

Yns=(Yn(j(s−1)+1), · · ·, Ynjs) and an � bn means 0 < limn→∞anb
−1
n ≤ limn→∞anb

−1
n <∞.

(A.2) For any (j1, · · · , jkn ; kn) ∈ Mn(ε) and (j′′1 , · · · , j′′k′′n ; k′′n) ∈ Mc
n(ε) with 0 < ε < (2n)−1

and n sufficiently large

0 <
kn+1∑
s=1

log fns(Yns | φ̂ns)−
k′′n+1∑
s′′=1

log fns′′(Yns′′ | φ̂ns′′) � n a.s.

We have the following results when use randomly generated samples from PemBICτγ(Vn) or

PtBICτα(Vn) for detecting change-points.

Proposition 1 Consider the change-points detection criteria BIC in (3.5), emBICγ in (3.6)

and tBICα in (3.21); and their induced probability mass functions PBICτ (Vn), PemBICτγ(Vn)

in (3.17) and PtBICτα(Vn) in (3.20). Suppose the number of the population fraction change-

points is K0 corresponding to data Yn1, · · · , Ynn which are observed from the random process

{X(t), 0 < t ≤ 1}. Also suppose both conditions (A.1) and (A.2) are satisfied. Let Pr(·) be

a generic notation of a probability statement with respect to PBICτ (Vn), PemBICτγ(Vn) or

PtBICτα(Vn); and a.s. be with respect to the probability space of {X(t), 0 < t ≤ 1}. Also

denote ξ, ξ1, ξ2 etc. as some generic positive constants. Then we have the following results.

(R.1) Pr(Mn(ε)) ∼ [1 + (2K0 − 1)e−ξn]−1 a.s.. Here an ∼ bn means anb
−1
n → 1.

(R.2)
Pr(Mn(ε))

Pr(Mc
n(ε))

� (2K0 − 1)−1eξn a.s..
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(R.3) Pr(M0n(ε)) ≥ [1 + (2n−1−K0 − 1)ξ1n
−ξ2 ]−1Pr(Mn(ε)) a.s..

Proposition 1 essentially says that the probability of a change-points configuration from

Mn(ε) being selected is asymptotically 1 (R.1); the probability of selecting a correct config-

uration is exponentially larger than that selecting an incorrect configuration (R.2); but the

lower bound in (R.3) is weak and not sufficient to guarantee a large probability of selecting

the true population configuration of change-points.

Proof of Proposition 1 is tedious but straightforward by knowing that there are 2n−1−K0

configurations inMn(ε) and 2n−1−K0(2K0 − 1) configurations inMc
n(ε); and by knowing that

Pr(Vn0)/Pr(Vn1) � nξ2 a.s. and Pr(Vn2)/Pr(Vn3) � eξn a.s. under conditions (A.1) and

(A.2) for any Vn0 ∈M0n(ε), Vn1 ∈Mn(ε)\M0n(ε), Vn2 ∈Mn(ε) and Vn2 ∈Mc
n(ε).

We know a change-points configuration (j1, · · · , jkn ; kn) can be equivalently represented

by an indicator vector Vn = (V1, · · · , Vn−1, 0) where those Vi’s with i ∈ {j1, · · · , jkn} equal

1 and the other ones equal 0. From the induced probability mass functions PBICτ (Vn),

PemBICτγ(Vn) in (3.17) and PtBICτα(Vn) in (3.20), we can easily write down the marginal

probability mass function of each Vi, i = 1, · · · , n− 1:

Pr(Vi = 1) = Pr(i ∈ {j1, · · · , jkn}) =
∑

Vi=1, V−i∈{0,1}n−2

Pr(Vn)

Pr(Vi = 0) = Pr(i ∈ {j1, · · · , jkn}) =
∑

Vi=0, V−i∈{0,1}n−2

Pr(Vn).

We have the following results for the marginal distributions of those Vi components specified

by the change-points configuration (Jn1, · · · , JnK0 ;K0) in M0n(ε).

Proposition 2 Consider the same setting and conditions as in Proposition 1. Let ε > 0

be sufficiently small and n sufficiently large such that 0 < ε < (2n)−1. Then for any J ∈
{Jn1, · · · , JnK0} given in M0n(ε), we have

(R.4) Pr(VJ = 1) ≥ Pr(Mn(ε)) ∼ [1 + (2K0 − 1)e−ξn]−1 a.s..

(R.5) Pr(VJ = 0) ≤ Pr(Mc
n(ε)) � (2K0 − 1)e−ξn[1 + (2K0 − 1)e−ξn]−1 a.s..

(R.6)
Pr(VJ = 1)

Pr(VJ = 0)
≥ (2K0 − 1)−1eξn a.s..
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Proof of Proposition 2 is obvious from Proposition 1 and the definition ofM0n(ε). Propo-

sition 2 essentially says that, under PBIC, PemBIC and PtBIC, the marginal probability of

each true change-point Jni, i = 1, · · · , K0, being detected is exponentially larger than that

of it not being detected, provided that K0 is fixed and n is sufficiently large. Therefore, al-

though we cannot guarantee the true change-points Jn1, · · · , JnK0 to be exclusively detected

with large probability as implied by (R.3), we can guarantee that each Jni is much more

likely to be correctly detected than its being incorrectly ignored. This provides an asymptotic

justification for Algorithms 1 and 2 where we use marginal empirical probabilities to identify

change-points.

3.3 More Remarks on Applying Algorithms 1 and 2

In general it is important to monitor the convergence of the Markov chain generated by an

MCMC algorithm. In particular, one needs to determine the length of a burn-in period so

that the Markov chain generated after the burn-in period can be safely regarded as becoming

stationary and be used for making inference. Many graphic and numeric diagnostic methods

have been developed for dealing with this issue in literature.

However, determining the burn-in sequence to be removed is not critical on applying

Algorithms 1 and 2 for detecting change-points. This is because we use either the minimizer

of the generated sequence of the criterion values (emBIC or tBIC) or the marginal empirical

probabilities (p
(L)
i or p̆

(L)
i , i = 1, · · · , n− 1) against p∗ to determine the optimal change-points

configuration. In the former case, removing the initial burn-in sequence reduces the search

space, hence does not improve on finding a better minimizer. In the latter case, an upper

bound of the standard error of p
(L)
i or p̆

(L)
i is (2

√
L)−1, which is not affected by the actual

values generated in the Markov chain. The effect of ignoring the burn-in becomes negligible

when L is set moderate and p∗ is set neither too close to 0 nor too close to 1. Nevertheless, we

set the length of burn-in period to be L0 = 5 or a similar small number to remove any adverse

initialization effect of V
(0)
n . Our simulation study indicates that this small L0 is sufficient.

Clearly, it is still important to specify a proper number for L, the number of samples to

be generated in Algorithms 1 and 2. As n − 1 emBIC or tBIC values need to be evaluated

in generating each V
(`)
n , ` = 1, · · · , L, it is computationally very intensive if both n and L
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are large. But a larger L definitely will give a more reliable result. On the other hand, we

will suggest running Algorithm 1 or 2 twice in detecting the true change-points configuration.

In the first run we want to identify those Vi’s not being the true change-points, and remove

them from being generated again in the sequel. In the second run we want to identify the true

change-points as accurately as possible from those Vi’s left from the first run. This suggests

using a relatively small L in the first run and a relatively large L in the second run. We

propose L = 50 and p∗ = 0.15 in the first run, and L = 100 and p∗ = 0.5 in the second run.

The following calculations may help on understanding these choices. Let pi = Pr(Vi = 1)

and T
(L)
i be the number of times Vi is generated to be 1 in L i.i.d. Bernoulli trials. Then

Pr(T
(50)
i ≤ 50 × 0.15 = 7.5) < 1.05 × 10−7 if pi ≥ 0.5, and < 2.42 × 10−11 if pi ≥ 0.6.

Also Pr(T
(50)
i > 50 × 0.15 = 7.5) < 3.69 × 10−8 if pi ≤ 0.05. So many Vi’s not being the

true change-points are very likely to be correctly excluded, and any true change-point is very

unlikely to be wrongly excluded after the first run when set L = 50 and p∗ = 0.15. On the

other hand, Pr(T
(100)
i ≤ 100 × 0.5 = 50) < 2.21 × 10−5 if pi ≥ 0.7, and < 2.14 × 10−11 if

pi ≥ 0.8; Pr(T
(100)
i > 100× 0.5 = 50) < 9.04× 10−6 if pi ≤ 0.3, and < 5.18× 10−12 if pi ≤ 0.2.

So any Vi being a true change-point is very unlikely to be undetected, any remaining Vi not

being a true change-point is very unlikely to be selected as a change-point when L = 100 and

p∗ = 0.5 are set in the second run.

The turning parameter τ > 0 in both PemBICτγ and PtBICτα is used to adjust the number

of distinct change-points configurations to be generated by the Gibbs sampler. If τ is set small,

the emBICτγ (or tBICτα) values sequence being generated may be very slow to progress into

the neighbourhood of the minimum emBICτγ (or tBICτα) value. If τ is set large, the emBICτγ

(or tBICτα) values sequence may bypass the minimum emBICτγ (or tBICτα) too often to ever

reach it. We suggest to set τ to such a value that the generated L configurations contain

roughly 0.3L but not smaller than 0.05L distinct configurations. In the simulation study we

have done, we set τ = 1 and have not encountered any situations where adjusting τ is required.

The hyperparameter γ adjusts the penalty in emBICγ which becomes BIC when γ = 0.

Asymptotic study shows that the log-likelihood term, i.e. the first term in emBICγ (3.6) plays

a dominant role in including true change-points in the selection by emBIC, while the penalty

terms in (3.6) have a dominant role in excluding redundant change-points from the selection. A
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proper data-adaptive specification of the γ value is therefore important in the latter case. Note

that the value reduction of the first term in (3.6) needs to be smaller than the value increase

of the other terms in (3.6) when preventing a redundant change-point from being selected.

Our empirical study suggests this can be effectively achieved by setting γ = qν log log n where

qν is the level ν sample quantile of certain standardized data sequence deemed not containing

any change-point. Such standardized sequence can be constructed in the following way: First,

execute the first run of Algorithm 1 with γ = 0 or say γ = 2 to produce a partition of the

original data by the estimated change-points (which are likely to contain redundant ones but

unlikely to miss the true ones). Second, each segment in the partition is standardized by

subtracting its sample mean and being divided by its sample standard deviation, i.e., the

z-scores of each segment are calculated. The absolute values of the z-scores from all segments

give the referred standardized sequence. Common values of level ν are 0.90, 0.95 and 0.99.

The significance level α controls the penalty part in tBICα through the critical value cnα

given by (3.15) and (3.16). The commonly chosen values of α are 0.1, 0.05 and 0.01 by [Chen

and Gupta, 1997]. We suggest using α = 0.1 in the first run of Algorithm 2 and use α = 0.05

in the second run of Algorithm 2. Note our cnα is of half size of cα given by [Chen and Gupta,

1997, eq.(8)] because our BIC is half of their SIC.

A computing complication may occur occasionally when using Gibbs sampler to update

certain Vi from V
(`−1)
i to V

(`)
i . For example, in determining mean-variance change-points,

occurrence of V
(`)
i = V

(`)
i−1 = 1 will result in zero estimate of σ2

i and the criterion value being

−∞ (3.11) and (3.12)). Then a modification on the computing procedure is necessary to avoid

this complication. In the case of mean-variance change-points, we estimate σ2
i based on Yi

and its closest neighboring observations where not all the associated V
(`)
i values equal 1.

By running Algorithm 1 or 2, not only we obtain an empirical distribution for each Vi of

the latent indicator process (V1, · · · , Vn−1), from which we obtain an optimal estimate of the

change-points, we can also find the empirical distribution of the number of change-points and

obtain an optimal estimate of it. This is done, for example, by computing K
(`)
n =

∑n−1
i=1 V

(`)
i ,

` = 1, · · · , L, tallying (K
(1)
n , · · · , K(L)

n ), and finding the associated mode.

A post-selection inference may be made to validate the change-points detected by Algo-

rithms 1 and 2 to improve the selection performance. This is done by performing a BIC
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induced test of [Chen and Gupta, 1997], in each data segment spanned by 3 consecutive

change-points already detected, to validate/update the middle change-point. Our simulation

study suggests such post-selection calibration can improve the selection precision considerably.

Considering all the remarks in this section, we propose the following three-step procedures

to implement Algorithms 1 and 2.

Procedure 1. Three-step implementation of Gibbs sampler + emBIC

• Step 1.

1-1. By default set L0 =5;L=50; τ=1; γ=0 or 2; ν=0.90, 0.95 or 0.99; and p∗=0.15.

1-2. Apply the Gibbs sampler part of Algorithm 1 to generate L0 +L candidate change-

points configurations; then remove the first L0 ones. The remaining L configura-

tions are denoted as {V(1)
n , · · · ,V(L)

n }.

1-3. Use the emBIC part of Algorithm 1 to determine the optimal change-points con-

figuration from {V(1)
n , · · · ,V(L)

n }, denoted as V
∗(L)
n = (V

∗(L)
1 , · · · , V ∗(L)

n−1 ), or equiv-

alently (j
∗(L)
1 , · · · , j∗(L)

K
∗(L)
n

;K
∗(L)
n ). That is, K

∗(L)
n =

∑n−1
i=1 V

∗(L)
i ; and V

∗(L)
i = 1 if

i ∈ {j∗(L)
1 , · · · , j∗(L)

K
∗(L)
n

} and V
∗(L)
i = 0 if i 6∈ {j∗(L)

1 , · · · , j∗(L)

K
∗(L)
n

}, i = 1, · · · , n− 1.

1-4. Compute the sample quantile qν from the absolute z-scores described above.

• Step 2.

2-1. By default set L0 = 0;L = 100; τ = 1; γ = qν log log n; and p∗ = 0.5.

2-2. Let W = (W1, · · · ,WK
∗(L)
n

) = (Vi : i = j
∗(L)
1 , · · · , j∗(L)

K
∗(L)
n

) be the subset of the latent

indicator process (V1, · · · , Vn−1) determined by the optimally estimated change-

points configuration obtained from Step 1.

2-3. Define a new probability mass function PemBIC′τγ(W) on the subspace spanned by

W, using the original data Y1, · · · , Yn. Then apply Algorithm 1 to PemBIC′τγ(W)

with the given L0, L, τ, γ and p∗. The resultant optimal change-points estimates

(W
∗(L)
1 , · · · ,W ∗(L)

K
∗(L)
n

) can be equivalently written as (ĵ
(L)
n1 , · · · , ĵ

(L)

nK̂
(L)
n

; K̂
(L)
n ), where

{ĵ(L)
n1 , · · · , ĵ

(L)

nK̂
(L)
n

} must be a subset of {j∗(L)
1 , · · · , j∗(L)

K
∗(L)
n

} and K̂
(L)
n ≤ K

∗(L)
n .
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• Step 3. Post-selection Calibrations. The statistical significance of each detected

change-point ĵ
(L)
nk , k = 1, · · · , K̂(L)

n , is assessed by testing “H0: no change-point in

Ŷnk = (Y
ĵ
(L)
n(k−1)

+1
, · · · , Y

ĵ
(L)
n(k+1)

)” versus “H1: one change-point exists in Ŷnk”. Specifically,

the BIC induced test of [Chen and Gupta, 1997] with properly specified critical value

cnα is used for each test. The change-point ĵ
(L)
nk is removed from the selection if H0 is

accepted. Otherwise, ĵ
(L)
nk is replaced by the new estimate associated with this test.

Procedure 2. Three-step implementation of Gibbs sampler + tBIC

• Step 1.

1-1. By default set L0 = 5, L = 50, τ = 1, α = 0.1 and p∗ = 0.15.

1-2. Apply the Gibbs sampler part of Algorithm 2 to generate L0 +L candidate change-

points configurations; then remove the first L0 ones. The remaining L configura-

tions are denoted as {V(1)
n , · · · ,V(L)

n }.

1-3. Use the tBIC part of Algorithm 2 to determine the optimal change-points config-

uration from {V(1)
n , · · · ,V(L)

n }, denoted as V
+(L)
n = (V

+(L)
1 , · · · , V +(L)

n−1 ), or equiva-

lently (j
+(L)
1 , · · · , j+(L)

K
+(L)
n

;K
+(L)
n ). That is, K

+(L)
n =

∑n−1
i=1 V

+(L)
i ; and V

+(L)
i = 1 if

i ∈ {j+(L)
1 , · · · , j+(L)

K
+(L)
n

} and V
+(L)
i = 0 if i 6∈ {j+(L)

1 , · · · , j+(L)

K
+(L)
n

}, i = 1, · · · , n− 1.

• Step 2.

2-1. By default set L0 = 0, L = 100, τ = 1, α = 0.05 and p∗ = 0.5.

2-2. Let W = (W1, · · · ,WK
+(L)
n

) = (Vi : i = j
+(L)
1 , · · · , j+(L)

K
+(L)
n

) be the subset of the latent

indicator process (V1, · · · , Vn−1) determined by the optimally estimated change-

points configuration obtained from Step 1.

2-3. Define a new probability mass function PtBIC′τα(W) on the subspace spanned

by W and based on the original data Y1, · · · , Yn. Then apply Algorithm 2 to

PtBIC′τα(W) with the given L0, L, τ, α and p∗. The optimal change-points esti-

mates (W
+(L)
1 , · · ·,W+(L)

K
+(L)
n

) can be equivalently written as (j̆
(L)
n1 , · · · , j̆

(L)

nK̆
(L)
n

; K̆
(L)
n ),

where {j̆(L)
n1 , · · · , j̆

(L)

nK̆
(L)
n

} must be a subset of {j+(L)
1 , · · · , j+(L)

K
+(L)
n

} and K̆
(L)
n ≤ K

+(L)
n .

• Step 3. Post-selection Calibrations. Assess the statistical significance of each j̆
(L)
nk ,

k = 1, · · · , K̆(L)
n , and update the j̆

(L)
nk value in the same way as in Step 3 of Procedure 1.
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Finally, note that the finite-sample results from Procedures 1 and 2 in theory vary with

the randomness involved in the Gibbs sampling. But this variation mostly disappears after

applying the post-selection calibrations step.

3.4 Simulation Study and Real Data Examples

3.4.1 Simulation Study

We assess the finite sample performance of the proposed emBIC+Gibbs sampling method

for multiple change-points detection. The performance was also compared with that of

tBIC+Gibbs which was developed based on SIC [Chen and Gupta, 1997] but different (equa-

tions (3.14) and (3.21)), and with that of MPC in section 3.1.2. We developed Matlab code for

the two procedures given in section 3.3, which together with the available code from [Lavielle,

2005] for MPC was used in our simulation study.

A properly designed simulation setup is necessary in order for the simulation results to

be informative. Six factors were considered in generating the data for our simulation study.

These are the base probability distribution for the data being simulated, the sample size n, the

number of true change-points K, the locations of the change-points, the sizes of the changes,

and the number of simulation times for each case. It was sufficient to use 1000 for the number

of simulation times.

For given n and K the data of (Y1, · · · , Yn) were so generated that they can be partitioned

into K + 1 equal consecutive segments with the K internal nodes being the change-points.

We assume each Yi is of the form Yi = µj + σjZi, i = 1, · · · , n and j = 1, · · · , K + 1,

where the mean and standard deviation of Yi equal µj and σj respectively if Yi falls into

the jth segment. Here each Zi has mean 0 and standard deviation 1, and is obtained by i)

generating a random number from one of the following base distributions: N(0,1), Exp(1)

and Pareto(5,1); ii) standardizing the generated number by subtracting the mean and being

divided by the standard deviation. Note the density function of a Pareto(α, β) distribution

is αβαx−(α+1)I(x > β) with α > 0 being the scale parameter and β > 0 being the location

parameter. The three base distributions used provided a good representation of distributions

in terms of symmetry, skewness and tail length.
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Although we were able to vary values of the other four factors to obtain more simulation

results, we decided to use the setup of these four factors as was used in [Lavielle, 2005], in

order to properly control the length of the dissertation. Namely,

1. choose n = 500;

2. in cases of having change-points, set K = 4 and construct the data by generating 5 equal

consecutive segments each containing 100 sample numbers from the same distribution;

3. in the case of changes in mean, set σ1 = · · · = σ5 = 1 and the 5 segment means

(µ1, · · · , µ5) = (0, 1, 0, 2, 0);

4. in cases of changes in variance, set µ1 = · · · = µ5 = 0 and the 5 segment standard

deviations (σ1, · · · , σ5) = (1, 2, 1, 3, 1);

5. in cases of changes in mean and variance, set (µ1, · · ·, µ5)=(0, 1, 0, 2, 0) and (σ1, · · ·, σ5) =

(1, 2, 1, 3, 1), respectively.

The simulation results under the setup given above are summarized in Tables 6 to 11,

where Tables 6 to 8 are for the cases of having no change-points in mean, variance and

(mean, variance), respectively; and Tables 9 to 11 are for cases of having 4 change-points

in mean, variance and (mean, variance), respectively. The tables contain the results from

using 8 different computing procedures labeled by the Method column: emBIC1, emBIC3 and

emBIC5 refer to the three-step implementation of Gibbs sampler + emBIC with ν = 0.90,

0.95 and 0.99 respectively; emBIC2, emBIC4 and emBIC6 refer to using the first two steps

of the above three-step implementation (i.e. no post-selection calibrations) with ν = 0.90,

0.95 and 0.99 respectively; tBIC refers to the three-step implementation of Gibbs sampler +

tBIC; and MPC refers to the procedure of [Lavielle, 2005]. In each table, each number in

section K gives the number of times that a specified K change-points were detected in the

1000 simulations; and each number in the section “Correction Detection” gives the number of

times the change-point at a specific location in the data (i.e. 100/500, 200/500, 300/500 or

400/500) was identified in the 1000 simulations. Note that a change-point location detected

within a distance of 5 from j was regarded as the location being at j in our simulation study,

in order to remove the over-expression of the variation in change-points locations.

Tables 6 to 11 inform the following findings at least:
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1. Consider the results of Table 6 where changes in mean are the focus but no change-points

in mean exists (i.e. K = 0). Here emBIC1, emBIC3, emBIC5 and tBIC have excellent

performance with the minimum frequency of correct detection being 916. Procedures

emBIC2, emBIC4 and emBIC6 mostly work very well except when the distribution is

Pareto(5,1). MPC does not work well except when the distribution is N(0,1).

2. Consider the results of Table 7 where changes in variance are the focus but no change-

points in variance exists (i.e. K = 0). Now MPC works well only in the case of N(0,1)

distribution. The other 7 procedures work mostly very well in the cases of N(0,1) and

Exp(1) except that emBIC2 and tBIC do not do well in the case of Exp(1). No procedure

does well when the distribution is Pareto(5,1).

3. Consider the results of Table 8 where no change-points in (mean, variance) exists (i.e.

K = 0). All 8 procedures work mostly very well in the cases of N(0,1) and Exp(1) except

that tBIC does badly in the case of Exp(1). No procedure does well when the distribution

is Pareto(5,1) except emBIC5 and emBIC6. That tBIC does poorly at Exp(1) is most

likely because the insufficient penalty in tBIC produces false change-points from the first

two steps that cannot be reconciled by the post-selection calibrations step.

4. Consider the results of Table 9 where each data sample has K = 4 mean change-points.

Procedures emBIC1-4, tBIC and MPC work mostly very well in the cases of N(0,1)

and Exp(1) except that MPC over-estimates the number of change-points. Procedures

emBIC5-6 mostly under-estimate the number of change-points. No procedure does well

when the distribution is Pareto(5,1) except emBIC1 and emBIC3 which work surpris-

ingly well, most likely due to the post-selection calibrations.

5. Consider the results of Table 10 where each data sample has K = 4 variance change-

points. All procedures work very well at N(0,1) except that emBIC5-6 tend to under-

estimate and MPC tends to over-estimate. Procedure emBIC6 performs worse than

emBIC5 in terms of frequency of correct detection. All procedures’ performance is fair

at Exp(1) with emBIC3-4 performing marginally better. No procedure performs well at

Pareto(5,1).

6. Consider the results of Table 11 where each data sample has K = 4 (mean, variance)
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Table 6: No Change-point in Mean

Test Distribution Method
K

0 1 2 ≥ 3

emBIC1 1000 0 0 0

emBIC2 1000 0 0 0

N(0,1) emBIC3 1000 0 0 0

emBIC4 1000 0 0 0

emBIC5 1000 0 0 0

emBIC6 1000 0 0 0

tBIC 991 4 5 0

MPC 744 10 105 141

emBIC1 977 9 14 0

emBIC2 713 6 228 53

emBIC3 992 6 2 0

emBIC4 863 0 122 15

MEAN Exp(1) emBIC5 997 1 2 0

emBIC6 966 0 34 0

tBIC 933 23 42 2

MPC 574 233 96 97

emBIC1 928 44 26 2

emBIC2 305 6 348 341

emBIC3 964 23 12 1

emBIC4 551 6 317 126

Pareto(5,1) emBIC5 991 6 2 1

emBIC6 841 1 137 21

tBIC 916 45 37 2

MPC 404 0 279 317
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Table 7: No Change-point in Variance

Test Distribution Method
K

0 1 2 ≥ 3

emBIC1 999 0 1 0

emBIC2 993 0 7 0

emBIC3 1000 0 0 0

emBIC4 998 0 2 0

N(0,1) emBIC5 1000 0 0 0

emBIC6 1000 0 0 0

tBIC 978 4 18 0

MPC 739 12 115 134

emBIC1 604 204 141 51

emBIC2 477 71 279 173

emBIC3 819 128 45 8

emBIC4 766 62 145 27

MEAN Exp(1) emBIC5 952 40 7 1

emBIC6 944 24 30 2

tBIC 386 230 223 161

MPC 508 39 173 280

emBIC1 60 314 197 429

emBIC2 24 14 94 868

emBIC3 164 371 219 246

emBIC4 137 47 233 583

Pareto(5,1) emBIC5 480 337 136 47

emBIC6 470 88 278 164

tBIC 37 271 170 522

MPC 372 42 198 388
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Table 8: No Change-point in Mean-and-Variance

Test Distribution Method
K

0 1 2 ≥ 3

emBIC1 997 2 1 0

emBIC2 965 1 33 1

emBIC3 999 1 0 0

emBIC4 993 1 6 0

N(0,1) emBIC5 1000 0 0 0

emBIC6 999 0 1 0

tBIC 957 21 22 0

MPC 792 4 108 96

emBIC1 765 119 91 25

emBIC2 722 66 150 62

emBIC3 927 55 18 0

emBIC4 920 40 39 1

MEAN Exp(1) emBIC5 987 13 0 0

emBIC6 986 13 1 0

tBIC 187 139 229 445

MPC 635 46 133 186

emBIC1 144 260 177 419

emBIC2 121 47 146 686

emBIC3 391 297 187 125

emBIC4 376 92 257 275

Pareto(5,1) emBIC5 681 225 77 17

emBIC6 675 95 184 46

tBIC 16 158 81 745

MPC 398 63 192 347
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Table 9: Multiple Change-points in Mean

Distribution Method
K Correct Detection

0 1 2 3 4 5 6 7 ≥ 8 1/5 2/5 3/5 4/5

emBIC1 0 0 13 9 976 2 0 0 0 921 918 999 1000

emBIC2 0 0 12 10 971 6 1 0 0 806 815 999 1000

emBIC3 0 0 73 20 906 1 0 0 0 860 855 999 1000

emBIC4 0 0 73 20 905 2 0 0 0 708 738 1000 1000

N(0,1) emBIC5 0 0 378 27 595 0 0 0 0 576 574 997 1000

emBIC6 0 0 378 27 595 0 0 0 0 419 475 999 1000

tBIC 0 0 0 2 987 8 3 0 0 936 930 999 1000

MPC 0 0 0 0 745 61 88 40 66 934 927 1000 1000

emBIC1 0 0 22 14 993 22 9 0 0 905 907 1000 998

emBIC2 0 0 18 7 600 106 176 28 65 761 796 1000 999

emBIC3 0 0 174 33 787 6 0 0 0 754 754 1000 998

emBIC4 0 0 171 25 627 77 17 11 0 584 595 999 1000

Exp(1) emBIC5 5 0 796 16 183 0 0 0 0 176 175 995 993

emBIC6 5 0 787 13 171 18 6 0 0 123 135 977 988

tBIC 0 0 3 10 938 31 17 1 0 919 926 1000 997

MPC 0 0 155 2 456 75 162 29 121 770 779 1000 999

emBIC1 0 4 26 44 877 41 7 1 0 879 901 996 994

emBIC2 0 0 4 2 245 89 239 105 316 851 856 1000 1000

emBIC3 0 4 112 55 811 15 3 0 0 791 816 996 993

emBIC4 0 0 82 17 402 119 208 66 106 648 691 1000 1000

Pareto(5,1) emBIC5 23 4 725 42 206 0 0 0 0 205 218 975 970

emBIC6 23 0 659 18 214 40 31 2 0 141 166 957 952

tBIC 0 4 25 52 856 45 16 2 0 871 902 996 994

MPC 15 0 269 16 273 77 150 43 157 543 554 981 982
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Table 10: Multiple Change-points in Variance

Distribution Method
K Correct Detection

0 1 2 3 4 5 6 7 ≥ 8 1/5 2/5 3/5 4/5

emBIC1 0 0 5 12 976 5 2 0 0 908 915 990 994

emBIC2 0 0 5 11 962 12 10 0 0 715 782 987 988

emBIC3 0 0 32 34 933 1 0 0 0 866 879 990 994

emBIC4 0 0 32 33 931 2 2 0 0 653 707 971 987

N(0,1) emBIC5 0 0 172 83 745 0 0 0 0 706 746 984 994

emBIC6 0 0 172 83 745 0 0 0 0 470 565 900 962

tBIC 0 0 0 2 972 14 12 0 0 913 921 990 994

MPC 0 0 1 0 742 70 99 25 63 915 919 990 991

emBIC1 0 1 26 54 576 228 90 17 8 620 630 903 921

emBIC2 0 0 18 32 454 195 180 61 60 608 571 902 926

emBIC3 1 3 93 103 654 118 26 2 0 547 583 895 923

emBIC4 1 0 84 84 604 133 77 12 5 501 523 860 917

Exp(1) emBIC5 4 11 338 152 477 18 0 0 0 404 409 833 918

emBIC6 4 9 328 145 478 30 6 0 0 290 330 735 838

tBIC 0 1 4 32 446 284 156 60 17 642 650 895 921

MPC 9 1 91 36 486 112 100 58 107 593 596 899 924

emBIC1 1 22 33 68 184 196 226 139 131 473 463 698 754

emBIC2 0 0 1 8 48 71 128 114 370 562 547 824 853

emBIC3 1 26 70 116 310 240 151 62 24 434 409 677 736

emBIC4 0 1 21 38 189 161 204 140 246 466 472 760 801

Pareto(5,1) emBIC5 6 45 211 192 370 130 39 7 0 338 308 624 717

emBIC6 5 8 166 124 381 145 103 39 29 313 332 636 712

tBIC 1 24 26 50 148 160 215 171 215 486 476 701 758

MPC 90 14 172 54 271 93 116 59 121 356 362 641 707
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change-points. All procedures work very well at N(0,1) except that emBIC5-6 tend to

under-estimate and MPC tends to over-estimate. Procedure emBIC6 performs worse

than emBIC5 in terms of frequency of correct detection. All procedures’ performance

is fair at Exp(1) with emBIC3-4 performing marginally better; also emBIC5-6 tend

to under-estimate and emBIC1-2, tBIC and MPC tend to over-estimate at Exp(1). No

procedure performs well at Pareto(5,1) with low frequencies of K = 4; but all procedures

except emBIC5 and emBIC6 mostly over-estimate the number of change-points.

7. Overall, the Gibbs sampler + emBIC based procedures and the Gibbs + tBIC one are

competitive, with the former performing better more often than the latter. MPC seems

somewhat less competitive than the other 7 procedures.

3.4.2 Example 1. Change-points in IBM Stock Historical Prices

IBM common stock daily closing prices from 17/May/1961 to 2/Nov/1962, which are recorded

in [Box and Jenkins, 1976], are analyzed here for detecting possible historical volatility change-

points. From an exploratory analysis it suggests the first differences of the logarithm of these

prices, consisting of 368 numbers as displayed in Figure 3, be used for the detection. Using the

default setting in Procedures 1 and 2 (i.e. γ = 2, ν = 0.95 and α = 0.05 etc.) we apply both

Gibbs+emBIC and Gibbs+tBIC methods and find two variance change-points at locations

235 and 279; see Figure 3. Using MPC gives the same result.

Our result conforms to that of [Inclan and Tiao, 1994] who used their iterative cumulative

sums of squares method. [Baufays and Rasson, 1985] found two variance changes at locations

235 and 280 using a maximum likelihood method. [Wichern et al., 1976] assumed a piecewise

ARIMA(1,1,0) model to the data and found two variance changes at 180 and 235. Point

180 does not seem to be a variance change-point based on Figure 3. [Tsay, 1988] assumed

piecewise ARIMA(0,1,1) and detected a variance change only at point 237.

Assuming changes in both mean and variance are possible and using the default setting,

Gibbs+emBIC finds two change-points also at 235 and 279, while Gibbs+tBIC finds only one

change-point at 235. In contrast MPC finds more change-points at 95, 98, 204, 207, 235, 279.
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Table 11: Multiple Change-points in Mean-and-Variance

Distribution Method
K Correct Detection

0 1 2 3 4 5 6 7 ≥ 8 1/5 2/5 3/5 4/5

emBIC1 0 0 12 14 972 2 0 0 0 939 946 998 999

emBIC2 0 0 11 14 887 46 40 1 1 653 758 674 986

emBIC3 0 0 59 45 894 2 0 0 0 869 893 996 999

emBIC4 0 0 59 45 864 18 14 0 0 552 686 548 981

N(0,1) emBIC5 0 1 380 73 546 0 0 0 0 562 565 986 999

emBIC6 0 1 380 73 544 1 1 0 0 309 480 514 924

tBIC 0 0 0 2 959 28 10 1 0 956 960 998 1000

MPC 0 0 1 0 770 68 85 25 51 955 959 998 999

emBIC1 0 0 19 38 640 196 85 15 7 658 671 919 921

emBIC2 0 0 19 26 544 219 124 38 30 594 577 740 879

emBIC3 0 2 128 100 683 73 12 2 0 590 585 886 919

eBmIC4 0 2 127 93 660 90 21 6 1 448 488 596 824

Exp(1) emBIC5 17 20 440 111 409 3 0 0 0 420 343 793 892

emBIC6 17 19 440 110 409 4 1 0 0 286 274 454 767

tBIC 0 0 0 4 192 203 232 158 211 894 905 993 992

MPC 2 0 48 26 613 143 75 35 58 890 906 986 992

emBIC1 0 6 14 28 177 222 195 152 206 576 566 832 853

emBIC2 0 0 4 9 99 100 158 142 488 610 579 784 870

emBIC3 0 8 53 82 408 226 136 60 27 531 498 791 829

emBIC4 0 1 39 55 339 184 173 105 104 476 486 638 794

Pareto(5,1) emBIC5 5 27 254 164 433 97 15 4 1 430 358 707 817

emBIC6 5 16 228 137 430 123 46 7 8 337 310 463 711

tBIC 0 6 6 13 38 52 103 141 641 607 626 847 852

MPC 31 6 115 64 391 143 111 50 89 490 490 796 822
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Figure 3: HV Change-points Found in the IBM Stock Price Data by Gibbs+emBIC

3.4.3 Example 2. Change-points in DNA Copy Number Data

Array DNA copy number data, resulted from array comparative genomic hybridization (CGH)

studies of DNA sequences, can be analyzed by a change-points finding method which deter-

mines the locations where the underlying copy number logratio changes its mean. [Olshen et

al. (2004)] developed a circular binary segmentation method for doing this and implemented

it in an R-package called DNAcopy [Seshan and Olshen, 2011]. The data analyzed here cor-

respond to the GM05296 array CGH study of fibroblast cell strains [Snijder et al., 2001], and

can be found in the DNAcopy package. After removing the missing values the GM05296 data

contain 2112 values of logratio of copy numbers selected from chromosomes 1-22 and X.

Using the default setting Gibbs+emBIC finds 6 mean change-points: 114, 1127, 1168,

1251, 1266 and 2062 shown in Figure 4, while Gibbs+tBIC finds 8 mean change-points: 114,

1127, 1168, 1251, 1266, 1478, 1570 and 2062. MPC returns 5 mean change-points: 1128, 1168,

1252, 1266 and 2062, very close to those from Gibbs+emBIC. As a comparison, the circular

binary segmentation method, implemented by the segment function in DNAcopy, returns 30

mean change-points at the default setting: 132, 196, 282, 425, 434, 447, 555, 640, 812, 963,

1074, 1127, 1131, 1168, 1200, 1251, 1266, 1385, 1479, 1536, 1612, 1678, 1744, 1835, 1888,

1925, 2012, 2030, 2045, 2061, far more than those found by the other methods.
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Figure 4: Mean Change-points Found in the DNA Copy Number Data by Gibbs+emBIC

3.5 Conclusions

We have developed a computationally efficient method for multiple change-points estimation.

The new method combines an empirical Bayesian information assessment criterion with a

Gibbs sampler induced stochastic search algorithm in an innovative and coherent way. The

method has been shown to have both fine asymptotic properties and satisfactory finite-sample

performance; and has been implemented by a comprehensive computing procedure ready for

use in practice. The ideas used in developing our Gibbs sampler + emBIC method has

also enabled us to extend a recent change-points testing method, which combines a binary

segmentation procedure with the Schwarz information criterion [Chen and Gupta, 1997], to

produce the Gibbs sampler + tBIC method. The method of Gibbs + tBIC performs similarly

to the Gibbs + emBIC but is still more likely to over-estimate than the latter. Using the Gibbs

sampler induced stochastic search greatly reduces the computing load required and is the

primary reason for both Gibbs + emBIC and Gibbs + tBIC to have satisfactory performance.
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4 Long Term Implied Volatility Behaviour Analysis

The purpose of this chapter is mainly to analyze the long term implied volatility (IV ) be-

haviour of S&P500 index option. We discuss the interest rate risk’s impact on the long term

asset IV in stock market. We also analyze other factors which would affect long term asset

IV .

To capture interest rate risk, we use the widely adopted short interest rate model. However,

there is a challenge here. In general, we treat one-month interest rate as short rate to calibrate

model, but one-month interest rates have been close to 0 since financial crisis in 2008. Even

one-year interest rates are also very low. Under the condition of such low interest rates, no

short interest rate models would work well. In order to apply short interest rate model here, we

introduce time series change-point concept. We use the change-point detection technique we

introduced in chapter 3 to find the optimal time range, then we calibrate the CIR model[Cox,

Ingersolla and Ross, 1985] by the market data in such optimal time range. After obtaining all

parameters in the CIR model, we put all of them into the BS-CIR model to reproduce the call

option price for the S&P500 index. After that, we add capital charge costs to the final option

price and then reproduce all terms of IV s by the BS model. Finally, we obtain that the long

term IV with incorporated interest rate risk and capital charge does replicate the observed

shape of the long term IV from market, i.e. IV increases as term increases. When capital

charge is added, we can see the IV from our working model levels up and closely match the

observed IV term structure. This analysis indicates further that HV gives us past information

about the equity, while IV shows present information. The big gap between them tells us

that market IV contains information about not only equity itself, but also other information

about market like interest rate risk and capital risk charge.

4.1 Model Frame

4.1.1 European Call Option

The European call option price can be expressed as:

C = E[(ST −K, 0)+]

62



where ST is the price of asset at time T and K is the strike price.

By BS model (See Appendix A-2 for details), the call option price can be calculated by

C = S0N(d1)−Ke−rTN(d2)

where S0 is the asset price at time 0, r is the risk free interest rate, T is the expired time,

N(·) is the cdf of the standard Normal distribution,

d1 =
log(S0/K) + (r + σ2/2)/T

σ
√
T

and

d2 = d1 − σ
√
T ,

where σ is the volatility of an asset.

For a call option, if S0 = K, it is called at-the-money (ATM) option, if S0 > K, it is

called in-the-money (ITM) option and otherwise, it is called out-of-the-money (OTM) option.

If one uses the quoted implied volatility, one should be able to obtain the option price by BS

model. In this chapter, we only study the ATM IV behaviour. The study presented here is

applicable for either ITM or OTM option IV .

4.1.2 CIR Model

All short interest rate models can be written as

drt = µr(t)dt+ vr(t)dB,

where rt is the interest rate, µr(t) is the drift term, and vr(t) is the volatility term, B is the

Brownian motion.

There are some popular interest rate models like the Vassicek model [Vasicek, 1977], the

Hull and White (HW) model [Hull and White, 1993] and the CIR model [Cox, Ingersolla

and Ross, 1985], etc. We choose the CIR model as our working model, since it can always

guarantee interest rate to be positive if some conditions hold and its closed form solution makes

the calibration straightforward. It has some weaknesses like it can never reproduce some very

special yield curve no matter how to adjust the parameters and it cannot reproduce the yield
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curve precisely. However, we discuss the long term volatility behaviour and we don’t need to

obtain very precise option prices.

The CIR model is

drt = κ(θ − rt)dt+ σr
√
rtdB,

where θ is the long run average interest rate, κ is the reverting rate at rt to θ, σr is the

volatility of the short interest rate rt.

[Rebonato, 1998] introduces one calibration method for the CIR model:

min(LSDIF) =
∑
i

[Pobs,i − Pmod,i(φ1, φ2, φ3)].

where Pobs,i is the bond price on the market with expired time Ti, and Pmod,i is the bond price

by the CIR model with the same expired time Ti, and

φ1 =
√

(κ+ λ)2 + 2σ2
r , (4.1)

φ2 = (κ+ λ+ φ1)/2, (4.2)

φ3 = 2κθ/σ2
r , (4.3)

where λ is market price of risk.

The volatility term σr can be obtained directly by (4.1) and (4.2), i.e.,

σr =
√

2(φ1 − φ2)φ2 (4.4)

By far we can obtain φ1, φ2 and φ3. It is easy to see that as long as we obtain any one of κ,

θ and λ, we can obtain others by (4.1), (4.2) and (4.3).

[Torosantucci et al., 2007] introduces an empirical evaluation method to estimate param-

eters in the CIR model. In their paper, they introduced dynamic implementation of the CIR

model process to estimate CIR parameters by resorting to the time series of interest rates as a

proxy for the short rate. We follow their idea but use [Kladivko, 2007]’s maximum likelihood

method (See Appendix A-3 for details). [Torosantucci et al., 2007] also proved that for time

step parameter ∆ = 1/250, at least 550 daily data are necessary. Furthermore, they mentioned

that using a large set of data can obtain reliable estimates. We implement the log-likelihood

function in Matlab by using the command ncx2pdf to estimate κ. Once we obtain κ, we put

it into (4.1), (4.2) and (4.3) to get other parameters.
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4.1.3 Change-point Detection in Historical Volatility to Find Optimal Time
Range

We calibrate the CIR model by using historical interest rates. Figure 5 shows 1-month, 1-year,

5-year, 10-year and 30-year term interest rates from Jan 2, 1990 to Mar 27, 2014. We can see

the interest rates fluctuate largely in those years. If we calibrate CIR model with different

time ranges, parameters in CIR model could vary a lot. Therefore, a proper time range is

critical to do the CIR calibration.

Figure 5: Historical Interest Rate

There are two ways to choose the time range. One way is choosing the whole time range

from 1990 to 2008. The second way is choosing the time range which has similar situation

as the time range we are interested in. Here we use change-points detection method emBIC

introduced in chapter 3 to find change-points in the HV of 1-year interest rate. After finding

change-points, we choose the time range in which the situation is closest to the situation we

are interested in. Finally, we calibrate the CIR model by this optimal time range data. After

comparing the results between two ways, we can see the second one has much better results.
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4.1.4 BS-CIR Model

The BS model with the stochastic interest rate model can be expressed as:

dSt = rtStdt+ σsStdB1,

drt = µr(t)dt+ vr(t)dB2,

dB1dB2 = ρdt,

where St is the asset price, rt is the interest rate, σs is the asset volatility, dB1 and dB2

are both Brownian motions with correlation ρ, and µr(t)dt and vr(t) are based on a specific

interest rate model.

When BS and CIR model are combined, it is called Black-Scholes-CIR (BS-CIR) model.

[Kim, 2002] derived the closed form solution for the European call option price by the BS-CIR

model. Since the CIR model guarantees positive interest rates when some conditions hold, and

we can observe really low short interest rate, around 0, in the market, we think the BS-CIR

model is appropriate here.

The BS-CIR model can be expressed as

dSt = rtStdt+ σsStdB1

drt = κ(θ − rt)dt+ σr
√
rtdB2

dB1dB2 = ρdt,

where θ is the long run average short interest rate, κ is the reverting rate at rt to θ, σr is the

volatility of the short interest rate rt.

[Kim, 2002] derived the closed form of the European call option price for the BS-CIR

model:

C(BS-CIR) = E[(ST −K)+]

= S0N(d1)−K exp(−
∫ T

0

r∗t dt)N(d2)

+σrC0[S0φ(d1)−K exp(−
∫ T

0

r∗t dt)(φ(d2)− σs
√
TN(d2))]

+σrC1[d2S0φ(d1)− d1K exp(−
∫ T

0

r∗t dt)φ(d2)] + o(σr),
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where N(·) is the cdf of standard Normal distribution, φ(·) is the pdf of standard Normal

distribution, and

r∗t = r0e
−κt + θ(1− e−κt)

d1 =
1

σs
√
T

[log(
S0

K
) +

r0 − θ
κ

(1− e−κT ) + (θ +
σ2
s

2
)T ]

d2 = d1 − σs
√
T

and

C0 =
1

σs
√
T

[
λ(r0 − θ)

κ
(
1− e−κT

κ
− Te−κT ) +

λθT

κ
(1− 1− e−κT

κ
)

]
,

C1 = − ρ

σsT
C11,

where r0 is the risk free interest rate,

C11 =
2
√
θ((1 + 2eκT )

√
r0 − 3eκT/2

√
r0 − θ(1− eκT )) + (θ(1 + 2eκT )− r0)ψ

2eκTκ2
√
θ

,

ψ = log

[
θ(2eκT − 1) + r0 + 2eκT/2

√
θ2(eκT − 1) + θr0

(
√
r0 +

√
θ)2

]

The only unknown parameter ρ can be estimated by the method proposed on the paper of

[Kim, 2002]. Once all parameters are obtained, option prices can be reproduced with different

terms. Furthermore, once we have option prices, corresponding IV s are easily obtained.

4.1.5 Capital Charge for Index Options

In 2010, the Basel Committee on Banking Supervision (BCBS) released the Basel III frame-

work, which contains global regulatory standards on banks’ capital requirement. The rules

of capital adequacy require banks to set special deposits aside against the market risk. Mar-

ket risk is the risk of losses in on- and off-balance sheet positions arising from movements in

market prices.

For index options, there are two components of capital charges:

• Specific risk charge: the risk of loss caused by an adverse price movement of a debt

instrument or security due principally to factors related to the issuer.
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The specific risk charge for an option based on an index of equities is calculated by

multiplying the market value of the equity index by 2%. For example, if the S&P500

index is 1500, then the specific risk charge for the index call option is 1500× 2% = 30.

• General market risk charge: the risk of loss arising from adverse changes in market

prices.

For the general market risk charge, we just introduce the scenario approach here, since

financial institutions writing options must use the scenario method.

The scenario method is introduced in Basel III framework: The scenario method uses

simulation techniques to calculate changes in the value of an option’s portfolio for

changes in the level and volatility of the prices of its associated underlying instruments.

Under this approach, the general market risk charge is determined by the scenario ”ma-

trix” that produces the largest loss. The first dimension of each matrix requires the

institution to evaluate the portfolio over a specified range above and below the current

value of the underlying instrument, commodity, or index. The range for index option

is ±8%. The second dimension of the matrix entails a change in the volatility of the

underlying price equal to ±25% of the current volatility. See Table 12 in details.

Table 12: Scenario matrix

Index −8% −5.33% −2.67% Current Value +2.67% +5.33% +8%

−25% gain/loss gain/loss gain/loss gain/loss gain/loss gain/loss gain/loss

Current Value gain/loss gain/loss gain/loss 0 gain/loss gain/loss gain/loss

+25% gain/loss gain/loss gain/loss gain/loss gain/loss gain/loss gain/loss

The general market risk charge for index options should be calculated together with the

associated hedging positions. The associated hedging position totally depends on the

hedging strategy. In theory, the BS delta continuous hedging strategy with proportional

transaction costs has infinite costs. Even in discrete models, transaction costs for hedging

are substantial ([Figlewski, 1989]). [Soner et al., 1994] pointed out that using the trivial

strategy of buying one share of the underlying stock and holding to maturity is the least

expensive method of writing a European call in BS model with proportional transaction

costs. Here we use the hedging strategy above, i.e., we sell a call index option and hold
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an index product. We change the index value and equity volatility according to the

scenario matrix. Finally we can obtain the gain/loss matrix.

After considering the capital charge, the options price can be written as:

Market option price with market IV = Option price with model based

+ Potential loss rate × Total capital charge

It means the market IV includes not only the information about equity itself, but also other

information like capital charges for the market risk.

4.2 Real Data Analysis

We collect market data from Apr 11, 2011 to Dec 13, 2011. They include 168 days of closed

S&P500 index, ATM implied volatility of S&P500 index options from Barclays Capital Incor-

porated, and U.S. Daily Treasury Yield Curve Data from U.S. Department of the Treasury’s

Data Center. We also collect S&P500 index from Jan 2, 1980 to Mar 27, 2014. The terms of

ATM IV of S&P500 index options are from 3 month to 15 years.

Figure 6 shows the marker IV surface from Apr 11, 2011 to Dec 13, 2011. It is easy to

see there are 2 types of shapes: upward sloping curve (from Apr 11, 2011 to Aug 4, 2011) and

concave curve (from Apr 11, 2011 to Dec 8, 2011). No matter what shape it has, IV rises as

the maturity is longer than 7 years. Here we are going to explain this phenomenon.

4.2.1 CIR Model Parameters Estimation

Figure 5 shows interest rates after point 4715 (Sep 12, 2008) is much lower than those before

point 4715. Also, we find that data between points 2800 and 4000 are the closest to the data

after 4715.

We transform 1-year interest rate by the first order difference of logarithm. After that,

we run emBIC to detect change-points in HV between Jan 2, 1990 and Sep 12, 2008. We

totally find 12 change-points, 496, 803, 1715, 2187, 2239, 2772, 2948, 3701, 3983, 4427, 4549

and 4593. We choose time range from 2949 to 3701 (from Aug 31, 2001 to Sep 2, 2004) as
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Figure 6: Market IV Surface

our optimal time range to estimate the parameters in the CIR model since they have closest

behaviour to the interest rate after Sep 12, 2008.

We set up 2 scenarios:

• S1: All parameters in the CIR model are estimated based on interest rates from Jan 2,

1990 - Sep 12, 2008.

• S2: All parameters in the CIR model are estimated based on interest rates from Aug

31, 2001 to Sep 2, 2004.

Table 13 shows the average interest rates for 2 scenarios. We don’t consider the interest

rates after Sep 12, 2008 since the financial crisis makes the interest rate extremely low.

After calibrating the CIR model with data in Table 13, we obtain φ1, φ2 and φ3 for 2
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Table 13: Average Interest Rate Under Different Scenarios (%)

Scenarios 1/12 Y 1/4 Y 1/2 Y 1 Y 2 Y 3 Y 5 Y 7 Y 10 Y 20 Y 30 Y

S1 2.57 4.13 4.29 4.43 4.78 4.98 5.32 5.57 5.72 5.78 6.42

S2 1.34 1.37 1.46 1.71 2.24 2.70 3.47 3.97 4.36 5.21 5.36

scenarios in Table 14. The volatility of the interest rate σr can be obtained by (4.4). The

relatively small σr implies the long run interest rate is very stable.

Table 14: CIR Parameters Estimated I

Scenarios φ1 φ2 φ3 σr

S1 1.7650 1.7644 93.7544 0.0467

S2 1.5346 1.5343 142.7318 0.0320

Next step, we estimate κ by dynamic implementation of the CIR model process introduced

by [Torosantucci et al., 2007].

The only question here is how to choose the time series of the short rate. The common

choice for the short rate is the shortest maturity rate in the dataset. However, after year 2008

financial crisis, the 1-month interest rate is almost 0. Even 1 year rate is much lower than 1%.

Under this kind of situation, we can choose 1-month interest rate from July 31, 2001 to Dec

31, 2007 (1-month interest rate before July 31, 2001 cannot be found in U.S. Daily Treasury

Yield Curve Data Center). Totally there are 1613 short interest rates (see Figure 7 (a)).

The whole data set almost makes up a perfect interest rate circle, middle - low - middle -

high - middle. Noticeably, data between 1517 and 1524 (between Aug 15 and Aug 24, 2007)

has big fluctuation, which makes the estimated κ much larger than others. Also there was a

big drop after 29 (Sep 10, 2001). Therefore we collect data from Sep 21, 2001 to Dec 31, 2007

with deducting 8-day rates from Aug 15 to Aug 24, 2007. There are totally 1571 data.

[Torosantucci et al., 2007] proved that for time step parameter 1/250, at least 550 daily

data are necessary. Furthermore, they mentioned that using a large set of data can obtain

reliable estimates. 600 daily data are used here to obtain maximum likelihood estimators.

That is, starting any day in our data set, we estimate CIR parameters by using the last 600
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Figure 7: 1-month Interest Rate

data. In order to obtain estimators for all days we choose, we copy the first 599 of 1571 data

to the end, so we have totally 2170 data. Figure 7 (b) shows modified one-month interest

rate. Next, we estimate each day’s κ for Sep 21, 2001 to Dec 31, 2007. We totally obtain

1571 maximum likelihood estimators for κ. However, 485 of 1571 estimators are extremely

small (less than 0.0001). We don’t think these estimators are useful. Finally we have 1086

estimators.

We use the mean of these κ’s above as the value of κ. We insert it into φ1, φ2, φ3 of the

CIR model. Finally, we obtain long run average parameters for the CIR model in Table 15.

Table 15: CIR Parameters Estimated II

κ θ σr λ

S1 1.1403 0.0897 0.0467 0.6235

S2 1.1403 0.0642 0.0320 0.3936

/

Remark

• Under S1, the long run average θ = 0.0897. Obviously, it is too high. The reason is:

interest rates between 1990 and 1994 were too high (See Figure 5). We estimate CIR

parameters by average historical interest rates; however, interest rates between 1990 and

1994 make the average too high.
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• Under S2, the long run average θ = 0.0642, which is normal. We think it is appropriate

to analyze the long term behaviour.

4.2.2 IV Based on the BS-CIR Model and Capital Charge

We put all CIR parameters under S2 into the BS-CIR model. We also use modified one-

month interest rate and corresponding S&P500 index to estimate ρ. We compute one ρ with

600 one-month interest rates and corresponding S&P500 indexes by applying [Kim, 2002]’s

method. Totally we obtain 1571 ρ’s with average -0.0015. We set ρ = −0.0015. Without loss

of generality, we use average HV under the same period in S2 (from Aug 31, 2001 to Sep 2,

2004) as equity volatility (σs).

First of all, we compute a call option price by the BS-CIR model, then we obtain IVBS−CIR

based on the BS model. Second, we calculate capital charge in terms of average HV , and add

option price and potential loss of capital charge up to obtain total option price. Finally, we

obtain IVTotal.

S&P 500 index is 122.78 on Dec 14, 1981 and 1849.04 on Mar 27, 2014 and its annual

return is around 8%, so we can assume potential loss rate is 7%. Total capital charges include

largest loss in the scenario matrix and 2% specific risk for index option.

Table 16: Volatility Comparison between Market and Model

Term 1 2 3 4 5 6 7

HVEquity 0.2068 0.2206 0.2165 0.2147 0.2110 0.2053 0.1966

IVMarket 0.2326 0.2305 0.2406 0.2444 0.2501 0.2557 0.2611

IVBS−CIR 0.2113 0.2330 0.2377 0.2445 0.2488 0.2510 0.2506

IVTotal 0.2252 0.2434 0.2470 0.2528 0.2566 0.2583 0.2575

Term 8 9 10 15 20 25 30

HVEquity 0.1875 0.1793 0.1727 0.1688 0.1707 0.1653 0.1629

IVMarket 0.2666 0.2714 0.2766 0.3018 N/A N/A N/A

IVBS−CIR 0.2501 0.2507 0.2527 0.2789 0.3024 0.3196 0.3350

IVTotal 0.2566 0.2568 0.2585 0.2841 0.3074 0.3245 0.3400

Table 16 shows the volatility comparison results between market and our working models.
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HVEquity is average HV from Aug 31, 2001 to Sep 2, 2004. IVMarket is the average IV of

market from Jun 13 to Nov 8, 2011, totally 168 days. The longest term of market IV is up to

15 years. IVBS−CIR is obtained by the BS-CIR model and IVTotal is obtained by combining

BS-CIR model and capital requirement charge. Obviously, the long term IV has upward trend

with increasing term. Also we find that the capital charge is like a drift term which adjusts

IV to go up.

4.2.3 Sensitivity Test

In this section, we discuss sensitivity test for IV . We find that in BS-CIR model, only 2

parameters, θ and σs have big impact on the IV . We keep all parameters but changing θ and

σs. In Table 17, we show the changes in IV when σs + 0.05 and θ + 0.005, respectively.

Table 17: IV sensitivity test for θ and σs

Term 1 2 3 4 5 6 7

σs + 0.05 0.0505 0.0500 0.0490 0.0479 0.0466 0.0451 0.0434

θ + 0.005 0.0027 0.0059 0.0089 0.0116 0.0140 0.0163 0.0186

Term 8 9 10 15 20 25 30

σs + 0.05 0.0413 0.0390 0.0367 0.0294 0.0245 0.0192 0.0154

θ + 0.005 0.0209 0.0231 0.0251 0.0312 0.0348 0.0377 0.0396

We find some interesting results from Table 17.

• Long run average rate (θ) affects the IV more and more as term increases. This result

matches the common understanding of the interest rate risk on option prices: the interest

rate risk should be important for long term options. For short term option, IV changes

a little bit as θ changes. Furthermore, if term is shorter than 2 years, interest rate risk

can be ignored.

• Equity volatility (σs) affects short term IV more than long term IV . When the equity

volatility changes 0.05, 1-year IV changes 0.05 as well while 15-year IV just changes

0.03 and 30-year IV just changes 0.015.
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4.3 Discussion and Conclusion

1. We successfully explain the IV behaviour after applying the change-points method to

find optimal time range.

It is clear that under the optimal time range S2, all IV s derived from our working model

are very close to the market IV . However, if we use data in S1, it would yield much

higher IV s than market IV .

2. Interest rate risk dominates long term option IV while equity volatility dominates short

term IV .

HV is stable after 5 years in general. The level is kept around 16% and 17%. In the

BS-CIR model, we use HV as equity volatility. The stochastic interest rate make the

IV higher and higher with term increasing. In sensitivity test, we add 0.005 to θ, longer

term IV s increase more. However, if we add 0.05 to equity volatility, longer term IV s

increase less. These findings explain the market phenomenon: When VIX is larger, the

shorter term IV is higher, even it can affect 5 year term IV . When VIX is smaller, the

shorter term IV is lower. However, no matter how high VIX is, long term IV (5-years or

more) don’t change a lot. For example, from July to November of 2011, S&P500 dropped

a lot made the VIX and short term IV very high, but long term IV just changed a little

bit. Actually it can be explained that this way: When index volatility increases, shorter

term IV increases much more than longer term IV does.

3. Long term IV contains the information about the market’s expectation of long run

average of interest rate. It indeed dominates the behaviour of long term IV .

We change the value of θ to see the changes of IV (see Tabel 18). Noticeably, when

θ < 0.055, the IV might not keep upwards. When θ > 0.055, IV increases as term

increases apparently.

We think this phenomenon shows the market expectation of long run average interest

rate is higher than 0.055, no matter how low the current interest rate is. If we re-observe

the market IV from Jun 13 to Nov 8, 2011, we find the market data imply the market

expectation of long run average interest rate is between 0.065 and 0.07.
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Table 18: Long run average rate θ’s impact on IV

Term 1 2 3 4 5 6 7

θ = 0.055 0.2204 0.2330 0.2308 0.2317 0.2309 0.2281 0.2227

θ = 0.06 0.2230 0.2388 0.2395 0.2432 0.2449 0.2446 0.2417

θ = 0.065 0.2257 0.2446 0.2484 0.2547 0.2589 0.2609 0.2605

θ = 0.07 0.2283 0.2505 0.2573 0.2663 0.2729 0.2772 0.2791

θ = 0.075 0.2310 0.2564 0.2662 0.2779 0.2869 0.2935 0.2976

Term 8 9 10 15 20 25 30

θ = 0.055 0.2171 0.2126 0.2098 0.2211 0.2353 0.2443 0.2543

θ = 0.06 0.2387 0.2369 0.2367 0.2564 0.2761 0.2901 0.3036

θ = 0.065 0.2599 0.2605 0.2625 0.2891 0.3131 0.3306 0.3465

θ = 0.07 0.2808 0.2836 0.2875 0.3201 0.3476 0.3679 0.3856

θ = 0.075 0.3015 0.3062 0.3120 0.3498 0.3803 0.4029 0.4220

4. BS-CIR model can explain long term IV behaviour pretty well. No matter what pattern

the short term IV is, the long term IV never decreases. It matches [Tehranchi, 2010]

theory that long term implied volatility cannot fall.

5. Market risk charge (or capital requirement charge) and other potential costs make IV

higher.

According to our finding, the cost (or potential loss) of market risk charge should be

considered in the option price. For S&P500 index call option, market risk charge in-

creases the IV level around 0.5%. Also we think other extra charges like transaction

cost, hedging cost, etc., also increase the price of option so that IV becomes higher and

higher.
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5 Summary and Future Work

5.1 Summary

In the dissertation, we analyze the volatility in finance by statistical tools.

In Chapter 2, we propose weighted sum of powers of variance (WSPV) to find single change-

point in HV . Our simulation results show that the modified WSPV has better performance

than the WSPV and BIC when sample size is small.

In Chapter 3, we propose an empirical BIC method to detect multiple change-points in

HV simultaneously. Simulation results show better performance than some other multiple

change-points methods.

In Chapter 4, we successfully explain the long term index IV behaviour by using change-

points method to find the optimal time range. After using data in optimal time range, we

obtain much better results to match the market data than results derived from without change-

points. We have some important findings:

• Interest rate risk dominates long term option IV while equity volatility dominates short

term IV .

• Long term IV contains the information about the market’s expectation of long run

average of interest rate. In fact, it dominates the behaviour of long term option IV . It

makes long term options IV goes up as term increases.

• Furthermore, long term IV also reflects the extra charge in option pricing, like capital

charges, transaction cost, hedging cost, and so on.

5.2 Future Work

• HV plays a very important role in the stock market. It is often compared with IV to

determine if options prices are correct. Furthermore almost all kinds of risk valuations

need HV . Therefore, we believe finding change-points in HV is very important in risk
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valuations. Changes in HV may cause big changes in risk. We are going to do some

other risk valuations by finding change-points in HV in the future.

• Although our MPSWV method performs very well in finding changes in HV when

sample size is small, limitation is that the power λ is estimated by simulations. We

are going to develop an algorithm to find the optimal value by the original data. Also,

simultaneous detection of multiple change-points by MPSWV is being considered.

• In long term IV analysis, we think the capital charge should have more impact on

IV . The reason is simple: the general market risk charge is calculated together with

the associated hedging. We follow [Soner et al., 1994]’s trivial strategy of buying one

share of the underlying stock and holding to maturity. Actually we cannot ignore cost

of hedging and transaction fee in long term option since stock would change a lot in

long term and trivial hedging strategy is not enough. Therefore we are considering an

optimal hedging strategy which can make the balance of risk and cost. After that we

can estimate the real capital charge for long term options.

• We would like to add more factors in long term IV analysis. We think there should

be other costs which affect the option price so that the long term IV goes up as term

increases.
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Appendices

A-1 Introduction of CUSUM and BIC-type Method

[Inclan and Tiao, 1994] introduced CUSUM method. The statistic is

Dk =

∑k
i=1 x

2
i∑n

i=1 x
2
i

− k

n
,

and √
n/2Dk

D→ B0,

where B0 is a Brownian bridge.

The distribution of sup |B0| is given by [Billingsley, 1968]

P{sup |B0| ≤ b} = 1 + 2
∞∑
k=1

(−1)ke−2k2b2 .

[Chen and Gupta, 2012] introduced a critical value cα into their BIC model for single

change-point detection. Let BIC(n) denote no change-point, and BIC(k), 1 < k < n denote

single change-point at position k, and significance level is α. cα is defined when H0 no change-

point is accepted if

BIC(n) < min
1<k<n

BIC(k) + cα,

where

BIC(n) = n log 2π + n log σ̂2 + n+ log n,

BIC(k) = n log 2π + k log σ̂2
1,k + (n− k) log σ̂2

n,k + n+ 2 log n,

and

cα ∼=
{
− 1

a(log n)
log log[1− α + exp{−2eb(logn)}]−1/2 +

b(log n)

a(log n)

}2

− log n.

A-2 Introduction of BS Model

The Black-Scholes (BS) model [Black and Scholes, 1973] assumes that there is a riskless

asset with expected return µ and constant volatility σ. The dynamics of the price S of the

underlying asset are

dS = µSdt+ σSdBt, (A1)
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where Bt is a standard Brownian motion which satisfies

dBt = ε
√
dt,

where ε is standard Normal distribution with mean 0 and variance 1. The dynamics of price

S can be expressed as

ST = S0 exp{µt− 1

2
σ2T + σBT}.

It also implies that ST has a Lognormal distribution. logST has a normal distribution with

mean logS0 + (µ− σ2/2)T and variance σ2T .

Suppose f is the price of derivative based on S, by Ito lemma [Ito, 1951], we have

df = (
∂f

∂S
µS +

∂f

∂t
+

1

2

∂2f

∂S2
σ2S2)dt+

∂f

∂S
σSdB. (A2)

The discrete version of (A1) and (A2) are

∆S = µSdt+ σS∆B

and

∆f = (
∂f

∂S
µS +

∂f

∂t
+

1

2

∂2f

∂S2
σ2S2)∆t+

∂f

∂S
σS∆B.

By choosing an appropriate portfolio, the standard Brownian motion can be deleted ( [Hull,

2011]’s book shows in details). Finally we obtain a differential equation:

rf =
∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
,

where r is risk free interest rate. This differential equation has many solutions, corresponding

to all different derivatives related to underlying assets.

In case of European call option, the boundary condition is

f = max(S −K, 0) when t = T,

where K is strike price. The call option price C at time 0 is

C = S0N(d1)−Ke−rTN(d2),

where

d1 =
log(S0/K) + (r + σ2/2)/T

σ
√
T

and
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d2 = d1 − σ
√
T ,

and N(·) is the cdf for a standard Normal distribution.

In case of European put option, the boundary condition is

f = max(K − S, 0) when t = T

and the put option price P at time 0 is

P = Ke−rTN(−d2)− S0N(−d1).

A-3 Maximum Likelihood Estimation of the CIR Process

[Kladivko, 2007] introduces how to do maximum likelihood estimation of the CIR process by

Matlab. Here we briefly introduces it.

The CIR model is

drt = κ(θ − rt)dt+ σr
√
rtdB,

where θ is the long run average interest rate, κ is the reverting rate at rt to θ, σr is the

volatility of the short interest rate rt.

Given rt, the density of rt+δt is

p(rt+∆t|rt) = ce−u−v(
v

u
)
q
2 Iq(2

√
uv)

where

c =
2κ

σ2
r(1− e−κ∆t)

,

u = crte
−κ∆t,

v = crt+∆t,

q =
2κθ

σ2
r

− 1,

and Iq(2
√
uv) is modified Bessel function of the first kind with order q.

For maximum likelihood estimation of the parameter (κ, θ, σr), the log-likelihood function

of rt+∆t|rt is

logL(κ, θ, σr) = (N − 1) log c+
N−1∑
i=1

{−uti − vti+1
+ 0.5q log(

vti+1

uti
) + log(Iq(2

√
utivti+1

))}
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where uti = crtie
−κ∆t and vti+1

= crti+1
. Thus, we can find maximum likelihood estimation

(κ̂, θ̂, σ̂r) = arg max logL(κ, θ, σr).
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