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ABSTRACT 

Advancements in the electronics industry have led to miniaturized components with 

increased computing power, which resulted in serious heat management issue. Under such 

technological trend, the development of new multifunctional packaging materials with 

excellent thermal conductivity and electrical resistivity, which can be used for heat dissipation, 

is becoming increasingly important. A recent research revealed the possibility of using foaming-

induced filler alignment to promote the effective thermal conductivity (keff). In this context, this 

thesis research aims to develop thermally conductive polymer matrix composite (PMC) foams 

that can provide a solution to the heat management of new electronic devices. First, an 

analytical model was constructed to confirm the feasibility of foaming-induced keff 

enhancement. This model considered filler alignment caused by foaming-induced stress field, 

and calculated the keff using the concept of thermal resistor network. Second, a comprehensive 

experimental study was conducted to parametrically reveal the dependency of PMC’s keff on 

foam morphological parameters, including filler size, foam expansion ratio, cell size, and cell 

population density. Low density polyethylene (LDPE)-hexagonal boron nitride (hBN) composites 

blown by Expancel® microspheres were studied as a case example to prove the concept. This 

study successfully fabricated thermally conductive PMC foams with keff higher than their solid 

counterparts, which is the first time reported in the literature. In particular, the keff of PMC 

foams filled with 9.21 vol% of hBNAC6041 (i.e., submicron-scale) or hBNPT110 (i.e., micron-scale) 

reached as high as 1.16 W∙m-1∙K-1 and 0.97 W∙m-1∙K-1, respectively. These values represented 26% 

and 21% increases over those of their solid counterparts. Finally, physical foaming was 
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investigated as a processing method to fabricate PMC foams by using carbon dioxide as the 

physical blowing agent. The study of physical foaming aims to investigate the possibility of 

producing thermally conductive PMC foams in a more cost-effective way. Due to the small cell 

size, no foamed sample demonstrated keff higher than solid counterpart. However, the keff was 

not significantly compromised, while the mass density and material cost were reduced. 
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Chapter 1                                                   

Preamble 

1.1 Introduction 

Transistor density on an integrated circuit has increased rapidly in the past fifty years [1]. 

By virtue of the emerging three-dimensional (3-D) chip architecture, this trend is expected to 

continue for at least another decade [2]. Such technological advancement enabled the 

fabrication of powerful and miniaturized processors. However, the improved performances of 

components with smaller footprints brought dramatic increase in heat density. In order to 

avoid the hardware failure caused by excessive heat accumulation, new techniques for faster 

heat dissipation are in great demand.  

Traditionally, most electronic devices’ heat management relied on embedded metallic 

(mostly aluminum) heat sinks [3, 4]. However, the metallic heat sinks are electrically conductive. 

As a result, a layer of electrically insulating packaging material is required to separate the heat 

sink and the circuit board. Currently, Kapton® is the common material used for such electrical 

insulation layers. However, its low thermal conductivity (0.12 W/m·K at room temperature) 

limited the heat dissipation rate [5]. Moreover, the metallic heat sinks are heavy, costly, and 

have difficulties to be incorporated in thin packages [3]. If the new material has a good thermal 
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conductivity, it is possible to incorporate the heat dissipation into the packaging, which would 

be beneficial in terms of reducing the weight and size of the device.   

For materials used in electronic packaging applications, the properties of high thermal 

conductivity and good electrical resistivity are necessary. Thermally conductive materials can 

allow the heat generated within the device to be transferred to the surface and dissipate. High 

electrical resistivity can eliminate the current leakage, thus prevent circuit failure resulted from 

current loss [6]. The ideal material should also have a thermal expansion coefficient close the 

surrounding materials, so that thermal mismatches can be minimized [7]. Moreover, the 

material should have good processability, so that it can be easily fabricated into complex 

geometries to fulfill the need. Due to the miniaturization of electronic devices, light weight is 

also a desirable property. Finally, lower cost is always appreciated in the industry.  

In search of the superior electrical insulating property, low cost, light weight, and good 

processability, polymers, such as epoxy, have been widely used as traditional integrated circuit 

packaging materials [8]. However, their low thermal conductivities resulted in unsatisfactory 

performance in dissipating heat for new electronic devices. Therefore, the development of new 

thermally conductive polymer matrix composites (PMC) without compromising the 

aforementioned benefits of polymers would be welcomed by electronics manufacturers in 

order to partially resolve the challenges of heat management in the next generation powerful 

microelectronic devices. In this context, active research has been conducted to design 

thermally conductive PMCs by embedding thermally conductive fillers (e.g., metals [9, 10], 

ceramics [11, 12], and carbon-based fillers [13, 14]) into polymer matrices. 
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Research has been conducted with numerous polymer matrices, filler materials, as well 

as fabrication methods [9 - 14]. When the filler content is restricted to 33 vol.%, the effective 

thermal conductivity (keff) of the PMC can only reach approximately 2.5 W∙m-1∙K-1, by utilizing 

hybrid fillers to promote the formation of thermally conductive network [12]. Although the keff 

can be further increased by using higher filler content, this approach could compromise some 

of the key benefits of polymer based materials. The viscosity of the molten composite increases 

with increasing filler content, making the material more difficult to process. Although such 

increased viscosity depends on the size, shape, aspect ratio, and ultimately the packing factor 

of the filler material [15], studies have suggested that filler loading should be less than 40 vol.% 

in order to maintain the ease of processing [16, 17]. Therefore, it is required to develop new 

strategies to promote the keff with low filler content. 

In a recent study, Chen et al. demonstrated that foaming-assisted networking of hBN in 

linear low density polyethylene composites would help to fabricate novel light-weight thermally 

conductive PMC [18]. Although PMC foams with keff higher than their solid counterparts could 

not be achieved, it has revealed a new direction to design and fabricate thermally conductive 

polymer based material system. The authors believed the unexpected high keff was attributed 

to foaming-induced filler alignment around expanding air bubbles, but the underlying 

mechanisms still need to be revealed. In this context, this thesis research aimed to explore the 

governing factors of PMC foam’s keff, and to identify strategies to fabricate PMC foams with 

further enhanced keff.  
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1.2 Research Goal and Objectives 

The focus of this thesis is to develop thermally conductive PMC foams that can be used 

for heat management applications of future microelectronic devices. In addition to good 

thermal conductivity, such PMC foams should be combined with outstanding electric insulation, 

tailored mechanical properties, as well as good processability. To achieve the ultimate goal, the 

following objectives are proposed: 1) confirm the feasibility of foaming-induced keff 

enhancement by developing an analytical model to simulate the PMC foam’s keff; 2) investigate 

the structure-to-property relationship of thermally conductive PMC foam parametrically and 

identify strategies to promote the PMC foam’s keff with a comprehensive experimental study; 

and 3) explore the possibility of industrial viable production by studying physical foaming 

process to fabricate thermally conductive PMC foams. 

1.3 Thesis Structure 

This thesis contains six chapters. As an introduction, Chapter 1 identifies the demand of 

thermally conductive PMC with low filler loading and good electrical resistivity, as well as 

outlined the goals and objectives of this research. Chapter 2 provides essential background 

information and a literature survey of related previous researches. The body of this thesis 

(Chapter 3, 4 and 5) present three research sub-phases. In Chapter 3, an analytical model was 

developed to confirm the feasibility of foaming-induced keff enhancement. After being verified 

with existing experimental data, this model was used to explore the dependence of keff on their 

foam morphology. Chapter 4 presented a comprehensive experimental study that reveals the 
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dependence of keff on foam morphology. Strategies of using foaming to promote keff have been 

identified. Chapter 5 explores the feasibility of producing thermally conductive PMC foams with 

a physical foaming process. Although no foamed samples demonstrated keff higher than the 

solid counterpart, the keff of samples with 35% volume expansion was found to be comparable 

to the solid composite. In other words, the mass density and material cost were reduced 

without significantly compromise the keff. Finally, Chapter 6 concludes the thesis research. It 

provides an overview of the contribution of this research and recommendations for future work. 
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Chapter 2                                                                                                  

Background and Literature Review 

2.1 Thermal Conductivity and Heat Transfer 

Heat transfer is the exchange of thermal energy due to temperature difference [19]. 

There are three mechanisms of heat transfer: conduction, convection, and radiation. For solid 

material, the main mechanism is heat conduction, which is governed by Fourier’s law of heat 

transfer (Equation 2.1) [20].  

 q k T             (2.1)                                                                                                                                                                                                                        

where q̇ is the heat, k is the thermal conductivity of the material, and T is the temperature 

gradient along the heat transfer direction.  

Equation 2.1 suggests that the rate of heat transfer is proportionally related to the 

temperature gradient and the thermal conductivity. The thermal conductivity of a material is 

the macroscopic property with different methods of transferring heat summed up. In solid 

materials, there are two main methods of heat transfer: 1) free electron transport; and 2) 

phonon transport [21]. While electron transport is the major mechanism in metallic materials 

[22]; the dominating heat transfer mechanism in dielectric materials (e.g., polymers, and 

ceramics) is phonon transport, due to the lack of free electrons [23]. Since materials with free 
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electrons are typically electrically conductive and cannot be used as electronic packaging, this 

review only focused on the materials that transfer heat using phonon transport.   

Phonons are a collective excitation in a periodic and elastic arrangement of atoms or 

molecules [24]. A perfect crystal can be visualized as a collection of ordered atoms connected 

by springs [25]. The transfer of heat can be simplistically envisioned by transferring the kinetic 

energy of one or more vibrating atoms to other atoms. The kinetic energy would propagate 

through the atoms in manner similar to phonon transport. The effectiveness of phonon 

transport is limited by the scattering of phonons as they propagate through the atoms, which is 

greatly affected by the material structure.     

For polymers, the inherent lack of free electron makes phonon transport the 

predominate method of heat transfer. However, the large degree of phonon scattering lead to 

very low thermal conductivity (typically between 0.1 to 0.3 W∙m-1∙K-1), due to the presence of 

defects such as polymer chain ends, entanglement, random orientation, voids and impurities, 

etc [26]. Once these defects are eliminated, researches have shown that single polymer chain 

or nano-sized polymer fiber can reach a one-dimensional thermal conductivity greater than 100 

W∙m-1∙K-1 [27, 28]. 

Ceramics is another class of dielectric material, which also relies on phonon transport 

for heat transfer. Although heat transfer by phonon transport is not as efficient as that by free 

electrons, some ceramic materials exhibit high thermal conductivity. Such ceramic materials 

have the structural properties (i.e., low atomic mass, strong interatomic bonding, and simple 
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crystal structures) that can reduce the degree of phonon scattering [29-31]. Such ceramics can 

be ideal material as thermally conductive fillers to promote the keff of PMCs.  

2.2 Thermally Conductive PMCs 

2.2.1 Composite Materials 

A composite material is a material made from two or more constituent materials with 

significantly different physical and/or chemical properties that, when combined, produce a 

material with characteristics different from the individual components [32]. This research 

focuses on thermally conductive PMCs, which consist of polymer matrices and thermally 

conductive fillers.  

2.2.1.1 Polymer Matrices 

Polymers are extremely long chained molecules that have repeating units (monomers). 

The long molecular chains are usually entangled so that the relative movement of each 

molecule is restricted, and the stable shape can be achieved [33 - 35]. Researches have shown 

that the entanglements are critical to the viscoelastic, melt viscosity, and mechanical properties 

of the polymer [33, 36]. 

Many polymers are amorphous, meaning that they do not exhibit any crystalline 

structures. In an amorphous polymer, the molecules are oriented randomly and intertwined. In 

general, amorphous polymers have good mechanical properties, uniform thermal expansion, as 

well as being transparent [34]. 
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In contrast, semi-crystalline polymers have some crystalline regions, normally orient 

themselves in a lamellae structure [33]. Semi-crystalline polymers generally have anisotropic 

shrinkage during cooling and good chemically resistance to some extreme environments [34]. 

In terms of thermal conductivity, it has been experimentally shown that increase in 

crystallinity led to increased thermal conductivity [37, 38]. It was also found that semi-

crystalline polymer composites are more thermally conductive than their amorphous 

counterparts at the same loading of fillers [39]. 

2.2.1.2 Thermally Conductive Fillers 

Thermally conductive fillers can be categorized by their material type, size, as well as 

geometry. Commonly used fillers are metals, ceramics and carbon-based materials in both 

micron and nano size [9 - 14]. In terms of the geometry, fillers can be categorized as 1-

dimensional (1D), 2-dimensional (2D) and 3-dimensional (3D) fillers. 1D fillers have a structure 

that is long in one dimension, while the other two dimensions are very small compared to the 

length. An example of 1D filler would be carbon nanotubes (CNTs). 2D fillers normally have a 

layered structure, whose thicknesses are insignificant when compared with their lateral sizes. 

Common 2D fillers include graphene, and hexagonal boron nitride (hBN). 3D fillers have similar 

sizes in all dimensions, such as carbon black and cubic boron nitride (cBN).     

Unlike metals and carbon-based materials, ceramics are inherent electrical insulators, 

making them ideal fillers for thermally conductive PMCs in electronic packaging industry. Owing 

to the diverse crystal structures, ceramics have a very wide range of thermal conductivity. In 
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general, ceramics with strong interatomic bonding and simple crystal structures normally have 

relatively high thermal conductivity [30]. For instance, fine aluminium nitride has been reported 

to have a thermal conductivity of 220 W∙m-1∙K-1 [40]. Depending on the crystal structure, 

ceramics can also have anisotropic thermal conductive property. For example, hexagonal boron 

nitride (hBN) has a graphite-like 2D structure. Within each layer, boron and nitrogen atoms are 

connected by strong covalent bounds, whereas the layers are held together by weak van der 

Waals forces. The values of over 300 W∙m-1∙K-1 in-plane thermal conductivity and 3 W∙m-1∙K-1 

through-layer thermal conductivity are reported for hBN [41]. The anisotropic thermal 

conductivity provided the feasibility of designing thermally conductive PMCs by tailoring the 

alignment of isotropic ceramic fillers.    

2.2.2 Fabrication Methods of Polymer Composites  

In order to disperse fillers into the matrix material, different mixing techniques have 

been studied, such as powder mixing [42], solution mixing [43], roll milling [44], melt 

compounding [45], and in situ polymerization [46]. Powder mixing disperses fillers with dry-

blending method, in which polymer matrix and filler powders are mixed by continuous tumbling 

action at room temperature. In solution mixing, polymer matrix and filler materials are first 

dispersed and mixed in a solvent (e.g. water, toluene, and ethanol); and the solvent was then 

removed (i.e., evaporated at room or elevated temperature). Roll milling mechanically knead 

filler particles into melted polymer matrix. Melt compounding disperses the filler into polymer 

matrix using a twin-screw compounder to combine them while the polymer is in a molten state. 
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For in situ polymerization, the filler particles are dispersed with the monomers of the matrix 

material in a solution, in which the polymerization will take place.   

In order to compare the fabrication process’s effect on the PMC’s keff, Agari et al. tested 

the keff of composites with same composition but fabricated with four different common 

methods: powder mixing, roll milling, solution mixing and melt mixing [47]. It was found that 

specimen prepared with powder mixing lead to the highest keff with same composition. Such 

results suggested that a non-uniform composite morphology can encourage the formation of 

conductive networks through the material, hence promote the keff. 

2.2.3 Previous Work on Thermally Conductive PMCs 

Thermally conductive polymer matrix composites (PMCs) are often fabricated by adding 

thermally conductive fillers to polymer matrix. Based on the filler size, PMCs can be divided into 

two categories: micro-composite and nano-composite. Micro-composites consist of a polymer 

matrix and micron-sized fillers with particle sizes between 1 and 100 μm. On the other hand, 

nano-composites are composite materials with fillers in nanometer scale in at least one 

dimension, typically less than 100 nm [32]. Both micro-composite and nano-composite have 

been extensively studied to achieved enhanced the keff. Previous efforts can be categorized into 

three major approaches: (1) incorporation of fillers with higher thermal conductivities; (2) 

promoting the formation of filler network; and (3) increasing filler-polymer compatibility.   
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2.2.3.1 Incorporation of Fillers with Higher Thermal Conductivities 

The most commonly used PMCs in electrical packaging industry are silica-filled epoxy 

composites called epoxy molding compounds (EMCs). The EMCs have been used widely as the 

electronic packaging material since 1970s, due to the good mechanical properties and low cost 

[48]. With the advances in nano-science and nano-technology, researches have been conducted 

on epoxy/silica nano-composites to further promote the keff of the composite, and increase the 

heat dissipation rate [49, 50].  

However, silica has a low thermal conductivity of 1.5 W∙m-1∙K-1, which limited the 

achievable keff of silica-filled PMCs. In order to further increase the thermal conductivity, 

researches have been conducted with more thermally conductive ceramic fillers, such as 

aluminum nitride (AlN) [51], alumina (Al2O3) [52], zinc oxide (ZnO) [53], and hexagonal boron 

nitride (hBN) [54]. Adding 50 vol.% of AlN increased the thermal conductivity 10 times 

compared to pure polymer [49], while silica-filled epoxy with same filler volume fraction only 

increased the keff  by two times [48]. However, the application of AlN/polymer composite is 

restricted by the processing difficulties caused by the high hardness of AlN [41]. Similarly, AlN, 

Al2O3 and ZnO are also extremely abrasive and can possibly damage extrusion and moulding 

equipment during processing [41]. By contrast, hBN is much softer, hence hBN filled PMCs have 

much better processibility when same volume fraction of filler is loaded [41]. Moreover, hBN 

can be processed to thin flakes, because of its graphite-like two-dimensional structure. This 

provided the possibility to create interconnected conductive filler network with lower filler 

content. The anisotropic thermal conductivity of hBN also made it feasible to increase the PMCs’ 
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keff by aligning the hBN along the heat transfer direction. As a result, hBNs with different sizes 

and geometries have been studied extensively as thermally conductive fillers [11, 16, 41, 54, 55].  

The success in further promoting the keff of PMCs by replacing silica with hBN 

demonstrated one method to improve the keff of PMCs (i.e., the incorporation of fillers with 

higher thermal conductivity). However, both theoretical and experimental work showed that 

there is a limitation of this method [24, 56, 57]. Bigg has shown that when the ratio between 

filler’s and polymer matrix’s thermal conductivities exceeds 1000, further increase in filler’s 

thermal conductivity has negligible effect on the keff of composites with randomly dispersed 

filler [24]. Experimental studies also showed that the inclusion of carbon-based fillers with 

extremely high intrinsic thermal conductivity (e.g., carbon nanotubes and exfoliated graphite 

nanoplatelets) in PMC failed to significantly increase PMC’s keff [56, 57]. This limitation has been 

commonly believed to be attributed to the reliance of heat transfer by phonon transport and 

the high thermal contact resistance at the filler-polymer and/or filler-filler interfaces [23]. The 

imperfect connections at these interfaces would lead to significant phonon scattering, and 

thereby hindering phonon transport [21]. As a result, the PMCs were unable to take full 

advantage of the fillers’ high intrinsic thermal conductivities. To avoid this problem, efforts 

have been made to promote filler interconnections and to increase filler-polymer compatibility.  

2.2.3.2 Promoting the Formation of Thermally Conductive Filler Chains 

In previous experimental studies, a non-linear relationship was typically found between 

the filler loading and composite’s keff [51-55]. This phenomenon is believed to be attributed to 

the interaction between the filler particles, forming conductive paths in the direction of heat 
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transfer and lead to increased thermal conductivity [55]. In an attempt to develop a predictive 

model for the keff of two-phase composite, Agari and Uno studied the probability of forming 

conductive particle chains with respect to different filler concentrations [58]. It was found that, 

(1) the amount of formed conductive chains increased exponentially with increase of content of 

filler particles; and (2) the conductive chains could largely increase thermal conductivity of the 

composite [58]. 

The idea of promoting PMC’s keff by forming more conductive filler chains has led to 

three research approaches: (1) tailoring micro-and-nano structure during fabrication process, (2) 

using fillers with higher aspect ratio, and (3) incorporate hybrid fillers with different sizes 

and/or geometries. 

In order to tailor the micro-and-nano structure, electric field-induced filler alignment 

[59], ultra-drawing [60], ultra-sonication [61], and foaming [62], have been studied. Using 

electric field to align multi-wall carbon nanotubes (MWCNT) in epoxy resin, Martin et al. 

obtained composites that were suitable for electrostatic dissipation [59]. The observed 

orientation of the field-induced nanotube networks also showed promising optical 

transparency. In a study of liquid crystal polymer (LCP)-graphene nanoplatelets (GNP) 

nanocomposite, Leung et al. found that ultra-drawing of LCP-GNP nanocomposite would 

enhance alignment of LCP fibrils and the embedded GNP, which increases the keff of the 

nanocomposite [60]. Yu el al. used ultra-sonication to disperse hybrid single wall carbon 

nanotube (SWCNT) and GNP in epoxy [61]. With the formation of thermally conductive filler 

network, they were able to fabricate PMC that achieved keff of 3.35 W·m-1·K-1 with only 20 wt% 
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of filler. Furthermore, Okamoto el al. demonstrated that foaming-induced biaxial flow aligned 

clay particles along the cell boundary in a polypropylene matrix, which would suppress cell 

rupture [62]. Although some of these studies are aimed to improve mechanical and electrical 

properties, the evidence of promoting filler networking to promote the keff of PMCs is promising. 

Fillers with high aspect ratio also can promote the formation of conducting networks by 

lowering the percolation threshold [63]. Although the keff does not exhibit a percolation 

behavior, the filler interconnection can diminish the disadvantageous role of interfacial thermal 

resistance [64, 65]. Kochetov studied the effect of filler size and shape on the keff of hBN 

particles dispersed in epoxy resin [66]. This study used hBN spherical agglomerates with 

diameters of 70 nm and 1500 nm (1.5 µm), as well as platelets with lateral size of 500 nm. It 

was found that the PMCs filled with same amount of the two spherical agglomerates have their 

keff values almost the same; while the PMCs filled with hBN platelets have higher keff than the 

PMCs filled with both sized hBN spherical agglomerates. In a different study, Kapadia et al. 

studied the keff of PMCs filled with MWCNTs with four different aspect ratios (i.e. 35, 70, 140 

and 280) [65]. It was found that the keff of the composite increased by increasing the length of 

MWCNTs while maintaining the same diameter (i.e. increase the aspect ratio). 

Finally, efforts have been made to promote the formation of filler network by using 

hybrid fillers with different sizes and/or geometries [4, 12, 67]. The SEM images in one of these 

studies clearly showed that the secondary fillers promoted the interconnection among the 

primary fillers through the formation of structured network [12]. These researches used 

different polymer matrix materials, and all reported the keff of PMCs with hybrid fillers are 
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higher than the non-hybrid counterpart. In a study by Lee et al., various inorganic fillers 

including aluminum nitride (AlN), wollastonite, silicon carbide whisker (SiC) and boron nitride 

(BN) with different shapes and sizes were used alone or in combination to prepare thermally 

conductive epoxy-based composites. It is found that composites containing hybrid spherical 

and fibrous fillers have enhanced thermal conductivity at low to intermediate filler content [4]. 

In a different study, Leung et al. investigated the polyphenylene sulfide (PPS) based composites 

with hybrid ceramic and carbon based fillers. The primary fillers are two different grades of hBN 

(platelets and spherical agglomerates), and the secondary fillers are MWCNTs and carbon fibers 

(CFs). It was found that there exists an optimal volume ratio between the two fillers to 

maximize the keff for each combination of hybrid filler system. Moreover, the experimental 

results demonstrated secondary fillers with a higher aspect ratio and smaller size (e.g., MWCNT) 

to be more effective in promoting the composite’s thermal conductivity [12]. In a recent study, 

Mosanenzadeh et al. reported PLA based composites with keff as high as 2.77 W∙m-1∙K-1 with 

33.3 vol.% of hybrid hBN and GNP, owning to the enhanced interconnected micron-and-nano 

thermally conductive networks [67]. 

2.2.3.2 Increasing Filler-Polymer Compatibility  

It is well accepted that phonon scattering can lead to a thermal resistance at particle 

interfaces, and such resistance value depends on the pair of materials [21, 23, 27]. In a study of 

polypropylene (PP) based composites, Weidenfeller et al. found that the keff of copper (k = 400 

W∙m-1∙K-1) filled composites are lower than that of talc (k = 10.6 W∙m-1∙K-1) filled composites 

with same filler loading, despite that copper is much more thermally conductive than talc [68]. 
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This is attributed to the fact that copper is less compatible with the PP matrix, hence the 

interfacial thermal resistance is larger [68]. In order to reduce the interfacial thermal resistance, 

researches have been conducted to perform surface modifications.   

In a study of epoxy-AlN composite, Choudhury et al. found that the keff of silane coupling 

agent (SCA) modified composites are higher than the unmodified counterparts [69]. Similar, 

Irwin et al. reported polyamide nanocomposites filled with coated nano fibers exhibited a 11% 

increase in keff compared to the unmodified counterparts [70]. Rong et al. reviewed a large 

number of researches that attempted to use coupling agents to obtain a better interaction 

between fillers and matrix [71]. It was concluded that suitable surface modification can reduce 

the interfacial thermal resistance, which suppress phonon scattering and lead to higher keff. 

2.3 Predictive Thermal Conductivity Models 

Determining the keff of a composite material is an outstanding problem in mathematical 

physics as well as material science; and has been well studied for over a hundred years. This 

section will review some of the most popular models in determining the keff of composite 

materials, including their benefits, accuracies, assumptions and limitations.   

2.3.1 Basic Models 

The most basic predictive models are parallel model and series model [72]. Parallel 

model is based on the standard mixture rule (Equation 2.2); and series model is based on the 

inverse mixture rule (Equation 2.3). Another basic model is the geometric model, which is based 

on the geometric mean of matrix and filler thermal conductivity (Equation 2.4) [73]. 
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where keff is the effective thermal conductivity of the composite,  is the volume fraction of the 

constituent, k is the thermal conductivity of the constituent, n is the number of constituents in 

the composite, and i is the index variable for the constituents.  

The parallel model considers a case where the constituents are connected in parallel 

with respect to the heat transfer direction; while the series model treats all constituents are 

connected in series along the direction of heat transfer. These two models considered two 

extreme cases. Generally speaking, the parallel model provides an upper bound of the keff, and 

the series model gives a lower bound of the keff. The geometric model calculates the keff of 

composite using a geometric mean of the thermal conductivity and volume fraction of the 

constituents, and does not have a physical basis.  

2.3.2 Advanced Models 

The study of heat conduction in composite materials is inherently difficult, due to the 

fact that it is hard to obtain a clear mathematical description of the complex microstructure. 

Maxwell’s seminal work in 1873 pioneered in the study of the thermal conductivity of two-
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phase mixtures [74]. Using the potential theory, Maxwell obtained the keff of a two-phase 

mixture consisting of randomly distributed and non-interacting homogeneous spheres in a 

homogeneous medium. The resulting model can be found in Equation 2.5. 
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where keff is the effective thermal conductivity of the composite, f is the volume fraction of the 

filler, kf is the thermal conductivity of the filler, and kp is the thermal conductivity of the 

polymer matrix. 

It should be noted that this model assumed that the particles are sufficiently far apart 

that the potential around each sphere will not be influenced by the presence of other particles. 

For composites with low filler loadings, where filler particles are generally not interacted, this 

model can generate accurate predictions. However, this model is not applicable to composites 

with high filler content, where filler particles are interconnected to each other [75].  

Bruggeman used different permeability and field strength assumptions than Maxwell, 

and derived a different implicit equation (Equation 2.6) to predict the keff of two phase 

composites [76]. Similar to Maxwell model, this model does not capture the filler interaction, 

and the predictions at high filler loadings are not valid [75]. 
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where keff is the effective thermal conductivity of the composite, f is the volume fraction of the 

filler, kf is the thermal conductivity of the filler, and kp is the thermal conductivity of the 

polymer matrix. 

In order to predict the keff of composites with high filler loadings, Agari et al. proposed a 

new model to capture the filler interaction.  This model has been modified and improved 

through a series of studies, and its final form is shown in Equation 2.7 [47, 58, 77, 78].   

  1 2log (1 )log logeff f p f fk C k C k     (2.7) 

where keff is the effective thermal conductivity of the composite, f is the volume fraction of the 

filler, kf is the thermal conductivity of the filler, kp is the thermal conductivity of the polymer 

matrix, C1 and C2 are two constants need to be determined experimentally.  

It can be seen that the keff of a composite is a combination of filler and matrix material. 

The constant C1 provides the information about the filler’s influence on the secondary structure 

of the matrix. Higher C1 value means the filler has less influence on the matrix material’s 

secondary structure. The value of C2 indicates the level of filler interconnections. Higher C2 

value represents more filler connections within the composite. Both constants (i.e. C1 and C2) 

are ranged from 0 to 1, and need to be determined experimentally [58]. 

Lewis and Nielsen modified the Halpin–Tsai equation for elastic moduli of composite 

materials and adapted it to thermal conductivity of particulate-filled composites (Equation 2.8 

through 2.10) [79-81]. 
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where keff is the effective thermal conductivity of the composite material, kf is the thermal 

conductivity of filler, kp is the thermal conductivity of polymer matrix, f is volume fraction of 

filler, and m is the maximum packing fraction. 

This model is advanced in the fact that it takes the geometric aspects of fillers into 

account, and that it can predict a wide range of filler loadings (from 0 to m). It should be noted 

that this model was originally developed for composite materials’ elastic modulus, and then 

translated to predict the keff. As a result, the interface thermal resistance is not being 

considered [81, 82].  The parameter “A” is accounted for the geometry of the filler, mainly the 

aspect ratio. The A values for some common filler types are listed in Table 2.1 [24]. The 

parameter m is the maximum packing fraction of the fillers. Some common values for are listed 

in Table 2.2 [24]. 
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Table 2.1 Values of parameter A for common filer types. 

Filler Type Aspect Ratio A Value 

Cubes 1 2 

Spheres 1 1.5 

Randomly oriented fibers 2 1.58 

Randomly oriented fibers 4 20.8 

Randomly oriented fibers 6 2.80 

Randomly oriented fibers 10 4.93 

Randomly oriented fibers 15 8.38 

Uniaxially oriented fibers (Fiber oriented in 

direction of heat flow) 
--- 2L/D 

Uniaxially oriented fibers (Fiber oriented 

transverse to direction of heat flow) 
--- 0.5 

 

Table 2.2 Maximum packing fraction of some fillers. 

Particle Shape Packing Order m 

Spheres Hexagonal close 0.7405 

Spheres Face centered cubic 0.7405 

Spheres Body centered cubic 0.60 

Spheres Simple cubic 0.524 

Spheres Random loose 0.601 

Spheres Random close 0.637 

Irregular Random close ~0.637 

Fibers Random 0.52 

Fibers Uniaxial hexagonal close 0.907 

Fibers Uniaxial simple cubic 0.785 

Fibers Uniaxial random 0.82 
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2.4 Polymer Composite Foams  

Polymeric foaming is a technology that involves the generation of porous or cellular 

structures in plastic materials. Foam morphologies are often characterized by the following 

parameters: (1) foam expansion, which is measured by the volume expansion ratio, and is 

defined to be the volumetric ratio of the void to solid unfoamed plastic material; (2) average 

cell size, which is the average diameter of individual air void; (3) cell population density, which 

is measured by number of air voids per volume of unfoamed plastic material [83] 

Depending on the foam morphology and structure, polymer foams can be categorized in 

the following ways. First, using the average cell size and cell population density, plastic foams 

can be classified as: conventional plastic foams, fine-cell plastics and microcellular plastics. 

Table 2.3 listed the range of average cell sizes and cell population densities for each of above 

mentioned type [84]. Second, plastic foams can be categorized by their cellular structures: 

closed-cell foams and open-cell foams. In closed-cell foams, individual cells are completely 

separated by plastic cells walls. In open-cell foams, pores exist on the cell walls so that adjacent 

cells are interconnected [83].  

Table 2.3 Plastic foam classification based on cell size and cell population density. 

 Average Cell Size Cell Population Density 

Conventional Plastic Foams >300 µm <106/cc 

Fine-Cell Plastics 10-300 µm 106-109/cc 

Microcellular Plastics 0.1-10 µm 109-1015/cc 
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2.4.1 Blowing Agents 

The foaming process typically involves the following steps: (1) dissolution of a blowing 

agent into a plastic matrix; (2) generation of pores or cells by phase separation of the blowing 

agent from the plastic matrix; and (3) stabilization of the porous or cellular structure. In the first 

step, plastic foams can be blown with either a chemical blowing agent (CBA) or a physical 

blowing agent (PBA) [83]. 

2.4.1.1 Chemical Blowing Agents 

CBAs release gases (i.e. N2, CO2 etc.) when they are heated above their decomposition 

temperature. The main advantage of CBAs lies in its ease of use. CBAs can be uniformly 

distributed into polymer matrix prior to foaming process. It is easy to generate a homogeneous 

polymer-gas mixture. It can also be used in conventional extrusion or injection molding systems 

to produce foamed plastics without the need to modify the systems [85]. 

Depending on their enthalpy changes during the decomposition process, CBAs are 

divided into two groups: exothermic CBAs and endothermic CBAs. Generally speaking, 

exothermic most CBAs release N2 upon decomposition, while endothermic most CBAs generate 

CO2 as primary gas. Exothermic CBAs release heat during their decomposition. The excess heat 

can trigger the decomposition of surrounding CBAs; hence the gas releasing rate is relatively 

fast. Endothermic CBAs, however, absorb heat during decomposition. Therefore, endothermic 

CBA decomposition reaction requires additional heat, and usually releases gas slowly [83].  
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There are two key criterions to select the suitable CBA: an appropriate decomposition 

temperature; and compatible residue. If the decomposition temperature is too low, gas could 

be generated prematurely, leading to gas loss and/or premature generation of cells. Conversely, 

when the decomposition temperature is too high, the CBAs may not be active completely, 

which might cause non-uniform cell structure and/or limited foam expansion. In some cases, 

activators are added to a CBA to lower the decomposition temperature in order to get desirable 

decomposition temperature. For example, zinc oxide can reduce azodicarbonamide’s 

decomposition temperature from 205-215°C to approximately 150°C [85]. The other key factor 

to choose appropriate CBA is the residue product. The residual product from the decomposition 

of CBA must be compatible with the foam’s application and/or plastic matrix material. For 

example, CBAs that leave toxic residues cannot be used in food packaging industry.   

2.4.1.2 Physical Blowing Agents 

By comparison, PBAs are materials that are injected into the polymer system as 

pressurized gas, liquid or supercritical fluid. Using PBAs has a few obvious disadvantages. First 

of all, relatively high pressure and/or temperature are often required to accelerate the gas 

dissolution process. Moreover, conventional extrusion and injection molding systems need to 

be modified in order to use PBAs. However, PBAs are still commonly used in industries due to 

its low cost and high effectiveness, especially in producing low-density foams. Traditionally, 

chlorofluorocarbons (CFCs) were widely used. CFCs were ideal PBA choice, due to the high 

solubility, low toxicity, non-flammability, good thermal and chemical stability, as well as low 

cost. Owing to the chemical stability, CFCs can reach up into stratosphere, where they break 
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down and generate chlorine atoms that destroy the ozone layer [85]. Ultimately, this leads to 

significant increase in UV-B radiation, which is harmful to most biological systems, including 

human [86]. As a result, the industry has completely stopped using CFCs by the Montreal 

Protocol [86]. Hydrochlorofluorocarbons (HCFCs) are less chemically stable than CFCs, and tend 

to break down before they reach the stratosphere. However, they still have potential damage 

to the ozone layer. Therefore, they were phased out in Europe for the production of foams in 

2004 [87]. In other countries, the use of HCFCs is now being restricted in stages by the Montreal 

Protocol, and they will be completed phased out in 2020 in developed countries and 2040 in 

developing countries [86]. Other commonly used PBAs include Hydrofluorocarbons (HFCs) and 

Hydrocarbons (HCs) [83, 85]. However, HFCs have high cost and global warming potentials, and 

HCs are flammable. Therefore, neither of them is an ideal PBA. Recent attentions have been 

conducted on using CO2 and N2. In particular, CO2 will be used in this study, owing to its good 

plasticization effect that allows foaming at relatively low temperature.  

2.4.2 Foaming with Expancel® Microspheres 

Expancel® Microspheres are small spheres consist of polymeric shells and encapsulated 

hydrocarbon gases. Expancel® Microspheres can expand and create porous structure at a 

certain temperature range, owing to the following two simultaneous phenomena: (1) the 

pressure of encapsulated gas increases with the increasing of temperature; and (2) the 

polymeric shells softened to allow the expansion of the microspheres. Depending on the grade 

of Expancel® Microspheres, the on-set temperature as well as pre- and post- expansion 

diameter may vary [88]. Expancel® Microspheres has been used as a foaming agent in previous 
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studies, including the study of thermally conductive PMC foams [18]. Such foaming technique 

allows precise control of the foam morphologies, hence was employed in this study to elevate 

each of foam morphological parameters effect on keff of PMC foams. 

2.4.3 Batch Foaming 

In addition to using Expancel® Microspheres, batch foaming will also be applied in this 

thesis research as a method to create foam structure. Batch foaming is one of the most studied 

processes due to the ease of setup and control [85]. The batch foaming process starts by 

placing the plastic matrix into a pressure chamber, which is to be saturated with a blowing 

agent (e.g., CO2) under ambient temperature. The blowing agent will be dissolved into the 

plastic matrix during the gas dissolution process. After that, a rapid depressurization and 

subsequent heating are applied to cause a sudden drop of gas solubility, which generates a 

thermodynamic instability for cell nucleation. The foam expands as cells nucleate and grow. The 

plastic sample is cooled afterward to stabilize the foam structure.  

One challenge of batch foaming is brought by the low gas diffusion rate into the 

polymer at ambient temperature. The gas saturation process typically takes very long time, 

depending on sample thickness. Alternatively, the gas saturation process can be conducted at 

an elevated temperature to reduce the time required. However, an effective cooling strategy is 

needed to stabilize the foam after depressurization. Otherwise, cell deterioration can occur 

which leads to non-uniform cell structure and low volume expansion [85]. 
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Chapter 3                                                                                                  

Analytical Modelling of Effective Thermal 

Conductivity of PMC Foams 

Foaming has been reported to be an effective method to align filler particles along the 

cell boundary, and improve mechanical and electrical properties [62, 89, 90]. Chan et al., 

pioneered a study to investigate the keff of PMC foams [18]. Although it has been shown that 

aligning filler particles with foaming-induced biaxial flow can be a possible approach to enhance 

the PMC’s keff, no experimental result has shown that the keff of PMC foam can be higher than 

that of the solid counterpart with same filler loading. As a result, an analytical model was 

developed at the initial phase of this thesis research to confirm the feasibility of foaming-

induced keff enhancement. After being verified with existing experimental data, this model was 

further employed to explore the dependence of keff on their foam morphology. 

3.1 Theory and Modelling 

3.1.1 Formation of heat transfer elements 

The model developed in this thesis treated PMC foams as a collection of individual unit 

cells. The unit cell structure, which consists of a central air void and surrounding wall, is 

modeled based on the SEM images of thermally conductive linear low density polyethylene 
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(LLDPE)-hBN composite foams observed by Chan et al [18]. It was reported that the hBN 

platelets aligned along the wall of the cellular structures, and developed into a three-

dimensional hBN network in the LLDPE matrix [18]. Figure 3.1 shows a schematic that illustrates 

the filler alignment caused by foam expansion as observed by Chan et al.. The LLDPE-hBN foam 

consists of individual air void, with hBN platelets aligned along the void. There are layers with 

only polymers, layers with both polymers and fillers, as well as layers with polymers, fillers and 

air void. Therefore, this study modelled the PMC foam’s microstructure as a collection of evenly 

distributed cubic cells with thermally conductive filler network aligned along the walls that 

separate adjacent cells. A schematic of the physical model is depicted in Figure 3.2. 

 
Figure 3.1 Schematics of PMC foam’s morphology (a) before significant expansion; and (b) after 

significant expansion. 
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Figure 3.2 A physical model that represents PMC foam’s microstructure. 

3.1.2 Model Development 

Figure 3.3(a) shows the cross-section of the representative volume element (RVE) 

shown in Figure 3.2. The air void in each RVE is considered to be a cuboid. Considering heat 

flows along the positive z direction, the polymer matrix, filler platelets, and air void can be 

represented by a thermal resistor network. Furthermore, it can be mathematically proven that 

the thermal resistance determined by treating filler platelets shown in Figure 3.3(a) is identical 

to that determined by treating them as larger clusters as illustrated in Figure 3.3(b). Moreover, 

a recent research also showed that fillers tend to form agglomerates around air voids [89]. 

Therefore, the PMC foam’s configuration depicted in Figure 3.3(b) has been adopted to develop 

the analytical model to predict the composite foam’s keff. The four boundary surfaces of the 

RVE parallel to the heat flow direction are considered to be adiabatic, while the other two 

surfaces are isothermal with one of them having a higher temperature, namely the bottom 

surface. Therefore, heat enters the RVE from the bottom boundary surface and exists from the 

upper boundary surface. Moreover, isotherms are assumed to be perpendicular to the direction 

of heat flow. 
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Figure 3.3 (a) Cross-section of the physical model that represents the microstructure of PMC foam; (b) 

cross-section of the physical model with the consideration of clusters of hBN platelets; (c) a schematic of 

thermal resistor network that represents the heat transfer element (subscripts a, p and f refers to air, 

polymer and filler, respectively). 

In this model, each RVE consists of 9 groups of thermal resistors connected in series. 

Their thermal resistances are denoted as Ri, where i is the resistor group number ranging from 

1 to 9. In each group, thermal resistors of different materials (i.e., polymer, filler, and/or air) are 

connected in parallel. Figure 3.3(c) illustrates a schematic of the thermal resistor network 

representing the RVE. The layers consist of only polymer when i equals to 1, 3, 7, and 9. For i 

equals to 2 and 8, the layers contain both polymer and filler. Polymer, filler, and air void are 

coexisting when i equals to 4, 5, and 6. The total thermal resistance (Rtotal) is the sum of 9 

groups of thermal resistors connected in series, and is given by: 

 



9

total i
i 1

R R  (3.1) 
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According to Fourier’s law of heat transfer, the steady state heat conduction through 

the RVE is given by: 

 
   

     


2

eff eff x

z z total

k A T k a 2x TdQ T

dt L a 2z R
 (3.2) 

where dQ/dt is the rate of heat flow across the RVE; A is the cross-sectional area of the RVE 

perpendicular to the heat flow direction; ∆T is the temperature difference between the top and 

bottom boundary surfaces; Lz is the length of the heat flow path (i.e., in the z direction); ax and 

az are the length of the air void in the perpendicular and parallel directions, respectively; and x 

and z are the thicknesses of the cell walls parallel and perpendicular, respectively, to the heat 

flow direction. 

Hence, the RVE’s keff can be determined by its total thermal resistance and dimensions 

by: 
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The equivalent thermal resistance of the ith layer (i.e., Ri) is expressed as: 

 
 

i
i

a i ,a f i , f p i ,p

t
R

k A k A k A
 (3.4) 



 

 

33 
 

where ti is the thickness of the ithlayer; ka, kf and kp are the thermal conductivity of air, filler and polymer, 

respectively; and Ai,a, Ai,p and Ai,f represent the cross-sectional area of the air void, polymer and filler, 

respectively, in the ithlayer. 

Using Equation (3.4), the equivalent thermal resistance of each layer in the RVE can be derived 

as Equation (3.5) through (3.8). 
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As shown in Figure 3.3(b), zf and af,x are the thickness and length of filler clusters, 

respectively, in layers 2 and 8; and xf and af,x are the thickness and length of filler clusters, 

respectively, in layers 4 through 6. In these equations, ax equals to az for PMC foams fabricated 

by isotropic foaming, while they are different for PMC foams prepared by constrained foaming 

in a preferential direction. 

The thermal conductivity of various filler platelets is anisotropic. For example, the in-

plane thermal conductivity (kf//) and the through-plane thermal conductivity (kf) of hBN 

platelets are 300 W·m-1·K-1 and 2 W·m-1·K-1, respectively [41, 91, 93]. To account for the 
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dependence of kf on the orientation of the thermally conductive filler platelets in the polymer 

matrix, an alignment factor (α) is introduced in the model as shown in Figure 3.4(a) and (b). In 

order to describe the same extensional flow field-induced filler alignment in the experimental 

study of LLDPE-hBN composites foamed by Expancel® microspheres [18], α has been introduced 

as a function of the volume expansion of the microsphere. Random orientation of hBN platelets 

in LLDPE matrix can be mathematically approximated by using α equals to 0.5, while α equals to 

0 represents perfectly aligned hBN platelets. Assuming the platelets are equally likely to be 

stacked in a parallel configuration or in a series configuration, kf can be determined by Equation 

(3.9) and (3.10). 

For i = 2 and 8, 
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For i = 4, 5, and 6, 
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Figure 3.4 Schematics that illustrate the filler orientation in a filler cluster in (a) layers 2 and 8; and (b) 

layers 4 through 6. 

In Equation (3.9) and (3.10), α is a function of expansion of microspheres, and it is expressed as : 

 
 

   

3

mind1

2 d
 (3.11) 

where dmin is the edge length of a cubic void that has the same volume as an unexpanded microsphere; 

d = ax for layers 2 and 8; and d = az for layers 4, 5 and 6.  

Using Equation (3.11), α is 0.5 when d equals to dmin (i.e., no expansion), suggesting that it is 

equally likely for the filler platelets to align in the two orthogonal directions. In contrast, α approaches 

to zero when d approaches to infinity. This is used to model the preferential filler alignment induced by 

extensional flow fields during foam expansion. 



 

 

36 
 

3.2.3 Physical parameters 

In this study, LLDPE-hBN foams’ keff was determined using the developed model, and the 

results were presented as case examples for model validation. The thermal conductivity of 

LLDPE (kp), hBN (in-plane) (kf//), hBN (through-plane) (kf), and air (ka) used in this work are 

summarized in Table 3.1 [18, 41, 91, 93]. 

Table 3.1 Physical parameters used in the calculation of PMC foam’s keff. 

 Value Unit 

kp 0.22 W·m-1·K-1 

kf// 300 W·m-1·K-1 

kf 2 W·m-1·K-1 

ka 0.024 W·m-1·K-1 

 

3.2 Results and Discussion 

Considering LLDPE-hBN composite foams as case examples, the keff of the composite 

foams calculated using the developed model were compared with the experimental data in 

literature for model validatation [18]. The cell morphology, including cell size, cell population 

density, and volume expansion percent specified in the experimental study were considered in 

these calculations. Consequently, a series of parametric studies were conducted to study the 

effects of foam morphologies, volume expansion percentages, hBN loadings, and anisotropy of 

filler’s thermal conductivity on PMC foam’s keff. The parametric studies would enhance the 

elucidation of the structure-to-property (i.e., keff) relationship of PMC foams. 
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3.2.1 Effect of foam’s volume expansion on PMC foam’s keff 

Figure 3.5 plots the calculated keff for LLDPE-hBN composite foams filled with 50 vol.% 

hBN as well as the experimental data [18]. Both sets of data showed that keff decreased initially 

as the PMC foam expanded. However, once a threshold percentage of volume expansion had 

achieved, further foam expansion would promote the composite’s keff.  

The plot also shows that the calculated keff were higher than the experimental data. The 

discrepancy was believed to be caused by ignoring of thermal contact resistance at the 

interfaces between LLPDE and hBN as well as those between different hBN platelets in the 

analytical model. Moreover, the in-plane thermal conductivity of hBN might also be lower than 

the commonly accepted value of 300 W·m-1·K-1
 [91, 93].  Therefore, the total thermal resistance 

of the heat transfer element was underestimated and caused the calculated keff to be higher 

than the measured value. However, by shifting the calculated keff downward (i.e., the dash 

curve in Figure 3.5, which was obtained by subtracting 1.75 W·m-1·K-1 from calculated value), it 

was apparent that the trends had good agreement with the experimental data. This provided 

evidence that the model developed in this study would offer some insights about the 

underlying factors that influence composite foams’ keff. To the author’s best knowledge, there is 

no experimental result regarding the thermal contact resistance that applies to this situation. 

When such value becomes available, the model can further be improved by incorporating the 

thermal contact resistance. 
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Figure 3.5 Effect of foam’s volume expansion on the LLDPE-hBN foam’s keff  (The error bars represent 

one standard deviation of measured data). 

Chan et al. hypothesized that cell growth would result in two competing effects on the 

composite foam’s keff: (i) extensional stress-induced hBN alignment along the cell wall would 

promote the keff; and (ii) increase in the size of air void would decrease the keff [18].  As 

illustrated in Figure 3.6, this hypothesis can be verified by studying the effect of volume 

expansion on keff of layer 5 (i.e., the layer with the air void). However, in order to elucidate the 

effect of foam expansion on the PMC’s keff, it is necessary to analyze its effect on the keff and 

volume fraction (Φi) for each of the 9 layers in the proposed model.  
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Figure 3.6 Effect of foam’s volume expansion on the keff of layer 5 (i.e., the layer with the air void). 

Using Fourier’s law of heat transfer, it can be shown that the reciprocal of keff depends 

on both Φi and the effective thermal conductivity of the ith layer (keff,i) in the thermal resistor 

network model. Such relationship is shown in Equation (3.12), and the calculated ratios of 

Φi/keff,i as well as the reciprocal of keff are plotted in Figure 3.7. 

 
9

i

i 1eff eff ,i

1

k k





  (3.12) 

It can be observed that the mound-shaped curve for the reciprocal of keff was 

predominantly governed by the pure LLDPE layers (i.e., layers 1, 3, 7 and 9) and the layers with 

hBN preferentially aligned perpendicularly to the heat flow direction (i.e., layers 2 and 8). Figure 

3.8 shows that while the thermal conductivity of the pure LLDPE layers were fixed, the volume 

fraction followed a mound-shaped trend. As illustrated in Figure 3.9, the initial increase of the 

volume fraction was caused by the reduction in the thickness, and thereby the volume fraction, 

of the hBN filler clusters in layers 2 and 8. However, as the air void expanded continuously, the 

volume fraction of the pure LLDPE layers decreased eventually. In layers 2 and 8, the mound-
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shaped trend of Φi/keff,i could be explained by the changes of their keff and volume fraction 

during foam expansion, which are shown in Figure 3.9. On the one hand, the reduction of keff in 

these two layers as volume expansion percent increased was caused by the preferentially 

alignment of hBN filler in the direction that was perpendicular to heat flow. On the other hand, 

the contribution of these layers to the overall keff of the representative volume element 

reduced continuously as the volume fraction of these layers decreased with the expansion of 

the air void. Although layer 5’s keff also followed a mound-shape trend in the range of volume 

expansion percent considered in this study, the smaller magnitude of Φi/keff,i in this layer (i.e., 

the layer with the air void) made its effect less significant than layers 1 through 3 and 7 through 

9. 

 
Figure 3.7 Effect of foam’s volume expansion on the Φi/keff,i and 1/keff. 
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Figure 3.8 Effect of foam’s volume expansion on the Φ and keff of pure LLDPE layers. 

 
Figure 3.9 Effect of foam’s volume expansion on the Φ and keff of layers 2 and 8. 

3.2.2 Effect of filler content on PMC foam’s keff 

The effect of filler content on PMC foam’s keff is shown in Figure 3.10. The kf// was set to 

be 300 W·m-1·K-1 in these calculations. Apparently, the PMC foams’ keff increased with hBN 

contents. Moreover, in the absence of hBN filler, LLDPE foam’s keff decreased as the percentage 

of volume expansion increased. Most importantly, it was found that the threshold percentage 

of volume expansion (i.e., the volume expansion percent over which the PMC foam’s keff started 

to increase with further foam expansion) increased with hBN contents. This trend was 
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consistent with experimental data reported in literature [92].  

 
Figure 3.10 Effect of the LLDPE-hBN foam’s percentage of volume expansion on its keff. 

The observed structure-to-property relationship, both theoretically and experimentally, 

revealed that foaming would be a feasible approach to promote PMC’s keff. This is especially 

beneficial for the PMCs with low filler loadings, which is required to ensure good processability 

of the material systems. The possibility of increasing PMC’s keff without the need to add a large 

amount of thermally conductive filler, together with the introduction of cellular structures into 

the PMC, would ensure low density and good processability. Furthermore, the reduced material 

consumption would foster the environmental sustainability of the end-products. 

3.2.3 Effect of foam morphology on PMC foam’s keff 

In order to maintain good processability of polymeric materials, it is beneficial to 

achieve high PMC foam’s keff with minimal filler loading. In this context, the effects of cellular 

morphology, including cell size and cell population density, on the keff of PMC foam filled with 

low hBN content (i.e., 10 vol.%) were studied using the developed model. Figure 3.11 illustrates 

the effect of cell size on the PMC foams’ keff with different volume expansion percents. The 



 

 

43 
 

calculated results revealed that there was an optimal cell size to maximize the PMC foam’s keff. 

The optimal cell size increased with the foam’s volume expansion percent. Furthermore, the 

results indicate that PMC foam’s keff increased with volume expansion for the range being 

considered (i.e., 25% to 200%). This observation was consistent with the results shown in Figure 

3.10 (i.e., LLDPE-hBN foams filled with 10 vol.% of hBN). In conclusion, it can be deduced that 

highly expanded PMC foams by using optimal cell size and introducing high cell population 

density would be an effective way to promote the composite foams’ keff. This finding helps to 

guide the design of light-weight thermally conductive PMC foams.   

 
Figure 3.11 Effect of cell size on LLDPE-hBN foam’s keff (note: hBN vol.% = 10 vol.%). 

3.2.4 Effect of constrained foaming on PMC foam’s keff 

In order to further promote the keff of PMC foams with low hBN loadings, the effect of 

constrained foaming (i.e., constrained the foam expansion such that it expands anisotropically 

in a preferential direction) on PMC foam’s keff was studied by the model. Figure 3.12 shows the 

influence of az/ax (denoted the elongated ratio in the heat flow direction), ranging from 1 to 10, 



 

 

44 
 

on the keff of LLDPE composite foam with 10 vol.% of hBN. The results revealed that anisotropic 

foam expansion with az/ax> 1 would enhance the PMC foams’ keff. 

 
Figure 3.12 Effect of constrained foaming on LLDPE-hBN foam’s keff (note: hBN vol.% = 10 vol.%). 

To understand the effects of constrained foaming’s enhancement on PMC foams’ keff, 

Figure 3.13 compared Φi/keff,i as well as the reciprocal of keff for LLDPE-hBN composite foams 

filled with 10 vol.% hBN prepared by both isotropic foaming and constrained foaming with az/ax 

equaled to 10. Similar to previous discussion regarding the PMC foams filled with 50 vol.% hBN, 

the reciprocal of keff could be explained by the pure LLDPE layers (i.e. layers 1, 3, 7 and 9). 

However, with lower hBN content, the effects of layers 2 and 8 on keff became insignificant. 

Therefore, the mound-shaped curves for reciprocal of keff were predominantly governed by the 

change in volume fraction of pure LLDPE layers. In the PMC foam based on constrained foaming, 

the layers with air void (i.e. layer 4, 5 and 6) were longer than those in the PMC foam based on 

isotropic foaming. In other words, the total volume fraction of these layers was larger, leading 

to smaller volume fraction of the low thermally conductive pure LLDPE layers. Together with 

the constant thermal conductivity in the pure LLDPE layers, constrained foaming helped to 

reduce these layers’ Φi/keff,I, and thereby the PMC foam’s keff. 
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Figure 3.13 Effect of volume expansion on the Φi/keff,i and 1/keff between isotropic foaming and 

constrained foaming: (a) isotropic foaming; (b) constrained foaming with az/ax = 10. 

3.2.5 Effect of anisotropy of filler’s thermal conductivity on PMC foam’s keff 

The effect of anisotropy of filler’s thermal conductivity, which could be quantified as 

kf///kf, on PMC foam’s keff was also investigated using the developed model. Figure 3.14 plots 

the changes of PMC foams’ keff with their volume expansion percent at different values of 

kf///kf. The base case has kf///kf equaled to 150 (i.e., kf// = 300 W·m-1·K-1 and kf = 2 W·m-1·K-1) 

and the geometric mean of kf// and kf were kept as constant (i.e., (300 × 2)0.5) in all calculations. 

It is observed that a higher degree of anisotropy of filler’s thermal conductivity would increase 
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the sensitivity of the PMC foam’s keff to the change in the foam’s volume expansion. In other 

words, effectiveness of using foaming as a fabrication strategy to promote PMC’s keff would 

increase with the anisotropy of filler’s thermal conductivity.  

 
Figure 3.14 Effect of anisotropy of filler’s thermal conductivity on LLDPE-hBN foam’s keff (note: hBN vol.% 

= 10 vol.%). 

3.3 Conclusion 

An analytical model has been developed to predict PMC foams’ keff. The PMC foam’s keff 

predicted by this model was higher than experimental measurements of keff obtained for linear 

low density polyethylene LLDPE- hBN composite foams [18].  The discrepancy was believed to 

be caused by ignoring the thermal contact resistance between different materials as well as the 

over estimation of hBN’s in-plane thermal conductivity. However, the trend of the calculated 

results demonstrated satisfactory agreement with experimental data [18]. This demonstrated 

that the developed model can serve as a tool to study the underlying factors that govern the 

PMC foam’s keff and provide new insights for developing thermally conductive PMC foams. The 

model revealed that there is a threshold volume expansion percent over which the PMC foam’s 
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keff would be promoted. This could be attributed not only to the enhanced filler alignment by 

the foaming-induced extensional stress but also to the geometric evolution of different layers 

(e.g., layers with only polymer, layers with polymer and filler, and layers with polymer, filler, 

and air void) in the PMC foams. Furthermore, parametric studies were conducted to investigate 

the effects of foam morphology and filler’s anisotropic thermal conductivity on the PMC foam’s 

keff. It was found that higher foam expansion percent by increasing cell population density and 

constrained foaming to promote expansion in the heat flow direction would enhance the PMC 

foam’s keff. Moreover, the effectiveness of using foaming as a fabrication strategy to promote 

PMC’s keff would increase with the anisotropy of filler’s thermal conductivity. These findings 

provide new insights to design the morphology of PMC foams for light weight and/or flexible 

thermally conductive polymeric material systems with promoted keff and good processability.  
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Chapter 4                                                                                                  

Parametric Study of Foam Morphology’s 

Effects on PMC Foam’s keff 

The analytical study carried out in Chapter 3 demonstrates that foaming-assisted filler 

networking is a viable strategy to enhance the PMC's keff, especially with low filler loadings. In 

this context, an experimental study was conducted using low density polyethylene (LDPE)-

hexagonal boron nitride (hBN) composite foams blown by Expancel® microspheres as a case 

example. Samples with different hBN sizes, hBN loadings and foam morphologies have been 

prepared to parametrically investigate the effects of filler loading, filler size, volume expansion 

percent, cell size and cell population density on PMC foam’s keff. 

4.1 Experimental  

4.1.1 Materials 

Commercially available LDPE (Nova Chemicals, NovaPol, LA-0219-A) was used as the 

matrix material in this work. Micron-scale and submicron-scale hBN platelets (PolarTherm 

powder grade PT110 and AC6041) were purchased from Momentive Performance Materials Inc. 

Expancel® microspheres (Akzonobel, 980 DU 120) were employed as the foaming agent to 

create cellular structures in the LDPE-hBN composites.  Table 4.1 – 4.3 summarize the physical 
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properties of LDPE, hBN, and Expancel® microspheres, respectively [88, 91, 94].  The selection 

of materials was based on several rationales. Expancel® microspheres are very small spherical 

particles that consist of a plastic shell encapsulating a gas. Their volume increases dramatically 

when they are heated to their activation temperature (i.e., soften their shells and increase their 

internal pressure). Since the activation temperature for expanding Expancel® microspheres is 

157-173 °C, LDPE, which has its melting point lower than the microsphere’s onset temperature, 

was chosen to decouple the melting and foaming processes. hBN micron-scale and submicron-

scale platelets, which possess highly anisotropic thermal conductivity, were selected to 

demonstrate the effect of foaming-assisted filler alignment on the PMC’s keff. Moreover, their 

relatively low Knoop hardness (i.e., 11 kg/mm2) and graphite-like layered structure are 

advantageous for composite processing. The use of Expancel® microspheres as the foaming 

agent was due to the possibility to precisely control the PMC’s foam morphology (i.e., cell 

population density, cell size, and volume expansion). 

Table 4.1 Physical parameters of LDPE 

Property Value Unit 

Density (ρ) 918 kg/m3 

Melting temperature (Tm) 105-115 °C 

Thermal conductivity (k) 0.30-0.34 W∙m-1∙K-1 

Dielectric strength 27 MV/m 
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Table 4.2 Physical parameters of hBN 

Property 
Value 

Unit 
PT110 AC6041 

Density (ρ) 2280 2280 kg/m3 

In-plane thermal conductivity (k//) 300+ 300+ W∙m-1∙K-1 

Through-plane thermal conductivity (k┴) ~3 ~3 W∙m-1∙K-1 

Lateral size 45 6 μm 

Thickness 1-3 0.1-0.5 μm 

Specific surface area 0.6 8 m2/g 

 

Table 4.3 Physical parameters of Expancel 980 DU 120 

Property 
Value 

Unit 
Pre-expansion Post-expansion 

Density (ρ) 1100 30 kg/m3 

Size 25-40 120 μm 

Activation Temp. 157-173 - °C 

Shape Spherical Spherical - 

 

4.1.2 Sample Preparation 

Table 4.4 summarizes the material composites of the PMC and their foam samples being 

studied. A previous study found that the dynamic storage modulus (G’) of polymer matrix 
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composites filled with hBN platelet increased sharply at hBN loadings closed to 10 vol%, 

indicating a sudden change in the material structure (i.e., formation of interconnected filler 

network) [95].  As a result, the lowest filler loading studied in this work was chosen to be 9.21 

vol%. Although PMC can be fabricated by several processing technologies, including melt-

compounding and dry-blending, previous studies revealed that dry-blended PMC samples 

yielded higher keff than those prepared by melt-compounding [47].  Therefore, in this study, 

both the solid LDPE-hBN mixtures and the foamable LDPE-hBN mixtures were prepared by dry-

blending. The overall procedures to prepare PMC samples for the measurements of their keff 

are illustrated in Figure 4.1. Initially, LDPE pellets were ground into fine powders with particle 

sizes ranging from 250 μm to 500 μm by a mill freezer (SPEX SamplePrep Group, model 6770, 

Freezer/Mill). Calculated amounts of hBN, LDPE and Expancel® microspheres were weighed and 

dry-blended by continuous tumbling action at room temperature. The mixtures were then 

compression-molded into cylindrical samples of 20 mm in diameters and 10 mm in thicknesses 

by the following procedures:  

1. The dry-blended powders were compacted, by a compression molding machine (Carver 

Press, 4386 CH), into cylindrical mold cavities at room temperature for 1 minute under a 

pressure of 20 MPa. The compacting step aimed to reduce the chance of undesired void 

formation within the compression-molded samples. 

2. The compacted mixtures were heated to 125°C at 5 MPa and equilibrated at the set 

temperature for 25 minutes to completely melt the LDPE matrix. 
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3. The temperature was subsequently raised to 180°C and maintained at that temperature 

for 5 minutes to activate the expansion of Expancel® microspheres.  

4. The compression-molded samples were transferred to a cooling module and clamped 

between a pair of cooling plates with flowing water channels to solidify the samples. 

 

Figure 4.1 Procedures of sample preparation. 

The same procedures were applied to fabricate both solid and foamed PMC samples to 

ensure all samples experienced the same thermal history. For solid PMC samples, the mold 

cavities were fully filled with the desired compositions of dry-blended LDPE-hBN mixtures 

without the addition of Expancel® microspheres. For PMC foam samples, the mold cavities were 

partially filled to a predefined volume percentage in order to control the volume expansion 

percent of the samples. Upon the expansion of the microspheres, the partially-filled mold cavity 

would be completely filled by the expanded material systems. For example, the mold cavities 

were 50% filled to fabricate PMC foam samples with 100% volume expansion. 
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The cellular morphology of the PMC foams was precisely controlled by the volume 

percent of the unfilled mold cavities as well as the amount of Expancel® microspheres. The 

volume expansion percent of the PMC foam was controlled by the percentage of mold filling. 

Assuming all microspheres would be expanded to their maximum sizes (i.e., 120 μm), the 

minimum loading of Expancel® microspheres can be estimated by Equation (4.1):  

 
3

3

max

void oV d
m

d


  (4.1) 

where m is the minimum required mass of Expancel® microspheres, Vvoid is the volume of the 

free space in mold (i.e. volume of mold minus total volume of LDPE and hBN), do is the diameter 

of unexpanded microspheres, dmax is the maximum diameter upon fully expansion; and ρ is the 

density of unexpanded Expancel® microspheres (as indicated in Table 4.3).  
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Table 4.4 Material compositions of PMC samples being studied 

Filler Loading Volume Expansion Expancel® Loading 

9.21 vol% hBNAC6041 

0% n/a 

25% 1×, 1.5×, 2.5×, 5×, 10× 

50% 1×, 1.5×, 2.5×, 5×, 10× 

75% 1×, 1.5×, 2.5×, 5×, 10× 

100% 1×, 1.5×, 2.5×, 5×, 10× 

9.21 vol% hBNPT110 

0% n/a 

25% 2.5× 

50% 2.5× 

75% 2.5× 

100% 2.5× 

27.63 vol% hBNAC6041 

0% n/a 

25% 2.5× 

50% 2.5× 

75% 2.5× 

100% 2.5× 

 

In order to vary the cell size and/or the cell population density of the PMC foams, the 

microsphere contents were varied to different multiples (n) of the minimum required amount 

calculated by Equation (4.1). In particular, n was varied at 1×, 1.5×, 2.5×, 5×, and 10× to 

generate PMC foams with different cell population densities and cell sizes. The theoretical 

average cell sizes for different loadings of microspheres, which are summarized in Table 4.5, 

can be calculated by Equation (4.2):  
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 max

3

d
d

n
     (4.2) 

where d is the theoretical average cell size and dmax is the maximum cell size when the 

microsphere is fully expanded.  

Table 4.5 Theoretically calculated sizes of expanded Expancel® microspheres 

Multiple of required  
microspheres loading (n) 

Average Cell 
Size 

1 120 μm 

1.5 104 μm 

2.5 88 μm 

5 70 μm 

10 56 μm 

 

4.1.3 Sample Characterization 

The hBN’s dispersion and/or foam morphology of LDPE-hBN composites and their foams 

were observed by scanning electron microscopy (FEI Company, Quanta 3D FEG). Samples’ cross-

sections were exposed by cryo-fracturing PMC samples under liquid nitrogen. The fractured 

surface was sputter-coated with gold (Denton Vacuum, Desk V Sputter Coater).  

The keff of LDPE-hBN composites and their foams were measured with a thermal 

conductivity analyzer (TCA) in accordance to ASTM E1225 [96]. The keff of three samples of each 

composition were measured for subsequent analyses. The average values and the standard 

deviations for all compositions were calculated and reported. One-way Analysis of Variance 

(ANOVA) was employed to test the significance of the dependence of keff on different 
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parameters related to the PMC foam’s cellular morphology. The volume expansion percent 

(VE%) of PMC foams were determined by Equation (4.3): 

 
foam solid

solid

V V
VE% 100%

V

 
  
 

 (4.3) 

where Vfoam is the volume of the PMC foam sample and Vsolid is the volume of the solid portion 

(i.e., LDPE and hBN) of the sample. 

In order to investigate the effects of hBN and foam expansion on the crystalline 

structure of the LDPE and LDPE composites, X-ray diffraction analyses were conducted using a 

Philips Analytical X-ray diffractometer equipped with a Cu anode running at 40 kV and 40 mA. 

The scanning was carried out in an angular region (2θ) ranging from 10° to 60°, with a step size 

of 0.02 °/min and time-per-step of 2 s. The obtained X-ray diffraction spectra were analyzed 

with X-Pert system software. The crystalline sizes were determined by the Scherrer equation 

[97], shown in Equation (4.4): 

 
cos

K
L



 
    (4) 

where K is the Scherrer constant, λ is the wavelength of the X-ray, β is the breadth of the 

diffraction peak, and θ is half of the diffraction angle. 
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4.2 Results and Discussion 

4.2.1 Effects of hBN Platelet Sizes and Contents on PMC’s keff 

Figure 4.2 plots the effects of hBN contents on the keff of solid LDPE-hBN composites 

filled with either micron-scale hBN platelets (i.e., hBNPT110) or submicron-scale hBN platelets 

(i.e., hBNAC6041). Regardless of the platelet’s size, the PMC’s keff increased with hBN loadings, 

ranging from 0 vol% to 30 vol%. While the size of hBN platelets showed negligible effect on the 

PMC’s keff at low hBN loading (e.g.,  9.21 vol%), PMC filled with submicron-scale hBN platelets 

demonstrated more pronounced enhancement on the PMC’s keff at higher hBN loadings (e.g., 

18.42 vol% and 27.63 vol%). At low hBN loading, the population density of hBN platelets was 

not sufficient to establish a thermally conductive network in the LDPE matrix. Therefore, PMC’s 

keff solely depended on the hBN content at low hBN loading (i.e., 9.21 vol% or less). However, 

hBN platelets were able to form an interconnected network in the LDPE matrix at a high hBN 

loading. Considering that the specific surface areas for hBNPT110 and hBNAC6041 are 0.6 m2/g and 

8.0 m2/g, respectively, the submicron hBN platelet (i.e., hBNAC6041) would have a higher 

efficiency to form a thermally conductive network. Therefore, the corresponding LDPE-hBN 

composite’s keff increased more rapidly with higher hBN loadings. Nevertheless, no percolation-

like behavior was observed in the relationship between hBN loading and PMC’s keff. This could 

be attributed to the phonon scattering at the filler-filler interfaces, which is detrimental to heat 

conduction, despite the establishment of filler network [23, 27]. Although the measured keff of 

solid PMCs didn’t show obvious evidence in the formation of thermally conductive hBN 

network in LDPE-hBN composites with 9.21 vol% of hBN loading, a sudden change in the 



 

 

58 
 

material structure (i.e., formation of interconnected filler network) at hBN loading close to 10 

vol% was suggested by a previous research [95]. Furthermore, the LDPE-hBN composite filled 

with 27.63 vol% of hBN demonstrated clear evidence of filler interconnection with the 

measured keff values. In order to explore how foam expansion could promote the formation of 

filler network, foamed PMCs with both 9.21 vol% and 27.63 vol% of hBN loading were studied 

in greater details and presented in following sections. Moreover, the measured keff of solid 

PMCs would also be used as a base case to evaluate the feasibility and effectiveness of 

foaming-assisted filler alignment to promote PMC’s keff, especially for PMC with low filler 

loadings. 

 
Figure 4.2 Effects of hBN platelet sizes and contents on the LDPE-hBN composite's keff 

4.2.2 Effects of Volume Expansion of PMC Foams on Their keff 

Thermally conductive thermoplastic-ceramic composite foams with lower mass density 

and similar keff comparing to their solid counterparts had recently been reported [18]. However, 

as far as the literature survey goes, PMC foams with their keff higher than solid PMC with the 

same filler loading have never been achieved. In this context, a series of parametric studies 
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were conducted to systematically elucidate the underlying mechanisms for the cellular 

morphology of a PMC foam influences the foam’s keff. 

LDPE-hBN composites filled with different hBN loadings and hBN platelets of different 

sizes were foamed to investigate the effect of volume expansion percent on PMC foam’s keff. 

Figure 4.3 shows the representative SEM micrographs of these LDPE-hBN foams. Figure 4.3(a) 

and 4.3(b) illustrate that the micro-scale hBNPT110 platelets and submicron-scale hBNAC6041 

platelets were preferentially aligned around expanded microspheres in LDPE-hBN foams. Both 

samples were foamed by 2.5× Expancel® microspheres to volume expansions of 25%. While hBN 

platelets were randomly oriented in the LDPE matrix, the expansion of microspheres generated 

biaxial stretching along their cell walls, and thereby induced the preferential alignment of the 

platelets along the cell walls around expanded microspheres. It can be observed that the 

submicron-scale platelets were able to form a more interconnected thermally conductive 

network than the micron-scale platelets. This can be attributed to the significantly larger (i.e., 

slightly over 13-fold) specific surface area of the submicron-scale platelets than that of the 

micron-scale platelets. Figures 4.3(c) and 4.3(d) depict that, for PMC foams filled with either 

hBNPT110 or hBNAC6041, increasing the volume expansion percent from 25% to 75% would 

potentially block the formation of thermally conductive pathway because of the close proximity 

of adjacent expanded microspheres. 
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Figure 4.3 SEM micrographs of LDPE-hBN composite foams filled with 9.21 vol% hBN and 2.5× of 

Expancel® microspheres: (a) hBNPT110 & 25% volume expansion; (b) hBNAC6041 & 25% volume expansion; (c) 

hBNAC6041 & 75% volume expansion; and (d) hBNPT110 & 75% volume expansion 

Figure 4.4 plots the effect of volume expansion percent on keff of LDPE-hBN foams filled 

with different types or loadings of hBN platelets. At 9.21 vol% filler loading, moderate foam 

expansion (e.g., 25%) of LDPE-hBN foams filled with either hBNPT110 or hBNAC6041 platelets 

enhanced the PMC’s keff. In contrast, volume expansions beyond 50% were detrimental to the 

PMC foam’s keff. For PMC foams with 25% volume expansion, the keff of LDPE-hBN foam filled 
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with hBNAC6041 platelets was 1.16 W∙m-1∙K-1, which represented a 26% increase over that of its 

solid counterparts. The improved keff for LDPE-hBN foam filled with 9.21 vol% of hBNPT110 

platelets and a volume expansion percent of 25% was 0.97 W∙m-1∙K-1, which was equivalent to a 

21% increase over that of the solid composite. These results represent the first time PMC foams 

with their keff higher than solid PMC embedded with the same filler loadings were fabricated. 

The more pronounced positive effect of moderate foam expansion on keff of PMC filled with 

hBNAC6041 could be caused by the higher efficiency of submicron-scale hBN platelets to establish 

interconnecting filler network in the LDPE matrix. One-way ANOVA tests were conducted to 

verify the dependence of PMC foams’ keff on the foams’ volume expansion percent. Table 4.6 

summarized the statistical results of the one-way ANOVA tests. The results indicate that the 

effect of PMC foam’s volume expansion percent on the foam’s keff was significant for PMC 

foams filled with 9.21 vol%, hBNAC6041, 9.21 vol% hBNPT110 and 27.63 vol% hBNAC6041. The 

mound-shape keff-to-volume expansion relationship reveals that there would be two or more 

competing factors that governed PMC foam’s keff. Unlike LDPE-hBN foams filled with 9.21 vol% 

hBN platelets, the keff of PMC foams loaded with 27.63 vol% hBNAC6041 platelets decreased 

monotonically as their volume expansion percent increased.  
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Table 4.6 One-way ANOVA tests for the dependence of PMC foams’ keff on PMC foam’s volume 

expansion % 

Testing 
Parameter 

Data Set P-Value Significance 

Volume 
Expansion % 

9.21 vol% hBNAC6041 7.2×10-7 >99% 

9.21 vol% hBNPT110 8.8×10-5 >99% 

27.63 vol% hBNAC6041 1.1×10-6 >99% 

 

 
Figure 4.4 Effect of volume expansion % on keff of LDPE-hBN composite foamed by 2.5× Expancel® 

microspheres 

For LDPE-hBN foams filled with 9.21 vol% hBN platelets, the positive effects of foaming 

on PMC’s keff include (i) foaming-assisted filler alignment along the cell walls (i.e., Figure 3 (a) 

and (b)); and (ii) localization of hBN platelets in the solid phase of the PMC foam. The effective 

filler content in the PMC foam’s solid region can be determined by Equation (4.5): 
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 filler solid void

solid

V V
effective filler content 100%

V

 
      (4.5) 

where ϕfiller is the volume fraction of hBN platelets in the PMC, Vsolid is the volume of the solid 

phase in the PMC foam, and Vvoid is the total volume of all voids in the PMC foam. 

The presence of foaming-induced filler alignment was evident in Figure 3(a) and 3(b). 

The preferential orientation of hBN platelets along the cell wall of expanded microspheres 

would promote the interconnectivity of the hBN platelets, leading to a positive impact on the 

PMC foam’s keff.  Figure 4.5 shows how PMC foam’s volume expansion would increase the 

effective filler content in the solid phase. For example, a 25% volume expansion of LDPE-hBN 

foams filled with 9.21 vol% hBN platelets would result in an effective hBN content of 11.51 vol%. 

Such hBN platelets localization in the LDPE matrix would result in a higher probability of filler 

networking, and thereby promoting the PMC foam’s keff.  

 
Figure 4.5 Effective filler loading with respect to different volume expansion % 



 

 

64 
 

In contrast, the negative influence of foaming on LDPE-hBN composite foam’s keff could 

be attributed to (i) the introduction of thermally insulating voids in the polymer matrix; and (ii) 

the disruption of hBN filler network between adjacent cells. It is obvious that increasing PMC 

foam’s volume expansion percent would raise the volume fraction of thermally insulating voids, 

and be detrimental to the PMC’s keff. Moreover, as indicated in Figure 4.3(c), close proximity of 

expanded microspheres in excessively expanded PMC foams would disrupt the establishment 

of hBN filler network. This would also have a negative impact on the PMC’s keff.  At 27.63 vol% 

hBN loading, the omnipresence of hBN platelets had guaranteed an excessive interconnected 

hBN network in the LDPE matrix. Therefore, further increase in effective filler concentration in 

localized region would have minimal impact on further promoting filler interconnectivity, and 

thereby overall thermally conductive network. This explains why the PMC’s keff decreased 

monotonically as the volume expansion percent and the fraction of thermally insulating voids 

increased. 

4.2.3 Effects of Cell Size of PMC Foams on Their keff 

Using the methods described in the experimental section, PMC foams were fabricated 

to study the effect of cell size on the keff of PMC foams at four levels of volume expansion 

percent (i.e., 25%, 50%, 75% and 100%). Figure 6 plotted the measured keff of LDPE-hBNAC6041 

with 9.21 vol% of hBN platelets and controlled foam expansion percent against cell size. For the 

LDPE-hBNAC6041 foams with 25% and 50% volume expansion, it was observed that the PMC 

foam’s keff can be promoted by moderate cell size growth; whereas excessive cell expansion 

would lead to a reduced keff. In contrast, the keff of PMC foams with volume expansion of 75% 
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and 100% seems to be insensitive to the change in cell size. One-way ANOVA tests have been 

performed, and the results are summarized in Table 4.7. It is verified that the effect of filler size 

on PMC foam’s keff is significant for PMC foams with volume expansion of 25% and 50%. 

 
Figure 4.6 Effect of cell size on the keff of LDPE-hBNAC6041 foams filled with 9.21 vol% hBN and with 

different volume expansion % 

Table 4.7 One-way ANOVA tests for the dependence of PMC foams’ keff on PMC foam’s cell size 

Testing 
Parameter 

Data Set P-Value Significance 

Cell Size 

25% volume 
expansion 

7.9×10-4 >99% 

50% volume 
expansion 

3.0×10-3 >99% 

75% volume 
expansion 

0.043 >95% 

100% volume 
expansion 

0.828 <18% 
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The mound-shape keff-to-cell size relationship that possessed by PMC foams with 25% 

and 50% volume expansion suggested that cell growth would bring both positive and negative 

effects on the PMC foam’s keff. At each constant volume expansion percent, the effect of filler 

localization induced by foam expansion in the solid phase would be comparable. Therefore, the 

positive effect was solely attributed to the different levels of cell expansion-induced biaxial 

stress field, which helps hBN platelets align around the cell wall. Such preferential alignment 

and enhanced networking of submicron-scale hBN platelets by foaming in a LDPE matrix is 

illustrated in Figure 7. This observation was consistent with other studies on foaming-induced 

enhancement in PMC’s mechanical or electrical properties [62, 90]. The foaming-induced biaxial 

stress field increased with bubble expansion, and thereby resulting in higher degree of filler 

alignment along the cell wall to establish a thermally conductive network. However, once the 

cell expansion reached the critical level (i.e., most hBN platelets become preferentially aligned 

tangentially around the expanded microspheres, further biaxial stretch would potentially result 

in the breaking of thermally conductive network, and suppressing the PMC foam’s keff as 

illustrated with the schematics in Figure 4.8. This phenomenon is consistent with similar 

observations in electrically conductive polymer-carbon nanotubes nanocomposites [90].   
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Figure 4.7 Foaming-assisted alignment of hBNAC6041 platelets around an expanded bubble in a 25% 

expanded PMC foam (with 9.21 vol% hBNAC6041 & 2.5× Expancel® microspheres) 



 

 

68 
 

 
Figure 4.8 Schematics of cell expansion-induced filler connection disruption: (a) enhanced filler 

connection by foaming-induced filler alignment; and (b) filler disconnection induced by excessive cell 

expansion 

Secondly, the difference in the sensitivity of PMC foam’s keff on cell size indicated that 

cell expansion-induced effects are more significant in PMC foams with low volume expansion 

percent. When the PMC foam has high volume expansion percent, the high volume fraction of 

thermally insulating air voids became the predominant factor on the PMC foam’s keff. This 

phenomenon could be attributed to the blockage of filler network, as illustrated in Figure 4.3(c). 

Considering the air voids have a simple cubic arrangement, Equation (4.6) was used to 
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determine the average cell-to-cell distance. The calculated cell-to-cell distance under different 

volume expansion percent and cell sizes are summarized in Table 4.8.  

 3
VE% 1

D ( ( ) 1) d
VE% 6


     (4.6) 

where D is the average cell-to-cell distance, VE% is the volume expansion % and d is the 

average cell size  

Table 4.8 Theoretically calculated average cell-to-cell distance under different combination of Expancel® 

loading and volume expansion percent disappoint 

Average Cell 
Size [μm] 

Average cell-to-cell distance [μm] (D) 

25% 
Volume 

Expansion 

50% 
Volume 

Expansion 

75% 
Volume 

Expansion 

100% 
Volume 

Expansion 

120 45.4 19.4 8.2 1.86 

104 39.6 17.0 7.2 1.62 

88 33.4 14.4 6.2 1.36 

70 26.6 11.4 4.8 1.08 

56 21.0 9.0 3.8 0.86 

For PMC foams with low volume expansion (i.e. 25% and 50%), the estimated cell-to-cell 

distances were relatively large. For these foams, the aforementioned positive and negative 

effects of cell size contributed to the mound-shaped curve. However, as the PMC foam's 

volume expansion increased, adjacent cells became closer to each other. For example, the 

estimated cell-to-cell distances were less than 2 μm for PMC foams with 100% volume 

expansion. Therefore, with the random dispersion of the microspheres in the LDPE matrix, it 

was highly probable that cells would be in contact with each other and completely avoid the 
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formation of a thermally conductive path in some regions (as shown in Figure 4.3(c)). This 

significantly suppressed the PMC foam’s keff, and the influence of cell size on PMC foams’ keff 

became negligible.  

4.2.4 Effects of Cell Population Density of PMCs on Their keff 

In order to study the effect of cell population density on the PMC foam’s keff, PMC foams 

were fabricated with two different cell population densities by changing the amount of 

Expancel® microspheres (i.e., 0.029 g/cm3 and 0.058 g/cm3 with respect to the solid volume) 

being embedded in the LDPE matrices. All samples were filled with 9.21 vol% of hBNAC6041 and 

with different volume expansion percent (i.e. 25%, 50%, 75% and 100%).Figure 4.9 plotted the 

keff of PMC foams at two different levels of cell population density (i.e., 1.4×106 cells/cm3 and 

2.8×106 cells/cm3 with respect to unfoamed volume) against different levels of volume 

expansions. Experimental results revealed that the dependences of PMC foam’s keff on the 

volume expansion percent were different for foams with different cell population densities. It 

was found that the PMC foams with lower cell population density (i.e., 1.4×106 cells/cm3 with 

respect to unfoamed volume) had a mound-shaped keff-to-volume expansion relationship and 

the maximum keff occurred at approximately 50% volume expansion. In contrast, the keff of PMC 

foams with cell density of 2.8×106 cells/cm3 with respect to unfoamed volume showed a 

monotonically decreasing trend. Overall, it can be observed that the keff of PMC foams with 

volume expansion of 75% and 100% seems to be insensitive to the change in cell population. 

One-way ANOVA tests have been performed, and the results are summarized in Table 4.9. It is 
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verified that the effect of cell population density on PMC foam’s keff is significant for PMC foams 

with volume expansion of 25% and 50%. 

 

Figure 4.9 Effect of cell population density on the LDPE-hBNAC6041 composite's keff 

In order to understand the different behaviors caused by these two levels of cell 

densities, it must be noted that the three morphological parameters, cell size, volume 

expansion percent, and cell population density are interrelated. In other words, each of the 

three parameters is determined simultaneously by the other two. Moreover, the average cell 

size will be larger to increase volume expansion percent without changing the cell population 

density, the average cell size also needs to be increased. At a fixed cell population density, the 

average cell size can be calculated as a function of volume expansion percent using Equation 

(4.7). Figure 10 plotted the calculated average cell size as a function of the foam’s volume 

expansion percent at the aforementioned two levels of cell population densities. 

 3
6 VE%

d
N


   (4.7) 
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where d is the average cell size, VE% is the volume expansion % and N is the number of cells per 

unit volume of solid.   

Table 4.9 One-way ANOVA test for the dependence of PMC foams’ keff on PMC foam’s cell population 
density 

Testing 
Parameter 

Data Set P-Value Significance 

Cell Population 
Density 

25% volume 
expansion 

0.130 87% 

50% volume 
expansion 

0.094 >90% 

75% volume 
expansion 

0.906 <10% 

100% volume 
expansion 

0.553 <50% 

For the PMC foams with a cell population density of 1.4×106 cells / cm3 with respect to 

unfoamed volume, the cell size increased from approximately 70 μm to 111 μm as the volume 

expansion percent varied from 25% to 100%. The maximum keff occurred at 50% volume 

expansion. Figure 4.10 showed that the corresponding cell size is around 88 μm, which was 

consistent with the result in Figure 4.6. In other words, the initial increasing trend could be 

attributed to the cell expansion-induced filler alignment, as discussed in Section 3.3. As the 

volume expansion percent continued to increase, the corresponding average cell size became 

larger. As discussed in Section 3.2 and 3.3, both excess foam expansion and cell size could 

disrupt the filler interconnectivity. Together with the large volume fraction of thermally 

insulating air, the PMC foam’s keff dropped after reaching its peak at 50% volume expansion. 
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Figure 4.10 Effect of foam volume expansion on the average cell size with constant cell population 

density 

For the PMC foams with a cell density of 2.8×106 cells/cm3 with respect to unfoamed 

volume, as the volume expansion increased from 25% to 100%, the corresponding cell size 

increased from approximately 55 μm to 88 μm. In this case, the average cell sizes were smaller 

than that of the PMC foams with a cell density of 1.4×106 cells/cm3 with respect to unfoamed 

volume under same volume expansion percent. For instance, the average cell size was only 55 

μm for PMC foams with 25% volume expansion. The low degree of cell expansion was not 

sufficient to effectively align the hBN platelets along the cell wall. When the optimal cell size of 

about 88 μm had been reached, the corresponding volume expansion was 100%. The high 

volume fraction of thermally insulating air and the challenge to form an interconnected 

conductive filler path due to the small cell-to-cell distance would suppress the keff.  
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4.2.5 Effects of hBN and Foam Expansion on the Crystalline Structures of the 

LDPE and LDPE Composites 

As shown in Figure 4.11, typical crystalline peaks of LDPE at 21.5°, 24.3° and 36.5° were 

observed from the X-ray diffraction (XRD) spectra of LDPE and LDPE composites, which 

corresponded to the orthorhombic crystallite plane 110, 200, 210, respectively [98].  The XRD 

spectra reveal that the addition of Expancel® and/or hBN increased both the area and full width 

at half maximum (FWHM) of the (110) peak, which correspond to an increase in the degree of 

crystalline phase and a decrease in the crystal size. Table 4.10 shows that the area of the (110) 

peak increased most significantly in LDPE-hBN composite foams, followed by solid LDPE-hBN 

composites, and then LDPE foam. This is attributed to the synergistic effect of two mechanisms, 

(i) stress-induced crystallization caused by the extensional stress generated around expanding 

bubbles [99], and (ii) enhanced crystallization by the presence of hBN platelets as the 

nucleating agent [100]. Furthermore, the effect of filler-induced crystallization was observed to 

be more prominent when smaller hBN platelets (i.e., AC6041) were used. 
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Figure 4.11 XRD spectra of the LDPE, LDPE-hBN composites, and their foams: (a) neat LDPE; (b) LDPE 

foam with 25% volume expansion; (c) LDPE-hBNAC6041 solid composite with 9.21 vol.% hBN; (d) LDPE-

hBNPT110 solid composite with 9.21 vol.% hBN; (e) LDPE-hBNAC6041 composite foam with 9.21 vol.% hBN 

and 25% volume expansion; and (f) LDPE-hBNPT110 composite foam with 9.21 vol.% hBN and 25% volume 

expansion 

 

Table 4.10 Effects of hBN and foam expansion on the XRD spectra of LDPE, LDPE-hBN composites, and 
their foams (25% volume expansion) 

Composition Peak FWHM (°) 
Peak Area 

(°∙cts) 
Crystallite 

Size (Å) 

Neat LDPE (110) 0.1181 367.87 676.87 

LDPE Foam (110) 0.1378 394.29 580.11 

LDPE-hBNAC6041 Composite (110) 0.3936 862.26 203.07 

LDPE-hBNPT110 Composite (110) 0.1968 529.72 406.15 

LDPE-hBNAC6041 Composite Foam (110) 0.4330 1062.8 184.62 

LDPE-hBNPT110 Composite Foam (110) 0.3936 928.13 203.11 
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The typical (002), (004) and (100) peaks in an XRD spectrum of hBN were found in LDPE-

hBN composites in Figure 11 [101]. The (002) and (004) peaks refer to horizontally oriented hBN 

(i.e., the through-plane of hBN is perpendicular to the horizontal direction) while the (100) peak 

is related to vertically oriented hBN [102]. Table 4.11 shows the effects of hBN platelet size and 

foam expansion on the XRD spectra of LDPE composites. As expected, larger hBN platelets (i.e., 

PT110) resulted in stronger intensities and larger crystalline sizes for the (002) and (004) peaks 

due to the significant difference in the lateral sizes of the two hBN grades. Comparing with the 

solid LDPE-hBN composites, the dramatically change of the intensities of (002), (004) and (100) 

peaks of LDPE-hBN composite foams provide evidence of the foaming-induced change in hBN 

orientation in the composites. 

Table 4.11 Effects of filler size and foam expansion on the XRD spectra of LDPE, LDPE-hBN composites, 
and their foams (25% volume expansion) 

Composition Peak FWHM (°) 
Peak Area 

(°∙cts) 
Crystallite 

Size (Å) 

LDPE-hBNAC6041 Composite (002) 0.1378 18645.68 585.85 

LDPE-hBNPT110 Composite (002) 0.0787 67028.77 1025.92 

LDPE-hBNAC6041 Composite Foam (002) 0.1771 9296.68 455.90 

LDPE-hBNPT110 Composite Foam (002) 0.1378 24326.56 586.03 

LDPE-hBNAC6041 Composite (004) 0.1680 503.64 527.21 

LDPE-hBNPT110 Composite (004) 0.0590 2291.83 1501.62 

LDPE-hBNAC6041 Composite Foam (004) 0.4320 282.96 205.07 

LDPE-hBNPT110 Composite Foam (004) 0.0720 841.11 1231.01 

LDPE-hBNAC6041 Composite (100) 0.1968 125.85 426.80 

LDPE-hBNPT110 Composite (100) 0.1968 94.31 426.78 

LDPE-hBNAC6041 Composite Foam (100) 0.2362 192.2 355.68 

LDPE-hBNPT110 Composite Foam (100) 0.1968 205.15 426.94 
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4.3 Conclusion  

This study successfully fabricated thermally conductive low density polyethylene (LDPE)-

hexagonal boron nitride (hBN) composite foams with their effective thermal conductivity (keff) 

higher than their solid counterparts.  In order to explore how foaming induced filler alignment 

can promote the formation of such filler network, PMC foams with two levels of filler loading 

(i.e., 9.21 and 27.63 vol%) were studied. In particular, the keff of PMC foams filled with 9.21 

vol% of hBNAC6041 (i.e., submicron-scale) or hBNPT110 (i.e., micron-scale) reached as high as 1.16 

W∙m-1∙K-1 and 0.97 W∙m-1∙K-1, respectively. These values represented 26% and 21% increases 

over those of their solid counterparts. Parametric studies were conducted to study the effects 

of foam morphologies on the PMC foam’s keff.  

It was found that both foam volume expansion and cell size had competing effects on 

the PMC foam’s keff. PMC foams with moderate volume expansion percent would promote the 

foams’ keff. This was caused by the localization of fillers in the solid phase, which promoted the 

hBN platelets’ interconnectivity. In contrast, high volume expansion percent would result in 

high volume fraction of thermally insulating air voids. The reduced average cell-to-cell distance 

would also disrupt the development of continuous thermally conductive path. Therefore, the 

PMC foam’s keff would decrease. Similarly, large cell sizes also had both beneficial and 

detrimental effects on the keff. On the one hand, cell expansion would create a biaxial stress 

field that promoted filler alignment along the cell walls, and promoted the PMC foam’s keff. On 

the other hand, excessive cell expansion could disrupt the development of interconnected filler 

network, and subsequently suppress the PMC foam’s keff. Furthermore, the enhancement of 
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LDPE crystallization by the synergistic effect of the presence of hBN platelets and the foaming-

induced crystal nucleation was shown in X-ray diffraction (XRD) analyses. The XRD spectra also 

reveal foam expansion led to changes in the orientation of hBN platelets. 

In short, the findings of this research provided guidelines for the design and fabrication 

of lightweight thermally conductive PMC foams. Such thermally-conductive PMC foams would 

provide a new material family to assist the industry to deal with the challenge in heat 

management problem in their next generation products.  
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Chapter 5                                                                                                  

Fabrication of Thermally Conductive PMC 

Foams by Physical Foaming 

The focus of this thesis is to develop thermally conductive PMC foams with low filler 

loading. Results from Chapter 4 have demonstrated foaming as a strategy to promote PMC 

foam’s keff. This chapter studies the fabrication of PMC composite foams using CO2 as physical 

foaming agent. CO2 is a commonly used blowing agent in the industry, and this study can test 

the feasibility of large scale production of thermally conductive PMC foams.  

5.1 Experimental 

5.1.1 Materials 

In this study, the matrix material used was polylactic acid (PLA) (NatureWorks, Ingeo 

8052D). The physical properties of PLA are summarized in Table 5.1 [102]. PLA is a bioplastics 

derived from renewable resources. Besides its sustainability, PLA also has good optical property 

and can be processed with standard methods (e.g., extrusion, injection molding, film and sheet 

casting). hBN platelets with submicron thickness (Momentive Performance Materials Inc., 

PolarTherm, AC6041) were used as thermally conductive filler, and the physical properties are 

shown in Table 4.2. hBNAC6041 was chosen over hBNPT110, because the study in Chapter 4 showed 
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that it exhibited more pronounced enhancement on the PMC’s keff than hBNPT110 at same filler 

loading and foam structure. Pressurized CO2 (99.8% pure from Linde Gas Inc.) was employed as 

the physical foaming agent. CO2 was chosen as the physical foaming agent, because of its 

relatively high solubility in plastics, low toxicity, non-flammability, good thermal and chemical 

stability, as well as low cost. More importantly, it is not an ozone depleting agent. 

Table 5.1 Physical parameters of PLA 

Property Value Unit 

Density (ρ) 1240 kg/m3 

Melting temperature (Tm) 145-160 °C 

Thermal conductivity (k) 0.11-0.19 W∙m-1∙K-1 

 

5.1.2 Preparation of Foamable Film 

In order to reduce the gas saturation time for the batch foaming process, it is important 

to prepare the foamable samples with small thickness. Foamable pure PLA and PLA-hBNAC6041 

films were prepared with compression molding using the following steps: 

1. Pure PLA powders or dry-blended PLA-hBNAC6041 mixture with pre-calculated 

composition were placed into a thin film mold with thickness of 500 µm, and placed into 

a compression molding machine (Carver Press, 4386 CH). No pressure was applied at 

this step. 
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2. The temperature was increased to 185 °C and equilibrated at the set temperature for 25 

minutes to completely melt the PLA matrix. 

3. A pressure of 5 MPa was applied and maintained for 5 minutes to compress the molten 

sample into the shape of the mold.  

4. The compression-molded samples were transferred to a cooling module and clamped 

between a pair of cooling plates with flowing water channels to solidify the samples. 

5.1.3 Procedure of Sorption Study 

Before foaming, a PLA–CO2 sorption study was conducted at room temperature with the 

gas pressures at 1000 psi. The saturation pressure was chosen based on results in existing 

literatures of CO2 blown PLA foams [103, 104]. The sorption experiments were carried out to 

study the rate of uptake and the equilibrium concentration of CO2 gas in PLA, which will help to 

identify the appropriate gas saturation time for the batch foaming process. 

Samples measuring approximately 2.5 cm by 2.5 cm were cut from foamable films 

prepared with steps listed in section 5.1.2. After measuring the weight, a piece of sample was 

placed into a foaming chamber and saturated at 1000 psi. After a pre-determined saturation 

time, the sample was removed from the pressure chamber for weighing. The change in the 

sample’s weight is equal to the weight of CO2 absorbed by the foamable film. The CO2 uptake 

can be approximated by dividing the weight difference by the original weight. Three samples 

were weighted for each saturation time. The saturation time was increased until the CO2 

uptake stopped changing, indicating that CO2 concentration has reached its solubility in PLA.   
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5.1.4 Procedure of Foaming Study 

The foamable films prepared with steps listed in section 5.1.2 were cut into square 

samples (approximately 2 cm by 2 cm) for the foaming process. Foam structures were obtained 

using a typical batch foaming process, which includes the following steps: 

1. Saturate the foamable film with pressurized CO2 (1000psi) in a foaming chamber at 

room temperature for 1 hour. 

2. Rapidly depressurize the foaming chamber and remove the saturated sample. 

3. Load the saturated sample into a foaming mold and submerge the mold into oil a bath 

with controlled temperature (i.e. 100 °C, 110 °C, 120 °C, 130°C or 140 °C). 

4.  Put the sample, along with the foaming mold, into ice-water to stabilize the foam 

structure. 

5.1.5 Sample Characterization 

The apparent density of foamed samples is obtained by measuring its weights in air and 

in water. The process and setup was in accordance to ASTM D1622 [105]. Equation 5.1 was 

used to calculate the apparent density from the weights measured in air and water. 

 


 


air water

air water

m

m m
 (5.1) 

where ρ is the apparent density of sample, mair is the  sample’s weight measured in air, mwater is 

the sample’s weight measured in water, and ρwater is the density of water.  
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The hBN’s dispersion and/or foam morphology of PLA foams and PLA-hBN composite 

foams were observed by scanning electron microscopy (FEI Company, Quanta 3D FEG). Samples’ 

cross-sections were exposed by cryo-fracturing PMC samples under liquid nitrogen. The 

fractured surface was sputter-coated with gold (Denton Vacuum, Desk V Sputter Coater). Finally, 

the keff of PLA-hBN composites and their foams were measured with a thermal conductivity 

analyzer (TCA) in accordance to ASTM D5470 [106]. 

5.2 Results and Discussion 

5.2.1 Sorption Study 

The CO2 saturation results of neat PLA samples are shown in Figure 5.1. The equilibrium 

CO2 concentration in PLA at 1000 psi and room temperature was found to be approximately 

230 µg CO2 per g of PLA (23 wt.%). Such concentration is comparable to previous CO2 sorption 

study in PLA, which reported 21 wt.% CO2 uptake at 5 MPa (approximately 725 psi) [103]. The 

results also suggested that the samples can reach equilibrium in less than 1 hour of saturation. 

As a results, all neat PLA samples were saturated under 1000 psi for 1 hour in subsequent 

foaming studies.  
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Figure 5.1 CO2 uptake in neat PLA at room temperature and 1000 psi 

Figure 5.2 (a) showed the sorption curve of PLA-hBNAC6041 composites with 10 vol.% filler 

loading. In order to compare the results with neat PLA’s sorption study, the CO2 concentration 

was normalized with respect to the weight of PLA in the composites, and was illustrated in 

Figure 5.2 (b). It can be seen that the equilibrium CO2 concentration in PLA at 1000 psi and 

room temperature was approximately 240 µg CO2 per g of PLA (24 wt.%). The results suggested 

that the addition of hBNAC6041 has negligible effect on CO2’s solubility. More importantly, it was 

found that the CO2 concentration could reach equilibrium with 1 hour’s saturation at 1000 psi. 

This saturation time and pressure were used in subsequent PLA-hBNAC6041 foaming study.  
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Figure 5.2 (a) CO2 up take in PLA-hBNAC6041 (10 vol.%) at room temperature and 1000 psi; and (b) 

Normalized CO2 up take in PLA-hBNAC6041 (10 vol.%) at room temperature and 1000 psi 

5.2.2 Foaming Study 

After the sorption study, a series of foaming studies was carried out for both neat PLA 

and PLA-hBNAC6041 composites. The effect of desorption time, foaming temperature and 

foaming time was investigated.  

5.2.2.1 Foaming Study for Neat PLA 

A previous research suggested that a suitable foaming time can maximize the foam’s 

volume expansion [103]. The authors believe that with a short desorption time the gas 

concentration at the surface region of the samples is still high. It will foam and provide channels 



 

 

86 
 

for the gas deep inside to escape without participating in the foaming process. Although this is 

not a settled conclusion, it is believed this phenomenon is related to the CO2 concentration at 

the surface region. In order to determine an appropriate desorption time, a series of foaming 

studies were conducted by varying desorption time, while maintaining other foaming 

parameters (foamed at 100 °C for 5 seconds). The effect of desorption time on volume 

expansion is shown in Figure 5.3. The results suggested that 30 minutes desorption could create 

largest foam expansion.  

 
Figure 5.3 Effect of desorption time on foam’s volume expansion 

In order to compare the foam morphologies, Figure 5.4 presented the SEM micrographs 

of neat PLA foams with different desorption times. It can be seen that foams obtained with 30 

and 45 minutes of desorption time have both larger volume expansion and more uniform cell 

morphology compared to samples prepared with other desorption times. If the desorption time 

was shorter that the optimal time, the CO2 concentration at the surface region would be too 

high. Figure 5.4 (b) shows that samples with 15-minute desorption time has a thin layer of 

unfoamed skin. In extreme case (i.e. 3 minutes), the entire sample was not foamed, due to the 

extremely high CO2 concentration at the surface. By contrast, excessive desorption time would 
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allow too much CO2 to diffuse away through the surface, and the amount of CO2 participated in 

the foaming process is insufficient. This would result in a not well foamed sample (Figure 5.4 

(e)). The under-foamed surface region in Figure 5.4 (b) and (e) further proved that a suitable 

CO2 concentration at the surface region is important to obtain a uniform foam morphology. In 

order to obtain large volume expansion and uniform foam morphology, 30 minutes desorption 

time was used for all subsequent foaming studies. 
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Figure 5.4 SEM images of samples foamed at 100 °C for 5 seconds with different desorption time: (a) 3 

minutes desorption; (b) 15 minutes desorption, (c) 30 minutes desorption, (d) 45 minutes desorption; 

and (e) 60 minutes desorption 
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5.2.2.2 Foaming Study for PLA-hBNAC6041 Composite 

The second phase of foaming study investigated how foaming time and foaming 

temperature affect PLA-hBNAC6041 (with 10 vol.% filler loading) composite foams’ morphology. 

Table 5.2 listed all foaming conditions that have been studied. This foaming study provided 

important information to determine foaming conditions that will be used to fabricate PLA-

hBNAC6041 composite foams for keff measurements.   

Table 5.2 Foaming conditions studied for PLA-hBNAC6041 composite foams 

 
Foaming Temperature 

100 °C 110 °C 120 °C 130 °C 140 °C 

Foaming 
Time 

3 s 3 s 3 s 3 s 3 s 

5 s 5 s 5 s 5 s 5 s 

10 s 10 s 10 s 10 s 10 s 

15 s 15 s 15 s 15 s 15 s 

20 s 20 s 20 s 20 s 20 s 

 

The apparent density of each foamed sample was obtained by weighing the sample both 

in air and in water. The apparent density was used to calculate the foam’s volume expansion 

with Equation 5.2, and the calculated results were plotted in Figure 5.5. It was found that the 

volume expansion of samples prepared with excessive foaming time (i.e. > 10 s) are not 

sensitive to the foaming temperature, and the volume expansions are generally small. For the 

samples that are prepared with 3 s and 5 s foaming time, the volume expansion has a wide 
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range; and the values are distributed in this range in a relatively uniform manner. This enabled 

the fabrication of PLA-hBNAC6041 composite foams with different levels of volume expansion, 

and provided the chance to explore the volume expansion’s effect on the keff. 

 
Figure 5.5 Volume expansion % of sample’s prepared with different foaming time and temperature. 

 




  
        
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foam solid solid

solid foam

V V
VolumeExpansion 100% 1 100%

V
 (5.2) 

where Vfoam is the volume of the PMC foam sample; Vsolid is the volume of the solid portion of 

the sample; ρsolid is the density of unfoamed sample and ρfoam is the apparent density of the 

composite foam. 

5.2.3 keff of PLA-hBNAC6041 Composite Foamed by CO2 

Based on the results of foaming study of PLA-hBNAC6041 composite foams (Chapter 

5.2.2.2), four conditions were chosen to fabricate PLA-hBNAC6041 composites foams for the 

measurement of their keff. Table 5.3 summarized the foaming parameters and their 

corresponding volume expansion. A constant foaming time, 5 seconds, was chosen to provide a 

wide range of sample’s volume expansion. It is noted that the foaming temperature of 140 °C 
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was not used to prepare samples for the measurement of their keff, because it generates a 

volume expansion close to samples foamed at 130 °C (see figure 5.5).  

Table 5.3 Foaming conditions and their corresponding volume expansion for PLA-hBNAC6041 composite 

foams 

Desorption Time 
(min.) 

Foaming Time 
(s) 

Foaming Temperature 
(°C) 

Volume Expansion 
(%) 

30 5 100 126 

30 5 110 183 

30 5 120 65 

30 5 130 35 

 

The keff of samples prepared with the aforementioned foaming conditions were 

measured and reported in Figure 5.6. It was found that the keff decreased monotonically with 

respect to volume expansion; and the mound-shaped curves observed in Figure 4.4 and 4.6 

were absent. In other words, no foamed sample demonstrated higher keff than the solid 

counterpart. One possible reason is that no sample has a volume expansion close to 25%, which 

is the best case scenario overserved in Chapter 4. The failure of achieving promoted keff could 

also be attributed to that one or more of foaming’s positive effects on PMC’s keff did not 

function properly in the samples prepared with solid state foaming.     
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Figure 5.6 Effect of volume expansion on keff of PLA-hBNAC6041 foams blown by CO2 

As discussed in Chapter 4, foaming has two mechanisms that are beneficial for 

promoting the keff: 1) increasing effective filler loading by localizing fillers in the solid phase; and 

2) aligning fillers along expanding cell walls with foaming-induced biaxial stress field. In order to 

identify which mechanism(s) failed in the PMC foams prepared with solid state foaming, the 

foam morphologies of the samples were observed with an SEM microscopy; and the resulting 

SEM images are presented in Figure 5.7. The cell population densities and cell sizes of samples 

prepared under each condition are presented in Figure 5.8 and 5.9, respectively. It is found that 

the cell sizes for all samples are less than 10 µm, which is much smaller compared to that of the 

samples foamed with Expancel® microspheres (56 µm to 120 µm). The small cell size was not 

able to effectively align fillers along the cell walls, hence the second mechanism became 

insignificant, which subsequently failed to enhance the keff of PMC foams. Although no foamed 

sample demonstrated keff higher than the solid counterpart, samples with 35% volume 

expansion and the solid counterpart have close keff values (0.72 W/mK and 0.76 W/mK, 

respectively). In other words, the mass density and material cost were reduced without 

significantly compromise the keff. 



 

 

93 
 

 

 500 X 2500X 

100 °C 

  

110 °C 

  

120 °C 

  

130 °C 

  
Figure 5.7 EM images of PLA-hBNAC6041 composites foams prepared with conditions listed in Table 5.3 
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Figure 5.8 Cell population density of PLA-hBNAC6041 composites foams with different volume expansion 

 

 
Figure 5.9 Cell size of PLA-hBNAC6041 composites foams with different volume expansion 

5.3 Conclusion  

This study explored the feasibility of producing thermally conductive PMC foams with 

the method of solid state foaming. PLA-hBNAC6041 composites foamed with CO2 were studied as 

a case example. First, a series of sorption studies was conducted at 1000 psi for both neat PLA 

and PLA-hBNAC6041 composites to determine the solubility of CO2 in PLA. It was found that the 

addition of hBNAC6041 does not have a significant effect on CO2’s solubility in PLA. Moreover, the 
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sorption results suggested that CO2 uptake in PLA can reach equilibrium within one hour at 

1000 psi. This provided a guideline for saturation time in the subsequent foaming study. 

Secondly, both neat PLA foams and PLA-hBNAC6041 composite foams were fabricated using solid 

state foaming. The effects of desorption time, foaming temperature, and foaming time were 

studied by setting the other two as controlled variables. It was found that an appropriate 

desorption time (i.e., 30 minutes to 45 minutes) can generate well expanded foam with uniform 

cell morphologies. Finally, the keff were measured for selected foaming conditions as well as the 

solid counterparts with same filler loading. Although no foamed samples demonstrated keff 

higher than the solid counterpart, the keff of samples with 35% volume expansion (0.72 W/mK) 

was found to be close to the solid counterpart (0.76 W/mK). In other words, the mass density 

and material cost were reduced without significantly compromise the keff. The failure to reach 

enhanced keff was believed to be caused by the small cell size, which was not able to effectively 

align fillers along the cell walls. Once the cell size can be increased by varying foaming 

parameters (e.g., rate of depressurization), it is anticipated that the same results as Expancel® 

blown PMC foams can be obtained, and the keff can be improved.  
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Chapter 6                                                                                                  

Conclusion and Recommendations 

6.1 Contribution 

The miniaturization of electronic devices is hinged to effective heat dissipation. This 

requires new multifunctional materials with high thermal conductivity and good electrical 

resistivity. Owing to their good electrical insulation, light weight, low cost and good 

processability, polymer based materials have been widely used as packaging materials in the 

electronics industry. With enhanced thermal conductivity, the heat dissipation rate can be 

greatly increased. Furthermore, thermally conductive PMCs has the potential to replace 

traditional metallic heat sinks. In this context, this thesis aims to develop a thermally conductive 

polymer material system. More specifically, this thesis utilized foaming-induced filler 

localization and alignment to promote the formation of thermally conductive filler network. 

Foaming can localize filler particles in the solid phase, hence increase the chance of filler 

interconnection. Moreover, the foaming-induced biaxial stress field can align thermally 

conductive filler along expanding cell walls, which can further increase the possibility of filler 

connection. The well-developed filler interconnection can form a conductive filler network, 

which can reduce phonon scattering during heat transfer and increase the keff.  

First, an analytical model was developed to confirm the feasibility of foaming-induced keff 

enhancement. After being verified with existing experimental data, parametric studies were 
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conducted to investigate the effects of foam morphology and filler’s anisotropic thermal 

conductivity on the PMC foam’s keff. It was found that constrained foaming to promote 

expansion in the heat flow direction would enhance the PMC foam’s keff. Moreover, the 

effectiveness of using foaming as a fabrication strategy to promote PMC’s keff would increase 

with the anisotropy of filler’s thermal conductivity. These findings provided new insights to 

design thermally conductive PMC foams and guidelines for subsequent experimental studies. 

Second, an extensive experimental study was conducted. LDPE-hBN composites blown 

by Expancel® microspheres were studied as a case example to prove the concept. The results 

parametrically revealed the structure-to-property relationship of thermally conductive PMC 

foams. It was found that there exists an optimal foam volume expansion and cell size that can 

maximize the PMC foam’s keff. Both foam volume expansion and cell size had competing effects 

on the PMC foam’s keff. PMC foams with moderate volume expansion can localize fillers in the 

solid phase, which promoted the hBN platelets’ interconnectivity. However, high volume 

expansion percent would result in high volume fraction of thermally insulating air voids, which 

is detrimental for the keff. Likewise, an appropriate cell size can maximize the PMC foam’s keff. 

The initial cell expansion would create a biaxial stress field that align fillers along the cell walls, 

and promoted the PMC foam’s keff. Nevertheless, excessive cell expansion could disrupt the 

development of interconnected filler network, and subsequently suppress the PMC foam’s keff. 

More importantly, this study represented the first time that a PMC foam has a keff higher than 

the solid counterpart with same filler loading. 
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Finally, physical foaming was studied as the fabrication method to produce thermally 

conductive PMC foams. Compared to Expancel® Microspheres, physical foaming is a more 

feasible way in larger scale production. The study used CO2 as physical blowing agent, PLA as 

polymer matrix, and hBNAC6041 as thermally conductive filler. Although no foamed samples that 

are more thermally conductive than the solid counterpart has been achieved, this study 

reported PMC foams with reduced mass density and material cost without significantly 

scarifying its keff.    

6.2 Recommendation for Future Work 

This thesis research focused on utilizing foaming to promote filler interconnection, 

hence improve the keff of the polymer material system. While this thesis work has 

demonstrated foaming can promote the formation of thermally conductive network, it is 

important to further reduce the phonon scattering by minimizing the contact resistance 

between filler-filler surface and filler-polymer surface. It is recommended to investigate surface 

treatment methods (e.g. surface coating and functionalization) that can improve the filler-

polymer compatibility.  

In the last study, physically foamed samples was not able to achieve keff higher than 

their solid counterparts. This is believed to be caused by the small cell size, which failed to 

effectively align fillers along the cell wall. It is recommended to investigate the foaming 

parameters to obtain PMC foams with larger cell size. This may involve using different 

saturation pressures, pressure drop rates, foaming time and foaming temperature in the 

foaming process. 
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Finally, this thesis study only focused on the keff of the material system. There are still 

some other material properties that should be evaluated in future studies before using such 

thermally conductive PMC foams in electronic packaging or other applications. These properties 

include, but not limited to, tensile strength, coefficient of thermal expansion, and dielectric 

properties. 
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