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Abstract

Precision spectroscopy of atomic helium �ne structure provides a means of testing

fundamental few-body theory as well as determining the �ne-structure constant α,

which characterizes electromagnetic interactions in nature. Progress in both exper-

iment and theory has led to increasingly precise values for the splittings between

the n=2 triplet P states of helium, and at the current level of uncertainty, quantum

interference can be a signi�cant source of systematic error in measurements of the

�ne-structure intervals.

This work deals with these quantum interference e�ects, which are due to co-

herent excitation of the atom to multiple neighboring states, and may result in

substantial shifts in the measured positions of resonance line centers, even if the

transition frequencies of adjacent resonances are thousands of natural widths away.

The scale of the shifts depends on the measurement technique and the experimen-

tal parameters, and therefore a selection of the most precise measurements of the

helium �ne-structure intervals are analyzed in order to calculate the relevant inter-

ference e�ects. The inclusion of these interference shifts leads to greater consistency
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between values obtained by several di�erent experimental techniques, and furthers

the program of obtaining a high-precision value of the �ne-structure constant by

comparison between experiment and theory.
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1 Introduction

This thesis presents an analysis of quantum interference e�ects in precision spec-

troscopy of helium �ne-structure. This systematic source of error is due to ex-

citation of o�-resonant transitions, and must be accounted for in order to ensure

consistency between experimental values of the helium n = 2 triplet P �ne-structure

intervals, and also to make a comparison with theory possible to a high degree of

accuracy.

More than �fty years ago, C. Schwartz initiated a theoretical program to cal-

culate the �ne-structure energy spacings in atomic helium [11]. This program was

motivated not only by a desire to advance the quantum-electrodynamics (QED) the-

ory of this simplest multi-electron atom, but also to obtain a more accurate value

of the �ne-structure constant α, which characterizes the strength of the electro-

magnetic interaction in nature. As he suggested, the relatively long lifetime (≈ 98

ns) and large spacing (≈ 30 GHz) of the lowest-lying helium triplet states allows

measurement of the �ne-structure splittings to a higher accuracy than is possible in

hydrogen spectroscopy (at the time, to a level of 10−6), and thus a determination of

1



the �ne-structure constant to a part-per-million precision could be made by combin-

ing these improved experimental data with comparably-accurate theoretical values.

In the intervening decades, both theoretical [22�88] and experimental [99�1818] progress

has been made to obtain the �ne-structure intervals to ever-higher precision.

The recommended value [1919] of the �ne-structure constant, from the 2014 Com-

mittee on Data for Science and Technology (CODATA 2014), is

α = 7.2973525664(17)×10−3, which has an uncertainty of less than a part per billion

(ppb). This value is derived from a combination of independent determinations of

α, involving a variety of physical systems, including measurement of single-particle

characteristics, atomic level structure, and the electrical properties of solid-state

systems. The most accurate value of the �ne-structure constant to date has been

obtained from a combination of theory [2020] and measurements [2121] of the electron's

anomalous magnetic moment, g − 2. The value of α has also been found by mea-

suring the velocity and deBroglie wavelength [2222] of a neutron beam to obtain the

ratio h/mn. Analogous experiments have been performed using Cesium [2323, 2424]

and Rubidium [2525] atomic recoil to measure h/mCs and h/mRb, respectively, to

high precision. Probing of muonium ground-state hyper�ne structure [2626] is an-

other technique used to determine α. Finally, values of α obtained from electrical

measurements based on the AC-Josephson [2727] and quantum-Hall [2828] e�ects were

also incorporated into the CODATA value quoted above.

Curiously, values of α derived from the �ne-structure intervals themselves (which
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provided the name for α) have not attained the same level of accuracy as in the

above mentioned methods. A competitive determination of α using helium spec-

troscopy will require both a greater consistency among experimental values, and an

improvement in the theoretical uncertainty than is presently the case. An analysis

of interference e�ects will contribute to resolving the former of these constraints.

1.1 Helium Energy Levels and 23P Fine Structure

The schematic in Fig. 1.11.1 depicts the low-lying energy levels of atomic helium, in-

cluding the excited n = 2 triplet states. The ground state is a spin singlet with

electronic con�guration 1s2, where both electrons occupy the ground state orbital,

with antiparallel spins. It is denoted by 11S0, where the notation n
2S+1LJ repre-

sents a multi-electron state with a combined spin quantum number S, combined

orbital angular-momentum quantum number L (with the labels "S","P","D", etc.

indicating L = 0, 1, 2, ...), and total angular-momentum quantum number J . The

ground state therefore has S = 0, L = 0 and J = 0.

In all stable excited con�gurations, one electron remains in the ground state,

while the other occupies a higher-energy orbital. Excited states are either spin sin-

glets (S = 0, with antiparallel spins) or spin triplets (S = 1, with parallel spins),

and the two sets of states are not connected by single-photon dipole transitions.

The triplet states have lower energies than the corresponding singlet states. This

3



is due to the symmetric nature of the triplet spin state, which necessitates an anti-

symmetric spatial wavefunction, as required by the Pauli exclusion principle. The

electrons in triplet states thus experience a smaller probability to be found close

together than those in singlet states (which have symmetric spatial wavefunctions),

remaining on average further apart in space, and therefore contributing less poten-

tial energy from the repulsive electron-electron interaction.
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Figure 1.1: The lowest-lying energy levels of atomic helium (not to scale), showing
the n=2 triplet states, with the 2.3- and 29.6-GHz �ne-structure intervals indicated.
The 2 3S1 metastable state, with a lifetime of 7900 s, and the 2 3P excited states,
with a lifetime of 98 ns, are separated by an infrared frequency transition.
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The �rst excited triplet state of helium is the metastable 23S1 state (1s2s),

which lies about 20 eV above the ground state. It is the longest-lived neutral

atomic excited state [2929], with a lifetime of 7900 seconds that makes it a convenient

initial state for precision spectroscopy. The next excited states are the 23PJ states,

which are separated from the metastable state by a 277 THz (1083 nm, infrared)

transition, and have a lifetime of τ ≈ 98 ns. This lifetime corresponds to a natural

linewidth of 1.63 MHz. The 23PJ states are split into three �ne-structure levels

(with J=0, 1, or 2), and the di�erences between these energy levels are the focus

of the precision spectroscopy discussed in this work. There are two independent

intervals ∆fJ,J ′ : the small interval ∆f1,2 ≈ 2.291 GHz, and the large interval

∆f0,1 ≈ 29.617 GHz.

The theoretical description of the helium �ne-structure as a bound two-electron

system expresses the intervals as perturbative series expansions in the �ne-structure

constant α:

∆E(J,J ′) = mec
2
(
α4E (4) + α5E (5) + α6E (6) + α7E (7) + ...

)
, (1.1)

where mec
2 is the electron rest-energy, and the expansion coe�cients E (n) may

include terms of the form ln(α). The series incorporates corrections for relativistic

and radiative e�ects such as vacuum polarization, the electron self-energy, and

two-photon exchange between electrons. The current state of the art [88] includes

calculations of the terms up to meα
7 and meα

6(me/M), where M is the mass of

5



the helium nucleus.

Consistency between the measured and predicted values of the smaller 23P1�23P2

splitting (2.3 GHz) provides a check of the accuracy of He QED theory, as this in-

terval is less sensitive to the value of α due to its small size. The larger 23P0�23P1

interval (29.6 GHz) can be used to extract a value of the �ne-structure constant

by comparing the measured value of ∆f0,1 and its theoretical expansion in powers

of α (Eq. (1.11.1)). With increasingly accurate values available for these intervals,

determination of α to the level of a part per billion from a comparison between

experiment and theory may soon be possible.

In order to measure the �ne-structure intervals to su�cient accuracy that a

comparison with theory can be made, experimental techniques must contend with

numerous systematic e�ects. When probing an atomic sample with an applied elec-

tromagnetic �eld, the observed spectra are a�ected by both external and internal

atomic degrees of freedom. The Doppler shift due to the translational motion of

an atom relative to the direction of propagation of the exciting �eld needs to be

considered, as well as the e�ects of atom-atom and atom-photon collisions, which

can alter the velocity distribution of an atomic population. Perturbations to the

atom's internal energy levels are also present, including Zeeman shifts caused by ex-

ternal magnetic �elds, and power-dependent shifts that depend on the intensity of

the applied �eld. All of these aforementioned e�ects have been carefully accounted

for in precision measurements, leading to sub-kilohertz accuracy in the determined
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values of the �ne-structure spacings.

1.2 Interference Shifts

Given that measurements of the �ne-structure intervals are now made to a precision

in the hundreds of Hz, the e�ect of quantum interference between neighboring res-

onances becomes an important source of systematic error. Such interference occurs

when an applied �eld excites two or more transitions in an atomic system, resulting

in a range of interference phenomena that include narrowing of spectral lines, can-

cellation or phase control of spontaneous emission, and distortions of Lorentzian

line shapes [3030�3232]. Of particular interest are shifts in the resonance line centers

that are of comparable magnitude to the accuracy of the measurement. These shifts

can persist in the limit of zero power of the exciting �eld, and may involve even

quite distant o�-resonant transitions, so they must be taken into account.

Quantum-mechanical interference e�ects originate when an applied oscillatory

�eld that is tuned to a particular atomic resonance also drives transitions to o�-

resonant states. The atom can then release its absorbed energy through di�erent

decay pathways that coherently interfere with each other to cause distortions in

the line shape, which manifest themselves as shifts in the measured center of the

resonance pro�le. Analytical studies [3333, 3434] of three- and four-level model atoms

interacting with a simple sinusoidal pulse of �nite duration have demonstrated sig-
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ni�cant shifts in the line shapes, even when neighboring resonances are separated

by many natural line widths. These shifts remain even in the limit of zero �eld

intensity, and have a scale that depends on the width of the resonance, the sepa-

ration between the neighboring states, and also on the speci�c observable used to

construct the resonance pro�le. For realistic experimental situations, where more

atomic levels are involved, and the applied �eld has a more complicated time-

dependent form, a numerical approach is required to simulate the speci�c details

of a particular measurement technique.
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Figure 1.2: Measurements and theory for the 23P �ne-structure intervals in helium.
The measurements of the 23P1�23P2, 23P0�23P1, and 23P0�23P2 intervals are
shown in (a), (b), and (c) respectively, with points labeled according to the group
performing the experiment. Filled symbols denote direct measurements, while open
symbols represent inferred values based on measurements of the other two intervals.
The points labeled Theory show the calculations of Pachucki and Yerokhin [88]
adjusted for the CODATA 2014 [1919] value of α.

In this thesis the e�ect of quantum interference is considered for the �ve ex-

perimental techniques that have led to the most precise measurements of the he-
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lium 23 P �ne structure. These measurements and their uncertainties are shown in

Fig. 1.21.2, along with the values of the intervals predicted by QED theory. It can

be seen that for each interval, while individual experimental values are measured

to the kHz level or better, the consistency of the experimental measurements, and

the consistency between the measurements and theory are to within a few kHz of

each other. It is the aim of this work to calculate the interference shift present in

each of the experimental determinations and apply appropriate corrections. These

corrections bring the measured values into better agreement with theory and with

each other.

Chapter 22 provides an outline of how quantum interference in precision spec-

troscopy is characterized, and introduces the theoretical formalism that will be

used in the remaining chapters to model each type of experiment. In Chapter 33

an analysis follows of interference e�ects in the Shiner-group experiment using

laser spectroscopy of 23S-to-23P transitions in a narrow-angular-spread atomic

beam [1717, 3535]. In Chapter 44 details are presented about quantum interference in the

more complicated Inguscio-group experiment, based on saturated-�uorescence laser

spectroscopy in a broad- angular-spread atomic beam [3636]. In Chapter 55 the im-

pact of interference in the Gabrielse-group measurement using saturated-absorption

spectroscopy in a gas cell [1515] is discussed. Finally, Chapter 66 deals with �ne-

structure measurements (Hessels group) which use microwave spectroscopy that di-

rectly drives transitions between the 23PJ states [1313], including an experiment that

10



uses the Ramsey technique of separated oscillatory �elds [1616]. For each method, a

separate calculation of the quantum-mechanical interference e�ect is necessary, with

computationally-intense numerical solution of density-matrix equations describing

the evolution of atomic population, as well as modeling of the speci�c experimen-

tal situation. A theoretical derivation of density-matrix equations from a master

equation is covered in Appendix AA.
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2 Quantum Interference in Precision Spectroscopy

2.1 Spectral Interference

In the context of precision spectroscopy, the natural line shape for an atomic tran-

sition that is probed near resonance can be distorted by quantum interference with

o�-resonant transitions to neighboring states. This small deviation results in a shift

in the extracted line center that is potentially signi�cant for the accuracy of the

measurement.

The e�ect of a neighboring resonance on the ideal Lorentzian line shape form

can be illustrated [3737] with a simple model of two classical electric dipole moments

~q1 and ~q2 oscillating with respective resonant frequencies ω1 and ω2. The observed

spectrum due to an applied driving �eld of frequency ω is given by the square-

modulus of the sum of two complex Lorentzian functions:

I(ω) =

∣∣∣∣ ~q1

i(ω − ω1) + Γ1/2
+

~q2e
iϕ

i(ω − ω2) + Γ2/2

∣∣∣∣2 , (2.1)

where Γ1 and Γ2 are the line widths of the individual resonances, and ϕ is a phase

angle that allows ~q1 and ~q2 to be represented by real quantities. The resulting

12



intensity spectrum is a combination of the two individual Lorentzian functions for

independent oscillators at ω1 and ω2, plus a third cross-term that depends on the

relative orientation of the dipoles, and their phase-di�erence ϕ. In the case of

orthogonal dipoles (i.e., ~q1 · ~q2 = 0) this interference term vanishes.

The impact of a distant resonance, and in particular the e�ect of interference, on

the determination of a spectral line center may be seen by generating the spectrum

with and without the cross-term in Eq. (2.12.1). A Lorentzian function �tted to one of

the two spectral lines is used to extract the line center, while varying the separation

of the resonant frequencies. Fig. 2.12.1 shows the deviations from the expected line

center ω1 of the �rst resonance as a function of the separation ∆ω = ω2 − ω1 of

the two features. For simplicity, the line widths are set to be equal (Γ1 = Γ2 = Γ),

and the dipole moments have equal magnitudes and zero relative phase (|~q1| = |~q2|,

ϕ = 0).

13
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Figure 2.1: The relative shift δω1/Γ in the line center of one component of a double-
line spectrum. The center frequency ω1 is obtained by �tting a Lorentzian pro�le
to the feature, while varying the relative separation ∆ω/Γ = (ω2 − ω1)/Γ between
the two resonances, where Γ is the line width of either resonance. The black dashed
line shows the shift that would have resulted if the interference term in Eq. (2.12.1)
is ignored, while the blue line is the shift that results when the complete model of
Eq. (2.12.1) is used.

The black dashed line shows the expected shift in the line center when the

spectrum is modeled as a simple sum of two Lorentzians (in other words, for the

typical case where interference e�ects are ignored). The perturbation to the spectral

feature of interest is seen to rapidly fall o� as the resonances are separated, and one

can therefore neglect the e�ect when the separation ∆ω is large. However, when

the spectrum is realistically calculated using Eq. (2.12.1), the resulting shift in the

measured line center (the blue line in Fig. 2.12.1) is orders of magnitude larger, and

is not negligible even when the separation of the resonances extends to thousands
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of natural line widths.

2.2 The Four-level System

A representative system that models quantum interference is the four-level atom [3434]

shown in Fig. 2.22.2, with two ground states (denoted |0〉 and |1〉) and two excited

states (|2〉 and |3〉). An applied �eld couples the ground state |1〉 to both of the

upper levels, which can radiatively decay down to either of the two ground states.

The second ground state (|0〉) is not coupled to either of the excited levels, and is

therefore a dark state, so that any population that decays to |0〉 will remain there.

τ1
 

γ 
 3→0

 

1 
 

0 
 

3 
 

2 
 

γ 
 2→0

 

γ 
 2→1
 

γ 
 3→1
 

ω31 

ω21 

ω23 

Figure 2.2: A four-level model atom, illustrating quantum interference between
resonant (solid line) and non-resonant (dashed line) transitions. Radiative decay
paths are shown with matching colors for interfering processes.
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There are consequently two quantum-mechanical paths by which the atom can

be excited and subsequently decay to a particular ground state, and these two pro-

cesses can coherently interfere with one another. One pair of interfering pathways

in Fig. 2.22.2 is the resonant excitation (solid arrow) from the ground state |1〉 to the

excited state |2〉, with subsequent decay back to |1〉. This process interferes with

the o�-resonant excitation (dashed arrow) to state |3〉 and a similar decay to |1〉.

The second pair of interfering pathways involves the same excitation processes as

the �rst, but with decay to the dark |0〉 state instead. When the driving �eld is

tuned close to one of the excited-state transitions, the amplitude for excitation to

the o�-resonance state is very small. However, the interference in the decay paths

can a�ect the transfer of atomic population su�ciently to cause a distortion in the

line shape and a resultant shift in the derived resonant frequency.

2.3 Density-matrix Equations

To study the e�ect of quantum interference on a measurement of a particular tran-

sition frequency in the four-level atom, it is necessary to model the evolution of

population in the ground and excited states, incorporating the physics of Rabi

oscillations, spontaneous decay, and optical pumping that results from prolonged

interaction with the driving �eld. This can be achieved using a density-matrix

formalism.
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The interaction energy of the atom with an electric �eld (e.g., the �eld from a

laser) that couples the ground state to the excited levels is given by V (t) = e ~E(t)·~r,

in the electric-dipole approximation. For a monochromatic plane wave of frequency

ω, peak intensity I0, and linear polarization ẑ, the electric �eld experienced by the

atom is

~E(t) = ẑE0f(t) cos(ωt+ ϕ), (2.2)

where E0 =
√

2I0
ε0c
, ϕ is a phase, and f(t) is a function that de�nes the time-varying

amplitude of the �eld. I0 is the maximum intensity of the �eld in W/m2 (for which

it is assumed that f = 1), ε0 is the vacuum permittivity, and c is the speed of light.

If the transition frequencies ω21 and ω31 shown in Fig. 2.22.2 are much larger than

the detuning of the applied �eld from either state |2〉 or state |3〉 (i.e., ω21, ω31 �

ω23), we can apply the rotating-wave approximation [3838], in which the non-resonant

exp [−i(ωt+ ϕ)] part of cos (ωt+ ϕ) is ignored. In this approximation, the density-

matrix equations describing population transfer in the four-level system (see Ap-
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pendix AA) may be written as [3434, 4343]:

ρ̇11 =
iΩ∗2
2
ρ12 −

iΩ2

2
ρ21 +

iΩ∗3
2
ρ13 −

iΩ3

2
ρ31

+ γ2→1ρ22 + γ3→1ρ33 + γ23→1(ρ23+ρ32) (2.3a)

ρ̇22 =
iΩ2

2
ρ21 −

iΩ∗2
2
ρ12 − γ2ρ22 −

γ23

2
(ρ23 + ρ32) (2.3b)

ρ̇33 =
iΩ3

2
ρ31 −

iΩ∗3
2
ρ13 − γ3ρ33 −

γ23

2
(ρ23 + ρ32) (2.3c)

ρ̇12 =
iΩ2

2
(ρ11−ρ22)− iΩ3

2
ρ32 −

γ23

2
ρ13 −

(γ2

2
+ i∆2

)
ρ12 (2.3d)

ρ̇13 =
iΩ3

2
(ρ11−ρ33)− iΩ2

2
ρ23 −

γ23

2
ρ12 −

(γ3

2
+ i∆3

)
ρ13 (2.3e)

ρ̇23 =
iΩ3

2
ρ21 −

iΩ∗2
2
ρ13 −

γ23

2
(ρ22 + ρ33)−

(γ2

2
+
γ3

2
+ iω23

)
ρ23. (2.3f)

The diagonal density-matrix elements ρ11, ρ22, and ρ33 in Eqs. (2.32.3) represent

the populations in the ground and excited states, while the o�-diagonal elements

ρ12 =ρ∗21, ρ13 =ρ∗31, and ρ23 =ρ∗32 represent correlations between states. If the system

starts in the |1〉 state, the initial value of ρ11 is 1, with all other entries set to zero.

The equations for ρ̇01, ρ̇02, and ρ̇03 are not required, as none of these quantities

appear in the right-hand side of Eqs. (2.32.3), and the population in the dark state

|0〉 (i.e., ρ00) can be found from the condition ρ00 + ρ11 + ρ22 + ρ33 = 1.

In Eqs. (2.32.3), ∆2 = ω − ω21 and ∆3 = ω − ω31 are the detuning of the laser

frequency ω from the |1〉 → |2〉 and |1〉 → |3〉 transitions, respectively, where ω21

and ω31 are the frequencies shown in Fig. 2.22.2. The quantities Ω2(t) and Ω3(t) in

the above equations are the time-dependent Rabi frequencies associated with the
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driven transitions between the ground state |1〉 and the two excited states |2〉 and

|3〉, and are given by:

Ω2(t) = eE0f(t)eiϕ〈1|z|2〉/~, (2.4)

Ω3(t) = eE0f(t)eiϕ〈1|z|3〉/~. (2.5)

The spontaneous-decay terms in Eqs. (2.32.3) involve the quantities

γi→j =
e2|ωij|3
3πε0~c3

〈j|~r |i〉 · 〈i|~r |j〉 ≈ e2ω3

3πε0~c3
〈j|~r |i〉 · 〈i|~r |j〉, (2.6a)

γ23→j =
e2|ω2j|3
3πε0~c3

〈j|~r |2〉 · 〈3|~r |j〉 ≈ e2ω3

3πε0~c3
〈j|~r |2〉 · 〈3|~r |j〉. (2.6b)

The values γ2→0, γ2→1, γ3→0, and γ3→1 are the partial rates for radiative de-

cay from |2〉 and |3〉 to |0〉 and |1〉 (as shown in Fig. 2.22.2), with total decay rates

γ2 = γ2→0 + γ2→1 and γ3 = γ3→0 + γ3→1. These last two rates have the same value

γ = 1/τ because the |1〉-to-|2〉 and |1〉-to-|3〉 frequency intervals ω21 and ω31 can

be approximated by the average value ω in Eqs. (2.62.6) (since ω21, ω31 � ω23). The

o�-diagonal terms γ23→0 and γ23→1 (with γ23 = γ23→0 + γ23→1) represent interfer-

ence between the partial decay rates, and contribute to shifts in the resonance line

shapes. These terms are particularly important for experimental signals that de-

pend strongly on decay processes, such as �uorescence measurements or �nal-state

population counts. Calculations using density matrix equations often neglect these

cross-damping terms and therefore do not include these decay-path interference

e�ects [3131, 3939].
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2.4 Reduced Equations

The set of Eqs. (2.32.3) can be integrated over the time T that the atom interacts

with the applied �eld, to determine the �nal population in each state. However,

this integration may be numerically challenging due to the fast oscillations caused

by the large ω23 term, and may require very small time steps to accurately solve

the equations.

If the applied �eld is very closely tuned to the |1〉→ |2〉 transition of Fig. 2.22.2,

very little population is excited to the far-o�-resonance |3〉 state. The quantities

γi→j and |γ23→j| are . γ, the natural line width of the resonance, and, to avoid

broadening of the line shape, |Ω2,3| and 2π/T must in practice be . γ as well.

Finally, the �eld-detuning |∆2| also takes on values . γ (i.e., of the same order as

the line width) as it scans across the |1〉 → |2〉 resonance. Assuming all of these

frequencies (γi→j, |γ23→j|, |Ω2,3|, 2π/T , and |∆2|) are much smaller than ω23, the

separation between the measured and distant resonances, one can de�ne [3434] an

ordering-parameter η, which is the ratio of these two frequency scales.

Having introduced η as the ratio of a very small to a much-larger frequency,

the tiny amount of population transferred to the o�-resonant |3〉 state is of second

order in η, and can thus be ignored (ρ33 . η2). Furthermore, by taking linear

combinations of Eqs. (2.32.3) and discarding terms of O(η2), one can also eliminate

the ρ13, ρ31, ρ23, and ρ32 elements, which are an order of η smaller than the dominant

20



quantities ρ11, ρ22, ρ12 and ρ21, .

The reduction process is illustrated by considering the equation for ρ̇11 (Eq. (2.32.3)(a)).

Elimination of explicit dependence on the elements ρ13, ρ31, ρ23, and ρ32, can be

achieved by forming the following linear combination of Eqs. (2.32.3)(a), (e), and (f):

(a) +

([
i

2
· Ω∗3
γ3
2

+ i∆3

]
(e) + c.c.

)
+

([
γ23→1

γ2
2

+ γ3
2

+ iω23

]
(f) + c.c.

)
. (2.7)

This operation yields a new equation for the modi�ed quantity ρ̃11 = ρ11+ i
2

Ω∗3
γ3
2

+i∆3
ρ13−

i
2

Ω3
γ3
2
−i∆3

ρ31, with the left-hand side given by

˙̃ρ11 = ρ̇11 +
i

2

Ω∗3
γ3
2

+ i∆3

ρ̇13 −
i

2

Ω3
γ3
2
− i∆3

ρ̇31

=
d

dt

[
ρ11 +

i

2

Ω∗3
γ3
2

+ i∆3

ρ13 −
i

2

Ω3
γ3
2
− i∆3

ρ31

]
' ρ̇11, (2.8)

where in the �nal step, the terms involving the �rst-order elements ρ13 and ρ31 have

been neglected, as multiplication by coe�cients of O(η) makes these terms O(η2)

overall.
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The right-hand side of the equation becomes:

RHS =

[
−|Ω3|2

4

(
1

γ3
2

+ i∆3

+
1

γ3
2
− i∆3

)]
ρ11

+

[
i

2
Ω∗2 −

i

2
Ω∗3

(
1

2

γ23
γ3
2

+ i∆3

+
γ23→1

γ2
2

+ γ3
2
− iω23

)]
ρ12 + c.c.

+

[
γ2→1 −

γ23

2
γ23→1

(
1

γ2
2

+ γ3
2

+ iω23

+
1

γ2
2

+ γ3
2
− iω23

)]
ρ22

−
[
i

2

Ω∗2γ23→1
γ2
2

+ γ3
2

+ iω23

]
ρ13 + c.c.

+

[
1

4

Ω2Ω∗3
γ3
2

+ i∆3

]
ρ23 + c.c. (2.9)

The coe�cient of ρ11 and the second term of the ρ22 coe�cient have the form

1
a+ib

+ 1
a−ib = 2a

a2+b2
, and therefore they are of O(η2) since ω2

23, ∆2
3 = (∆2 +ω23)2 ≫

γ2
2 , γ

2
3 . The �rst-order elements ρ13 and ρ23 are multiplied by O(η) coe�cients,

making these terms O(η2) as well.

The surviving terms are γ2→1ρ22 (which is of order η0) and the ρ12 term, which

is complete to O(η). The latter term may be simpli�ed using the approximations

γ3
2

+ i(∆2 +ω23) ≈ iω23 and
γ2
2

+ γ3
2
− iω23 ≈ −iω23. This leads to an expression for

the right-hand side which is correct up to order η:

RHS ≈
[
i

2
Ω∗2 −

i

2
Ω∗3

(
1

2

γ23
γ3
2

+ i∆3

+
γ23→1

γ2
2

+ γ3
2
− iω23

)]
ρ12 + c.c.

=

[
i

2
Ω∗2 −

i

2
Ω∗3

(
1

2

γ23

iω23

+
γ23→1

−iω23

)]
ρ12 + c.c.

=

[
i

2
Ω∗2 −

i

2
Ω∗3

(
γ23 − 2γ23→1

2ω23

)]
ρ12 + c.c. (2.10)

A similar procedure may be carried out on the equations for the dominant
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density-matrix elements ρ̇12, ρ̇21 and ρ̇22, forming linear combinations using the

equations for the �rst-order elements ρ13, ρ31, ρ23, ρ32 to cancel the latter quantities

out, and discarding terms of O(η2).

The resulting reduced equations, which are complete to O(η), are:

ρ̇11 =
i

2

(
Ω∗2 + i

γ23 − 2γ23→1

2ω23

Ω∗3

)
ρ12 −

i

2

(
Ω2 − i

γ23 − 2γ23→1

2ω23

Ω3

)
ρ21

+ γ2→1ρ22 (2.11a)

ρ̇22 =
i

2

(
Ω2 + i

γ23

2ω23

Ω3

)
ρ21 −

i

2

(
Ω∗2 − i

γ23

2ω23

Ω∗3

)
ρ12 − γ2ρ22 (2.11b)

ρ̇12 =
i

2

(
Ω2 + i

γ23

2ω23

Ω3

)
ρ11 −

i

2

(
Ω2 − i

γ23

2ω23

Ω3

)
ρ22

−
(
γ2

2
+ i

[
∆2 +

γ2
23 + |Ω3|2

4ω23

])
ρ12. (2.11c)

Equations (2.112.11)(a)-(c) involve the dominant ρ11, ρ12, ρ21, and ρ22 components

of the density matrix, and include order-η perturbations due to the distant o�-

resonance state |3〉.The |Ω3|2
4ω23

term is the usual AC-Stark shift of the |1〉 state, which

extrapolates to zero with decreasing laser intensity. The terms of form Ω3γ23→1

2ω23

represent interference in the decay pathways. The presence of these types of terms

leads to a shift in the resonance line center, which does not vanish in the limit of

zero laser intensity.

The reduced expressions in Eqs. (2.112.11) lack the fast oscillations found in Eqs. (2.32.3),

and thus require a factor of η fewer time steps for the numerical integration, while
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the results of these integrations agree with those from Eqs. (2.32.3) to order η2.

2.5 Application to Helium Spectroscopy

The preceding discussion of quantum interference is relevant to measurements of

helium �ne-structure using laser spectroscopy. In this section it is shown that the

assumptions associated with the rotating-wave approximation and the derivation

of the reduced equations (Eq. (2.112.11)) are valid for such laser measurements.

For laser spectroscopy from the 2 3S1 state (see Fig. 2.32.3), an atomic sample

is typically prepared in one of the metastable states, and a 1083-nm laser drives

transitions to the 2 3PJ excited states. Fine-structure spacings may be determined

by taking the di�erence between any two such transition frequencies. While the

laser frequency is tuned close to resonance with one of the 2 3PJ states, o�-resonant

transitions to di�erent states 2 3PJ ′ 6=J can also occur. As the atoms decay back to

the metastable states, quantum interference between two or more radiative-decay

pathways distorts the observed line shape for the transition of interest. In principle,

the laser �eld can drive transitions to an in�nite number of higher-energy bound

states (n > 2) in the helium atom, but these transitions are orders of magnitude

farther away from the main resonance than the nearest neighboring 2 3P state, so

that their e�ect is negligible.

The particular role that interference plays depends on the detection signal used
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to obtain the line shape. For example, an experimental signal may be based on

level populations, either counting the atoms in an initially-empty metastable state

after it is repopulated by optical pumping from the initial state, or by measuring

the depletion of the initially-populated state. Some measurements are based on

detection of the �uorescence emitted from spontaneous decay, while others detect

the absorption of the incident light as the laser frequency is tuned across a res-

onance. Each of these detection techniques may involve di�erent excitation and

decay pathways, and hence di�erent interfering processes.

As an example, Figure 2.32.3 shows the schematic for a measurement of the 2 3S1-

to-2 3P1 resonance, which may be mapped directly to the four-level model atom.

The population is initially in the 2 3S1(mJ=1) metastable state, which corresponds

to |1〉 in the four-level model, and is excited (solid arrow) to the 2 3P1(mJ=1) state

(analogous to |2〉) by a linearly-polarized laser tuned to near that transition. A small

amount of population is also transferred (dotted arrow) to the far-o�-resonance

2 3P2(mJ=1) state (|3〉).
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Figure 2.3: The n=2 triplet energy levels of helium, depicting the measurement
of the 2 3S1(mJ=1)-to-2 3P1(mJ=1) resonance. Only the four numbered states are
involved in the measurement. The radiative decay paths are shown, with matching
colors for interfering processes.

The atoms can decay back to |1〉, or to the 2 3S1(mJ=0) state (|0〉), which

plays the role of the dark state due to the electric-dipole-forbidden 2 3S1(mJ=0)-

to-2 3P1(mJ=0) transition. Thus only the four numbered states play a signi�cant

role in the measurement. The radiative decay paths are shown, each one having an

allowed electric-dipole 2 3S-to-2 3P transition.

Depending on how the measurement signal is obtained, di�erent interference

processes come into play. For instance, the count of atoms transferred to the dark

state |0〉 is a�ected by the two interfering pathways: |1〉 → |2〉 → |0〉 and |1〉 →
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|3〉→ |0〉. These two pathways are also relevant if the emitted circularly-polarized

�uorescence is measured to form the line shape. On the other hand, if only linearly-

polarized �uorescence is detected, then the interference between the |1〉→|2〉→|1〉

and |1〉→|3〉→|1〉 processes is important.

The applicability of Eqs. (2.32.3), which use the rotating-wave approximation, to

these laser measurements is certainly justi�ed, as the optical transition frequencies

from the metastable to the 2 3P states (i.e., ω21 and ω31 in Fig. 2.32.3) are much

larger than the detuning of the laser from the transition to any of the 23P states

(≈277 THz vs. / 30 GHz). Furthermore, the reduced Eqs. (2.112.11) are valid as

well, since the separation between the measured and the o�-resonant transition

(ω23 = 2π(2291 MHz) in the �gure) is much larger than the natural line width

γ = 2π(1.63 MHz). The ordering-parameter η, which is the ratio of these two

frequency scales, is therefore of magnitude 1.63
2291
' 10−3. The use of Eqs. (2.112.11)

thus requires three orders of magnitude fewer time steps for numerical integration

than Eqs. (2.32.3), and the results of integrating Eqs. (2.112.11) and Eqs. (2.32.3) agree to

approximately a part-per-million (∼ η2).
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3 Laser Spectroscopy in a Narrow Thermal Beam

In a �rst analysis of interference e�ects, we calculate interference shifts that apply

for an existing precision laser measurement of the 2 3P1�2 3P2 �ne-structure inter-

val [3535], performed using a well-collimated beam of thermal He atoms. Both the

2 3S1-to-2
3P1 and 2 3S1-to-2

3P2 transitions are measured in this experiment, and the

interval is found from the di�erence of the two resonant frequencies. The resultant

interference shift (calculated in this chapter) is -1.2 kHz, which is larger than the

1.0-kHz measurement uncertainty in Ref. [3535], even though the separation between

the two resonances is more than 1400 times the natural line width of 1.63 MHz.

3.1 Measurement Technique

The experiment in [3535] is performed by preparing a thermal beam of metastable

He atoms via electron bombardment. An inhomogeneous magnetic �eld is used to

de�ect 23S1(m=±1) atoms out of the beam and thus select the population in the

23S1(m=0) state. These atoms then pass through a uniform magnetic �eld, where

a circularly-polarized 1083-nm Gaussian laser beam (perpendicular to the atomic
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beam) drives transitions to the 23P1,2(m= +1) states (see red arrows in Fig. 3.13.1).

After the atoms pass through the laser beam and spontaneous emission has repop-

ulated the 23S1(m=+1) state, a second inhomogeneous magnetic �eld selects these

m= +1 atoms by de�ecting them to a detector, where they are counted to obtain

the measurement signal. The sub-milliradian collimation of the atomic beam min-

imizes Doppler broadening e�ects, while the laser intensity is kept su�ciently low

to avoid power broadening of the resonance. This technique allows the measured

line width to approach the natural line width.
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Figure 3.1: The n=2 He triplet energy levels. Population starts in |1〉 and interacts
with a circularly-polarized laser �eld, either σ+ (red), or σ− (blue), which drives
both |1〉 → |2〉 (solid arrow) and |1〉 → |3〉 (dashed arrow) transitions. The cycling
transition (dotted arrow) and the allowed radiative decay paths are also shown.

The atomic transitions involved in the measurement are shown in Fig. 3.13.1. The
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population is initially in the 23S1(m= 0) state (labeled |1〉), and a 1083-nm laser

with σ+ polarization (red) drives transitions to both the 23P1(m=+1) state (labeled

|2〉) and the 23P2(m=+1) state (labeled |3〉). These transitions are shown as solid

and dashed arrows, respectively. Excited atoms can then radiatively decay back to

|1〉, or repopulate the 23S1(m=+1) level (denoted |0〉 in the �gure).

Atoms in the |0〉 state can be excited to the 23P2(m= +2) state (labeled |4〉),

but this state can only decay back to |0〉, and thus population in the |0〉 state

cycles back and forth between these two levels. After having passed through the

laser beam, and after su�cient time has elapsed to allow for radiative decay, all of

these cycling atoms will ultimately occupy the 23S1(m=+1) (|0〉) state.

When a σ+ laser is tuned to near the 23S1(m = 0)-to-23P1(m=+1) transition,

atoms are pumped to the 23S1(m=+1) state by excitation and subsequent radiative

decay. The amplitude for this resonant process interferes with the much smaller

amplitude for the o�-resonant pathway, from 23S1(m = 0) to 23P2(m = +1) and

then down to 23S1(m=+1), leading to a shift in the line shape. Alternately, when

measuring the 23S1(m = 0)-to-23P2(m = +1) resonance, this dominant pathway

interferes with the now-small amplitude for driving population from 23S1(m= 0)

to 23P1(m=+1) and then decaying to 23S1(m=+1), resulting in an e�ect of equal

magnitude but opposite sign.

The preceding description is equally valid if the incident laser has the opposite

(σ−) polarization. This case is depicted in Fig. 3.13.1 using blue color-coding. De-
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pending on the tuning of the laser frequency, atoms in the same initial 23S1(m = 0)

state are driven to either the 23P1(m=−1) state (|1〉 → |2〉, solid arrow) or to the

23P2(m=−1) state (|1〉 → |3〉, dashed arrow), and accumulate in the 23S1(m=−1)

(|0〉) state via spontaneous decay. The |0〉 → |4〉 cycling transition is now between

the 23S1(m=−1) and 23S2(m=−2) states. Once again, quantum-mechanical in-

terference between the resonant and o�-resonant optical pumping pathways leads

to an identical shift in the resonance line shape.

3.2 Theoretical Description

The atomic states involved in the measurement can be directly mapped to the

four-level model of Eqs. (2.112.11), with both states in the |0〉↔|4〉 cycling transition

decoupled from the other states when probing the 23S1-to-2
3P2 resonance.

The partial decay rates of Eqs. (2.112.11) are obtained from the electric-dipole

matrix-elements (see Appendix BB) as: γ2→1 = γ3→1 = γ2→0 = γ3→0 = γ/2, γ23→1 =

±γ/2, and γ23→0 = ∓γ/2 (for σ± polarization respectively). The total rates are

therefore γ2 = γ3 = γ, and γ23 = 0. Here γ = 1/τ , where τ = 97.9 ns is the lifetime

of the 23P states.

In the electric-dipole approximation, the electric �eld of the circularly-polarized

(σ±) 1083-nm laser experienced by the atom is

~E(t) = E0G(t)
1√
2

[x̂ cos (ωt+ φ)± ŷ sin (ωt+ φ)] , (3.1)
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where E0 =
√

2I0
ε0c
, and G(t)=exp [−2(t− tL)2/T 2

L] models the pro�le of the electric

�eld seen by the atom as it passes through the Gaussian beam with peak intensity

I0, as shown in Fig. 3.23.2.

This �eld expression gives time-dependent Rabi frequencies, in the rotating-

wave approximation, of:

Ω2(t) =
1√
2
eE0G(t) 〈1 |x∓ iy| 2〉 /~, (3.2)

Ω3(t) =
1√
2
eE0G(t) 〈1 |x∓ iy| 3〉 /~. (3.3)

From the ratio of the matrix elements one �nds that Ω2 and Ω3 are related by

Ω2=±Ω3 (for σ± polarization). Substituting these values into Eqs. (2.112.11), the

resulting reduced density-matrix equations for this four-level system are:

ρ̇11 = (
iΩ∗2(t)

2
+
γΩ∗2(t)

4ω23

)ρ12 −
(
iΩ2(t)

2
− γΩ2(t)

4ω23

)
ρ21 +

γ

2
ρ22, (3.4a)

ρ̇12 =
iΩ2(t)

2
ρ11 −

(γ
2

+ i∆′2(t)
)
ρ12 −

iΩ2(t)

2
ρ22, (3.4b)

ρ̇22 =
iΩ2(t)

2
ρ21 −

iΩ∗2(t)

2
ρ12 − γρ22. (3.4c)

Here,

∆′2(t) = ∆2 +
|Ω3(t)|2

4ω23

, (3.5)

where ∆2 = ω − ω21 is the amount by which the laser is detuned from the |1〉→|2〉

transition. Note that Eq. (3.43.4) is valid for both σ+ and σ− polarizations, since the

sign di�erences from Ω3= ±Ω2 and from γ23→1 = ±γ/2 cancel out.
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The di�erence between ∆′2 and ∆2 represents a shift in the resonance which

is just the usual AC-Stark shift for the interval. Its magnitude is relatively small

for the laser intensities considered here, and approaches zero with decreasing laser

intensity. In contrast, the nonzero value of γ23→1 results in the ω−1
23 interference

terms, which lead to a larger shift in the resonance line center, that, unlike the

AC-Stark shift, does not extrapolate to zero as the laser intensity goes to zero.

The details of the timing pro�le used to model an atom's transit through the

laser beam can be seen in Fig. 3.23.2. The atom starts in |1〉 at a time ti before it

enters the beam, and then experiences a Gaussian intensity pro�le, with 1/e width

TL, and peak intensity I0 at time tL. The width is determined by the speed of the

atom, and the maximum intensity is a function of the laser power, beam waist,

and the atom's trajectory through the laser beam. The atoms that end up in |0〉

are detected at a later time tf , after the atom has traversed the laser beam and

su�cient time has passed for the 2 3P excited-state atoms to radiatively decay back

to the 2 3S metastable states.
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Figure 3.2: Intensity pro�le for an atom traveling through a Gaussian laser beam
with peak intensity I0. The atom starts in |1〉 of Fig. 3.13.1, and the �nal population of
|0〉 is determined after it has left the laser beam, and the 2 3P atoms have decayed
back to the 2 3S states.

For a given choice of laser intensity I0, frequency ω, and timing parameters TL,

tL and tf , Eq. (3.43.4) can be numerically solved to obtain the �nal population in

states |1〉 and |2〉 (ρ11(tf ) and ρ22(tf ) respectively). Since all of the population has

radiatively decayed to either |0〉 or |1〉 by time tf , the detection signal is given by

ρ00(tf ) = 1− ρ11(tf ).

Numerical integration, using an adaptive-step solver, is performed for a set of

laser frequencies near the resonance, leading to a calculated line shape for the

23S1�23P1 transition, an example of which is shown in Fig. 3.33.3(a). Fig. 3.33.3(c)

shows the di�erence between this line shape and the one obtained by setting the

interference term γ23→1=0. This di�erence, caused by the quantum-mechanical

interference with the distant |1〉→|3〉 transition, is not symmetric about the line

center, and hence results in a shift in the observed resonance.
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Figure 3.3: Lineshapes of the |1〉 → |2〉 (a) and |1〉 → |3〉 (b) resonances of Fig. 3.13.1,
obtained from numerical integration of Eq. (3.43.4) for the laser beam of Fig. 3.23.2 with
TL=4 µs and I0=10 µW/cm2. The di�erences, (c) and (d), are shown between
these line shapes and those obtained by setting the interference term γ23→1=0.

The derivation of Eqs. (2.112.11) assumed a laser close to the resonant frequency

of the |1〉→|2〉 transition, but a similar derivation can be performed when the

frequency ω is nearly in resonance with the |1〉→|3〉 transition instead, leading

to a set of equations analogous to Eq. (3.43.4), but with |2〉 and |3〉 interchanged.

Since ω32=−ω23 and |Ω2|2 = |Ω3|2, the interference shifts for the |1〉→|2〉 and

|1〉→|3〉 resonances are equal in magnitude and opposite in sign, as can be seen in

Fig. 3.33.3(d).

The e�ect on the deduced 2 3P1�2 3P2 interval is thus twice the absolute shift for

either of the laser transitions. In this case, the 2 3S1-to-2
3P1 transition is negatively

shifted to a lower frequency, while the 2 3S1-to-2
3P2 resonance has a positive shift to

35



a higher frequency, resulting in a smaller observed �ne-structure interval. A positive

correction for interference e�ects must therefore be applied to the measured interval.

Accordingly, only the line shape of the 2 3S1-to-2
3P1 transition needs to be com-

puted, and the shift in the line center can be doubled to obtain the total shift for

the 2 3P1�2 3P2 interval. Repeating the procedure with the interference term γ23→1

set to zero lets one subtract out the AC Stark shift. This is of interest because

the usual experimental analysis accounts for the AC Stark shift by extrapolating

to zero laser power, but ignores the interference shift.

Determining the position of the line center is in theory as simple as �nding

the maximum of the computed resonance pro�le, where the �rst-derivative is zero.

In practice, however, it is di�cult to calculate values with su�cient precision to

model this part of the line shape accurately. Fitting the pro�le to a Lorentzian

or other function to extract the center is also possible, but distortions in the line

shape due to quantum interference may pose a challenge to obtaining a stable and

accurate �t. Instead, a robust and well-de�ned shift can be calculated by averaging

the frequencies at the half-maximum points of the line shape, where the slope is

largest, and where a Lorentzian �t is most sensitive. This approach incorporates

any asymmetries in the line shape into an e�ective shift in the resonance center,

and is consistent with experiment, where the data taken near the half-maximum

points is most important for determining the line center.

36



3.3 Correction to the 2 3P1�2 3P2 Interval

Computations are carried out for a range of laser intensities I0 and timing-pro�le

widths TL to generate the contour plot of Fig. 3.43.4. The interference shift for the

2 3P1�2 3P2 interval is shown here, with the black dashed line indicating a resonance

with FWHM of 1.8 MHz. This contour value (1.1 times the natural line width of

1.63 MHz) was chosen in accordance with the measured line shape shown in [3535],

and represents the experimental regime of interest.

The region above the black dashed line corresponds to increasingly higher laser

powers and longer interaction times, resulting in wider line shapes and larger shifts.

Below this line, where the resonance pro�les are narrower and exhibit a smaller in-

terference shift, there is a large area with little variation in the magnitude of the

shift, and the interference shift along the black dashed line is approximately con-

stant.
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Figure 3.4: A contour plot of the shift (in kHz) for the 2 3P1�2 3P2 interval as a
function of laser intensity and interaction time. The shift is in addition to the small
AC Stark shift of Eq. (3.53.5), and results from quantum-mechanical interference. The
dashed-line contour indicates where the FWHM of the resonance is equal to 1.8 MHz
(the experimentally observed width).

The experiment of [3535] determined the line center of a resonance by sampling

pairs of data points about symmetric frequency o�sets ±∆f from the center of the

transition. Each such measurement yielded a line center f0 as a function of the

slope of the signal S(f) at the frequency step ∆f , and the di�erence between the

signal on either side of the peak:

f0 =
1

2
[S(∆f)− S(−∆f)]/

∣∣∣dS
df

∣∣∣
∆f
. (3.6)

The majority of data were taken close to the half-maximum of the line shape, where

the slope is largest, but other frequency steps were used to test for systematic e�ects.

The measured values of the �ne-structure interval as a function of ∆f are shown
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in Fig. 3.53.5, with their average value indicated by the blue line.

The authors argued [3535] that their data supports the notion that the determi-

nation of f0 was independent of the choice of ∆f . As can be seen in panels (c)

and (d) of Fig. 3.33.3, the e�ect of quantum-mechanical interference on the line shape

depends on frequency, so the observed interference shift according to Eq. (3.63.6) will

depend on the choice of ∆f . Failure to account for this misses a systematic e�ect

at a level which is signi�cant given the measurement uncertainty.

In the current analysis, each experimental data point is corrected by sampling

the computed line shapes at the corresponding frequency o�sets ±∆f and applying

Eq. (3.63.6) to calculate the interference shift in the line center caused by the distor-

tion in the resonance pro�le at those o�sets. This procedure results in the values

of the �ne-structure interval determined using di�erent frequency steps becoming

consistent with each other (the red data points in Fig. 3.53.5).

Of particular note is the point at ∆f=1.5 MHz, which has a 3.2σ discrepancy

with the other measurements. The correction due to the relatively larger inter-

ference e�ect at this ∆f resolves this discrepancy, bringing the adjusted value in

line with the other data points. The �nal corrected value for the interval (the red

dashed line of Fig. 3.53.5) is 2 291 177.1±1.0 kHz, which includes an average correction

of 1.2± 0.1 kHz, consistent with the shifts of Fig. 3.43.4.
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Figure 3.5: The 2 3P1�2 3P2 �ne-structure interval inferred from signals at ±∆f.
The diamonds and uncertainties are from [3535], and the solid line is the �nal result
presented in that work. The squares are corrected for the calculated interference
shifts.

Another laser measurement of the 2 3P1�2 3P2 interval was made by Hu, et.

al. [1818], also using a well-collimated atomic beam. This experiment uses transverse

laser-cooling to prepare an intense, narrow beam of metastable He atoms in the

23S1(m=1) state, and then drives transitions to either 23P1(m=1) or 23P2(m=1)

with a linearly-polarized laser. Radiative decay repopulates the 23S1(m=0) state,

whose count forms the basis of the measurement signal. The resonant transitions

take place in a uniform magnetic �eld that lifts the degeneracy of the magnetic

sub-levels.

The states involved in their measurement are identical to those of Fig. 2.32.3,
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and thus the four-level system of Eqs. (2.112.11) can once again be used to calculate

quantum-interference e�ects. The four-level model applies even when probing the

23S1(m= 1)-to-23P2(m= 1) transition, as the allowed 23S1(m= 0)-to- 23P2(m= 0)

transition is Zeeman-shifted out of resonance, and thus 23S1(m = 0) can still be

considered a dark state in this case.

The authors of [1818] carried out an analysis of their experiment based on our

model, and their reported value of 2 291 177.69± 0.36 kHz for the interval includes

an interference correction of 1.21 ± 0.16 kHz. This result is consistent with the

preceding treatment which analyzes the shift for the measurement of [3535].
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4 Saturated-�uorescence Spectroscopy

A determination of the 23P �ne-structure has also been performed using the tech-

nique of saturated-�uorescence spectroscopy [3636]. Both the small 23P1�23P2 and

large 23P0�23P1 splittings have been measured, with uncertainties of 11.0 and

1.0 kHz, respectively. Due its higher level of precision, the following analysis of

quantum interference focuses on the 23P0�23P1 interval.

The saturated-�uorescence method uses a relatively uncollimated atomic beam,

whose broad 90 MHz Doppler-width is mitigated by Doppler-free spectroscopy to

obtain resonance line widths of the order of 10 MHz. This complicates the calcula-

tion of the resonance line shapes, since the �uorescence signal receives contributions

from the entire range of transverse velocities present in the atomic beam.

Some experimental parameters of the measurements of Ref. [3636] are not known in

detail, including the sensitivity of the detector to the polarization of the �uorescence

radiation. Therefore, calculations of the interference shifts in the two resonances

used to determine the 23P0�23P1 interval are done for speci�c polarizations, and it

is seen that the actual interference shift observed would depend on the sensitivity
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of the measurement to the polarization states of the emitted radiation. Thus, the

e�ect of quantum interference on the experimental results can only be estimated.

4.1 Measurement Technique

In the saturated-�uorescence measurement of [3636], a beam of metastable atoms with

a wide angular spread intersects (at a right angle) a pair of counter-propagating

laser beams which drive the 23S-to-23P transitions. Figure 4.14.1 shows the energy

levels and spontaneous decay paths relevant to the measurement. The initial pop-

ulation is equally distributed among the three metastable ground states, and the

�uorescence from spontaneous decay back to 23S is detected as the laser scans across

the resonance. The two laser beams (created by retro-re�ection) are oriented per-

pendicularly to the center line of the atomic beam, and have identical frequency,

waist size, linear polarization, and intensity, which is above the saturation intensity

for the transition.

When the laser frequency is tuned close to a resonance, a reduction in �uores-

cence is observed, resulting in a characteristic, narrow dip in the Doppler-broadened

signal. This dip arises because each of the counter-propagating laser beams excites

a di�erent group of atoms when the frequency is o�-resonance, i.e., addressing only

those moving atoms that are Doppler-shifted back into resonance with a particular

beam. When the laser is on resonance, however, both beams couple to the same
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velocity-class (those atoms with a small transverse velocity), thus exciting fewer

atoms and resulting in less �uorescence. In the experiment of [3636], this feature has

a power-broadened width of approximately 10 MHz, about six times the natural

line width.

Figure 4.1: Laser-driven transitions for a saturated-�uorescence measurement
of the 23S1-to-2

3P1 (dotted lines) and 23S1-to-2
3P0 (dashed line) resonances. All

radiative-decay paths are shown, indicating �uorescence with F+ (green), F− (pur-
ple), and F0 (brown) polarization.

The driven atomic transitions and spontaneous decays involved in the measure-

ment are shown in Fig. 4.14.1. The labels F0, F+ and F− denote �uorescence emitted

by radiative decay from an excited state to a metastable state with a change in the

magnetic quantum number of ∆mJ = 0, ∆mJ = +1 and ∆mJ =−1, respectively.
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When probing the 23S1-to-2
3P1 resonance, metastable atoms in the 23S1(m=±1)

states (labeled |g±1〉 in the diagram) are excited by the linearly-polarized laser to

23P1(m = ±1) (denoted |e1±1〉), as indicated by the dotted arrows in Fig. 4.14.1. The

atoms can decay to 23S1(m= 0) (|g0〉 in the �gure) by emission of F∓ radiation,

remaining in this dark state. Alternatively, decay back to 23S1(m=±1) is possible

by emission of a linearly-polarized (F0) photon, and the atoms can then undergo

repeated excitation.

Both of these �uorescence channels are a�ected by quantum-mechanical inter-

ference with o�-resonant transitions. While the laser is tuned to the 23S1-to-2
3P1

resonance, it also drives the distant 23S1-to-2
3P2 transition, and the two possible

decay pathways back to 23S1(m = ±1) via F0 �uorescence interfere with each other.

These decay paths are shown in Fig. 4.14.1 by the brown arrows. Similarly, decay by

F∓ �uorescence to 23S1(m = 0) also involves two interfering processes, indicated

by the green arrows for F+, and purple arrows for F− radiation.

When measuring the 23S1-to-2
3P0 transition on the other hand, only those

metastable atoms in 23S1(m = 0) are driven by the laser to 23P0(m = 0) (|e00〉

in the �gure), as indicated by the dashed arrow in Fig. 4.14.1. Excited atoms can then

decay back to 23S1(m=0) through F0 �uorescence, or to 23S1(m=±1) by emission

of F± radiation.

Once again, both �uorescence processes are perturbed by decays from an o�-

resonant state, in this case the 23P2(m=0) state (|e20〉 in the �gure). The F0 �uores-
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cence includes interference between decay from either 23P0(m= 0) or 23P2(m= 0)

to 23S1(m = 0) while the F± radiation resulting from decay to 23S1(m = ±1) is

similarly a�ected.

4.2 Theoretical Description

4.2.1 Density-matrix Equations

The two laser beams (propagating along ŷ and −ŷ) form a standing wave, with

the total electric �eld experienced by the atom as it passes through the region of

interaction given by

~E(t) = ẑES(t) cos (ωt− φ̄), (4.1)

with a time-dependent envelope

ES(t) = 2E0 cos (∆ωDt+ ∆φ/2)e−2(t−tL)2/T 2
L . (4.2)

Here, E0 =
√

2I0
ε0c
, φ̄ and ∆φ are the average and di�erence of the phases of the

two laser beams, and I0 is the peak intensity of a single laser beam, in W/m
2. The

parameter tL is the time at which the atom passes through the center of the laser

beam, while the width TL determines the interaction time between the atom and

the laser, and is based on the speed of the atom and the waist of the laser beam.

The Doppler-shift ∆ωD seen by the moving atom also modulates the amplitude

of the electric �eld, so that atoms with a large ∆ωD sample the entire region of
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the standing wave between node and anti-node, while at small Doppler shifts, the

relative phase of the laser beams determines which part of the standing wave the

atom intersects.

Again, using the rotating-wave approximation, one can ignore the non-resonant

e−iωt term of the cosine in Eq. (4.24.2). In this approximation, using the notation

of Fig. 4.14.1, the general density-matrix equations for the n=2 triplet states can be

written as [3131, 3434, 3939, 4040] (see also Appendix AA):

ρ̇gµgµ′ =
∑

j,m,j′,m′

γµ
′j′m′

µjm ρejmej′m′ +
i

2

∑
j,m

(
Ω∗µ′jmρgµejm − Ωµjmρejmgµ′

)
(4.3a)

ρ̇ejmej′m′ = −i (ωj − ωj′) ρejmej′m′ +
i

2

∑
µ

(
Ωµj′m′ρejmgµ − Ω∗µjmρgµej′m′

)
− 1

2

∑
µ,j′′

(
γµj

′′m
µjm ρej′′mej′m′ + γµj

′′m′

µj′m′ ρejmej′′m′

)
(4.3b)

ρ̇gµejm = −i (ω − ωj) ρgµejm −
1

2

∑
µ′,j′,m′

γµ
′j′m′

µ′jm ρgµej′m′

+
i

2

∑
µ′

Ωµ′jmρgµgµ′ −
i

2

∑
j′,m′

Ωµj′m′ρej′m′ejm (4.3c)

These equations extend the four-level Eqs. (2.32.3) to include all of the triplet

states, with µ = 0,±1, j=0, 1, or 2, and m=−j . . . j. The diagonal density-matrix

elements ρgµgµ and ρejmejm represent the population in the ground states |gµ〉 and

excited states |ejm〉, respectively, while the o�-diagonal elements ρgµgµ′ , ρejmej′m′

and ρgµejm express correlations between di�erent states.

47



The Rabi frequencies Ωµjm(t) and generalized decay rates γµ
′j′m′

µjm are given by

the following expressions:

Ωµjm(t) =
eES(t)

~
〈gµ|z|ejm〉, (4.4a)

γµ
′j′m′

µjm =
e2ω3

3πε0~c3
〈gµ|~r |ejm〉 · 〈ej′m′|~r |gµ′〉. (4.4b)

The quantities γµjmµjm ≡ γ
(µ)
jm are the partial decay rates from excited states |ejm〉

to the metastable states |gµ〉 (cf. γi→j of Eqs. (2.62.6)), while the those of the form

γµj
′m′

µjm are the cross-damping rates generalizing γ23→j of Eq. (2.62.6), and are respon-

sible for interference e�ects.

The dipole matrix-elements in Eqs. (4.44.4) can be calculated using:

〈gµ|rq|ejm〉 =
(−1)1−µ
√

3/
√

2j + 1

 1 1 j

−µ q m

 4.385a0. (4.5)

where a0 is the Bohr radius and the brackets denote a Wigner-3j symbol. The radial

factor in Eq. (4.54.5) is obtained without the use of explicit helium wavefunctions, by

equating the theoretical expression for the total rate of decay from the 23PJ states

to the numerical value γ = 1/τ (where τ = 97.9 ns is the lifetime of the states [4141]).

See Appendix BB for details.
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4.2.2 Reduced Equations

The general density-matrix Eqs. (4.34.3) comprise 144 coupled equations, whose nu-

merical solution is computationally intensive due to the size of the system and the

presence of the large (ωj − ωj′) frequency terms. The same reduction process that

was applied to the four-level system in chapter 2 can be used to simplify the equa-

tions, by considering a laser tuned close to one of the triplet helium levels (23Pj=J),

so that very little population is driven to the o�-resonant levels (23Pj′ 6=J).

As in the four-level case, an ordering parameter η is de�ned as the ratio of the

small frequency scales in Eqs. (4.34.3) (γµ
′j′m′

µjm , Ωµjm, and ∆ = ω − ωJ) to the large

(1000 times greater) �ne structure splittings between the resonant and o�-resonant

states (ωJj′ = ωJ − ωj′).

Following [3333, 3434], the η2 terms (e.g., ρej′mej′m) can be ignored and the density

matrix elements of order η (e.g., ρeJmej′m and ρej′mgµ) can be eliminated to give

modi�ed equations for the dominant density matrix elements that are complete to
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order η:

ρ̇gµgµ′ = i (εµ′ − εµ) ρgµgµ′ +
i

2

∑
m

[
Ω∗µ′JmρgµeJm − ΩµJmρeJmgµ′

]
+
∑
m,µ′′

[
ζJmµµ′µ′′ρgµ′′eJm + (ζJmµ′µµ′′)

∗ρeJmgµ′′

]
+
∑
m,m′

γµ
′Jm′

µJm ρeJmeJm′ (4.6a)

ρ̇eJmeJm′ = −γρeJmeJm′ −
i

2

∑
µ

[
Ω∗µJmρgµeJm′ − ΩµJm′ρeJmgµ

]
(4.6b)

ρ̇gµeJm =
i

2

∑
µ′

Ωµ′Jmρgµgµ′ −
i

2

∑
m′

ΩµJm′ρeJm′eJm

− 1

2

∑
µ′

γµ
′Jm

µ′JmρgµeJm′ − i (ω − ωJ + εµ) ρgµeJm (4.6c)

The �rst-order corrections due to interference with o�-resonant states (those

with j′ 6= J) are expressed as:

εµ =
∑

j′ 6=J,m′

|Ωµj′m′|2
4ωJj′

(4.7a)

ζJmµµ′µ′′ =
∑
j 6=J,m′

Ω∗µ′′jmγ
µ′Jm
µjm′

2ωJj
(4.7b)

The εµ terms in Eq. (4.74.7) correspond to the AC-Stark shift corrections in

Eqs. (2.112.11)(c), while the quantities ζJmµµ′µ′′ are the generalized equivalents of the

interference shift terms in Eq. (2.112.11)(a).

Eqs. (4.64.6) give 16, 36 or 64 equations for J=0, 1 or 2, respectively. They lack

the fast oscillations found in Eqs. (4.34.3), and thus require a factor of η (3 orders
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of magnitude) fewer time steps for the numerical integration. The results of these

integrations agree with those from Eqs. (4.34.3) to order η2 (i.e., to better than a part

per million).

4.3 Fluorescence Lineshapes

The �uorescence emitted by the laser-excited atoms can be obtained from the

spontaneous-decay terms in the ρ̇ejmej′m′ equation of Eqs. (4.34.3). The �uorescence

has three components Fq (q=0, ±1) which correspond to radiative decay from the

2 3PJ state to the 2 3S1 state with ∆mJ=0, ±1 respectively. The �uorescence Fq is

therefore given by

Fq =

∫ tf

ti

dt
∑

µ,j,m,j′

δm+q
µ

γµj
′m

µjm

2

(
ρej′mejm + ρejmej′m

)
. (4.8)

Here the Kronecker delta selects the component of the �uorescence based on the

mJ quantum numbers of the upper and lower states, and the integration is over the

time that the moving atom spends in the laser beam.

Applying a similar reduction technique as was done for the density-matrix equa-

tions, an expression for the terms in Eq. (4.84.8) that is correct to �rst order in η can

be found:

Fq =

∫ tf

ti

dt
∑
µ,m

δm+q
µ

{
γµJmµJmρeJmeJm +

∑
µ′

[ζJmµµµ′ρgµ′eJm + (ζJmµµµ′)
∗ρeJmgµ′ ]

}
. (4.9)

For any given set of parameters I0, TL, ∆φ and ∆ωD = 2π∆fD, the solutions

to Eqs. (4.64.6) can be used to obtain Fq from Eq. (4.94.9). Equal initial populations are
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assumed for the three metastable states |gµ〉. As was done in Chap. 33, the system

of equations is integrated using an adaptive-step solver. The integration starts at

a time 2TL before the peak time tL (here TL and tL are the full width and center

of the Gaussian envelope in Eq. (4.24.2), respectively), and the total integration time

is chosen to be tf = 4TL + 5τ , so that the atoms have completely passed through

the laser beam, with the additional �ve lifetimes ensuring that the population has

decayed to the metastable state.

The F0 �uorescence pro�les for the J=1 case (the 2 3S1-to-2
3P1 transition) using

I0=2 mW/cm2 and TL=1 µs are shown in Fig. 4.24.2(a) for the ∆fD=0 (vy=0) Doppler

group. Solutions for various values of the relative phase ∆φ are plotted, and it is

evident that the signal depends strongly on the phase angle. When the laser beams

are in phase, this corresponds to interaction with a maximum in the standing wave

�eld, resulting in maximum �uorescence, while at ∆φ = π, the atoms are passing

through a node in the laser �eld and the �uorescence vanishes since no atoms are

excited.

When the calculations are repeated using a slightly larger ∆fD (larger vy) of 0.4

MHz, the dependence on ∆φ weakens quickly, as seen in Fig. 4.24.2(b). The atoms now

have a large enough transverse velocity to sample all portions of the standing wave

during their interaction with the laser. Since the relative phase varies in practice,

an average over all values of ∆φ is taken when computing the �uorescence pro�le,

especially for small Doppler groups, as shown by the solid lines in Fig. 4.24.2(a), (b),
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and (c).
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Figure 4.2: The �uorescence signals F0 as a function of detuning ∆f from the
2 3S1-to-2

3P1 resonance. Individual Doppler groups ∆fD, (a)�(c), give resonances
at ∆f=±∆fD. For small ∆fD, F0 depends on the relative phase, as shown for
four values of ∆φ in (a). At larger ∆fD, the dependence is reduced substantially,
as shown for the same values of ∆φ for ∆fD=0.4 MHz in (b). The solid curves
represent averages over ∆φ. The average of F0 over all Doppler groups leads to
the saturated �uorescence dip, as shown in (d) for ∆fHWHM

D =45 MHz (thin red
line) and 80 MHz (thick line). An expanded view of the saturated �uorescence dip
within the dashed area in (d) is shown in (e), along with the amplitude (A) and
full width at half maximum (FWHM) of the dip.
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Each Doppler group in the atomic beam contributes its own �uorescence signal,

with dual resonances at ∆f=±∆fD, as seen in Fig. 4.24.2(c) for a few representative

Doppler groups. The total F0 �uorescence signal is then computed as a weighted

average over all Doppler groups present in the beam. A Gaussian velocity distri-

bution is assumed, with half-width-at-half-maximum of ∆fHWHM
D , and Fig. 4.24.2(d)

shows the resulting line shape for values of ∆fHWHM
D =45 MHz (thin red line) and 80

MHz (thick line). The reduced signal near resonance is the saturated-�uorescence

dip, and is shown in an expanded view in Fig. 4.24.2(e) with its amplitude (A) and

FWHM indicated.

The amplitude and width of the dip as a function of laser intensity I0 are shown

in Fig. 4.34.3(a) and (b), respectively, for three values of interaction time TL. For the

dip to have a substantial amplitude, the laser intensity must be above the saturation

intensity for the transition, causing the width to be signi�cantly broadened relative

to the 1.6-MHz natural line width. For precision measurements of the saturated-

�uorescence dip, there is therefore a trade-o� between the signal amplitude and

width.
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Figure 4.3: The amplitude (a) and width (b) of the 2 3S1-to-2
3P1 saturated-

�uorescence dip as a function of intensity I0, for three choices of interaction time
TL. The natural width is shown as a thin dashed line in (b). The width of the dip
is signi�cantly broader than the natural width for intensities that lead to dips of
substantial amplitude.

4.4 AC-Stark Shifts

It is instructive to �rst consider only the AC-Stark shifts of the �uorescence signal.

These shifts are isolated when interference e�ects are arti�cially suppressed, by

setting the o�-diagonal γµ
′j′m′

µjm terms to zero in Eqs. (4.64.6) and (4.94.9). The AC-Stark

shift, resulting from the εµ terms of Eqs. (4.74.7), moves all of the resonances of

Figs. 4.24.2(a), (b) and (c) to the left (for all Doppler groups).
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The net amount of shift in the �uorescence dip however, is quite complicated,

due to the many parameters in the electric �eld amplitude of Eq. (4.24.2) that a�ect the

line shape. Firstly, the atom-laser interaction time TL determines how many cycles

of excitation and decay the atom undergoes, and thus the amount of �uorescence

produced. The laser intensity I0 also plays a role in the magnitude of the signal,

and both TL and I0 cause broadening of the resonance.

The dependence on the phase di�erence ∆φ is also signi�cant for the small

Doppler groups which contribute the most to the central dip. As the average is

taken over all the phases, this includes cases of constructive interference (∆φ=0

of Fig. 4.24.2(a)) which lead to both a large resonance and a large shift, as well as

destructive interference (∆φ≈π in the same �gure) which produces no signal and

no shift.

Finally, the shift is complicated by the ∆fD dependence, in that a leftward shift

of the peak in small ∆fD contributions, such as the ∆fD=0 curve in Fig. 4.24.2(c),

causes the dip of Fig. 4.24.2(d) to move to the right. Conversely, the pro�les at higher

∆fD, such as the ∆fD=20 MHz line in Fig. 4.24.2(c), have minima rather than peaks

at the center, so the leftward shift of these Doppler pro�les causes the dip to shift

to the left instead.

Fig. 4.44.4(a) shows the integrated contribution to the AC-Stark shift for all

Doppler groups in the range −|∆fD| to |∆fD|, assuming a Gaussian distribution of

Doppler groups with ∆fHWHM
D = 80 MHz. The shifts are determined from the fre-
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quencies of the half-maximum points of the line shapes obtained from the numerical

integration and averaging over Doppler groups and phases ∆φ (see Fig. 4.24.2(e)).

One observes that the net AC-Stark shift from all Doppler groups is negative, as

can be seen from the values on the right side of Fig. 4.44.4(a), with positive shifts for

low ∆fD, and larger negative shifts for intermediate ∆fD. The curves of Fig. 4.44.4(a)

approach their �nal values at ∆fD ∼ 30 MHz, since the contributions from the

larger Doppler groups (cf. Fig. 4.24.2(c)) are well-separated in frequency from the

saturated-�uorescence dip.
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Figure 4.4: The cumulative AC-Stark shifts (a) and interference shifts (b) and
(c) of the 2 3S1-to-2

3P1 saturated-�uorescence dips for various choices of intensity
(I0) and interaction time (TL). The graphs display integrated shifts due to Doppler
groups ranging from -|∆fD| to |∆fD| and show that the shifts change sign for larger
Doppler groups. The total shift (from all Doppler groups) is the value at the right
of each curve. The F0 shifts for linearly- polarized �uorescence in (b) and the
F±1 shifts for circularly-polarized radiation in (c) are of opposite sign due to the
opposite signs in the respective γ121

111 and γ021
011 cross-damping factors.
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Shifts for a larger range of interaction times TL and intensities I0 are shown in

Table 4.14.1 and in Figs. 4.54.5(a) and (b). The AC-Stark shifts are identical for F−1, F0,

and F+1 �uorescence. Note that the net shifts depend mostly on I0, as expected

for AC-Stark shifts, but there is dependence on TL as well. These shifts are small

compared to the interference shifts discussed in the next section.
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Table 4.1: AC-Stark and interference shifts for F0 and F±1 �uorescence, in kHz.
The shifts are given for a selection of interaction times TL and laser electric-�eld
amplitudes E0. A Doppler pro�le with ∆fHWHM

D =80 MHz is assumed. The middle
three columns list the shifts in the �uorescence dips for the 2 3S1-to-2

3P0 resonance,
using the AC-Stark-only signal (same for all polarizations), the linearly-polarized
�uorescence (F0), and the circularly-polarized �uoresence (F±1) signals respectively.
The last three columns are similar results for the 2 3S1-to-2

3P1 transition.
2 3S1-to-2

3P0 2 3S1-to-2
3P1

E0 (V/cm) TL(µs) AC F0 F±1 AC F0 F±1

0.375 0.25 0.09 0.03 -0.08 0.62 0.26 -1.16
0.375 0.5 0.03 0.08 -0.10 0.21 0.47 -1.48
0.375 1 0.01 0.11 -0.13 0.07 0.67 -2.07
0.375 1.5 0.00 0.15 -0.16 0.01 0.89 -2.49
0.375 2 0.00 0.18 -0.18 -0.01 1.15 -2.89
0.375 4 -0.01 0.35 -0.28 -0.06 2.38 -4.47
0.75 0.25 0.05 0.14 -0.14 0.21 1.12 -2.23
0.75 0.5 -0.01 0.28 -0.24 -0.17 2.45 -4.51
0.75 1 -0.02 0.48 -0.37 -0.26 3.74 -6.37
0.75 1.5 -0.03 0.65 -0.47 -0.30 4.95 -7.80
0.75 2 -0.03 0.83 -0.56 -0.31 6.22 -9.23
0.75 4 -0.03 1.51 -0.94 -0.33 11.3 -14.8
1.5 0.25 -0.25 0.98 -0.67 -3.41 12.8 -17.0
1.5 0.5 -0.17 1.48 -0.94 -2.04 13.4 -17.0
1.5 1 -0.15 2.06 -1.25 -1.72 17.0 -21.1
1.5 1.5 -0.15 2.64 -1.55 -1.63 21.2 -25.3
1.5 2 -0.14 3.22 -1.85 -1.56 25.5 -29.8
1.5 4 -0.14 5.48 -3.01 -1.50 42.7 -47.1
2.25 0.25 -0.54 2.87 -1.68 -3.91 19.5 -21.7
2.25 0.5 -0.47 3.36 -1.88 -5.31 30.7 -33.4
2.25 1 -0.38 4.43 -2.42 -4.18 37.4 -40.4
2.25 1.5 -0.35 5.56 -2.99 -3.82 45.8 -48.5
2.25 2 -0.34 6.72 -3.57 -3.65 54.6 -56.8
2.25 4 -0.33 11.2 -5.70 -3.46 89.8 -88.3
3 0.25 -0.68 3.30 -1.71 -11.0 40.0 -38.6
3 0.5 -0.86 5.79 -2.97 -9.79 53.7 -52.8
3 1 -0.68 7.44 -3.80 -7.60 64.6 -63.5
3 1.5 -0.63 9.29 -4.70 -6.89 78.3 -75.9
3 2 -0.61 11.2 -5.58 -6.57 92.8 -88.5
3 4 -0.59 18.6 -8.77 -6.21 152 -136
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Figure 4.5: Contour graphs for AC-Stark and interference shifts versus interaction
times TL and laser intensities I0. Top row (a,c,e): 2 3S1-to-2

3P0 transition, bottom
row (b,d,f): 2 3S1-to-2

3P1 transition. Plots (a) and (b) represent AC-Stark shifts,
while plots (c) and (d) show interference shifts (to be added to the AC-Stark shift)
for ∆mJ = 0 decays [F0 in Eq. (4.94.9)], and (e) and (f) are interference shifts for F±1

�uorescence. A Doppler pro�le with ∆fHWHM
D = 80 MHz is used. The shift values,

given along the black contour lines, are in kHz. Also shown on the plots (white
dashed lines) are the widths of the saturated-�uorescence dips in MHz.

4.5 Interference Shifts

The interference shifts are obtained in the same way as the AC-Stark shifts in the

previous section, except that the numerical integration of Eq. (4.94.9) now includes

the o�-diagonal γµ
′j′m′

µjm cross-damping terms.

The �uorescence line shapes are similarly complicated by their dependence on

laser intensity I0 and atom-laser interaction time TL, as well as the averaging over

the relative beam phase ∆φ and Doppler groups ∆fD present in the atomic beam.
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As with the AC-Stark shift, the interference shifts are determined from the

frequencies of the calculated half-maximum points of the saturated �uorescence

dips, and Figs. 4.44.4(b) and (c) show that the sign of the shift also changes with

increasing values of |∆fD|. The size of the shifts is an order of magnitude larger

than that of the AC-Stark shifts, and the �nal values of the shifts for F0 and F±

�uorescence are of opposite sign.

More detailed results of the calculations (for a Doppler pro�le with ∆fHWHM
D =80

MHz) are shown in Table 4.14.1 and Fig. 4.54.5. The interference shifts in both the

table and the �gure do not include the AC-Stark shifts discussed in the previous

section. The contour graphs show that the interference shifts depend strongly on

both TL and I0. In an actual experiment, the shift for di�erent atoms in the beam

would di�er, since I0 depends on which part of the Gaussian laser beam the atom

intersects, while TL depends on the axial velocity component of the atom.

The shifts (in kHz) shown in Fig. 4.54.5(a), (c), and (e) are for the 2 3S1-to-2
3P0

transition, while those in Fig. 4.54.5(b), (d), and (f) are for 2 3S1-to-2
3P1. The plots

(c) and (d) display interference shifts for ∆mJ = 0 decays (F0 in Eq. (4.94.9)), and

(e) and (f) show interference shifts for F±1. The corresponding AC-Stark shifts are

shown in parts (a) and (b), respectively. The white dashed lines on the plots show

the corresponding widths of the saturated-�uorescence dips in MHz.

Table 4.24.2 shows shifts for other Doppler pro�les. From this table it can be seen

that the interference shift also depends on which Doppler groups are present in the
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Table 4.2: Dependence of AC-Stark and interference shifts on the width (∆fHWHM
D )

of the beam's Doppler pro�le. Shifts in the 2 3S1-to-2
3P1 saturated �uorescence dip,

along with its FWHM and amplitude A, are given for two laser intensities I0 and
two interaction times TL.

I0 TL ∆fHWHM
D AC F0 F±1 FWHM A

(mW/cm2) (µs) (MHz) (kHz) (kHz) (kHz) (MHz)
1 1 30 -0.45 3.8 -6.1 4.00 0.032
1 1 45 -0.43 4.5 -7.1 4.33 0.024
1 1 60 -0.42 4.9 -7.7 4.52 0.019
1 1 80 -0.41 5.2 -8.2 4.68 0.015
1 1 110 -0.41 5.6 -8.7 4.82 0.011
2 1 30 -1.10 8.2 -10.6 5.05 0.041
2 1 45 -1.09 9.5 -12.5 5.57 0.032
2 1 60 -1.08 10.4 -13.8 5.89 0.026
2 1 80 -1.07 11.3 -15.1 6.16 0.020
2 1 110 -1.06 12.0 -16.2 6.40 0.016
1 2 30 -0.48 6.4 -8.6 4.93 0.054
1 2 45 -0.47 7.4 -10.1 5.34 0.040
1 2 60 -0.46 8.0 -11.0 5.59 0.032
1 2 80 -0.45 8.5 -11.9 5.79 0.025
1 2 110 -0.44 9.0 -12.7 5.97 0.019
2 2 30 -1.04 13.0 -14.6 6.36 0.067
2 2 45 -1.03 14.8 -17.5 7.02 0.053
2 2 60 -1.02 16.1 -19.5 7.42 0.043
2 2 80 -1.01 17.3 -21.4 7.76 0.035
2 2 110 -1.00 18.4 -23.2 8.08 0.027

beam, as would be expected from the dependence on ∆fD shown in Figs. 4.44.4(b) and

(c). The table shows that the interference shifts for a beam with a Doppler width

∆fHWHM
D =110 MHz are approximately 50% larger than those for ∆fHWHM

D =30

MHz.
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4.5.1 Scale and Sign of Interference Shifts

The interference shift results from quantum-mechanical interference between the

amplitude for obtaining �uorescence via an on-resonance laser excitation and the

much smaller amplitude for �uorescence via a far-o�-resonance transition to a dis-

tant state. For example, the shift in the 2 3S1(m=0)-to-2 3P0(m=0) transition (the

dashed arrow in Fig. 4.14.1) is due to the far-o�-resonance 2 3S1(m=0)-to-2 3P2(m=0)

transition, which is 31.9 GHz away (20 000 natural widths), yet still perturbs the

saturated-�uorescence line shape at a level (5 kHz in 10MHz) that is relevant for

precision spectroscopy.

As is the case for other instances of interference shifts due to o�-resonant tran-

sitions [3333, 3434, 4242, 4343], the scale of the shifts is given by the ratio of the square of

the resonance width to the frequency separation between the interfering resonances.

This scaling can be seen in Fig. 4.54.5(c)-(f), where the resonance width contours have

the same general shape as the interference shift contours.

The opposite sign of the shifts for the di�erent polarizations of �uorescence

(positive for the F0 shifts and negative in the case of the F±1 shifts) is a direct

result of the opposite signs of γ020
000 and γ±120

±100 . The �rst of these cross-damping

rates (γ020
000) is relevant for the production of F0 �uorescence, where there is inter-

ference as 2 3S1(m=0) atoms are laser-excited to both the on-resonant 2 3P0(m=0)

state and the far-o�-resonant 2 3P2(m=0) state, followed by decay back down to
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the 2 3S1(m=0) state. The second rate (γ±120
±100) determines the amount of interfer-

ence when 2 3S1(m=0) atoms are driven to the same 2 3P0(m=0) and 2 3P2(m=0)

excited states, but decay down to the 2 3S1(m=±1) states instead, with the emis-

sion of circularly-polarized F±1 �uorescence. In a typical saturated-�uorescence

measurement (e.g., [1111, 1414, 3636, 4444]), the width of the saturated-�uorescence dip is

approximately 10 MHz (about 6 natural linewidths). Referring to Figs. 4.54.5(c) and

(e) one can see resultant shifts with magnitudes between 3 and 6 kHz.

Whether a measured signal is subject to a net positive or negative shift depends

on the detector's relative sensitivity to F0 vs. F±1 �uorescence. For example, if

the �uorescence detector is placed above the laser beam (in the ẑ direction), it is

sensitive only to F±1 �uorescence since the angular distribution of F0 �uorescence

is zero in this direction. In general, the shift is some linear combination of the

shifts of Figs. 4.54.5(c) and (e), with proportions that depend on the geometry of the

experiment and the polarization sensitivity of the detectors.

This strong dependence on detector geometry and sensitivity to the polarization

of the measured �uorescence was shown to be important in measurements of the

hyper�ne D-lines in atomic lithium [3232, 4545], where interference e�ects are sub-

stantial since the splitting between the relevant neighboring excited states is of the

order of their line widths.

The shifts for the 2 3S1-to-2
3P1 transition (the dotted arrows in Fig. 4.14.1) are

much larger, since for this case the neighboring resonance (the 2 3S1-to-2
3P2 tran-
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sition) is 1400 natural widths away. These shifts are shown in Figs. 4.54.5(d) and (f)

for F0 and F±1 �uorescence. Shifts of between 30 and 60 kHz for 10-MHz-wide

saturated-�uorescence dips can be seen on the contour graphs, which are very large

compared to the kHz or sub-kHz uncertainties of recent measurements [99�1717, 3535,

3636, 4646] of the intervals. As before, F0 and F±1 have opposite shifts, so again the

actual shift seen by a saturated-�uorescence experiment depends on the sensitivity

and geometry of the �uorescence detector.

With regard to the measurement of [3636], a determination of the interference

shift to . 1 kHz level of accuracy is not feasible given the lack of some details

about the experiment. It is evident from Table 4.14.1, Table 4.24.2 and Fig. 4.54.5 that the

shifts depend strongly on model parameters such as the peak laser intensity I0, the

Doppler-width ∆fHWHM
D of the atomic beam, and the atom-laser interaction time

TL. This latter quantity is itself a function of the laser beam's waist and the atomic

beam's angular spread and speed distribution.

A realistic calculation of the saturated-�uorescence signal would involve a prop-

erly weighted average over line shapes for atoms that experience a range of values

of TL, I0, and ∆fD. Such a simulation would require detailed information about

the possible trajectories of an atom through the laser beam, which depends on the

laser beam power and waist, as well as the distribution of velocities in the atomic

beam.

Furthermore, as previously mentioned, the detector geometry and sensitivity
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to �uorescence of di�erent polarizations must be carefully modeled, in order to

correctly combine the opposing shifts with their relative weights. This involves

speci�cation (at the percent level of accuracy) of the placement and aperture of the

detectors, and their relative e�ciency for di�erent polarizations of light.

Although some cancellation can be expected between the positive and negative

shifts for most detector geometries, the scale of the expected shifts is still of the

order of 10 kHz, and therefore must be estimated for precision measurements of the

intervals. In summary, a speci�c correction to the measured value of the 23P0�23P1

interval due to quantum interference is not given, but an increased uncertainty of

±10 kHz is proposed to re�ect the scale of the residual shift.
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5 Saturated-absorption Spectroscopy

Precision measurements of all three 2 3P �ne-structure intervals have been per-

formed using saturated-absorption spectroscopy in a gas cell [1515], so it is important

to understand the scale of interference e�ects on this type of laser measurement.

The technique presents its own set of systematic challenges, and consequently this

chapter analyzes only the 2 3P1�2 3P2 interval, as measurements of the other 2 3P

intervals are complicated by shifts due to de�ection of the atoms by laser light.

Interference shifts are obtained [4747] for this interval that are larger than the uncer-

tainty of the saturated-absorption measurement of [1515].

5.1 Measurement Technique

The saturated-absorption technique uses a sample of dilute helium gas in a cell,

where a dc discharge excites a tiny fraction of the atoms to the metastable 23S

state. A linearly-polarized laser then excites the atoms to the 23P states, and the

transmission of the beam is detected after it has passed through the atomic cloud.

A uniform external magnetic �eld lifts the degeneracy of the magnetic sub-levels,
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and isolates the individual 23S-to-23P transitions for mJ=−1,0, and +1 states,

separating each resonance.

The measurement is performed both with a single laser beam, and also with a

second counter-propagating beam present, and the saturated-absorption signal is

formed from the di�erence in the absorption of the forward beam between the two

cases. As the laser frequency is tuned across the resonance, decreased absorption

of the forward beam is observed when both beams are on. This reduction is caused

by the Doppler shifts seen by the moving thermal atoms.

When the laser frequency is near resonance, both beams address the same group

of atoms (those nearly at rest), which can absorb photons from either laser beam

with equal probability, resulting in less absorption from the forward beam. When

tuned o�-resonance, however, each laser beam couples to a di�erent group of mov-

ing atoms, each of which absorbs photons from a separate beam. The resulting

saturated-absorption signal has a line width much narrower than the Doppler-

broadened laser resonance, and can approach the natural width of the resonance in

the limit of low laser power.

The triplet states involved in the saturated-absorption measurement of the

2 3P1�2 3P2 interval are shown in Fig. 5.15.1, and were previously shown in Fig. 2.32.3 to

illustrate the four-level atom.
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Figure 5.1: The n=2 triplet energy levels of helium, illustrating states involved in
the saturated-absorption measurement of the 2 3S1,mJ=1-to-2 3P1,mJ=1 transition.
Both resonant (solid arrow) and o�-resonant (dotted arrow) transitions are shown,
along with possible decay pathways.

This diagram depicts an experiment probing the 2 3S1,mJ=1-to-2 3P1,mJ=1 tran-

sition frequency. Atomic population starting in the metastable state |1〉 (2 3S1,mJ=1)

is excited by a linearly-polarized laser tuned close to the |1〉 → |2〉 resonance. Most

of the transfer (solid arrow) is to state |2〉 (2 3P1,mJ=1), but there is a small am-

plitude (dotted arrow) to reach the far-o�-resonance state |3〉 (2 3P2,mJ=1). The

atom then can radiatively decay back to |1〉 or to the |0〉 state (2 3S1,mJ=0). The

latter is a dark state since the 2 3S1,mJ=0-to-2 3P1,mJ=0 transition is electric-

dipole-forbidden.
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Tuning the laser frequency to the 2 3P2,mJ=1 state reverses the roles of |2〉 and

|3〉 as dominant and o�-resonant state, respectively, and probes the 2 3S1,mJ=1-to-

2 3P2,mJ=1 transition instead, with the di�erence of the two transition frequencies

used to determine the �ne-structure interval. Although this latter case is not strictly

a closed four-level system (since the 23S1,mJ = 0-to-23P2,mJ = 0 transition is not

dipole-forbidden), the large Zeeman shift e�ectively suppresses the transition out

of 23S1,mJ =0, so |0〉 can still be treated as dark state, and the four-level model is

recovered.

In either case, there is quantum-mechanical interference between the two pro-

cesses of resonant vs. o�-resonant excitation and subsequent decay. As discussed

in chapter 22, this leads to a perturbation of the branching ratio for decay to the |0〉

dark state compared to decay back to the metastable |1〉 state, where the atom can

be repeatedly excited to remove photons from the laser �eld. This e�ect translates

to a distortion and a resultant shift in the absorption pro�le as the laser scans over

the resonance.

5.1.1 Systematic E�ects

The saturated-absorption measurement of [1515] must be corrected for several sys-

tematic e�ects. The �rst of these are velocity-changing collisions (VCC) between

excited and ground-state helium atoms. Such collisions limit the amount of time

an atom in a particular Doppler group interacts with the laser before either moving
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to a di�erent velocity class, or being removed from the region of laser interaction

altogether. Velocity-changing collisions lead to a broad Gaussian background, upon

which the narrow Lorentzian transition resonances sit, and this feature is included

in the �ts to the experimental line shapes.

The measured intervals, derived from di�erences in transition frequencies, are

also a�ected by magnetic �eld shifts, gas-pressure shifts, and light-pressure shifts.

The linear Zeeman shifts cancel out, while theoretical corrections for the much-

smaller nonlinear Zeeman shifts are explicitly calculated and applied. The pressure

shifts are due to perturbations to the internal energy levels of the atoms, and are

proportional to the gas pressure.

Light-pressure shifts refer to the recoil e�ect of photon scattering on the he-

lium atoms, which alters the velocity distribution of the atoms in the cloud. The

shift is proportional to the average number of photons absorbed by an atom before

being optically-pumped to a dark state, which varies for the di�erent 23S-to-23PJ

transitions. These light-pressure shifts are measured and compensated for in the ex-

periment, except in the case of the 23P1�23P2 interval, for which the light-pressure

shifts cancel. Due to the di�cultly of properly modeling the light-pressure shifts,

this chapter's analysis of interference e�ects focuses on the 2 3P1�2 3P2 splitting.
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5.2 Theoretical Description

To model the saturated-absorption technique of [1515], one should consider a laser

with angular frequency ω=2πf and linear polarization ẑ interacting with a cloud

of metastable helium atoms. The forward beam and the counter-propagating

beam travel in the +ŷ and −ŷ directions, respectively, and both laser beams

have a uniform intensity I0 over the volume of atoms that contribute to the sig-

nal. An atom with velocity component vy sees equal and opposite Doppler shifts

±∆ωD=±2π∆fD=±ωvy/c for the two laser beams, and experiences a total electric

�eld (in the dipole approximation) of

~E(t) = ẑE0 cos [(ω + ∆ωD)t] + sẑE0 cos [(ω −∆ωD)t+ ∆φ]. (5.1)

As before, E0=
√

2I0
ε0c
, and ∆φ is the phase di�erence between the two laser beams.

The parameter s = 1 or 0 indicates if the counter-propagating laser beam is switched

on or o�. The lack of a Gaussian laser envelope is justi�ed, as the absorption is

detected from a narrow region at the center of the laser beam, where the spatial

intensity pro�le is essentially �at.

The measurement of the 2 3S1,mJ=1-to-2 3P1,mJ=1 transition is considered �rst.

The reduced density-matrix equations for the four-level atom developed in Chap-

ter 22 are applied, as these Eqs. (2.112.11) describe the transfer of population in the

system of Fig. 5.15.1 where the laser is nearly resonant with the |1〉→ |2〉 transition.

They involve only the initial state |1〉 and the on-resonant state |2〉, but include
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�rst-order corrections due to the presence of the distant state |3〉:

ρ̇11 =

(
iΩ∗2
2

+
Ω∗3γ23→1

2ω23

)
ρ12 + γ2→1ρ22 −

(
iΩ2

2
− Ω3γ23→1

2ω23

)
ρ∗12, (5.2a)

ρ̇12 =
iΩ2

2
ρ11 −

iΩ2

2
ρ22 −

[
γ2

2
+ i

(
∆2 +

|Ω3|2
4ω23

)]
ρ12, (5.2b)

ρ̇22 =
iΩ2

2
ρ∗12 −

iΩ∗2
2
ρ12 − γ2ρ22. (5.2c)

Here ω23 is the �ne-structure splitting between |2〉 and |3〉 of Fig. 5.15.1, while ∆2=2π∆f

is the detuning of the laser from the |1〉→ |2〉 transition frequency. The radiative

decay terms involve the quantities γ2=γ, γ2→1=γ/2, and γ23→1=γ/2, where γ=1/τ

and τ=98 ns is the lifetime of the 2 3PJ states. The γ23 terms in Eqs. (2.112.11) vanish

since γ23=γ23→0+γ23→1=0.

Invoking once again the rotating-wave approximation, the Rabi frequencies Ω2

and Ω3 associated with the driven transitions between the metastable state |1〉 and

the two excited states |2〉 and |3〉 can be written as:

Ωi(t) = Ω
(+)
i + sΩ

(−)
i , (5.3a)

Ω
(+)
i = ei∆ωDt

eE0

~
〈1|z|i〉, (5.3b)

Ω
(−)
i = e−i(∆ωDt+∆φ) eE0

~
〈1|z|i〉. (5.3c)

The (+) and (−) superscripts refer to the forward and backward beams, and,

as in Eq. (5.15.1), the value of s indicates whether the counter-propagating beam is
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switched on or o�.

5.3 Absorption Lineshapes

The net absorption from the laser �eld during the atom-laser interaction time T

can be calculated by integrating the atom-�eld driving terms in the excited-state

population rates ρ̇22 and ρ̇33 of Eqs. (2.32.3) (b),(c), which describe the full four-level

system:

αs =
i

2

∫ T

0

(
Ω

(+)
2 ρ21 − Ω

∗(+)
2 ρ12 + Ω

(+)
3 ρ31 − Ω

∗(+)
3 ρ13

)
dt (5.4)

Note that only partial Rabi-frequencies, Ω
(+)
2 and Ω

(+)
3 (c.f. Eq. (5.35.3)(b)), appear

in the above expression, i.e., only the coupling to the forward laser beam is used.

The absorption still depends on the parameter s, as indicated by the subscript,

since the density-matrix elements ρ12 and ρ13 can be calculated either using a single

forward laser beam (s = 0) or with a re�ected backward beam included (s = 1).

The same procedure used to derive Eqs. (5.25.2) can be applied to Eq. (5.45.4), in

order to obtain a reduced expression for the absorption rate compatible with the

reduced Eqs. (5.25.2), as follows:

1. De�ne the usual ordering parameter η ∼ Ωi
ω23
, γi
ω23
� 1, i.e., the ratio of the

two frequency scales in the system, where the �ne-structure splitting frequency

ω23 � Ωi, γi,∆i (the Rabi frequencies, decay rates and laser detuning) and start
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with expressions from the full four-level Eqs (2.32.3), dropping terms of O(η2):

α̇ =
i

2
Ω2ρ21 −

i

2
Ω∗2ρ12 +

i

2
Ω3ρ31 −

i

2
Ω∗3ρ13, (5.5a)

ρ̇13 =
(
−i∆3 −

γ3

2

)
ρ13 +

i

2
Ω3ρ11 −

i

2
Ω2ρ23 −

i

2
Ω3ρ33, (5.5b)

ρ̇31 =
(
i∆3 −

γ3

2

)
ρ31 −

i

2
Ω∗3ρ11 +

i

2
Ω∗2ρ32 +

i

2
Ω∗3ρ33, (5.5c)

where ∆3 = ∆2 + ω23.

2. Form a linear combination of Eqs. (5.55.5) to eliminate ρ13 and ρ31 from the

absorption equation: (a) + (b)

[
i
2
Ω∗3

1

(−i∆3− 1
2
γ3)

]
+ (c)

[
− i

2
Ω3

1

(i∆3− 1
2
γ3)

]
.

3. This linear combination leads to a left-hand side of

LHS = α̇ +
i

2

Ω∗3(
−i∆3 − 1

2
γ3

) ρ̇13 −
i

2

Ω3(
i∆3 − 1

2
γ3

) ρ̇31

= α̇ +O(η2),
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and a right-hand side of

RHS =
i

2
Ω2ρ21 −

i

2
Ω∗2ρ12 +

i

2
Ω3ρ31 −

i

2
Ω∗3ρ13

+
i

2
Ω∗3

(
−i∆3 − 1

2
γ3

)(
−i∆3 − 1

2
γ3

)ρ13 +
i
2
Ω3

i
2
Ω∗3(

−i∆3 − 1
2
γ3

)ρ11 −
i
2
Ω3

i
2
Ω∗2(

−i∆3 − 1
2
γ3

)ρ23 −
i
2
Ω3

i
2
Ω∗3(

−i∆3 − 1
2
γ3

)ρ33

− i

2
Ω3

(
i∆3 − 1

2
γ3

)(
i∆3 − 1

2
γ3

)ρ31 +
i
2
Ω∗3

i
2
Ω3(

i∆3 − 1
2
γ3

)ρ11 −
i
2
Ω∗3

i
2
Ω2(

i∆3 − 1
2
γ3

)ρ32 −
i
2
Ω∗3

i
2
Ω3(

i∆3 − 1
2
γ3

)ρ33

=
i

2
Ω2ρ21 −

i

2
Ω∗2ρ12 −

1

4

|Ω3|2(
−i∆3 − 1

2
γ3

)ρ11 −
1

4

|Ω3|2(
i∆3 − 1

2
γ3

)ρ11 +O(η2)

=
i

2
Ω2ρ21 −

i

2
Ω∗2ρ12 −

1

4
|Ω3|2

i∆3 − γ3
2
− i∆3 − γ3

2

(−i∆3 − γ3
2

)(i∆3 − γ3
2

)
ρ11

=
i

2
Ω2ρ21 −

i

2
Ω∗2ρ12 +

1

4
|Ω3|2

γ3

(∆2
3 − γ23

4
)
ρ11

=
i

2
Ω2ρ21 −

i

2
Ω∗2ρ12 +O(η2)

The reduced expression for the absorption therefore does not contain any �rst-

order corrections, and is simply that naively obtained from Eqs. (5.25.2):

αs =
i

2

∫ T

0

(
Ω

(+)
2 ρ∗12−Ω

∗(+)
2 ρ12

)
dt. (5.6)

This integral, when combined with ρ12 obtained by integrating Eqs. (5.25.2), is com-

plete to order η. Numerical integration of Eqs. (5.25.2) and (5.65.6) must be done twice:

with s=0 (a single forward beam) and with s=1 (including the counter-propagating

beam).

The total absorption α0 and α1 is computed over a range of frequencies near res-

onance to obtain saturated-absorption line shapes. Such line shapes are calculated

for a large set of Doppler groups (∆ωD of Eq. (5.15.1)), as well as relative phases in the
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two-beam case (∆φ of Eq. (5.15.1)). Absorption pro�les α0 and α1 are then obtained

by averaging over these parameters, and the di�erence ∆α = α0 − α1 is taken as

the saturated-absorption signal, from which width and line center parameters are

derived. An example of this is shown in Fig. 5.25.2.
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Figure 5.2: Phase- and Doppler-averaged saturated-absorption line shape of the
2 3S1-to-2

3P1 resonance, for a laser intensity of I=0.1 mW/cm2 and interaction time
of T=1 µs. Single-beam (s = 0) and two-beam (s = 1) absorption pro�les are
shown at the top (a), with the di�erence in absorption at the bottom (b). The
points de�ning the FWHM of the line shape (in this case 2.8 MHz) are indicated.

While the thermal atomic cloud used in the experiment has a Gaussian velocity

distribution with a Doppler-width on the order of 1000 MHz, the calculation of

the saturated-absorption line shapes only averages over a narrow range of Doppler
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groups (|∆ωD|≤ 2π 80 MHz) since it can be shown that the other Doppler groups

make no signi�cant contribution. A uniform velocity distribution is used since the

cloud's broad velocity pro�le is almost constant over this range of Doppler groups.

The half-maximum points (see Fig. 5.25.2) are then used to determine the shift.
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Figure 5.3: Shifts in the 2 3S1-to-2
3P1 resonance as a function of included Doppler

groups. The line shapes are calculated using uniformly-distributed Doppler groups
ranging from −|∆fD| to |∆fD|. Results are shown for a laser intensity of 0.1
mW/cm2, with four choices of atom-laser interaction time T .

The simpli�cation of only including a limited range of Doppler groups can be

justi�ed by referring to Fig. 5.35.3. The value of the shift is seen to depend on the

number of Doppler groups that are included in the calculation, but has already

converged (to a 10 Hz level of precision) when all Doppler groups with |∆fD|< 20

MHz are included. The rapid convergence illustrates how the signal is dominated

by atoms that are nearly at rest, a tiny, essentially �at region of the velocity distri-
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bution. A similar convergence of the resonance line widths is seen in Fig. 5.45.4, and

the |∆fD| < 80 MHz range is su�cient to cover even the largest widths encountered

in the calculations.
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Figure 5.4: Widths of the 2 3S1-to-2
3P1 resonance as a function of included Doppler

groups. The line shapes are calculated using uniformly-distributed Doppler groups
ranging from −|∆fD| to |∆fD|. Results are shown for a laser intensity of 0.1
mW/cm2, with four choices of atom-laser interaction time T .

The preceding treatment involved the 2 3S1,mJ=1-to-2 3P1,mJ=1 transition, but

identical shifts are obtained when considering the mJ=-1 transition.

A similar analysis can be carried out for a laser nearly resonant with the 2 3S1-

to-2 3P2 transition instead. As discussed earlier, this scenario is still amenable to

the four-level model, since the large magnetic �eld in the experiment [1515] separates

the mJ levels su�ciently to suppress the transition out of the |0〉 state in Fig. 5.15.1

once the atom has decayed to that level.
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Every part of the calculation is the same, except for a sign di�erence due to

the fact that the on-resonance process is now at a lower frequency than the o�-

resonant 2 3S1-to-2
3P1 transition, i.e., ω32 = −ω23. This alternate case results in

shifts in the resonance of equal magnitude but opposite sign. Since the 2 3P1�2 3P2

�ne-structure interval is determined by subtracting the observed line centers for the

2 3S1-to-2
3P1 and 2 3S1-to-2

3P2 resonances, the net shift in the interval is thus twice

the individual shift for 2 3S1-to-2
3P1.

5.4 Interference Shifts

Saturated-absorption line shapes are calculated for a wide range of atom-laser inter-

action times T and for a number of laser intensities I, including the value of I=0.1

mW/cm2 used in the measurements of Ref. [1515]. Figure 5.55.5 shows the FWHM of

the 2 3S1-to-2
3P1 resonance (solid lines) as a function of laser intensity I and inter-

action time T (top axis). The feature is broadened both at short interaction times

(T�2πτ) and above saturation (Ω2T�1), but can approach the natural width

(dashed line) for su�ciently-long T and low enough I.
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Figure 5.5: Widths of the calculated saturated-absorption line shapes (solid lines)
for the 2 3S1-to-2

3P1 resonance, over a range of interaction times T , and for various
laser intensities I. The data points are experimental widths from [4848], which are
used to calibrate the pressure scale (bottom axis) with the time scale (top axis).
The natural width of the resonance is shown as a dashed line.

The experiment of Ref. [1515] varied the gas pressure in the cell and extrapo-

lated the measured �ne-structure intervals down to zero pressure, to correct for

the systematic e�ect of velocity-changing collisions, and other pressure-dependent

e�ects.

These collisions, between n=2 helium atoms in the discharge and the much

larger number of ground-state atoms in the cell, determine the interaction time T .

The rate of the collisions limits the average amount of time an atom in a particular

Doppler group interacts with the laser and contributes to the saturated-absorption
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signal, before moving to a di�erent velocity class, or being removed from the region

of laser interaction altogether.

To connect the model calculations with experiment [1515], a correspondence can

be made between the atom-laser interaction time T and the reciprocal of the pres-

sure in the cell, T ∝ 1/P , as higher gas pressures result in larger collision rates and

shorter interaction times. The constant of proportionality is found by matching the

calculated line widths-vs.-time to measured [4848] widths-vs.-pressure (the points in

Fig. 5.55.5) at a laser intensity of I=0.1 mW/cm2. This calibrates the time-pressure

scale and allows extrapolation of calculated shifts to zero pressure. The correspond-

ing shifts in the �ne-structure interval are shown in Fig. 5.65.6 using thin solid curves,

with interaction time T also calibrated to the experimental widths.
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Figure 5.6: Total shifts (solid thin lines) in the 2 3P1�2 3P2 interval over a range
of interaction times T (which correspond to helium cell pressures P ) and laser
intensities I. The thin dashed lines give the e�ect when only the AC-Stark shift
term is included. The thick lines show least-squares �ts of the shifts over the
pressure range of 18 to 38 mTorr, extrapolated to zero pressure. The circle indicates
the intensity and pressure at which the most signi�cant data in [1515] were taken.

5.5 Correction to the 23P1�23P2 Interval

For the measurement in [1515], the most precise data were taken at helium cell pres-

sures between 18 and 38 mTorr, and were then extrapolated to zero pressure. In

Fig. 5.55.5 this range of pressures yields the smallest line widths at the nominal inten-

sity of I=0.1 mW/cm2, minimizing the interference with the neighboring resonance

that would result from the larger widths at lower pressures (larger T ).
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In this pressure range, the corresponding interference shifts in Fig. 5.65.6 (thin

solid lines) have a linear dependence on P , avoiding the larger shifts that grow

nonlinearly at lower pressures. The thick gray lines in Fig. 5.65.6 show extrapolations

of the calculated shifts from linear �ts to this range.

AC-Stark-only shifts (thin dashed lines in Fig. 5.65.6) are also computed, by arti�-

cially suppressing the Ω3γ23→1

2ω23
interference term in Eqs. (5.25.2). These curves represent

the e�ect of the |Ω3|2
4ω23

term alone, and the shifts vanish when extrapolated to zero

pressure, and as the laser intensity approaches zero, as indicated by the dotted gray

lines.

In contrast, extrapolation to P=0 of the full interference shifts leads to residual

values, even in the limit of zero laser intensity I. Thus, a repetition of experiments

down to lower pressures and laser intensities will not eliminate the interference shift.

As shown by the thick dashed line on the lowest-intensity curve, the interference

shift in the limit of zero pressure and intensity is −1.2 kHz, which exceeds the

0.51-kHz uncertainty of the saturated-absorption measurement of this interval, and

thus a correction of +1.2 kHz to the measured value from [1515] must be applied.

The net −1.2 kHz shift can be broken up into three parts. The shift at 18

mTorr and 0.1 mW/cm2 is −1.6 kHz (this is the pressure and intensity at which

the most precise data were taken in [1515], as indicated by the circle in Fig. 5.65.6).

The extrapolation to zero pressure (the thick solid line) causes an additional shift

of −0.6 kHz. Finally, an extrapolation of the P=0 intercepts of Fig. 5.65.6 to zero

85



intensity causes an additional shift of +1.0 kHz.

The extrapolations of the calculated shifts to P=0 and I=0 are subject to some

uncertainty. For example, an atom in a helium cell at a pressure P would experience

a range of times T between velocity-changing collisions (ranging from approximately

50% to 150% of the average T ), and therefore the correspondence between T and P

assumed in Fig. 5.65.6 is only approximate. Furthermore, the current model does not

explicitly include magnetic �elds, and the degree to which state |0〉 of Fig. 5.15.1 is a

dark state might depend on magnetic �eld, on laser intensity, and on the pressure

in the cell. Because of these unknowns, a 50% uncertainty is assumed for each

component of the shift, to arrive at an estimate of the total shift of (−1.6 ± 0.8

kHz) + (−0.6±0.3 kHz) + (+1.0±0.5 kHz) = −1.2±1.0 kHz for this measurement.
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6 Microwave Spectroscopy

The discussion of precision helium �ne-structure measurements has so far examined

methods based on laser spectroscopy, where helium atoms are initially in the 23S

metastable states. By driving 1083-nm transitions from these states to the excited

23PJ=0,1,2 levels, the �ne-structure splittings were determined from the di�erence

between the resonance line centers of any pair of these transitions.

A more direct measurement of the �ne-structure intervals can be made by us-

ing a microwave �eld to drive magnetic-dipole transitions between the 23P states

themselves. Experiments performed with single microwave pulses have obtained

values of 2,291,174.0 ± 1.4 kHz for the 23P1�23P2 interval [1212] and 29,616,950.9

± 0.9 kHz for the 23P0�23P1 interval [1313], respectively.

A subsequent experiment [1616] using the Ramsey method of separated oscillatory-

�elds obtained a more precise measurement of the 23P1�23P2 interval, with a value

of 2,291,177.53 ± 0.35 kHz.

Calculations of the interference e�ect associated with these types of measure-

ments result in shifts that are much smaller than the experimental uncertainty [4242],
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which underscores the technique's robustness against this systematic e�ect. How-

ever, the interference e�ects will be of importance for the next generation of higher-

precision microwave measurements.

6.1 Measurement Technique

Using the experimental technique of [1010, 1212, 1313, 1616] one prepares a beam of thermal

He atoms using a series of optical pumping lasers, so that the 23P1,mJ =0 excited

state is populated while the 23S1,mJ = 0 metastable state is vacant. An atom

in 23P1,mJ = 0 is forbidden by electric-dipole selection rules from decaying to

23S1,mJ = 0, so this latter state can only accumulate population if an applied

microwave �eld drives transitions to either the 23P0,mJ =0, or one of the 23P2,mJ =

0,±1 states, which can subsequently decay down to 23S1,mJ = 0.

The relevant triplet states are illustrated in Fig. 6.16.1, where a linearly-polarized

microwave �eld that is nearly resonant with the |1〉 → |2〉 transition drives popula-

tion out of 2 3P1,mJ =0 (|1〉) to the 2 3P2,mJ = 0 state (|2〉), as shown by the solid

arrow. To maximize the signal, the �eld is applied before any signi�cant portion

of the initial population in |1〉 has had a chance to decay back to the metastable

states.

The �eld also drives the far-o�-resonance |1〉 → |0〉 transition, transferring a

small amount of population to 2 3P0,mJ = 0 (|0〉), indicated by the dotted arrow.
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Atoms in either state |1〉 or |0〉 then spontaneously decay to the metastable states

2 3S1,mJ =−1, 0,+1 (denoted in Fig. 6.16.1 by |a〉, |b〉, and |c〉 respectively).
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Figure 6.1: A direct microwave measurement of the He �ne-structure intervals.
The population starts in the |1〉 state, and an applied microwave �eld either drives
the |1〉 → |2〉 transition (solid arrow) or the |1〉 → |0〉 transition (dashed arrow).
The allowed radiative decay paths from states |1〉, |2〉 and |0〉 are indicated.

The atoms in |b〉 are then laser-excited back to |0〉, and the resulting �uorescence

from radiative decay is measured to obtain the signal, which is directly proportional

to the population of the |b〉 state after the beam has passed through the microwave

�eld.

The applied �eld can be resonant with the |1〉 → |0〉 transition instead, and then

|1〉 → |2〉 becomes the distant resonance. In either case there are two excitation-

89



and-decay processes, 27.3 GHz out of resonance from each other, that start in state

|1〉 and end up in the �nal state |b〉. Quantum-mechanical interference between

these pathways distorts the line shape of the probed resonance and manifests itself

as a shift in the measured line center.

The measurement of the 2 3P intervals can be done either with a single pulse of

microwaves, or by using the Ramsey method of separated oscillatory �elds (SOF),

in which the atoms interact with two microwave pulses separated in time. The two

pulses are either in phase with each other, or 180◦ out-of-phase, and the SOF line

shape is obtained by subtracting the out-of-phase signal from that obtained using

in-phase pulses. The SOF method is more precise, resulting in line shapes that

are narrower than the 3.2 MHz natural width of the magnetic-dipole microwave

resonances. The natural width is double that seen for the laser transitions, since

both the initial and �nal states are unstable.

6.2 Theoretical Description

The transitions |1〉 → |0〉 and |1〉 → |2〉 among the 23PJ ,mJ = 0 states are due to

the comparatively weak magnetic-dipole atom-�eld coupling, which is given in the

dipole approximation as:

U(t) = −~µ · ~B(t) = −µB/~B0g(t) cos (ωt+ φ)(L̂z + 2Ŝz), (6.1)

for a linearly-polarized �eld ~B(t) = ẑB0g(t) cos (ωt+ φ).

90



The function g(t) modulates the peak microwave �eld amplitude B0, and is equal

to g(t) = σD(t) for the single-pulse case shown in Fig. 6.26.2(a), where σD(t) is a pulse

of unit amplitude and FWHM duration D. Dual microwave pulses separated by a

time interval T , are modeled by g(t) = [σD(t) ± σD(t − T )]. The relative sign of

the terms corresponds to the in-phase vs. out-of-phase pulses shown in Fig. 6.26.2(b)

and (c), respectively.
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ts 

Figure 6.2: Timing for the microwave pulses. A single microwave pulse is depicted
in (a), while the in-phase and 180◦-out-of-phase cases for two pulses are represented
in (b) and (c). A switching time of ts=1 ns (cf. (a)) is included in the calculations.

As the applied microwave frequencies are of comparable size to the spacings

between the excited states, the rotating-wave approximation is no longer applicable

to this system, nor is it viable to use the reduction process employed in previous

chapters to simplify the density-matrix equations.

A full set of density matrix equations involving the states |1〉, |2〉, |0〉, and |b〉
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must therefore be used [4242] (see also Appendix AA):

ρ̇11 = iΩ∗12ρ12 − iΩ12ρ21 + iΩ∗10ρ10 − iΩ10ρ01

− γ1ρ11 −
γ10

2
(ρ10+ρ01)− γ12

2
(ρ12+ρ21) , (6.2a)

ρ̇12 = iΩ12 (ρ11 − ρ22)− iΩ10ρ02 −
(
γ1 + γ2

2
− iω21

)
ρ12

− γ20

2
ρ10 −

γ12

2
(ρ11 + ρ22)− γ10

2
ρ02, (6.2b)

ρ̇22 = iΩ12ρ21 − iΩ∗12ρ12 − γ2ρ22 −
γ20

2
(ρ20 + ρ02)− γ12

2
(ρ21 + ρ12) , (6.2c)

ρ̇10 = iΩ10 (ρ11 − ρ00)− iΩ12ρ20 −
(
γ1 + γ0

2
− iω01

)
ρ10

− γ20

2
ρ12 −

γ10

2
(ρ11 + ρ00)− γ12

2
ρ20, (6.2d)

ρ̇20 = iΩ10ρ21 − iΩ∗12ρ10 −
(
γ2 + γ0

2
− iω02

)
ρ20

− γ20

2
(ρ22 + ρ00)− γ12

2
ρ10 −

γ10

2
ρ21, (6.2e)

ρ̇00 = iΩ10ρ01 − iΩ∗10ρ10 − γ0ρ00 −
γ20

2
(ρ02 + ρ20)− γ10

2
(ρ01 + ρ10), (6.2f)

ρ̇bb = γ1→bρ11 + γ2→bρ22 + γ0→bρ00 + γ12→b (ρ21 + ρ12)

+ γ10→b (ρ01 + ρ10) + γ20→b(ρ02 + ρ20). (6.2g)

Here, Ωij = 〈i|U(t)|j〉/~ is the Rabi-frequency for the magnetic-dipole coupling

between states |i〉 and |j〉, and the radiative decay rates γ1 = τ−1
1 , γ2 = τ−1

2 , and

γ0 = τ−1
0 are related to the lifetimes of states |1〉, |2〉, and |0〉. These total rates

can be expressed as γi = γi→a + γi→b + γi→c in terms of the partial rates for the

radiative decays shown in Fig. 6.16.1. Similarly, the cross-damping rates are de�ned
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as γij = γij→a + γij→b + γij→c, where (in the electric dipole approximation)

γi→b =
e2|ωPS|3
3πε0~c3

〈i|~r |b〉 · 〈b|~r |i〉 (6.3a)

γij→b =
e2|ωPS|3
3πε0~c3

〈i|~r |b〉 · 〈b|~r |j〉. (6.3b)

Solving Eqs. (6.26.2) for ρ11, ρ22, ρ00, and ρbb, gives the populations of states |1〉,

|2〉, |0〉, and |b〉, which are the only ones relevant to the measurement.

Density matrix equations for the quantities ρ̇ai, ρ̇bi, ρ̇ci are not required, since

they do not appear on the right-hand side of Eqs. (6.26.2), and therefore are decoupled

from the rest of the system.

Since ωPS � ω12, ω01 (as shown in Fig. 6.16.1), γ1 = γ2 = γ0 = γ = 1/τ , where

τ = 97.9 ns. When computing the electric-dipole matrix elements, one obtains

further cancellations and simpli�cations:

γ12 = γ10 = γ20 = 0, (6.4a)

γ1→b = γ12→b = γ10→b = 0, (6.4b)

γ2→b = 2γ/3, (6.4c)

γ0→b = γ/3, (6.4d)

and

γ20→b = −
√

2γ/3 (6.4e)

The nonzero γ20→b term in Eqs. (6.26.2) represents the quantum-mechanical interfer-
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ence in the radiative decay to the �nal measured state |b〉.

Computing the ratio of the magnetic-dipole matrix-elements gives Ω10 = Ω01 =

Ω and Ω21 = Ω12 = Ω/
√

2, where

Ω(t) =

√
2

3
(µB/~)B0g(t) cos (ωt+ φ). (6.5)

Substituting the results of Eqs. (6.46.4) and (6.56.5), Eqs. (6.26.2) simplify to

ρ̇11 =
iΩ√

2
(ρ12 − ρ21) + iΩ(ρ10 − ρ01)− γρ11, (6.6a)

ρ̇12 =
iΩ√

2
(ρ11 − ρ22)− (γ − iω21)ρ12 − iΩρ02, (6.6b)

ρ̇22 =
iΩ√

2
(ρ21 − ρ12)− γρ22, (6.6c)

ρ̇10 = iΩ(ρ11 − ρ00)− iΩ√
2
ρ20 − (γ − iω01)ρ10, (6.6d)

ρ̇20 = iΩρ21 −
iΩ√

2
ρ10 − (γ − iω02)ρ20, (6.6e)

ρ̇00 = iΩ(ρ01 − ρ10)− γρ00, (6.6f)

ρ̇bb =
2γ

3
ρ22 +

γ

3
ρ00 −

√
2γ

3
(ρ02 + ρ20). (6.6g)

Note that neither Eqs. (6.26.2) nor Eqs. (6.66.6) use the rotating-wave approximation

and that Ω(t) in Eqs. (6.66.6) carries the full time dependence of the oscillating �eld.

The equations also include both the resonant and o�-resonance states.

Eqs. (6.66.6) are integrated numerically using a fourth-order Runge-Kutta method

with initial conditions of ρ11(ti) = 1 and all other entries set to zero, to determine
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the value of ρbb at t = tf of Fig. 6.26.2. This calculation follows the technique of

[1010, 1212, 1313, 1616], where the atomic population is initially in state |1〉, and the �nal

amount of population in |b〉 is a direct measure of the probability that a microwave

transition has been made. Line shapes are generated by solving the equations for

a range of applied frequencies ω = 2πf scanning around the resonance of interest,

and the shifts caused by the distant neighboring resonance are then extracted.

The numerical solver uses a time step of 30 fs to accurately integrate through

the approximately 30-GHz frequencies of the applied microwave �eld and the com-

plex phase factor of the atomic wavefunction. The results are veri�ed by using

both higher-precision arithmetic and shorter time steps, and further checked by

comparing to numerical integrations using an adaptive-step Runge-Kutta-Fehlberg

method.

The integration is started at a time ti that is 50 ns before the start of the �rst

microwave pulse and continued until time tf that is 500 ns after the end of the last

pulse (see Fig. 6.26.2). This �nal 500 ns allows almost all of the 2 3P atoms to decay

back down to the 2 3S states. As indicated in Fig. 6.26.2, the microwave pulses were

chosen to have a time constant ts for turn-on and turn-o�. The shifts obtained are

found to be essentially independent of ts for values between 1 and 10 ns, which

corresponds to experimentally realizable turn-on and turn-o� times, and ts = 1 ns

is used for all integrations presented here. For much shorter ts, the high frequencies

associated with the sudden turn on and turn o� modify the shifts by approximately
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10%.

6.3 Single Microwave Pulse Shifts

Line shapes for both |1〉 → |2〉 and |1〉 → |0〉 transitions are obtained for a given

pulse-width D and magnetic �eld amplitude B0 by numerical solution of Eqs. (6.66.6)

using the single-pulse timing envelope g(t) = σD(t). A sample line shape can be

seen in Fig. 6.36.3 for a pulse duration of D = 200 ns and magnetic �eld amplitude of

B0 = 0.2 gauss, and shows that the initially empty |b〉 state of Fig. 6.16.1 is populated

when the microwave transition is driven. The calculation is repeated with the γ20→b

interference term in Eqs. (6.26.2) arti�cially set to zero, so that only AC-Stark shifts

a�ect the resonance pro�le in this type of simulation.
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FIG. 3. (Color online) Line shapes of the |1〉 → |2〉 resonance obtained from numerical integrations for (a) a single microwave pulse with
a duration D = 200 ns, and for (b) SOF with two microwave pulses of D = 100 ns, separated by T = 500 ns. These line shapes are for a
microwave magnetic field amplitude of B0 = 0.2 gauss and show that the initially empty |b〉 state of Fig. 1 is populated when the microwave
transition is driven. The fits (solid lines) are obtained using Eqs. (4) and (5). The fits are used to determine small shifts in the resonance line
centers, as shown in Fig. 4 and Tables I and II.

before the start of the first microwave pulse and continued
until a time tf that is 500 ns after the end of the last pulse
(see Fig. 2). The 500 ns allows almost all of the 2 3P atoms
to decay back down to the 2 3S states. As indicated in Fig. 2,
the microwave pulses used have a time constant ts for turn on
and turn off. The shifts obtained are found to be essentially
independent of ts for ts between 1 and 10 ns, which corresponds
to experimentally realizable turn-on and turn-off times, and
ts = 1 ns is used for all integrations presented here. For much
shorter ts , the high frequencies associated with the sudden
turn on and turn off, modify the shifts by approximately
10%.

The numerical integrations use 30-fs time steps to ac-
curately integrate through the approximately 30-GHz fre-
quencies of the applied microwave field and the complex
phase factor of the atomic wave function. The numerical
integrations are checked by using both higher-precision arith-
metic and shorter time steps and further checked by compar-
ing to numerical integrations using a Runge-Kutta-Fehlberg
method.

Sample line shapes obtained from these integrations are
shown in Fig. 3, where the final |b〉 state population [ρbb(tf )]

is shown for an initial population in the |1〉 state [ρbb(ti) = 1].
In Fig. 3(a), a line shape is shown for a single microwave pulse
of duration D = 200 ns. Figure 3(b) shows the Ramsey SOF
line shape obtained from two microwave pulses of duration
D = 100 ns that are separated by a time T = 500 ns. This line
shape is obtained by subtracting the line shape obtained from
integrations using the 180◦-out-of-phase microwave pulses
of Fig. 2(c) from the line shape obtained using the in-phase
microwave pulses of Fig. 2(b).

IV. SHIFTS

To determine the shifts of the numerically generated line
shapes (such as those shown in Fig. 3), least-squares fits are
performed. The fit functions used for a single microwave pulse
and for SOF are (respectively)

ρbb = C

∫ ∞

t=0

[
s(tL)

	

]2

e−γ tdt, (4)

and

ρSOF
bb = C

∫ ∞

t=0
s(D)s(tL)f (tL)e−γ t cos(	T )dt, (5)
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FIG. 4. (Color online) Shifts of the |1〉 → |2〉 resonance versus microwave field strength. The shifts for (a) a single microwave pulse with
a duration D = 200 ns and for (b) SOF with two microwave pulses of D = 100 ns, separated by T = 500 ns, are obtained by fits similar to
those shown in Fig. 3. On each plot, the squares represent the full shift and the circles the shifts that would result in the absence of the γ20→b

interference term in Eq. (1). The quadratic fits shown [Eq. (6)] are used to extrapolate to zero microwave power.

012510-3

Figure 6.3: Line shape of the 2 3P1-to-2
3P2 (|1〉 → |2〉) resonance, obtained from

numerical integrations using a single microwave pulse with a duration D = 200
ns and microwave magnetic �eld amplitude B0=0.2 gauss. The �t (solid line) is
obtained using Eq. (6.96.9)

To determine the shifts of the numerically-generated pro�les, least-squares �ts

are made to an ideal line shape for a two-level atom interacting with a microwave

�eld. This line shape can be obtained by evolving the atom's wavefunction (in

the rotating-wave approximation) as it interacts with a square microwave pulse

of duration D, to calculate the population in the �nal metastable |b〉 state. The

expression is given by:

ρbb(∆) = γi→b

∫ D

t=0

Pi(t)e
−γtdt+ γi→bPi(D)

∫ ∞
t=D

e−γtdt, (6.7)
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with

Pi(t) =
Ω2
i sin2(

√
Ω2
i + ∆2t/2)

Ω2
i + ∆2

(6.8)

being the probability of the atom being in the 23P2 or 23P0 state at time t (i = 2, 0,

respectively). Here ∆ = (ω − ω0) is the detuning of the applied �eld from the

resonant frequency, and γi→b is the rate of decay from state |2〉 (or |0〉) to state

|b〉. Ω2 =
√

1
3
(µB/~)B0 and Ω0 =

√
2
3
(µB/~)B0 are the Rabi frequencies for the

coupling of the |2〉, |0〉 excited states to the initial state |1〉.

The �rst term in Eq. (6.76.7) integrates over the period when the microwave pulse

is on, and the population Pi(t) in the |2〉 (or |0〉) state is undergoing Rabi oscillation

between that state and the initial state |1〉, while simultaneously decaying to the

|b〉 metastable state. The second term models the time after the atom has passed

through the microwave �eld and evolves in a �eld-free manner, where the population

Pi(D) left in the |2〉 (or |0〉) state at time D simply decays to |b〉. During both

intervals, population in |b〉 is accumulating at the partial rate γ2→b (or γ0→b).

The �t function applied to the generated line shape is then taken to be

ρ̃bb(∆;C,∆0) = Cγi→bΩ
2
i

ΩR − e−γD [ΩR cos(ΩRD) + γ sin(ΩRD)]

2γΩR (γ2 + Ω2
R)

, (6.9)

where the integrals in Eq. (6.76.7) have been evaluated, and Ω2
R ≡ Ω2

i +(∆−∆0)2. The

C and ∆0 �t parameters are allowed to vary, with the latter's value representing

the shift in the resonance line center.

As an alternative, the shifts may be determined based on the positions and slopes
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at the half maximum points in Fig. 6.36.3. This approach leads to nearly identical

values as those obtained by the �tting procedure, with very small di�erences due

to the minute distortion in the line shape caused by the γ20→b interference term,

which is not captured by the symmetric form of Eq. (6.96.9).
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Figure 6.4: Shifts of the 2 3P1-to-2
3P2 resonance versus magnetic �eld amplitude,

for a single microwave pulse with a duration D = 200 ns.The squares represent the
full shifts, while circles are the AC-Stark shifts, which are obtained by arti�cially
suppressing the γ20→b interference term in Eq. (6.26.2).

Shifts obtained by the �ts are shown in Fig. 6.46.4 for a range of magnetic �eld

amplitudes. The circles in the �gure show the shifts that result when the γ20→b

interference term in Eqs. (6.26.2) is excluded. These shifts scale as the square of the

microwave �eld strength due to the expected AC-Stark power shifts, and extrapolate

to zero for zero �eld intensity. The square symbols in the plots represent the full
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Table 6.1: Frequency shifts extrapolated to zero microwave intensity using
Eq. (6.106.10), for helium 2 3P1-to-2

3P0 (|1〉→|0〉) and 2 3P1-to-2
3P2 (|1〉→|2〉) single-

microwave-pulse transitions.
D (ns) Sh(0) (Hz)

|1〉 → |0〉 |1〉 → |2〉
50 -429 -429
100 -224 -224
200 -129 -129
400 -87 -88
800 -82 -82

shift, and these values do not extrapolate to zero, but rather have the quadratic

form

Sh = Sh(0) + kB2
0 , (6.10)

where B0 is the amplitude of the applied microwave �eld, k is the AC-Stark shift

rate, and Sh(0) is the residual shift at zero intensity. These shifts Sh(0) are listed in

Table 6.16.1 and are almost identical for the 2 3P1-to-2
3P0 and 2 3P1-to-2

3P2 intervals.

Their magnitude is approximately inversely proportional to the pulse duration D.

6.4 Microwave SOF Shifts

Resonance pro�les are also generated for Ramsey SOF measurements, which are

obtained by solution of Eqs. (6.66.6) using the dual-pulse envelopes g(t) = [σD(t) ±

σD(t − T )], for selected pulse width D and time separation T . The calculation is

more involved, as both in-phase and out-of-phase cases must be computed, with the

di�erence between the line shapes forming the SOF signal. An example is shown in
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Fig. 6.56.5 for pulses of duration D = 100 ns, separated by T = 500 ns. The microwave

magnetic �eld amplitude is B0=0.2 gauss, and the graph again demonstrates that

the initially empty |b〉 state of Fig. 6.16.1 is populated when the microwave transition

is driven.
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Figure 6.5: SOF line shape of the 2 3P1-to-2
3P2 resonance obtained from numerical

integration with two microwave pulses of D = 100 ns, separated by T = 500 ns.
The microwave magnetic �eld amplitude is B0=0.2 gauss. The �t (solid line) is
obtained using Eq. (6.126.12).

The sub-natural line width resolution of the microwave resonance can be seen in

Fig. 6.56.5, where the internal structure has zero-crossings spaced apart by about 1.5

MHz, while the natural width is 3.2 MHz. While the oscillatory SOF lineshape is

more complicated than in the single-pulse case, the shift is determined by a similar

process of �tting to an ideal two-level resonance pro�le. The atomic wavefunction
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is again evolved in time, but in this case there is interaction with two successive

microwave �elds. The population in the �nal |b〉 state after the atom has interacted

with both pulses is obtained by summing the decay probability in all four intervals:

during the �rst pulse, in-between pulses, during the second pulse, and after both

pulses have subsided:

ρSOFbb (∆, δ) = γi→b

∫ D

t=0

Pi(t)e
−γtdt

+ γi→bPi(D)

∫ D+t0

t=D

e−γtdt

+ γi→b

∫ 2D+t0

t=D+t0

P SOF
i (D, t0, t− (D + t0), δ)e−γtdt

+ γi→bP
SOF
i (D, t0, D, δ)

∫ ∞
t=2D+t0

e−γtdt

≡ I1(∆) + I2(∆) + I3(∆, δ) + I4(∆, δ). (6.11)

Here ∆ = (ω − ω0), γi→b and Pi(t) are de�ned as in the single-pulse case. The

�rst two terms I1 and I2 in Eq. (6.116.11) evolve the atom's state through the �rst

pulse, of duration D, and a subsequent �eld-free period t0.

The third and fourth integrals I3(δ) and I4(δ) represent the atom's interaction

with the second microwave pulse, and the �nal period of �eld-free evolution after-

ward. They involve the quantity P SOF
i (t1, t0, t2, δ) which is the probability of the

atom being in the state |2〉 (|0〉) at time t2 from the start of the second pulse, after

interaction with a �rst pulse of duration t1 followed by a �eld-free period t0. The
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parameter δ is the phase-di�erence between the two pulses.

The �t function used for the calculated SOF line shape is the di�erence signal

ρ̃SOFbb (∆;C,∆0) = C[I3(∆−∆0, 0) + I4(∆−∆0, 0)

− I3(∆−∆0, π)− I4(∆−∆0, π)], (6.12)

with I1 and I2 from Eq. (6.116.11) having cancelled since they do not depend on the

phase di�erence δ. As before, the parameters C and ∆0 are varied, and a pure shift

∆0 in the line shape is extracted.

Similar to the single-pulse case, shifts can also be determined from the zero-

crossing points in Fig. 6.56.5, but this yields nearly identical values, with the small

distortions in the line shape ignored by the symmetric �t function.
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Figure 6.6: SOF shifts of the 2 3P1-to-2
3P2 resonance versus magnetic �eld am-

plitude, for two microwave pulses of D = 100 ns, separated by T = 500 ns. Shifts
are obtained by �ts similar to those shown in Fig. 6.56.5. The squares represent the
full shift, while circles show the shifts that would result in the absence of the γ20→b
interference term in Eq. (6.26.2).

SOF shifts obtained by the �ts of Eq. (6.126.12) are plotted in Fig. 6.66.6 for a range

of magnetic �eld amplitudes. Again, the pure AC-Stark shifts (circles), obtained

by setting γ20→b in Eqs. (6.26.2) to zero, scale as the square of the microwave �eld

strength, and extrapolate to zero for zero �eld intensity. The full shifts (square

symbols) have the quadratic form of Eq. (6.106.10) with a residual shift Sh(0) at zero

intensity. These shifts, listed in Table 6.26.2, are almost identical for the 2 3P1-to-

2 3P0 and 2 3P1-to-2
3P2 intervals. Their magnitudes are much smaller than those

in the single-pulse analysis however, and approximately inversely proportional to
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Table 6.2: Frequency shifts extrapolated to zero microwave intensity using
Eq. (6.106.10), for helium 2 3P1-to-2

3P0 (|1〉→ |0〉) and 2 3P1-to-2
3P2 (|1〉→ |2〉) SOF

transitions.
D (ns) T (ns) Sh

(0)
SOF (Hz)

|1〉→|0〉 |1〉→|2〉
50 200 -41 -41
50 300 -27 -27
50 400 -20 -20
50 500 -16 -16
50 600 -14 -14
50 800 -10 -10
100 300 -27 -28
100 400 -20 -21
100 500 -16 -17
100 600 -14 -14
100 800 -10 -10
150 400 -21 -22
150 500 -16 -17
150 600 -14 -14
150 800 -10 -11

the pulse separation T .

Although the shifts shown in Tables 6.16.1 and 6.26.2 are small, microwave measure-

ments of the intervals are now approaching an accuracy where the shifts will need to

be considered. The most accurate single-pulse microwave measurements of [1313] and

[1212] have a pulse duration D determined by the travel time through the microwave

region, typically 950 and 1700 ns for the two measurements, respectively. From

Table 6.16.1 is can be seen that the interference corrections are less than 10% of the

900 and 1400 Hz measurement uncertainties. The most accurate SOF measurement

[1616] of the helium 2 3P �ne structure uses D=50, 100 and 150 ns and T=300, 400,

500 and 600 ns for the pulse parameters. From Table 6.26.2, it is evident that the
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corrections that need to be applied are again less than 10% of the 350 Hz measure-

ment uncertainty. The corrections shown in the |1〉 → |0〉 columns of Tables 6.16.1

and 6.26.2 indicate shifts of 0.5 to 15 ppb of the 29.6 GHz interval and these will be

important in the anticipated next generation of microwave measurements that aim

towards a ppb determination of α from helium 2 3P �ne structure.
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7 Conclusion

In the preceding chapters an analysis of quantum interference e�ects on measure-

ments of the helium 23P �ne-structure intervals performed with a variety of ex-

perimental techniques was presented. Corrections to speci�c measured values were

derived where feasible, or else the scale of the interference shifts was calculated. A

summary of the interference shifts for the di�erent measurements that were con-

sidered is displayed in Fig. 7.17.1. The original experimental data are shown using

solid error bars, along with the theoretically-calculated value of each interval. The

dashed error bars indicate the revised values and their estimated uncertainties.
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Figure 7.1: Corrected measurements for the 23P �ne-structure intervals in helium.
Filled symbols denote direct measurements, while open symbols represent inferred
values based on measurements of the other two intervals. The points labeled Theory
show the calculations of Pachucki and Yerokhin [88] adjusted for the CODATA
2014 [1919] value of α.

Fig. 7.17.1(a) shows the results for the 23P1�23P2 �ne-structure interval. This

interval is susceptible to interference e�ects in laser spectroscopy, since the interfer-

ing resonances (the J=1 and J=2 levels) used to determine this interval are, at 2.3

GHz, relatively close to one another. Their correspondingly large individual shifts

108



then additively combine to reduce the measured value of the level splitting. Similar

positive corrections are thus applied to each of the three laser measurements of

this interval, namely 1.2 ± 0.1 kHz for the Shiner-group value, 1.2 ± 1.0 kHz for

the Gabrielse-group data point, and 1.2 ± 0.16 kHz for the value obtained by Hu

et. al. The lone microwave measurement by Hessels et. al. used the extremely

accurate SOF technique, and receives a correction of only 0.02 ± 0.01 kHz, which

is well within the original value's uncertainty of 0.35 kHz. After correction, all of

the values for the interval are seen to be more consistent with each other and with

the value predicted by theory.

The measurements of the 23P0�23P1 interval are shown in Fig. 7.17.1(b). A speci�c

correction was not calculated for the saturated-absorption experiment of Gabrielse

et. al., due to the complications with light-pressure e�ects in the measurement of

this interval. However, an estimated additional uncertainty of ±3 kHz is given due

to the interference e�ect, shown using the expanded dotted error bars. It is also

not possible, as explained in Chap. 44, to state a correction for the Inguscio group

saturated-�uorescence value for this interval, since the experimental parameters are

not known in su�cient detail. Nevertheless, an additional measurement uncertainty

of ±10 kHz is proposed, due to incomplete cancellation of the opposing interference

shifts, possibly as large as ±50 kHz, that can arise for the di�erent polarizations of

measured �uorescence in such an experiment. The open data point for the Shiner

group experiment indicates that its value was inferred from actual measurements of
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the other two intervals, and hence its correction of −1.2±0.1 is due primarily to the

interference e�ect on the 23P1�23P2 interval. The shifted data point is now closer

to the other measurements, and more in line with the theoretical value. Finally,

the very accurate Hessels group microwave measurement (±0.9 kHz) is once again

corrected by only a small 0.08± 0.02 kHz shift.

Lastly, Fig. 7.17.1(c) shows the experimental values obtained for the 23P0�23P2

interval. The Gabrielse group value receives the same increase in its uncertainty as

in Fig. 7.17.1(b), since the measurement of this interval is similarly a�ected by light-

pressure e�ects. The direct laser measurement of the Shiner et. al for this interval

was not explicitly modeled in Chap. 33, so it is only given an additional estimated

uncertainty of ±0.1 kHz. The microwave value (Hessels group) for the interval is

derived from measurements of the other two, and so obtains a combined correction

of 0.1± 0.03 kHz, which moves it only slightly closer to the theoretical value.

In general, while the scale of the shift depends on the particular experimen-

tal method, the quantum interference e�ect is seen to be important for precision

�ne-structure spectroscopy, despite the large separation of the resonances (the two

closest resonances, the J=1 and J=2 levels, are 1400 natural line widths apart).

The microwave SOF experiment, however, is particularly robust against the inter-

ference e�ect, due to the sub-natural SOF resolution and the relatively-large 27

GHz separation between the measured microwave resonance and the nearest o�-

resonant transition. It is evident from this work that interference e�ects should
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be examined carefully in any precision measurement for which the experimental

uncertainty is of comparable magnitude to that of the interference shift, given by

the rule of thumb as the width of the observed resonance squared, divided by the

frequency separation to the nearest neighboring resonance.

While correction for quantum interference e�ects brings precision �ne-structure

measurements into greater agreement with each other (at the kilohertz level), both

experimental values and theoretical calculations will need to improve in accuracy

by an order of magnitude in order to achieve a competitive determination of the

�ne-structure constant from helium spectroscopy.

Since parts of the current work were published, a number of groups have in-

corporated the quantum-interference phenomenon in a variety of experimental and

theoretical analyses. Feng, et. al. applied interference corrections to their laser

measurement [1818] of the helium �ne-structure, as mentioned in Chap. 33. Quantum

interference was also considered in precision hydrogen spectroscopy for determina-

tion of the Rydberg constant and the proton RMS charge radius [3737]. A theoretical

study of quantum interference in laser spectroscopy of muonic hydrogen, deuterium,

and helium-3 was conducted [4949], also of importance to the proton charge radius

program. The interference e�ect was also shown [4545] to be signi�cant in precision

measurements of the 6,7Li D2 lines, and subsequent determination of relative nu-

clear isotope charge radii. Quantum interference in two-photon frequency-comb

spectroscopy was also studied [5050]. Finally, Truong, et. al. produced a detailed
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analysis in which quantum interference was shown to vanish for precision measure-

ments of the 6P1/2 hyper�ne splitting in Cs [5151], which are used to determine the

Boltzmann constant to high accuracy.
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A Master Equations

The quantum state of an atom interacting with an external �eld can be represented

by the density operator

ρ =
∑
i

Pi|Ψi〉〈Ψi|, (A.1)

where in general ρ represents an incoherent superposition (mixture) of states {|Ψi〉}

with Pi the probability of being in state |Ψi〉. The density operator can thus model

an ensemble of identical atoms in possibly di�erent states. The density-matrix

equations describing the evolution of the atom's state may be then obtained from

a Liouville-vonNeumann (or master) equation [5252] for the density operator, of the

form

ρ̇ = − i
~

[HA +HAF , ρ] +D[G]ρ. (A.2)

Here [A,B] denotes the commutator of A and B, andD[c]ρ ≡ cρc†−1
2

(
c†cρ+ ρc†c

)
is the Lindblad superoperator. In Eq. (A.2A.2), HA is the atomic free-evolution Hamil-

tonian, whileHAF is the atom-�eld interaction, which generates driving terms in the

density-matrix equations that model absorption and stimulated-emission processes.
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The operator G is a suitably-chosen damping operator, and represents relaxation

processes in the atom. These processes include both radiative decay, which changes

atomic populations, and elastic atom-atom collisions, which only alter the phases

of coherent superpositions. This part of the master equation leads to decay terms

in the density-matrix equations, including terms that incorporate quantum inter-

ference.

A.1 The Two-level Atom

It is instructive to �rst consider the simplest case, a two-level atom interacting with

an applied �eld. The ground and excited states are denoted |1〉 and |2〉 respectively,

with the energy of the ground state chosen as zero, so that E2 = ~ω0, where ω0

is the transition frequency between the states. The free-atom Hamiltonian is then

simply written as HA = ~ω0|2〉〈2|.

An applied electric �eld ~E (e.g. the �eld of a laser), of frequency ω, amplitude

E0, and unit polarization-vector ε̂ induces electric-dipole transitions between the

states |1〉 and |2〉, which are necessarily of opposite parity. The �eld consists of

positive and negative frequency components

~E =
E0

2

(
ε̂eiωt + ε̂∗e−iωt

)
= ~E0

(+)
e−iωt + ~E0

(−)
eiωt, (A.3)
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while the dipole operator can be represented as

~d = 〈1|~d|2〉|1〉〈2|+ 〈2|~d|1〉|2〉〈1| = 〈1|~d|2〉σ + 〈2|~d|1〉σ†, (A.4)

where σ = |1〉〈2| and σ† = |2〉〈1| are atomic lowering and raising operators. The

atom-�eld interaction energy in the dipole approximation is thus

HAF = −~d · ~E

= −〈1|~d|2〉 · ~E0

(+)
e−iωtσ − 〈1|~d|2〉 · ~E0

(−)
eiωtσ

− 〈2|~d|1〉 · ~E0

(+)
e−iωtσ† − 〈2|~d|1〉 · ~E0

(−)
eiωtσ†. (A.5)

A.1.1 Rotating-wave Approximation

The atom-�eld Hamiltonian can be expressed in the interaction picture by applying

the unitary transformation U = eiHAt/~ = eiω0t|2〉〈2| = |1〉〈1|+ eiω0t|2〉〈2|, so that

HAF,I = −〈1|~d|2〉 · ~E0

(+)
e−i(ω+ω0)tσ − 〈1|~d|2〉 · ~E0

(−)
ei(ω−ω0)tσ

− 〈2|~d|1〉 · ~E0

(+)
e−i(ω−ω0)tσ† − 〈2|~d|1〉 · ~E0

(−)
ei(ω+ω0)tσ†. (A.6)

The �rst and last terms in Eq. (A.6A.6) oscillate rapidly as e±i(ω+ω0)t (i.e., at

optical frequencies), compared to the much slower time-dependence e±i∆t of the

middle terms, where ∆ = ω − ω0 is the detuning of the �eld from the atomic

transition. If the applied �eld is near resonance, so that |∆| � ω + ω0, then the

former terms may be neglected, since they average to zero on the longer time scale

characterized by the detuning frequency. Dropping the rapidly-varying terms, and
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transforming back to the Schrödinger picture results in the atom-�eld interaction

in the rotating-wave approximation,

HAF = −〈1|~d|2〉 · ~E0

(−)
eiωtσ − 〈2|~d|1〉 · ~E0

(+)
e−iωtσ†

=
~
2

Ω12e
iωtσ +

~
2

Ω∗12e
−iωtσ†. (A.7)

The last line of Eq. (A.7A.7) is written using the Rabi frequency, which characterizes

the strength of the electric-dipole coupling, and is de�ned as

Ωij = −E0

~
〈i|ε̂ · ~d|j〉 =

eE0

~
ε̂ · 〈i|~r|j〉, (A.8)

where e is the magnitude of the elementary charge (so that the electron has charge

q = −e), and 〈i|~r|j〉 is the dipole matrix element between states |i〉 and |j〉.

A.1.2 Corotating Frame

The atomic Hamiltonian is typically further transformed to a frame corotating with

the applied �eld, in order to remove the time-dependence on the �eld frequency.

This is accomplished by the unitary transformation U=eiωt|2〉〈2|= |1〉〈1|+eiωt|2〉〈2|,

resulting in a total atomic Hamiltonian in the rotating frame

H̃ = UHU † + i~ (∂tU)U †

= −~∆|2〉〈2|+ ~
2

(Ω12|1〉〈2|+ Ω∗12|2〉〈1|)

= −~∆σ†σ +
~
2

(
Ω12σ + Ω∗12σ

†)
= H̃A + H̃AF . (A.9)
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A.1.3 Density-matrix Equations

Using the forms of H̃A and H̃AF in Eq. (A.9A.9), and modeling spontaneous decay by

the operator

G = Γ|g〉〈e| = Γσ, (A.10)

(where γ = Γ2 is the decay rate back to the ground state), the master equation for

the two-level atom is

ρ̇ = − i
~

[
−~∆σ†σ +

~
2

(
Ω12σ + Ω∗12σ

†) , ρ]+ γD[σ]ρ. (A.11)

Carrying out the algebra leads to the optical Bloch equations,

ρ̇11 =
i

2
Ω∗12ρ12 −

i

2
Ω12ρ21 + γρ22 (A.12a)

ρ̇12 = −
(γ

2
+ i∆2

)
ρ12 −

i

2
Ω12 (ρ22 − ρ11) (A.12b)

ρ̇21 = −
(γ

2
− i∆2

)
ρ21 +

i

2
Ω∗12 (ρ22 − ρ11) (A.12c)

ρ̇22 = − i
2

Ω∗12ρ12 +
i

2
Ω12ρ21 − γρ22. (A.12d)

A.2 The Three-level Atom

For a three-level atom with ground state |1〉 and excited states |2〉 and |3〉, the

energies are E2 = ~ω21 and E3 = ~ω31 for the transition frequencies ω21 and ω31.
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With atomic operators σ2 = |1〉〈2| and σ3 = |1〉〈3| the Hamiltonian and decay

operators are written

H̃A = −~∆2|2〉〈2| − ~∆3|3〉〈3|

= −~
(

∆2σ
†
2σ2 + ∆3σ

†
3σ3

)
, (A.13a)

H̃AF =
~
2

(Ω12|1〉〈2| + Ω∗12|2〉〈1|+ Ω13|1〉〈3| + Ω∗13|3〉〈1|)

=
~
2

(
Ω12σ2 + Ω∗12σ

†
2 + Ω13σ3 + Ω∗13σ

†
3

)
, (A.13b)

G = Γ2|1〉〈2|+ Γ3|1〉〈3|

= Γ2σ2 + Γ3σ3, (A.13c)

where ∆2 = ω − ω21, and ∆3 = ω − ω31 are the detunings of the �eld from the

transition frequencies to the excited states |2〉, and |3〉 respectively. The quantities

Γ2 and Γ3 are de�ned so that γ2 = Γ2
2 and γ3 = Γ2

3 are the corresponding rates of

spontaneous decay. The master equation is then

ρ̇ = − i
~

[
−~
(

∆2σ
†
2σ2 + ∆3σ

†
3σ3

)
, ρ
]

− i

~

[
~
2

(
Ω12σ2 + Ω∗12σ

†
2 + Ω13σ3 + Ω∗13σ

†
3

)
, ρ

]
+D[Γ2σ2 + Γ3σ3]ρ. (A.14)

Of particular note is the damping term in Eq. (A.14A.14), in which the decays from the

excited states |2〉 and |3〉 to the ground state |1〉 are added into a single Lindblad

superoperator term. This represents the physical situation where the two decay

pathways to |1〉 are indistinguishable, and hence are interfering processes. The
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master equation (A.14A.14) yields the three-level density-matrix equations

ρ̇11 =
i

2
Ω∗12ρ12 −

i

2
Ω12ρ21 +

i

2
Ω∗13ρ13 −

i

2
Ω13ρ31

+ γ2ρ22 + γ3ρ33 + γ23 (ρ23 + ρ32) (A.15a)

ρ̇22 = − i
2

Ω∗12ρ12 +
i

2
Ω12ρ21 − γ2ρ22 −

γ23

2
(ρ23 + ρ32) (A.15b)

ρ̇33 = − i
2

Ω∗13ρ13 +
i

2
Ω13ρ31 − γ3ρ33 −

γ23

2
(ρ23 + ρ32) (A.15c)

ρ̇12 = −i∆2ρ12 −
i

2
Ω12 (ρ22 − ρ11)− i

2
Ω13ρ32 −

γ2

2
ρ12 −

γ23

2
ρ13 (A.15d)

ρ̇13 = −i∆3ρ13 −
i

2
Ω13 (ρ33 − ρ11)− i

2
Ω12ρ23 −

γ3

2
ρ13 −

γ23

2
ρ12 (A.15e)

ρ̇23 = −iω23ρ23 −
i

2
Ω∗12ρ13 +

i

2
Ω13ρ21 −

γ23

2
ρ22 −

(γ2

2
+
γ3

2

)
ρ23. (A.15f)

The cross-damping rate γ23 in Eq. (A.15A.15) is de�ned as γ23 = Γ2Γ3, and represents

quantum interference between the radiative decay channels.

A.3 The Four-level Atom

For the four-level atom introduced in Chap. 22, there are two ground states (|0〉 and

|1〉) and two excited states (|2〉 and |3〉), where the applied �eld couples |1〉 to both

excited states, but |0〉 is a dark state. Using atomic operators σij = |i〉〈j| (i = 0, 1,
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j = 2, 3) the Hamiltonian and damping operators are written as

H̃A = −~∆2|2〉〈2| − ~∆3|3〉〈3|

= −~
(

∆2σ
†
12σ12 + ∆3σ

†
13σ13

)
, (A.16a)

H̃AF =
~
2

(Ω12|1〉〈2| + Ω∗12|2〉〈1|+ Ω13|1〉〈3| + Ω∗13|3〉〈1|)

=
~
2

(
Ω12σ12 + Ω∗2σ

†
12 + Ω13σ13 + Ω∗3σ

†
13

)
, (A.16b)

G1 = Γ21|1〉〈2|+ Γ31|1〉〈3| = Γ21σ12 + Γ31σ13, (A.16c)

G2 = Γ20|0〉〈2|+ Γ30|0〉〈3| = Γ20σ02 + Γ30σ03. (A.16d)

Here ∆2 = ω − ω21 and ∆3 = ω − ω31 are the detunings of the �eld from the

excited-state transitions as before, and now γ20 = Γ2
20 and γ21 = Γ2

21 are the partial

rates of spontaneous decay from |2〉 to the ground states |0〉 and |1〉, respectively.

The partial rates γ31 = Γ2
31 and γ30 = Γ2

30 are similarly de�ned. The corresponding

master equation is

ρ̇ = − i
~

[
−~
(

∆2σ
†
12σ12 + ∆3σ

†
13σ13

)
, ρ
]

− i

~

[
~
2

(
Ω12σ12 + Ω∗12σ

†
12 + Ω13σ13 + Ω∗13σ

†
13

)
, ρ

]
+D[Γ21σ12 + Γ31σ13]ρ+D[Γ20σ02 + Γ30σ03]ρ. (A.17)

There are two decay terms in Eq. (A.17A.17), which models distinguishable decay pro-

cesses to either one of the two ground states. These di�erent pathways can in

principle be detected by probing which ground state the atom occupies, or by mea-

suring di�erent polarizations of �uorescence. The excited state from which the
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atom decays to a ground state is not known, however, so quantum interference oc-

curs between the two possible decay channels in each case (i.e., |2〉 → |1〉 interferes

with |3〉 → |1〉, and similarly for decay to |0〉), and this is re�ected in the form of

the operators. Eq. (A.17A.17) leads to the density-matrix Eqs. (2.32.3) for the four-level

system

ρ̇11 =
i

2
Ω∗12ρ12 −

i

2
Ω12ρ21 +

i

2
Ω∗13ρ13 −

i

2
Ω13ρ31

+ γ2→1ρ22 + γ3→1ρ33 + γ23→1 (ρ23 + ρ32) (A.18a)

ρ̇22 = − i
2

Ω∗12ρ12 +
i

2
Ω12ρ21 − γ2ρ22 −

γ23

2
(ρ23 + ρ32) (A.18b)

ρ̇33 = − i
2

Ω∗13ρ13 +
i

2
Ω13ρ31 − γ3ρ33 −

γ23

2
(ρ32 + ρ23) (A.18c)

ρ̇12 = −i∆2ρ12 −
i

2
Ω12 (ρ22 − ρ11)− i

2
Ω13ρ32 −

γ2

2
ρ12 −

γ23

2
ρ13 (A.18d)

ρ̇13 = −i∆3ρ13 −
i

2
Ω13 (ρ33 − ρ11)− i

2
Ω12ρ23 −

γ3

2
ρ13 −

γ23

2
ρ12 (A.18e)

ρ̇23 = −iω23ρ23 −
i

2
Ω∗12ρ13 +

i

2
Ω13ρ21 −

(γ2

2
+
γ3

2

)
ρ23 −

γ23

2
(ρ22 + ρ33) . (A.18f)

Eqs. (A.18A.18) use the notation of Chap. 22, where γi→j ≡ γij, with total decay rates

from each excited state γ2 = γ2→0 +γ2→1 and γ3 = γ3→0 +γ3→1. The cross-damping

rates are de�ned as γ23→0 = Γ20Γ30 and γ23→1 = Γ21Γ31, with a rede�nition of

γ23 = γ23→0 + γ23→1.

121



A.4 General Systems

Derivation of general density-matrix equations for transitions among the n=2 triplet

helium states may be carried out in an analogous manner. Denoting the 23S1(mJ =

µ) metastable states as ground states {|gµ〉} and the 23PJ=j(mJ =m) excited states

as {|ejm〉}, the atom-�eld Hamiltonian can be written using lowering and raising

operators of the form σµ,jm = |gµ〉〈ejm| and σ†µ,jm = |gµ〉〈ejm|, respectively. The

decay terms in the master equation involve radiative decay rates γjm→µ, which are

given by the expression of Eq. (4.44.4)b as γjm→µ = γµjmµjm, while the cross-damping

rates are γjm,j′m′→µ = γµj
′m′

µjm . Insertion of these operator forms into the master

equation (A.2A.2) results in the density-matrix Eqs. (4.34.3).

Similarly, Eqs. (6.26.2), used to model the microwave measurements in Chap. 66,

may be derived using the appropriate atom-�eld and decay operators which describe

the speci�c driven transitions and spontaneous decay processes involved in the

measurement. In this case, the Rabi frequencies involve magnetic-dipole matrix

elements, and explicitly include the frequency of the applied �eld, as the rotating-

wave approximation is no longer valid for this system.

A.5 Rabi Frequency Conventions

The density matrix equations listed in Chaps. 22� 66 (see Eqs. (2.32.3), (2.112.11), (3.43.4),

(4.34.3), (5.25.2), and (6.26.2)) are consistent with the derivations developed here, but
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originally appeared [4040, 4242, 4343, 4747] following the notation of [3131], in which the

Rabi frequencies and their conjugates are interchanged. While both formulations

preserve explicitly complex forms of the Rabi frequencies, for the case of a linearly-

polarized �eld (as in Chaps. 44� 66), the Rabi frequency is real-valued. Furthermore,

the phases of the states |i〉 and |j〉 can be chosen so that the dipole matrix element,

and hence the Rabi frequency is always real, and in the literature Ωij = Ω∗ij is

usually considered a real quantity. Thus, the density-matrix equations in either

convention are equivalent descriptions of the physics of the atom-�eld interaction,

and result in identical interference shifts.
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B Matrix Elements

Determination of matrix elements 〈i|~r|j〉 between the metastable 23S1 states and

excited 23PJ states is necessary in order to compute the Rabi frequencies for laser-

driven electric-dipole transitions, as well for calculation of spontaneous decay and

cross-damping rates. Denoting the metastable 23S1,m=µ states as |gµ〉 and the ex-

cited 23PJ,mJ=m states as |eJm〉, the matrix elements 〈gµ|~r|eJm〉 can be derived

by applying the Wigner-Eckart theorem, and are expressed in the spherical basis

q ∈ {−1, 0, 1} as:

〈gµ|rq|eJm〉 =
(−1)1−µ
√

3

√
2J + 1

 1 1 J

−µ q m

 〈g||r||eJ〉, (B.1)

where 〈g||r||eJ〉 is the reduced matrix element, and the brackets denote a Wigner-3j

symbol.

Calculation of 〈g||r||eJ〉 would typically involve explicit helium wavefunctions,

but in this work it is obtained instead using the expression for the decay rate, which

includes the square of the reduced element.
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The theoretical expression for the total rate of decay γJ from any 23PJ,m state

to the metastable states 23S1,µ is given by γJ =
∑
µ

γµJmµJm , where the sum is over

µ ∈ {−1, 0, 1}, and the partial decay rates are:

γµJmµJm =
e2ω3

3πε0~c3
〈gµ|~r|eJm〉 · 〈eJm|~r|gµ〉

= ΓµJm (〈g||r||eJ〉)2 . (B.2)

Here, ω is the average 2S−2P frequency interval, which is about four orders

of magnitude greater than the �ne-structure splittings, and thus all of the excited

triplet states decay at essentially the same rate, γJ = γ. In the last line of Eq. (B.2B.2),

the quantity ΓµJm includes all factors except the reduced matrix elements, and

equating the total decay rate γ to the numerical value γnum = 1/τ (where τ = 97.9

ns is the lifetime of the states [4141]) lets us solve for 〈g||r||eJ〉:

1

τ
= (〈g||r||eJ〉)2

∑
µ

ΓµJm, or

〈g||r||eJ〉 =

(
τ
∑
µ

ΓµJm

)−1/2

. (B.3)

Eq. (B.3B.3) yields the same value of the reduced element for all J , and any choice

of m, of 〈g||r||eJ〉 ≈ 4.385a0, where a0 is the Bohr radius. Table B.1B.1 lists the

values of the matrix elements (with the reduced elements omitted), to illustrate

the relative strengths of the various dipole couplings. In practice, the ratios of

these matrix elements are used to express all decay and cross-damping rates in the

density-matrix equations in terms of the total decay rate γ.
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Table B.1: Electric-dipole matrix elements {〈23S1,µ|rq|23PJ,m〉} (q=-1,0,1) between
metastable and excited triplet states (the reduced-element factor 〈g||r||eJ〉 is not
shown).

〈23S1,µ|rq|23PJ,m〉 23S1,−1 23S1,0 23S1,1

23P2,−2 {0, 0, 1√
3
} 0 0

23P2,−1 {0,− 1√
6
, 0} {0, 0, 1√

6
} 0

23P2,0 { 1
3
√

2
, 0, 0} {0,−

√
2

3
, 0} {0, 0, 1

3
√

2
}

23P2,1 0 { 1√
6
, 0, 0} {0,− 1√

6
, 0}

23P2,2 0 0 { 1√
3
, 0, 0}

23P1,−1 {0,− 1√
6
, 0} {0, 0,− 1√

6
} 0

23P1,0 { 1√
6
, 0, 0} 0 {0, 0,− 1√

6
}

23P1,1 0 { 1√
6
, 0, 0} {0, 1√

6
, 0}

23P0,0 {1
3
, 0, 0} {0, 1

3
, 0} {0, 0, 1

3
}
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