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Abstract 

We have developed a two-step synthesis of meta-substituted phenols in one pot, in good 

to excellent yield. A Pd2+ source is the catalyst for both steps of the synthesis, which 

includes a cross-coupling reaction between β-chlorocyclohexenones with boronic acids, 

followed by aerobic oxidation of the resulting enone. This method is also suitable for the 

synthesis of meta- and ortho-disubstituted phenols, which have so far been especially 

difficult to access using existing synthetic methods.  

 

 

The scope of the reaction was explored by combining different substituted β-

chlorocyclohexenones with a wide range of different boronic acids and boronate esters 

using optimized reaction conditions, leading to the synthesis of meta-substituted phenols 

in moderate to good yields. 
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Chapter 1: Introduction 

 

1.1 Transition Metals as Catalysts 

 

 In chemistry, a catalyst is a substance that increases the rate of reactions without being 

consumed in the process. Instead, the catalyst is regenerated after product formation. 

This allows a small amount of catalyst to facilitate the reaction of a much larger quantity 

of reactants, and in some cases allows reactions to proceed at lower temperatures.1 This 

property of catalysts reduces costs of reactions, increases atom efficiency, and generally 

leads to a reduction of waste products. These advantages have made catalytic reactions 

more attractive from a sustainability point of view when compared to stoichiometric 

methods. In fact, catalysis is one of the 12 principles of green chemistry, defined by 

Anastas and Warner,2 which outlines a set of guidelines to reduce or eliminate the use or 

generation of hazardous substances in the design, manufacture and applications of 

chemical products. 

 

Transition metals are among the most popular catalysts in chemistry, largely owing to the 

number and configuration of electrons in their d orbitals, unique to each metal. They can 

exist at different oxidation states, and can form complexes with various organic and 

inorganic functional groups, facilitating reactions that are either otherwise impossible, or 

too slow and inefficient to be practical. During the 20th century, the catalytic properties of 

a wide range of transition metals, including titanium,3 palladium,4 zinc,5 and many others 

have been extensively studied, facilitating a wide range of reactions in organic, inorganic, 

and materials chemistry. Of particular note in these studies was the development of 

transition metal catalyzed carbon-carbon bond forming reactions. 

 

1.2 Transition Metal Catalyzed Carbon-Carbon Bond Formation 

 

Although carbon is the backbone of all organic chemistry, carbon-carbon bonds are 

generally considered to be more difficult to construct than other common chemical bonds. 

In the late 20th century, however, a major breakthrough was under way: Cross-coupling 
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reactions, where two pre-functionalized hydrocarbon fragments are joined with the aid of 

a transition metal catalyst, most commonly palladium and to a lesser extent nickel. This 

opened up huge possibilities in organic synthesis by providing many new ways of linking 

carbon fragments, including the Stille coupling, 6  Negishi coupling, 7  Suzuki-Miyaura 

coupling,8 Hiyama coupling,9 and Kumada coupling reactions,10 among others (Table 1). 

The mechanism for these reactions is generally understood to involve three distinct steps 

(Scheme 1): an aryl or alkenyl halide undergoes oxidative addition to a metal catalyst, 

most commonly Pd(0) or Ni(0), followed by transmetallation of a carbon-metal species to 

the oxidized Pd center, and finally reductive elimination, where the product containing a 

new carbon-carbon bond is formed and the reduced metal catalyst regenerated. 

 

Table 1. General Scheme of cross-coupling reactions 
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Scheme 1. General mechanism of cross-coupling reactions 

 

1.3 The Suzuki-Miyaura Cross-Coupling Reaction 

 

Of particular note among the metal catalyzed coupling reactions is the Suzuki-Miyaura 

coupling reaction, which generates a new carbon-carbon bond by coupling an 

organoborane reagent with an organic halide using a Pd or Ni catalyst, at a loading level 

of as low as 0.001% to 5 mol%.11 With the advantages of using shelf-stable, relatively 

non-toxic reagents, and easily removable inorganic by-products, the Suzuki-Miyaura 

coupling reaction has been a staple in academic and industrial chemistry research since 

the 1990s, although it was published by Dr. Akira Suzuki and Norio Miyaura in 1979.8 For 

his work on cross-coupling chemistry, Suzuki received the Nobel Prize in Chemistry in 

2010, along with fellow chemists Richard Heck and Ei-Ichi Negishi. 

The reaction proceeds under basic conditions, and its mechanism generally follows the 

aforementioned three distinct steps of oxidative addition, transmetallation, and reductive 

elimination. However, this is only a simplified mechanism.  
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1.3.1 Oxidative Addition 

 

In oxidative addition, both the electron count and the formal charge of the metal catalyst 

increase by two, typically from Pd(0) to Pd(II). Oxidative addition of alkyl halides can occur 

by an SN2 mechanism in which the metal acts as a nucleophile, the electrophilic carbon 

undergoes inversion of configuration,12,13 and the relative rates of alkyl halides are methyl > 

primary > secondary >> tertiary and I > Br > Cl >> F (Scheme 2).14  

 

 

 

Scheme 2. Oxidative addition by Sn2 pathway 

 

However, this mechanism cannot occur for oxidative addition of aryl and alkenyl halides. 

Moreover, most aryl halides lack the substituents that would render them sufficiently 

electrophilic to react by nucleophilic aromatic substitution pathways. Currently, the most 

widely accepted mechanism for the oxidative addition of an aryl halide to a d10 Pd(0) 

complex is a concerted pathway through a three-centered transition state,15 and involves 

the coordination of the arene, then the insertion of the metal into the carbon-halogen bond, 

producing a cis-complex that quickly isomerizes into its more thermodynamically 

favorable trans-isomer (Scheme 3).16 
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Scheme 3. Oxidative Addition of Aryl halides by concerted pathway 

 

In general, the relative rates of oxidative addition of aryl halides, following their trend of 

reaction energies, is I > Br > Cl.17,18 Oxidative addition favors electron-poor organic 

halides and electron-rich, coordinatively-unsaturated metal centers, as the incoming 

anionic ligands require vacant orbitals on the metal center to coordinate to.  

 

1.3.2 Transmetallation 

 

After oxidative addition, the transmetallation step of the Suzuki-Miyaura cross-coupling 

reaction involves the addition of a carbon-boron fragment to the Pd center to form the 

new carbon-carbon bond. A fundamental understanding of the mechanism behind this 

critical migratory event from boron to palladium, however, was lacking until recent years. 

A recurrent theme in the Suzuki-Miyaura cross-coupling reaction is the requirement of a 

base for transmetallation to proceed, and the exact role of the base has been unclear. 

For many years, chemists considered two possible pathways (Scheme 4): Path A, 

proceeding through the formation of a negatively charged four-coordinate boron species, 

which attacks the electrophilic Pd(II) center to displace the halide, and path B, proceeding 

through the neutral three-coordinate boron species, which accepts electron density from 

a palladium hydroxide complex. 19 , 20  Both pathways converge on an intermediate 
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containing a Pd-O-B linkage, 21  ready to transfer an anionic species from boron to 

palladium.  

 

 

Scheme 4. Two possible transmetallation pathways for the Suzuki-Miyaura Reaction 

 

Due to the multistep nature of transmetallation, studying its mechanism using Hammett 

analysis is difficult. For example, electron-donating substituents on the boronic acid 

species ArB(OH)2 would make the boron center less Lewis acidic, disfavoring interaction 

with –OH moieties, but would also favor the transfer of the organic fragment from boron 

to palladium due to increased nucleophilicity.22 This would suggest that both pathways A 

and B can be fitted with positive, negative, and zero Hammett  values. However, the 

kinetics of transmetallation using stoichiometric reactions have been studied by Amatore 

and Jutland,23 who found that the rate of transmetallation between boronic acid and 

palladium hydroxide complexes in DMF was very fast, while that between boronate 

species and palladium halides was significantly slower (Scheme 5). Independent studies 

by others produced the same result.24 According to these studies, path B is kinetically 
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more favorable than path A by several orders of magnitude, at least for the systems they 

tested. 

 

 

 

Scheme 5. Relative rates of transmetallation pathways 

 

1.3.3 Reductive Elimination 

 

Reductive Elimination is the opposite of oxidative addition, and favors electron-poor, 

sterically bulky metal complexes. The two carbon fragments must adopt a cis-

configuration in order for reductive elimination to proceed (Scheme 6).25  

 

 

 

Scheme 6. General mechanism of reductive elimination 

 

 



8 
 

 

 

1.3.4 Ligands in Suzuki-Miyaura Cross-Coupling Reactions 

 

The ligands on palladium can have a significant impact on the outcome of the Suzuki-

Miyaura cross-coupling reaction. The catalytic cycle of the Suzuki-Miyaura cross-coupling 

reaction begins with oxidative addition of Pd(0), but because Pd(0) catalysts are sensitive 

to air, Pd(II) salts such as Pd(OAc)2 can be used instead, with the addition of phosphine 

ligands to reduce Pd(II) and generate Pd(0) species in situ.26  

 

In addition to reducing Pd(II), phosphine ligands can also have a significant effect on the 

catalytic cycle itself. In general, the Suzuki-Miyaura cross-coupling reaction favors 

electron-poor aryl halides and electron-rich metal centers. Reactivity can be enhanced by 

selecting more electron-rich ligands in order to boost the nucleophilicity of Pd(0) and 

increase the rate of oxidative addition. Highly electron-donating ligands can also stabilize 

the zerovalent metal complex and prevent the precipitation of palladium black and the 

collapse of the catalytic cycle.27 The electronic effect of various PR3 ligands can be 

adjusted by changing the R group. The most well-known and accepted approach of 

characterising such ligand properties is the Tolman Electronic Parameter, 28  a 

measurement of the (CO) stretching frequencies in Ni(CO)3L, where L = PR3. More 

electron rich PR3 ligands corresponds to a weaker CO bond, and is reflected in decreased 

(CO) stretching.  

 

Bulky ligands, on the other hand, favor the formation of coordinatively-unsaturated metal 

centers that is required to initiate oxidative addition. In addition, sterically demanding 

environment around the Pd center favors reductive elimination, which can be critically 

important in increasing the overall rate of reaction and suppressing undesirable side 

reactions.29 , 30  The steric profile of PR3 ligands is classified using the Tolman cone 

angledefined as the angle of a cylindrical cone where the metal is at the vertex and the 

outermost atoms of the ligand form the perimeter (Figure 1).28 
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Figure 1. The Tolman cone angle 



Phosphine-based ligands such as PPh3 are common, but several novel and specifically 

designed ligands, such as SPhos and DPEPhos, can facilitate the Suzuki-Miyaura 

coupling reaction of aryl chlorides and highly hindered aryl bromides/iodides (Figure 2), 

which are otherwise notoriously unreactive.31,32 Also popular are alkyl phosphine ligands, 

such as P(t-Bu)3,
33

 which have high electron density and steric bulk, but suffer from lack 

of variability, as it is difficult to modify tertiary carbon atoms bonded to phosphorus.34 

 

 

 

Figure 2. Structures of select phosphine ligands 

 

Other than phosphine ligands, N-heterocyclic carbene (NHC) ligands have also gained 

importance in cross-coupling reactions. They boast several favorable attributes, including 

high thermal stability of the Pd-NHC bond, and the strong electron donating property of 

the carbene.35 Pd-NHC catalyst systems have proven to be effective in a variety of Pd-

catalyzed reactions, but their preparation, often involving free carbene, can require strict, 

anhydrous conditions.36,37,38 An improvement was made by Organ who synthesized Pd-

NHC pre-catalysts, featuring an extra pyridine-based ligand that is designed to dissociate 

in the catalytic cycle.39 These pre-catalysts can be generated in open air, and became 
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known as Pd-PEPPSI (Pyridine-enhanced precatalyst preparation, stabilization, and 

initiation) pre-catalysts (Figure 3). Using these pre-catalysts, Organ successfully 

performed alkyl-alkyl cross-coupling reactions, as well as sterically congested cross 

coupling reactions, in moderate to high yield.39 

 

 

 

Figure 3. Pd-NHC catalyst systems 

 

1.4 Palladium Catalyzed Aerobic Oxidation 

 

Oxidation reactions are crucial for functional group transformations in chemistry, and 

increasing the usage of “green” oxidants has become a key issue in recent years. With 

its low cost, high atom efficiency, and lack of environmentally toxic byproducts, molecular 

oxygen (O2) is an ideal oxidizing agent. As the use of transition metals in chemistry gained 

popularity in the 20th century, so did interest in transition metal catalyzed oxidations. 

Beginning with the discovery of the Wacker oxidation process in the 1950s,40 Pd catalysis 

has been a staple of oxidative chemistry. In its simplest form, the mechanism of most Pd-

catalyzed oxidations can be divided into two halves (Scheme 7): the oxidation of the 

substrate by Pd(II), and regeneration of Pd(II) by O2.
41 These aerobic oxidations usually 

generate water or hydrogen peroxide, waste products that are easy to remove and 

environmentally friendly. For example, the aforementioned Pd-NHC catalyst can cleanly 

oxidize alcohols to their corresponding aldehydes or ketones in high to quantitative 

yield, 42  while producing far less toxic by-products than traditional chromium based 

oxidants.43 Today, oxidative Pd catalysis is employed in the synthesis of a wide variety of 

chemicals, including diols,44 furans,45 arenes,46 etc. 
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Scheme 7. General catalytic cycle of Pd-catalyzed aerobic oxidation 

 

1.5 Phenols 

 

Phenols are a class of organic compounds containing a hydroxyl group (-OH) directly 

bonded to a benzene ring. Although they share some similarities with alcohols, phenols 

(pka ~ 10) are significantly more acidic than alcohols (pka ~ 16). Phenols can have one 

or more substituents on the aromatic ring on the ortho-, meta-, or para- positions, giving 

rise to a wide variety of complex structures, many of which are of biological and 

pharmaceutical interest (Figure 4).47,48,49 As a result, the motivation for developing and 

improving phenol synthesis methods is always present. 

 

 

Figure 4. Natural and synthetic phenol compounds 
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1.5.1 Existing Methods of Phenol Synthesis 

 

One of the most well-established methods for synthesis of substituted phenols is 

electrophilic aromatic substitution (Scheme 8), using the activating property of phenol to 

direct substituents onto the nucleophilic ortho- and para- positions, giving ortho-

substituted and para-substituted phenols respectively. This method has a long history,50  

but is unsuitable for synthesizing meta-substituted phenols, since the directing ability of 

the unshared pair of electrons on –OH does not extend to the meta- position. 

 

 

Scheme 8. Example of electrophilic aromatic substitution 

 

Alternatively, directed ortho-metallation is a method that uses an O or N based directing 

group on phenol to direct substituents onto the ring, but requires extra steps for the 

installation and removal of the directing group, impacting its atom economy (Scheme 

9).51,52 It also has limited regioselectivity, since the meta- position is generally too distant 

from the phenol group to be affected by directing groups, although in some cases, meta- 

C-H functionalizations can be achieved with large, specifically designed templates.53 

 

Scheme 9. Example of directed ortho-metallation 
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Metal-free phenol synthesis methods are also available. For example, the Claisen 

rearrangement of allyl phenyl ethers gives either ortho-substituted phenols, or para-

substituted phenols if the ortho- positions are occupied (Scheme 10), 54  while the 

Bamberger rearrangement produces 4-animophenols from N-phenylhydroxylanimes 

under acidic conditions (Scheme 11).55 

 

 

 

Scheme 10. Claisen rearrangement of allyl phenyl ethers 

 

 

 

Scheme 11. Bamberger rearrangement of N-phenylhydroxylamines 

 

A pattern emerges when examining these methods of phenol synthesis: meta-substituted 

phenols are more difficult to synthesize than their ortho- and para- substituted analogues. 

One straightforward way to generate meta-substituted phenols is the Suzuki-Miyaura 

cross-coupling of a meta-substituted halophenol with a boronic acid, a mild one-step 

process. 56  However, this is only a partial solution, as although meta-substituted 

halophenols are commercially available and easily made from nitrobenzene (Scheme 

12),57 meta-substituted halophenols featuring a carbon substituent on the ortho-position 

between the hydroxyl group and the meta-substituent are much more rare and expensive, 
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restricting the production of ortho-, meta-disubstituted phenols. In fact, a recent Scifinder 

search yielded only a few examples relevant to Suzuki-Miyaura cross-coupling reactions 

of ortho-substituted, meta-halogenated phenols.  

 

 

 

Scheme 12. Inexpensive production of meta-substituted halophenol 

 

Recently, Stahl and coworkers developed the aerobic oxidative Heck coupling between 

cyclohexenone and boronic acid, followed by aerobic oxidation in the same pot, which 

allowed meta-substituted phenols to be synthesized from cyclohexenone in two steps, 

with DMSO as the solvent (Scheme 13a).58 DMSO does not appear to participate in the 

redox chemistry of Pd-catalyzed oxidative transformations,59 however, so its role appears 

to be associated with its Pd-coordination ability. 

 

 

 

Scheme 13a.  Generalized one-pot synthesis of meta-substituted phenols via oxidative 

Heck coupling and aerobic oxidation 
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The same problem persists, however, as this process still does not produce phenols 

substituted at both ortho- and meta- positions, most likely because introducing alkyl 

substituents on cyclohexenone would cause exocyclic syn--hydride elimination in the 

Heck coupling catalytic cycle to outcompete the endocyclic anti--hydride elimination that 

would likely need to isomerize first (Scheme 13b). 

 

 

Scheme 13b. Oxidative Heck coupling with ortho-substituents 

 

We have been interested in the problem of meta-substituted phenol synthesis before. 

Based on the idea of palladium catalyzing two reaction steps in one pot, we envisioned a 

scenario where -unsaturated ketones are cyclized into cyclohexanones and then 

oxidized into phenol.60 Under acidic conditions and with a Cu co-catalyst, we succeeded 

in producing substituted phenols after two steps (Scheme 14). The phenols with aryl 

groups at the ortho- position were produced in high yields, while the phenols with alkyl or 

hydrogen groups at the ortho- position were produced in significantly lower yields. We 

intend to address this synthetic gap and find a generalized, reliable pathway of 

synthesizing meta-substituted phenols, especially ortho-, meta-disubstituted phenols. 
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Scheme 14. Two-step synthesis of phenols from -unsaturated ketones 

 

1.6 Plan of Study 

 

Our aim is to develop a general synthesis strategy for meta-substituted phenols, including 

meta- and ortho-disubstituted phenols, that can tolerate a variety of substituents. We will 

begin by subjecting -chlorocyclohexenone to the Suzuki-Miyaura cross-coupling 

reaction to generate -substituted cyclohexenones. The Suzuki-Miyaura cross-coupling 

reaction can accommodate alkyl substituents on the -chlorocyclohexenone without 

causing -hydride elimination side reactions, since any alkyl substituent would not interact 

with Pd during the catalytic cycle. Then, we will subject the -substituted cyclohexenones 

to aerobic oxidation, leading to the corresponding phenol, with any existing substituents 

unaffected (Scheme 15a).  Our strategy is to first identify the best conditions and reaction 

variables for the Suzuki-Miyaura cross coupling reaction, generate the substituted 

cyclohexenone intermediate, then oxidize the cyclohexenone in the same pot to arrive at 

meta-substituted phenols. A plausible mechanism for the aerobic oxidation of the 

cyclohexenone intermediate is given below (Scheme 15b). 
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Scheme 15a. One-Pot synthesis of meta-substituted phenols via Suzuki-Miyaura 

coupling and oerobic oxidation 

 

Scheme 15b. Proposed mechanism for the Pd-catalyzed aerobic oxidation 
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The large variety of commercially available boronic acids and boronate esters will be used 

to demonstrate the scope of this transformation. As well, the various 

chlorocyclohexenones that are readily prepared from low-cost materials will be used to 

synthesize the polysubstituted phenols. 
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Chapter 2: Results and Discussion 

 

2.1 Substrate Preparation:  

We chose our model substrate -chlorocyclohexenone 1 for its ease of production from 

low-cost starting materials. 61  1 was prepared from the commercially available 1,3-

cyclohexanedione using oxalyl chloride and a catalytic amount of DMF (Scheme 16), 

involving the conversion of DMF to the imidoyl chloride derivative 2.  

 

 

Scheme 16. Synthesis of -chlorocyclohexenone 1 

 

Generating the mono-substituted -chlorocyclohexenones 3-5 substrate requires an 

additional step of enolate alkylation of 1,3-cyclohexanedione using the appropriate alkyl 

or benzyl halide and sodium hydroxide (Scheme 17).62  
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Scheme 17. Synthesis of monosubstituted -chlorocyclohexenones 3-5 

 

The preparation of the disubstituted -chlorocyclohexenone 6 substrate required the 

enolate alkylation of 3 using lithium diisopropyl amide (LDA). (Scheme 18). 

 

 

Scheme 18. Synthesis of disubstituted -chlorocyclohexenone 6 

 

2.2 Proof of Principle Experiment 

With our model substrates in hand, we turned our attention towards the Suzuki-Miyaura 

coupling reaction to generate the substituted -unsaturated ketone intermediate. We 

reasoned that, although oxidative addition is more difficult with strong C-Cl bonds 

compared to weaker C-Br and C-I bonds, the vinyligous acid chloride 1 would be ideal for 

oxidative addition reactions since it contains an electron poor vinyl chloride (Scheme 19).  
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Scheme 19. Oxidative addition between Pd(0) and substrate 1 

 

We conducted our initial experiment using an 1:1 ratio of -chlorocyclohexenone and 

phenylboronic acid, and a catalytic system of Pd(OAc)2 and PPh3, and two equivalents of 

Na2CO3 as base. We chose to use O2 or H2O2 as oxidizing reagents for their low cost and 

high atom efficiency. The Suzuki-Miyaura cross-coupling reaction proceeded smoothly in 

DMSO, so after confirming that all of the starting material 1 was converted into ketone 7, 

we attempted aerobic oxidation using an oxygen balloon and a 4M solution of HCl in 

dioxane (Scheme 20), as the catalytic cycle of Pd-catalyzed aerobic oxidation generally 

requires H+ to re-oxidize Pd, a process that leaves H2O as a by-product.58,60 However, 

after 16 hours of reaction, no phenol product was detected.  

 

Scheme 20. Attempted synthesis of meta-phenylphenol from 1 

 

We then looked for ways to help facilitate the aerobic oxidation step of our reaction. We 

suspected that in our original proposed mechanism (Scheme 15b), Pd(0) was not being 

re-oxidized by O2 and H+. Recalling that CuII is an effective electron transfer agent 

between O2 and Pd(0),60 we decided to use CuCl2 as an oxidation co-catalyst. With this 
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change, we propose a new, modified reaction mechanism for the aerobic oxidation step 

of our reaction as below (Scheme 21).  

 

 

 

Scheme 21. Proposed mechanism for Pd-catalyzed aerobic oxidation, modified 

 

When we added a catalytic amount of CuCl2 and allowed the oxidation to progress 

overnight, we succeeded in producing 3-phenylphenol 8 in moderate yield, in addition to 
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trace (<5%) amounts of biphenyl 9 (Scheme 22). We chose to use this catalyst system 

for future work. 

 

 

 

Scheme 22. Synthesis of meta-phenylphenol 8 from 1 using CuCl2 co-catalyst 

 

2.3 Optimization of Reaction Conditions 

We then proceeded to optimize conditions for our process by employing a variety of 

common solvents, ligands, and bases for cross-coupling reactions (Table 2). We 

observed that although many different solvents are compatible with the Suzuki-Miyaura 

cross-coupling reaction, only DMSO was compatible with the subsequent aerobic 

oxidation. (Table 2, entries 1-4). In a control reaction, we confirmed that acid was required 

for the oxidation reaction to occur (Table 2, entry 5). Pyridine-based ligands have often 

been used as ligands for aerobic oxidation,63 but they proved ineffective here (Table 2, 

entry 6), possibly due to their protonation in the acidic environment. Furthermore, H2O2 

was ineffective as a terminal oxidant, performing significantly worse than O2 (Table 2, 

entry 7). In addition, replacing Na2CO3 with the more soluble Cs2CO3 resulted in an 

increase in yield (Table 2, entry 8).64 
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Table 2. Optimization of m-phenylphenol synthesis in a one-pot Pd-catalyzed Suzuki-

Miyaura cross-coupling and oxidation 

 

 

 

During the course of our work, we noticed that -chlorocyclohexenone slowly 

decomposed in storage at 0 °C, and it seemed reasonable that decomposition likely 

occurs faster at higher temperature. Therefore, we used it in slight excess, and observed 

a corresponding yield increase for 8 (table 3). The trace (<5%) amount of biphenyl side 

product 9 was likely the results of homocoupling of phenylboronic acid, which suggested 

that a slight excess of phenylboronic acid should be used. We tested these separate 

scenarios, and found consistently greater yield, relative to the appropriate limiting reagent, 

when -chlorocyclohexenone was used in excess (Table 3, entries 2-5), suggesting the 

effect of substrate decomposition was more pronounced. Out of concern about the 

decomposition of -chlorocyclohexenone, we lowered the temperature of our cross-

coupling reaction to 60 °C. Lower reactions temperatures than 60 °C caused incomplete 

conversion for cross-coupling. Finally, in a brief screening of Pd2+ sources, 

Pd(MeCN)4(BF4)2 was found to produce the highest yield of product when compared to 
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Pd(OAc)2 and PdCl2 (Table 3, entries 4-6), but due to cost concerns, part of the study 

was conducted using Pd(OAc)2. These measures resulted in a clean synthesis of meta-

phenylphenol in an isolated yield of 88% (Table 3, entry 5). We were concerned about 

the possibility of over-oxidation of the phenol to either quinones or hydroquinones, but 

these reactions require different conditions and oxidants,65,66 and we report that no such 

over-oxidation was detected. 

 

Table 3. Further optimization of m-phenol synthesis from one-pot Pd-catalyzed Suzuki-

Miyaura coupling and oxidation 

 

 

We then moved to find ways to optimize the aerobic oxidation step of our process. In 

order to assess the yield of Pd-catalyzed oxidation of -unsaturated ketone 7 to phenol 

8, we conducted a separate parallel reaction to our most optimized process (Table 3, 

entry 5), that was stopped after the cross-coupling was complete, allowing us to collect 

the unsaturated ketone 7 in 89% yield (Scheme 23), suggesting that the overall yield of 

reaction is largely determined ·by the cross-coupling step, while the aerobic oxidation 

reaction was virtually quantitative, at least for this substrate. 
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Scheme 23. Optimized Suzuki-Miyaura cross-coupling reaction  

 

2.4 Substrate Scope 

We then applied these optimized conditions to the Suzuki-Miyaura cross coupling reaction 

between -chlorocyclohexenone and a sampling of boronic acids, and then their 

subsequent aerobic oxidation, in order to explore the scope of different substituted 

phenols (Table 4). Both electron-withdrawing and electron-donating substituents on the 

phenylboronic acid substrate produced high yields of phenols (Table 4, entries 1-3). 

Adding one ortho-substituent on the boronic acid did not significantly affect the yield 

(Table 4, entry 4). On the other hand, using phenylboronic acids hindered at both ortho-

positions lowered the yield dramatically (Table 4, entries 5), suggesting high steric 

sensitivity of the reaction. A reasonable explanation for this effect lies in the 

transmetallation step of the Suzuki-Miyaura cross-coupling reaction (Scheme 24),19-21 

where there is significant steric clash between the ortho-substituents on the 

phenylboronic acid and the Pd metal center. A modest drop in product yield was also 

observed when trans-2-phenylvinylboronic acid (Table 4, entry 6) and heterocyclic 

boronic acids (Table 4, entries 7-8) were employed as substrates.  One notable anomaly 

to the trend is the reaction using 4-vinylphenylboronic acid (Table 4, entry 9), which 

produced significantly poorer yield despite lack of steric hindrance, likely due to the vinyl 

functional group enabling various side reactions. In addition, we conducted  several 

parallel Suzuki-Miyaura cross-coupling reactions to collect unsaturated ketones with 

yields similar to their oxidized counterparts (Table 4, in italics), providing further evidence 

that the Suzuki-Miyaura cross-coupling reaction was the factor that determined the final 

yield. 
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Table 4. Synthesis of various meta-substituted phenols from one-pot Pd-catalyzed  

Suzuki-Miyaura coupling and oxidation 
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Scheme 24. The transmetallation step of the Suzuki-Miyaura cross-coupling reaction 

using hindered phenylboronic acids 

We further explored the scope of our reaction with the more challenging synthesis of 

polysubstituted phenols, which required the enolate alkylation of-chlorocyclohexenone 

(Schemes 17,18). These -substituted -chlorocyclohexenones did not decompose at 

high temperatures as their unsubstituted counterparts did, allowing us to use them as the 

limiting reagent. In each case, the phenols with ortho-substituents were produced in lower 

yields than those without (Table 5, 1-6). This is likely due to steric hindrance affecting the 

cross-coupling reaction during both the oxidative addition step, as well as the 

transmetallation step.15,19-21 In cases where both coupling partners were hindered, no 

product was formed (Table 5, entries 7-8), reflecting on the strong steric sensitivity of 

these reactions. However, the yield of the di-ortho-substituted phenol 27 (Table 5, entry 

9) was close to that of its mono-ortho-substituted analogue 19, suggesting that the 

position of the second ortho-substituents generated little additional steric hindrance. 
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Table 5. Synthesis of various polysubstituted phenols from one-pot Pd-catalyzed  

Suzuki-Miyaura coupling and oxidation. 
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In order to synthesize the congested phenols 25 and 26, we investigated the use of a 

select sample of ligands on Pd that have previously been shown to promote sterically 

hindered Suzuki-Miyaura cross coupling reactions.31,32 Two of these ligands, SPhos and 

DPEPhos, did not satisfactorily facilitate coupling between -substituted -

chlorocyclohexenone and hindered arylboronic acids (Table 6, entries 2-3), but the use 

of a 5% catalyst loading of Pd(dppf)Cl2·CH2Cl2, along with KOH as base to replace 

Cs2CO3, proved successful and ultimately provided the hindered phenols in moderate 

yield after oxidation (Table 6, entries 4-5). This lead us to believe that we had found a 

better overall catalyst system, but the success of Pd(dppf)Cl2·CH2Cl2 was not replicated 

in cross-coupling of other, less hindered substrates, where they performed worse than 

the standard Pd2+/triphenylphosphine catalyst system (Table 6, entries 6-8).  
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Table 6. Modified reaction conditions for the synthesis of sterically hindered phenols 
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We were also interested in the potential of PEPPSI (Pyridine-Enhanced Precatalyst 

Preparation Stabilization and Initiation) catalysts, which have been shown to effectively 

catalyze a variety of cross-coupling reactions, especially between sterically hindered 

reagents.39 Unfortunately, using a Pd-PEPPSI-iPent catalyst system, our cross-coupling 

reaction only proceeded under some circumstances, and no subsequent aerobic 

oxidation occurred (Table 7, entries 1-3). This departure from previous trials, where the 

aerobic oxidation step was trivial and near quantitative, was likely due to the donating 

effect of the NHC (N-heterocyclic carbene) ligand, decreasing the electrophilicity of the 

metal center and preventing -hydride elimination. 
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Table 7. The use of PEPPSI catalysts in the Suzuki-Miyaura cross-coupling reaction 

and subsequent aerobic oxidation 

 

 

 

 

Finally, we turned our attention towards the synthesis of pyridine-substituted phenols. We 

opted to use pinacol boronic esters that were immediately available to us, instead of 
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boronic acids. Although the expected -unsaturated ketone was generated from 

substrate 3 via Suzuki-Miyaura cross-coupling with little difficulty, the previously optimized 

aerobic oxidation conditions yielded no trace of the expected pyridine-substituted phenol 

28. (Table 8, entry 1). Replacing the Cu source or the acid source had no effect (Table 8, 

entries 2-4). 

 

Table 8. The synthesis of pyridine-substituted phenols 
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We reasoned that the aerobic oxidation conditions for the synthesis of benzothiophene-

substituted and benzofuran-substituted phenols could not be directly replicated with 

pyridine-substituted phenols due to the low pKa of pyridinium (~5). If acid-catalyzed 

tautomerization of the ketone is required to begin oxidation, the acidic environment may 

not have been strong enough to protonate the ketone in the presence of the pyridine 

group. Increasing the amount of HCl from 3 to 4 mol equivalents (Table 8, entry 5) did not 

change the reaction outcome, but using 12 equivalents of HCl produced phenol 28 in 

moderate yield (Table 8, entry 6). Pyridine-substituted phenol 29 was produced in a 

similar manner (Table 8, entry 7). 

Unfortunately, the scope of pyridine-substituted phenol synthesis is limited. The Suzuki-

Miyaura cross-coupling reaction could not be completed with more electron-deficient 

pyridyl boronic esters (Tables 9, entries 1-8).  
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Table 9. Suzuki-Miyaura cross-coupling reaction using electron deficient pyridyl boronic 

esters

 

 

 

2.5 Conclusion 

We have developed a new method to synthesize meta-substituted phenols, especially 

meta- and ortho-disubstituted phenols in good to excellent yield from simple and 
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inexpensive reagents. The palladium source is the catalyst for both the cross-coupling 

and the oxidation processes, generating the target phenol in one-pot over two catalytic 

steps. This method solves many of the problems that have plagued previous methods of 

synthesizing meta-substituted phenols, especially ortho- and meta- disubstituted phenols. 
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Chapter 3: Experimental 

 

3.1 General Experimental 

 

Reactions were conducted in oven-dried glassware under an atmosphere of argon using 

freshly distilled solvents unless specified otherwise. Commercial reagents were used as 

received. Thin-layer chromatography was performed on Merck silica gel 60 F254 plates. 

Visualisation was carried out using UV light (254 nm) and (NH4)2Ce(NO3)6 solutions. 

Hexanes (ACS grade), ethyl acetate (ACS grade), and DMSO (ACS grade) were used as 

received. Flash column chromatography was carried out using Aldrich silica gel (230-400 

mesh, 40-63 60 Å pore size). 1H- and 13C-NMR spectra were recorded on 400 AV, 300 

AV, and DRX 600 NMR spectrometer in chloroform-d (99.8% deuterated), Acetone-d6 

(99.8% deuterated), and benzene-d6 (99.8% deuterated) and using chloroform (7.26 ppm 

1H and 77.0 ppm 13C), acetone (28.9 ppm and 206.5 ppm 13C), DMSO (2.54 ppm), and 

benzene (127.7 ppm 13C) as reference. Chemical shifts () are reported in ppm and 

multiplicities are indicated by br (broad), s (singlet), d (doublet), t (triplet), q (quartet), p 

(pentet), m (multiplet). Coupling constants J are reported in Hertz (Hz). Infrared (IR) 

spectra were recorded using Alpha-Platinum ATR Bruker, diamond crystal.  
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3.2 Experimental Procedures and data 

 

3.2.1 Substrate Preparation. 

 

General Procedure 1. Synthesis of 3-chlorocyclohexenone from 1,3-

cycloehexanedione. 

 

In a dry round bottom flask capped with a rubber septum and equipped with a magnetic 

stir bar was added 1,3-cyclohexanedione (1.0 equiv.) and placed under an argon 

atmosphere. Freshly distilled DCM was introduced into the flask via syringe to prepare a 

0.4 M solution at room temperature. While stirring, oxalyl chloride (1.5 equiv.) was added 

dropwise, followed by catalytic DMF (5 drops). The reaction mixture was stirred overnight 

at room temperature. Upon completion, the reaction was diluted with brine. The organic 

layer was separated, and the aqueous layers were extracted with DCM. The combined 

organic phase was dried over Na2SO4, and concentrated in vacuo to afford the desired 

3-chlorocyclohexenone.  

 

 

General Procedure 2a. Synthesis of monosubstituted 3-chlorocyclohexenone from 1,3-

cycloehexanedione. 

 

In a dry round bottom flask was dissolved 1,3-cyclohexanedione (1.0 equiv.) in a 5 M 

solution of NaOH (1.0 equiv.). The vessel was cooled using an ice bath, then charged 

with the appropriate alkyl/benzyl halide, stirred, and heated under reflux overnight. The 

precipitated solid was filtered and washed with cold hexane to give crude substituted-

1,3-cyclohexanedione as a solid. The solid was dried and added to another dry round 

bottom equipped with a magnetic stir bar, and dissolved in dry DCM to prepare a 0.4 M 

solution, followed by dropwise addition of oxalyl chloride (1.5 equiv.) then catalytic DMF 

(5 drops) while stirring. The reaction mixture was stirred overnight at RT, then diluted with 

brine. The organic layer was separated, and the aqueous layers were extracted with DCM. 

The combined organic phase was dried over Na2SO4, and concentrated in vacuo. The 
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crude product was purified by flash column chromatography, eluting with the indicated 

solvent to afford the desired 3-chlorocyclohexenone. 

 

 

General Procedure 2b. Synthesis of disubstituted 3-chlorocyclohexenone from 

monosubstituted 3-chlorocyclohexenone. 

 

In a dry round bottom flask was charged with a 0.5 M solution of diisopropylamine (1.1 

equiv.) in THF at -20°C, and then added with n-butyllithium (1.1 equiv.) dropwise. The 

vessel was cooled to -78°C, and charged with a 2.0 M solution of monosubstituted 3-

chlorocyclohexenone acquired from General Procedure 2 (1.0 equiv.) in THF. After 

stirring for 30 minutes, a 1.0 M solution of MeI (3.0 equiv.) was added over 5 min. The 

solution was stirred at -20°C with reaction progress monitored by 1H-NMR analysis. After 

completion, the reaction was quenched with H2O, and THF was evaporated. The aqueous 

phase was extracted twice with EtOAc, and the combined organic phase was dried over 

Na2SO4, and concentrated in vacuo. The crude product was purified by flash column 

chromatography, eluting with the indicated solvent to afford the desired disubstituted 3-

chlorocyclohexenone. 
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Substrate 1: 3-chlorocyclohexenone 

 

3-chlorocyclohexenone 1 was prepared following General Procedure 1, using 1,3-

cyclohexanedione (2.0 g, 18 mmol, 1.0 equiv.) and oxalyl chloride (3.4 g, 2.3 mL, 27 mmol, 

1.5 equiv.). 3-chlorocyclohexenone 1 (2.2 g, 93 % yield) was produced as an oil and used 

in the subsequent step without further purification. Data acquired on this material matches 

that previously reported.67 

1H-NMR (400 MHz, CDCl3) 6.21 (s, 2 H), 2.70 (t, J = 6.3 Hz, 2 H), 2.39 (t, J = 6.6 

Hz, 2 H), 2.08 (tt, J = 6.6, 6.3 Hz, 2 H) 

13C-NMR (100 MHz, CDCl3)  196.9, 158.6, 128.5, 36.3, 33.9, 22.2 

IR   = 2954, 2890, 1675, 1605, 1340, 1289, 1230, 990, 880, 809, 745,  

519 cm-1 
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Substrate 3: 2-methyl-3-chlorocyclohexenone 

 

Substrate 3 was prepared following General Procedure 2a, using 1,3-cyclohexanedione 

(2.8 g, 25. mmol) in a 5 M solution of NaOH (5.0 mL), MeI (7.1 g, 3.1 mL, 50 mmol, 2.0 

equiv.), and oxalyl chloride (4.9 g, 3.3 mL, 38 mmol, 1.0 equiv.) Purification with column 

chromatography (Hex 85:15 EtOAc, Rf = 0.4) produced substrate 3 (2.4 g, 66% yield) as 

an oil. Data acquired on this material matches that previously reported.68 

 

1H NMR (300 MHz, CDCl3)  2.76-2.71 (m, 2 H), 2.45 (t, J = 6.6 Hz, 2 H),  

2.03 (p, J = 6.6 Hz, 2 H), 1.90 (t, J = 1.5 Hz, 3 H) 

13C NMR (100 MHz, CDCl3)  196.4, 153.2, 133.5, 36.9, 34.8, 21.8, 12.2 

IR  = 2951, 2871, 1673, 1625, 1338, 1325, 1247, 1039, 985, 902, 544cm-1 
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Substrate 4: 2-benzyl-3-chlorocyclohexenone 

 

 

Substrate 4 was prepared following General Procedure 2a, using 1,3-cyclohexanedione 

(2.8 g, 25.0 mmol, 1.0 equiv.) in a 5 M solution of NaOH (5.0 mL), benzyl bromide (6.4g, 

4.5 mL, 38 mmol, 1.5 equiv.), and oxalyl chloride (4.9 g, 3.3 mL, 37.5 mmol, 1.0 equiv.) 

Purification with column chromatography (Hex 9:1 EtOAc, Rf = 0.4) produced substrate 

4 (3.4 g, 61% yield) as an oil. Data reported on this material matches that previously 

reported.69  

1H-NMR (400 MHz, CDCl3) 7.27-7.15 (m, 5 H), 3.79 (s, 2 H), 2.79 (t, J = 6.4 Hz, 2 

H), 2.47 (t, J = 6.4 Hz, 2 H), 2.04 (p, J = 6.4, 2 H) 

13C-NMR (100 MHz, CDCl3)   195.9, 154.4, 138.9, 136.8, 128.7, 128.2, 126.0, 37.1, 

35.0, 32.1, 21.8 

IR   = 3028, 2935, 1672, 1617, 1342, 1286, 947, 900, 721, 697, 541 cm-1 

HRMS ESI Calculated for (C13H13ClO)+ = 220.0655, found = 220.0651 
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Substrate 5: 2-ethyl-3-chlorocyclohexenone 

 

Substrate 5 was prepared following General Procedure 2a, using 1,3-cyclohexanedione 

(1.4 g, 13 mmol) in a 5 M solution of NaOH (2.5 mL), ethyl iodide (2.9 g, 1.5 mL, 19 mmol, 

1.5 equiv.), and oxalyl chloride (2.4 g, 1.6 mL, 19 mmol, 1.5 equiv.) Purification with 

column chromatography (Hex 9:1 EtOAc, Rf = 0.4) produced substrate 5 (0.88 g, 44% 

yield) as an oil. 

1H-NMR (400 MHz, CDCl3)  2.73 (t, J = 6.4 Hz, 2 H), 2.46-2.41 (m, 4 H),  

2.02 (p, J = 6.4 Hz, 2 H), 0.98 (t, J = 7.6 Hz, 3 H) 

13C-NMR (100 MHz, CDCl3)  196.0, 152.0, 139.0, 37.2, 34.9, 21.9, 20.0, 12.2 

IR  = 2967, 2936, 2874, 1673, 1619, 1342, 1330, 1254, 1057, 1005, 874, 

814, 542 cm-1 

HRMS ESI Calculated for (C8H11ClO)+ = 158.0498, found = 158.0492 
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Substrate 6: 2,6-dimethyl-3-chlorocyclohexenone 

 

Substrate 6 was prepared following General Procedure 2b, using substrate 3 (0.58 g, 4.0 

mmol), 1.6 M solution of n-butyllithium in hexane (0.28 g, 2.75 mL, 4.4 mmol), 

diisopropylamine (0.45 g, 0.62 mL, 4.4 mmol), and MeI (1.7 g, 0.75 mL, 12.0 mmol). 

Purification with column chromatography (Hex 9:1 EtOAc, Rf = 0.4) produced substrate 

6 (0.34 g, 54% yield) as an oil. 

1H-NMR (400 MHz, CDCl3)  2.84-2.75 (m, 1 H), 2.71-2.65 (m, 1 H),  

2.42-2.37 (m, 1 H), 2.10-2.03 (m, 1 H), 1.90 (s, 3 H), 1.82-1.71 (m, 1 H),  

1.14 (d, J = 7.6 Hz, 3 H) 

13C-NMR (100 MHz, CDCl3)  198.9, 152.0, 132.7, 40.4, 34.0, 29.8, 15.8, 12.6 

IR  = 2977, 2944, 1674, 1619, 1341, 1334, 1034, 995, 876, 855, 540 cm-1 
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3.2.2 One-pot Synthesis of meta-Substituted Phenols via Palladium-Catalyzed Suzuki-

Miyaura Cross-coupling and Oxidation 

 

Three reaction protocols were developed for the one-pot-synthesis of meta-substituted 

phenols from 3-chlorocyclohexenones. Procedure 3A involved the use of Pd2+ salt and 

PPh3 as the catalytic system. When this method failed for phenols that were too sterically 

hindered procedure 3B, which involved the use of Pd(dppf)Cl2·CH2Cl2 , was used. A 

slightly modified reaction protocol 3C, which also uses Pd2+ and PPh3, was developed for 

the synthesis of pyridine-substituted phenols. 

 

General Procedure 3A. 

 

To a dry round bottom flask equipped with a magnetic stir bar were added, in order, the 

appropriate β-chlorocyclohexenone, anhydrous DMSO, and the appropriate boronic acid. 

The reaction mixture was purged with Ar for 30 minutes, prior to the addition of 

Pd(MeCN)4(BF4)2 (0.05 equiv.), PPh3 (0.15 equiv.), and a solution of Cs2CO3 (2.0 equiv.) 

in H2O. The reaction mixture was stirred at 60 °C for 3 h, with reaction progress monitored 

by 1H-NMR analysis. Upon completion, the mixture was charged with 4M HCl in dioxane 

(3 equiv.), and CuCl2 (0.2 equiv.), and stirred at 100 °C overnight under an atmosphere 

of O2 gas with a balloon. Upon reaction completion, the mixture was diluted with 1 M HCl 

and extracted with EtOAc (3x). The combined organic fractions were washed with 

saturated NaCl (3x), H2O, dried over Na2SO4, and concentrated in vacuo. The crude 

product was purified by flash column chromatography, eluting with the indicated solvent 

mixture to afford the desired phenol.   
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General Procedure 3B. 

 

To a dry round bottom flask equipped with a magnetic stir bar were added, in order, the 

appropriate β-chlorocyclohexenone, anhydrous DMSO, and the appropriate boronic acid. 

The reaction mixture was purged with Ar for 30 minutes, prior to the addition of 

Pd(dppf)Cl2 ·CH2Cl2 (0.05 equiv.), PPh3 (0.15 equiv.), and a solution of Cs2CO3 (2.0 equiv.) 

in H2O. The reaction mixture was stirred at 90 °C for 3 h, with reaction progression 

monitored by 1H-NMR analysis. Upon completion, the mixture was charged with 4 M HCl 

in dioxane (3 equiv.) then CuCl2 (0.2 equiv.), and stirred at 100 °C overnight under an 

atmosphere of O2 gas with a balloon. Upon reaction completion, the mixture was diluted 

with 1 M HCl and extracted with EtOAc (3x). The combined organic fractions were washed 

with saturated NaCl (3x), H2O, dried over Na2SO4, and concentrated in vacuo. The crude 

product was purified by flash column chromatography, eluting with the indicated solvent 

mixture to afford the desired phenol.   

 

General Procedure 3C. 

 

To a dry round bottom flask equipped with a magnetic stir bar were added, in order, the 

appropriate β-chlorocyclohexenone, anhydrous DMSO, and the appropriate boronic ester. 

The reaction mixture was purged with Ar for 30 minutes, prior to the addition of Pd(OAc)2 

(0.05 equiv.), PPh3 (0.15 equiv.), and a solution of Cs2CO3 (2.0 equiv.) in H2O. The 

reaction mixture was stirred at 90 °C for 3 h, with reaction progress monitored by 1H-NMR 

analysis. Upon completion, the mixture was charged with 4M HCl in dioxane (12 equiv.), 

and CuCl2 (0.2 equiv.), and stirred at 100 °C overnight under an atmosphere of O2 gas 

with a balloon. Upon reaction completion, the mixture was diluted with a pH 8 buffer 

solution, made of 0.2 M NaOH (46.8 mL), 0.2 M KH2PO4 (50 mL), diluted to 200 mL. The 

aqueous phase was extracted with EtOAc (3x). The combined organic fractions were 

washed with saturated NaCl (3x), H2O, dried over Na2SO4, and concentrated in vacuo. 

The crude product was purified by flash column chromatography, eluting with the 

indicated solvent mixture to afford the desired phenol.    
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Phenol 8 

 

Phenol 8 was prepared following General Procedure 3a, using β-chlorocyclohexenone 1 

(0.24 g, 1.9 mmol, 1.2 equiv.), anhydrous DMSO (3 mL), phenylboronic acid (0.19g, 1.5 

mmol, 1.0 equiv.), Pd(MeCN)4(BF4)2 (34 mg, 0.077 mmol, 0.05 equiv.), PPh3 (57 mg, 0.22 

mmol, 0.15 equiv.), a solution of Cs2CO3 (1.0 g, 3.1 mmol, 2.0 equiv.) in H2O (0.7 mL), 4 

M HCl in dioxane (1.2 mL, 4.6 mmol, 3 equiv.), and CuCl2 (42 mg, 0.31 mmol, 0.2 equiv.) 

Purification using column chromatography (Hexane 85:15 EtOAc, Rf = 0.25) yielded 

phenol 8 (0.23g, 88% yield) as a solid. NMR spectral data and melting point data acquired 

on this material matches that previously reported.70,71 

1H-NMR (300 MHz, CDCl3)  7.57 (d, J = 7.5Hz, 2 H), 7.44 (t, J = 7.0 Hz, 2 H),  

7.37-7.29 (m, 2 H), 7.17 (d, J = 7.8 Hz, 1 H), 7.07 (s, J = 1 H),  

6.82 (dd, J = 7.8, 2.1 Hz, 1 H), 4.76 (s, 1 H) 

13C-NMR (100 MHz, CDCl3)  155.7, 142.9, 140.6, 129.9, 128.6, 127.4, 127.0, 

119.7, 114.0, 113.9 

IR  = 3255, 3032, 1588, 1459, 1296, 1183, 882, 752, 693 cm-1 

m.p.  72-75 °C 
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Phenol 10 

 

Phenol 10 was prepared following General Procedure 3a, using β-chlorocyclohexenone 

1 (0.24g, 1.9 mmol, 1.2 equiv.), anhydrous DMSO (3 mL), 4-acetylphenylboronic acid 

(0.25g, 1.5 mmol, 1.0 equiv.), Pd(MeCN)4(BF4)2 (34 mg, 0.077 mmol, 0.05 equiv.), PPh3 

(57 mg, 0.22 mmol, 0.15 equiv.), a solution of Cs2CO3 (1.0 g, 3.1 mmol, 2.0 equiv.) in H2O 

(0.7 mL), 4 M HCl in dioxane (1.2 mL, 4.6 mmol, 3 equiv.), and CuCl2 (42 mg, 0.31 mmol, 

0.2 equiv.) Purification using column chromatography (Hexane 85:15 EtOAc, Rf = 0.25) 

yielded phenol 10 (0.26g, 80%) as a solid. NMR spectral data and melting point data 

acquired on this material matches that previously reported.72 

1H-NMR (400 MHz, CDCl3)  8.03 (d, J = 8.0 Hz, 2 H), 7.67 (d, J = 8.0 Hz, 2 H), 

7.34 (t, J = 8.0 Hz, 1 H), 7.21 (d, J = 7.6 Hz, 1 H), 7.10 (m, 1 H), 6.87 (dd, J = 8.0, 2.4 

Hz, 1 H), 4.85 (s, 1 H), 2.64 (s, 3 H) 

13C-NMR (100 MHz, CDCl3)  197.7, 155.9, 145.2, 141.5, 135.9, 130.1, 128.8, 

127.1, 119.8, 115.0, 114.1, 26.6 

IR   = 3176, 1656, 1583, 1478, 1404, 1308, 1271, 1202, 962, 827, 780, 693, 

591 cm-1 

m.p.  165-169 °C 

HRMS ESI Calculated for (C14H12O2)+ = 212.0837, found = 212.0833 
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Phenol 11 

 

Phenol 11 was prepared following general procedure 3a, using β-chlorocyclohexenone 1 

(0.24g, 1.9 mmol, 1.2 equiv.), anhydrous DMSO (3 mL), 4-

(methanesulfonyl)phenylboronic acid (0.31g, 1.5 mmol, 1.0 equiv.),  Pd(MeCN)4(BF4)2 

(34 mg, 0.077 mmol, 0.05 equiv.), PPh3 (57 mg, 0.22 mmol, 0.15 equiv.), a solution of 

Cs2CO3 (1.0 g, 3.1 mmol, 2.0 equiv.) in H2O (0.7 mL), 4 M HCl in dioxane (1.2 mL, 4.6 

mmol, 3 equiv.), and CuCl2 (42 mg, 0.31 mmol, 0.2 equiv.) Purification using column 

chromatography (Hexane 50:50 EtOAc, Rf = 0.30) yielded phenol 2b (0.28g, 75% yield) 

as a solid. 

1H-NMR (300 MHz, CDCl3)  8.01 (d, J = 8.4 Hz, 2 H), 7.75 (d, J = 8.4 Hz, 2 H),  

7.36 (t, J = 7.8 Hz, 1 H), 7.18 (d, J = 7.8 Hz, 2 H), 7.08 (s, 1 H), 6.90 (dd, J = 7.8, 1.8 

Hz, 1 H), 4.94 (s, 1 H), 3.10 (s, 3 H) 

13C-NMR (75 MHz, Acetone-d6)   158.0, 145.9, 140.6, 140.1, 130.2, 127.8, 127.6, 

118.5, 115.5, 114.0, 43.4 

IR   = 3425, 3006, 2925, 1595, 1451, 1297, 1210, 1148, 962, 773, 695, 542 

cm-1 

m.p.  146-149 °C 

HRMS ESI Calculated for (C13H12O3S)+ = 248.0507, found = 248.0502 
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Phenol 12 

 

Phenol 12 was prepared following General Procedure 3a, using β-chlorocyclohexenone 

1 (0.24 g, 1.9 mmol, 1.2 equiv.), anhydrous DMSO (3 mL), 3,5-dimethoxyphenylboronic 

acid (0.28g, 1.5 mmol, 1.0 equiv.),  Pd(MeCN)4(BF4)2 (34 mg, 0.077 mmol, 0.05 equiv.), 

PPh3 (57 mg, 0.22 mmol, 0.15 equiv.), a solution of Cs2CO3 (1.0 g, 3.1 mmol, 2.0 equiv.) 

in H2O (0.7 mL), 4M HCl in dioxane (1.2 mL, 4.6 mmol, 3 equiv.), and CuCl2 (42 mg, 0.31 

mmol, 0.2 equiv.) Purification using column chromatography (Hexane 70:30 EtOAc, Rf = 

0.20) yielded phenol 12 (0.28g, 79% yield) as an oil. NMR spectral data acquired on this 

material matches that previously reported.73 

 

1H-NMR (400 MHz, CDCl3)  7.30 (t, J = 8.0 Hz, 1 H), 7.15 (d, J = 7.6 Hz, 1 H), 

7.05 (s, 1 H), 6.82 (dd, J = 8.0, 2.8 Hz, 1 H), 6.71 (d, J = 2.0 Hz, 2 H), 6.47 (t, J = 2.0 

Hz, 1 H), 4.85 (s, 1 H), 3.84 (s, 6 H) 

13C-NMR (100 MHz, CDCl3)  160.9, 155.6, 142.9, 142.8, 129.8, 119.7, 114.3, 

114.0, 105.2, 99.4, 55.3 

IR   = 3394, 2938, 2838, 1703, 1579, 1458, 1416, 1260, 1202, 1062, 1038, 

834, 783, 691 cm-1 

HRMS ESI Calculated for (C14H14O3)+ = 230.0943, found = 230.0949 
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Phenol 13 

 

Phenol 13 was prepared following General Procedure 3a, using β-chlorocyclohexenone 

1 (0.24 g, 1.9 mmol, 1.2 equiv.), anhydrous DMSO (3 mL), o-tolylboronic acid (0.21g, 1.5 

mmol, 1.0 equiv.), Pd(MeCN)4(BF4)2 (34 mg, 0.077 mmol, 0.05 equiv.), PPh3 (57 mg, 0.22 

mmol, 0.15 equiv.), a solution of Cs2CO3 (1.0g, 3.1 mmol, 2.0 equiv.) in H2O (0.7 mL), 4 

M HCl in dioxane (1.2 mL, 4.6 mmol, 3 equiv.), and CuCl2 (42 mg, 0.31 mmol, 0.2 equiv.) 

Purification using column chromatography (Hexane 80:20 EtOAc, Rf = 0.25) yielded 

phenol 13 (0.23g, 81% yield) as an oil. NMR spectral data acquired on this material 

matches that previously reported.58 

 

1H-NMR (300 MHz, CDCl3)  7.30-7.21 (m, 5 H), 6.92 (d, J = 7.5 Hz, 1 H),  

6.82 (m, 2 H), 4.80 (s, 1 H), 2.30 (s, 3 H) 

13C-NMR (100 MHz, CDCl3)  155.0, 143.6, 141.3, 135.2, 130.2, 129.5, 129.2, 

127.2, 125.6, 121.8, 116.1, 113.6, 20.3 

IR   = 3342, 2981, 1703, 1583, 1476, 1442, 1302, 1273, 1204, 887, 757,  

703 cm-1 
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Phenol 14 

 

Phenol 14 was prepared following General Procedure 3a, using β-chlorocyclohexenone 

1 (0.24 g, 1.9 mmol, 1.2 equiv.), anhydrous DMSO (3 mL), 2,6-dimethylphenylboronic 

acid (0.23 g, 1.5 mmol, 1.0 equiv.), Pd(OAc)2 (17 mg, 0.077 mmol, 0.05 equiv.), PPh3 (57 

mg, 0.22 mmol, 0.15 equiv.), a solution of Cs2CO3 (1.0 g, 3.1 mmol, 2.0 equiv.) in H2O 

(0.7 mL), 4 M HCl in dioxane (1.2 mL, 4.6 mmol, 3 equiv.), and CuCl2 (42 mg, 0.31 mmol, 

0.2 equiv.) Purification using column chromatography (Hexane 85:15 EtOAc, Rf = 0.25) 

yielded phenol 14 (0.15g, 50% yield) as an oil. NMR spectral data acquired on this 

material matches that previously reported.74 

 

1H-NMR (400 MHz, CDCl3)  7.30 (t, J = 7.6 Hz, 1 H), 7.19-7.15 (m, 1 H),  

7.12 (d, J = 7.1 Hz, 2 H), 6.82 (dd, J = 8.4, 2.4 Hz, 1 H), 6.73 (d, J = 8.0 Hz, 1 H), 6.64 

(s, 1 H), 4.99 (s, 1 H), 2.06 (s, 6 H) 

13C-NMR (150 MHz, CDCl3)  155.5, 142.8, 141.3, 135.9, 129.7, 127.2, 127.0, 

121.6, 115.9, 113.5, 20.7 

IR   = 3343, 2951, 2919, 1580, 1462, 1441, 1288, 1187, 881, 769, 743,  

705 cm-1 
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Phenol 18 

 

Phenol 18 was prepared following General Procedure 3a, using β-chlorocyclohexenone 

1 (0.24 g, 1.9 mmol, 1.2 equiv.), anhydrous DMSO (3 mL), 4-vinylphenylboronic acid (0.23 

g, 1.5 mmol, 1.0 equiv.), Pd(OAc)2 (17 mg, 0.077 mmol, 0.05 equiv.), PPh3 (57 mg, 0.22 

mmol, 0.15 equiv.), a solution of Cs2CO3 (1.0 g, 3.1 mmol, 2.0 equiv.) in H2O (0.7 mL), 4 

M HCl in dioxane (1.2 mL, 4.6 mmol, 3 equiv.), and CuCl2 (42 mg, 0.31 mmol, 0.2 equiv.) 

Purification using column chromatography (Hexane 70:30 EtOAc, Rf = 0.25) yielded 

phenol 18 (0.12g, 40% yield) as a solid. 

1H-NMR (400 MHz, CDCl3)  7.57 (d, J = 8.4 Hz, 2 H), 7.50 (d, J = 8.4 Hz, 2 H), 

7.31 (t, J = 8.0 Hz, 1 H), 7.20 (d,  J = 8.0 Hz, 1 H), 7.09 (s, 1 H), 6.83 (dd, J = 8.0, 2.0 

Hz, 1 H), 6.78 (dd, J = 17.6, 11.2 Hz, 1 H), 5.81 (d, J = 17.6 Hz, 1 H), 5.30 (d, J = 11.2 

Hz, 1 H), 4.82 (s, 1 H) 

13C-NMR (100 MHz, CDCl3)  155.7, 142.4, 139.9, 136.7, 136.2, 129.9, 127.1, 

126.5, 119.5, 114.1, 113.9, 113.7 

IR   = 3268, 3085, 3032, 3002, 1587, 1483, 1452, 1300, 1184, 989, 902, 

884, 835, 749, 688 cm-1 

m.p.  106-110 °C 

HRMS ESI Calculated for (C14H12O)+ = 196.0888, found = 196.0882 
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Phenol 15 

 

Phenol 15 was prepared following General Procedure 3a, using β-chlorocyclohexenone 

1 (0.24 g, 1.9 mmol, 1.2 equiv.), anhydrous DMSO (3 mL), trans-2-phenylvinylboronic 

acid (0.23 g, 1.5 mmol, 1.0 equiv.)  Pd(MeCN)4(BF4)2 (34 mg, 0.077 mmol, 0.05 equiv.), 

PPh3 (57 mg, 0.22 mmol, 0.15 equiv.), a solution of Cs2CO3 (1.0 g, 3.1 mmol, 2.0 equiv.) 

in H2O (0.7 mL), 4 M HCl in dioxane (1.2 mL, 4.6 mmol, 3 equiv.), and CuCl2 (42 mg, 0.31 

mmol, 0.2 equiv.) Purification using column chromatography (Hexane 80:20 EtOAc, Rf = 

0.25) yielded phenol 15 (0.20g, 65% yield) as a solid. NMR spectral data and melting 

point data acquired on this material matches that previously reported.75 

 

 

1H-NMR (400 MHz, CDCl3)  7.50 (d, J = 7.6 Hz, 2 H),  7.36 (t, J = 7.2 Hz, 2 H), 

7.29-7.21 (m, 2 H), 7.12-7.06 (m, 3 H), 7.00 (br, s, 1 H), 6.74 (dd, J = 8.0 , 2.4Hz, 1 H),  

4.73 (s, 1 H) 

13C-NMR (100 MHz, CDCl3)  155.6, 139.0, 137.0, 129.8, 129.1, 128.6, 128.1, 

127.6, 126.4, 119.3, 114.5, 112.8 

IR   = 3546, 3033, 1588, 1451, 1150, 964, 787, 751, 691cm-1 

m.p.  120-124 °C 
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Phenol 16 

 

Phenol 16 was prepared following General Procedure 3a, using β-chlorocyclohexenone 

1 (0.24 g, 1.9 mmol, 1.2 equiv.), anhydrous DMSO (3 mL), thianaphthene-3-boronic acid 

(0.27g, 1.5 mmol, 1.0 equiv.), Pd(MeCN)4(BF4)2 (34 mg, 0.077 mmol, 0.05 equiv.), PPh3 

(57 mg, 0.22 mmol, 0.15 equiv.), a solution of Cs2CO3 (1.0 g, 3.1 mmol, 2.0 equiv.) in H2O 

(0.7 mL), 4 M HCl in dioxane (1.2 mL, 4.6 mmol, 3 equiv.), and CuCl2 (42 mg, 0.31 mmol, 

0.2 equiv.) Purification using column chromatography (Hexane 80:20 EtOAc, Rf = 0.25) 

yielded phenol 16 (0.20 g, 63% yield) as an oil. 

1H-NMR (300 MHz, CDCl3)  7.95-7.90 (m, 2 H),  7.40-7.33 (m, 4 H),  

7.17 (d, J = 7.5 Hz, 1 H), 7.07 (br, s, 1 H), 6.88 (dd, J = 8.0, 2.1 Hz, 1 H),  

4.91 (br, s, 1 H) 

13C-NMR (150 MHz, CDCl3)  155.7, 140.6, 137.7, 137.58, 137.56, 129.9, 124.4, 

124.3, 123.5, 122.91, 122.88, 121.3, 115.6, 114.5 

IR   = 3363, 2981, 1702, 1581, 1442, 1425, 1182, 815, 779, 760, 733,  

695 cm-1 

HRMS ESI Calculated for (C14H10OS)+ = 226.0542, found = 226.0458 
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Phenol 17 

 

Phenol 17 was prepared following General Procedure 3a, using β-chlorocyclohexenone 

1 (0.24 g, 1.9 mmol, 1.2 equiv.), anhydrous DMSO (3 mL), 2-benzofuranylboronic acid 

(0.25 g, 1.5 mmol, 1.0 equiv.), Pd(OAc)2 (17 mg, 0.077 mmol, 0.05 equiv.), PPh3 (57 mg, 

0.22 mmol, 0.15 equiv.), a solution of Cs2CO3 (1.0 g, 3.08 mmol, 2.0 equiv.) in H2O (0.7 

mL), 4 M HCl in dioxane (1.2 mL, 4.6 mmol, 3 equiv.), and CuCl2 (42 mg, 0.31 mmol, 0.2 

equiv.) Purification using column chromatography (Hexane 80:20 EtOAc, Rf = 0.25) 

yielded phenol 17 (0.18 g, 57% yield) as a solid. . NMR spectral data and melting point 

data acquired on this material matches that previously reported.76,77 

1H NMR (400 MHz, CDCl3)  7.58 (d, J = 7.6 Hz, 1 H), 7.51 (d, J = 8.0 Hz, 1 H), 

7.44 (d, J = 8.0, 1 H), 7.35-7.23 (m, 4 H), 7.01 (s, 1 H), 6.83 (d, J = 8.0 Hz, 1 H),  

4.89 (br, s, 1 H) 

13C NMR (100 MHz, CDCl3)  155.7, 155.3, 154.7, 131.9, 130.0, 129.0, 124.3, 

122.9, 120.9, 117.5, 115.5, 111.6, 111.1, 101.7 

IR   = 3497, 3194, 3058, 1568, 1454, 1441, 1257, 1222, 1191, 1042, 865, 

782, 746 cm-1 

m.p.  114-117°C 
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Phenol 19 

 

Phenol 19 was prepared following General Procedure 3a, using β-chlorocyclohexenone 

3 (0.11 g, 0.75 mmol, 1.0 equiv.), anhydrous DMSO (3 mL), phenylboronic acid (0.11 g, 

0.9 mmol, 1.2 equiv.), Pd(MeCN)4(BF4)2 (17 mg, 0.038 mmol, 0.05 equiv.), PPh3 (28 mg, 

0.11 mmol, 0.15 equiv.), a solution of Cs2CO3 (0.49g, 1.5 mmol, 2.0 equiv.) in H2O (0.7 

mL), 4 M HCl in dioxane (0.58 mL, 2.3 mmol, 3 equiv.), and CuCl2 (20 mg, 0.15 mmol, 

0.2 equiv.) Purification using column chromatography (Hexane 85:15 EtOAc, Rf = 0.35) 

yielded phenol 19 (88 mg, 70% yield) as an oil. NMR spectral data acquired on this 

material matches that previously reported.78 

1H-NMR (400 MHz, CDCl3)  7.42 (t, J = 7.2 Hz, 2 H), 7.36-7.31 (m, 3 H),  

7.13 (t, J = 8.0 Hz, 1 H), 6.86 (d, J = 7.6 Hz, 1 H), 6.80 (d, J = 7.6 Hz, 1 H),  

4.80 (s, 1 H), 2.16 (s, 3 H) 

13C-NMR (100 MHz, CDCl3)  153.9, 143.6, 141.5, 129.2, 127.9, 126.7, 126.1, 

122.4, 121.4, 113.7, 12.9 

IR   = 3395, 2984, 2924, 1704, 1582, 1463, 1276, 1111, 1043, 760, 702cm-1 

HRMS ESI Calculated for (C13H12O)+ = 184.0888, found = 184.0882 
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Phenol 20 

 

Phenol 20 was prepared following General Procedure 3a, using β-chlorocyclohexenone 

3 (0.24 g, 1.9 mmol, 1.2 equiv.), anhydrous DMSO (3 mL), 3,5-dimethylphenylboronic 

acid (0.28 g, 1.5 mmol, 1.0 equiv.), Pd(MeCN)4(BF4)2 (34 mg, 0.077 mmol, 0.05 equiv.), 

PPh3 (57 mg, 0.22 mmol, 0.15 equiv.), a solution of Cs2CO3 (1.0 g, 3.1 mmol, 2.0 equiv.) 

in H2O (0.7 mL), 4 M HCl in dioxane (1.2 mL, 4.6 mmol, 3 equiv.), and CuCl2 (42 mg, 0.31 

mmol, 0.2 equiv.) Purification using column chromatography (Hexane 80:20 EtOAc, Rf = 

0.35) yielded phenol 20 (0.21 g, 54% yield) as a solid. 

1H-NMR (400 MHz, CDCl3) 7.11 (t, J = 7.6 Hz, 1 H), 6.85 (d, J = 7.6 Hz, 1 H), 

6.79 (d, J = 8.0 Hz, 1 H), 6.45 (s, 3 H), 4.78 (s, 1 H), 3.81 (s, 6 H), 2.16 (s, 3 H) 

13C-NMR (150 MHz, 87% CDCl3 + 13% Benzene-d6)  160.4, 154.0, 143.74, 143.72, 

126.1, 122.1, 121.6, 113.8, 107.5, 99.1, 55.2, 12.9 

IR   = 3408, 2938, 2837, 1578, 1420, 1265, 1203, 1151, 1061, 828, 788 cm-1 

m.p.  79-83 °C 

HRMS ESI Calculated for (C15H16O3)+ = 244.1099, found = 244.1092 
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Phenol 21 

 

 

Phenol 21 was prepared following General Procedure 3a, using β-chlorocyclohexenone 

5 (0.12 g, 0.75 mmol, 1.0 equiv.), anhydrous DMSO (3 mL), phenylboronic acid (0.11 g, 

0.90 mmol, 1.2 equiv.), Pd(OAc)2 (9 mg, 0.038 mmol, 0.05 equiv.), PPh3 (28 mg, 0.11 

mmol, 0.15 equiv.), a solution of Cs2CO3 (0.49 g, 1.5 mmol, 2.0 equiv.) in H2O (0.7 mL), 

4 M HCl in dioxane (0.58 mL, 2.3 mmol, 3 equiv.), and CuCl2 (20 mg, 0.15 mmol, 0.2 

equiv.) Purification using column chromatography (Hexane 90:10 EtOAc, Rf = 0.25) 

yielded phenol 21 (71 mg, 48% yield) as a solid. 

1H-NMR (400 MHz, CDCl3)  7.42-7.29 (m, 5 H), 7.10 (t, J = 8.0 Hz, 1 H),  

6.80 (dd, J = 7.6, 7.6 Hz, 2 H), 4.76 (s, 1 H), 2.57 (q, J = 7.2 Hz, 2 H),  

1.09 (t, J = 7.2 Hz, 3 H) 

13C-NMR (100 MHz, CDCl3)  153.6, 143.4, 141.7, 129.0, 128.0, 127.8, 126.7, 

126.1, 122.6, 114.2, 20.2, 14.2 

IR   = 3369, 2967, 2933, 2872, 1574, 1458, 1320, 1117, 880, 763, 741, 

 701 cm-1 

m.p.  51-55 °C 

HRMS ESI Calculated for (C14H14O)+ = 198.1045, found = 198.1041 
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Phenol 22 

 

Phenol 22 was prepared following General Procedure 3a, using β-chlorocyclohexenone 

4 (0.22 g, 1.0 mmol, 1.0 equiv.), anhydrous DMSO (3 mL), phenylboronic acid (0.15 g, 

1.2 mmol, 1.2 equiv.), Pd(OAc)2 (12 mg, 0.05 mmol, 0.05 equiv.), PPh3 (37 mg, 0.15 mmol, 

0.15 equiv.), a solution of Cs2CO3 (0.65g, 2.0 mmol, 2.0 equiv.) in H2O (0.7 mL), 4 M HCl 

in dioxane (0.75 mL, 3.0 mmol, 3 equiv.), and CuCl2 (28 mg, 0.20 mmol, 0.2 equiv.) 

Purification using column chromatography (Hexane 90:10 EtOAc, Rf = 0.25) yielded 

phenol 22 (0.17 g, 66% yield) as a solid. 

1H-NMR (400 MHz, CDCl3)  7.34-7.31 (m, 3 H), 7.26-7.18 (m, 6 H),  

7.10 (d, J = 7.6 Hz, 2 H), 6.94 (d, J = 8.0 Hz, 1 H), 6.87 (d, J = 8.0 Hz, 1 H),  

4.73 (s, 1 H), 4.02 (s, 2 H) 

13C-NMR (100 MHz, CDCl3)  154.3, 144.2, 141.3, 139.9, 129.0, 128.5, 128.0, 

127.9, 127.3, 126.9, 126.1, 123.9, 122.8, 114.9, 32.9 

IR   = 3550, 3022, 2924, 1581, 1493, 1461, 1449, 1088, 947, 788, 762, 729, 

700, 552 cm-1 

m.p.  83-86 °C 

HRMS ESI Calculated for (C19H16O)+ = 260.1201, found = 260.1208 
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Phenol 23 

 

Phenol 23 was prepared following General Procedure 3a, using β-chlorocyclohexenone 

4 (0.25 g, 1.1 mmol, 1.0 equiv.), anhydrous DMSO (3 mL), 4-acetylphenylboronic acid 

(0.22 g, 1.4 mmol, 1.2 equiv.)  Pd(OAc)2 (14 mg, 0.057 mmol, 0.05 equiv.), PPh3 (42 mg, 

0.17 mmol, 0.15 equiv.), a solution of Cs2CO3 (0.73g, 2.26 mmol, 2.0 equiv.) in H2O (0.7 

mL), 4 M HCl in dioxane (0.85 mL, 3.4 mmol, 3 equiv.), and CuCl2 (32 mg, 0.23 mmol, 

0.2 equiv.) Purification using column chromatography (Hexane 80:20 EtOAc, Rf = 0.3) 

yielded phenol 23 (0.21 g, 62% yield) as a solid. 

1H-NMR (400 MHz, CDCl3)  7.93 (d, J = 8.0 Hz, 2 H), 7.35 (d, J = 8.0 Hz, 2 H), 

7.26-7.19 (m, 4 H), 7.07 (d, J = 7.2 Hz, 2 H), 6.90 (dd, J = 7.4, 2.4 Hz, 2 H),  

4.93 (s, 1 H), 3.98 (s, 2 H), 2.62 (s, 3 H) 

13C-NMR (100 MHz, CDCl3)  197.8, 154.4, 146.3, 143.0, 139.6, 135.7, 129.3, 

128.6, 128.1, 127.9, 127.5, 126.3, 123.8, 122.4, 115.5, 32.9, 26.6 

IR   = 3163, 2943, 1654, 1280, 826, 735, 699, 602 cm-1 

m.p.  133-135 °C 

HRMS ESI Calculated for (C21H18O2)+ = 302.1307, found = 302.1303 
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Phenol 24 

 

Phenol 24 was prepared following General Procedure 3a, using β-chlorocyclohexenone 

3 (0.22 g, 1.5 mmol, 1.0 equiv.), anhydrous DMSO (3 mL), thianaphthene-3-boronic acid 

(0.33 g, 1.9 mmol, 1.2 equiv.), Pd(MeCN)4(BF4)2 (34 mg, 0.077 mmol, 0.05 equiv.), PPh3 

(57 mg, 0.22 mmol, 0.15 equiv.), a solution of Cs2CO3 (1.0 g, 3.1 mmol, 2.0 equiv.) in H2O 

(0.7 mL), 4 M HCl in dioxane (1.2 mL, 4.6 mmol, 3 equiv.), and CuCl2 (42 mg, 0.31 mmol, 

0.2 equiv.) Purification using column chromatography (Hexane 85:15 EtOAc, Rf = 0.25) 

yielded phenol 24 (0.14 mg, 39% yield) as a solid. 

1H-NMR (400 MHz, CDCl3) 7.91 (d, J = 7.2 Hz , 1 H), 7.45 (d, J = 7.3 Hz, 1 H), 

7.39-7.32 (m, 2 H), 7.28 (s, 1 H ), 7.16 (t, J = 8.0 Hz, 1 H), 6.92 (d, J = 7.6 Hz, 1 H), 

6.87 (d, J = 7.6 Hz, 1 H), 4.82 (s, 1 H), 2.05 (s, 3 H)  

13C-NMR (100 MHz, CDCl3)  154.0, 139.7, 138.9, 137.1, 136.9, 126.3, 124.2, 

124.1, 123.7, 123.14, 123.06, 123.0, 122.6, 114.4, 12.9 

IR   = 3260, 1574, 1464, 1341, 1257, 1244, 1074, 1047, 790, 769, 758, 731, 

719, 699 cm-1 

m.p.  103-107 °C 

HRMS ESI Calculated for (C15H12OS)+ = 240.0609, found = 240.0602 
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Phenol 25 

 

Phenol 25 was prepared following General Procedure 3b, using β-chlorocyclohexenone 

3 (0.11 g, 0.75 mmol, 1.0 equiv.), anhydrous DMSO (3 mL), o-tolylboronic acid (0.12 g, 

0.9 mmol, 1.2 equiv.), Pd(dppf)Cl2·CH2Cl2 (31 mg, 0.038 mmol, 0.05 equiv.), a solution of 

KOH (84 mg, 1.5 mmol, 2.0 equiv.) in H2O (0.7 mL), 4 M HCl in dioxane (0.56 mL, 2.3 

mmol, 3 equiv.), and CuCl2 (20 mg, 0.15 mmol, 0.2 equiv.) Purification using column 

chromatography (Hexane 90:10 EtOAc, Rf = 0.25) yielded phenol 25 (84 mg, 57% yield) 

as a solid. 

1H-NMR (400 MHz, CDCl3)  7.24-7.20 (m, 3 H), 7.11 (t, J = 7.2, 2 H),  

6.80 (d, J = 8.0 Hz, 1 H), 6.73 (d, J = 7.6 Hz, 1 H), 4.76 (s, 1 H), 2.07 (s, 3 H),  

1.96 (s, 3 H) 

13C-NMR (100 MHz, CDCl3)  153.7, 143.2, 141.2, 135.9, 129.7, 129.3, 127.2, 

126.1, 125.5, 122.0,121.9,113.6, 19.8, 12.4 

IR   = 3283, 3012, 2951, 2921, 1578, 1462, 1263, 1125, 1095, 993, 871, 

756, 723 cm-1 

m.p.  64-67 °C 

HRMS ESI Calculated for (C14H14O)+ = 198.1045, found = 198.1040 
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Phenol 26 

 

Phenol 26 was prepared following General Procedure 3b, using β-chlorocyclohexenone 

3 (0.14 g, 1.0 mmol, 1.0 equiv.), anhydrous DMSO (3 mL), 2,6-dimethylphenylboronic 

acid (0.18 g, 1.2 mmol, 1.2 equiv.), Pd(dppf)Cl2·CH2Cl2 (41 mg, 0.05 mmol, 0.05 equiv.), 

a solution of KOH (0.11 g, 2.0 mmol, 2.0 equiv.) in H2O (0.7 mL), 4 M HCl in dioxane (0.75 

mL, 3.0 mmol, 3 equiv.), and CuCl2 (28 mg, 0.2 mmol, 0.2 equiv.) Purification using 

column chromatography (Hexane 90:10 EtOAc, Rf = 0.20) yielded phenol 26 (0.11, 52% 

yield) as a solid. 

1H-NMR (400 MHz, CDCl3)  7.18-7.09 (m, 4 H), 6.80 (d, J = 8.4, Hz, 1 H),  

6.66 (d, J = 7.6 Hz, 2 H), 4.77 (s, 3 H), 1.98 (s, 6 H), 1.90 (s, 3 H) 

13C-NMR (100 MHz, CDCl3)  153.9, 142.1, 140.6, 135.8, 127.0, 126.8, 126.6, 

121.6, 121.4, 113.3, 20.2, 11.7 

IR   = 3254, 2919, 2858, 1580, 1459, 1275, 1164, 1122, 869, 786, 768, 734, 

723 cm-1 

m.p.   86-90 °C  

HRMS ESI Calculated for (C15H16O)+ = 212.1201, found = 212.1205 
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Phenol 27 

 

Phenol 27 was prepared following General Procedure 3a, using β-chlorocyclohexenone 

6 (0.16 g, 1.0 mmol, 1.0 equiv.), anhydrous DMSO (3 mL), phenylboronic acid (0.15g, 1.2 

mmol, 1.2 equiv.), Pd(OAc)2 (11 mg, 0.05 mmol, 0.05 equiv.), PPh3 (32 mg, 0.15 mmol, 

0.15 equiv.), a solution of Cs2CO3 (0.63g, 2.0 mmol, 2.0 equiv.) in H2O (0.7 mL), 4 M HCl 

in dioxane (0.75 mL, 3.0 mmol, 3.0 equiv.), and CuCl2 (27 mg, 0.20 mmol, 0.2 equiv.) 

Purification using column chromatography (Hexane 9:1 EtOAc, Rf = 0.2) yielded phenol 

27 (0.12 g, 66% yield) as a solid.  

1H-NMR (400 MHz, CDCl3)  7.42 (dd, J = 7.2, 7.2 Hz, 2 H), 7.36-7.30 (m, 3 H),  

7.04 (d, J = 7.8 Hz, 1 H), 6.80 (d, J = 7.8 Hz, 1 H), 4.75 (s, 1 H), 2.32 (s, 3 H),  

2.18 (s, 3 H) 

13C-NMR (100 MHz, CDCl3)  152.2, 141.7, 141.3, 129.3, 127.9, 127.6, 126.6, 

121.7, 120.9, 120.6, 15.9, 13.1 

IR  = 3500, 2921, 2858, 1567, 1408, 1230, 1194, 1174, 1115, 988, 765, 703 cm-1 

m.p.  54-57 °C 
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Phenol 28 

 

Phenol 28 was prepared following General Procedure 3c, using β-chlorocyclohexenone 

3 (58 mg, 0.40 mmol, 1.0 equiv.), anhydrous DMSO (3 mL), 3-(Methylsulfonyl)-5-(4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (0.12 g, 0.44 mmol, 1.1 equiv.), Pd(OAc)2 

(4.5 mg, 0.020 mmol, 0.05 equiv.), PPh3 (16 mg, 0.06 mmol, 0.15 equiv.), a solution of 

Cs2CO3 (0.26 g, 0.8 mmol, 2.0 equiv.) in H2O (0.7 mL), 4 M HCl in dioxane (1.2 mL, 4.8 

mmol, 12.0 equiv.), and CuCl2 (211 mg, 0.08 mmol, 0.2 equiv.) Purification using column 

chromatography (Hexane 5:5 EtOAc, Rf = 0.2) yielded phenol 28 (53 mg, 51% yield) as 

a solid.  

1H-NMR (400 MHz, CDCl3)  9.14 (d, J = 2.0 Hz, 1 H), 8.86 (d, J = 1.6 Hz, 1 H), 

8.18 (d, J = 2.0 Hz, 1 H), 7.19 (t, J = 8.0 Hz, 1 H), 6.89 (d, J = 8.0 Hz, 1 H),  

6.84 (d, J = 8.0 Hz, 1 H), 4.92 (s, 1 H), 3.17 (s, 3 H), 2.16 (s, 3 H) 

13C-NMR (150 MHz, CDCl3)  154.5, 154.4, 146.7, 137.9, 137.6, 136.6, 135.3, 

127.0, 122.5, 122.1, 115.6, 44.9, 13.0 

IR  = 3416, 3009, 2926, 1583, 1434, 1291, 1281, 1134, 1100, 1009, 781, 537 cm-1 

m.p.  174-176 °C 
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Phenol 29 

 

Phenol 29 was prepared following General Procedure 3c, using β-chlorocyclohexenone 

4 (88 mg, 0.40 mmol, 1.0 equiv.), anhydrous DMSO (3 mL), 3-(Methylsulfonyl)-5-(4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (0.12 g, 0.44 mmol, 1.1 equiv.), Pd(OAc)2 

(4.5 mg, 0.020 mmol, 0.05 equiv.), PPh3 (16 mg, 0.06 mmol, 0.15 equiv.), a solution of 

Cs2CO3 (0.26 g, 0.8 mmol, 2.0 equiv.) in H2O (0.7 mL), 4 M HCl in dioxane (1.2 mL, 4.8 

mmol, 12.0 equiv.), and CuCl2 (211 mg, 0.08 mmol, 0.2 equiv.) Purification using column 

chromatography (Hexane 5:5 EtOAc, Rf = 0.25) yielded phenol 29 (70 mg, 52% yield) as 

a solid.  

1H-NMR (400 MHz, DMSO-d6)  9.84 (s, 1 H), 9.04 (d, J = 2.0 Hz, 1 H),  

8.68 (d, J = 1.6 Hz, 1 H), 8.03 (s, 1 H), 7.27 (t, J = 7.8 Hz, 1 H), 7.19 (dd, J = 7.6, 7.6 

Hz, 2 H), 7.13 (d, J = 8.0 Hz, 1 H), 6.87 (d, J = 7.6 Hz, 2 H),  

6.82 (d, J = 7.6 Hz, 2 H), 3.92 (s, 2 H), 3.32 (s, 3 H) 

13C-NMR (150 MHz, CDCl3)  154.6, 154.0, 146.8, 139.3, 138.5, 137.6, 136.3, 

135.2, 128.8, 128.1, 127.9, 126.5, 124.6, 122.9, 116.5, 44.0, 32.6  

IR  = 3416, 3002, 2923, 1581, 1433, 1146, 1097, 1074, 976, 796, 781, 754, 740, 

532 cm-1 

m.p.  250 °C 
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3.3 1H and 13C-NMR spectra 

1H and 13C spectra of Substrate 1
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1H and 13C spectra of Substrate 3 
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1H and 13C spectra of Substrate 4 
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1H and 13C spectra of Substrate 5 
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1H and 13C spectra of Substrate 6
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1H and 13C spectra of Phenol 8
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1H and 13C spectra of Phenol 10 
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1H and 13C spectra of Phenol 11 
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1H and 13C spectra of Phenol 12
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1H and 13C spectra of Phenol 13 
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1H and 13C spectra of Phenol 14
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1H and 13C spectra of Phenol 18
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1H and 13C spectra of Phenol 15 
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1H and 13C spectra of Phenol 16 
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1H and 13C spectra of Phenol 17 
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1H and 13C spectra of Phenol 19 
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1H and 13C spectra of Phenol 20 
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1H and 13C spectra of Phenol 21 
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1H and 13C spectra of Phenol 22 
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1H and 13C spectra of Phenol 23 
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1H and 13C spectra of Phenol 24 
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1H and 13C spectra of Phenol 25 
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1H and 13C spectra of Phenol 26 
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1H and 13C spectra of Phenol 27 
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1H and 13C spectra of Phenol 28 
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1H and 13C spectra of Phenol 29
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