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Abstract

Precision spectroscopy of atomic helium fine structure provides a means of testing
fundamental few-body theory as well as determining the fine-structure constant «,
which characterizes electromagnetic interactions in nature. Progress in both exper-
iment and theory has led to increasingly precise values for the splittings between
the n=2 triplet P states of helium, and at the current level of uncertainty, quantum
interference can be a significant source of systematic error in measurements of the
fine-structure intervals.

This work deals with these quantum interference effects, which are due to co-
herent excitation of the atom to multiple neighboring states, and may result in
substantial shifts in the measured positions of resonance line centers, even if the
transition frequencies of adjacent resonances are thousands of natural widths away.
The scale of the shifts depends on the measurement technique and the experimen-
tal parameters, and therefore a selection of the most precise measurements of the
helium fine-structure intervals are analyzed in order to calculate the relevant inter-

ference effects. The inclusion of these interference shifts leads to greater consistency
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between values obtained by several different experimental techniques, and furthers
the program of obtaining a high-precision value of the fine-structure constant by

comparison between experiment and theory.
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1 Introduction

This thesis presents an analysis of quantum interference effects in precision spec-
troscopy of helium fine-structure. This systematic source of error is due to ex-
citation of off-resonant transitions, and must be accounted for in order to ensure
consistency between experimental values of the helium n = 2 triplet P fine-structure
intervals, and also to make a comparison with theory possible to a high degree of
accuracy.

More than fifty years ago, C. Schwartz initiated a theoretical program to cal-
culate the fine-structure energy spacings in atomic helium [1]. This program was
motivated not only by a desire to advance the quantum-electrodynamics (QED) the-
ory of this simplest multi-electron atom, but also to obtain a more accurate value
of the fine-structure constant a, which characterizes the strength of the electro-
magnetic interaction in nature. As he suggested, the relatively long lifetime (~ 98
ns) and large spacing (= 30 GHz) of the lowest-lying helium triplet states allows
measurement, of the fine-structure splittings to a higher accuracy than is possible in

hydrogen spectroscopy (at the time, to a level of 107¢), and thus a determination of



the fine-structure constant to a part-per-million precision could be made by combin-
ing these improved experimental data with comparably-accurate theoretical values.
In the intervening decades, both theoretical [2-8] and experimental [9-18] progress
has been made to obtain the fine-structure intervals to ever-higher precision.

The recommended value [19] of the fine-structure constant, from the 2014 Com-
mittee on Data for Science and Technology (CODATA 2014), is
a = 7.2973525664(17) x 1073, which has an uncertainty of less than a part per billion
(ppb). This value is derived from a combination of independent determinations of
«, involving a variety of physical systems, including measurement of single-particle
characteristics, atomic level structure, and the electrical properties of solid-state
systems. The most accurate value of the fine-structure constant to date has been
obtained from a combination of theory [20] and measurements [21] of the electron’s
anomalous magnetic moment, g — 2. The value of a has also been found by mea-
suring the velocity and deBroglie wavelength [22| of a neutron beam to obtain the
ratio h/m,. Analogous experiments have been performed using Cesium [23, 24]
and Rubidium [25] atomic recoil to measure h/mcs and h/mpg,, respectively, to
high precision. Probing of muonium ground-state hyperfine structure [26] is an-
other technique used to determine «. Finally, values of o obtained from electrical
measurements based on the AC-Josephson [27] and quantum-Hall [28] effects were
also incorporated into the CODATA value quoted above.

Curiously, values of a derived from the fine-structure intervals themselves (which



provided the name for «) have not attained the same level of accuracy as in the
above mentioned methods. A competitive determination of a using helium spec-
troscopy will require both a greater consistency among experimental values, and an
improvement in the theoretical uncertainty than is presently the case. An analysis

of interference effects will contribute to resolving the former of these constraints.

1.1 Helium Energy Levels and 2°P Fine Structure

The schematic in Fig. 1.1 depicts the low-lying energy levels of atomic helium, in-
cluding the excited n = 2 triplet states. The ground state is a spin singlet with
electronic configuration 1s2, where both electrons occupy the ground state orbital,
with antiparallel spins. It is denoted by 1'S,, where the notation n?3*'L; repre-
sents a multi-electron state with a combined spin quantum number S, combined
orbital angular-momentum quantum number L (with the labels "S","P" "D" | etc.
indicating L = 0,1,2,...), and total angular-momentum quantum number J. The
ground state therefore has S =0, L =0 and J = 0.

In all stable excited configurations, one electron remains in the ground state,
while the other occupies a higher-energy orbital. Excited states are either spin sin-
glets (S = 0, with antiparallel spins) or spin triplets (S = 1, with parallel spins),
and the two sets of states are not connected by single-photon dipole transitions.

The triplet states have lower energies than the corresponding singlet states. This



is due to the symmetric nature of the triplet spin state, which necessitates an anti-
symmetric spatial wavefunction, as required by the Pauli exclusion principle. The
electrons in triplet states thus experience a smaller probability to be found close
together than those in singlet states (which have symmetric spatial wavefunctions),
remaining on average further apart in space, and therefore contributing less poten-

tial energy from the repulsive electron-electron interaction.

3
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2P,
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singlet states 23p2
N 3
(2 P)=98 ns
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(1083 nm)
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triplet states

!
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Figure 1.1: The lowest-lying energy levels of atomic helium (not to scale), showing
the n=2 triplet states, with the 2.3- and 29.6-GHz fine-structure intervals indicated.
The 23S; metastable state, with a lifetime of 7900 s, and the 23P excited states,
with a lifetime of 98 ns, are separated by an infrared frequency transition.



The first excited triplet state of helium is the metastable 23S; state (1s2s),
which lies about 20 eV above the ground state. It is the longest-lived neutral
atomic excited state [29], with a lifetime of 7900 seconds that makes it a convenient
initial state for precision spectroscopy. The next excited states are the 23P; states,
which are separated from the metastable state by a 277 THz (1083 nm, infrared)
transition, and have a lifetime of 7 ~ 98 ns. This lifetime corresponds to a natural
linewidth of 1.63 MHz. The 23P; states are split into three fine-structure levels
(with J=0, 1, or 2), and the differences between these energy levels are the focus
of the precision spectroscopy discussed in this work. There are two independent
intervals Af;: the small interval Af;, ~ 2.291 GHz, and the large interval
Afor ~29.617 GHz.

The theoretical description of the helium fine-structure as a bound two-electron
system expresses the intervals as perturbative series expansions in the fine-structure

constant a:

AE gy = mec? (oz45(4) + &) 4+ 860 1 oTeM 4 ) , (1.1)

where m.c?

is the electron rest-energy, and the expansion coefficients £ may
include terms of the form In(«). The series incorporates corrections for relativistic
and radiative effects such as vacuum polarization, the electron self-energy, and

two-photon exchange between electrons. The current state of the art [8] includes

calculations of the terms up to m.a’ and m.a®(m./M), where M is the mass of



the helium nucleus.

Consistency between the measured and predicted values of the smaller 23P;—23P,
splitting (2.3 GHz) provides a check of the accuracy of He QED theory, as this in-
terval is less sensitive to the value of a due to its small size. The larger 23P,—23P;
interval (29.6 GHz) can be used to extract a value of the fine-structure constant
by comparing the measured value of Afy; and its theoretical expansion in powers
of a (Eq. (1.1)). With increasingly accurate values available for these intervals,
determination of a to the level of a part per billion from a comparison between
experiment and theory may soon be possible.

In order to measure the fine-structure intervals to sufficient accuracy that a
comparison with theory can be made, experimental techniques must contend with
numerous systematic effects. When probing an atomic sample with an applied elec-
tromagnetic field, the observed spectra are affected by both external and internal
atomic degrees of freedom. The Doppler shift due to the translational motion of
an atom relative to the direction of propagation of the exciting field needs to be
considered, as well as the effects of atom-atom and atom-photon collisions, which
can alter the velocity distribution of an atomic population. Perturbations to the
atom’s internal energy levels are also present, including Zeeman shifts caused by ex-
ternal magnetic fields, and power-dependent shifts that depend on the intensity of
the applied field. All of these aforementioned effects have been carefully accounted

for in precision measurements, leading to sub-kilohertz accuracy in the determined



values of the fine-structure spacings.

1.2 Interference Shifts

Given that measurements of the fine-structure intervals are now made to a precision
in the hundreds of Hz, the effect of quantum interference between neighboring res-
onances becomes an important source of systematic error. Such interference occurs
when an applied field excites two or more transitions in an atomic system, resulting
in a range of interference phenomena that include narrowing of spectral lines, can-
cellation or phase control of spontaneous emission, and distortions of Lorentzian
line shapes [30-32]. Of particular interest are shifts in the resonance line centers
that are of comparable magnitude to the accuracy of the measurement. These shifts
can persist in the limit of zero power of the exciting field, and may involve even
quite distant off-resonant transitions, so they must be taken into account.
Quantum-mechanical interference effects originate when an applied oscillatory
field that is tuned to a particular atomic resonance also drives transitions to off-
resonant states. The atom can then release its absorbed energy through different
decay pathways that coherently interfere with each other to cause distortions in
the line shape, which manifest themselves as shifts in the measured center of the
resonance profile. Analytical studies [33, 34| of three- and four-level model atoms

interacting with a simple sinusoidal pulse of finite duration have demonstrated sig-



nificant shifts in the line shapes, even when neighboring resonances are separated
by many natural line widths. These shifts remain even in the limit of zero field
intensity, and have a scale that depends on the width of the resonance, the sepa-
ration between the neighboring states, and also on the specific observable used to
construct the resonance profile. For realistic experimental situations, where more
atomic levels are involved, and the applied field has a more complicated time-
dependent form, a numerical approach is required to simulate the specific details

of a particular measurement technique.
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Figure 1.2: Measurements and theory for the 23 P fine-structure intervals in helium.
The measurements of the 23P,—23P,, 23P,—23P;, and 23P,—23P, intervals are
shown in (a), (b), and (c) respectively, with points labeled according to the group
performing the experiment. Filled symbols denote direct measurements, while open
symbols represent inferred values based on measurements of the other two intervals.
The points labeled Theory show the calculations of Pachucki and Yerokhin [8]
adjusted for the CODATA 2014 [19] value of a.

In this thesis the effect of quantum interference is considered for the five ex-

perimental techniques that have led to the most precise measurements of the he-



lium 23 P fine structure. These measurements and their uncertainties are shown in
Fig. 1.2, along with the values of the intervals predicted by QED theory. It can
be seen that for each interval, while individual experimental values are measured
to the kHz level or better, the consistency of the experimental measurements, and
the consistency between the measurements and theory are to within a few kHz of
each other. Tt is the aim of this work to calculate the interference shift present in
each of the experimental determinations and apply appropriate corrections. These
corrections bring the measured values into better agreement with theory and with
each other.

Chapter 2 provides an outline of how quantum interference in precision spec-
troscopy is characterized, and introduces the theoretical formalism that will be
used in the remaining chapters to model each type of experiment. In Chapter 3
an analysis follows of interference effects in the Shiner-group experiment using
laser spectroscopy of 23S-to-23P transitions in a narrow-angular-spread atomic
beam [17, 35]. In Chapter 4 details are presented about quantum interference in the
more complicated Inguscio-group experiment, based on saturated-fluorescence laser
spectroscopy in a broad- angular-spread atomic beam [36]. In Chapter 5 the im-
pact of interference in the Gabrielse-group measurement using saturated-absorption
spectroscopy in a gas cell [15] is discussed. Finally, Chapter 6 deals with fine-
structure measurements (Hessels group) which use microwave spectroscopy that di-
rectly drives transitions between the 23 P; states [13], including an experiment that

10



uses the Ramsey technique of separated oscillatory fields [16]. For each method, a
separate calculation of the quantum-mechanical interference effect is necessary, with
computationally-intense numerical solution of density-matrix equations describing
the evolution of atomic population, as well as modeling of the specific experimen-
tal situation. A theoretical derivation of density-matrix equations from a master

equation is covered in Appendix A.
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2 Quantum Interference in Precision Spectroscopy

2.1 Spectral Interference

In the context of precision spectroscopy, the natural line shape for an atomic tran-
sition that is probed near resonance can be distorted by quantum interference with
off-resonant transitions to neighboring states. This small deviation results in a shift
in the extracted line center that is potentially significant for the accuracy of the
measurement.

The effect of a neighboring resonance on the ideal Lorentzian line shape form
can be illustrated [37] with a simple model of two classical electric dipole moments
¢1 and ¢ oscillating with respective resonant frequencies w; and ws. The observed
spectrum due to an applied driving field of frequency w is given by the square-

modulus of the sum of two complex Lorentzian functions:

Q1 n Qe
i(w—wl)—i-Fl/Q i(w—w2)+F2/2 ’

I(w) = (2.1)

where I'; and I'y are the line widths of the individual resonances, and ¢ is a phase
angle that allows ¢; and ¢, to be represented by real quantities. The resulting

12



intensity spectrum is a combination of the two individual Lorentzian functions for
independent oscillators at w; and ws, plus a third cross-term that depends on the
relative orientation of the dipoles, and their phase-difference . In the case of
orthogonal dipoles (i.e., @1 - o = 0) this interference term vanishes.

The impact of a distant resonance, and in particular the effect of interference, on
the determination of a spectral line center may be seen by generating the spectrum
with and without the cross-term in Eq. (2.1). A Lorentzian function fitted to one of
the two spectral lines is used to extract the line center, while varying the separation
of the resonant frequencies. Fig. 2.1 shows the deviations from the expected line
center w; of the first resonance as a function of the separation Aw = wy — wy of
the two features. For simplicity, the line widths are set to be equal (I'y = 'y =T,

and the dipole moments have equal magnitudes and zero relative phase (|71]| = |3,

p=0).

13



10 100 1000 10000
Resonance Separation (Aw/T)

Figure 2.1: The relative shift dw; /I in the line center of one component of a double-
line spectrum. The center frequency w, is obtained by fitting a Lorentzian profile
to the feature, while varying the relative separation Aw/I' = (wy — wy)/T" between
the two resonances, where I is the line width of either resonance. The black dashed
line shows the shift that would have resulted if the interference term in Eq. (2.1)
is ignored, while the blue line is the shift that results when the complete model of
Eq. (2.1) is used.

The black dashed line shows the expected shift in the line center when the
spectrum is modeled as a simple sum of two Lorentzians (in other words, for the
typical case where interference effects are ignored). The perturbation to the spectral
feature of interest is seen to rapidly fall off as the resonances are separated, and one
can therefore neglect the effect when the separation Aw is large. However, when
the spectrum is realistically calculated using Eq. (2.1), the resulting shift in the

measured line center (the blue line in Fig. 2.1) is orders of magnitude larger, and

is not negligible even when the separation of the resonances extends to thousands

14



of natural line widths.

2.2 The Four-level System

A representative system that models quantum interference is the four-level atom [34]
shown in Fig. 2.2, with two ground states (denoted |0) and |1)) and two excited
states (|2) and |3)). An applied field couples the ground state |1) to both of the
upper levels, which can radiatively decay down to either of the two ground states.
The second ground state (]0)) is not coupled to either of the excited levels, and is

therefore a dark state, so that any population that decays to |0) will remain there.
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Figure 2.2: A four-level model atom, illustrating quantum interference between
resonant (solid line) and non-resonant (dashed line) transitions. Radiative decay
paths are shown with matching colors for interfering processes.
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There are consequently two quantum-mechanical paths by which the atom can
be excited and subsequently decay to a particular ground state, and these two pro-
cesses can coherently interfere with one another. One pair of interfering pathways
in Fig. 2.2 is the resonant excitation (solid arrow) from the ground state |1) to the
excited state |2), with subsequent decay back to |1). This process interferes with
the off-resonant excitation (dashed arrow) to state |3) and a similar decay to |1).
The second pair of interfering pathways involves the same excitation processes as
the first, but with decay to the dark |0) state instead. When the driving field is
tuned close to one of the excited-state transitions, the amplitude for excitation to
the off-resonance state is very small. However, the interference in the decay paths
can affect the transfer of atomic population sufficiently to cause a distortion in the

line shape and a resultant shift in the derived resonant frequency.

2.3 Density-matrix Equations

To study the effect of quantum interference on a measurement of a particular tran-
sition frequency in the four-level atom, it is necessary to model the evolution of
population in the ground and excited states, incorporating the physics of Rabi
oscillations, spontaneous decay, and optical pumping that results from prolonged
interaction with the driving field. This can be achieved using a density-matrix

formalism.

16



The interaction energy of the atom with an electric field (e.g., the field from a
laser) that couples the ground state to the excited levels is given by V (t) = eE(t)-7,
in the electric-dipole approximation. For a monochromatic plane wave of frequency
w, peak intensity Iy, and linear polarization Z, the electric field experienced by the

atom is

E(t) = 2By f(t) cos(wt + ), (2.2)

where Fy = %, ¢ is a phase, and f(t) is a function that defines the time-varying

amplitude of the field. I is the maximum intensity of the field in W/m? (for which
it is assumed that f = 1), € is the vacuum permittivity, and c is the speed of light.

If the transition frequencies wy; and ws; shown in Fig. 2.2 are much larger than
the detuning of the applied field from either state |2) or state |3) (i.e., wor, w3 >
was), we can apply the rotating-wave approximation 38|, in which the non-resonant
exp [—i(wt + ¢)] part of cos (wt + ¢) is ignored. In this approximation, the density-

matrix equations describing population transfer in the four-level system (see Ap-

17



pendix A) may be written as 34, 43]:

P11 = 5 P12 — 7,021 + 5 P13 — 7P31
+ Yas1p22 + V351033 + Yaz1(pas+ps2) (2.3a)
P2 = 72021 — 22012 — V2p22 — %(023 + p32) (2.3b)
P33 = 73P31 - 23[)13 — Y3033 — % (P23 + p32) (2.3¢)
P12 = —2 (p11—p22) — —3P32 - Emg - (ﬁ + lAQ) P12 (2.3d)
2 2 2 2
P13 = —3(011—,033) — —Zpas — @,012 - (B + ZA3> P13 (2.3¢)
2 2 2 2
P23 = 73,021 - 72,013 - % (p22 + pa3) — (% + % + ZW23> P23 (2.31)

The diagonal density-matrix elements pjq, pag, and ps3 in Eqgs. (2.3) represent
the populations in the ground and excited states, while the off-diagonal elements
P12= P51, P13= P51, and peg = pi, represent correlations between states. If the system
starts in the |1) state, the initial value of pq; is 1, with all other entries set to zero.
The equations for po1, po2, and po3 are not required, as none of these quantities
appear in the right-hand side of Eqs. (2.3), and the population in the dark state
|0) (i.e., poo) can be found from the condition poy + p11 + p22 + p33 = 1.

In Egs. (2.3), Ay = w — wy; and A3z = w — w3y are the detuning of the laser
frequency w from the [1) — |2) and |1) — |3) transitions, respectively, where wq
and ws; are the frequencies shown in Fig. 2.2. The quantities 25(¢) and Q3(¢) in
the above equations are the time-dependent Rabi frequencies associated with the
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driven transitions between the ground state |1) and the two excited states |2) and

|3), and are given by:

Qo(t) = eEof(t)e™(1)2[2) /h, (2.4)

Qu(t) = eBof () (1]23) /h. (2.5)

The spontaneous-decay terms in Eqgs. (2.3) involve the quantities

O e o
Yimsj = W(J\r ) - (i|7]5) ~ Smedh (el - @), (2.6a)
€2|w2j|3 6253
= i1712) - (3|7 |) ~ i1712) - (3|7 ]5). 2.6b
Vo35 3W€0hcg<J\T| )+ (3I715) 37TE()hé),(JITI ) - (3I7]5) (2.6b)

The values v .0, Y21, V30, and 73,1 are the partial rates for radiative de-
cay from |2) and |3) to |0) and |1) (as shown in Fig. 2.2), with total decay rates
Yo = Yos0 + Yos1 and 3 = 30 + Y31. These last two rates have the same value
v = 1/7 because the |1)-to-|2) and |1)-to-|3) frequency intervals we; and ws; can
be approximated by the average value @ in Eqgs. (2.6) (since woy,ws; > wog). The
off-diagonal terms 93,0 and o341 (With Y93 = 72350 + J23-51) represent interfer-
ence between the partial decay rates, and contribute to shifts in the resonance line
shapes. These terms are particularly important for experimental signals that de-
pend strongly on decay processes, such as fluorescence measurements or final-state
population counts. Calculations using density matrix equations often neglect these
cross-damping terms and therefore do not include these decay-path interference

effects |31, 39.
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2.4 Reduced Equations

The set of Eqgs. (2.3) can be integrated over the time 7' that the atom interacts
with the applied field, to determine the final population in each state. However,
this integration may be numerically challenging due to the fast oscillations caused
by the large wy3 term, and may require very small time steps to accurately solve
the equations.

If the applied field is very closely tuned to the |1) — |2) transition of Fig. 2.2,
very little population is excited to the far-off-resonance |3) state. The quantities
Vies; and |ya3;| are < 7, the natural line width of the resonance, and, to avoid
broadening of the line shape, [Q53| and 27/7 must in practice be < v as well.
Finally, the field-detuning |A,| also takes on values < v (i.e., of the same order as
the line width) as it scans across the |1) — |2) resonance. Assuming all of these
frequencies (7;-j, |Y23—jl, |Q23], 2m/T, and |Ay|) are much smaller than wss, the
separation between the measured and distant resonances, one can define [34] an
ordering-parameter 7, which is the ratio of these two frequency scales.

Having introduced 7 as the ratio of a very small to a much-larger frequency,
the tiny amount of population transferred to the off-resonant |3) state is of second
order in 7, and can thus be ignored (ps3 < 7?). Furthermore, by taking linear
combinations of Eqgs. (2.3) and discarding terms of O(n?), one can also eliminate

the p13, p31, P23, and pss elements, which are an order of 7 smaller than the dominant
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quantities p11, p22, p12 and pay, .
The reduction process is illustrated by considering the equation for py; (Eq. (2.3)(a)).
Elimination of explicit dependence on the elements pi3, p31, P23, and pso, can be

achieved by forming the following linear combination of Egs. (2.3)(a), (e), and (f):

(a) + ([% - ﬁ} (e) + c.c.) + ({ﬁ} (f) + c.c.) e

*

This operation yields a new equation for the modified quantity py; = p11+%%p13—
2

%%pgl, with the left-hand side given by
2

P11 = P11 2%3 +@'A3p13 2%3 —@'A;;pgl
1 Q3 7 Q5

= q p11+§—72—3+iA3'013_§—7—23—iA3p31

>~ P11, (2.8)

where in the final step, the terms involving the first-order elements p;3 and p3; have
been neglected, as multiplication by coefficients of O(n) makes these terms O(n?)

overall.
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The right-hand side of the equation becomes:

RHS = :_IQj|2 (77 :mg . —1m3)1 .
+ :%QS - %Q§ (%’*{_23 122A3 + n +7§_’_1 iw23>} p12 + c.c.
' -%_ﬂ - %723_& <%2 + 72_314‘ 1Was * % + %31— iw23>} P22
_ %%} p13 + c.c.
+ _i %ijjzg] pas + c.c. 2.9

The coefficient of p;; and the second term of the pos coefficient have the form

aiib + L = afﬁ, and therefore they are of O(n?) since wiy, A2 = (Ag +wo3)? >
73,73 The first-order elements pi3 and pog are multiplied by O(n) coefficients,
making these terms O(n?) as well.

The surviving terms are v, .1 p20 (which is of order n°) and the pio term, which
is complete to O(n). The latter term may be simplified using the approximations

T4 1(Ag 4 ws3) & dwag and B 4 L —iway & —iwsz. This leads to an expression for

the right-hand side which is correct up to order 7:

. . 1
RHS ~ BQ; — %Q; ( 123 + T2 )} P12 + c.c.

2%+2A3 7—;-}-%—%@}23

7 1 1
_ {EQ; _ Q; (_ 23 n 723%1)] 12+ c.c.

5 QiWQg —iWQg
Uy by (V23— 272351
= |=-QF - -5 | —" .C. 2.10
{2 279 3( s )}plﬁcc (2.10)

A similar procedure may be carried out on the equations for the dominant
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density-matrix elements pio, ;1 and poo, forming linear combinations using the
equations for the first-order elements pi3, p31, pa3, p32 to cancel the latter quantities
out, and discarding terms of O(n?).

The resulting reduced equations, which are complete to O(n), are:

) -2 -2
pu =1 <Q§ N ZM%) oy - (92 M%) .

2wo3 2wo3
+ Y2-1pP22 (2.11a)
P22 = % <92 + ZQZZ Qs) p21 — % (93 272; 3) P12 — V2p22 (2.11b)
P2 = % (Qz + 22’223 Qs) P11 — % (92 - i;j; Qs) P22
(% A, + %:Tf?ﬁ ) pra. (2.11c)

Equations (2.11)(a)-(c¢) involve the dominant pi1, p12, po1, and pos components
of the density matrix, and include order-n perturbations due to the distant off-

\Qsl

resonance state |3).The term is the usual AC-Stark shift of the |1) state, which

extrapolates to zero with decreasing laser intensity. The terms of form %
represent interference in the decay pathways. The presence of these types of terms
leads to a shift in the resonance line center, which does not vanish in the limit of
zero laser intensity.

The reduced expressions in Eqgs. (2.11) lack the fast oscillations found in Egs. (2.3),

and thus require a factor of n fewer time steps for the numerical integration, while
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the results of these integrations agree with those from Egs. (2.3) to order n?.

2.5 Application to Helium Spectroscopy

The preceding discussion of quantum interference is relevant to measurements of
helium fine-structure using laser spectroscopy. In this section it is shown that the
assumptions associated with the rotating-wave approximation and the derivation
of the reduced equations (Eq. (2.11)) are valid for such laser measurements.

For laser spectroscopy from the 235 state (see Fig. 2.3), an atomic sample
is typically prepared in one of the metastable states, and a 1083-nm laser drives
transitions to the 23P; excited states. Fine-structure spacings may be determined
by taking the difference between any two such transition frequencies. While the
laser frequency is tuned close to resonance with one of the 22P; states, off-resonant
transitions to different states 23P]/7§] can also occur. As the atoms decay back to
the metastable states, quantum interference between two or more radiative-decay
pathways distorts the observed line shape for the transition of interest. In principle,
the laser field can drive transitions to an infinite number of higher-energy bound
states (n > 2) in the helium atom, but these transitions are orders of magnitude
farther away from the main resonance than the nearest neighboring 2°3P state, so
that their effect is negligible.

The particular role that interference plays depends on the detection signal used
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to obtain the line shape. For example, an experimental signal may be based on
level populations, either counting the atoms in an initially-empty metastable state
after it is repopulated by optical pumping from the initial state, or by measuring
the depletion of the initially-populated state. Some measurements are based on
detection of the fluorescence emitted from spontaneous decay, while others detect
the absorption of the incident light as the laser frequency is tuned across a res-
onance. Each of these detection techniques may involve different excitation and
decay pathways, and hence different interfering processes.

As an example, Figure 2.3 shows the schematic for a measurement of the 239;-
to-23P, resonance, which may be mapped directly to the four-level model atom.
The population is initially in the 235;(m;=1) metastable state, which corresponds
to |1) in the four-level model, and is excited (solid arrow) to the 23P;(m =1) state
(analogous to |2)) by a linearly-polarized laser tuned to near that transition. A small
amount of population is also transferred (dotted arrow) to the far-off-resonance

23Py(my=1) state (|3)).
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Figure 2.3: The n=2 triplet energy levels of helium, depicting the measurement
of the 2351 (m;=1)-to-23P;(m;=1) resonance. Only the four numbered states are
involved in the measurement. The radiative decay paths are shown, with matching
colors for interfering processes.

The atoms can decay back to |1), or to the 235;(m;=0) state (]0)), which
plays the role of the dark state due to the electric-dipole-forbidden 23S (m;=0)-
to-23P;(m;=0) transition. Thus only the four numbered states play a significant
role in the measurement. The radiative decay paths are shown, each one having an
allowed electric-dipole 23S-to-23P transition.

Depending on how the measurement signal is obtained, different interference

processes come into play. For instance, the count of atoms transferred to the dark

state |0) is affected by the two interfering pathways: |1) — |2) — |0) and |1) —
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|3) — |0). These two pathways are also relevant if the emitted circularly-polarized
fluorescence is measured to form the line shape. On the other hand, if only linearly-
polarized fluorescence is detected, then the interference between the |1) —|2) —|1)
and |1) —|3) —|1) processes is important.

The applicability of Eqs. (2.3), which use the rotating-wave approximation, to
these laser measurements is certainly justified, as the optical transition frequencies
from the metastable to the 2°P states (i.e., wy; and ws; in Fig. 2.3) are much
larger than the detuning of the laser from the transition to any of the 23P states
(=277 THz vs. < 30 GHz). Furthermore, the reduced Eqs. (2.11) are valid as
well, since the separation between the measured and the off-resonant transition
(wo3 = 2m(2291 MHz) in the figure) is much larger than the natural line width
v = 2m(1.63MHz). The ordering-parameter 1, which is the ratio of these two
frequency scales, is therefore of magnitude %é_%?i ~ 1073. The use of Egs. (2.11)
thus requires three orders of magnitude fewer time steps for numerical integration

than Eqs. (2.3), and the results of integrating Eqs. (2.11) and Eqs. (2.3) agree to

approximately a part-per-million (~ 1?).
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3 Laser Spectroscopy in a Narrow Thermal Beam

In a first analysis of interference effects, we calculate interference shifts that apply
for an existing precision laser measurement of the 23P,—2°P, fine-structure inter-
val [35], performed using a well-collimated beam of thermal He atoms. Both the
2351-t0-23P; and 235;-t0-23P, transitions are measured in this experiment, and the
interval is found from the difference of the two resonant frequencies. The resultant
interference shift (calculated in this chapter) is -1.2 kHz, which is larger than the
1.0-kHz measurement uncertainty in Ref. [35], even though the separation between

the two resonances is more than 1400 times the natural line width of 1.63 MHz.

3.1 Measurement Technique

The experiment in [35] is performed by preparing a thermal beam of metastable
He atoms via electron bombardment. An inhomogeneous magnetic field is used to
deflect 235;(m=+1) atoms out of the beam and thus select the population in the
2351 (m=0) state. These atoms then pass through a uniform magnetic field, where

a circularly-polarized 1083-nm Gaussian laser beam (perpendicular to the atomic
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beam) drives transitions to the 23P; o(m = +1) states (see red arrows in Fig. 3.1).

After the atoms pass through the laser beam and spontaneous emission has repop-

ulated the 23S;(m=+1) state, a second inhomogeneous magnetic field selects these

m=+1 atoms by deflecting them to a detector, where they are counted to obtain

the measurement signal. The sub-milliradian collimation of the atomic beam min-

imizes Doppler broadening effects, while the laser intensity is kept sufficiently low

to avoid power broadening of the resonance. This technique allows the measured

line width to approach the natural line width.

23Po N
7(2°P)=98 ns 29.617 GHz
|12 2
S 29p, ) 12) N
ha)23 14) g\\k;) |3)// § 14) 229\J|/GHZ
N 2°Pr T R 7 )
-~ L '._‘ \ / :~'
\ ’ 3
ha)21 \\ ,' ‘[
276.7 THz
h s (1083 nm)
. \ /
v 3k 2 !
-~ metastable 2°5; 10y 1y 1) 10)
mg=-2 m=-1 m=0 m=1 mg=2

Figure 3.1: The n=2 He triplet energy levels. Population starts in |1) and interacts
with a circularly-polarized laser field, either o, (red), or o_ (blue), which drives
both |1) — |2) (solid arrow) and |1) — |3) (dashed arrow) transitions. The cycling
transition (dotted arrow) and the allowed radiative decay paths are also shown.

The atomic transitions involved in the measurement are shown in Fig. 3.1. The
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population is initially in the 235;(m =0) state (labeled |1)), and a 1083-nm laser
with o, polarization (red) drives transitions to both the 23 P, (m=+1) state (labeled
12)) and the 23Py(m=+1) state (labeled |3)). These transitions are shown as solid
and dashed arrows, respectively. Excited atoms can then radiatively decay back to
1), or repopulate the 235 (m=+1) level (denoted |0) in the figure).

Atoms in the |0) state can be excited to the 23Py(m = +2) state (labeled |4)),
but this state can only decay back to |0), and thus population in the |0) state
cycles back and forth between these two levels. After having passed through the
laser beam, and after sufficient time has elapsed to allow for radiative decay, all of
these cycling atoms will ultimately occupy the 235;(m=+1) (|0)) state.

When a o, laser is tuned to near the 235 (m = 0)-t0-23P;(m=+1) transition,
atoms are pumped to the 225 (m=+1) state by excitation and subsequent radiative
decay. The amplitude for this resonant process interferes with the much smaller
amplitude for the off-resonant pathway, from 235;(m = 0) to 23Py(m = +1) and
then down to 235 (m=+1), leading to a shift in the line shape. Alternately, when
measuring the 235;(m = 0)-t0-23P,(m = +1) resonance, this dominant pathway
interferes with the now-small amplitude for driving population from 23S;(m = 0)
to 2P (m=+1) and then decaying to 2°S;(m=-+1), resulting in an effect of equal
magnitude but opposite sign.

The preceding description is equally valid if the incident laser has the opposite
(0_) polarization. This case is depicted in Fig. 3.1 using blue color-coding. De-
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pending on the tuning of the laser frequency, atoms in the same initial 225;(m = 0)
state are driven to either the 23P;(m=—1) state (|1) — |2), solid arrow) or to the
23Py(m=—1) state (]1) — |3), dashed arrow), and accumulate in the 23S;(m=—1)
(|0)) state via spontaneous decay. The |0) — |4) cycling transition is now between
the 235 (m = —1) and 23S5(m = —2) states. Once again, quantum-mechanical in-
terference between the resonant and off-resonant optical pumping pathways leads

to an identical shift in the resonance line shape.

3.2 Theoretical Description

The atomic states involved in the measurement can be directly mapped to the
four-level model of Eqs. (2.11), with both states in the |0) <+ |4) cycling transition
decoupled from the other states when probing the 235;-to-23 P, resonance.

The partial decay rates of Eqs. (2.11) are obtained from the electric-dipole
matrix-elements (see Appendix B) as: 721 =731 = Y250 = V350 = 7/2, Y2351 =
+v/2, and 793 ,0 = F7y/2 (for oL polarization respectively). The total rates are
therefore 75 = v3 =, and 753 = 0. Here v = 1/7, where 7 = 97.9 ns is the lifetime
of the 23 P states.

In the electric-dipole approximation, the electric field of the circularly-polarized

(0+) 1083-nm laser experienced by the atom is

E(t) = EyG(t)—= [# cos (wt + ¢) + §sin (wt + )] , (3.1)

1
V2
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where E, = \/%, and G(t)=exp [—2(t — t1)*/T?] models the profile of the electric
field seen by the atom as it passes through the Gaussian beam with peak intensity
Iy, as shown in Fig. 3.2.

This field expression gives time-dependent Rabi frequencies, in the rotating-

wave approximation, of:
1
V2

Qs(t) = %eEOG@) (1] F iy] 3) /1 (3.3)

() = —=eEoG(t) (1|2 F iyl 2) /A, (3-2)

From the ratio of the matrix elements one finds that 2y and 3 are related by
Q=403 (for o4 polarization). Substituting these values into Eqgs. (2.11), the

resulting reduced density-matrix equations for this four-level system are:

. Q) | v 25(1) iQa(t) (1) Y
- - - 7 4
p11 = ( 5 + Lo )p12 5 Tons p21 + 5 P22 (3.4a)
) 1 (1 . 1€ (1
P12 = ;( )Pll - <% + ZAIQ(t)> P12 — ;( >022, (3.4b)
) 1 ( 105 (
P22 = %Pm - ;< ),012 — VP22 (3.4c)
Here,
o |Q3(1) ]
A5(t) = As + Ty (3.5)

where Ay = w — wy; is the amount by which the laser is detuned from the |1)—|2)
transition. Note that Eq. (3.4) is valid for both o, and o_ polarizations, since the
sign differences from Q3= 45 and from 93,7 = £7/2 cancel out.
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The difference between Af, and A, represents a shift in the resonance which
is just the usual AC-Stark shift for the interval. Its magnitude is relatively small
for the laser intensities considered here, and approaches zero with decreasing laser
intensity. In contrast, the nonzero value of vy3 ,1 Tesults in the wsy,' interference
terms, which lead to a larger shift in the resonance line center, that, unlike the
AC-Stark shift, does not extrapolate to zero as the laser intensity goes to zero.

The details of the timing profile used to model an atom’s transit through the
laser beam can be seen in Fig. 3.2. The atom starts in |1) at a time t; before it
enters the beam, and then experiences a Gaussian intensity profile, with 1/e width
T, and peak intensity Iy at time t;,. The width is determined by the speed of the
atom, and the maximum intensity is a function of the laser power, beam waist,
and the atom’s trajectory through the laser beam. The atoms that end up in |0)
are detected at a later time f, after the atom has traversed the laser beam and
sufficient time has passed for the 23 P excited-state atoms to radiatively decay back

to the 23S metastable states.
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Figure 3.2: Intensity profile for an atom traveling through a Gaussian laser beam
with peak intensity Io. The atom starts in |1) of Fig. 3.1, and the final population of
|0) is determined after it has left the laser beam, and the 23 P atoms have decayed
back to the 23S states.

For a given choice of laser intensity [y, frequency w, and timing parameters 77,
t, and t;, Eq. (3.4) can be numerically solved to obtain the final population in
states |1) and |2) (p11(tf) and poo(ty) respectively). Since all of the population has
radiatively decayed to either |0) or |1) by time ¢, the detection signal is given by
poo(ts) =1 = pulty).

Numerical integration, using an adaptive-step solver, is performed for a set of
laser frequencies near the resonance, leading to a calculated line shape for the
235,—23 P, transition, an example of which is shown in Fig. 3.3(a). Fig. 3.3(c)
shows the difference between this line shape and the one obtained by setting the
interference term ~93 ,=0. This difference, caused by the quantum-mechanical

interference with the distant |1)—|3) transition, is not symmetric about the line

center, and hence results in a shift in the observed resonance.
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Figure 3.3: Lineshapes of the [1) — [2) (a) and |1) — |3) (b) resonances of Fig. 3.1,
obtained from numerical integration of Eq. (3.4) for the laser beam of Fig. 3.2 with
Tr=4 ps and Ip=10 uW/cm? The differences, (c) and (d), are shown between
these line shapes and those obtained by setting the interference term 7,3_,1=0.

The derivation of Eqgs. (2.11) assumed a laser close to the resonant frequency
of the |1)—|2) transition, but a similar derivation can be performed when the
frequency w is nearly in resonance with the |1)—|3) transition instead, leading
to a set of equations analogous to Eq. (3.4), but with |2) and |3) interchanged.
Since wzs=—wo3 and |Qs]? = |Q3/%, the interference shifts for the [1)—|2) and
|1)—|3) resonances are equal in magnitude and opposite in sign, as can be seen in
Fig. 3.3(d).

The effect on the deduced 23 P,—23 P, interval is thus twice the absolute shift for

either of the laser transitions. In this case, the 235;-to-23P; transition is negatively

shifted to a lower frequency, while the 235;-to-2°P, resonance has a positive shift to
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a higher frequency, resulting in a smaller observed fine-structure interval. A positive
correction for interference effects must therefore be applied to the measured interval.

Accordingly, only the line shape of the 235;-to-23P; transition needs to be com-
puted, and the shift in the line center can be doubled to obtain the total shift for
the 23P,—23P, interval. Repeating the procedure with the interference term vo3_,;
set to zero lets one subtract out the AC Stark shift. This is of interest because
the usual experimental analysis accounts for the AC Stark shift by extrapolating
to zero laser power, but ignores the interference shift.

Determining the position of the line center is in theory as simple as finding
the maximum of the computed resonance profile, where the first-derivative is zero.
In practice, however, it is difficult to calculate values with sufficient precision to
model this part of the line shape accurately. Fitting the profile to a Lorentzian
or other function to extract the center is also possible, but distortions in the line
shape due to quantum interference may pose a challenge to obtaining a stable and
accurate fit. Instead, a robust and well-defined shift can be calculated by averaging
the frequencies at the half-maximum points of the line shape, where the slope is
largest, and where a Lorentzian fit is most sensitive. This approach incorporates
any asymmetries in the line shape into an effective shift in the resonance center,
and is consistent with experiment, where the data taken near the half-maximum

points is most important for determining the line center.
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3.3 Correction to the 2°P,—23P, Interval

Computations are carried out for a range of laser intensities [y and timing-profile
widths T} to generate the contour plot of Fig. 3.4. The interference shift for the
23 P,—23P, interval is shown here, with the black dashed line indicating a resonance
with FWHM of 1.8 MHz. This contour value (1.1 times the natural line width of
1.63 MHz) was chosen in accordance with the measured line shape shown in [35],
and represents the experimental regime of interest.

The region above the black dashed line corresponds to increasingly higher laser
powers and longer interaction times, resulting in wider line shapes and larger shifts.
Below this line, where the resonance profiles are narrower and exhibit a smaller in-
terference shift, there is a large area with little variation in the magnitude of the
shift, and the interference shift along the black dashed line is approximately con-

stant.
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Figure 3.4: A contour plot of the shift (in kHz) for the 23P,—23P; interval as a
function of laser intensity and interaction time. The shift is in addition to the small
AC Stark shift of Eq. (3.5), and results from quantum-mechanical interference. The
dashed-line contour indicates where the FWHM of the resonance is equal to 1.8 MHz
(the experimentally observed width).

The experiment of [35] determined the line center of a resonance by sampling
pairs of data points about symmetric frequency offsets A f from the center of the
transition. Each such measurement yielded a line center fy as a function of the
slope of the signal S(f) at the frequency step Af, and the difference between the

signal on either side of the peak:

as

Flas (3.6)

fo = SIS(AH)~S(-a7)/]

The majority of data were taken close to the half-maximum of the line shape, where
the slope is largest, but other frequency steps were used to test for systematic effects.

The measured values of the fine-structure interval as a function of Af are shown
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in Fig. 3.5, with their average value indicated by the blue line.

The authors argued [35] that their data supports the notion that the determi-
nation of f, was independent of the choice of Af. As can be seen in panels (c)
and (d) of Fig. 3.3, the effect of quantum-mechanical interference on the line shape
depends on frequency, so the observed interference shift according to Eq. (3.6) will
depend on the choice of Af. Failure to account for this misses a systematic effect
at a level which is significant given the measurement uncertainty.

In the current analysis, each experimental data point is corrected by sampling
the computed line shapes at the corresponding frequency offsets +A f and applying
Eq. (3.6) to calculate the interference shift in the line center caused by the distor-
tion in the resonance profile at those offsets. This procedure results in the values
of the fine-structure interval determined using different frequency steps becoming
consistent with each other (the red data points in Fig. 3.5).

Of particular note is the point at Af=1.5 MHz, which has a 3.2¢ discrepancy
with the other measurements. The correction due to the relatively larger inter-
ference effect at this Af resolves this discrepancy, bringing the adjusted value in
line with the other data points. The final corrected value for the interval (the red
dashed line of Fig. 3.5) is 2291 177.1+1.0 kHz, which includes an average correction

of 1.2 + 0.1 kHz, consistent with the shifts of Fig. 3.4.
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Figure 3.5: The 23P,—23P, fine-structure interval inferred from signals at £Af.
The diamonds and uncertainties are from [35], and the solid line is the final result
presented in that work. The squares are corrected for the calculated interference
shifts.

Another laser measurement of the 23P,—23P, interval was made by Hu, et.
al. [18], also using a well-collimated atomic beam. This experiment uses transverse
laser-cooling to prepare an intense, narrow beam of metastable He atoms in the
2351 (m=1) state, and then drives transitions to either 2°P;(m=1) or 2°Py(m=1)
with a linearly-polarized laser. Radiative decay repopulates the 235;(m=0) state,
whose count forms the basis of the measurement signal. The resonant transitions
take place in a uniform magnetic field that lifts the degeneracy of the magnetic

sub-levels.

The states involved in their measurement are identical to those of Fig. 2.3,
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and thus the four-level system of Eqs. (2.11) can once again be used to calculate
quantum-interference effects. The four-level model applies even when probing the
2351 (m=1)-t0-23Py(m=1) transition, as the allowed 235 (m = 0)-to- 22 P»(m =0)
transition is Zeeman-shifted out of resonance, and thus 23S;(m = 0) can still be
considered a dark state in this case.

The authors of [18] carried out an analysis of their experiment based on our
model, and their reported value of 2291 177.69 4+ 0.36 kHz for the interval includes
an interference correction of 1.21 4+ 0.16 kHz. This result is consistent with the

preceding treatment which analyzes the shift for the measurement of [35].
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4 Saturated-fluorescence Spectroscopy

A determination of the 23P fine-structure has also been performed using the tech-
nique of saturated-fluorescence spectroscopy [36]. Both the small 23P,—23P, and
large 23Py—23P; splittings have been measured, with uncertainties of 11.0 and
1.0 kHz, respectively. Due its higher level of precision, the following analysis of
quantum interference focuses on the 23 Py—23P; interval.

The saturated-fluorescence method uses a relatively uncollimated atomic beam,
whose broad 90 MHz Doppler-width is mitigated by Doppler-free spectroscopy to
obtain resonance line widths of the order of 10 MHz. This complicates the calcula-
tion of the resonance line shapes, since the fluorescence signal receives contributions
from the entire range of transverse velocities present in the atomic beam.

Some experimental parameters of the measurements of Ref. [36] are not known in
detail, including the sensitivity of the detector to the polarization of the fluorescence
radiation. Therefore, calculations of the interference shifts in the two resonances
used to determine the 23 Py—23 P, interval are done for specific polarizations, and it

is seen that the actual interference shift observed would depend on the sensitivity
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of the measurement to the polarization states of the emitted radiation. Thus, the

effect of quantum interference on the experimental results can only be estimated.

4.1 Measurement Technique

In the saturated-fluorescence measurement of [36], a beam of metastable atoms with
a wide angular spread intersects (at a right angle) a pair of counter-propagating
laser beams which drive the 23S-to-23P transitions. Figure 4.1 shows the energy
levels and spontaneous decay paths relevant to the measurement. The initial pop-
ulation is equally distributed among the three metastable ground states, and the
fluorescence from spontaneous decay back to 23S is detected as the laser scans across
the resonance. The two laser beams (created by retro-reflection) are oriented per-
pendicularly to the center line of the atomic beam, and have identical frequency,
waist size, linear polarization, and intensity, which is above the saturation intensity
for the transition.

When the laser frequency is tuned close to a resonance, a reduction in fluores-
cence is observed, resulting in a characteristic, narrow dip in the Doppler-broadened
signal. This dip arises because each of the counter-propagating laser beams excites
a different group of atoms when the frequency is off-resonance, i.e., addressing only
those moving atoms that are Doppler-shifted back into resonance with a particular

beam. When the laser is on resonance, however, both beams couple to the same
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velocity-class (those atoms with a small transverse velocity), thus exciting fewer
atoms and resulting in less fluorescence. In the experiment of [36], this feature has

a power-broadened width of approximately 10 MHz, about six times the natural

line width.
-~
3 _
T(2'P,)=98 ns 29.617 GHz
23P1 |e1 1> |e10> | |e1 1) N
I Y Ay
) YD 10 7011 2.291 GHz
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Rt
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my=-2 my=-1 my=0 my=1 my=2

Figure 4.1:  Laser-driven transitions for a saturated-fluorescence measurement
of the 23S5;-t0-23P; (dotted lines) and 23S;-to0-23 P, (dashed line) resonances. All
radiative-decay paths are shown, indicating fluorescence with F (green), F_ (pur-
ple), and Fy (brown) polarization.

The driven atomic transitions and spontaneous decays involved in the measure-
ment are shown in Fig. 4.1. The labels Fy, F'y and F_ denote fluorescence emitted
by radiative decay from an excited state to a metastable state with a change in the

magnetic quantum number of Am; =0, Am;=+1 and Am; = —1, respectively.
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When probing the 235;-t0-23 P, resonance, metastable atoms in the 235 (m=+1)
states (labeled |g+;) in the diagram) are excited by the linearly-polarized laser to
23Py(m = +1) (denoted |ej41)), as indicated by the dotted arrows in Fig. 4.1. The
atoms can decay to 22S;(m =0) (|go) in the figure) by emission of Fx radiation,
remaining in this dark state. Alternatively, decay back to 23S;(m==+1) is possible
by emission of a linearly-polarized (Fy) photon, and the atoms can then undergo
repeated excitation.

Both of these fluorescence channels are affected by quantum-mechanical inter-
ference with off-resonant transitions. While the laser is tuned to the 23S;-to-23P,
resonance, it also drives the distant 235;-to-23P, transition, and the two possible
decay pathways back to 2351 (m = +1) via Fj fluorescence interfere with each other.
These decay paths are shown in Fig. 4.1 by the brown arrows. Similarly, decay by
Fx fluorescence to 2°S;(m = 0) also involves two interfering processes, indicated
by the green arrows for F';, and purple arrows for F_ radiation.

When measuring the 235)-to-23P, transition on the other hand, only those
metastable atoms in 23S;(m = 0) are driven by the laser to 23P;(m = 0) (|ego)
in the figure), as indicated by the dashed arrow in Fig. 4.1. Excited atoms can then
decay back to 23S;(m=0) through Fj fluorescence, or to 23S;(m=+1) by emission
of F radiation.

Once again, both fluorescence processes are perturbed by decays from an off-
resonant state, in this case the 23 Py(m=0) state (Jego) in the figure). The Fy fluores-
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cence includes interference between decay from either 23P)(m=0) or 23 Py(m =0)
to 2351(m = 0) while the F. radiation resulting from decay to 2°S;(m = +1) is

similarly affected.

4.2 Theoretical Description
4.2.1 Density-matrix Equations

The two laser beams (propagating along ¢ and —g) form a standing wave, with
the total electric field experienced by the atom as it passes through the region of

interaction given by
E(t) = 2E5(t) cos (wt — @), (4.1)
with a time-dependent envelope
Es(t) = 2Ey cos (Awpt + Ap/2)e 2t /TE, (4.2)

Here, Fy = foig, ¢ and A¢ are the average and difference of the phases of the
two laser beams, and I is the peak intensity of a single laser beam, in W/m?2. The
parameter ¢y is the time at which the atom passes through the center of the laser
beam, while the width 7}, determines the interaction time between the atom and
the laser, and is based on the speed of the atom and the waist of the laser beam.
The Doppler-shift Awp seen by the moving atom also modulates the amplitude

of the electric field, so that atoms with a large Awp sample the entire region of
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the standing wave between node and anti-node, while at small Doppler shifts, the
relative phase of the laser beams determines which part of the standing wave the
atom intersects.

Again, using the rotating-wave approximation, one can ignore the non-resonant
e~ ™! term of the cosine in Eq. (4.2). In this approximation, using the notation
of Fig. 4.1, the general density-matrix equations for the n=2 triplet states can be
written as [31, 34, 39, 40| (see also Appendix A):

pgugu/ = Z ’y;lf]‘;lm pejh’Le + Z (Qu jmpgueJm - Qlﬁjmpe]‘mg'u/> (43&)

. iy
J7m7.] 7m

pejmej .y = —/l (U)] - )pe]me] m/! + Z ( .U']/m/pejmg,u — Qijpguej/m/)
1 pny o m uj'’'m
— 52 (7/"']7” pejllmejlm/ + 7“.7 m’ pe7m€]//m/> (43b)
pgﬂejm = —1 (w w] Pauejm — 5 Z 7557771” pgue

1
+ §Zﬂu’jmpgugu ZQW 'm’ Pe 1,1 €5m (4.3¢)

7%

These equations extend the four-level Eqgs. (2.3) to include all of the triplet
states, with © = 0,=£1, 7=0,1,0or2, and m=—j...7. The diagonal density-matrix
elements pg, 4, and pc,, ;. represent the population in the ground states |g,) and
excited states |ej,), respectively, while the off-diagonal elements Pgu9,> Pejme

and py,c,,, express correlations between different states.
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The Rabi frequencies €, () and generalized decay rates Jm’

um  are given by

the following expressions:

eEs(t)
Quim(t) = 2 {gulelesm). (4.42)
Lihm! 6253 5 .
75jjm = W@MT |€jm) - (€jm |T | Gpur)- (4.4b)

The quantities fyl’jjjz = fy](‘,jl) are the partial decay rates from excited states |ejy,)

to the metastable states |g,) (cf. 7, of Egs. (2.6)), while the those of the form

-/ /
py m
P)/,ujm

are the cross-damping rates generalizing 7y23_,; of Eq. (2.6), and are respon-
sible for interference effects.

The dipole matrix-elements in Eqgs. (4.4) can be calculated using:

(—1)t—n 1 1

= /T 4.385a,. (4.5)

(gulralejm)

qg m
where ag is the Bohr radius and the brackets denote a Wigner-3j symbol. The radial
factor in Eq. (4.5) is obtained without the use of explicit helium wavefunctions, by
equating the theoretical expression for the total rate of decay from the 23P; states
to the numerical value v = 1/7 (where 7 = 97.9 ns is the lifetime of the states [41]).

See Appendix B for details.
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4.2.2 Reduced Equations

The general density-matrix Eqgs. (4.3) comprise 144 coupled equations, whose nu-
merical solution is computationally intensive due to the size of the system and the
presence of the large (w; — wj) frequency terms. The same reduction process that
was applied to the four-level system in chapter 2 can be used to simplify the equa-
tions, by considering a laser tuned close to one of the triplet helium levels (23 P;_ ),
so that very little population is driven to the off-resonant levels (23Pj.;).

As in the four-level case, an ordering parameter n is defined as the ratio of the

i

small frequency scales in Egs. (4.3) (7,7, Qujm, and A = w — wy) to the large
(1000 times greater) fine structure splittings between the resonant and off-resonant
states (wyj = wy — wjr).

Following [33, 34|, the n* terms (e.g., pej/mej/m) can be ignored and the density

matrix elements of order n (e.g., Pesme,,, and pe;-/mgu) can be eliminated to give

modified equations for the dominant density matrix elements that are complete to
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order n:
Pougy = (€ = €u) Pgug, + %Z [QZ’JmpgueJm - Q,qupengu/}
+ Z [ /m u”pgw'elm + ( w M# Pengu,,} ZVﬁJJv:I Pegme jm (4'63)
Pesme s = —VPesmesms — ;Z [Q*JmpgueJm Qqu’Pengu} (4.6b)
p

Pguesm = 52 :Quljmpgugul - 52 :Q#Jm/peJm’eJm
W m!

u'Jm

1 )
- §Zvu’Jmp9u€]m G (w —wy+ EM) pg;ﬁjm (46C)
/J4l

The first-order corrections due to interference with off-resonant states (those

with j' # J) are expressed as:

-y el (4.72)

J'#EImM
Q* ’Y“ 'Jm
Jmo “Tugm Tpgm!
o= Z Yoy (4.7b)
Jj#EIm!

The ¢, terms in Eq. (4.7) correspond to the AC-Stark shift corrections in

Egs. (2.11)(c), while the quantities » are the generalized equivalents of the

Jm

!

interference shift terms in Eq. (2.11)(a).
Eqgs. (4.6) give 16, 36 or 64 equations for J=0, 1 or 2, respectively. They lack

the fast oscillations found in Eqgs. (4.3), and thus require a factor of n (3 orders
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of magnitude) fewer time steps for the numerical integration. The results of these
integrations agree with those from Eqs. (4.3) to order * (i.e., to better than a part

per million).

4.3 Fluorescence Lineshapes

The fluorescence emitted by the laser-excited atoms can be obtained from the
spontaneous-decay terms in the p, ., , equation of Egs. (4.3). The fluorescence
has three components F,, (¢=0, £1) which correspond to radiative decay from the
23P; state to the 235 state with Am;—0, £1 respectively. The fluorescence F), is

therefore given by

/dtz(smﬁ-q%um ( e I €im + pe].mej/m> . (48)

L pgm,g

Here the Kronecker delta selects the component of the fluorescence based on the
my quantum numbers of the upper and lower states, and the integration is over the
time that the moving atom spends in the laser beam.

Applying a similar reduction technique as was done for the density-matrix equa-
tions, an expression for the terms in Eq. (4.8) that is correct to first order in 1 can

be found:

tr
m Jm Jm \*
Fq = / dt : :5/L +q{,yZJmpeJ"LeJ"L _'_ : : ,uuu/ng/eJm ( }{M}J/) peJ"LgH/]}‘ (49)
ti Hym

For any given set of parameters Iy, TL, A¢ and Awp = 21Afp, the solutions
to Eqgs. (4.6) can be used to obtain F, from Eq. (4.9). Equal initial populations are

ol



assumed for the three metastable states |g,). As was done in Chap. 3, the system
of equations is integrated using an adaptive-step solver. The integration starts at
a time 277, before the peak time t;, (here 77, and ¢ are the full width and center
of the Gaussian envelope in Eq. (4.2), respectively), and the total integration time
is chosen to be t; = 477, 4 57, so that the atoms have completely passed through
the laser beam, with the additional five lifetimes ensuring that the population has
decayed to the metastable state.

The Fy fluorescence profiles for the J=1 case (the 235;-to-23P; transition) using
Iy—2mW /em? and T;,—1 ps are shown in Fig. 4.2(a) for the A fp—0 (v,—0) Doppler
group. Solutions for various values of the relative phase A¢ are plotted, and it is
evident that the signal depends strongly on the phase angle. When the laser beams
are in phase, this corresponds to interaction with a maximum in the standing wave
field, resulting in maximum fluorescence, while at A¢ = m, the atoms are passing
through a node in the laser field and the fluorescence vanishes since no atoms are
excited.

When the calculations are repeated using a slightly larger A fp, (larger v,) of 0.4
MHz, the dependence on A¢ weakens quickly, as seen in Fig. 4.2(b). The atoms now
have a large enough transverse velocity to sample all portions of the standing wave
during their interaction with the laser. Since the relative phase varies in practice,
an average over all values of A¢ is taken when computing the fluorescence profile,
especially for small Doppler groups, as shown by the solid lines in Fig. 4.2(a), (b),
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and (c).
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Figure 4.2: The fluorescence signals Fy as a function of detuning Af from the
2351-t0-23P; resonance. Individual Doppler groups Afp, (a)—(c), give resonances
at Af=+Afp. For small Afp, Fy depends on the relative phase, as shown for
four values of A¢ in (a). At larger Afp, the dependence is reduced substantially,
as shown for the same values of A¢ for Afp=0.4 MHz in (b). The solid curves
represent averages over A¢. The average of Fy over all Doppler groups leads to
the saturated fluorescence dip, as shown in (d) for AfEWHM—=45 MHz (thin red
line) and 80 MHz (thick line). An expanded view of the saturated fluorescence dip
within the dashed area in (d) is shown in (e), along with the amplitude (A) and
full width at half maximum (FWHM) of the dip.
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Each Doppler group in the atomic beam contributes its own fluorescence signal,
with dual resonances at Af=+Afp, as seen in Fig. 4.2(c) for a few representative
Doppler groups. The total F|, fluorescence signal is then computed as a weighted
average over all Doppler groups present in the beam. A Gaussian velocity distri-
bution is assumed, with half-width-at-half-maximum of A fEWVHM "and Fig. 4.2(d)
shows the resulting line shape for values of A fEWVHM =45 MHz (thin red line) and 80
MHz (thick line). The reduced signal near resonance is the saturated-fluorescence
dip, and is shown in an expanded view in Fig. 4.2(e) with its amplitude (A) and
FWHM indicated.

The amplitude and width of the dip as a function of laser intensity I, are shown
in Fig. 4.3(a) and (b), respectively, for three values of interaction time 77,. For the
dip to have a substantial amplitude, the laser intensity must be above the saturation
intensity for the transition, causing the width to be significantly broadened relative
to the 1.6-MHz natural line width. For precision measurements of the saturated-
fluorescence dip, there is therefore a trade-off between the signal amplitude and

width.
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Figure 4.3:  The amplitude (a) and width (b) of the 23S;-to-23P; saturated-
fluorescence dip as a function of intensity Iy, for three choices of interaction time
Ty. The natural width is shown as a thin dashed line in (b). The width of the dip
is significantly broader than the natural width for intensities that lead to dips of
substantial amplitude.

4.4 AC-Stark Shifts

It is instructive to first consider only the AC-Stark shifts of the fluorescence signal.
These shifts are isolated when interference effects are artificially suppressed, by
setting the off-diagonal ’y/’f;];;’f/ terms to zero in Eqs. (4.6) and (4.9). The AC-Stark

shift, resulting from the ¢, terms of Eqs. (4.7), moves all of the resonances of

Figs. 4.2(a), (b) and (c) to the left (for all Doppler groups).

%)



The net amount of shift in the fluorescence dip however, is quite complicated,
due to the many parameters in the electric field amplitude of Eq. (4.2) that affect the
line shape. Firstly, the atom-laser interaction time 7}, determines how many cycles
of excitation and decay the atom undergoes, and thus the amount of fluorescence
produced. The laser intensity [y also plays a role in the magnitude of the signal,
and both Ty, and I, cause broadening of the resonance.

The dependence on the phase difference A¢ is also significant for the small
Doppler groups which contribute the most to the central dip. As the average is
taken over all the phases, this includes cases of constructive interference (A¢p—0
of Fig. 4.2(a)) which lead to both a large resonance and a large shift, as well as
destructive interference (A¢~m in the same figure) which produces no signal and
no shift.

Finally, the shift is complicated by the Afp dependence, in that a leftward shift
of the peak in small Afp contributions, such as the Afp=0 curve in Fig. 4.2(c),
causes the dip of Fig. 4.2(d) to move to the right. Conversely, the profiles at higher
Afp, such as the A fp=20 MHz line in Fig. 4.2(c), have minima rather than peaks
at the center, so the leftward shift of these Doppler profiles causes the dip to shift
to the left instead.

Fig. 4.4(a) shows the integrated contribution to the AC-Stark shift for all
Doppler groups in the range —|Afp| to |Afp|, assuming a Gaussian distribution of
Doppler groups with AfEWHM — 80 MHz. The shifts are determined from the fre-
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quencies of the half-maximum points of the line shapes obtained from the numerical
integration and averaging over Doppler groups and phases A¢ (see Fig. 4.2(e)).
One observes that the net AC-Stark shift from all Doppler groups is negative, as
can be seen from the values on the right side of Fig. 4.4(a), with positive shifts for
low Afp, and larger negative shifts for intermediate A fp. The curves of Fig. 4.4(a)
approach their final values at Afp ~ 30 MHz, since the contributions from the
larger Doppler groups (cf. Fig. 4.2(c)) are well-separated in frequency from the

saturated-fluorescence dip.
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Figure 4.4: The cumulative AC-Stark shifts (a) and interference shifts (b) and
(c¢) of the 235;-t0-23P; saturated-fluorescence dips for various choices of intensity
(Ip) and interaction time (7). The graphs display integrated shifts due to Doppler
groups ranging from -|A fp| to |A fp| and show that the shifts change sign for larger
Doppler groups. The total shift (from all Doppler groups) is the value at the right
of each curve. The F| shifts for linearly- polarized fluorescence in (b) and the
F4, shifts for circularly-polarized radiation in (c) are of opposite sign due to the

opposite signs in the respective v{2] and 707 cross-damping factors.
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Shifts for a larger range of interaction times 77, and intensities Iy are shown in
Table 4.1 and in Figs. 4.5(a) and (b). The AC-Stark shifts are identical for F_;, Fy,
and F; fluorescence. Note that the net shifts depend mostly on Iy, as expected
for AC-Stark shifts, but there is dependence on T}, as well. These shifts are small

compared to the interference shifts discussed in the next section.
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Table 4.1: AC-Stark and interference shifts for Fy and Fl; fluorescence, in kHz.
The shifts are given for a selection of interaction times 77, and laser electric-field
amplitudes Ey. A Doppler profile with A fEWHM_g0 MHz is assumed. The middle
three columns list the shifts in the fluorescence dips for the 23S;-to-2 ®P) resonance,
using the AC-Stark-only signal (same for all polarizations), the linearly-polarized
fluorescence (Fp), and the circularly-polarized fluoresence (Fl) signals respectively.
The last three columns are similar results for the 235;-to-2 3P, transition.

2351—t0—2 3P() 2351—t0—2 3P1

Eo (V/em) Tp(ps) | AC  Fy Fiy | AC  Fy  Fpy
0.375 0.25 0.09 0.03 -0.08| 0.62 0.26 -1.16
0.375 0.5 0.03 0.08 -0.10] 0.21 047 -1.48
0.375 1 0.01 0.11 -0.13| 0.07r 0.67 -2.07
0.375 1.5 0.00 0.15 -0.16 | 0.01 0.89 -2.49
0.375 2 0.00 0.18 -0.18 |-0.01 1.15 -2.89
0.375 4 -0.01 0.35 -0.28 | -0.06 2.38 -4.47
0.75 0.25 0.0 0.14 -0.14| 0.21 1.12 -2.23
0.75 0.5 -0.01 0.28 -0.24 |-0.17 2.45 -4.51
0.75 1 -0.02 048 -0.37|-0.26 3.74 -6.37
0.75 1.5 -0.03 0.6 -0.47|-0.30 4.95 -7.80
0.75 2 -0.03 0.83 -0.56|-0.31 6.22 -9.23
0.75 4 -0.03 1.51 -0.94|-0.33 11.3 -14.8
1.5 0.25 -0.25 0.98 -0.67]-3.41 128 -17.0
1.5 0.5 -0.17 148 -0.94|-2.04 134 -17.0
1.5 1 -0.15 2.06 -1.25|-1.72 17.0 -21.1
1.5 1.5 -0.15 264 -1.55|-1.63 21.2 -25.3
1.5 2 -0.14 3.22 -1.85|-1.56 25.5 -29.8
1.5 4 -0.14 548 -3.01 | -1.50 42.7 -47.1
2.25 0.25 -0.54 2.87 -1.68|-3.91 195 -21.7
2.25 0.5 -0.47 3.36 -1.88 |-5.31 30.7 -33.4
2.25 1 -0.38 443 -242 | -4.18 374 -404
2.25 1.5 -0.35 5.56 -2.99|-3.82 45.8 -48.5
2.25 2 -0.34 6.72 -3.57|-3.65 54.6 -56.8
2.25 4 -0.33 11.2 -5.70|-3.46 &89.8 -88.3
3 0.25 |-0.68 3.30 -1.71]|-11.0 40.0 -38.6

3 0.5 -0.86 5.79 -2.97|-9.79 b53.7 -52.8

3 1 -0.68 7.44 -3.80|-7.60 64.6 -63.5

3 1.5 -0.63 9.29 -4.70 | -6.89 783 -75.9

3 2 -0.61 11.2 -5.58 | -6.57 92.8 -88.5

3 4 -0.59 18.6 -8.77|-6.21 152 -136
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Figure 4.5: Contour graphs for AC-Stark and interference shifts versus interaction
times Ty, and laser intensities Iy. Top row (a,c,e): 235;-to-2 3P, transition, bottom
row (b,d,f): 235;-to-23P; transition. Plots (a) and (b) represent AC-Stark shifts,
while plots (¢) and (d) show interference shifts (to be added to the AC-Stark shift)
for AmJ = 0 decays [F}, in Eq. (4.9)], and (e) and (f) are interference shifts for Fy;
fluorescence. A Doppler profile with A fEWHM — 80 MHz is used. The shift values,
given along the black contour lines, are in kHz. Also shown on the plots (white
dashed lines) are the widths of the saturated-fluorescence dips in MHz.

4.5 Interference Shifts

The interference shifts are obtained in the same way as the AC-Stark shifts in the
previous section, except that the numerical integration of Eq. (4.9) now includes
the off-diagonal 75;?;2”/ cross-damping terms.

The fluorescence line shapes are similarly complicated by their dependence on

laser intensity I, and atom-laser interaction time 77, as well as the averaging over

the relative beam phase A¢ and Doppler groups A fp present in the atomic beam.
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As with the AC-Stark shift, the interference shifts are determined from the
frequencies of the calculated half-maximum points of the saturated fluorescence
dips, and Figs. 4.4(b) and (c) show that the sign of the shift also changes with
increasing values of |Afp|. The size of the shifts is an order of magnitude larger
than that of the AC-Stark shifts, and the final values of the shifts for Fy and Fl
fluorescence are of opposite sign.

More detailed results of the calculations (for a Doppler profile with A fEWHM_g(
MHz) are shown in Table 4.1 and Fig. 4.5. The interference shifts in both the
table and the figure do not include the AC-Stark shifts discussed in the previous
section. The contour graphs show that the interference shifts depend strongly on
both T}, and Iy. In an actual experiment, the shift for different atoms in the beam
would differ, since Iy depends on which part of the Gaussian laser beam the atom
intersects, while T, depends on the axial velocity component of the atom.

The shifts (in kHz) shown in Fig. 4.5(a), (c), and (e) are for the 23S;-to-2°F,
transition, while those in Fig. 4.5(b), (d), and (f) are for 235;-to-2°P;. The plots
(c) and (d) display interference shifts for Am; = 0 decays (Fy in Eq. (4.9)), and
(e) and (f) show interference shifts for ;. The corresponding AC-Stark shifts are
shown in parts (a) and (b), respectively. The white dashed lines on the plots show
the corresponding widths of the saturated-fluorescence dips in MHz.

Table 4.2 shows shifts for other Doppler profiles. From this table it can be seen
that the interference shift also depends on which Doppler groups are present in the
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Table 4.2: Dependence of AC-Stark and interference shifts on the width (A f5WVHM)
of the beam’s Doppler profile. Shifts in the 235;-to-2 3P, saturated fluorescence dip,
along with its FWHM and amplitude A, are given for two laser intensities I, and
two interaction times T7.

To T, AfIWINT AC  F,  Fy, |FWHM A
(mW/em?) (us) (MHz) | (kHz) (kFz) (kHz) | (Miz)

1 1 30 | 045 38 61 | 400 0.032
1 1 45 -0.43 4.5 -7.1 4.33 0.024
1 1 60 -0.42 4.9 -7.7 4.52 0.019
1 1 80 -0.41 9.2 -8.2 4.68 0.015
1 1 110 -0.41 5.6 -8.7 4.82 0.011
2 1 30 -1.10 8.2 -10.6 5.05 0.041
2 1 45 | -1.09 95 <125 | 557 0.032
2 1 60 | -1.08 104 -13.8 | 589  0.026
2 1 80 -1.07 11.3  -15.1 6.16 0.020
2 1 110 -1.06 12.0 -16.2 6.40 0.016
1 ) 30 | 048 64 86 | 493 0.054
1 2 45 -0.47 7.4 -10.1 5.34 0.040
1 2 60 | 046 80 -11.0 | 559  0.032
1 2 80 | -045 85 -11.9 | 579  0.025
1 2 110 -0.44 9.0 -12.7 5.97 0.019
2 2 30 | -1.04 130 -146 | 636  0.067
2 2 45 | -1.03 148 175 | 7.02  0.053
2 2 60 -1.02 16.1 -19.5 7.42 0.043
2 2 80 | -1.01 173 214 | 776  0.035
2 2 110 -1.00 184  -23.2 8.08 0.027

beam, as would be expected from the dependence on A fp shown in Figs. 4.4(b) and
(c). The table shows that the interference shifts for a beam with a Doppler width
AfBWHM_110 MHz are approximately 50% larger than those for AfEWVHM_30

MHz.
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4.5.1 Scale and Sign of Interference Shifts

The interference shift results from quantum-mechanical interference between the
amplitude for obtaining fluorescence via an on-resonance laser excitation and the
much smaller amplitude for fluorescence via a far-off-resonance transition to a dis-
tant state. For example, the shift in the 235;(m=0)-to-23Py(m=0) transition (the
dashed arrow in Fig. 4.1) is due to the far-off-resonance 2351 (m=0)-to-23Py(m=0)
transition, which is 31.9 GHz away (20000 natural widths), yet still perturbs the
saturated-fluorescence line shape at a level (5 kHz in 10MHz) that is relevant for
precision spectroscopy.

As is the case for other instances of interference shifts due to off-resonant tran-
sitions [33, 34, 42, 43|, the scale of the shifts is given by the ratio of the square of
the resonance width to the frequency separation between the interfering resonances.
This scaling can be seen in Fig. 4.5(c)-(f), where the resonance width contours have
the same general shape as the interference shift contours.

The opposite sign of the shifts for the different polarizations of fluorescence
(positive for the Fy shifts and negative in the case of the Fl; shifts) is a direct

result of the opposite signs of 1920 and ~ij50. The first of these cross-damping

rates (7020) is relevant for the production of Fy fluorescence, where there is inter-

ference as 235;(m=0) atoms are laser-excited to both the on-resonant 23Py(m=0)

state and the far-off-resonant 23P;(m=0) state, followed by decay back down to
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the 239, (m=0) state. The second rate (yi]a) determines the amount of interfer-
ence when 235;(m=0) atoms are driven to the same 23Py(m=0) and 23P,(m=0)
excited states, but decay down to the 235 (m==1) states instead, with the emis-
sion of circularly-polarized F; fluorescence. In a typical saturated-fluorescence
measurement (e.g., [11, 14, 36, 44|), the width of the saturated-fluorescence dip is
approximately 10 MHz (about 6 natural linewidths). Referring to Figs. 4.5(c) and
(e) one can see resultant shifts with magnitudes between 3 and 6 kHz.

Whether a measured signal is subject to a net positive or negative shift depends
on the detector’s relative sensitivity to Fy vs. FLq fluorescence. For example, if
the fluorescence detector is placed above the laser beam (in the Z direction), it is
sensitive only to F; fluorescence since the angular distribution of Fj fluorescence
is zero in this direction. In general, the shift is some linear combination of the
shifts of Figs. 4.5(c) and (e), with proportions that depend on the geometry of the
experiment and the polarization sensitivity of the detectors.

This strong dependence on detector geometry and sensitivity to the polarization
of the measured fluorescence was shown to be important in measurements of the
hyperfine D-lines in atomic lithium [32, 45], where interference effects are sub-
stantial since the splitting between the relevant neighboring excited states is of the
order of their line widths.

The shifts for the 235;-to-2°P; transition (the dotted arrows in Fig. 4.1) are
much larger, since for this case the neighboring resonance (the 235;-to-23P, tran-
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sition) is 1400 natural widths away. These shifts are shown in Figs. 4.5(d) and (f)
for Fy and Fly; fluorescence. Shifts of between 30 and 60 kHz for 10-MHz-wide
saturated-fluorescence dips can be seen on the contour graphs, which are very large
compared to the kHz or sub-kHz uncertainties of recent measurements [9-17, 35,
36, 46| of the intervals. As before, Fy and F.; have opposite shifts, so again the
actual shift seen by a saturated-fluorescence experiment depends on the sensitivity
and geometry of the fluorescence detector.

With regard to the measurement of |36], a determination of the interference
shift to < 1 kHz level of accuracy is not feasible given the lack of some details
about the experiment. It is evident from Table 4.1, Table 4.2 and Fig. 4.5 that the
shifts depend strongly on model parameters such as the peak laser intensity I, the
Doppler-width A fEWHM of the atomic beam, and the atom-laser interaction time
Tr. This latter quantity is itself a function of the laser beam’s waist and the atomic
beam’s angular spread and speed distribution.

A realistic calculation of the saturated-fluorescence signal would involve a prop-
erly weighted average over line shapes for atoms that experience a range of values
of T, Iy, and Afp. Such a simulation would require detailed information about
the possible trajectories of an atom through the laser beam, which depends on the
laser beam power and waist, as well as the distribution of velocities in the atomic
beam.

Furthermore, as previously mentioned, the detector geometry and sensitivity

66



to fluorescence of different polarizations must be carefully modeled, in order to
correctly combine the opposing shifts with their relative weights. This involves
specification (at the percent level of accuracy) of the placement and aperture of the
detectors, and their relative efficiency for different polarizations of light.

Although some cancellation can be expected between the positive and negative
shifts for most detector geometries, the scale of the expected shifts is still of the
order of 10 kHz, and therefore must be estimated for precision measurements of the
intervals. In summary, a specific correction to the measured value of the 23 Py—23P;
interval due to quantum interference is not given, but an increased uncertainty of

+10 kHz is proposed to reflect the scale of the residual shift.
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5 Saturated-absorption Spectroscopy

Precision measurements of all three 23P fine-structure intervals have been per-
formed using saturated-absorption spectroscopy in a gas cell [15], so it is important
to understand the scale of interference effects on this type of laser measurement.
The technique presents its own set of systematic challenges, and consequently this
chapter analyzes only the 23P,—23P, interval, as measurements of the other 2°P
intervals are complicated by shifts due to deflection of the atoms by laser light.
Interference shifts are obtained [47] for this interval that are larger than the uncer-

tainty of the saturated-absorption measurement of [15].

5.1 Measurement Technique

The saturated-absorption technique uses a sample of dilute helium gas in a cell,
where a dc discharge excites a tiny fraction of the atoms to the metastable 23S
state. A linearly-polarized laser then excites the atoms to the 23P states, and the
transmission of the beam is detected after it has passed through the atomic cloud.

A uniform external magnetic field lifts the degeneracy of the magnetic sub-levels,
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and isolates the individual 23S-to-23P transitions for m;=—1,0, and +1 states,
separating each resonance.

The measurement is performed both with a single laser beam, and also with a
second counter-propagating beam present, and the saturated-absorption signal is
formed from the difference in the absorption of the forward beam between the two
cases. As the laser frequency is tuned across the resonance, decreased absorption
of the forward beam is observed when both beams are on. This reduction is caused
by the Doppler shifts seen by the moving thermal atoms.

When the laser frequency is near resonance, both beams address the same group
of atoms (those nearly at rest), which can absorb photons from either laser beam
with equal probability, resulting in less absorption from the forward beam. When
tuned off-resonance, however, each laser beam couples to a different group of mov-
ing atoms, each of which absorbs photons from a separate beam. The resulting
saturated-absorption signal has a line width much narrower than the Doppler-
broadened laser resonance, and can approach the natural width of the resonance in
the limit of low laser power.

The triplet states involved in the saturated-absorption measurement of the
23P,—23P, interval are shown in Fig. 5.1, and were previously shown in Fig. 2.3 to

illustrate the four-level atom.

69



2°P,

29.617 GHz T(2°P,)=98 ns
2
_ % | >A 2°P;
023=271(2.291 GHz) /{3) gyz_ﬂ ,
S 2°P,
021 :
2767 THz .
™ (1083 nm) o ¢ o
'\/3»0 :
N : metastable 23S,
[0) [1)
mj=-2 my=-1 m;=0 my=1 m;=2

Figure 5.1: The n=2 triplet energy levels of helium, illustrating states involved in
the saturated-absorption measurement of the 235;,m;=1-to-23P;,m ;=1 transition.
Both resonant (solid arrow) and off-resonant (dotted arrow) transitions are shown,
along with possible decay pathways.

This diagram depicts an experiment probing the 235;,m ;=1-to-23P;,m ;=1 tran-
sition frequency. Atomic population starting in the metastable state |1) (23S;,m;=1)
is excited by a linearly-polarized laser tuned close to the |1) — |2) resonance. Most
of the transfer (solid arrow) is to state |2) (23P;,m;=1), but there is a small am-
plitude (dotted arrow) to reach the far-off-resonance state |3) (23P5,m;=1). The
atom then can radiatively decay back to |1) or to the |0) state (23S;,m;=0). The
latter is a dark state since the 23S;,m;=0-t0-23P;,m ;=0 transition is electric-

dipole-forbidden.
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Tuning the laser frequency to the 23P,,;m ;=1 state reverses the roles of |2) and
|3) as dominant and off-resonant state, respectively, and probes the 235;,m ;=1-to-
23P, m =1 transition instead, with the difference of the two transition frequencies
used to determine the fine-structure interval. Although this latter case is not strictly
a closed four-level system (since the 23S;,m; = 0-t0-23Py,m; = 0 transition is not
dipole-forbidden), the large Zeeman shift effectively suppresses the transition out
of 23S1,m;=0, so |0) can still be treated as dark state, and the four-level model is
recovered.

In either case, there is quantum-mechanical interference between the two pro-
cesses of resonant vs. off-resonant excitation and subsequent decay. As discussed
in chapter 2, this leads to a perturbation of the branching ratio for decay to the |0)
dark state compared to decay back to the metastable |1) state, where the atom can
be repeatedly excited to remove photons from the laser field. This effect translates
to a distortion and a resultant shift in the absorption profile as the laser scans over

the resonance.

5.1.1 Systematic Effects

The saturated-absorption measurement of [15] must be corrected for several sys-
tematic effects. The first of these are velocity-changing collisions (VCC) between
excited and ground-state helium atoms. Such collisions limit the amount of time
an atom in a particular Doppler group interacts with the laser before either moving
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to a different velocity class, or being removed from the region of laser interaction
altogether. Velocity-changing collisions lead to a broad Gaussian background, upon
which the narrow Lorentzian transition resonances sit, and this feature is included
in the fits to the experimental line shapes.

The measured intervals, derived from differences in transition frequencies, are
also affected by magnetic field shifts, gas-pressure shifts, and light-pressure shifts.
The linear Zeeman shifts cancel out, while theoretical corrections for the much-
smaller nonlinear Zeeman shifts are explicitly calculated and applied. The pressure
shifts are due to perturbations to the internal energy levels of the atoms, and are
proportional to the gas pressure.

Light-pressure shifts refer to the recoil effect of photon scattering on the he-
lium atoms, which alters the velocity distribution of the atoms in the cloud. The
shift is proportional to the average number of photons absorbed by an atom before
being optically-pumped to a dark state, which varies for the different 23 S-t0-23 P;
transitions. These light-pressure shifts are measured and compensated for in the ex-
periment, except in the case of the 23P—23 P, interval, for which the light-pressure
shifts cancel. Due to the difficultly of properly modeling the light-pressure shifts,

this chapter’s analysis of interference effects focuses on the 23P,—23P; splitting.
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5.2 Theoretical Description

To model the saturated-absorption technique of [15]|, one should consider a laser
with angular frequency w—27nf and linear polarization Z interacting with a cloud
of metastable helium atoms. The forward beam and the counter-propagating
beam travel in the +¢y and —g directions, respectively, and both laser beams
have a uniform intensity Iy over the volume of atoms that contribute to the sig-
nal. An atom with velocity component v, sees equal and opposite Doppler shifts
+Awp==21A fp==+wuv,/c for the two laser beams, and experiences a total electric

field (in the dipole approximation) of
E(t) = 2By cos [(w 4 Awp)t] 4 s2Ey cos [(w — Awp)t + Ad). (5.1)

As before, EO:\/zOZ‘;, and A¢ is the phase difference between the two laser beams.
The parameter s = 1 or 0 indicates if the counter-propagating laser beam is switched
on or off. The lack of a Gaussian laser envelope is justified, as the absorption is
detected from a narrow region at the center of the laser beam, where the spatial
intensity profile is essentially flat.

The measurement of the 23S;,m;—1-to-23P;,m —1 transition is considered first.
The reduced density-matrix equations for the four-level atom developed in Chap-
ter 2 are applied, as these Eqgs. (2.11) describe the transfer of population in the
system of Fig. 5.1 where the laser is nearly resonant with the [1) — |2) transition.
They involve only the initial state |1) and the on-resonant state |2), but include
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first-order corrections due to the presence of the distant state |3):

) €0 5y93-51 i€ Q37231

S e B B e R R o IS 5.2
P11 < 5 + oy P12 T Y2—1P22 5 Dons P12s (5.2a)
Qi v 12"

- = _ — A 5.2b
P12 5 P11 5 P22 l 5 +1 2+ s P12, ( )
P22 = —22P12 - —22P12 — V2p22- (5.2¢)

Here wog is the fine-structure splitting between |2) and |3) of Fig. 5.1, while Ay=27Af
is the detuning of the laser from the |1) —|2) transition frequency. The radiative
decay terms involve the quantities y2=", y21=7/2, and ~y3,1=7/2, where y=1/7
and 7=98 ns is the lifetime of the 23P; states. The 73 terms in Eqgs. (2.11) vanish
since Yo3="23-01723-1=0.

Invoking once again the rotating-wave approximation, the Rabi frequencies {2,
and Q3 associated with the driven transitions between the metastable state |1) and

the two excited states |2) and |3) can be written as:

00 =0 + 0, (530
4 E
Qi) = emwme—;uyzm, (5.3b)
B . E
Q) = efz(AwDHA@eTOmZM). (5.3¢)

The (+) and (—) superscripts refer to the forward and backward beams, and,
as in Eq. (5.1), the value of s indicates whether the counter-propagating beam is
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switched on or off.

5.3 Absorption Lineshapes

The net absorption from the laser field during the atom-laser interaction time 7T’
can be calculated by integrating the atom-field driving terms in the excited-state
population rates pop and p33 of Egs. (2.3) (b),(c), which describe the full four-level

system:

. T

(4 * *

=3 / (Qgﬂﬂm - 92(+)Plz + Q§+)p31 - 93(+)Pl3> dt (5.4)
0

Note that only partial Rabi-frequencies, Qé“ and Qgﬂ (c.f. Eq. (5.3)(b)), appear
in the above expression, i.e., only the coupling to the forward laser beam is used.
The absorption still depends on the parameter s, as indicated by the subscript,
since the density-matrix elements p15 and pi3 can be calculated either using a single
forward laser beam (s = 0) or with a reflected backward beam included (s = 1).

The same procedure used to derive Egs. (5.2) can be applied to Eq. (5.4), in
order to obtain a reduced expression for the absorption rate compatible with the
reduced Eqgs. (5.2), as follows:

1. Define the usual ordering parameter n ~ wg—;), J—% < 1, i.e., the ratio of the

two frequency scales in the system, where the fine-structure splitting frequency

was > i, 7, A; (the Rabi frequencies, decay rates and laser detuning) and start
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with expressions from the full four-level Egs (2.3), dropping terms of O(n?):

a = §Q2P21 - 592/012 + 593031 — 593,0137 (5.5a)

P13 = (—zAg — E) P13+ —Qgpn — —921023 - _QS/)33> (5'5b)
2 2 2 2

P31 = <2A3 - %) P31 — §Q3p11 + §QQP32 + 5930337 (55C)

where Az = Ay + wos.
2. Form a linear combination of Eqs. (5.5) to eliminate pj3 and p3; from the

absorption equation: (a) + (b) {%ng] + (¢) {—%Qg@}.

3. This linear combination leads to a left-hand side of
) Qx 7 Qs
LHS = G4 s g — =
2 (—zAg — %73) B (ZA — %73) 31

=da+ O(n?),
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and a right-hand side of

RHS = =Q e -0 — =
5 2021 5 2P12 + 5 3031 5 3013

i (—@Ag—gw)p 10310 . 10310 o 105100
27 (=it = 3m) T (Hide—gs) T (CiBa =) (Hide - g

i (iAg— 1v3) 110, 10, IO,

_ 19 2 427732 ___2°"32°"% 2920
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i i 1|y 1 [
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i i 1 iNg— L —iNg— L
= —Qopo1 — =Wpr1a — —|Qs)? 2 2
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_ i i * 1 2 V3
= 292021 - 292P12+ 4|Q3| (a2 ﬁ)Pll
3 4

= 592021 — 592P12 + 0(772)

The reduced expression for the absorption therefore does not contain any first-

order corrections, and is simply that naively obtained from Eqs. (5.2):

LT

1 *

s = 5/ (QgﬁL)p]}—QQ(Hpu) dt. (5.6)
0

This integral, when combined with p;s obtained by integrating Eqgs. (5.2), is com-
plete to order 7. Numerical integration of Eqs. (5.2) and (5.6) must be done twice:
with s=0 (a single forward beam) and with s=1 (including the counter-propagating
beam).

The total absorption ag and «; is computed over a range of frequencies near res-
onance to obtain saturated-absorption line shapes. Such line shapes are calculated
for a large set of Doppler groups (Awp of Eq. (5.1)), as well as relative phases in the
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two-beam case (A¢ of Eq. (5.1)). Absorption profiles @y and @; are then obtained
by averaging over these parameters, and the difference Aa = @, — @y is taken as

the saturated-absorption signal, from which width and line center parameters are

derived. An example of this is shown in Fig. 5.2.
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Figure 5.2: Phase- and Doppler-averaged saturated-absorption line shape of the
2351-t0-23P; resonance, for a laser intensity of /=0.1 mW /cm? and interaction time
of T=1 ps. Single-beam (s = 0) and two-beam (s = 1) absorption profiles are
shown at the top (a), with the difference in absorption at the bottom (b). The
points defining the FWHM of the line shape (in this case 2.8 MHz) are indicated.

While the thermal atomic cloud used in the experiment has a Gaussian velocity
distribution with a Doppler-width on the order of 1000 MHz, the calculation of

the saturated-absorption line shapes only averages over a narrow range of Doppler
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groups (|Awp| < 27 80 MHz) since it can be shown that the other Doppler groups
make no significant contribution. A uniform velocity distribution is used since the
cloud’s broad velocity profile is almost constant over this range of Doppler groups.

The half-maximum points (see Fig. 5.2) are then used to determine the shift.
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Figure 5.3: Shifts in the 235,-t0-23P; resonance as a function of included Doppler
groups. The line shapes are calculated using uniformly-distributed Doppler groups
ranging from —|Afp| to |Afp|. Results are shown for a laser intensity of 0.1
mW /em?; with four choices of atom-laser interaction time 7.

The simplification of only including a limited range of Doppler groups can be
justified by referring to Fig. 5.3. The value of the shift is seen to depend on the
number of Doppler groups that are included in the calculation, but has already
converged (to a 10 Hz level of precision) when all Doppler groups with |Afp|< 20
MHz are included. The rapid convergence illustrates how the signal is dominated
by atoms that are nearly at rest, a tiny, essentially flat region of the velocity distri-
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bution. A similar convergence of the resonance line widths is seen in Fig. 5.4, and
the |Afp| < 80 MHz range is sufficient to cover even the largest widths encountered

in the calculations.
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Figure 5.4: Widths of the 235,-t0-23P; resonance as a function of included Doppler
groups. The line shapes are calculated using uniformly-distributed Doppler groups
ranging from —|Afp| to |Afp|. Results are shown for a laser intensity of 0.1
mW /cm?; with four choices of atom-laser interaction time 7.

The preceding treatment involved the 235;,m ;=1-t0-23P;,m =1 transition, but
identical shifts are obtained when considering the m ;=-1 transition.

A similar analysis can be carried out for a laser nearly resonant with the 235-
to-23P, transition instead. As discussed earlier, this scenario is still amenable to
the four-level model, since the large magnetic field in the experiment [15] separates
the m levels sufficiently to suppress the transition out of the |0) state in Fig. 5.1

once the atom has decayed to that level.
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Every part of the calculation is the same, except for a sign difference due to
the fact that the on-resonance process is now at a lower frequency than the off-
resonant 235-to-23P; transition, i.e., wsy = —ws3. This alternate case results in
shifts in the resonance of equal magnitude but opposite sign. Since the 23P,—23P,
fine-structure interval is determined by subtracting the observed line centers for the
2391-t0-23P;, and 23S;-to-23P;, resonances, the net shift in the interval is thus twice

the individual shift for 235;-to-2°P;.

5.4 Interference Shifts

Saturated-absorption line shapes are calculated for a wide range of atom-laser inter-
action times 7" and for a number of laser intensities I, including the value of /=0.1
mW /cm? used in the measurements of Ref. [15]. Figure 5.5 shows the FWHM of
the 235)-t0-23P; resonance (solid lines) as a function of laser intensity I and inter-
action time T (top axis). The feature is broadened both at short interaction times
(T<«2nr) and above saturation (€,7>>1), but can approach the natural width

(dashed line) for sufficiently-long 7" and low enough I.
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Figure 5.5: Widths of the calculated saturated-absorption line shapes (solid lines)
for the 235,-to-23P; resonance, over a range of interaction times 7', and for various
laser intensities I. The data points are experimental widths from [48], which are
used to calibrate the pressure scale (bottom axis) with the time scale (top axis).
The natural width of the resonance is shown as a dashed line.

The experiment of Ref. [15] varied the gas pressure in the cell and extrapo-
lated the measured fine-structure intervals down to zero pressure, to correct for
the systematic effect of velocity-changing collisions, and other pressure-dependent
effects.

These collisions, between n=2 helium atoms in the discharge and the much
larger number of ground-state atoms in the cell, determine the interaction time 7.

The rate of the collisions limits the average amount of time an atom in a particular

Doppler group interacts with the laser and contributes to the saturated-absorption
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signal, before moving to a different velocity class, or being removed from the region
of laser interaction altogether.

To connect the model calculations with experiment [15], a correspondence can
be made between the atom-laser interaction time 7" and the reciprocal of the pres-
sure in the cell, T" oc 1/ P, as higher gas pressures result in larger collision rates and
shorter interaction times. The constant of proportionality is found by matching the
calculated line widths-vs.-time to measured [48] widths-vs.-pressure (the points in
Fig. 5.5) at a laser intensity of /=0.1 mW /cm?. This calibrates the time-pressure
scale and allows extrapolation of calculated shifts to zero pressure. The correspond-
ing shifts in the fine-structure interval are shown in Fig. 5.6 using thin solid curves,

with interaction time 7' also calibrated to the experimental widths.
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Figure 5.6: Total shifts (solid thin lines) in the 23P,—23P, interval over a range
of interaction times T (which correspond to helium cell pressures P) and laser
intensities I. The thin dashed lines give the effect when only the AC-Stark shift
term is included. The thick lines show least-squares fits of the shifts over the
pressure range of 18 to 38 mTorr, extrapolated to zero pressure. The circle indicates
the intensity and pressure at which the most significant data in [15] were taken.

5.5 Correction to the 2°P,—23P, Interval

For the measurement in [15], the most precise data were taken at helium cell pres-
sures between 18 and 38 mTorr, and were then extrapolated to zero pressure. In
Fig. 5.5 this range of pressures yields the smallest line widths at the nominal inten-
sity of I=0.1 mW /cm?, minimizing the interference with the neighboring resonance

that would result from the larger widths at lower pressures (larger T').
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In this pressure range, the corresponding interference shifts in Fig. 5.6 (thin
solid lines) have a linear dependence on P, avoiding the larger shifts that grow
nonlinearly at lower pressures. The thick gray lines in Fig. 5.6 show extrapolations
of the calculated shifts from linear fits to this range.

AC-Stark-only shifts (thin dashed lines in Fig. 5.6) are also computed, by artifi-

Q372331

v25=1 interference term in Eqgs. (5.2). These curves represent
23

cially suppressing the
23]
4was

the effect of the

term alone, and the shifts vanish when extrapolated to zero
pressure, and as the laser intensity approaches zero, as indicated by the dotted gray
lines.

In contrast, extrapolation to P=0 of the full interference shifts leads to residual
values, even in the limit of zero laser intensity I. Thus, a repetition of experiments
down to lower pressures and laser intensities will not eliminate the interference shift.
As shown by the thick dashed line on the lowest-intensity curve, the interference
shift in the limit of zero pressure and intensity is —1.2 kHz, which exceeds the
0.51-kHz uncertainty of the saturated-absorption measurement of this interval, and
thus a correction of +1.2 kHz to the measured value from [15] must be applied.

The net —1.2 kHz shift can be broken up into three parts. The shift at 18
mTorr and 0.1 mW /em? is —1.6 kHz (this is the pressure and intensity at which
the most precise data were taken in [15], as indicated by the circle in Fig. 5.6).
The extrapolation to zero pressure (the thick solid line) causes an additional shift
of —0.6 kHz. Finally, an extrapolation of the P=0 intercepts of Fig. 5.6 to zero
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intensity causes an additional shift of +1.0 kHz.

The extrapolations of the calculated shifts to P=0 and /=0 are subject to some
uncertainty. For example, an atom in a helium cell at a pressure P would experience
a range of times T between velocity-changing collisions (ranging from approximately
50% to 150% of the average T'), and therefore the correspondence between T and P
assumed in Fig. 5.6 is only approximate. Furthermore, the current model does not
explicitly include magnetic fields, and the degree to which state |0) of Fig. 5.1 is a
dark state might depend on magnetic field, on laser intensity, and on the pressure
in the cell. Because of these unknowns, a 50% uncertainty is assumed for each
component of the shift, to arrive at an estimate of the total shift of (—1.6 0.8

kHz) 4+ (—0.6£0.3 kHz) + (+1.04+0.5 kHz) = —1.24+1.0 kHz for this measurement.
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6 Microwave Spectroscopy

The discussion of precision helium fine-structure measurements has so far examined
methods based on laser spectroscopy, where helium atoms are initially in the 23S
metastable states. By driving 1083-nm transitions from these states to the excited
23Pj_g12 levels, the fine-structure splittings were determined from the difference
between the resonance line centers of any pair of these transitions.

A more direct measurement of the fine-structure intervals can be made by us-
ing a microwave field to drive magnetic-dipole transitions between the 23P states
themselves. Experiments performed with single microwave pulses have obtained
values of 2,291,174.0 £ 1.4 kHz for the 23P,—23P; interval [12] and 29,616,950.9
+ 0.9 kHz for the 23P,—23P; interval [13], respectively.

A subsequent experiment [16] using the Ramsey method of separated oscillatory-
fields obtained a more precise measurement of the 23 P,—23 P, interval, with a value
of 2,291,177.53 £ 0.35 kHz.

Calculations of the interference effect associated with these types of measure-

ments result in shifts that are much smaller than the experimental uncertainty [42],
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which underscores the technique’s robustness against this systematic effect. How-
ever, the interference effects will be of importance for the next generation of higher-

precision microwave measurements.

6.1 Measurement Technique

Using the experimental technique of [10, 12, 13, 16] one prepares a beam of thermal
He atoms using a series of optical pumping lasers, so that the 23P;, m ;=0 excited
state is populated while the 23S;,m; = 0 metastable state is vacant. An atom
in 23P;,m; = 0 is forbidden by electric-dipole selection rules from decaying to
2351, m; = 0, so this latter state can only accumulate population if an applied
microwave field drives transitions to either the 23 Py, m;=0, or one of the 23P,, m ;=
0, 1 states, which can subsequently decay down to 235;,m; = 0.

The relevant triplet states are illustrated in Fig. 6.1, where a linearly-polarized
microwave field that is nearly resonant with the |1) — |2) transition drives popula-
tion out of 2P, m;=0 (|1)) to the 23 Py, m; = 0 state (|2)), as shown by the solid
arrow. To maximize the signal, the field is applied before any significant portion
of the initial population in |1) has had a chance to decay back to the metastable
states.

The field also drives the far-off-resonance |1) — |0) transition, transferring a

small amount of population to 22Py,m; =0 (]0)), indicated by the dotted arrow.
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Atoms in either state |1) or |0) then spontaneously decay to the metastable states

2381, m;=-1,0,+1 (denoted in Fig. 6.1 by |a), |b), and |c) respectively).

my=-2 my=-1 my=0 my=1 my=2

2°P,

rﬁ;ﬂaﬁve o
eca o1 _
y oo =29.617 GHz
2°P;
Wiz_
2, g 12) . § % oo =2.291 GHz
Wps _
5Tt =276.7 THz
(1083 nm)
2381 \

la) |b) [

Figure 6.1: A direct microwave measurement of the He fine-structure intervals.
The population starts in the |1) state, and an applied microwave field either drives
the |1) — |2) transition (solid arrow) or the |1) — |0) transition (dashed arrow).
The allowed radiative decay paths from states 1), |2) and |0) are indicated.

The atoms in |b) are then laser-excited back to |0), and the resulting fluorescence
from radiative decay is measured to obtain the signal, which is directly proportional
to the population of the |b) state after the beam has passed through the microwave
field.

The applied field can be resonant with the |1) — |0) transition instead, and then

|1) — |2) becomes the distant resonance. In either case there are two excitation-
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and-decay processes, 27.3 GHz out of resonance from each other, that start in state
|1) and end up in the final state |b). Quantum-mechanical interference between
these pathways distorts the line shape of the probed resonance and manifests itself
as a shift in the measured line center.

The measurement of the 23 P intervals can be done either with a single pulse of
microwaves, or by using the Ramsey method of separated oscillatory fields (SOF),
in which the atoms interact with two microwave pulses separated in time. The two
pulses are either in phase with each other, or 180° out-of-phase, and the SOF line
shape is obtained by subtracting the out-of-phase signal from that obtained using
in-phase pulses. The SOF method is more precise, resulting in line shapes that
are narrower than the 3.2 MHz natural width of the magnetic-dipole microwave
resonances. The natural width is double that seen for the laser transitions, since

both the initial and final states are unstable.

6.2 Theoretical Description

The transitions [1) — |0) and |1) — |2) among the 23P;m; = 0 states are due to
the comparatively weak magnetic-dipole atom-field coupling, which is given in the

dipole approximation as:
U(t) = —ji- B(t) = —pup/hBog(t) cos (wt + ¢)(L. + 25.), (6.1)

for a linearly-polarized field B(t) = 2Byg(t) cos (wt + ).
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The function g(¢) modulates the peak microwave field amplitude By, and is equal
to g(t) = op(t) for the single-pulse case shown in Fig. 6.2(a), where op(t) is a pulse
of unit amplitude and FWHM duration D. Dual microwave pulses separated by a
time interval T, are modeled by ¢(t) = [op(t) & op(t — T)]. The relative sign of
the terms corresponds to the in-phase vs. out-of-phase pulses shown in Fig. 6.2(b)

and (c), respectively.

Figure 6.2: Timing for the microwave pulses. A single microwave pulse is depicted
in (a), while the in-phase and 180°-out-of-phase cases for two pulses are represented
in (b) and (c). A switching time of t,=1 ns (cf. (a)) is included in the calculations.

As the applied microwave frequencies are of comparable size to the spacings
between the excited states, the rotating-wave approximation is no longer applicable
to this system, nor is it viable to use the reduction process employed in previous
chapters to simplify the density-matrix equations.

A full set of density matrix equations involving the states |1), |2), |0), and |b)

91



must therefore be used [42] (see also Appendix A):

P11 = 125012 — 1 2por + 127010 — 121001

— V1P — % (p1o+po1) — % (p12+p21) (6.2a)
) ) . + )
P12 = 1o (Pn - 022) — 1 Q10p02 — (V1 5 2 20021) P12
- @Plo _ 2 (p11 + p22) — m;002, (6.2b)
2 2 2
) ) e~ 720 12
P22 = 18d12pa1 — id5p12 — Yopoz — 7 (020 + 002) - 7 (le + P12) ) (6-2C)
) ) . + )
P10 = o (pn - Poo) — i{di12p20 — (% 5 o Zwm) P10
— E/)12 S (p11 + poo) — BP%; (6.2d)
2 2 2
) ) o~k + )
P20 = 18210p21 — 18279010 — <72 o Zwoz) £20
-~ (p22 + poo) — Bﬂlo - ml)m, (6.2¢)
2 2 2
S - 720 710
poo = 18 210po1 — 1€279p10 — YoPoo — 3 (,002 + /)20) - 7(/)01 + ,010), (6-2f)

Pob = Y1—bP11 + Ya—sbP22 + Yo—bP00 + V12—b (P21 + p12)

+ V10— (Po1 + p10) + Y20-6(p02 + p20)- (6.2g)

Here, Q;; = (i|U(t)|7)/h is the Rabi-frequency for the magnetic-dipole coupling
between states |i) and |7), and the radiative decay rates v, = 7, ', 75 = 7, *, and
7 = 75 = are related to the lifetimes of states |1), |2), and |0). These total rates
can be expressed as v; = Via + Vi + Vie in terms of the partial rates for the
radiative decays shown in Fig. 6.1. Similarly, the cross-damping rates are defined
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as Yij = Vij—a T Vij—b + Vij—c, Where (in the electric dipole approximation)

e*lwps|? . . L

Yiosh = WMT |b) - (b|7"|7) (6.3a)
62|WPS|3 = S

Yij—b = ?nre—ohci%@‘r 10) - (b]7])- (6.3b)

Solving Eqs. (6.2) for p11, paa, poo, and py, gives the populations of states |1),
12), 10), and |b), which are the only ones relevant to the measurement.

Density matrix equations for the quantities pui, pPpi, pei are not required, since
they do not appear on the right-hand side of Egs. (6.2), and therefore are decoupled
from the rest of the system.

Since wpg > wig,wpr (as shown in Fig. 6.1), 1 = v = v = 7 = 1/7, where
7 = 97.9 ns. When computing the electric-dipole matrix elements, one obtains

further cancellations and simplifications:

Y12 = 710 = Y20 = 0, (6.4a)
V1—sb = Y12—b = Y1o—b = 0, (6.4b)
Yosb = 277/3, (6.4c)
Yosb = V/3, (6.4d)

and

Y20—b = —\/57/3 (6.4e)

The nonzero 729, term in Eqgs. (6.2) represents the quantum-mechanical interfer-
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ence in the radiative decay to the final measured state |b).

Computing the ratio of the magnetic-dipole matrix-elements gives 21 = Qo =

) and le = 912 = Q/\/i, where

Q) = \/g(ma/ h)Bog(t) cos (wt + ). (6.5)

Substituting the results of Egs. (6.4) and (6.5), Egs. (6.2) simplify to

o = L ) — (3 — i) pro — i (6.6b)
= — — — (v — 1w —1 , .
P12 \/§ P11 — P22 Y 21)P12 P02
1Y)
oy = ——= — — , 6.6¢
22 \/i(pﬂ p12) — VP22 (6.6¢)
o = 19 )= 22— (7 — ) (6.64)
=1 — - — — (v — 1w , .
P10 P11 — Poo \/§p20 7 01)P10
) 0 1€} ( o) (6.6¢)
=1 - — — (v — 1w , .6e
P20 P21 \/5;010 v 02)P20
Poo = 12(po1 — p10) — YPoo, (6.6f)
, 2 V2
Pop = %Pm + %Poo - TW(Poz + p20). (6.6g)

Note that neither Egs. (6.2) nor Egs. (6.6) use the rotating-wave approximation
and that Q(t) in Egs. (6.6) carries the full time dependence of the oscillating field.
The equations also include both the resonant and off-resonance states.

Eqs. (6.6) are integrated numerically using a fourth-order Runge-Kutta method

with initial conditions of p;1(¢;) = 1 and all other entries set to zero, to determine
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the value of py, at ¢ = ¢ of Fig. 6.2. This calculation follows the technique of
[10, 12, 13, 16|, where the atomic population is initially in state |1), and the final
amount of population in |b) is a direct measure of the probability that a microwave
transition has been made. Line shapes are generated by solving the equations for
a range of applied frequencies w = 27 f scanning around the resonance of interest,
and the shifts caused by the distant neighboring resonance are then extracted.

The numerical solver uses a time step of 30 fs to accurately integrate through
the approximately 30-GHz frequencies of the applied microwave field and the com-
plex phase factor of the atomic wavefunction. The results are verified by using
both higher-precision arithmetic and shorter time steps, and further checked by
comparing to numerical integrations using an adaptive-step Runge-Kutta-Fehlberg
method.

The integration is started at a time ¢; that is 50 ns before the start of the first
microwave pulse and continued until time ¢ that is 500 ns after the end of the last
pulse (see Fig. 6.2). This final 500 ns allows almost all of the 2°P atoms to decay
back down to the 23S states. As indicated in Fig. 6.2, the microwave pulses were
chosen to have a time constant ¢, for turn-on and turn-off. The shifts obtained are
found to be essentially independent of ¢, for values between 1 and 10 ns, which
corresponds to experimentally realizable turn-on and turn-off times, and ¢, = 1 ns
is used for all integrations presented here. For much shorter ¢, the high frequencies
associated with the sudden turn on and turn off modify the shifts by approximately
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10%.

6.3 Single Microwave Pulse Shifts

Line shapes for both |1) — |2) and |1) — |0) transitions are obtained for a given
pulse-width D and magnetic field amplitude By by numerical solution of Eqgs. (6.6)
using the single-pulse timing envelope g(t) = op(t). A sample line shape can be
seen in Fig. 6.3 for a pulse duration of D = 200 ns and magnetic field amplitude of
By = 0.2 gauss, and shows that the initially empty |b) state of Fig. 6.1 is populated
when the microwave transition is driven. The calculation is repeated with the 90,
interference term in Eqgs. (6.2) artificially set to zero, so that only AC-Stark shifts

affect the resonance profile in this type of simulation.
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Figure 6.3: Line shape of the 2°P;-to-23P, (]1) — |2)) resonance, obtained from
numerical integrations using a single microwave pulse with a duration D = 200

ns and microwave magnetic field amplitude By=0.2 gauss. The fit (solid line) is
obtained using Eq. (6.9)

To determine the shifts of the numerically-generated profiles, least-squares fits
are made to an ideal line shape for a two-level atom interacting with a microwave
field. This line shape can be obtained by evolving the atom’s wavefunction (in
the rotating-wave approximation) as it interacts with a square microwave pulse
of duration D, to calculate the population in the final metastable |b) state. The
expression is given by:

D

pon(A) = %—>b/

t=0

Py(t)e "'dt + ;- Pi(D) / e dt, (6.7)

t=D
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with

02 sin?(\/Q2 + A2t/2)
Pi(t) = 0+ A7 (6.8)

being the probability of the atom being in the 23 P, or 23 P, state at time ¢ (i = 2,0,
respectively). Here A = (w — wyp) is the detuning of the applied field from the
resonant frequency, and ~;_; is the rate of decay from state |2) (or |0)) to state
|b). Qy = \/%(,UB/FL)BO and Q = \/g(uB/h)Bo are the Rabi frequencies for the
coupling of the |2),|0) excited states to the initial state |1).

The first term in Eq. (6.7) integrates over the period when the microwave pulse
is on, and the population P;(¢) in the |2) (or |0)) state is undergoing Rabi oscillation
between that state and the initial state |1), while simultaneously decaying to the
|b) metastable state. The second term models the time after the atom has passed
through the microwave field and evolves in a field-free manner, where the population
P,(D) left in the |2) (or |0)) state at time D simply decays to |b). During both
intervals, population in |b) is accumulating at the partial rate vy, (0r Yo_p)-

The fit function applied to the generated line shape is then taken to be

Qr — e P [Qrcos(QrD) + vsin(QrD)]
29QR (v* + OF) ’

oo (25 C, Ag) = Cryi_p Q7 (6.9)

where the integrals in Eq. (6.7) have been evaluated, and Q% = Q2+ (A—Ay)?. The
C and A, fit parameters are allowed to vary, with the latter’s value representing
the shift in the resonance line center.

As an alternative, the shifts may be determined based on the positions and slopes
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at the half maximum points in Fig. 6.3. This approach leads to nearly identical
values as those obtained by the fitting procedure, with very small differences due
to the minute distortion in the line shape caused by the 90, interference term,

which is not captured by the symmetric form of Eq. (6.9).

0 | 1 | 2
By (gauss)

Figure 6.4: Shifts of the 23P;-to-23P; resonance versus magnetic field amplitude,
for a single microwave pulse with a duration D = 200 ns.The squares represent the
full shifts, while circles are the AC-Stark shifts, which are obtained by artificially
suppressing the ,0_; interference term in Eq. (6.2).

Shifts obtained by the fits are shown in Fig. 6.4 for a range of magnetic field
amplitudes. The circles in the figure show the shifts that result when the 750 .,
interference term in Eqgs. (6.2) is excluded. These shifts scale as the square of the
microwave field strength due to the expected AC-Stark power shifts, and extrapolate

to zero for zero field intensity. The square symbols in the plots represent the full
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Table 6.1: Frequency shifts extrapolated to zero microwave intensity using
Eq. (6.10), for helium 23P;-to-23Pg (]1) —|0)) and 23P;-to-23Py (]1) —|2)) single-
microwave-pulse transitions.

D (ns) Sh (Hz)
) —=10) 1) —12)
50 -429 -429
100 -224 -224
200 -129 -129
400 -87 -88
800 -82 -82

shift, and these values do not extrapolate to zero, but rather have the quadratic

form

Sh=Sh" + kB2, (6.10)

where By is the amplitude of the applied microwave field, &k is the AC-Stark shift
rate, and Sh(® is the residual shift at zero intensity. These shifts Sh(®) are listed in
Table 6.1 and are almost identical for the 23P;-t0-23P, and 23P;-t0-23P5 intervals.

Their magnitude is approximately inversely proportional to the pulse duration D.

6.4 Microwave SOF Shifts

Resonance profiles are also generated for Ramsey SOF measurements, which are
obtained by solution of Eqs. (6.6) using the dual-pulse envelopes g(t) = [op(t) £
op(t — T)], for selected pulse width D and time separation T. The calculation is
more involved, as both in-phase and out-of-phase cases must be computed, with the

difference between the line shapes forming the SOF signal. An example is shown in
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Fig. 6.5 for pulses of duration D = 100 ns, separated by 7" = 500 ns. The microwave
magnetic field amplitude is By=0.2 gauss, and the graph again demonstrates that
the initially empty |b) state of Fig. 6.1 is populated when the microwave transition

is driven.

~10 -5 0 5 10
A (MHz)

Figure 6.5: SOF line shape of the 23P-to-23P, resonance obtained from numerical
integration with two microwave pulses of D = 100 ns, separated by T = 500 ns.
The microwave magnetic field amplitude is By=0.2 gauss. The fit (solid line) is
obtained using Eq. (6.12).

The sub-natural line width resolution of the microwave resonance can be seen in
Fig. 6.5, where the internal structure has zero-crossings spaced apart by about 1.5
MHz, while the natural width is 3.2 MHz. While the oscillatory SOF lineshape is

more complicated than in the single-pulse case, the shift is determined by a similar

process of fitting to an ideal two-level resonance profile. The atomic wavefunction
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is again evolved in time, but in this case there is interaction with two successive
microwave fields. The population in the final |b) state after the atom has interacted
with both pulses is obtained by summing the decay probability in all four intervals:
during the first pulse, in-between pulses, during the second pulse, and after both

pulses have subsided:

D

beOF<A75) = ’Yz’—>b/ Pz’@)eﬂtdt
t=0
D+t
+ ’YHbPi(D)/ e tdt
t=D
2D+tg
+ ’YHb/ POF (D, ty,t — (D +ty),8)e dt
t=D+tg
+ Yy PPOY (D, tg, D, 6) / e dt
t=2D+tg
= L(A) + L(A) + I3(A,0) + I4(A,9). (6.11)

Here A = (w — wyp), Vi and P;(t) are defined as in the single-pulse case. The
first two terms I; and I in Eq. (6.11) evolve the atom’s state through the first
pulse, of duration D, and a subsequent field-free period t,.

The third and fourth integrals I3(d) and I4(d) represent the atom’s interaction
with the second microwave pulse, and the final period of field-free evolution after-
ward. They involve the quantity P9 (t,,ty,t5,d) which is the probability of the
atom being in the state |2) (|0)) at time ¢ from the start of the second pulse, after

interaction with a first pulse of duration t; followed by a field-free period t,. The
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parameter 0 is the phase-difference between the two pulses.

The fit function used for the calculated SOF line shape is the difference signal

PalE (A O, Ag) = O[I3(A — Ay, 0) + Li(A — Ay, 0)

—]3(A—A0,7T) —]4(A—A0,7T>], (612)

with I; and I, from Eq. (6.11) having cancelled since they do not depend on the
phase difference 6. As before, the parameters C' and A, are varied, and a pure shift
Ay in the line shape is extracted.

Similar to the single-pulse case, shifts can also be determined from the zero-
crossing points in Fig. 6.5, but this yields nearly identical values, with the small

distortions in the line shape ignored by the symmetric fit function.
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Figure 6.6: SOF shifts of the 23P;-to-23P, resonance versus magnetic field am-
plitude, for two microwave pulses of D = 100 ns, separated by T' = 500 ns. Shifts
are obtained by fits similar to those shown in Fig. 6.5. The squares represent the
full shift, while circles show the shifts that would result in the absence of the 5y,
interference term in Eq. (6.2).

SOF shifts obtained by the fits of Eq. (6.12) are plotted in Fig. 6.6 for a range
of magnetic field amplitudes. Again, the pure AC-Stark shifts (circles), obtained
by setting 90,4 in Eqgs. (6.2) to zero, scale as the square of the microwave field
strength, and extrapolate to zero for zero field intensity. The full shifts (square
symbols) have the quadratic form of Eq. (6.10) with a residual shift Sh(®) at zero
intensity. These shifts, listed in Table 6.2, are almost identical for the 23P;-to-
23Py and 23P;-to-23P, intervals. Their magnitudes are much smaller than those

in the single-pulse analysis however, and approximately inversely proportional to
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Table 6.2: Frequency shifts extrapolated to zero microwave intensity using
Eq. (6.10), for helium 23P;-to-23Py (]1) — [0)) and 23P;-to-23Py (|1) — |2)) SOF
transitions.

D (ns) T (ns) ShY) . (Hz)
1) —=10) 1) —[2)
50 200 -41 -41
o0 300 =27 =27
50 400 -20 -20
50 500 -16 -16
50 600 -14 -14
50 800 -10 -10
100 300 =27 -28
100 400 -20 -21
100 500 -16 -17
100 600 -14 -14
100 800 -10 -10
150 400 -21 -22
150 500 -16 -17
150 600 -14 -14
150 800 -10 -11

the pulse separation 7.

Although the shifts shown in Tables 6.1 and 6.2 are small, microwave measure-
ments of the intervals are now approaching an accuracy where the shifts will need to
be considered. The most accurate single-pulse microwave measurements of [13] and
[12] have a pulse duration D determined by the travel time through the microwave
region, typically 950 and 1700 ns for the two measurements, respectively. From
Table 6.1 is can be seen that the interference corrections are less than 10% of the
900 and 1400 Hz measurement uncertainties. The most accurate SOF measurement
[16] of the helium 23P fine structure uses D=50, 100 and 150 ns and T=300, 400,

500 and 600 ns for the pulse parameters. From Table 6.2, it is evident that the
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corrections that need to be applied are again less than 10% of the 350 Hz measure-
ment uncertainty. The corrections shown in the |1) — |0) columns of Tables 6.1
and 6.2 indicate shifts of 0.5 to 15 ppb of the 29.6 GHz interval and these will be
important in the anticipated next generation of microwave measurements that aim

towards a ppb determination of o from helium 23P fine structure.
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7 Conclusion

In the preceding chapters an analysis of quantum interference effects on measure-
ments of the helium 23P fine-structure intervals performed with a variety of ex-
perimental techniques was presented. Corrections to specific measured values were
derived where feasible, or else the scale of the interference shifts was calculated. A
summary of the interference shifts for the different measurements that were con-
sidered is displayed in Fig. 7.1. The original experimental data are shown using
solid error bars, along with the theoretically-calculated value of each interval. The

dashed error bars indicate the revised values and their estimated uncertainties.
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Figure 7.1:
Filled symbols denote direct measurements, while open symbols represent inferred
values based on measurements of the other two intervals. The points labeled Theory
show the calculations of Pachucki and Yerokhin [8] adjusted for the CODATA
2014 [19] value of .
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Corrected measurements for the 23 P fine-structure intervals in helium.
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Fig. 7.1(a) shows the results for the 23P—23P, fine-structure interval. This
interval is susceptible to interference effects in laser spectroscopy, since the interfer-
ing resonances (the J=1 and J=2 levels) used to determine this interval are, at 2.3

GHz, relatively close to one another. Their correspondingly large individual shifts



then additively combine to reduce the measured value of the level splitting. Similar
positive corrections are thus applied to each of the three laser measurements of
this interval, namely 1.2 + 0.1 kHz for the Shiner-group value, 1.2 + 1.0 kHz for
the Gabrielse-group data point, and 1.2 4+ 0.16 kHz for the value obtained by Hu
et. al. The lone microwave measurement by Hessels et. al. used the extremely
accurate SOF technique, and receives a correction of only 0.02 + 0.01 kHz, which
is well within the original value’s uncertainty of 0.35 kHz. After correction, all of
the values for the interval are seen to be more consistent with each other and with
the value predicted by theory.

The measurements of the 2° Py—23 P; interval are shown in Fig. 7.1(b). A specific
correction was not calculated for the saturated-absorption experiment of Gabrielse
et. al., due to the complications with light-pressure effects in the measurement of
this interval. However, an estimated additional uncertainty of +3 kHz is given due
to the interference effect, shown using the expanded dotted error bars. It is also
not possible, as explained in Chap. 4, to state a correction for the Inguscio group
saturated-fluorescence value for this interval, since the experimental parameters are
not known in sufficient detail. Nevertheless, an additional measurement uncertainty
of £10 kHz is proposed, due to incomplete cancellation of the opposing interference
shifts, possibly as large as 450 kHz, that can arise for the different polarizations of
measured fluorescence in such an experiment. The open data point for the Shiner
group experiment indicates that its value was inferred from actual measurements of
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the other two intervals, and hence its correction of —1.240.1 is due primarily to the
interference effect on the 23P,—23P, interval. The shifted data point is now closer
to the other measurements, and more in line with the theoretical value. Finally,
the very accurate Hessels group microwave measurement (+0.9 kHz) is once again
corrected by only a small 0.08 4 0.02 kHz shift.

Lastly, Fig. 7.1(c) shows the experimental values obtained for the 23P—23P,
interval. The Gabrielse group value receives the same increase in its uncertainty as
in Fig. 7.1(b), since the measurement of this interval is similarly affected by light-
pressure effects. The direct laser measurement of the Shiner et. al for this interval
was not explicitly modeled in Chap. 3, so it is only given an additional estimated
uncertainty of £0.1 kHz. The microwave value (Hessels group) for the interval is
derived from measurements of the other two, and so obtains a combined correction
of 0.1 £ 0.03 kHz, which moves it only slightly closer to the theoretical value.

In general, while the scale of the shift depends on the particular experimen-
tal method, the quantum interference effect is seen to be important for precision
fine-structure spectroscopy, despite the large separation of the resonances (the two
closest resonances, the J=1 and J=2 levels, are 1400 natural line widths apart).
The microwave SOF experiment, however, is particularly robust against the inter-
ference effect, due to the sub-natural SOF resolution and the relatively-large 27
GHz separation between the measured microwave resonance and the nearest off-
resonant transition. It is evident from this work that interference effects should

110



be examined carefully in any precision measurement for which the experimental
uncertainty is of comparable magnitude to that of the interference shift, given by
the rule of thumb as the width of the observed resonance squared, divided by the
frequency separation to the nearest neighboring resonance.

While correction for quantum interference effects brings precision fine-structure
measurements into greater agreement with each other (at the kilohertz level), both
experimental values and theoretical calculations will need to improve in accuracy
by an order of magnitude in order to achieve a competitive determination of the
fine-structure constant from helium spectroscopy.

Since parts of the current work were published, a number of groups have in-
corporated the quantum-interference phenomenon in a variety of experimental and
theoretical analyses. Feng, et. al. applied interference corrections to their laser
measurement |18] of the helium fine-structure, as mentioned in Chap. 3. Quantum
interference was also considered in precision hydrogen spectroscopy for determina-
tion of the Rydberg constant and the proton RMS charge radius [37]. A theoretical
study of quantum interference in laser spectroscopy of muonic hydrogen, deuterium,
and helium-3 was conducted [49], also of importance to the proton charge radius
program. The interference effect was also shown [45] to be significant in precision
measurements of the %7Li D2 lines, and subsequent determination of relative nu-
clear isotope charge radii. Quantum interference in two-photon frequency-comb
spectroscopy was also studied [50|. Finally, Truong, et. al. produced a detailed
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analysis in which quantum interference was shown to vanish for precision measure-
ments of the 6P, hyperfine splitting in Cs [51], which are used to determine the

Boltzmann constant to high accuracy.
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A Master Equations

The quantum state of an atom interacting with an external field can be represented

by the density operator

pzzl%!‘l’z)(%\, (A1)

where in general p represents an incoherent superposition (mixture) of states {|\U;)}
with P; the probability of being in state |¥;). The density operator can thus model
an ensemble of identical atoms in possibly different states. The density-matrix
equations describing the evolution of the atom’s state may be then obtained from
a Liouville-vonNeumann (or master) equation [52] for the density operator, of the

form

b=~ [Ha+ Har, )+ DIClp (A.2)

Here [A, B] denotes the commutator of A and B, and D[c]p = cpc'—1 (cfep + pcle)
is the Lindblad superoperator. In Eq. (A.2), H4 is the atomic free-evolution Hamil-
tonian, while H 4 is the atom-field interaction, which generates driving terms in the
density-matrix equations that model absorption and stimulated-emission processes.
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The operator G is a suitably-chosen damping operator, and represents relaxation
processes in the atom. These processes include both radiative decay, which changes
atomic populations, and elastic atom-atom collisions, which only alter the phases
of coherent superpositions. This part of the master equation leads to decay terms
in the density-matrix equations, including terms that incorporate quantum inter-

ference.

A.1 The Two-level Atom

It is instructive to first consider the simplest case, a two-level atom interacting with
an applied field. The ground and excited states are denoted |1) and |2) respectively,
with the energy of the ground state chosen as zero, so that Fy = hwy, where wy
is the transition frequency between the states. The free-atom Hamiltonian is then
simply written as Hx = huw|2)(2].

An applied electric field E (e.g. the field of a laser), of frequency w, amplitude
Ey, and unit polarization-vector € induces electric-dipole transitions between the
states |1) and |2), which are necessarily of opposite parity. The field consists of

positive and negative frequency components

Ey
2

(@ei“’t + é*e"“t) = EO(+)e_i“t + Eo(i et (A.3)

~

E =
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while the dipole operator can be represented as
d = (1[d]2)[1)(2] + (2|d]1)[2)(1] = (1]d[2)o + (2|d[1)0", (A.4)

where o = [1)(2| and of = |2)(1| are atomic lowering and raising operators. The

atom-field interaction energy in the dipole approximation is thus

—

Hyp=—d-E
= —di2) - B, eto — (11dl2) - B, eto

(=)

— i1y - By e ot — 21di1y - By etot, (A.5)

A.1.1 Rotating-wave Approximation

The atom-field Hamiltonian can be expressed in the interaction picture by applying

the unitary transformation U = e'at/h = o)l — |1) (1] + e™0t|2) (2|, so that
HAF,I _ —<1|J]2> . E_v'O(Jr)e—i(w—i-wo)to. . <1|d]2> . E’O(f)ei(w—wo)to_
71 = (+) —i(w—wo)t T 7t = (-) i(wtwo)t T
—(2|d|1) - Ey ‘e o' —(2|d|1) - Ey ‘e o' (A.6)

The first and last terms in Eq. (A.6) oscillate rapidly as et (@+«o)t (je. at
optical frequencies), compared to the much slower time-dependence e**2! of the
middle terms, where A = w — wq is the detuning of the field from the atomic
transition. If the applied field is near resonance, so that |A] < w + wp, then the
former terms may be neglected, since they average to zero on the longer time scale
characterized by the detuning frequency. Dropping the rapidly-varying terms, and
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transforming back to the Schrodinger picture results in the atom-field interaction

in the rotating-wave approximation,
7t = (=) iwt 7 = (+) —iwt _T
Hap = —(1|d]2) - Ey €“'o —(2|d|1)- Ey ‘e o

h h

The last line of Eq. (A.7) is written using the Rabi frequency, which characterizes
the strength of the electric-dipole coupling, and is defined as

0 = 22l - dlj) = S0 Giy), (A9

where e is the magnitude of the elementary charge (so that the electron has charge

q = —e), and (i|r]j) is the dipole matrix element between states |i) and |j).

A.1.2 Corotating Frame

The atomic Hamiltonian is typically further transformed to a frame corotating with
the applied field, in order to remove the time-dependence on the field frequency.
This is accomplished by the unitary transformation U = ™2/l =|1) (1] 4 e™*|2) (2],
resulting in a total atomic Hamiltonian in the rotating frame
H=UHU"+ih(8,U)U"
h
= —RAR)2] + 3 (D[ 1)(2] + Qp|2)(1))
h
= —hAolo 4+ = (nga + Qy0 )
= Hp+ Hyp. (A.9)
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A.1.3 Density-matrix Equations

Using the forms of H4 and Hp in Eq. (A.9), and modeling spontaneous decay by

the operator
G =T|g){e| =To, (A.10)

(where v = I'? is the decay rate back to the ground state), the master equation for

the two-level atom is
p= — —hAo'o + 5 (9120 + Qjy0 ) ,p| +~Dlolp. (A.11)

Carrying out the algebra leads to the optical Bloch equations,

P11 = §ngpl2 - §Ql2p21 + VP22 (A.12a)
. v {

P12 = — (5 + ZAQ) P12 — 5912 (p22 — p11) (A.12Db)
. Yoo by

P21 = — (5 - ZA2) pa1 + 5912 (P22 — p11) (A.12¢)
P22 = —5912,012 + §Ql2p21 — VP22 (A.12d)

A.2 The Three-level Atom

For a three-level atom with ground state |1) and excited states |2) and |3), the

energies are Fy = hwo; and F3 = hws; for the transition frequencies wy; and ws;.
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With atomic operators oo = [1)(2| and o3 = |1)(3| the Hamiltonian and decay
operators are written

Ha = —hAs[2)(2| — hA;3]3) (3]
=—h (Agagaz + Agagag,) , (A.13a)

. h
Har = 5 (Qual1)(2] + Q[2)(1] + Qus[1) (3] + Qisl3)(1))

h

== 5 (ngaQ -+ QTQO-; + 9130'3 + QTSOE) 5 (Algb)

G = Tl 1)(2] + T[1)(3)

= FQO‘Q + F30'3, (A13C)

where Ay = w — wyy, and Az = w — w3 are the detunings of the field from the
transition frequencies to the excited states |2), and |3) respectively. The quantities
[y and T3 are defined so that 7o = I'Z and v3 = I'Z are the corresponding rates of

spontaneous decay. The master equation is then

p= — [—h <A20§02 + AgO’;O’g) ,p}
ih - -
- ﬁ 5 (QIQUQ + Q1202 + Q303 + Q13U3> P
+ D[FQO‘Q + FgO’g]p. (A14)
Of particular note is the damping term in Eq. (A.14), in which the decays from the
excited states |2) and |3) to the ground state |1) are added into a single Lindblad
superoperator term. This represents the physical situation where the two decay

pathways to |1) are indistinguishable, and hence are interfering processes. The
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master equation (A.14) yields the three-level density-matrix equations

P11 = 512 — 5912021 + §Q1spl3 - 5913%1

2

+ Y2p22 + V3p33 + Y23 (P23 + P32) (A.15a)
. /I’ k /L
P22 = —5912/)12 + 5912,021 — V2pP22 — % (P23 + p32) (A.15b)
. (P v V23
P33 = _5913013 + 5913031 B A (p23 + p32) (A.15¢)
pr2 = —ilgp1z — 5912 (P22 — p11) — 5913032 - %Pw - %PlS (A.15d)
P13 = —ilsp13 — 5913 (P33 — p11) — 5912023 - %PB - %pl? (A-L5e)
. . /l: % /Z;
P23 = —WWa3P23 — §Q1zp13 + 5913P21 - %Pm - (% + ?) P23- (A.15f)

The cross-damping rate 7,3 in Eq. (A.15) is defined as 493 = ['2I'3, and represents

quantum interference between the radiative decay channels.

A.3 The Four-level Atom

For the four-level atom introduced in Chap. 2, there are two ground states (|0) and
|1)) and two excited states (|2) and |3)), where the applied field couples |1) to both

excited states, but |0) is a dark state. Using atomic operators o;; = |¢)(j| (¢ =0, 1,

119



J = 2,3) the Hamiltonian and damping operators are written as

Ha = —hiAg|2)(2] — hA|3) (3]

= (AQaIQW + Agagalg) , (A.16a)

Har = 0 (@uaf1)(2] + Ql2(1] + Q18] + l3)(1))
- g‘ <912012 oty + Qo + Q§UI3> , (A.16b)
Gy = Tor|1)(2] + Doy [1)(3] = Dorois + D0, (A.16¢)
Gy = T'90|0) (2] 4 I'30]0) (3| = 0002 + I'50003- (A.16d)

Here Ay = w — w9y and A3 = w — w3y are the detunings of the field from the
excited-state transitions as before, and now 99 = I'3;, and 79, = I'3; are the partial
rates of spontaneous decay from |2) to the ground states |0) and |1), respectively.
The partial rates v3; = '3, and 39 = I'3, are similarly defined. The corresponding

master equation is

p=—7 [—h (AQUJ{QO_H + A3013013> ,,0]
i |h - -
- ﬁ 5 (QHO'IQ + Q120'12 + Q130'13 + Q13gl3> y P
+ D[I'y1012 + I's1013]p + D[La0002 + I's0003]p- (A.17)
There are two decay terms in Eq. (A.17), which models distinguishable decay pro-
cesses to either one of the two ground states. These different pathways can in
principle be detected by probing which ground state the atom occupies, or by mea-

suring different polarizations of fluorescence. The excited state from which the
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atom decays to a ground state is not known, however, so quantum interference oc-

curs between the two possible decay channels in each case (i.e., |2) — |1) interferes

with |3) — |1), and similarly for decay to |0)), and this is reflected in the form of

the operators. Eq. (A.17) leads to the density-matrix Eqgs. (2.3) for the four-level

system

P11 = 58 0p12 — 5912[?21 + 5913/013 - 5913931

2
+ Yos1p22 + 351033 + V231 (P23 + p32) (A.18a)
P22 = —%Qigp12 + %912P21 — Y2pP22 — % (P23 + p32) (A.18b)
P33 = —%QT3P13 + %Q13031 — V3033 — % (p32 + pa3) (A.18c)
P12 = —ilgp1a — %Ql2 (022 - pn) - 2913P32 - %012 - %013 (A.18d)
P13 = —ilzp13 — %913 (P33 — p11) — %Qmﬂzs - %013 - %012 (A.18e)
P23 = —iWa3P23 — %Q>{2013 + 3913P21 - (% + %) p23 — % (p22 + p33) . (A.18f)

Eqs. (A.18) use the notation of Chap. 2, where v,_,; = 7;;, with total decay rates

from each excited state v9 = Y20+ 721 and v3 = Y30+ Y3-1. The cross-damping

rates are defined as v93..0 = ['99l'3p and 7931 = I'51['3;, with a redefinition of

Y23 = Y230 T Y23-1-
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A.4 General Systems

Derivation of general density-matrix equations for transitions among the n=2 triplet
helium states may be carried out in an analogous manner. Denoting the 235 (m ;=
) metastable states as ground states {|g,)} and the 2°P;_;(m;=m) excited states

as {|ejm)}, the atom-field Hamiltonian can be written using lowering and raising

T

operators of the form o, jm = [gu)(ejm| and o ;,,

= |g,)(€jm], respectively. The
decay terms in the master equation involve radiative decay rates v;;—,, which are
given by the expression of Eq. (4.4)b as vm—, = ’yﬁ%, while the cross-damping
rates are Yjm jim/—y = 7ﬁ§$, Insertion of these operator forms into the master
equation (A.2) results in the density-matrix Eqs. (4.3).

Similarly, Eqs. (6.2), used to model the microwave measurements in Chap. 6,
may be derived using the appropriate atom-field and decay operators which describe
the specific driven transitions and spontaneous decay processes involved in the
measurement. In this case, the Rabi frequencies involve magnetic-dipole matrix

elements, and explicitly include the frequency of the applied field, as the rotating-

wave approximation is no longer valid for this system.

A.5 Rabi Frequency Conventions

The density matrix equations listed in Chaps. 2— 6 (see Egs. (2.3), (2.11), (3.4),

(4.3), (5.2), and (6.2)) are consistent with the derivations developed here, but
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originally appeared [40, 42, 43, 47| following the notation of [31], in which the
Rabi frequencies and their conjugates are interchanged. While both formulations
preserve explicitly complex forms of the Rabi frequencies, for the case of a linearly-
polarized field (as in Chaps. 4— 6), the Rabi frequency is real-valued. Furthermore,
the phases of the states |i) and |j) can be chosen so that the dipole matrix element,
and hence the Rabi frequency is always real, and in the literature €2;; = QF is
usually considered a real quantity. Thus, the density-matrix equations in either
convention are equivalent descriptions of the physics of the atom-field interaction,

and result in identical interference shifts.
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B Matrix Elements

Determination of matrix elements (i|7]j) between the metastable 23S; states and
excited 23P; states is necessary in order to compute the Rabi frequencies for laser-
driven electric-dipole transitions, as well for calculation of spontaneous decay and
cross-damping rates. Denoting the metastable 23S, ,,_, states as |g,) and the ex-
cited 23P .- states as |es,,), the matrix elements (g,|7lesn) can be derived
by applying the Wigner-Eckart theorem, and are expressed in the spherical basis

g€ {-1,0,1} as:

(_1)1—p 1 1 J
(Gulrqlesm) = 5 Y 2J +1 (gllrlles), (B.1)
—H g m

where (g||r||es) is the reduced matrix element, and the brackets denote a Wigner-3;
symbol.

Calculation of (g||r||es) would typically involve explicit helium wavefunctions,
but in this work it is obtained instead using the expression for the decay rate, which

includes the square of the reduced element.
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The theoretical expression for the total rate of decay v, from any 23P;,, state
to the metastable states 2357 , is given by v, = Zvﬁjﬁ, where the sum is over
o

w e {—1,0,1}, and the partial decay rates are:

23
i e‘w

Vudm = ?ﬂre—ohcg@u\ﬂ@M € |T19u)

= Dysm ((9llr]]es))* (B-2)

Here, @ is the average 25 —2P frequency interval, which is about four orders
of magnitude greater than the fine-structure splittings, and thus all of the excited
triplet states decay at essentially the same rate, 7v; = 7. In the last line of Eq. (B.2),
the quantity I',;,, includes all factors except the reduced matrix elements, and
equating the total decay rate « to the numerical value 7, = 1/7 (where 7 = 97.9

ns is the lifetime of the states [41]) lets us solve for (g||r||es):

(gllrlles)) Zrm, or

—1/a
(gllrlles) = <TZFqu) . (B.3)

Eq. (B.3) yields the same value of the reduced element for all J, and any choice
of m, of (g||r|les) ~ 4.385ay, where ay is the Bohr radius. Table B.1 lists the
values of the matrix elements (with the reduced elements omitted), to illustrate
the relative strengths of the various dipole couplings. In practice, the ratios of
these matrix elements are used to express all decay and cross-damping rates in the
density-matrix equations in terms of the total decay rate 7.
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Table B.1: Electric-dipole matrix elements {(23S; ,,|r|2°P 1)} (¢=-1,0,1) between

metastable and excited triplet states (the reduced-element factor (g||r||e;) is not

shown).

(23817 2°P ) | 2%S1 4 233, 2381,
25Py o {0,0, 7} 0 0
25Py 4 {0,—%,0} | {0,0, 7} 0

2P, {555:0,0} | {0,—%2,0} | {0,0,55}
2°Py1 0 {\/Lg, 0,0} |10, —\/Lg, 0}
23Py 0 0 {75.0,0}
2°P1 4 {0, —\/Lg, 0} | {0,0, —\/Lg} 0
2°P1 {7-0.0} 0 {0,0, -}
2°P1, 0 {\/Lg, 0,0} | {0, .0}
2%Po,0 {300} | {0,350} | {003}
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