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Abstract 

This doctoral research investigates the problem of despin control of the 

massive uncooperative rotating target by the tethered space tug in the post-

capture phase. Theoretical and experimental studies are conducted to achieve 

the objective in three parts: dynamics characterization, control strategy design, 

and experimental validation. The mathematical formulation of the rotating 

target captured by tethered space tug is modeled in free space to investigate 

the pure despin motion. It is extended into the central gravitational field to 

investigate the coupled dynamics between the tethered system’s orbital and 

attitude motion during the despin process. Despin control strategies are 

proposed with the practical constraints to achieve the purpose of despinning 

the target’s rotation to a permissible level and ensure the system’s safety 

together for orbital maneuvering operation. The advanced nonlinear control 

techniques are employed to address the tethered space system’s 

underactuation and stability to improve performance. First, a unified control 

framework of tether tension for a simplified dumbbell model is proposed to 

precisely control the tether deployment and retrieval. The asymptotic stability 

of the control framework is proved rigorously. It is improved as a robust sliding 

mode controller to attenuate the effect of the possible uncertainties and 

disturbances. Second, a passivity-based nonlinear model predictive control law 
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is designed to handle the constraints on the inputs and states analytically. The 

tethered system’s passivity is revealed and incorporated into nonlinear model 

predictive control implementation to guarantee the asymptotic stability. 

Finally, the orbital maneuvering of the rotating target after despun is studied 

analytically with the non-singularity orbital elements in numerical simulation 

and validated experimentally in a zero-gravity environment provided by a 

custom-built spacecraft simulator air-bearing platform. 
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Chapter 1 INTRODUCTION AND JUSTIFICATION 

Summary: This chapter introduces and reviews the applications and research 

activities of the space tethered system. It provides the research objectives of 

this dissertation and presents the methodologies of research. In the end, we 

outline the layout of this dissertation and provide a full list of publications out 

of the doctoral study 

1.1 Backgrounds 

In 1957, the launch of ‘Sputnik 1’, first artificial satellite of the world, 

inaugurated the space age. After that, more than 10,000 satellites have been 

sent into space for various purposes, such as communications, navigation, and 

Earth observation, in 60 years of space exploration. Currently, there are about 

5,720 satellites still in space, about 2,900 are functioning, and others are 

defunct [1]. The defunct satellites, around half of all, can divide into space 

debris, which comes from the collisions and explosions of satellites, and other 

fragmentation events. There are around 27,000 space debris in the low earth 

orbit (LEO) and the geostationary earth orbit (GEO) objects, see Figure 1.1, 

which are regularly tracked by the United States Space Surveillance Networks. 

Space debris is heavily threatening our spacecraft, satellites, and 
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International Space Station (ISS), and the rising of the population increases 

the potential danger. [2, 3] Thus, the issue of cleaning up the space debris is 

getting really important. 

  

            (a)                                            (b) 

Figure 1.1  Distribution of catalogued objects in space1 

 (a) LEO region; (b) GEO region 

Earth has suffered many times of Near-Earth-Objects (NEOs) impacts 

in the last two century. [4]. Most of them are asteroids, called as Near-Earth 

Asteroids (NEAs). As of September, 2020, over 23,000 NEAs are known, 2,100 

of which are considered as potentially hazardous for sufficiently large and close 

to Earth [5]. Asteroids with a diameter of 7 meters enter the Earth’s 

atmosphere about every five years, but its kinetic energy as much as the atomic 

bomb dropped on Hiroshima. Asteroids with a smaller size, 4 meters’ diameter, 

                                            
1 Retrieved from https://www.orbitaldebris.jsc.nasa.gov/photo-gallery/ in July 2020 

https://www.orbitaldebris.jsc.nasa.gov/photo-gallery/
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enter the atmosphere more frequently once per year. Thus, to protect our 

planet from hitting or reduce the damage, NASA is working on tracking and 

predicting the near-earth asteroids [6]. In recent, scientific and commercial 

interests have been drawn on the Asteroids, referred to as Asteroid Retrieval 

Mission (ADM) [7, 8]. To explore the clues to life on Earth, NASA launched a 

spacecraft, OSIRIS-REx, to bring the asteroid’s samples of Bennu to Earth in 

September 2016. [9] 

To reduce the potential collision risk of spacecraft with debris, many 

approaches have been devoted to space debris removal, such as space robotic 

arm, space tether, gripper mechanism, and some contactless approaches [10, 

11]. Among them, space tether technology is one of the most appealing 

approaches for the advantages of the promising properties of lightweight and 

high flexibility [10]. As well, space tether technology is considered as one 

feasible approach to capture and return the asteroid, or collect a sample on the 

asteroid’s surface.[12]  

Space tether, as a potential technology, has received much attention on 

debris removal or asteroid retrieval by researchers.[11] The main operations 

of space tether can be divided into three steps, drawn in Figure 1.2. First, 

capture the space targets 2  with a tethered spacecraft. Then, reduce the 

rotation of targets before removing/redirecting. Finally, maneuver the targets 

                                            
2 Space debris and asteroids are called as targets. 
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by firing the thrust on the spacecraft.  

 

Figure 1.2  Operations of space target removal by space tether 

Many countries spent a great number of efforts on space missions 

verifying the potential of the space tether applications, including the National 

Aeronautics and Space Administration (NASA) in the USA, European Space 

Agency (ESA), Canadian Space Agency(CSA), and Japan Aerospace 

Exploration Agency (JAXA), and also some space companies and universities. 

Many pioneering works of the space tether have been made for various 

purposes, such as Electrodynamics Tether Deorbit, Artificial Microgravity 

Generation, and Tether Propulsion. The previous space tether missions are 

listed in the Table 1.1.[13-15] 

 

 

Spacecraft
Tether

Target

Tether

Spacecraft

Target

 Deploy  flexible device 

 Capture rotating target 

De-spin & Stablization

Capture

 Deploys tether

 Thrust control

Orbit Maneuver

 (Reentry/Re-orbit)

Firing thrust

Target

Spacecraft
Tether

https://en.wikipedia.org/wiki/Spacecraft_propulsion
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Table 1.1  List of space tether missions 

Year Mission Agency Orbit Length Status 

1966  Gemini 11  NASA  LEO  30 m 
Successfully 

deployed 

1966  Gemini 12  NASA  LEO  30 m 
Successfully 

deployed 

1980  TEP1  NASA  Suborbital  500 m 

Partially 

deployed (38 

m) 

1981  TEP2  NASA/ISAS  Suborbital  500 m 

Partially 

deployed (65 

m) 

1983  Charge-1 NASA/ISAS  Suborbital  500 m 
Successfully 

deployed 

1985  Charge-2 NASA/ISAS  Suborbital  500 m 
Successfully 

deployed 

1989  Oedipus-A  CSA/NASA  Suborbital 958 m 
Successfully 

deployed 

1992  Charge-2B NASA  Suborbital  500 m 
Successfully 

deployed 

1992 TSS-1 NASA/ISA  LEO 260 m 

Partially 

deployed and 

retrieved. 

1993  PMG  NASA  LEO 500 m  
Successfully 

deployed 

1993  SEDS-1 NASA LEO 20 km 
Successfully 

deployed 

1995  Oedipus-C CSA/NASA  Suborbital  958 m 
Successfully 

deployed 

1996  TSS-1R NASA/ISA LEO 
19.6 

km 
Tether broke  

1996  TiPS NRO/NRL LEO 4 km 
Successfully 

deployed 
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1997  YES T. U. Delft GTO 35 km Not deployed 

1998  ATEx  NRL  LEO  6 km 
Partial 

deployed 

2000 PicoSAT1.0 
Aerospace 

Corp. 
LEO 30 m 

Successfully 

deployed 

2000 PicoSAT1.1 
Aerospace 

Corp. 
LEO 30 m 

Successfully 

deployed 

2003  ProSEDS  NASA  LEO 15 km Not deployed 

2007  MAST  NASA  LEO  1 km  Fail to deploy 

2007  YES 2 T. U. Delft LEO 30 km Fully deployed 

2008 
Cute-1.7 

+APDI 
Tokyo Tech LEO 10 m Fail to deploy 

2009  STARS Kagawa U LEO  10 m Deployed 

2010  T-Rex JAXA  Suborbital 300 m  Deployed 

2014  STARS-2 Kagawa U Suborbital 350 m Not confirmed 

2017 KITE JAXA LEO 700 m Fail to deploy 

2018 STARS-Me JAXA LEO 10 m Fail to deploy 

2019 TEPCE NRL LEO 1 k m Deployed 

2020 DESCENT 
LASSONDE, 

YORK U 
LEO 100 m 

Deployment 

not reported 

yet 

1.2 Justification of Research 

Tethered space system (TSS) consists of the spacecraft and targets 
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connected by space tether orbiting in space. The dynamics motion of TSS is 

usually very complex because of the flexibility issue of tether and the orbital 

coupling effect. The tether’s flexibility will cause the high-frequency 

oscillations in tether, and the orbital coupling effect will induce the Coriolis 

force resulting tether libration while tether deploying or retrieving. The fast 

tumbling of the target makes the dynamic motions even complicated since it 

will result in the tethered system winding around onto the target and 

spacecraft, leading to instability of the TSS. Thus, in this dissertation, the 

focuses are drawn on the two main aspects of dynamics and control of the 

tethered spacecraft system: deployment/retrieval of TSS and its application to 

large rotating targets removal. 

1.2.1 Tether Deployment/Retrieval Control 

 Challenges of Tension Control 

Tether deployment/retrieval is fundamental for space tether mission’s success, 

which suffers from the following challenges:[16, 17] 

(i) Underactuation. The tethered spacecraft systems are usually only 

equipped with an active reel in/out mechanism to control tether 

deployment and retrieval. Only tether length can be actuated while 

the tether libration angle is not. Thus, the tether 

deployment/retrieval of TSS becomes underactuated when the 
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tension is the only control input used to achieve precise positioning. 

(ii) Constraints. During the deployment and retrieval process, two 

practical constraints should be considered, positive tension, and 

libration angle. The tension in the tether should be maintained 

positive. Otherwise, the tether becomes slack, which means the 

dynamics model is invalid and would result the failure of operation. 

The libration angle is usually set to within 90 degrees to prevent the 

tether from wrapping around the spacecraft or target. 

(iii) Measurement Limitations. In practical situations, we do not have 

enough sensors to measure all the states, such as libration angle and 

libration angular velocity in the tethered CubeSat missions. Thus, 

the controller should be designed in manner of the partial state 

feedback based on the measurement requirement. 

 Limitations of Existing Studies 

To date, many control schemes have been developed to tackle the control 

problem of the tether deployment and retrieval  with considering the system’s 

underactuation and constraints, which is particularly difficult to design a 

controller satisfies the requirements and guaranteeing asymptotic stability 

[16]. Most existing control schemes require the full state feedback, both the 

actuated states (tether length and velocity) and underactuated states (tether 

libration angle and angular velocity). Moreover, some existing controllers are 
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only Lyapunov bounded stable instead of asymptotically stable for precise 

allocation. Optimal control based techniques are also employed, however they 

are computationally heavy and difficult to implement onboard [18]. In addition, 

the existing disturbances in practical mission requires the robust controller to 

handle the disturbance while system is underactuated. Some researchers used 

sliding mode control to achieve asymptotic stability, but it will raise the well-

known chattering phenomenon, which leads to the undesirable high-frequency 

oscillation. 

1.2.2 Large Space Target Removal by TSS 

 Challenges 

Space tether technology is a promising approach to remove the large 

space debris and retrieve an asteroid. However, challenges exist for the 

dynamics and control of combined systems, which can be summarized as: [19-

21] 

(i) Tumbling/Spinning. Targets in space are usually rotating 

persistently. It will cause the acute libration motion after the targets 

are captured by the tethered space system, which may even cause 

the tether winding around the target and be slack. Thus, it is 

necessary to reduce the rotation rate of the target to a small 

admissible region for removal. 
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(ii) Underactuation. The space targets are captured by the flexible 

tethered device, such as the space net or gripper. They are not able 

to directly control the target’s attitude because only the force is 

applied to the targets by the flexible tethers. Thus, the combined 

system is underactuated due to fewer control inputs than system’s 

degrees of freedom. 

(iii) Constraints. Same as in deployment/retrieval control, the tether 

should be kept taut to avoid the slack-taut-slack phenomena, which 

will result in tether’s fatigue and break out. It also might cause the 

system’s vibration. Moreover, the libration motion should limit 

within 90 degrees to prevent the tether from winding around the 

targets. 

 Limitations of Existing Studies 

Many researches are dedicated to analyzing the dynamics of debris 

removal while considering the captured targets with small rotation energy, 

which will not cause tether winding around. Researches focused on the 

problem of de-tumbling/despinning the targets in an ideal free-floating space 

while ignoring the gravitational field [22]. As a result, the dynamic coupling of 

orbit and the TSS’s motions is not addressed. The dynamic motion of the 

combined rotating tethered system might become instable while the rotating 

angular velocity of the system approaching orbital angular velocity might 
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induce the system’s resonance and cause chaotic motions. Some works 

designed the virtual controller for simulation studies, but this is not applicable 

in real situations.[23] Thus, appropriate control strategies should be designed 

to ensure the system’s stability during the de-tumbling/despinning phase. The 

operational constraints of the positive tension and libration angle should also 

be guaranteed. Furthermore, the effectiveness of most current studies is only 

validated by numerical simulations. Experimental verification of removing 

large targets by TSS is still needed. 

1.3 Objectives of Proposed Research 

To address the existing challenges and limitations, this dissertation 

works on the dynamic behavior and control of TSS and its application to 

remove or retrieve the large rotating space targets. Therefore, the research 

objectives of this study are presented as follows: 

(i) Develop the mathematical models of the tethered spacecraft system 

in despinning and orbital maneuvering, respectively to characterize 

the dynamic behaviors of tethered systems. 

(ii) Study the control problem of the underactuated tethered system to 

despin the rotation space targets and simultaneously stabilize the 

tether’s libration under the constraints. 

(iii) Investigate attitude stabilization and libration suppression during 
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the orbit maneuvering.  

(iv) Validate the effectiveness of the proposed control strategy through 

experimental system on the air-bearing platform. 

1.4 Methodology of Approach 

This dissertation’s methodology of approach begins with the dynamic 

modeling of the tethered spacecraft systems, including the dumbbell model and 

the rigid-body attitude model. Lagrange formulation and Newton’s Second Law 

are employed to derivate the dynamic equations of motion.  

To achieve the stabilization of the underactuated TSS, passivity-based 

control (PBC) theory is utilized to propose a unified framework for tethered 

system deployment and retrieval for accurate known model. In real mission, 

tethered system always perturbed by the unknown disturbance. Thus, to solve 

the disturbance attenuation problem, SMC is combing with the fractional-

order control to improve the controller’s dynamic performance. Then, to 

investigate the despin control of the rotating target for removal/redirect 

operation, simple control strategies are designed in free space and extended 

into the circular orbit. The indirect Lyapunov method, linearization technique 

around the equilibrium, is used to analyze the stability. Furthermore, to 

guarantee the asymptotic stability and deal with constraints, model predictive 

control (MPC) method is implemented with combing passivity-based control, 
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where a passivity constraint is added to remove the terminal constraint of MPC.  

The orbital propagation of the rotating target towed by the tethered 

space tug is described non-singularly by the modified Gaussian Elements. 

Then, simple control strategies are proposed to stabilize both the space target’s 

attitude motion and tug’s attitude motion, and suppress the tether libration. 

Finally, the effectiveness and reliability of the tethered space tug are 

demonstrated on a custom-built ground testbed that consists of air-bearing 

spacecraft simulator on a granite table. 

1.5 Outline of this Dissertation  

The dissertation includes eight chapters. Chapter 1 gives an 

introduction and justification. Chapter 2 provides a detailed review of the 

literature about stabilization control of the tethered spacecraft system, 

despinning of rotating target after capture, and target’s orbit maneuvering. 

Chapter 3 develops the tethered system’s various mathematical formulations 

for studying the tether deployment/retrieval and despinning the target in 

different scenarios. Chapter 4 focuses on the tension control problem of the 

underactuated tethered system’s deployment and retrieval and rigorous 

stability analysis, and the robust control design to handle the disturbance. 

Chapter 5 includes the parametric analysis and control strategies of 

despinning the rotating target by tethered spacecraft. Chapter 6 focuses on the 
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orbital maneuvering of the rotating target. Chapter 7 validates the tethered 

system’s feasibility and effectiveness to maneuver the rotating target in a 

microgravity environment provided by the ground air-bearing testbed. Finally, 

Chapter 8 summarizes the contributions of this research and states the 

potential future research aspects. 
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Chapter 2 LITERATURE REVIEW 

Summary: In this chapter, we review the literatures of TSS dynamics and 

control as well as despin and maneuver of a rotating target by tethered 

spacecraft. 

2.1 Tether Deployment/Retrieval 

In the past decades, a large number of efforts have been devoted to 

achieve the successful tether deployment/ retrieval for space tether mission. 

Due to the overall flexibility, the dynamic equations of TSS are usually with 

very complex forms. Thus, in order to study the dynamics and control of the 

deployment/retrieval of TSS, the TSS is usually modeled as a dumbbell model 

[17], where the tether is treated as a rigid rod. The advantage of rigid tether 

assumption is that we can understand the overall tethered system’s motion in 

space for preliminary mission design.[24] On the contrary, the rigid tether 

assumption cannot reflect the possible tether deformations and libration 

motions because it ignores the tether’s flexibility, which should be considered 

for accurate analysis in the practical mission.[13] 

New challenge arises from the non-propellant design in TSS 
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deployment/retrieval, where the TSS becomes underactuated [16]. A great deal 

of controllers have been proposed to achieve the tether deployment/retrieval 

for the fast, precise, and stable purposes. For instance, a tension controller in 

terms of tether length and velocity is designed by Rupp to deploy the tether 

with the tether libration suppressed [25]. Fujii and Ishijima developed a 

Lyapunov-like mission function based controller to deploy and retrieve the 

tether with bounded stability [26]. Further, Vadali designed a tension 

controller based on the system’s energy to study the deployment and retrieval 

in the orbital plane at the local vertical and local horizon (LVLH) with the 

asymptotic stability [27]. It was extended to three-dimensional motion with an 

out-plane thrust [28]. Later, Pradeep utilized linearization technique to prove 

the linear tension controller’s asymptotic stability around the equilibrium for 

planar TSS [29], and Kumar and Pradeep extended the controller into three-

dimensional TSS [30]. Recently, Sun and Zhu further expanded the linear 

integer-order tension control scheme into a linear fractional-order (FOC) type 

for the purpose of fast and stable deployment and retrieval [31, 32]. Besides, 

sliding mode control theory, which can avoid finding the Lyapunov function, 

was implemented in tether deployment/retrieval to attenuate the external 

disturbances [33-36]. Ma et al. designed an adaptive type of sliding mode 

controller with the consideration of the input saturation based on the 

linearized system’s equations, and the effectiveness is shown by implementing 
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it to the original nonlinear system [33]. Wang et al. studied the tether 

deployment in an elliptical orbit with adaptive sliding mode control to track a 

designed nominal trajectory, and the stability is analyzed by linearization 

technique around the equilibrium. As is well known, the local asymptotic 

stability can only be ensured near the equilibrium due to the linearization. 

Thus, the control gains should be selected to ensure a large enough region of 

attraction in the practical implementation. To deal with the positive tension 

constraint, Wen et al. proposed a positive tension controller and proved its 

asymptotic stability [37]. The proposed controller is implemented in the space 

tether tug’s stabilization with a velocity free form [38]. 

Additionally, most of the preceding controllers need full-state feedback, 

both the actuated states and unactuated states. However, the requirement of 

full-state feedback increases the unduly burdensome need and the cost of TSS 

for full-state measurement [38]. Hence, controllers with partial-state feedback 

are highly desirable in practical use, as mentioned in Ref. [25, 29, 37], where 

only the actuated states are measured to use. Moreover, most controllers only 

achieved Lyapunov bounded stability instead of asymptotic stability, thus, 

tethered payload will be only allocated near the desired position with errors, 

which will affect the operations like tether-aid capture. In order to ensure the 

asymptotic stability, finding an appropriate Lyapunov function are required. 

However, finding such Lyapunov function is usually not easy because it mainly 
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depends on the designer’s experience [29]. Although the use of SMC techniques 

can avoid the difficulty to construct a Lyapunov function, it will cause the well-

known chattering problems [39], which may induce the undesirable high-

frequency oscillations of tether. It should be pointed out that SMC in an 

underactuated system is much trickier than in a fully actuated system because 

it is difficult to define a sliding mode manifold to stabilize the both actuated 

and unactuated states. There are some control schemes for tether 

deployment/retrieval using optimal control or optimization method [40-43], 

where the deployment/retrieval control problem is converted to a constraint 

two-point boundary value optimization problem. The positive tension and 

libration motion constraints are handled simultaneously. However, they are 

with heavy computation to implement for on-board computer. 

To address these limitations and challenges on tether 

deployment/retrieval control, we will present a unified energy-based tension 

control framework to accomplish the precise deployment/retrieval of TSS [44] 

with only partial-state feedback. And, the practical positive tether tension and 

passive deployment constraints [45] are considered for the controller 

implementation. Asymptotic stability of the proposed control framework will 

be theoretically proved through the Lyapunov theory and LaSalle Invariance 

Principle. Furthermore, a sliding mode controller with fractional order with 

coupled two layers sliding manifold is designed to deal with the uncertainty of 
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TSS and external disturbances [39] and ensure the asymptotic stability. 

2.2 Large Rotating Target Removal by TSS 

Asteroid retrieval and space debris removal have received a great deal 

of interest to maintain the long-term sustainable use of the outer space [10, 12, 

46]. Space tether technology in ARM and ADR includes capture, despin, and 

orbit maneuver. Capture methods contains the stiff connection, like space 

robot [47, 48], and the flexible connection, such as the tethered net [49, 50] and 

gripper [51, 52]. Stiff capture by space robot has the advantages of 

straightforward operation with stiff composition, while they are limited to 

small size targets and in the short distance. However, TSS with a flexible 

mechanism can be used for different sizes of targets and in a long-distance. 

Many flexible capture mechanisms are designed and tested successfully in the 

Refs. [11, 12].  

Asteroids and large space debris are usually rotating with huge kinetic 

energy [53], which will cause the tether wrapping around the targets while 

directly towing. Therefore, it is essential to reduce the rotation of the target 

into a small admissible level. This process is called targets despin or de-tumble. 

Much efforts on targets despin and de-tumble have been made. Fedor et al. 

designed a Yo-Yo despin mechanism to despin rocket in 1961 [54]. The rocket’s 

spinning kinetic energy is de-spun by deploying the pre-wound tether. Holt and 
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James proposed an innovative concept to despin small asteroids by a tethered 

nanosatellite system, which deploys the nanosatellite from the asteroid to 

bring the asteroid’s angular momentum to the nanosatellite [55]. Notably, 

Aslanov made a lot of outstanding work on the large debris removal with 

tethered space tug [56-59]. He analyzed the effect on dynamic motions caused 

by the atmospheric drag, flexible appendages, and rotation of debris. Then, 

Yudintsev and Aslanov modified the classical Yo-Yo mechanism from [54] to 

de-tumble the space debris [20]. O’Connor et al. explored the debris de-

tumbling by a special designed inflatable open-net and proposed an wave-

based controller [60, 61]. Besides, Wang and Meng studied the dynamic 

stabilization of the space debris towed by the tether. They focused on the twist 

suppression by the active tether length regulation [62] at first. Then, they 

presented an approach to control the target’s attitude motion by special 

movable tethered attachment device [63]. It can generate the desired torque to 

de-tumble the targets by actively adjusting the attachment. However, the 

installment of such device onto an uncooperative rotating target is a challenge. 

Similar research of the moving attachment are reported in the Refs. [64] and 

[65]. To de-tumble the rotating space debris, Sun et al. proposed a strategy by 

actively switching tension similar as the bang-bang control, where the tension 

is discontinuous [66]. A precise dynamic modelling for tethered tug captured 

space debris is established in the Ref. [23], in which the virtual controller is 
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given to achieve the target’s attitude stabilization for simulation purpose. 

Besides, the multi-tether system is compared with the single-tether system 

[67-69]. Hovell et al. compared single and multiple tethers connected 

configuration to damp out the rotation of the debris through the viscoelasticity 

of tethers in both simulation and experiment. [70-72] Multiple tether 

connected configuration shows a significant superiority of fast debris 

despinning. It should be noted that despin/de-tumble the rotation of the target 

by the tether’s material damping is very challenging for the massive target 

with huge kinetic energy because it may require very long time or fail to 

despun/de-tumble. To address the challenge of despinning and removing a 

massive rotating target, Kang and Zhu investigated the despin dynamics of a 

massive asteroid by a small tethered spacecraft [73] and proposed several 

control strategies to actively despin the massive asteroid in free-space [74] and 

in the central gravitational field [22]. Wen and Jin designed an optimal control 

law to despin the target by MPC method [75].  

However, the control problem of the despinning large target by TSS still 

remains open due to its underactuation and complex state/input constraints. 

Compared with traditional control methods, MPC performs as a simple and 

powerful tool to cope with state/input constraints [76]. MPC is implemented 

with the quasi-linearization technique for space tether deployment/retrieval 

and space target despin in the Refs. [75, 77], where the linearization improves 
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the online computation speed. MPC is combined with SMC method to suppress 

TSS’s libration in the Ref. [78]. Notably, in order to guarantee the closed-loop 

system stability, a terminal cost is usually included in MPC, which leads to the 

small local neighborhood stability [76]. To circumvent the local linearization 

and terminal cost, the control Lyapunov function based MPC (CLMPC) is 

proposed to guarantee the stability. However, CLMPC needs to define a 

Lyapunov function while making it decrease with the control action, which is 

not easy to find for an underactuated system. As an alternative, Raff presented 

the concept of passivity-based MPC (PBMPC) to guarantee the closed-loop 

system stability [79], and later Tahirovic et al. implemented it for the mobile 

robot navigation [80]. Inspired by this concept, we will present a novel MPC 

based on a passivity framework and apply to despin the rotating asteroid by 

TSS with the stability and constraints guaranteed. 

Orbit maneuver of the debris using tethered tug system has attracted a 

lot of attention [21, 38, 81-88]. Jasper et al. studied the debris removal by the 

tethered tug with a colossal thrust and the discretized tether dynamics [21, 81, 

82]. Input shaping methodology is designed to stabilize the TSS during orbit 

transfer. Linskens et al. investigated the dynamics, guidance, and control of 

active space debris removal by TSS [83], and the Linear-Quadratic Regulator 

(LQR) and SMC are applied to stabilize the tug’s attitudes. In order to keep 

the tether from slackness during orbit transfer, Wen et al. designed a positive 
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tension constraint controller with the point-mass model [38] Further, Liu 

proposed a new controller based on the small-gain theorem to ensure the 

closed-loop system input-to-state stable with the point-mass model too [84]. 

Zhong et al. studied the stabilization problem of the space debris towed by TSS 

during orbital transfer through optimal control method [85-87]. Sun and Zhong 

studied the libration suppression of TSS with the help of electrodynamic force 

in orbital maneuver [88].  

2.3 Tether Experimental Validation on Air-Bearing Platform 

Ground experimental validation of space tether technology is critical to 

bring the space tether into space operations. To validate the relevant space 

applications, the ground facilities should be developed to produce a zero-

gravity environment to mimic the tether in space. 

Air-bearing platform has been proved on its excellent performance to 

produce the zero-gravity on a smooth granite table [89]. Chung et al. verified 

the three tethered satellites in a line formation on the air-bearing table in 

Space Systems Laboratory of Massachusetts Institute of Technology. The 

proposed linear and nonlinear controllers are both verified on the platform 

(SPHERES) [90, 91]. Yu et al. validated tether deployment on the custom-built 

air-bearing platform at Nanjing University of Aeronautics and Astronautics 

(NUAA) with an analytical velocity control law [92]. Pang et al. verified the 
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chaotic control of TSS’s libration motion on the air-bearing platform at NUAA 

[93]. Hovell et al. proceeded the experimental verification of passive 

despinning of sub-tether and single tether connection on the air-bearing 

platform in Spacecraft Robotics and Control Lab. at Carleton University [71]. 

Among these experimental systems, the air-bearing platform provided a good 

simulation of zero-gravity environments and near zero-friction. 

In Chapter 7, we will set up an experimental system on the air-bearing 

table to validate the tethered space tug on ground. In the experimental 

validation, we verify the concept of tethered space tug for orbital maneuvering 

and demonstrate effectiveness of the proposed control strategy to remove an 

uncooperative rotating target. 
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Chapter 3 MATHEMATICAL MODELING OF TETHERED 

SYSTEM 

Summary: This chapter presents dynamic models of TSS in this dissertation. 

Beginning with the simple mass point model, we establish dynamic models 

with consideration of the attitude motions of the target and spacecraft, as well 

as the orbital propagation. The materials in this chapter have been published 

in the Reference papers A-F. 

3.1 Dumbbell Model for Tethered System Deployment/Retrieval 

Consider two end bodies as lumped mass points, and tether is massless 

and inextensible [38, 39, 75]. TSS in Earth’s orbit, see Figure 3.1, can be 

treated as a standard dumbbell model. Considering the orbital motion of TSS 

moves in a planar circular orbit. As a result, the motion of TSS includes the 

orbital motion of the system’s center of mass (CM) and the local motion about 

the CM in the orbital coordinate frame. The orbital coordinate frame (O-xyz) is 

fixed at the CM of system. Oy-axis is along the orbital radius and pointing to 

the center of Earth. Ox-axis is perpendicular to the Oy-axis and located in the 

orbital plane along the orbital velocity’s direction. Oz-axis completes the 

coordinate frame with the right-hand rule.  
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Figure 3.1  Schematic of TSS in orbital coordinate frame. 

3.1.1 Lagrangian Formulation 

The kinetic (K) energy of the TSS can be calculated as 
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where 1R  and 2R  denote the position vectors of the space tug and target from 

the Earth center in the inertial frame, respectively. 1r  and 2r  denote the local 

position vectors of the space tug and target in the orbital frame. The prime     

denotes the time derivative with respect to t . R  denotes the module of orbital 

radius of the system. l  represents the tether length and   represents the 

libration angle of tether.   is the orbital angular velocity.  1 2 1 2/em m m m m   
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is the equivalent mass with 1m  and 2m  being the masses of the space tug and 

target, respectively.  

Further, the potential (U) energy of TSS is derived as, 
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where the following Taylor series is used in Eq. (3.2), 
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Here, sins sx r   and coss sy r  . The subscript is defined as  1,2s  . It 

should be pointed out the potential energy in Eq.(3.2) is approximated due to 

R l .  

Then, the equations of TSS’s dynamic motions can be derived by 

Lagrange’s Equation with the L K U  , 
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where T  denotes the tether tension. 

For the sake of convenience, Eq. (3.4) is recast into a dimensionless form, 
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by the following dimensionless variables, 

/ nl l     2/ ( )e nT T m l     t      ( ) ( ) /d d  

where nl  denotes a nominal tether length, T  denotes the dimensionless 

tension, and   denotes the dimensionless time(true anomaly). It is worth 

noting that tether length should satisfy the physical constraint max min 0      

to avoid singularity in Eq.(3.5). 

Rewrite the dynamic motion Eq. (3.5) into classical form, 

 ( ( ,) ) ( )M x C x x x G x ux      (3.6) 

where  col ,x    denotes the state variable and  col ,0u T   denotes the 

dimensionless control input.  M x  is the mass matrix,  ,C x x  is the matrix 

resulting from Coriolis and Centrifugal effects, 0( ) ( ) /G x U x x    is gravity 

term, and 0 ( )U x  denotes the dimensionless potential energy of TSS,  
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The following properties are summarized as: 

Property 1. The inertia matrix ( )M x  is positive definite and bounded,

( )M x  ,   is a positive constant. 

Property 2. ( ) 2 ( , )M x C x x  is a skew-symmetric matrix.  
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Property 3. There exists a positive constant gk  that the gravity vector 

satisfies 
( )

g
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k
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. 

Then, an energy function is given as, 
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and its time derivative is, 
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Integrating the both sides of Eq. (3.10) in [0, ] , one obtains the equation 

of energy balance, 

 T

0
( ) (0) ( ) ( )E E x u d



       (3.11) 

Assume 0U  is bounded from below C , then 0E C  . Obviously, from 

Eq.(3.11), TSS is lossless with the input u  and output x , if the storage 

function is S E C  . Thus, one can obtain the following passivity, 

Property 4. (Passivity) TSS in Eq. (3.5) is passive if the input action 

( )u v x   with the mapping v x  and a storage function 0V   that satisfies 

the following condition 

  
Dissipat d 

T

0

e

[ ( ), ( )] [ (0), (0)] ( ) ( )d ( )

Stored energy energySupplied energy

V x x V x x x v d x


         (3.12) 

where the dissipation energy function is positive, such that, 

   
T

0
( ) ( ) ( )d 0d x x v



      . 

3.1.2 Hamiltonian Formulation 

In the section, we will derive the system’s equations by Hamiltonian 

formulation. As in Hamiltonian mechanics, the coordinate ( , )q p is used to 
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describe the system’s motion instead of ( , )q q  in Lagrangian. 

The generalized momentum  col ,p p p    is obtained as, 

 
0L

p 



 


  (3.13) 

  20 1
L

p 





  


  (3.14) 

Applying the Legendre transformation, one can obtain the Hamiltonian 

function as follows, 

 

 

 

2 2 2 2 2

22
2

0

2

1 1 3
cos

( , ) ,

2 2 2

,

1

)

1
2

(

2

T

p

H q p q p L q q q p

U qp


   





 

 
  

 





 


  (3.15) 

where the normalized Lagrangian is  
2

2 2 2

0 (
1 1

, 1 +3cos 1
2 2

)L x x        
  

. 

Recall the Hamilton equations, 

 

2 2 2 2 2 1

2 2 2 2

0 0

0

H

q qI

p HI u

p

  

 

 
      
      
      

  

  (3.16) 

Then, the dynamics of motion of TSS can be expressed as, 
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 

 

2
2

2 2

1 3 cos

2 1 3 sin cos

T   

 

 

   

    

   

  (3.17) 

Then, taking the time derivative of H   yields that 

 

 ,

, ,

T T

T
T T T T T

T

H H
H q p q p

q p

IH H H H H
u

Iq p q p p

H H
u T T

p p



 
 

 

        
     

        

 
    

 

  (3.18) 

Equation (3.18) indicates the energy balance property of TSS, where the 

energy’s changing in the Hamiltonian quantity equals to the power supply. 

Relation shown in Eq.(3.18) is actually identical to the TSS’s passivity defined 

in Eq.(3.10). Moreover, it is quite straightforward to reveal the intrinsic 

property of TSS by the Hamiltonian formulation [94]. 

3.2 Modeling of Tethered Despin System  

3.2.1 Dynamic Motion of TSS without Orbital Effect 

Considering a massive rotating target is captured by a single tether and 

connected to a small spacecraft, as shown in Figure 3.2. The tether is assumed 

to be massless and inextensible. The tethered system moves in the orbital 

plane. As the first step, we ignore the gravitational field and assume that the 
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tethered despin system is rotating in a free space. The target is treated as rigid 

body with mass 
2m  and inertia momentum J . The space tug is simplified as a 

lumped mass with a mass 1m ,
1 2m m . The tether which connects target and 

spacecraft is with the constant length l . Further, due to
1 2m m , it is reasonable 

to assume the center of mass (CM) of the tethered despin system is at the 

massive target’s center and the center of rotation is same as the center of mass 

of the target during the despin process. 

Inertial coordinate system OXY is defined with its origin fixed at the CM 

of the target. The tether connection point at the target is with distance r  to 

the massive target’s CM. The target is rotating around the principal axis 

through CM with an angular velocity   vertical to the plane XOY. 

 

 

Figure 3.2  Sketch of spinning target and tethered spacecraft. 

Then, the position of the spacecraft 1R  in OXY with respect to the CM 
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system is given as, 

 1 1 1 2x y   x yR e e R L  (3.19) 

 2 2 2 cos sinx y r r    x y x yR e e e e  (3.20) 

 cos( ) sin ( )l l     x yL e e  (3.21) 

where 2R  denotes the position vector of tether connection point on the target. 

  denotes the rotation angle of the vector 2R  to the OX-axis.  , yx
e e  denote the 

unit vectors of OX and OY.   is the angle from the tether to the vector 2R , i.e. 

tether libration angle. 

Accordingly, one can calculate the spacecraft’s velocity and acceleration 

as follows, 

 
  

  

1 1 sin sin

cos cos

r l

r l

     

     

      
 

    
 

x

y

v R e

e
 (3.22) 

 

  

  

  

  

2

1 1 2

2

2

sin sin cos

cos

cos cos sin

sin

l r r

l

l r r

l

       

   

       

   

    
   
   
 

    
 
   
 

x

y

a R e

e

 (3.23) 

Then, the following equations are represented, 

 sinJ Tr   (3.24) 
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1 1 ( )cos ( ) sin ( )

( )sin ( ) cos ( )

t n

t n

m F T F

F T F

   

   

      

      

x

y

a e

e
 (3.25) 

where T  denotes the tension in tether and  ,t nF F  are the vectoring thrust 

along and perpendicular to the tether. 

Substituting Eqs. (3.19)-(3.23) into (3.25) yields, 

 

2 2

1

sin cos sin( )( ) cos( )( )

1
( )cos( ) sin( )t n

r r l l

F T F
m

         

   

       

      
 (3.26)

 

2 2

1

cos sin cos( )( ) sin( )( )

1
( )sin( ) cos( )t n

r r l l

F T F
m

         

   

      

      
 (3.27) 

Arranging the Eqs. (3.26) and (3.27), one has, 

 
2 2

1

1
sin cos ( ) ( )tr r l F T

m
         (3.28)

 
2

1

1
cos sin ( ) nr r l F

m
        (3.29) 

Arrange the above equations and write in terms of    and angle  , 

such that, 
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 1

2

2

2

1

2

2

1

sin sin

s

cos

1
1 cos s n

in

i

t

n

r l

J m

r r
F

m r F r

r

l l m l

 



   


    

   




 
   


 











 (3.30) 

 
 1

2 2

2
2

1 sin /

cos

1

tr l F

m

m

T
r J

   



 
 




 




 (3.31) 

Define the dimensionless variables to normalize the above differential 

equations, 

0t  ,  2

1J m r  , l r  , 0/    

 2

1 0t tu F m r ,  2

1 0n nu F m r ,  2

1 0T T m r  

Then, Eq. (3.30) is represented in the dimensionless forms as follows, 

 

  22

2

2

cos

1 1
1

sin

cos

sin

s n

n

i

si

t

n

u

u

    




   
  



  
 



 
      

 

 (3.32) 

where    d d   and 0  denotes the target’s initial angular velocity. 

The above dynamic equations (3.28) and (3.29) are established while the 

target is assumed fixed at the center of mass. The free-floating model can be 

derived as follows, 

The position and acceleration relations can be rewritten as, 
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0 1

0 1

cos cos( )

sin sin( )

x r l x

y r l y
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   

   
 (3.33)

 
2 0

2 0

cos cos

cos sin

m x T

m y T

 

 




  (3.34) 

 
1 1

1 1

( )cos( ) sin( )

( )sin( ) cos( )

t n

t n

m x F T F

m y F T F

   

   

    

    
 (3.35) 

where  0 0,x y  and  1 1,x y  are the target’s and spacecraft’s coordinates in the 

inertial frame. 

Then, substituting Eqs. (3.33) and (3.34) into Eq. (3.35), one has, 

 
 

2 2

1 2

sin cos sin( )( ) cos( )( )

1 cos cos
( )cos( ) sin( )t n

r r l l

T
F T F

m m

         

 
   

       

     
 (3.36)

 
 

2 2

1 2

cos sin cos( )( ) sin( )( )

1 cos sin
( )sin( ) cos( )t n

r r l l

T
F T F

m m

         

 
   

      

     
 (3.37) 

It is easy to find an extra term 2cos cosT m   in Eq.(3.36) compared 

with Eq. (3.28), and 2cos cosT m   in Eq. (3.37) compared with Eq. (3.29). Due 

to the mass relation 
2 1m m , these two terms are negligibly small. Hence, one 

can reasonably ignore them when the main interest focuses on despinning the 

target.  

If the tether length is variable, the dynamic motion equations can be 

obtained as in the Ref. [74], 
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One can further represent the equations into the dimensionless form as, 
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 
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 
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 



  (3.39) 

3.2.2 Dynamic Motion of TSS in Circular Orbit 

In this section, a massive spinning asteroid is modeled in a central 

gravitational field. Assume the large target (asteroid) is captured by a small 

tethered spacecraft, as shown in Figure 3.3.  Tether is assumed to be rigid and 

massless. Consider target as a rigid body with mass 
2m  and inertia momentum

J . The small spacecraft is treated as particle with mass 1m  due to 
2 1m m . The 

tether connects two body is with length l . The distance from tether connection 

point to the asteroid’s center of mass (CM) is r . Due
2 1m m , it is reasonable to 

assume the CM of system is located at the CM of the massive asteroid [22]. 

Further, the motion of the TSS is assumed to limit in the orbital plane. The 

massive asteroid is spinning about the principal axis perpendicular to the 

orbital plane. Orbital frame is denoted as Oxoyozo as shown in Figure 3.3. The 

origin O is fixed at the CM of the massive asteroid. The Oxo-axis is along the 
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orbital radius. The Oyo-axis is along the direction of the orbital velocity of 

system. The Ozo-axis completes a right-hand coordinate frame. 

 

 

Figure 3.3  Spinning target with TSS in a circular orbit 

According to the above assumptions, the system’s kinetic energy is 

obtained as, 

  
2

1 1 1 2 2 2

1 1 1

2 2 2
K m m J       v v v v  (3.40) 

where 2v  denotes the system’s orbital velocity and 1v  denotes the small 

spacecraft velocity’s.   denotes the orbital angular velocity and   denotes the 

asteroid’s attitude which is defined as the angle from the Oxo-axis to r . 

Represent 1v  and 2v  in the orbital frame, such that, 
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 2 2  R  v R j  (3.41) 

  1 1 1d R dt  v R i r   (3.42) 

    1 1 1 cos cos sin sinx y r l r l                  r i j i j  (3.43) 

where 1R  and 2R  denote the spacecraft’s position and asteroid’s position, 

respectively. R denotes the orbital radius of system and   denotes the tether 

libration angle from r  to the tether. ( ,i j ) are the unit vectors of Oxo-axis and 

Oyo-axis. The small spacecraft’s coordinates in the O-xoyozo can be represented 

as  1 cos cosx r l      and  1 sin siny r l     .  

Substituting Eq. (3.43) into Eq.(3.42) leads, 
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v i

j

 (3.44) 

Accordingly, the expression of 
2

1v  is obtained as, 
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  (3.45) 

Next, the system’s potential energy is denoted as, 
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 (3.46) 

where   denotes the gravitational constant of Earth. Due to R l r , the 

second term in Eq.(3.46) can be approximated by Tayler expansion, 
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Thus, the tethered system’s potential energy is simplified as, 
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 (3.48) 

Combining Eqs.(3.40)-(3.48), one obtains the system’s Lagrangian as, 
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Recall the Lagrange’s equation, 

 
d

d

L L
Q

t q q

  
  

  
 (3.50) 

where col{ , , }q l    are generalized coordinates and Q  are the corresponding 

generalized forces. 

Substituting the kinetic and potential energy into Eq. (3.50)yields, 

  1 1 1sin , , , , ,lm l m r m f l l T          (3.51) 
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1 1 1 1 1

1
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 , , , , , cos

m r l m r m l m rl m l rl

m f l l Fl Fr

J



    

    

    

  



 (3.52) 

    1 1 1

2 , , , , ,cosl rm m m f l ll Fl           (3.53) 

where T  denotes the tether tension, F  denotes the thrust force along tether’s 

tangent direction. 

The expressions f  and f  are given as follows, 
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     
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 (3.54) 
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 (3.55) 

   
     

2

2 2 2

, , , , , sin 2 sin 2

3 cos sin 3 sin cos

f l l rl rl ll
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      

      
 (3.56) 

For the sake of simplicity, we normalize the above dynamic equations 

by the following dimensionless variables: 

1

2/ ( )mJ r  , /l r  , 
2

01( )T T rm  , 1

2

0/ ( )u F rm  , 

0t  , 0/    and 0 0( ) () ( ) /d d  


   

where 0  denotes the massive target’s initial angular velocity.  

Thus, the dimensionless dynamics equations are presented as, 

  sin , , , , ,f T               (3.57) 
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 

2 2sin 1 2 cos cos
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       

       

    
 (3.58) 

    2 2co , ,s , , ,f u                    (3.59) 

and f , f  and f  are expressed as,  
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 (3.61) 
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 (3.62) 

3.3 Dynamic Motion of TSS during Orbital Maneuvering 

3.3.1 Non-Singular Orbital Elements 

  

Figure 3.4  Sketch of the orbital elements  

The disturbed motion of the space target in orbiting the earth can be 

written as, 

X
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o

F



46 

 

 
2

2 3o o

o

d

dt r m


 

F
r r   (3.63) 

where or  denotes the position vector to Earth center in the inertial frame. m  

denotes the mass of the space target,   is the gravitational parameter of Earth, 

the symbol ( )
d

dt
 denotes the time derivative of vector in inertial frame, and F  

is a constant perturbation force acting on the mass point.  

Then, one can write the Eq.(3.63) in the Gaussian form of variational 

equations with classical orbital elements , ,( , ), ,a e i   , as shown in Figure 3.4, 

as follows, 
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e S T

p v er r p v
e p p 

    
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     

 (3.64) 

where  , ,S T W  is the perturbed acceleration along: S in the radial direction, T 

in orbital plane perpendicular to S, and W completes the right hand 
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coordinates. 

 21p a e   
1 cos

p
r

e v



 

2   
2

p
v

r


  

cos
cos

1 cos

e v
E

e v





 

It is easy to find that Eq.(3.64) is singular if the eccentricity or 

inclination is zero. Thus, the non-singular orbital elements 1 2 1 2

T, , ,( , ),e e qa q   

are adopted from [95],  
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  (3.65) 

The corresponding perturbed differential equations can be obtained as, 
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where 
T( , , )x y za a a  denote the components of the perturbing acceleration 

ma F  expanded in the orbital frame along  , ,S T W . Variables p , w , and h  

are calculated as below, 

 

 2 2

1 2

1 2

1

1 cos sin

p e e a

w e e

h p

 



   


  




  (3.67) 

It should be noted that the corresponding six perturbed differential 

equations are singularity free as long as the inclination angle i    . It 

works for the special cases such as, circular orbit 0e   or geostationary orbit

0i  . 

3.3.2 Dynamic Motion of TSS in Orbital Frame 

Consider an uncooperative large rotating space target in the perturbed 

Keplerian Orbit captured and connected to the tethered space tug as shown in 

Figure 3.5. The space tug with mass 1m   and large space target with mass 2m  

are all treated as rigid body. Two single elastic tethers ( 21l , 22l ) with material 

damping are anchored to the edges ( 21P , 22P  ) of the space target using the 

triangle attachment architecture and the main tether 1l  is connected to the 

surface of space tug at P1. All tethers converge together to the connection C . A 

main tether is considered as rigid with variable length. Tethers are all 
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assumed to be massless. The following coordinate frames are defined to 

describe the tethered system’s dynamics, 

Inertial frame 
I
 (E-XYZ): The origin E is at the center of the Earth. 

The X-axis is along the orbital radius pointing to the vernal equinox. The Z-

axis is perpendicular to the orbit plane. The Y-axis completes a right-hand 

coordinate frame. 

Orbital frame 
o
 (O-xyz): The origin O is located at the center of mass 

(CM) of the tethered system, which should satisfy 

 1 1 2 2 1 2 0c c cm m m m m m    r r r r , 1,2,cr  are the position vectors to the Earth’s 

center in the inertial frame. The Oxo-axis is along the orbital radius. The Oyo-

axis is along the direction of the orbital velocity of system.  

Body frame 
b

 (O1-x1y1z1 and O2-x2y2z2): The origins O1 and O2 are 

located at the center of the tug and target, respectively. The three axes of the 

body frame are along with their principle moments of inertial of tug and target. 

In current research, it is assumed that the motion of TSS is limited in the 

orbital plane. The large space target and space tug are all rotating about its 

principal axis perpendicular to the orbital plane. 
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Figure 3.5  Sketch of tethered system maneuvering in the orbital plane 

To establish the dynamic motions in the orbital frame 
o

 after the 

dynamic motion of the CM of system obtained. The positions of the tug, target, 

and connection are presented as follows, 
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 (3.68) 

where 1 2, , cρ ρ ρ  are the position vectors in the orbital frame
o
. ,x ye e  are the 

unit vectors of the x-axis and y-axis in 
o
. 

Accordingly, the motion of the tug, target, and connection are obtained 

as, 
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 (3.69) 

where 1T  denotes the tether tension in the main tether. 21T  and 22T  denote the 

tether tensions in the tether 21CP  and 22CP  of the triangle connection, 

respectively. sG , 1,2,s c , is the gravitational force of each body from Earth, 

which could be calculated as follows, 
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  (3.70) 

Combing Eqs.(3.69) and (3.70), the following differential equations can 

be derived,  
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 (3.71) 

Next, the dynamic motions in rotating frame in relation with inertial 

frame are written as below, 
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  
2

2
2j j j j j

d

dt
       o o o oρ ρ ω ρ ω ω ρ ω ρ  (3.72) 

Thus, the relative motions in 
o

 can be obtained by substituting 

Eq.(3.71) into (3.72), such that, 
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where o  denotes the magnitude of the orbital angular velocity,   denotes the 

derivative of o , 
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Then, the attitude motions of the space tug and target can be obtained 

as, 

 
 

 
1 1 1 1
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P T

P T P T
 (3.77) 

where 1  and 2  denote the attitude angles of space tug and target, which are 

the rotation angle between body frame 
b
 and orbital frame 

o
. cM  is the 

control torque of the space tug. 1I  and 2I  are the principle axis inertial 

momentum of two body.  1 1 11 RO P P ,  21 1 22 2 RO P P  and  22 2 22 2 RO P P  

are the level arm of each tether tension.  R *  represents the rotation matrix 

as below,  
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  (3.78) 

The tensions in the elastic tethers with material damping are calculated 

as, 
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c l l c l T
T

else



   
 



T

 (3.79) 

where 21,22T  are the magnitudes of tether tension 21,22T . 21,22l  are the magnitudes 
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of tether length and 21,22l  are the vectors of tether length, kc  and vc  denote the 

tether stiffness and material damping, respectively, and 20l  is the original 

length of elastic tethers. 
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Chapter 4 TENSION CONTROL FOR DEPLOYMENT AND 

RETRIEVAL  

Summary: This chapter presents the tension control for underactuated tether 

deployment and retrieval. Frist, a unified control framework is presented for 

the purpose of precise and fast control for the nominal accurate known model. 

Then, a robust approach of sliding mode control plus fractional order 

approaching law is designed to reject the external disturbance for the tethered 

system under unknown perturbations. This chapter interpolates material from 

three published papers by the authors in Reference papers A, E, and F. All 

variable symbols in this chapter refer to definitions in Section 3.1. 

4.1 Passivity-Based Control for Underactuated TSS 

This section aims to address the underactuated TSS control problem to 

achieve the tether deployment/retrieval with suppressing the tether libration 

angle. The controller is designed to ensure the asymptotic stability of the 

closed-loop system with only the actuated states measurement. Besides, the 

underactuated states are regulated by the interconnection of the system’s 

nonlinear coupling, see Figure 4.1. 
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Figure 4.1  Block diagram of the TSS under tension control 

4.1.1 Equilibrium and Controllability Analysis  

TSS is with multiple equilibria which should be first determined for the 

stabilization the tether deployment/retrieval. 

Recall Eq.(3.5) and set the first and second order derivatives to zero, 

then one has 

 

2

2

3 cos

3
0sin 2

2

T
 

 

 
         

 

 (4.1) 

Then, it is easy to obtain the equilibria as,  

 , and ( 1/ 2) ,e ek k            , k   (4.2) 

where e  is tether length at equilibrium state. 
23 cosT    is the static balance 
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force. The equilibria at k   are stable, while the equilibria at ( 1/ 2)k    

are not, which can be shown by the phase portraits of tethered system.  

Fixing the tether length, the solution of the libration can be obtained as, 

 
3

sin 2 0
2

     (4.3) 

Integrate Eq.(4.3) with time, 

 2( 3sin )h      (4.4) 

where 2 23sinh     is a metric of Hamiltonian of the pendular motion of the 

constant length of the tethered space system. We sketch the phase portraits of 

Eq.(4.3) in    plane with various Hamiltonian h , see Figure 4.2. The 

equilibria are periodical and isolated. The equilibria of the libration motion at 

k   are the center points while the saddle points at ( 1/ 2)k   . The 

libration motions periodically oscillate around zero, which is within / 2  when 

3 0h  . It indicates that the TSS does not flip over. Otherwise, the libration 

motion of TSS flips over when 3h  . 3h   is the boundary of starting to flip 

over. 
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Figure 4.2  Phase portraits of TSS’s libration 

To test the controllability TSS, Eq.(3.6) is written into the state space 

form,  

 
1( ( )

d

)[d ( )]
0

T
 

 
    

 

 
   

   
    

M C x,x x

x
x

x Gx x
  (4.5) 

Define ,  e ex x - x x x - x , and 3 eT T    . Linearizing Eq. (4.5) at 

the equilibria    , ,0,0T T

e k e ex ,x  yields, 

 
d

d
T

 


 

   
    

   

x
A

x x

x
B  (4.6) 

where,  
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0 0 1 0

0 0 0 1

3 0 0 2

2
0 3 0

e

e





 
 
 
 
 
  
  

A   and  

0

0

1

0

 
 
 
 
 
 

B  

Then, one can obtain the controllability matrix as, 

 

0 1 0 1

2
0 0 0

1 0 1 0

2 8
0 0

e

e e



 

 
 
 
 

       
 

 
 

2 3
Co B AB A B A B  (4.7) 

Thus, it is easy to verify  Rank 4C  . Thus, under only tension input, 

the deployment/retrieval of TSS is controllable. 

4.1.2 Controller Design and Stability Analysis 

To achieve the regulation of the underactuated TSS, Energy shaping 

methodology will be adopted. The basic prerequisite for energy shaping is to 

construct an artificial potential energy function that makes the closed-loop 

system’s total potential energy to be the minimums at the desired equilibria. 

Furthermore, to achieve the asymptotic stability, a damping term should be 

injected to dissipate the total energy of system towards the minimums.  

A unified framework of the passivity-based controller in Figure 4.3  is 

proposed as,  
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 a dT T T    (4.8) 

where a
a

U
T







 is the force corresponds to potential energy shaping part, and 

( )dT      represents the dissipation to stabilize the TSS. a s rU U U   is 

the constructed artificial potential energy function.  

 

Figure 4.3  Block diagram of the tension controller 

The artificial potential energy function ( )aU   is defined as,  

 a r sU U U   (4.9) 

where  :r rU f   is a positive definite energy function and  :s sU f   is a 

quasi-potential energy function. These two energy functions are required to 

satisfy two following conditions, 

  0arg min( )  sU U k


    k   (4.10) 

  0arg min  a dk
U U

 





 
 

  (4.11) 

where 0U  is defined in Eq. (3.7) and d e   is the desired tether length at the 
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equilibria.  

It is obvious that the potential energy 0U  is related to the tether tension 

0T  at the equilibrium, 

 0
0

U
T







 (4.12) 

Moreover, the tension in Eq.(4.8) should equal 0T , at the desired 

equilibrium states of TSS ( , , , ) ( , ,0,0)d k      . Thus, this equilibrium 

condition is equivalent to the extreme condition, subject to the following 

condition 

 0 )(
 0   and d

aU U
iff k   




 


 (4.13) 

Finally, the dissipation function ( )  in Eq.(4.8) is constructed with the 

conditions of 
0

0
 





 and 0, 0 




  


 to achieve an asymptotically 

stable of tether deployment/retrieval.  

Theorem 1. The closed-loop TSS Eq.(3.6) under the proposed unified 

framework controller Eq. (4.8) will asymptotically stabilize to the desired 

equilibria, ( , , , ) ( , ,0,0)d k      . 

To prove the asymptotic stability of the closed-loop system, a Lyapunov 

function candidate is defined as follows,  



62 

 

 
1

2

T

a tV H U x Mx U      (4.14) 

which is bounded form below because the potential energy tU  is lower bounded 

and the kinetic energy 
1

2

Tx Mx  is global positive definite. Then, taking the 

derivative of the Lyapunov function V   yields, 

 0a
a

U
V H U T  

 

 
       

 
  (4.15) 

It is obvious that (0)V V , V   because the V  is semi-negative 

definite due to the definition of ( ) . One has  0V   only when 0  . Thus, 

the closed-loop system is stable in the sense of Lyapunov.  

Due to V  , one has, 

 , ,     (4.16) 

However, one cannot get the    because the state   in V  is a 

trigonometric function (
2 2

0

3
) cos

2
(U x    ). Thus, the LaSalle’s Invariance 

Principle is not directly possible to use. To circumvent such difficulty, new 

variables are introduced as, 
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1

2

3

4

5

cos

sin

y

y

y y

y

y











  
  
  
   
  
  

   
   

 (4.17) 

Eq. (3.6) of TSS’s motion is rewritten as, 

 

 

 

1 2

3 4 5

4 3 5

1

21 5

1 5 1 2

2

1 32

2 2
15 15 3 4

0 2
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31 0

0 3

yy y

y y

y y

y y y

y y y

y y Ty

y y yyy y y y





 



        
          

   

 
 
       

 (4.18) 

The Hamiltonian function can be represented as 

 

T

2 2 2 2

1 32

15 5

1 01 3

02 2

y y
H y y

yy y

    
     

    
 (4.19) 

Then, representing the Lyapunov function candidate V  respect to y  

yields, 

 

T

2 2 2 2

1 32

15 5

1 01 3

02 2
a a

y y
V H U y y U

yy y

    
        

    
 (4.20) 

Take the derivative of the Lyapunov function V , 

 1 1

1

a
a

U
V H U Ty y

y


    


 (4.21) 
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Recalling the tension controller in Eq.(4.8), one has 

 1

1 1

aU
T y

y y

 
 

 
 (4.22) 

Substitute the Eq.(4.22) into Eq.(4.21), 

 1

1

0V y
y


  


 (4.23) 

Thus, V  decreases monotonically and 1y , 2y , 3y , 4y , 5y  are all bounded. 

0V   only if 1 2 0y y   which implies 1 1y c , where 1c  is a positive constant.  

Recalling the Eq.(4.21), one can obtain that 0H   and H  is constant. 

Therefore, the fourth formula of Eq.(4.18) and Eq.(4.19) become 

 2 2 2

1 5 3 2( 3 )y y y c   (4.24) 

 2 2

1 5 5 3 3( 2 3 )y y y y T c     (4.25) 

where 3T c  is obtained from Eq.(4.22), aU  is constant when 1 1y c , and 2 3,c c  

are constant. Thus, one has, 

 2 2

5 5 4 3 1 2 1( ) / (2 )y y c c c c c     (4.26) 

where 4c  is constant. Hence, 5y  is constant due to 5y  is the solution of the 

Eq.(4.26). Then, 

 5 0y   (4.27) 
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Introducing 2 0y   and 5 0y   into the last equation of Eq. (4.18), one 

can obtain, 

 3 4 0y y   (4.28) 

Equation (4.28) has two solutions: 3 4( , ) (0, 1)y y    and 3 4( , ) ( 1,0)y y    

due to 2 2

3 4 1y y  . Substituting the solutions into of Eq.(4.18) leads to 55 0y c  . 

Define the set   as 

  
0

5 2 2

3 4| ( ) ( ), 1
t t

V V y y


     y y y  (4.29) 

and  5 | 0W V  y as the largest invariant set contained in  . Thus, W

contains two cases: 

    Case 1:  1 2 3 4 5 1( , , , , ) ( ,0,0, 1,0)hy y y y y c   (4.30) 

    Case 2: 1 2 3 4 5 1( , , , , ) ( ,0, 1,0,0)vy y y y y c   (4.31) 

where the tether length 1 1

hy c  corresponds to 3 4( , ) ( 1,0)y y    at the local 

horizontal direction ( sin 1   ) and the tether length 1 1

vy c  corresponds to 

3 4( , ) (0, 1)y y    at the local vertical direction ( cos 1   ).  

The horizontal equilibrium states 1 2 3 4 5 1( , , , , ) ( ,0,0,1,0)hy y y y y c  and 

1 2 3 4 5 1( , , , , ) ( ,0,0, 1,0)hy y y y y c   are unstable. Considering any small 
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perturbation of 0   on 3y , from Eq.(4.20), there exists 

2

1 2 3 4 5 1( , , , , ) ( ,0, , 1 ,0)hy y y y y c     and 
2 2

1 1 1

3
( ) ( ) ( )

2

h h h

a aV c U c U c     . As V  is 

non-increasing, the trajectory of system will move away from 

1 2 3 4 5 1( , , , , ) ( ,0,0,1,0)hy y y y y c . Thus, this equilibrium is unstable. Similarly, the 

other equilibrium 1 2 3 4 5 1( , , , , ) ( ,0,0, 1,0)hy y y y y c   is unstable. 

The vertical equilibrium states 1 2 3 4 5 1( , , , , ) ( ,0,1,0,0)vy y y y y c  and 

1 2 3 4 5 1( , , , , ) ( ,0, 1,0,0)vy y y y y c   are stable. Note that  denote the union of two 

vertical equilibriums set 1{ | ( ,0,1,0,0)}vy y c    and 1{ | ( ,0, 1,0,0)}vy y c    . 

Obviously, 
2 2

1 3 1

3
( ) ( )

2

v v

aV c y U c    has the minimums only if 2

3 1y  . Therefore, 

the states in the neighborhood of   will converge to  . This implies the 

states in   are locally asymptotically stable. Similarly, the states in the 

neighborhood of   will converge to  . Consequently, we can denote the 

stable solution set as  2

30, 1V y   y , and the largest invariant set W  

will asymptotically converge to . 

Additionally, solutions in  are required to satisfy Eq.(4.11), such that, 

 

2

0 0

12

1 1

( ) ( )
0,     0

r s r sk k
d

U U U U U U
iff y

y y

     
     

  
 

 (4.32) 

Obviously, there must exist 1 1dy c  , and the stable solution set can 
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be expressed as  1 2 3 4 5( , , , , ) ( ,0, 1,0,0)dy y y y y    y . Based on the 

LaSalle’s Invariance Principle, the trajectory of the closed-loop system in Eq. 

(3.6) will approach to the largest invariant set W  as t   , and asymptotically 

converge to . We complete the proof of the Theorem 1. 

4.1.3 Construction of Controllers 

Based on the unified framework of controller, we can construct distinct 

types of controllers. For instance, four types of controller are given as follows, 

1. Linear PD with gravity compensation (LPDgc),  

 1 1 13 p vT k k     , 1 10, 0p vk k   (4.33) 

2. Linear PD with desired gravity compensation (LPDdgc),  

 2 2 23 d p vT k k     , 2 23, 0p vk k   (4.34) 

3. Trigonometric PD with gravity compensation (TPD),  

 3 3 33 arctan( ) arctan( )p vT k k     , 3 30, 0p vk k   (4.35) 

4. Hyperbolic PD with gravity compensation (HPD), 

 4 4 43 tanh( ) tanh( )p vT k k     , 4 40, 0p vk k   (4.36) 

The corresponding the potential energy functions are listed, 



68 

 

 
2 2 2 2

1 1

3 3 1
cos

2 2 2
t pU k        (4.37) 

 
2 2 2 2

2 2

3 3 1
cos 3

2 2 2
t d d pU k           (4.38) 

 
2 2 2 2

3 3

3 3 1
cos [ arctan( ) ln(1 )]

2 2 2
t pU k            (4.39) 

 
2 2 2

4 4

3 3
cos ln(cosh )

2 2
t pU k        (4.40) 

These total potential energy functions are illustrated in Figure 4.4 with 

the 1d   and 1 2 3 4 8p p p pk k k k    . As is clear from Figure 4.4, they have 

similar trends and the isolated minimums ( min( ) 0tU  ), which are denoted by 

the red spots.    

 

Figure 4.4  The potential energy functions 
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Remark 1:  The term 3 sU     in the controller 1, 3 and 4 comes from the 

quasi-potential energy sU . It is to compensate the static balance force at 

, 0k    . To dominate the static balance force at , 0k     and d  , 

one can replace 3   by 3 d . As a result, the parameter pk  in potential function 

must satisfy 3pk  .  

Remark 2: Although only four controllers are presented, it is easy to construct 

other types of tension controller with the proposed unified framework in 

Eq.(4.8), where the asymptotic stability will be guaranteed by Theorem 1. 

4.1.4 Simulations and Discussion 

 Validation of Different Controllers 

To demonstrate the effectiveness of the proposed unified framework of 

tension controller, both tether deployment and retrieval process will be verified 

by numerical simulations.  

First, the tether deployment process is carried on with the initial state 

0 0 0 0( , , , ) (0.01,0.5,0,0)      and the desired state ( , , , ) (1,0,0,0)d d d d     .  

 The gains of the controllers are given in Table 4.1. The simulation 

results are drawn in Figure 4.5. All controllers successfully achieve the tether 

deployment to desired position with asymptotic stability and they perform 

remarkably similar performances. 
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Table 4.1  Controller gains 

Controller pk  
vk  

LPDgc 2 4 

LPDdgc 4 4 

TPD 2 4 

HPD 2 4.5 

 

It can be seen in Figure 4.5, all states converge to the desired position. 

Figure 4.5 (a) shows that all controllers achieve the deployment to the desired 

length within 1.5 orbits very quickly. However, settling time of each controller 

is different, which are 0.66, 0.74, 1.11, and 1.25 orbits for the LPDgc, HPD, 

TPD, and LPDdgc controller, respectively. The LPDgc is with a minor 

overshoot of tether length during deployment. LPDdgc controller with a bigger 

gain on the linear feedback of tether length error slows down the tether 

deployment, which avoid that small overshooting. Nonlinear feedback 

controller, HPD and TPD, achieve a slightly better performance than LPDdgc 

without overshooting. Tether deployment velocity are plotted in Figure 4.5 (b). 

They are all smooth and satisfy the positive constraint apart from LPDgc. As 

shown in Figure 4.5 (c), libration angles are similar with the maximum 

magnitude smaller than 0.88 rad. The tether librates a negative angle due to 
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the action of Coriolis force at the beginning, and finally converge to 0 rad. This 

is because that the Coriolis force decreases and the gravity force increases as 

the tether deployment. Figure 4.5 (d) shows the angular velocities of tether 

libration, which finally converge to zero with the tether deployment. Tether 

tension are given in the Figure 4.6. They are continuous and smooth, and 

satisfy the positive tension constraint during the deployment. Finally, tether 

tensions asymptotically converge to the static balance force 0 3T  . In short, 

simulation results show all proposed controllers based on the unified 

framework effectively achieve the deployment of TSS.  

 

(a) 
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(b) 

 

(c) 
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(d) 

Figure 4.5  Time histories of states during deployment 

 

Figure 4.6  Tether tensions during deployment. 

Next, the tether retrieval process is simulated with the initial condition 

0 0 0 0( , , , ) (1,0,0,0)      and the desired state ( , , , ) (0.01,0,0,0)d d d d     . Here, 
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for sake of briefness, only controller 1 (LPDgc) and 2 (LPDdgc) are used in the 

retrieval process. The control gains are chosen as  , (1,4)p vk k   and  

 , (4.5,4)p vk k   for controllers 1 and 2, respectively. The results of the tether 

length and libration angle are presented in Figure 4.7 and Figure 4.8.  Figure 

4.7 indicates the tether is successfully retrieved while the tether libration 

angle is effectively suppressed by both two controllers. However, the positive 

tether libration angle is found during retrieval while negative for deployment. 

This is because the direction of Coriolis force in retrieval is opposite to the one 

in deployment. As shown in Figure 4.9, the tether tension is always positive 

during entire retrieval process.  

 

Figure 4.7  Tether length during retrieval  
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Figure 4.8  Libration angle during retrieval  

 

Figure 4.9  Tether tension during retrieval  
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As shown in the simulation results of deployment and retrieval, the 

proposed controllers perform the asymptotic stability, which agrees with the 

theoretical analysis. 

 

 Initial Condition Uncertainties 

To guarantee the performance and safety of practical situation, the 

uncertainties of TSS’s initial condition should be analyzed. For instance, only 

the LPDdgc is used to demonstrate the controller’s robust. A wide range of 

initial conditions, 0 0.01  ,  0 0, 8  ,  0 / 2, / 2    ,  0 2, 2   are 

considered to study the convergence of controllers and estimate the region of 

attraction. In total, there exist 136161 initial conditions as follows, 

 
0 0

0 0

0.01 0.1( 1)

( 1) 2 0.1( 1)
2 40

a

b + c

 

 
 

  

      
  (4.41) 

where 1 81a  , 1 41b  , 1 41c   and the control gains LPDdgc controller 

are 2 25, 4p vk k   for numerical simulations in ten orbits.  

The final tether length and libration angle are plotted in Figure 4.10, 

where each circle represent one initial condition. For all of the different initial 

conditions, the final results converge to the vertical equilibria, ,k k   , 

1d  . In the practical space missions, the allowable operation point is usually 
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at the LVLH ( , , , ) (1,0,0,0)d d d d     , and the maximum tether libration less is 

smaller than / 2  to prevent TSS from flipping over. To this end, the region of 

attraction to the allowable equilibrium is estimated with the contraction the 

set of the initial condition. The obtained initial conditions are 0 0.01  , 

 0 0,1.7  ,  0 / 20,19 / 40     and  0 2,1.2   , and the distribution final 

lengthen and maximum tether libration are depicted in Figure 4.11. All initial 

conditions of the above set converge to ( , , , ) (1,0,0,0)d d d d      with the 

maximum tether libration smaller than / 2 . 

 

Figure 4.10  Final tether lengths and libration angles  



78 

 

 

Figure 4.11  Distribution of final tether length, libration angle, and 

maximum libration angle 

 Positive Constraints on Tether Tension and Velocity  

In most of space tether missions, the passive tether deployment 

mechanism is adopted, which leads to two constraints as following, 

 0 and 0T    (4.42) 

As one way to enforce these constraints, the parameters of the tension 

controllers are tuned with optimization algorithm. A cost function is given as 

follows, 

 2 2

0
[ ( ) ]

ft

dI a b d        (4.43) 

where ,a b  are the adjustable weights and ft  is final time of optimization. 
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The optimization problem for parameters becomes 

 
Minimize :

Subject to : 0 , 0

I

T  
 (4.44) 

Here, we will show how to obtain better performance by tuning the 

control gains with Genetic Algorithm. For instance, the LPDdgc controller is 

used with an initial guess of gains at ( , ) (5,4)p vk k  . The initial condition of 

system starts at 0 0 0 0( , , , ) (0.01,0.7,0,0)     . Three acceptable errors are 

considered as:  

(a). non-negative tension and almost non-overshoot;  

(b). non-negative tension and velocity constraints with 6( min 10 )  ; 

(c). non-negative tension and velocity constraints with 3( min 10 )  . 

Results of the optimized control gains are given in Table 4.2, where 

optimization is conducted for two orbits. 

Table 4.2  Control gains of controllers after optimization 

Constraints 2 2, )( p vk k  

0T   and overshoot ( ) / 2%d d       (5.0587, 3.8722) 

0T  , 0  , and tight tolerance 6( min 10 )   (4.7199, 3.8545) 

0T  , 0  , and low tolerance 3( min 10 )   (4.8186, 3.8065) 
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The simulation results of LPDdgc with optimal gains in Table 4.2 are 

drawn in Figure 4.12. For all three cases, the tether is deployed to desired 

position very quickly and stably. A shown in Figure 4.12 (a), tether lengths are 

all stabilized to 1 within one orbit. The profiles of libration angles are plotted 

in Figure 4.12 (b), and similar trends can be found in these three cases. Next, 

Tether deployment velocity and libration angular velocity are sketched in 

Figure 4.12 (c) and (d), where the velocities of tether are smooth and finally 

converge to zero. Tether tensions are drawn in the Figure 4.13, where all 

tensions keep positive in the deployment process. Consequently, the 

constraints of tension and tether velocity can be tackled by tuning the gains of 

controller. 

 

(a) 
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(b) 

 

(c) 
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(d) 

Figure 4.12  Time histories of states under constraints  

 

 

(e) 

Figure 4.13  Tensions under constraints  
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4.2 Fractional-Order Sliding Mode Control  

In this section, a fractional-order sliding mode controller is proposed to 

address the possible existing uncertainties and disturbances of TSS in 

practical missions to ensure the fast and stable deployment. Recalling the 

TSS’s equations in Eq. (3.5) and applying the transformation, 

1 1x   , 2x  , 3x  , 4x   

one can shift the system’s equilibrium to 1 2 3 4 0e e e ex x x x    , such that, 

 

1 2

2

3 4

4

( )

( )

x x

x f T

x x

x

xx g











 (4.45) 

where  

2 2

1 4 1 1 3( ) (1 )(1 ) (1 ) 3(1 )cosf x x x x x x        

2
4 3 3

1

( ) 2 (1 ) 3cos sin
1

x
g x x x x

x
   


 

Next, with the model’s uncertainty f  and the external disturbances to 

control input T , Eq. (4.45) is represented as, 

 

1 2

2

3 4

4

( )

( )

x x

x f x d T

x x

x g x

 

   

 

 

 (4.46) 
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where d f T    denotes the total disturbance. Assume that the disturbance 

d  has the upper bound, d  . To attenuate the disturbance’s effect on TSS, 

a fractional-order sliding mode control law will be proposed in next section. 

4.2.1 Sliding Mode Controller Design 

Due to the underactuation of TSS, the most difficult task is to design a 

sliding manifold that can undertake the convergence of all modes ( ,  ). Thus, 

we design a sliding manifold contains two sub-manifolds, s  and s . The sub-

manifolds correspond to the libration and length of TSS, respectively, 

 3s x   (4.47) 

 3

1

c
z s

c
  (4.48) 

 1 1

1 1 2 2( )s c D x z c D x 



     (4.49) 

where   denotes the fractional-order operator with  0,1   and , 1 3ic i   

are all positive numbers. 

The intermediate state z  in Eq. (4.49) interconnects two sub-manifolds 

together and transfers the equilibrium, 1 0x  , 2 0x   to 1x z , 2 0x  . Note 

that, 0s   indicates 0z   from Eq. (4.48). The sub-manifold 0s   will 

approach to zero as the sub-manifold s  goes to zero. As a result, all states will 

be steered to the equilibrium. 



85 

 

Apply the fractional operator D  to s  Eq. (4.49) and then combine with 

Eq. (4.46), such that, 

 
1 1 2 2 1 2 2 3 4 2 2( )D s c x z c x c x c f c x c u c d

            (4.50) 

Then, the fractional-order sliding mode controller is designed as, 

 

 

1 2 2 3 4

2

1
[ ( ) ]

sign

eq sw

eq

sw

u u u

u c x c f x c x
c

u k s s 

 

    

     

 (4.51) 

where equ  is the equivalent input and swu  is switch reaching function. k  and   

are parameters to guarantee the existence and convergence of SMC. 

4.2.2 Stability Analysis 

In order to analyze the stability of TSS under the proposed controller, a 

positive Lyapunov function candidate is given as 

 2V s  (4.52) 

Applying the fractional operator D  to both sides of Eq. (13) yields,  
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 (4.53) 
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Considering the inequality 
 

   1

1

1 1

i i

i

D sD s s
i i











 


    
  in Ref. 

[96], where   is a positive constant, and substituting Eqs. (4.51), (4.47)-(4.49) 

into Eq. (4.53), one has, 

 

1 2 2 3 4 2 2

2

2

2
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[ksign(s ) ]
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 
  

 





 (4.54) 

Taking 2k c   , then 0D V  . Thus, the trajectory of TSS will reach 

the sliding manifold 0s   and remain on it. If the sliding manifold is reached, 

then one has 1 1 2 2 3 3 0D s c x c x c x

     , which can be written as, 

 31
2 2 4

2 2

=
cc

x x x
c c

   (4.55) 

Putting Eq. (4.55) into Eq. (4.46) and linearizing the governing 

equations at the equilibrium point, 1 2 3 4 0e e e ex x x x    , it leads to 

 

2 1 2 3 2 2

3 3

4 4

0

0 0 1

2 3 0

x c c c c x

x x

x x

     
     


     
           

  (4.56) 

The characteristic polynomial equation of Eq. (4.56) is  
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 2 31 1

2 2 2

3 0
3

3
cc c

c c c
  

 
   

 
    (4.57) 

It is easy to know the roots of Eq. (4.57) are  1,2,3Re 0   if 1,2,3 0c  . 

Accordingly, the state variables ( 2x  , 3x  and 4x ) are asymptotically stable and 

will go to zero. Then, one can get 1 0x   due to 0s  . Thus, all state variables 

will stabilize to zero asymptotically. That is to say, the TSS under the proposed 

fractional-order sliding mode control law is asymptotically stable. 

4.2.3 Simulation and Discussion 

There are two approaches to proceed the numerical implementation of 

the fractional operator: direct and indirect discretization [97]. Among them, 

the rational filter based Crone method is one of the widely used approach, 

where the fractional operator D  is approximated by a filter s
 defined over a 

specified frequency range ( , )b h  , such as, 

 1

1
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i
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s

D s K
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 (4.58) 
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 (4.60) 

where N denotes the order of approximation and hK   is a gain term with 

fractional order power. In the simulation, we take the frequency range within

2 4( , ) (10 ,10 )b h   . The order of approximation is chosen as N = 5 because of 

the small truncation error after 5 order. 

To reduce the chattering phenomenon of SMC caused by the sign 

function in Eq.(4.51). A so-called bound lawyer function as follows is used to 

replace the sign function, 
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if 1

s s
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s s
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 (4.61) 

where 0.01  . 

To examine the effectiveness of the proposed fractional-order sliding 

mode (FOSM) tension controller, numerical simulations are run. For 

comparison purpose, three control methods, the standard integer order sliding 

mode (SM) tension controller, the PD controller in Ref.[29] and the fractional-

order PD (FOPD) tension control in Ref.[31] are adapted with the same 

parameters. The initial conditions of TSS are set at 1(0) 0.99x   , 2(0) 0.5x  , 
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3(0) 0x  , 4 (0) 0x  . 

 Influence of Fractional Order  

Parameters of sliding mode manifold are set as 1 1c  , 2 1c  , 3 0.8c   in 

this  case. The gains in the switching control law are 0.4k   and 0.2   for the 

SM and FOSM control laws. The fractional-order in FOC is 0.5  . 

( ) 0.2sin( )d    is used to simulate the total disturbance. 

To investigate the fractional-order’s influence, varying fractional orders 

  = 0.1, 0.3, 0.5, 0.7, 0.9 are used to FOSM tension controller’ comparison. The 

simulation results of tether length and rate are drawn in Figure 4.14 (a) and 

(b). It is easy to find that all controllers with different fractional-order 

successfully achieve the fast tether deployment in about 1.5 orbits with the 

disturbance suppressed. As shown in Figure 4.14 (c) and (d), the pitch 

(libration) angle and the angular velocity of tether stabilize to zero at the final 

stage of deployment. Furthermore, with a larger fractional-order, the 

deployment of TSS performs slightly faster and the max magnitude of the 

libration angle of tether decreases. As an example, the pitch angle of tether is 

about 0.7 rad with the fractional-order 0.9  , in contrast it is 0.8 rad with the 

fractional order 0.1  . As shown in the simulation results, the fractional- 

order of the FOSM have positive impacts on the close-loop system’s 

performance. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4.14  Time histories of states for different fractional-orders. 

 sInfluence of Sliding Sub-Manifold   

It is worth to mention that all parameters of sliding mode manifold has 

the effects on the performance of controllers. However, from the expressions of 



92 

 

two sub-sliding manifolds, one knows the 1c  and 2c  mainly affect the tether 

length, and the 3c  affects on the tether libration angle. To study the effect of 

3c  in sliding manifold s  on TSS, 1c  and 2c  are set as 1 1c  , 2 1c   same as in 

Section 4.2.3.1. The different 3c  from 0.7 to 1.5 will be compared. The gains in 

the switching control law are 0.4k   and 0.2   control laws. The fractional-

order of FOC is 0.5  . The total disturbance ( ) 0.2sin( )d    is used in the 

simulation case. Simulation results for the different 3c  are shown in Figure 

4.14. As shown in Figure 4.14 (a), tether lengths converge to the steady state 

quickly and the convergence rate is much faster with small the parameter 3c , 

where the convergence time reduces from 2 to 1.5 orbits as the parameter 3c  

decreases from 1.5 to 0.7. On the contrary, the maximum of pitch angle 

presents quite the opposite tendency as shown in Figure 4.14 (c). For instance, 

the max magnitude of the pitch angle is 0.8 rad with 3 0.7c   and reduces to 0.6 

rad with 3 1.5c  . As are clear from Figure 4.14 (b) and (d), the tether length 

velocity and pitch angular velocity converge to near zero around 1.5 orbits. In 

conclusion, the parameter 3c  has a remarkable effect on the TSS with proposed 

fractional-order sliding mode control law. 
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(c) 

 

(d) 

Figure 4.15  Time histories of states for different 3c  

 Comparisons with Other Control Methods 

In this case, the effectiveness of proposed FOSM controller is compared 

with three different control laws (PD, FOPD, SM), where the parameters of the 
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PD and FOPD controller are the same as in Refs. [29] and [31]. Simulation 

results are presented in Figure 4.16 (a-d), respectively. Figure 4.16 (a) shows 

that the SM and FOSM controllers perform better than PD and FOPD 

controllers for disturbance attenuation. It is clear to find that PD and FOPD 

control laws are very vulnerable to disturbance because they cannot suppress 

the oscillations in tether length caused by the disturbance. However, SM and 

FOSM control schemes perform better robust to suppress the disturbance than 

the PD and FOPD. Moreover, as Figure 4.16 (a) and (c) show FOSM controller 

shows better performance of small settling-time and tether angle in 

comparison with the classical integer-order SM controller. Figure 4.16 (b) and 

(d) present same trend in the tether length velocity and angular velocity. Thus, 

we can conclude that FOSM controller is with better robust performance than 

the controllers of PD, FOPD and SM. 

To further verify the effectiveness of disturbance suppression in a large 

frequency range, a composite disturbance that combines low and high 

frequencies is given as follows, 

  1( ) 0.2 sin( ) sin(100 )d       (4.62) 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4.16  Comparisons of different control methods 

As Figure 4.17 shows the tether tension is always continuous and 

positive, which indicates tether is always taut during the entire deployment in 

presence of the disturbance. Moreover, tether tension performs the same 

frequency oscillations as in the composite disturbance with low and high 
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frequency, where two modes of oscillation frequency of tension are shown in 

Figure 4.17. The green line represents the composite frequency oscillation and 

red line represents the low frequency oscillation. The simulation results of 

tether length and angle are similar as those in Figure 4.16, thus not shown. 

 

Figure 4.17. Time history of tether tension 

In summary, a robust fractional-order sliding mode controller is 

proposed to address the problem of unknown disturbance in TSS deployment. 

Compared with other classical control methods, the effectiveness and 

robustness of the proposed FOSM controller are demonstrated by simulation.  
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Chapter 5 DESPIN ROTATING TARGET BY TETHERED 

SPACECRAFT SYSTEM 

Summary: The focus of this chapter is on studying the rotating target despin. 

First, a parametric study of the physical parameters is investigated. Then, 

different despin control strategies are designed with considering the 

operational constraints. Further, dynamics and control of the despinning with 

considering the orbital motion’s effect is given. Finally, a passivity based MPC 

is proposed to stabilize the underactuated TSS under the input and state 

constraints. Part of theatrical and simulation results has been published in 

reference paper B, C and D. All variable symbols in this chapter refer to the 

definitions in Section 3.2. 

5.1 Parametric Study of System’s Physical Parameters  

As shown in the normalized tethered system model in Eq.(3.32), we can 

find that the system’s dynamic behaviors highly depend on two dimensionless 

variables: inertial ratio and length ratio, corresponding to the system’s 

physical parameters, which further affecting the despin efficiency. Also, the 

magnitude of thrust significantly affects the despin efficiency. Thus, it is very 

necessary to study parameters’ impacts on the target despin. 
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5.1.1 Controller Design and Stability around Equilibrium 

Before conducting the parametric study, the admissible equilibrium and 

simple control strategy should be studied first. To determine the admissible 

equilibrium of the system in Eq. (3.30), we can study the    phase portraits 

of tether angle subject to the operational constraint as following, 

 
2


   

  22

2

cos
>0

si

 

n

  
1

1

tu
T

   




  




 (5.1) 

First, assume the target is rotating with a small constant angular 

velocity. Then, one can reduce Eq. (3.30) to, 

 2sin /      (5.2) 

The phase portraits of   are plotted in Figure 5.1 with different   and 

  based on Eq.(5.2). As is clear from Figure 5.1, all trajectories of different   

and   preforms similar trends, which shows the  ,  =  0,0  is the stable 

center equilibrium and  ,  =  ,0  are unstable saddles. Thus, 

   , , ,0,0d      is the unique admissible equilibrium of the system due to 

the operational constraint 2  , where d  denotes the desired angular 

velocity of the target. 

Next, we propose a despin control law to despin the target angular 
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velocity to d . For sake of convenience, we define an error state de     to 

shift the equilibrium to zero. Then, one can convert the Eq. (3.30) as 
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 (5.3) 

 

 

Figure 5.1  Phase planes of TSS at different values of   and  . 

Linearizing the nonlinear Eq.(5.3) at zero yields 
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 (5.4) 

Seen from the above Eq. (5.4), e  only depends on tu  while the   

depends on tu  and nu . Thus, one can decouple two inputs by taking 0tu c   

as a positive constant to satisfy the positive tension constraint in Eq. (5.1). 

Then, nu  is the only input to determine. 

Further, simple proportional-derivative controller is proposed as follows, 
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where ik  (i = 1, 2, 3) denote control gains. 

After substituting Eq.(5.5) into Eq.(5.4), one has 
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 (5.6) 

It is easy to obtain the characteristic polynomials of Eq. (5.6) as, 
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where 
  21 d c

p
 



 
 . According to the Routh–Hurwitz stability criterion, 

the following inequality  

   2

1 3 3 2 10;   0;   1 0dk k k p k k p            (5.8)  

should hold to guarantee the stability of the equilibrium. 

If 2 0k   and  3 11k k   , the inequality (5.8) always holds true. 

Therefore, the closed-loop system will be locally asymptotical stable at the 

equilibrium    , , 0,0,0e    , which means the target’s spinning velocity 

converges to d . It is worth noting that the setting 0d   leads the complete 

despin to zero. 

5.1.2 Simulation and Discussion  

As discussed before, we should investigate the effects of thrust 

magnitude, inertial ratio, and length ratio on despin efficiency. Thus, three 

simulation scenarios with different inertial ratio, different length ratio, and 

different thrust will be conducted in the subsequent study. 

In all simulation cases, the initial conditions are same at

   , , 1,0,0    . Target’s initial angular velocity 0 0.02 /rad s   is from 

Ref.[74] and the time scale is normalized by the target’s rotation period

0 02 /T   . Finally, the controller gains 1 2 3 1k k k   are given for all 
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simulation cases. 

 tuEffect of Tangent Thrust  

In this case, inertial ratio is 2000   and length ratio is 10  . Then, 

different tangent thrust 0.1,  1,  10,  100tu   are compared in simulations. As 

shown in the Figure 5.2 (a-e), all the states converge to zero as expected. Figure 

5.2 (a) shows the despin times decreases significantly from 10,000 to 20 cycles 

with the magnitude of the tu  increase from 0.1 to 100. The tether libration 

angle converges to zero from 10000 to 20 cycles with tu  from 0.1 to 100 as well, 

shown in Figure 5.2 (b). However, the angular velocity of tether libration 

decrease to zero around 15 cycles for all values of tu , see Figure 5.2 (c). Tether 

tensions are plotted in Figure 5.2 (d), where all tensions quickly approach to 

the magnitude of the thrust tu . In Figure 5.2 (e), the normal thrust nu  goes to 

zero quickly and its magnitude is smaller than 1, 1nu  . Thus, one conclude 

that the tangent thrust has a significant effective on despin. The target can be 

quickly despun for a sufficient capacity of thrust at the tug.  



105 

 

 

(a) 

 

(b) 
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(c) 
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(e) 

Figure 5.2  Effects of thrust tu  on despin. 

 Effect of Inertial Ratio  

In this case, length ratio is 10   and tangent thrust is 1tu  . Different 

inertial ratio 500,  1000,  2000,  10000,  20000   are compared. As shown in 

Figure 5.3, all the states reduce to zero at the end of despin, and as the inertial 

ratio increases the despin time increases. Larger inertial ratio means the mass 

of target is much heavier, thus it requires much longer time to despin for same 

small tug. Figure 5.3(d) shows that all tether tensions converge to the given 

tangent thrust 1tu   similar in the previous case. As shown in Figure 5.3(e), 

the normal thrust peaks at the beginning with maximum less than 1 for all 

inertial ratios. The normal thrust gradually approaches to zero in the despin 
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process. Thus, it is feasible to despin a massive target by TSS with a small 

thrust. 

 

(a) 

 

(b) 
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(e) 

Figure 5.3  Effects of inertial ratio   on despin. 

 Effect of Length Ratio  

In this case, different length ratios (tether length/target radius) are 

compared in the despin. Inertial ratio 2000  , tangent thrust 1tu  , and the 

length ratios 2, 5,10,100   are used in the simulation. The results are plotted 

in the Figure 5.4. As shown in Figure 5.4 (a), despin of the large target is 

improved for larger length ratio. Because the system’s inertial momentum 

increases with the increase of length ratio for given size of target, the same 

amount energy reduce will result in more decrease of the angular velocity for 

large target. Similar effect can be found for tether libration angle and angular 
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velocity in Figure 5.4 (b) and (c). As the length ratio increases, the libration of 

tether converges faster. It should be noted that there exists a large oscillation 

for length ratio 100, which can be eliminated by increasing the control gain 3k . 

Seen in Figure 5.5, the oscillation of the libration is well suppressed for 3 10k  . 

The maximum magnitude of tether libration reduces from 1 to 0.35 with the 

increase of length ratio. Figure 5.4(d), shows the maximum of tether tension is 

about 15 for the lower length ratio 2  , but approaches to 120 for 100  . 

This is caused by the centrifugal force term  
2

    in the tension. 

 

(a) 
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(b) 

 

(c) 



113 

 

 

(d) 

  

(e) 

Figure 5.4  Effects of length ratio   on despin. 
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Figure 5.5  Libration angle for different length ratios at 3 10k   

In conclusion, parametric study shows that tethered tug with small 

thrust can effectively despin the massive target. Longer tether can improve the 

despin efficiency, as well as the large tangential thrust that is along the tether. 

 

5.2 Control Strategies Study of Despin  

5.2.1 Control Strategies and Stability Analysis  

This section is to study the control strategy to despin the target’s 

rotation to a small level. All controllers are designed subject to the operational 

constraints: 0T   and 2  . 
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a. Thrust Control 

Frist, a thrust controller is designed to reduce the rotation of the 

massive target by thrusters on the small spacecraft for the fixed tether length. 

System’s equations in Eq. (3.39) are written as follows,  
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 (5.9) 

Equation (5.9) indicates the tether’s libration angle   is coupled with 

the large space target’s rotational angular velocity  . Thus, it is easy find that 

one can despin the target if sin 0T   . To this end, the libration angle of tether 

should satisfy sin 0   to reduce the angular velocity   due to tether tension 

T  should be positive. Furthermore, the libration angle of the tether should be 

regulated by the normal thrust nu  to prevent the tether from wrapping around. 

One can design the thrust tu  to ensure the positive tether tension. Thus, a 

thrust controller similar to last section is designed as follows,  
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 (5.10) 

where k  denotes a positive control gain. max  is set to 2  to avoid the tether 
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winding up. Notably, the thrust tu  is set as a constant thrust c , which is a 

positive constant to satisfy the positive tension from Eq. (5.9). nu  is a PD-like 

controller which has a barrier term to limit the tether libration angle. 

b. Tension Control 

Secondly, a tension controller is designed. The ideal is to accommodate 

the tether tension to regulate the tether length to dissipate the system’s total 

kinetic energy, because the decrease of total kinetic energy leads rotating 

target despun. The controller is designed as following, 

 ( )t c pt vtT u T k +k       and 0T   (5.11) 

where ( )s is strictly monotonously increasing saturation function defined as 
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 (5.12) 

with 
sign( )

( , , ) sign( ) ( ) tanh
s s

s s


     
 

 
    

 
 and c tT u   , 0.9   [98]. 

cT  denotes the centrifugal force in the tether, d     denotes the error of 

tether length, ,pt vtk k  are the two positive control gains. The centrifugal force is 

positively definite, 2 2 2[ cos ( ) ] (sin ) 0cT              and it is assumed to 

be slowly varying. Moreover, a thrust 0tu   is given to compare the efficiency 

of despin.  
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c. Hybrid Control 

Finally, a hybrid control in combination of tension and thrust control is 

proposed to satisfy the constraints of positive tension and libration angle. 

To study the closed-loop system’s stability, we define the following 

energy-like Lyapunov function candidate, such that, 

 
0 0

( )dpt c bV K k T d V
 

         (5.13) 

where 1/ ( )2

0K K m r  denotes the dimensionless kinetic energy and 
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V  
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
 is a barrier Lyapunov function to limit the tether angle 

within 2  and bV  is bounded from below. Because of nu  with the opposite sign 

of the  2 2

max   , then nu    if 2  , which will result in tether angle 

to keep away with 2 . Similar results will be obtained if 2   .Thus, in 

this study the tether angle is considered to be less than 2 . 

Taking the time derivative of the Lyapunov function and combing with 

the controllers in Eqs. (5.10) and (5.11) yield that 



118 

 

 

2 2

max

2 2

max

2

( ) [( cos )sin

( )

( ) sin

1
[

]

( ) [( cos ) ]

( cos( ( )] ])) [

pt c

pt c

pt vt

t

p

t t n

n

t

V r

k

u T u u

u

T k

k T cr k

k +k

u

l

T

k W





  


   

 

  




   

 

      

  

  



 



 

 


   






  



    

 

    

 

  

  

 (5.14) 

where
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( sin)W k cr
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
 


. We know [ ( ) ( )]pt vt ptk +k k       

has the same sign of    due to the strictly increasing function  . If   is 

bounded, W  is bounded due to   within 2 . Therefore, the closed-loop system 

under the hybrid controller will be ultimately bounded with suitable 

parameters selected. 

5.2.2 Simulation and Discussion 

In this section, numerical simulations are used to verify the 

effectiveness of these control strategies. The initial conditions of the system 

are set as    initial, , , 1,1,0,0     . The target’s initial angular velocity is set to

0 0.02   rad/s, same as in Section 5.1.2. Similar, time scale is normalized by 

the target’s rotation period, 0 02 /T   . 

 Despin by Thrust Only 

First, the thrust control is tested. System’s parameters are chosen as 
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inertial ratio 2000   and length ratio 10  . Controller is used with control 

gain 10k   and thrust 0, 0.1,1,  10tu   in the simulation. As shown in Figure 

5.6 (a-e), all states converge to zero as expected. Figure 5.6 (a) illustrates the 

time to despin the target decreases significantly from about 5,000 to 50 for the 

increase of tu . At the same time, the libration angle of tether is stabilized to 

zero as in Figure 5.6 (b) and the angular velocity of libration decreases much 

faster in 15, see Figure 5.6 (c). Furthermore, all tether tensions stabilize at the 

magnitude of tu   as shown in Figure 5.6 (d), and the thrust nu  converges to zero 

shown in Figure 5.6 (e) at the end of despin. It is worth noting that the 

magnitudes of nu  are always less than 1.2 ( 1.2nu  ) during despin, see Figure 

5.6 (e). Current simulation case indicates the thrust control strategy is effective 

to despin the target and the thrust tu  has significant effect on the despin 

efficiency. 
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(e) 

Figure 5.6  Despin process by thrust control. 

 Despin by Tension Control Only 

Next, the tension control strategy is verified through simulation. In this 

section, we set the inertial ratio as 2000   and the finial tether length as 

10, 50,100,  200d  , respectively. No thrust action will be applied, thus

0t nu u  . Control gains 0.01ptk  , 5vtk   are used for all cases. As shown in 

Figure 5.7 (a-e), the angular velocities of the target are decreasing as the tether 

deploys. Figure 5.7 (a) shows the angular velocity of target decreases from 1 to 

0.95 and to 0.05 with the deployment of the tether. This is because the increase 

of the tether length means the increase system’s inertial momentum, which 



123 

 

will result in system’s angular velocity decrease. However, the max magnitude 

of tether libration increases with the increase of the final tether length, see 

Figure 5.7 (b). This is because the induced Coriolis force by deployment results 

in the libration of tether as tether deploys. As is clear from Figure 5.7 (d), the 

tensions finally approach some constants which equal to the centrifugal force, 

because the target’s angular velocities are not de-spun to zero. 

 

(a) 
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Figure 5.7  Despin process by tension control 
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 Despin by Hybrid Control 

In this section, the hybrid control strategy will be tested. The inertial 

ratio and the gains of tension controller are same as in Section 5.2.2.2. The 

desired tether length are set as 10, 50,100,  200d   and the thrust 1tu   in this 

simulation.  

Simulation results are plotted in the Figure 5.8 (a-e). The target’s 

angular velocity is despun quickly for the hybrid control. Figure 5.8 (a) shows 

the despin efficiency improves with the increase of. As from Figure 5.8 (b), the 

max libration angle of tether increases with the increase of d  because of the 

effect of the Coriolis force. Notably, the libration constraint max / 2   are 

satisfied in all profiles. Next, Figure 5.8 (c-d) shows the tether is regulated to 

the desired length as expect and tether tension is always positive at the end of 

despin. As is clear from Figure 5.8 (e), the required thrust nu  is slightly bigger 

than that in the Section 5.2.2.1. 
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(a) 

 

(b) 
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(e) 

Figure 5.8  Despin process by hybrid control 

According to the simulation comparison, we verify that the large 

rotating target could be de-spun by the designed control strategies. Thrust tu  

has a positive effect on despinning the target and the libration angle can be 

limited by thrust nu . Tension controllers require longer time to despin the 

target. Despin efficiency is enhanced with hybrid control, combination of thrust 

and tension. Thus, the hybrid control strategy is the best choice for the purpose 

of fast and complete despin.  
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5.3 Despin Large Target in Central Gravitational Filed 

In this section, the dynamics behaviors and despin control are studied 

with consideration of the gravitational filed.  

5.3.1 Equilibrium Configurations and Harmonic Motion 

Considering the constant angular velocity 0  and tether length, Eqs. 

(3.57)-(3.59) are reduced to 
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 (5.15) 

Figure 5.9(a-c) shows the phase portraits    for different   and 0  

with 0.0036   and 2,000  . It can be found that    0, 0,    is a stable 

center equilibrium and    , ,0      are the unstable saddles. Further, the 

region of attraction is contracting with the increase of tether length. The 

similar trends for the region of attraction are found with the decrease of the 

angular velocity 0 . Therefore, one can conclude that the system’s stability will 

degenerate as the target’s angular velocity reduces and tether deploys. To keep 

tether from wrapping around the target libration angle 2  , the only 

admissible equilibrium is at the origin. 
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(a) Phase portraits of system with 0 =1  

 

(b) Phase portraits of system with 0 =0.5  
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(c) Phase portraits of system with 0 =0.1  

Figure 5.9  Phase portraits of system with different 0  and   

To find the equilibrium configuration of the tethered system, we set the 

first and second order derivatives to zero, 0              ,

constanteT T   and 0u   in Eqs. (3.57)-(3.59), such that, 

    2

2
3cos cos 3 cos

T
          


 (5.16) 

 
 

     2

3sin cos 3 sin cos

3 cos sin 3 sin cos 0

     

        

  

    
 (5.17) 

      23 cos sin 3 sin cos 0              (5.18) 

Simplify the above equations by, 
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 (5.17)-(5.18) (1 cos / )   -(5.16) sin   (5.19) 

Then we have, 

 sin 0T    (5.20) 

Due to 2   and 0T  , the admissible static equilibrium of tethered 

system exists only at 0  . 

In light of 0  , Eq. (5.18) becomes, 

  1 sin cos 0          / 2n  ,  n  (5.21) 

Thus, the equilibrium configurations of TSS are at / 2, 0n    . 

Illustrate these equilibrium configurations of tethered system in orbit as 

shown in Figure 5.10. There are two in local vertical (a) and (b) and two in local 

horizon (c) and (d). It should be pointed out such equilibrium configuration of 

TSS does not exist in free space. 
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Figure 5.10  Equilibrium configurations at:  

(a) 0  , (b)   , (c) 2  , and (d) 3 2  . 

The two equilibrium configurations in local vertical are stable while the 

two in local horizon are unstable. Therefore, the admissible equilibrium 

configurations of TSS are determined at (a) and (b) in local vertical direction. 

Then, one can obtain the tether tension eT  at the equilibrium configurations 

from Eq.(5.16) with , 0n    , as follows, 

  23 1eT     (5.22) 

Considering the constant tether length and setting control action to zero, 

i.e., 0     and 0u  , then Eqs.(3.51)-(3.53) are reduced to 

 
 

     

2

2

2 2

sin

sin

sin 2sin  

3 cos sin 3 s

cos1

in c s o

f




 

  

     





 


 

  


  

      

  
    

  

 (5.23) 

To solve the dynamic motions near the equilibrium state, one can 

linearize the Eq.(5.23) at the equilibrium state 

  
2

2

0 0 1d
3 0

1 1d1
1

  


   

       
         

       
 (5.24) 

where  t    denotes the dimensionless time, the true anomaly. 
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Assuming  ,
T iwe    Z  and putting into Eq. (5.24) yields 

  2
0 0 1

1
3 1 0

1 1
w








     
      

    
Ζ  (5.25) 

where Z  is the complex amplitude. 

Eq.(5.25) has non-trivial solutions, only when 

  2
0 0 1

det 3 1 0
1 11

w



 

     
      

    
 (5.26) 

which leads to, 

 
   

2

2

1,2

3 1 2 2 1 1

2
w

      



        
    (5.27) 

where 1,2w  denote the fast and slow frequencies of harmonic motion, 

respectively.  

Then, the solution of   and   can be given as, 

 
 

 
       1 1 1 1 1 2 2 2 2 2cos sin cos sinA w B w A w B w

 
   

 

 
           

 
b b  (5.28) 

 

 
2

T

1,2

2
,  1

1 2 2 1



     


      

 
 
 
 

b  (5.29) 

From Eq.(5.28), the TSS oscillates with pendular motions near the 
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equilibrium. The amplitudes of harmonic motion ( 1,2A , 1,2B ) can be obtained 

with initial conditions. 

Without loss of generality, the initial condition is assumed as  0 0  , 

 0
d

d





 ,  0 0  ,  0 0

d

d




 , where   is a small constant. Substituting 

this initial condition into Eq. (5.28) leads to, 

 

 
2

1,

1,

2

2

1,2

2 2

0

1
B

w

A

  







  







 (5.30) 

Then, the approximate solutions of Eq. (5.24) are obtained as, 

 
 

 
   1 1 1 2 2 2sin sinB w B w

 
 

 

 
  

 
b b  (5.31) 

5.3.2 Control Laws and Stability 

Inspired from the previous study in section 5.3, two control laws are 

proposed here to despin the rotating target. 

a. Tension Control Law 

First, a pure tension control is proposed as follows, 

  e p d vT T k k       (5.32) 

where eT  denotes the tether tension at the equilibrium given in Eq.(5.32). ,p vk k  
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denotes the control gains to be determined and d  denotes the desired tether 

length. 

To analyze the closed-loop stability under the pure tension control law, 

a Lyapunov function V  is defined as, 

 

 

   

T 2

22 2 2 2 2

1
3 1 cos cos

2

3 3
sin sin

2 2 2

p

d

V

k

   

     

      

      

X HX

 (5.33) 

where  col , ,    X  and H  is a positive definite matrix as  

2 2

2 2

1 sin 0

sin 1 2 cos cos

0 cos



       

   

 
 

    
 
  

H

 

It is easy to find 0V   due to positive definiteness of  H  and 0  . 

Then, by taking the derivate of V  with respect to the dimensionless time 

one has, 

  2 23 3 p dV T k                  (5.34) 

Putting the Eq. (5.32) into Eq. (5.34), we have  

 2

vV k     (5.35) 

Eq.(5.35) shows V  is strictly decreasing if 0  . Thus, the target’s 

angular velocity will have an upper bound because V  is bounded. 
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Further, apply the operation, 

      Eq. 14 Eq. 15 (1 cos / ) Eq. 13 sin         (5.36) 

one has 

 sinT    (5.37) 

Thus, the angular velocity of target will keep decreasing if the libration 

angle 0  , which can be ensured in the tether deployment due to the induced 

Coriolis force  2         acting in the negative direction of  . 

Further, the proposed tension control law is modified as following to 

enhance the controller’s performance, 

     
2

1e p d vT T k k             (5.38) 

b. Hybrid Control Law 

To avoid the tether winding around the target, a thrust controller is 

given as, 

  u k k k      
      (5.39) 

where , ,k k k     denote the control gains and  
 

2
1 2


 

 



 is a barrier 

term to limit the libration angle. 

Put Eqs. (5.39) and (5.32) into Eqs.(3.57)-(3.59) and linearize the system 
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at the equilibria [ , , , , , ] [ ,0, ,0,0,0]d n           , such that 

 
y = Ay  (5.40) 

where    , , , , ,
T

d n             y  denote the state vector and A  is the 

Jacobin matrix. 

   
2

0 1 0 0 0 0

0 2 2 0 2

0 0 0 1 0 0

3 3
0 0 0 0 0

0 0 0 0 0 1

3 1 3 13 32
0

p v d d

d

d dd

d d d d d

k k

k kk  

 





   

     



 
 
  

 
 
 

 
 
 
 
    
     
  

A  (5.41) 

Then, to ensure the stability of the closed-loop system in Eq.(5.40), one 

can analyze the characteristic equation of A , where obtains a sixth order 

characteristic equation which is hard to solve. Hence, a conservative way to 

determine the stable regions of the control gains is given as following. 

1) Assume 0u  , i.e., 0k k k      , then one can obtain tension 

control gains ,p vk k  should satisfy, 

 0, 0p vk k    (5.42) 

2) Assume no tension control action, i.e., 0p vk k  , then one can 
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obtain thrust control gains , ,k k k     should satisfy,  

 
   

 

   

2

2

2 2 2 2

0, 0, 0

3 3 7 6 3 3 0

3 7 3

7 6 3 7 3 0

d d

d d

k k k

k k k k k k k k k

k k k k k k k k

k k k k k k k k k

  

        

       

        

    



   

 

       

      

        

  

       

   

     

 (5.43) 

3) After the gains of thrust control and tension control obtained, 

check if the eigenvalue of A  locates in the left-plane. If not, 

reselect the gains from in 1) and 2). 

For 2,000   and 100d  , the gains of controllers are selected as

0.5pk  , 100vk   and 0.5, 100, 100k k k      . 

5.3.3 Simulation and Discussion 

In this section, the TSS’s dynamic behaviors are first simulated to study 

the tether’s libration motion. Then, two simulations are conducted to verify the 

effectiveness of the proposed two control laws. The simulations are ran in the 

Matlab 2017a with ODE 45 solver. TSS’s physical parameters are listed as in 

Table 5.1. 

Table 5.1  Physical parameters of system 

Parameter Value 

m1 250 kg 

m2 106 kg 
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R 42164 km 

r 10 m 

  7.291*10-5 rad/s 

0  0.02 rad/s 

 

 Harmonic Motion 

To simulate the harmonic motions, the inertial ratio 2000   and 

length ratio 10   are used with the initial condition at

 0 0
0 0, , , 0, 0.03, 0, 0

d d

d d

 
 

 

 
 

 
. 

From Eqs.(5.28)-(5.31), one can get the approximate solutions as, 

 
 

 

   

   

0.00008288sin 1.81705 0.23478108sin 0.12842

0.01658486sin 1.81705 0.23466316sin 0.12842

   

   

    
   

   
 (5.44) 

The profiles of  ,   and tether tension are plotted in Figure 5.11 (a-e), 

where the states of system oscillate periodically around the equilibrium.  As 

shown in Figure 5.11 (a) and (b), the approximate solutions are well consistent 

with the numerical solutions for the given initial condition. Figure 5.11 (c) 

shows the angular velocity of the target mainly performs the slow-mode motion 

because the magnitude of fast mode is very small, seen from Eq.(5.44). 

However, two modes of angular velocity of the tether libration are very clear 

in Figure 5.11 (d). As shown in Figure 5.11(e), the profile of the tether tension 
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oscillates around 33 periodically. Figure 5.11 (f) shows the energy exchange 

between the target and spacecraft, where system’s energy with respect to the 

initial value is defined by 

    , , , 0M m M m M mE E E    (5.45) 

Here ,M mE  are the normalized energies of target and spacecraft. As is clear 

from Figure 5.11 (f), the system’s total mechanical energy is conservative and 

energy is periodically transferring between the target and the small spacecraft 

via tether. 

 

(a) 
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(b) 

 

(c) 
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(d) 

 

(e) 
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(f) 

Figure 5.11  Time histories of state during despin process 

 Despin by Tension Control 

In this case, the proposed tension control law to despin the target is first 

verified by numerical simulation with system’s initial condition at 

   0 0 0 0 0 0, , , , , 0, 1, 0.01, 1, 0, 0         , inertial ratio 2,000  , and the desired 

dimensionless tether 100d  . 

The simulation results are plotted in Figure 5.12 (a-h). Figure 5.12 (b) 

shows that magnitude of target’s angular velocity decreases very quickly with 

the increase of the tether length, and it finally stabilizes to a small number 

( 0.165 ) as the tether length reaches 100d  . Consequently, the target’s 
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rotation angle increases persistently with time, as shown in Figure 5.12 (a). In 

the meantime, Figure 5.12 (c) and (d) show that libration of tether and its 

angular velocity,  ,  , stabilize to zero as expected and the libration angle 

of tether    keeps negative during the despin process and less than / 2 . 

Figure 5.12 (f) illustrates the tether deployment velocity finally stabilizes to 

zero under the proposed tension control law. Furthermore, as shown in Figure 

5.12 (g), the tether tension is always positive during the despin process and 

finally stabilizes to 2.74. This is because the target cannot be despun 

completely only by tension control. Figure 5.12 (h) presents the target’s and 

spacecraft’s energy variation, where the target’s kinetic energy is dissipated by 

the tension control law, which acts like a damping-spring. There is a part of 

the energy transferred from large target to the small spacecraft. Moreover, the 

target’s kinetic energy keeps decreasing for non-zero the tether deployment 

velocity. However, the target’s total energy does not decrease to zero for the 

tension controller. 
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(a) 

  

(b) 
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(c) 

 

(d) 
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(e)  

 

(f) 
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(g) 

 

(h) 

Figure 5.12  Time histories of states with tension control 
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 Despin by Hybrid Control 

In this section, the hybrid control law is used to completely despin the 

target’ angular velocity to zero. Same physical parameters are used as those in 

Section 5.3.3.2 for comparison purpose. 

The simulation results are plotted in the Figure 5.13(a-h). Figure 5.13 

(a) shows the rotation angle of the target is stabilized to 55    with the hybrid 

control law. Figure 5.13 (b) shows the angular velocity of target is completely 

despun to zero very quickly. The libration angle of tether   approaches close 

to / 2  at the beginning of despin and then decreases to zero at the end, as 

shown in Figure 5.13 (c). The libration angle   is kept negative due to the 

induced Coriolis torque  2         during the despin process. Figure 

5.13 (d) indicates the angular velocity    finally converges to the desired 

equilibrium, zero. As shown in Figure 5.13 (e-f), the tether is smoothly 

deployed to the desired length as expected and tether deployment velocity goes 

to zero. The tether tension is always positive and stabilized to 

  2 0.3 1 004eT     , as shown in Figure 5.13 (g). Next, the thrust’s 

magnitude, as shown in Figure 5.13 (h), is always less than 100 to prevent the 

tether from wrapping around the target. Finally, Figure 5.13 (i) the energy 

variation of the target and spacecraft, where the target’s kinetic energy 

approaches to zero with the increase of time, which means that system finally 
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stabilizes with 0     under the hybrid controller. Therefore, compared 

with the only tension control, the hybrid control with adding a small thrust can 

achieve a complete despin of the target’s angular velocity to zero. 

 

(a) 
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(b) 

 

(c) 
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d) 

 

(e) 
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 (f) 

 

(g) 
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(h) 

 

(i) 

Figure 5.13  Time histories of states with hybrid control. 
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In the presence of the gravitational filed, the proposed strategies for a 

free-space in section 5.3 are modified and tested by the simulation studies. A 

tension controller can despin the target’s angular velocity to a small bound, 

while hybrid control, with a thrust on the spacecraft, achieves the complete 

despin. 

5.4 Passivity-Based Model Predictive Control 

In this Section, the passivity based MPC controller is designed to solve 

the underactuated TSS control problem to despin the large target and, at the 

same time, maintain the constraints of positive tension and allowable 

operational libration angle.  

5.4.1 Passivity Rendering 

Recall the dynamic equations of tethered despin system in Section 3.2.2 

and rewrite in the compact form,  

 Mq Cq Dq G      (5.46) 

where the dimensionless variables 

/ nl l  , nr l  ,  2

nI ml  ,  2

0l l nu u ml  , 

 2

0s s nu u ml  , 0t  , 0o o   , 0( ) ( ) 


  . 

nl  is the nominal tether length and 0  is the initial rotating angular velocity 
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of the space target. The matrixes are given as follows, 

2 2 2

2 2

1 sin 0

sin 2 cos cos

0 cos

M

 

         

   

 
 

    
 
  

 

    

    

   

0 cos 2 cos 2

cos 2 cos sin cos sin 2

2 sin 2

o o

o o

o o

C

           

                  

         

        
 
          
 
    
 

   

     

     

2 2 2

2 2 2 2 2

2 2 2

3 cos cos 3 cos

3 sin cos 3 sin 2 3 sin cos

3 cos sin 3 sin cos

o o

o o o

o o

G

      

            

         

    
 

      
 

     

 

 diag 0,0,D f  is the damping matrix and f  denotes the pivot viscous 

damping and resistance terms affecting tether libration.  

The generalized force/torque Pu  , 

1 0

0 cos

0

P   



 
 

 
 
  

 and 
l

s

u
u

u

 
  

 
. 

The following important properties, which will be exploited in the 

controller design, are summarized, 

Property 1: M  is positive definite and satisfies m M m  . m  and m  are the 

lower and upper bounds of matrix M  that  are positive and bounded. 

Property 2: The matrix 2M C  is skew-symmetric and  2 0Tq M C q  . 

Remark 1: The positive definiteness of M  can be easily verified by checking its 

principal minors with 0    , 0   and 0        .   and   is the 
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lower and upper bound of the dimensionless tether length. 

Remark 2: The skew-symmetry of the 2M C  can be directly proved by using 

the above matrix M  and specially chosen C . However, it is worth nothing that 

 2 0Tq M C q   is always true even if the matrix 2M C  is not skew-

symmetric when matrix C  is not specialized as above. Because 

 2 0Tq M C q   reveals the conservation of energy property of Euler-

Lagrange system.  

For sake of simplicity of formulation, the dynamic model of the tethered 

system is represented into the form of general nonlinear as, 

 
 

   1

v
y f y g y u

M Cv Dv G 

 
   

    
  (5.47) 

where the state is defined as T[ , ]T Ty q v , [ , , ]Tq     and , ,
T

v       . 

Define the new variable as, 

  cos sin cos sin
T

x          (5.48) 

Rewrite the system equations Eq.(5.46) with respect to the variable x  

as follows,  
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 

1 2

3 4 5

4 3 5

6 7 8

7 6 8

2

1

5

8

x x x x x x x

x x

x x x

x x x

x x x

x x x

x

x M C v D v G

x





 



 



 
 

     
 
 

 (5.49) 

where  2 5 8, ,
T

xv x x x  is the velocity state of x . 

Thus, the attainable equilibria can be written as, 

  8 2 2

2 5 8 1 4 7 3 6| 0, , 0, 1dx x x x x x x x x           (5.50) 

The passivity of system is revealed to apply control action directly based 

on the PBC theory. To guarantee the passive mapping from input to output 

u x , the energy storage function V  must have the minimum at the desired 

position dx  ,such that,  

  arg mindx U   (5.51) 

A non-negative energy storage function V  is constructed by the energy 

shaping technique as follows,  

 
1

2

T

x x xV v Mv U   (5.52) 
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 

 
1

2 2 2 2

1 3 3 6 4 7 4

22 2

1 4 6 3 7 1
0

3
3 1

2

3
(s)

2

x o o

x

o

U x x x x x x x

x x x x x k ds

   

 

     

   

 (5.53) 

where the function  1x  satisfies  1 1 0x x  , 1 0x  , and  1 0x   has the 

trivial solution at 1 0x  . 1 1 1 1d dx x x x      and 1 0k   is a positive number. 

Remark 3: Seen from the storage function in Eq.(5.52), the first part is a kinetic 

energy, and the second is a potential energy. The kinetic energy and potential 

energy has the minimum at dx . Thus, it arises a construction framework of the 

storage function based on system’s energy. The kinetic energy term can be 

chosen as system’s kinetic energy, and potential energy xU  can be rendered by 

energy shaping. 

To identify the passivity mapping from u x , one can take the 

derivative of Eq. (5.52) along the trajectory of system,  

 

    2

1 1 2 1 6 5 1 8 8

1

2

T T

x x x x x x x

le l

V v M v v M v U

k x u u x F x x x x x f x 

  

            

 (5.54) 

It is clear to find the passive mapping h , if new input and output of 

system are selected as follows,  

  1 1 ,
T

le l sk x u u u       and  2 ,
T

h x   (5.55) 
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where   denotes a virtual output,  1 6 5 1 8x x x x x    .  

Then, Eq.(5.54) can be represented as, 

 2

8

T TV h f x h     (5.56) 

Obliviously, Eq.(5.56) satisfies the inequality of differential passivity. 

Remark 4: We can naturally choose a passivity-based controller  h    to 

ensure the closed-loop system stability. Here,  h  is a Lipschitz continuous 

function satisfying   0h   if 0h  , and   0 0
T

h h for h    .  

5.4.2 Merging Passivity into MPC 

Recall the conventional MPC formulation for nonlinear system, 

 

 

 

   

0

0

min

s.t .

0

T
T Tx Qx R ds

x f x g

x x t

 





 




 (5.57) 

where T  is the prediction horizon. 

The passivity is merged into MPC as an additional constraint to 

guarantee the closed-loop stability. Then, the formulation of PB-MPC becomes, 
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 

 

 

 

0

6

max

2

min

s.t .

0 , 0

0 ,

T
T T

l s s

TT

x Qx R ds

x f x g

x x

u u u

h h h

 



   



 

 

 

  



X
 (5.58) 

where   is a positive number.  h  is a strictly increasing function which 

satisfies the properties as in Remark 4 and    
2 T

h h h   .   is a positive 

number. It should be noted that the last line in Eq.(5.58) is referred as the 

passivity constraint. 

5.4.3 Stability Analysis 

Choose the positive function V  in Eq. (5.52) as the Lyapunov candidate 

and integrate both sides of Eq.(5.56), such that,  

 
   

 

2

2 8
0 0

2

2 8
0 0

0

0

T

T

V V k hds f y ds

k h hds f y ds

 



 



 



   

   

 

 
 (5.59) 

Thus, we have    0 0V V  , which indicates V  . 

Then, arranging the Eq.(5.59), one has that, 

      2
0

0
T

k h hds V V


       (5.60) 
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    2

8
0

0f x ds V V


       (5.61) 

In regarding of 0f  , one can obtain 28x  .  

Recall    
2 T

h h h   , and combine with Eq.(5.60), one has 

    
2

0 0

T
h ds h hds

 

        (5.62) 

Then, we have   2h   for 0  . 

According to V  , then one can obtain, 

  2 5 8, ,x x x   (5.63) 

Further, according to the Property 1, and the definition of 3 4 6 7, , ,x x x x  in 

Eq.(5.48), we have, 

  3 4 6 7sup , , , 1x x x x    and  1x    (5.64) 

Thus,  

 x       ,h      (5.65) 

This indicates   2h    and 8 2x   . 

Hence, according to the extended Barbalat Lemma, we have  

   0h  , 8 0x   as     (5.66) 
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Therefore, 

   0h     0h   (5.67) 

To further analyze the stability, the following set  is defined, 

  8 2 2 2 2

3 4 6 7| 0, 1, 1x V x x x x       (5.68) 

and the largest invariant set  contained within  is given as, 

  8 2 2 2 2

8 3 4 6 7| 0, 1, 1x h x x x x x        (5.69) 

Due to 0h  , we can obtain that  

 2 0x    and   1 6 5 0x x x   (5.70) 

Thus, 5 0x   for 1 6 0x x  . 

Recalling Eq.(5.46), the dynamic equation of system, and setting 

2 5 8 0x x x   , one can have, 

    
2 2

3 3 6 4 7 1 3 6 4 7 03 3 lx x x x x x x x x x u        (5.71) 

 
   

  

2

3 4 1 3 4 6 3 7 4 3 6 4 7

2

1 4 6 3 7 3 6 4 7

3 3

3 0

x x x x x x x x x x x x x

x x x x x x x x x

      

   
 (5.72) 

     2

1 3 4 6 3 7 1 4 6 3 7 3 6 4 73 3 0x x x x x x x x x x x x x x x      (5.73) 
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Simplify the above equations by, 

 (5.72)-(5.71) 7x -(5.73) 3 1(1 / )x x   (5.74) 

which leads to 

 
2

7 0 0lx u    (5.75) 

Considering 0lu   and 6 0x  , then we can obtain  

 7 0x   and 6 1x   (5.76) 

Recalling Eq.(5.73), and combing with Eq.(5.76), yields that, 

  3 4 1 6 0x x x x    (5.77) 

Then, we have,  

 
2

3 40, 1x x   or 
2

4 30, 1x x   (5.78) 

Therefore, the invariant set  contains two subsets, 

  2

1 2 3 5 7 8 4 60, 1x x x x x x x         

and  2

2 2 4 5 7 8 3 60, 1x x x x x x x        (5.79) 

Furthermore, we can prove that the state in the subset 2  is stable 

while 1  is not stable, similar as in Section 4.12. Accordingly, we can conclude 
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that the solution in the invariant set  will converge to the subset 2 .  

Substituting 2  into the Eq.(5.71) and combing with the Eq.(5.55) yield 

that, 

    2

1 0 1 13 lex k x u       

     1 0x       1 1dx x  (5.80) 

Thus, by summarizing the results in Eqs.(5.79) and (5.80), we can finally 

obtain that, in the invariant set , 

 
2

1 1 3 6

2 4 5 7 8

, 1

0

dx x x x

x x x x x

  

    
 (5.81) 

Thus, applying the Invariance theorem, one can directly obtain that the 

closed-loop system will converge to the desired state Eq. (5.81) asymptotically 

as time goes infinity. 

Remark 5: Noting that the state in Eq. (5.81) actually represents the attainable 

configuration set  in Eq.(5.50), which shows the final stable configuration of 

the tethered system. They are locating at the local vertical direction. 

5.4.4 Results and Discussion 

In this section, the effectiveness of the proposed PBMPC is 

demonstrated by numerical simulation. The physical parameters of system for 



168 

 

simulation validation are given as in Table 5.2.  

Table 5.2  Physical parameters  

Parameter Value 

m1 500 kg 

m2 106 kg 

r 10 m 

R 7371 km 

nl  10 km 

0  9.9761*10-4 rad/s 

0  0.02 rad/s 

 

Set initial conditions    0 0 0 0 0 0, , , , , 0, 1, 0.01, 1, 0, 0       . The desired 

final conditions after despin are    , , , , 0,  1, 0, 0, 0d d d d d      . The control 

input constraints are taken as 0 lu  and 4max 5*10su  . The constraint of 

libration angle is given as max 1.3   to prevent the tether from winding 

around the target. The designable function in Eq.(5.58) is chosen as   Th h   

and  diag 200,0.01  . The parameters  4 1diag 10 ,10    and 48*10f

 . The 

NMPC tool ‘acado’ is used in Matlab to verify the proposed algorithm where 

the prediction horizon is set as 0.2 and the intervals are 2. The dimensionless 

simulation time is set as 2000. 

The results of despinning process are shown in Figure 5.14 (a-d). As 
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shown in Figure 5.14 (a), all the position states converges to the desired 

equilibrium very quickly. The magnitude of the libration angle is well limited 

within 1.3 ( 0.41  ), smaller than / 2 , which means tether does not wind 

around the target. Figure 5.14 (b) shows that the rotation of target is de-spun 

close to zero around 10 very quickly, and then gradually goes to zero. The 

velocity of tether length is within 0.1, and stabilizes to zero at the end of despin. 

At the same time, the angular velocity of libration converges zero as expected. 

Figure 5.14 (c) shows the variations of the control inputs of the tether tension 

and thrust. Tether tension is always positive during the despinning process, 

and finally stabilizes to the static equilibrium force   2

0

37.4723 1 eeT      . 

Next, the magnitude of thrust u  is always within the maximum bound, 45e , 

to limit the libration of tether as shown in  Figure 5.14 (c). Finally, the virtual 

output   approaches to zero at the end of despin, see Figure 5.14 (d). 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5.14  Time histories of system’s states and control inputs 
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In this section, we proposed a new PBMPC scheme to despin the target 

subject to the input and state constraints. To guarantee the stability, the 

passivity was merged into MPC as an inequation constraint. Furthermore, 

PBMPC explicitly ensured the positive tension, and limited the libration angle. 

The stability of the proposed PBMPC was theoretically proved through the 

Extended Barbalat lemma and Invariance theorem. Simulation results 

demonstrated that proposed controller performed very well as expected. 
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Chapter 6 DYNAMICS AND CONTROL OF ROTATING 

TARGET DURING ORBITAL MANEUVERING 

Summary: This chapter characterizes the dynamic behaviors of tethered 

rotating target during orbital maneuvering. To achieve the stable maneuver, 

the equilibria configurations and control strategies are studied. Then, 

numerical simulations are used to demonstrate the effectiveness of control 

strategies. 

6.1 Attainable Configuration of Equilibrium 

The libration motion of the TSS is stabilizable if the admissible 

equilibrium space is attainable with the given control action while the tether 

is kept taut and from warping the target. To find out the attainable 

configuration of equilibrium, we decompose the dynamic model of the TSS into 

two parts: the attitude motions of the tug and target in the body frame 
b

 and 

a two-body dumbbell model for the tether in the local-vertical-local-horizon of 

the orbital frame 
o
.  

In Figure 6.1 (a), 1  denotes the angle from the axis y1 to the main tether 

and 2  denotes the angle from the axis y2 to the main tether. If 1 2 0   , the 

system’s configuration can be reduced as shown in Figure 6.1 (b), where   
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denotes the libration angle of the dumbbell model of the TSS in the orbital 

frame 
o
. 

 

Figure 6.1  Sketch of decomposed configuration of TSS in orbital frame. 

First, the attitude motion of the target, which equals to zero at the 

equilibrium, is derived as, 

    2 2 21 21 22 22sin 1 sin 2 0I T l p T l p            (6.1) 

 

Figure 6.2  Geometrical configuration of the rotating target 

As shown in Figure 6.2, the lengths of two auxiliary tethers 21 22l l   if the 

target rotates anticlockwise and vice versa. Thus, the induced tether tensions 

must have 21 22T T  at the equilibrium configuration. Then, there exists the 

o2

y2

x2

l 2́2

l 2́1

l22

l21

C´

C

∠p 

∠p 

∠2 

∠1 
β2  
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relation 1 2   .  

Expanding Eq.(6.1) yields 

 
   

   

21 21 22 22

21 21 22 22 21 21 22 22

sin 1 sin 2

sin cos 1 cos 2 cos sin 1 sin 2

T l p T l p

p T l T l p T l T l

       

          
 (6.2) 

Considering the fact of 21 22sin 1 sin 2l l   , Eq.(6.2) will be negative if 

21 22l l  and positive if 21 22l l . Equation (6.2) equals zero only if 21 22l l . This is 

because the total torque acting on the target from the triangle connection of 

tethers is always against the rotation of target as a restore torque towards to 

the equilibrium 21 22l l . Thus, one has 2 0  . 

Next, the equilibrium configuration of the attitude of the tug can be 

obtained by setting 0cM   and 0   in Eq. (3.77), 

  1 1 1 1 1P sin 0T I    (6.3) 

It should be pointed out that Eq. (6.3) implies the angle 1 0   because 

the tension 1T  is positive.  

Then, the TSS model can be reduced to a dumbbell model with perturbed 

forces at the equilibrium configuration as shown in Figure 6.1 (b). Then, the 

dynamic equations of system can be written in terms of local coordinates ( ,l  ) , 
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 

 

2

1

2 2

1

2 3 sin cos sin

2 3 sin cos

o o

o o

e

l F

l m l

T F
l l l

m m

       

     


     



     


  (6.4) 

where    1 2 1 2em m m m m   is the equivalent mass of the dumbbell model and 

T  denotes the tether tension. The direction of F  is assumed as the opposite 

direction of oOy  for the deorbit purpose. 

Thus, the static equilibrium configuration can be obtained by setting 

0l l      in Eq.(6.4), such that,  

  2

1sin 3 sin cos 0oF m l        (6.5) 

 2 2

1 13 sin cos 0e o em m l mT m F      (6.6) 

Compared with the orbital angular velocity o , the angular acceleration 

  is much smaller due to the fact of slow orbit propagation. Thus, the slowly 

varying variable   can be assumed to be zero for searching the static 

equilibrium configuration. Accordingly, the solutions of Eq.(6.5) are 0   if 

2

13 oF m l  and  2

1 acos0, 3 om lF   if 2

10 3 oF m l  . The corresponding 

configuration at 0   is stable if 2

13 oF m l . The configuration of 0   

becomes unstable if 2

10 3 oF m l   while the configuration of 

 2

1 arccos 3 oF m l   becomes stable as per [99]. Here, the attainable 
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configuration denotes the stable equilibrium configuration at 0   while the 

thrust 2

13 oF m l . 

Substituting 0   into Eq.(6.6) yields, 

 
2

1 1 2

e
s

m m
T F F

m m m
 


  (6.7) 

where sT  is the tension in the main tether at the static equilibrium 

configuration.  

Finally, the equilibria of the target’s and tug’s attitudes are 

1 2 0      because the angles 1 2 0   . Therefore, the attainable 

equilibrium configuration of the TSS is along the direction of the local horizon

oOy . 

6.2 Controller Design and Stability Analysis 

In this section, different control strategies are studied to suppress the 

tether libration motion and stabilize the attitude motions of the uncooperative 

target and tug towards to the attainable equilibrium configuration.  

6.2.1 Tether Tension Control 

Actively adjust tether length by tension control using reel in/out 

mechanism has been confirmed as an effective approach in space tethered 
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systems. Adjusting the tether length to suppress the rotation motion of the 

tethered system has been proposed in the previous Section 5.2. The idea is to 

extract the angular momentum by deploying tether, where the tension does 

negative work to dissipate system’s energy. As well, the system’s rotation speed 

will decrease due to the increase of tether length. This is because the system’s 

inertia momentum will increase as the tether length increases.  

Hereby, to adjust the length of the main tether, a simple tension 

controller is given as below, 

  1 1 1 1 2 1s dT T k l l k l      (6.8) 

where 1k  and 2k  are the positive control parameters. 1dl  is desired length of 

the main tether.  

6.2.2 Attitude Control of Tug 

From Eq. (3.77), space tug’s attitude motion will persistently oscillate 

due to the tether’s libration which is caused by rotation of the uncooperative 

space target. Thus, the torquer or induced by thrust on the tug should be used 

to stabilize the space tug’s attitude motion. An attitude controller is given as 

below,  

 3 1 4 1cM k k     (6.9) 
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where 3k  and 4k  are positive control parameters. 

Further, to conduct the stability analysis, recall the Eq. (3.77) and 

combine with Eq.(6.9), then write into state space form, 

 A d     (6.10) 

where 1 1col( , )    and A  is a Hurwitz matrix given below. 

 1 1 1d I   P T  denotes the total perturbation caused by the system’s 

libration and orbital propagation. Here, d  has the upper bound d . 

 
3 4

0 1
A

k k

 
  

  
  (6.11) 

Then, a Lyapunov candidate function can be defined as following, 

 
TV P     (6.12) 

where matrix P  is the solution of the Lyapunov Equation, 

 TPA AP Q     (6.13) 

Here, 0TQ Q   is positive symmetry matrix. Then, Eq.(6.13) has a unique 

solution for Hurwitz matrix A . 

Then, the derivative of V  along the trajectories of the perturbed 

Eq.(6.10) is, 
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 (6.14) 

where  min Q  and  max Q  are the minimum and maximum eigenvalue of 

matrix Q  and P , respectively. 

Eq.(6.14) can be further written as follows, 

 
       

   

2 2

min min max

2

min

1 2

1

V Q Q P d

Q

   

 

       

   
 (6.15) 

when 
 

 
max

min

2 P d

Q




   and the parameter  0,1  . Thus, one can conclude 

that the system Eq. (6.10) is uniformly ultimate bounded stable.  

Further, the combined tethered system has the equilibrium at 0   as 

indicated in Section 6.1. Then, the total perturbation d  can be considered as a 

vanishing perturbation which satisfies d   , where   is small positive 

number, because   is smaller enough.  

Consequently, Eq. (6.15) can be represented as, 

 
   

   

2 2

min max

2

min max

2

2

V Q P

Q P

  

  

    

     

  (6.16) 

Thus, the origin of the closed-loop system Eq. (6.10) is exponentially 



181 

 

stable if   satisfies the relation 
 

 
min

max2

Q

P





 . This bound depends on the 

minimum and maximum eigenvalue of matrix Q  and P . 

6.2.3 Output Feedback Hybrid Control 

The hybrid control strategy combines both tether length control strategy 

and attitude control strategy together. Accordingly, the hybrid controller can 

be represented as, 

 1 2u K x K x     (6.17) 

where 1 2col( , )u u u  denotes the virtual input, which has the relation with 

input tension and torque as 1 1 sT u T   and 2cM u . x  denotes the state vector 

1 1 1col( , )dx l l   . 1K  and 2K  are the positive diagonal matrixes, such as 

 1 1 3diag ,K k k  and  2 2 4diag ,K k k .  

Further, the controller Eq. (6.17) can be improved to a output feedback 

view as follows,  

 1 2u K x K z    (6.18) 

 
c c

c

A B x

z C

 



  


 (6.19) 

Thus, the new variable    z C s x sC s x     has relation with x  and 
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  c c

c

C B
C s

s A



. If the transfer function  C s  is a linear time invariant, strictly 

positive real, and proper, Eq. (6.19) performs as a linear filter to estimate the 

velocity term x  in the hybrid controller. Matrices cA , cB  and cC  are all the 

positive diagonals and belong to 2 . 

Further, a realization of the estimator Eq.(6.19) can be given as,  

 
 

1 1

1

c c

c c c

A B x

z C A B x

 



  

  
  (6.20) 

Obviously, the velocity measurement is avoided in Eq.(6.20). Combing 

with the Eqs. (6.18) and (6.20), the output feedback hybrid control could be 

employed to replace the controller Eq.(6.17).  

6.3 Simulation and Discussion 

The simulation parameters of system are given in Table 6.1, 

Table 6.1  Parameters of the tethered space system 

Paramet

er 

Description Value 

m1 Mass, tug (kg) 500 

m2 Mass, target (kg) 1,500 

mc Mass, connection point (kg) 0.1 

1I , 2I  Momentum of inertia, tug, and target 

(kgm2) 

(333.3, 1000) 

10l  Length of main tether, undeformed (m) 197 

20l  Lengths of auxiliary tethers, 

undeformed (m) 

1.4 
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1P  (X, Y) coordinates of attachment in 
1b
 

(m) 

(0, 1) 

21P  (X, Y) coordinates of attachment in 
2b
 

(m) 

(1, -1) 

22P  (X, Y) coordinates of attachment in 
2b
 

(m) 

(-1, -1) 

kc  Stiffness, auxiliary tethers (N/m) 300 

vc  Damping, auxiliary tether (Ns/m) 15 

F Thrust, tug (N) 20 

 

The system’s orbit starts from  ( , ) 42164 ,0 ,0 ,0 ,, ,, 0, , 0a kme i    , 

which is assumed at the geostationary orbit. The classical orbital elements are 

substituted into Eq.(3.65) to obtain the initial values of the non-singular orbital 

elements for orbital propagation.  

Five simulation cases are the listed in the Table 6.2 as below under the 

control strategies with own control parameters. In the first case, the tethered 

system’s dynamics behavior is studied without implementing any control effort. 

From case 2 to 4, the attitude control, length control, and hybrid control 

strategies are studied, respectively. In case 5, the output feedback hybrid 

controller is used for simulation. The initial values of all simulation cases are 

all given as same, such as the space tug    1 1 1 1 1 1, , , , , 0, 150, 0, 0, 0, 0x y x y    , 

the rotating uncooperative space target    2 2 2 2 2 2, , , , , 0,50, 0, 0, 0, 0.1x y x y   , 

and the connection    , , , 0,48, 0, 0c c c cx y x y  , where the units of all variable are 

taken as international system of units. 



184 

 

Table 6.2  Case studies 

Case # Control strategy Controller parameter 

1 No control N/A 

2 Tug’s attitude control    3 4, 2,10k k   

3 Tether tension control    1 2, 0.02,5k k  , 1 250dl m  

4 Hybrid control (6.17) 

 1 1 3diag ,K k k ,  2 2 4diag ,K k k , 

1 250dl m  

5 

Output feedback 

hybrid control (6.18) 

 diag 6,6cA  ,  diag 36, 36cB  , 

 diag 1/ 6,1/ 6cC  ,  

 

 

Figure 6.3  Orbital Propagation of TSS: (a) eccentricity; (b) variation of 

semimajor axis; (c) orbit angular velocity; and d) orbit angular acceleration. 
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Tethered system’s orbital propagation under perturbation is illustrated 

in Figure 6.3. The variations of orbit are same in all case due to the equal 

perturbation force. As shown in Figure 6.3 (a) and (b), the system’s eccentricity 

is keeping increasing from 0 to 0.22 and on the contrary the semi-major axis is 

decreasing as time elapses. This indicates that system’s orbital is descending 

as a spiral while direction of the perturbation force is opposite to the direction 

of the orbital velocity. Although the length of the orbital semi-major axis is 

decreasing, the angular velocity is decreasing as well, see Figure 6.3 (c). This 

is because the eccentricity is also increasing. Figure 6.3 (d) shows the variation 

of the angular acceleration of the orbit over time and its magnitude is very 

small. Thus, it is reasonable to assume 0   for equilibrium and stability 

analysis as in Sections 6.2. 

 

Figure 6.4  Space tug’s positions for all cases 
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Figure 6.5  Connection point’s positions for all cases 

 

Figure 6.6  Target’s positions for all cases 



187 

 

 

Figure 6.7  Tether lengths for all cases 

The positions of the space tug, connection point and target are shown in 

Figure 6.4-Figure 6.6. The length of all tethers are illustrated as in Figure 6.7. 

From cases 1 and 2, one can find that the curves of the positions are all 

oscillating periodically around the initial value because the main tether length 

1l  is set as fixed, see Figure 6.7. Form cases 3-5, that the magnitude of 

oscillation of x  are slighter larger than in cases 1-2. This is caused by the 

active deployment of the tether, see Figure 6.7, where the main tether length 

is deployed from 197 to 250 m in case 3-5. It will cause the system’s libration 

due to the Coriolis force as in Eq.(16) and the magnitude of the libration will 

decay to zero even slightly as the analysis of the attainable equilibrium, which 

is only located at the local horizon direction. The length of the two tethers of 

triangle connection are oscillating around the final value about 1.45. 
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Figure 6.8  Space tug and target’s attitudes for all cases 

 

Figure 6.9  Space tug and target’s spin rates for all cases 

The attitude motion of the space tug and target are drawn in the Figure 

6.8 and Figure 6.9. Figure 6.8 depicts that the attitude angles of the tug and 
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target are periodically oscillating while the magnitudes of the oscillation are 

decaying in all cases. It is worth nothing that the significant trend of decay of 

target’s attitude motion ( 2 and 2 ) can be found in Figure 6.8 and Figure 6.9 

for cases 3-5. Cases 1 and 2 show only half decaying trends of cases 3-5, where 

the magnitude of the 2  is around 25 degree and 2  around 4 degree/s for 

cases 1 and 2, but 2  is around 12 degree and 2  around 2 degree/s for cases 

3-5. Though it looks remarkably close for case 1 and case 2, there is a smaller 

superiority in case 2 than in case 1. It is further interested to point out that, in 

case 2, 4 and 5 the attitude motions of the space tug ( 1  and 1 ) are smaller 

than in cases 1 and 3. This is because that attitude control action in case 2 4, 

5. Thus, the attitude motion of the space tug is well controlled with very small 

attitude angle. In summary, the attitude motions under any control strategies 

are better than case 1. The attitude control can guarantee the smaller attitude 

of the space tug. The length control helps to decay the attitude motion of the 

uncooperative target while it will cause a slight increase on the magnitude of 

the attitude of the space tug. Notably, the hybrid control can not only achieve 

the well control of the attitude of space tug but also make the attitude of the 

space target decay quickly. 



190 

 

 

Figure 6.10  Tether tensions for all cases 

 

Figure 6.11  Control torque and estimated velocities 

Figure 6.10 shows the tension profiles for all cases. The main tether 

tension 1T  is periodically changing around the static equilibrium force 15 N. 
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Without length control, the magnitude of the oscillations is larger in case 1 and 

2. With length control applied in cases 3-5, the tension of main tether is 

converged to the final static equilibrium force. For the other two tensions of 

the triangle tether, they have the similar phenomenon that the magnitude of 

the oscillations is smaller in cases 3-5 than in case 1 and 2. Figure 6.11 depicts 

that control torques in cases 2, 4 and 5 and the estimated velocities 1l  and 1  

used in case 5. It can be seen that the control torque is keeping oscillating with 

bounded of 0.04 Nm, and the estimated velocities 1l  and 1  are very close to the 

original velocities. Thus, the proposed output feedback hybrid controller in Eq. 

(6.18) can replace the hybrid controller to ease the requirement for velocity 

feedback.  
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Chapter 7 EXPERIMENTAL SETUP AND VALIDATION 

Summary: In this chapter, experimental system of tethered space tug is set up 

on the zero-gravity air-bearing testbed to examine the concept of large debris 

removal after despin. The main scope is to validate the feasibility of the target 

maneuver by tethered tug and proposed tug’s attitude control strategy in 

Chapter 6 for system stabilization. 

7.1 Spacecraft Simulator Air-bearing Testbed Overview 

The Spacecraft Simulator Air-bearing Testbed (SSABT) in the Space 

Engineering Design Lab contains two identical air-bearing spacecraft 

simulators, a smooth surface granite table, and a pseudo-galactic star system, 

see Figure 7.1. The SSABT was originally developed by Tsinghua University 

[100] and was advanced by Peng Li, with help of the visiting professor Ning 

Chen, for the attitude stabilization control during his PhD study [101] and 

Joshua Cookson for the autonomous rendezvous and docking during his master 

study [102]. It was further expanded and equipped with a robotic arm by Lucas 

Santaguida for capturing and detumbling the non-cooperative target during 

his master study [103]. The granite table is to provide a flat and smooth surface 

for the good function of the air-bearing simulator floating steadily and 

performing ‘zero friction’ capacity. The granite table is 4 m  2m and the 
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simulators are 0.42m  0.42m  0.37m. The pseudo-galactic star system is 

consisted of 52 randomly distributed IR (infrared) LED lights (935nm 

wavelength) mounted on the ceiling [102]. Camera with narrow band IR optical 

filter on the top of each spacecraft simulator looks at the IR LEDs to calculate 

the position and orientation of spacecraft simulator with respect to the granite 

table by the onboard computer (OBC) in real time. The experimental software 

system is designed in the Lab VIEW software for data acquisition, processing, 

and commands generation.  

 

Figure 7.1  Picture of the SSABT 
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7.1.1 Spacecraft Simulators 

The spacecraft simulator (SS) has a two-layer structure. In the first 

(bottom) layer, two air tanks are placed. In the second (up) layer, most of the 

components are mounted, as listed as in Table 7.1. Each SS is designed with 3 

degrees of freedom (DOF) motion capacity: 2 DOF translational motion in the 

table plane and 1 DOF rotational motion perpendicular to the table plane. 

Three air-bearing feet mounted at the bottom of each SS produce a film of 

pressurized air between the smooth table and feet surface to achieve the 

floatation, which provides the ‘zero friction’ environment [102]. 

 

Table 7.1  Major components on each simulator 

Name Description Quantity 

Air-Bearing Foot 

Provide ‘zero friction’ between 

surfaces by a film of the 

pressurized air 

3  

Air Tank 

Store the high-pressure air (20 

MPa); Volume 2L  

2 

Battery LiFePO4, 12V, 150Wh  1 
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Camera 

Capture the LEDs in the star 

fields; 1080p Logitech C920 

webcam 

1 

Data Acquisition 

Device 

Acquire Data and digitalize for 

computer read; NI 6112 DAQ 

1 

Fiber-Optic 

Gyroscope 

Measure the angular velocity; 

Fizoptika VG103PT 

1 

Gas Thruster 

Supply the thruster force by 

regulating the high-pressure 

air; MAC 35A-AAA-DDBA-1BA 

Solenoid Valve 

8 

Onboard Computer 

Run simulation software and 

deal with all commands; Zotac 

CI660-nano, i7-8550U, 16GB 

RAM 

1 

Pressure Regulator 

(large) 

Regulate the 20 MPa incoming 

air to 1Mpa; (Xiongchuan 

Valves ) 

1 

Law Pressure 

Regulator 

Covert the 1 MPa incoming air 

into 0.4 Mpa; (Xiongchuan 

Valves ) 

1 
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Reaction Wheel 

Provide the control torque for 

the simulator’s attitude control; 

Sinclair RW-0.01 

1 

 

 

 

(a) 

Battery

Air Tank

Thruster

Camera

Air-

Bearing 

Foot
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(b) 

Figure 7.2  Simulator structure and payloads 

7.1.2 Measurement System 

The star tracker system is designed to measure each SS’s position and 

single axis attitude. The system contains one Logitech C920 USB web camera 

mounted on the top of each SS and the 52 randomly distributed Infrared (IR) 

LED maps on the ceiling of room, see Figure 7.3. An IR Lens is added on the 

top of the camera to observe the Infrared spectrum of LEDs which can reduce 

the interference from external environments compared with visible spectrum. 

The view of the LEDs’ points is shown in Figure 7.4. [102] 

 Pressure 
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Regulator 

 Regulator 
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 Tank 
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Figure 7.3  IR LEDs map of Star Tracker system 

 

 

Figure 7.4  Stars positions in Camera view 

To compute the position and attitude information of the SS, the LED 

positions in the star map are stored with identifier. Using the geometrical 

relationship of any groups of 5 stars, the absolute position and attitude 
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information of SS can be computed as SS moves. To increase the accuracy of 

measurements, the 3-point moving average filter algorithm is applied in the 

software system. [103] The velocity and angular velocity information is 

obtained by the finite difference in the software system as well. However, the 

angular velocity information is very sensitive to the noise and sampling time. 

The finite difference will cause the sharp jumps, see Figure 7.5. Therefore, the 

Fiber-Optic Gyroscope sensor should be used to measure the angular velocity 

while SS is fast rotating. 

 

Figure 7.5  Angular velocity measured by Star Tracker and Gyro 

7.1.3 Control System 

Eight thrusters of each SS are designed to maintain the SS’s attitude 
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motion or achieve the docking operation during maneuvering, see Figure 7.6. 

Each thruster provides a unidirectional constant force of 0.065ou N  at a 

pressure of 0.4 MPa controlled by a solenoid valve and supplies the control 

force ,x yF F  for translational motion and the control torque M  for single axis 

rotation. The produced force and torque in the inertial frame OXY  can be 

obtained by the control allocation relation, as follows, 
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  (7.1) 

where the 1u  - 4u  denote the bidirectional thruster force which the directional 

of positive direction is defined in clockwise turns.   is the angle of rotation of 

the SS, which is defined as the angle from the inertial frame OXY  to the body 

frame oxy . 0.21ud m  is the thruster’s arm of the momentum. Therefore, the 

required thruster force for system control can be computed by, 
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  (7.2) 

where  


 denotes the Moore–Penrose inverse for the 4 3  matrix. The 

corresponding solenoid valves are turned on when the required thrust is 
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greater than the threshold value, i.e., 0.065iu N , and otherwise are kept off. 

 

Figure 7.6  Thrusters distribution in the top view of SS  

7.2 Experimental Setup 

In this section, the SSABT is set up to validate the rotating target 

maneuver by the tethered space tug. The main work of my thesis on the 

experimental validation is focused on the design and setup of tethered tug 

system, the plan of experimental scenarios, attitude controller design and 

implementation, and angular velocity measurement by Fiber-Optic Gyroscope. 

Moreover, an auxiliary pulley mechanism is developed to supply the sufficient 

towing force. This is because unlike the previous actively attitude control 

experiment and the autonomous docking/rendezvous [101, 102], the main 

interest of my study is on the stabilization of rotating passive target maneuver 
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by tethered tug. This is our first attempt to experimentally validate the 

tethered tug concept on the custom-built air-bearing table.  

One simulator is considered as a space tug, and the other one is 

considered as an uncooperative and passive space target. The target is 

considered to be rotating around its primary axis. In practical tether mission, 

it is very difficult to install an active actuator on the target through the flexible 

tether to control the target’s attitude motion. In current experiment setup, only 

the tug is considered to be actuated while the target is passive to operate 

(floating only). No communication between the tug and target is available. The 

current experimental setup is more difficult than the previous fully actuated 

docking and attitude control experiment. Besides, the originally designed 

thrust capacity of simulator is very limited (maximum 0.13 N) to maneuver the 

total mass of 40 kg. Consequently, in order to successfully set up the TSS 

experimental system based on the existing SSABT, we raised the idea of an 

auxiliary pulley-weight mechanism aided tethered tug system, as shown in 

Figure 7.7, where the target is connected to two auxiliary tethers in a triangle 

first and the latter is connected to the tug via a main tether. 
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Figure 7.7  Sketch of experiment system setup 

Additionally, solving the expected and unexpected problems are also the 

critical part of my research during the tethered experiment system setup. Two 

typical problems were found in the design and setup, as shown in Figure 7.8 

(a) and (b). First, the selection of elastic tethers for experiment. At the 

beginning, we connected a ‘rigid’ (high stiffness) and heavy tether (rubber rope) 

to the rotating target. However, the SS becomes very unstable because heavy 

stiff tethers, under large gravity force, pull the target together, and it becomes 

worse when the target rotates. Thus, in the experiment, the material of tethers 

should be chosen with lightweight and low stiffness. The tether information 

will be given in subsequent section. Secondly, it is not able to stably maneuver 

the whole system by the tug’s thrust because the max magnitude of the tug’s 

thrust is only 0.13 N, which is not sufficient for the whole system with 40 kg. 

To supply the enough towing force, an auxiliary pulley-weight mechanism is 

Tug

X

Y

o

Target

F

Weights

7
8

1 2

6

4

u1

u4 u2

3

5

xi

yi

Oi

u3

2du



204 

 

designed and built as an alternation, seen in Figure 7.8 (c). The towing force is 

provided by the gravity of the given weight, which is adjustable and constant.  

 

(a) 

 

(b) 
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(c) 

Figure 7.8  Problems found in experimental setup 

(a) Rubber tether Connection (b) No external actuation  

 (c) With auxiliary towing force 

 

As shown in Figure 7.9, the experiment system’s configuration is well 

set up under the auxiliary pulley-weight mechanism. It is worth noting that 

despite the tether material, the tether length selection also affects the 

experimental validation during the experimental setup. It is better to use the 

short thin string with low stiffness of the auxiliary elastic tethers. The length 

of the main tether could be set slightly longer than the auxiliary elastic tether, 

and ensures the distance between the two simulators over the simulator’s size. 

Then, two simulators have a safety region to avoid the collision from the 

rotation. Due to the 4 m length of the air-bearing table, the total tether length 

doesn’t exceed 1 m. Otherwise, we can only run experimental tests for a short 

time. One appropriate set of parameters are for successful experimental setup 
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is listed as in Table 7.2. 

 

 

Figure 7.9  The experiment system on the SSABT 

 

Table 7.2  Parameters of the experiment system 

Parameter Description Value 

1m  Space tug’s mass 20 kg 

2m  Space target’s mass 20 kg 

cm  Connection’s mass 0.01 kg 

1I , 2I  Tug and target’s momentums of inertia 0.456 kgm2 

10l  Original length of main tether 27 cm 

20l  Original lengths of elastic tethers 22 cm 

1P  Coordinates of attachment in X1O1Y1 (-0.185, 0) m 

21P  Coordinates of attachment in X2O2Y2 (0.185,0.15) m 

22P  Coordinates of attachment in X2O2Y2 (0.185,-0.15) m 

F Thruster force (0.4, 0) N 
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7.3 Formulation of Experimental System 

To formulate the model of the system as shown in Figure 7.9, the 

following coordinates of frame are defined. The inertial frame is defined XOY, 

where the origin is fixed at the corner of the table, OX along the length of the 

table, OY along the width of the table. Two body frames X1O1Y1 and X2O2Y2 are 

defined for tug and target, respectively. The subscript 1 and 2 denote the tug 

and target, respectively. 

Similar as in Eqs. (3.73)-(3.75), the dynamic equations of the 

experimental system are derived as,  
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where 1  and 2  are the angle between the inertial frame and the body frame 

of tug and target, respectively, x  and y  denote the positions of the mass center 

of the tug and target, 1P , 21P , and 22P  are moment arms of tension in the 

corresponding tethers, and 1T , 21T  and 22T  are the tensions in the main tether 

and two auxiliary tethers.  

To calculate the tension, tether is modeled as a ‘spring-damper’, as 

shown in Figure 7.10, 

  

Figure 7.10  Sketch of the tether model 

Thus, the tensions in the tethers can be computed by, 
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where k  and c  represent the stiffness and damping of the tether, 0L  denotes 

L

c

k
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the undeformed tether length, and L  denotes the instantaneous tether length. 

The controller of torque used in the experiment is same as in Eq.(6.18), 

 1 1 2M k k     (7.8) 

where 1k  and 2k  are control parameters.   is estimated value angular velocity 

1 .   is obtained by the following estimator, 

 
1b

a

  

 

 

 
 (7.9) 

where a  and b  are the parameters for the estimator. 

7.4 Results and Discussion 

In this section, the simulation and experiment of maneuvering a 

rotating space target by tethered space tug are carried out. There is no 

communication between space target and tug since the target is passive and 

uncooperative. In current experiment validation, only the tug’s attitude control 

strategy is tested. The control system on space tug only has its own position 

and attitude information. 

7.4.1 Tether Stiffness Measurement 

The auxiliary tether for triangle connection used in the experiment is a 

lightweight elastic string. The stiffness of the string is measured with the 
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Nidec FG-7000 Digital Force Gauge as shown in Figure 7.11. The custom-built 

equipment contains the Vernier scale, which is mounted on a guide rail, and 

two claws for the tether fixation. The deformation of the tether can be recorded 

by Vernier scale, and the corresponding force is measured by Force Gauge. 

 

Figure 7.11  Tether stiffness test equipment 

To start the test, the equipment is placed on a level table. Undeformed 

tether length is set as 0.22 m same as the experimental parameter in Table 7.2. 

Once the length and force are measured, the stiffness can be directly calculated 

with the measured force and deformation data by the Hooke’s law. By taking 

the average of many tests results, a high measurement accuracy can be 

ensured. As shown in Figure 7.12, 40 times measurement results are plotted 

with an error-bar. Note that the average of 40 times measurements is 30 N/m, 

which will be used in the simulation for comparison purpose. 

Force Gauge

Tether Vernier Scale
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Figure 7.12  Measured tether stiffness  

 

7.4.2 Numerical Simulation 

In the simulation case, the initial condition of the system is set as 

   1 1 2 2, , , 0, 0, 2 deg,6 deg/ s      , which is measured in the experiment, and 

other parameters are given in Table 7.2. The stiffness of the auxiliary tether is 

30k   N/m. The material damping of tether is chosen as 3 Ns/m, which is 

estimated based on the damping ratio of natural rubber (0.01~0.1). To keep the 

validity of the rigid main tether in simulation, the stiffness of the main tether 

is about seven times greater than that of the auxiliary tethers. The towing force 

is 0.4N on the space tug along the OX direction. The parameters in the 

controller are 1 0.1k   and 2 2k  , and parameters of estimator are 6a   and 
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6b  . The simulation are carried out for 500 seconds and the results are shown 

in Figure 7.13 (a-h). Figure 7.13 (a) shows the attitude motion of the tug, one 

can find that the attitude motion of the tug is well controlled with small 

oscillation around 0 and the magnitude of rotation of tug is decaying towards 

0. The attitude motion of the target is oscillating around 0 with significant 

decaying trend over time, as shown in Figure 7.13 (b). The max rotation angle 

of target drops from 10 to 2 degree. The angular velocity of the tug is shown in 

Figure 7.13 (c), the curve of the estimated angular velocity coincides with the 

original angular velocity. Figure 7.13 (d) shows that the magnitude of the 

target’s angular velocity decreases from 6 to 1 degree/s after 500s. Notably, it 

indicates that the uncooperative target’s angular velocity is well de-spun 

during maneuver process towed by tug. The tether lengths and tensions are 

plotted in Figure 7.13 (e) and (f), they all are converging towards the zero 

equilibrium. The required control torque on the tug is drawn in Figure 7.13 (g), 

which is within 0.1 Nm and small than the maximum torque can produced by 

the thrusters. Thus, the simulation indicates that the attitude motion can be 

well stabilized and controlled while the tethered tug system tows the 

uncooperative rotating target with triangle connection. 
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(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

 

(f) 
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(g) 

Figure 7.13  Simulation results of experiment system 

7.4.3 Experimental Results 

In this section, the experimental validation of the tethered system tug 

is carried on the SSABT with manually applying an initial spin rate on the 

target. The output feedback attitude control strategy in Eq. (7.8) is used the 

same parameters in the simulation. Configurations of the experimental system 

with respect to time are shown in Figure 7.14. The target is towed towards 

right- direction with constant force 0.4 N supplied by the auxiliary pulley 

device. Target is initially spun with a negative spinning rate, 6 degree/s, and 

then it performs a periodical oscillation during the maneuvering process.  
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t=1s 

 

t=3s 
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t=5s 

 

t=7s 
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t=9s 

 

t=11s 

 

t=13s 
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t=15s 

Figure 7.14  Time history of configurations in experiment 

(Left SS-Target; Right SS-Tug) 

 

The experiment results of the target are drawn in Figure 7.15. Notably, 

the experiment is running for 18 s due to the length limitation of the air 

bearing platform. The positions of the target are given in Figure 7.15 (a) and 

(b), one can find that the translational motion of the target is mainly moving 

along OX direction while it is oscillating in the OY direction. Seen from Figure 

7.15 (c) and (d), the attitude motion of the uncooperative target is slowly 

decreasing with the magnitude of angular velocity from 6 to 5 degree/s and the 

magnitude of the rotation angle from 12 to 8 degrees within one period. 

Furthermore, it is worth noting that the results in the simulation are 

coincident within the experiment, which validates the simulation results in 

Section 7.4.2 and demonstrates that the maneuvering a rotating target by the 

tethered tug system is feasible with proposed design and control strategy. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 7.15  Target’s results of experiment 
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Next, another two experimental tests with different initial spinning 

rates (10 degree/s and 3 degree/s) are run on the air-bearing testbed to further 

demonstrate the validity of maneuvering the rotating target by the space-tug. 

The experimental results of the target’s angular velocity are plotted in Figure 

7.16, where the angular velocities of the target of both two cases are 

periodically oscillating and the magnitudes are decreasing slowly. For the 10 

degree/s case, it decreases to 9 degree/s after 1.5 periods. It should be noted 

that, in the 10 degree/s case, the tether slackness occurs at t=5 s because the 

initial angular velocity of the target is too large to maneuver for a 0.4 N thrust 

force. The slackness does not appear in the 3 degree/s case, where the angular 

velocity varies uniformly and decrease to 2 degree/s after 16 s. Two snapshots 

of these two cases are presented in Figure 7.17 to show the system’s 

configuration. The time history of system’s configuration is similar to Figure 

7.14, thus it is not presented here. 

According to the theoretical analysis, numerical simulations, and 

experimental tests, it can be concluded that the tethered space tug is feasible 

to maneuver a rotating space target. Note that the despin of target has to be 

conducted before orbital maneuver if the space target is with huge kinetic 

energy compared to the capacity of the thrust. Otherwise, the tether will 

become slack or wrap around the target or tug, and further destabilize the 

whole system and result in a failure of the mission. After the target’s rotation 
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is despun to a small level that the tug’s thrust can compete, the tethered space 

tug can maneuver an uncooperative target, effectively to the desired orbit. 

 

Figure 7.16  Angular velocity of target 

 

 

(a) 
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(b) 

Figure 7.17  Configurations of tethered system 

(a) 3 degrees/s case (b) 10 degree/s case  

In this section, we built an auxiliary-pulley mechanism aided tethered 

tug experimental system on the air-bearing to supply the sufficient towing 

force for the simulator in experimental setup and validate the tug’s attitude 

control strategy experimentally through the LabVIEW Real-Time Module. 

Three tests of different initial spinning rate of targets are conducted and the 

results demonstrate the feasibility and effectiveness of the proposed concept of 

tether tug maneuver. 
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Chapter 8 CONCLUSIONS AND FUTURE WORK 

Summary: This chapter summarizes the contributions and future research 

directions for the continuation of the current study. 

8.1 Contributions 

This dissertation focuses on the control of the underactuated TSS and 

the dynamics and control of massive rotating space target removal. To best of 

my knowledge, this research systematically investigated the dynamics and 

control of the massive rotating target despin by small tethered tug, including 

the concept design, control strategy, and experimental validation after despin. 

The main contributions of this research are summarized as follows. 

8.1.1 Tension Control for TSS Deployment/Retrieval 

The current work develops a unified energy-based framework for 

tension controller to achieve fast, stable, and precise deployment/retrieval of 

underactuated TSS. As a systematic approach, the control objectives and 

stability requirement for closed-loop system are transformed into the 

necessary and sufficient conditions for the artificial potential energy function 

and the dissipative functions. The asymptotic stability of the energy-based 

tension control framework has been proven rigorously by the Lyapunov 

technique and the LaSalle’s Invariance Principle.  
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Furthermore, to address the challenge arising from engineering where 

the unknown and unexpected disturbances occurring in the TSS missions, a 

fractional order sliding mode controller is designed to address the disturbances. 

The effectiveness and robustness of the proposed FOSMC are demonstrated by 

comparing with existing conventional control methods. Fractional order sliding 

mode control law demonstrates excellent disturbance rejection capability in a 

wide frequency range.  

8.1.2 Dynamics and Despin Control of Large Rotating Target 

Dynamics and control of large rotating targets captured by small 

tethered spacecraft are studied. The dynamic model is established in both the 

free-floating space and the central gravitational field. The physical parameters 

of the system’s effect on the dynamic behaviors are compared, and control 

strategies are proposed with considering the operational constraints and 

attainable configurations of equilibrium. Furthermore, to analytically tackle 

the problem of the constraint and guarantee the stability of the despin control 

for the nonlinear underactuated target with TSS, a novel MPC approach based 

on passivity-based control is proposed. The approach of the PBMPC is 

theoretically proved in an elegant framework by the nonlinear stability 

analysis without linearization, and the asymptotic stability of the system with 

PBMPC is ensured without using the terminal cost. 
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8.1.3 Uncooperative Target Maneuvering and Experimental Verification 

The dynamic model of the tethered captured uncooperative target 

during orbit maneuvering is established to study the system’s dynamic 

behaviors. The orbital dynamics, attitude motions of the space tug and 

uncooperative target are included in this dissertation. Control strategies are 

then designed to achieve the attitude stabilization for both tug and target and 

to suppress the tether libration motion. Furthermore, to demonstrate the 

effectiveness of the concept of the tethered space tug and validate the proposed 

control strategy, an experimental system is set up on the air-bearing platform 

to mimic the zero-gravity environment in space. 

8.2 Conclusions 

Deployment/retrieval control of the tethered space system is challenging 

due to the underactuation and partial state measurement. Energy shaping 

control can deal with these restrictions on controller design by constructing an 

artificial function with only the actuated state to render the TSS stable. 

Additionally, positive tension and libration angle constraints can be effectively 

handled by tuning the control gains. Moreover, the total external disturbances, 

orbital perturbations, and other potential uncertainties may degrade the 

conventional controller’s performance and stability. Thus, a stable and robust 

controller is needed for TSS, such as SMC and adaptive control. 
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Large space debris removal and small asteroid retrieval attract much 

attention due to its scientific and commercial interests. Tethered space tug is 

an appealing and low-cost approach with broad applicability on different sizes 

of targets. However, capturing the sizeable rotating target or attaching the 

tether to the target is still a particularly challenging problem. Moreover, TSS’s 

dynamic motions are extremely complicated due to the uncooperative rotating 

target in the post-capture phase. The large target’s rotation is with substantial 

kinetic energy, which must be damped before the next operation. 

Consequently, a de-tumbling process should be executed to reduce the 

rotation to an admissible level. According to the comparison, the hybrid control 

strategy is appealing to implement in future mission for its fast and good 

despin performance. Then, in the orbit maneuvering process, it still needs to 

pay attention to the residual rotation. It might cause the tether wrapping 

around the target and tug. The ground experimental facilities should be made 

to simulate the orbital maneuvering of TSS in the space environment. The air-

bearing table experimental facility provides a preferable zero-gravity 

environment to verify the concept of TSS and control strategy. However, it is 

not enough to examine the large-scale tethered system’s long-term motion due 

to its limited dimensions. 
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8.3 Future Work 

The following research is summarized as follows to continue and expand 

the current work. 

(i) Consider the model uncertainties of tether system for 

deployment/retrieval. Such as, capture an unknown mass of target 

and relocate it. 

(ii) Extend the current work of space target despinning to de-tumbling 

because the space target might tumble in space.  

(iii) Investigate the parameter optimization of tethered system to 

improve the despin efficiency of a specified target.  

(iv) Verify TSS deployment/retrieval and the tension control and hybrid 

control strategy for rotating target maneuvering by tethered space 

tug on the air-bearing table experimentally.  

(v) Improve current experimental setup on air-bearing table for long-

time maneuver validation. One feasible way is to maneuver the 

experimental system in circles, thus we can get rid of the size 

limitation of air-table. However, this requires the sufficient thrust 

capacity of simulator to tow the passive target and ensure tether taut. 
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