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Abstract 

 

This research aims to obtain soil moisture from reflected GNSS signals using physics-

informed neural networks (PINN). GNSS reflectometry (GNSS-R) signals can be 

considered as a new remote sensing source to study soil moisture. Despite the high 

sensitivity between GNSS reflected signal power and soil moisture, the model between 

measurements and parameters is difficult to solve mathematically due to the complexity 

of the electromagnetic relationships. Although Neural Network (NN) algorithms have been 

applied successfully in GNSS-R soil moisture retrieval, neural networks are trained 

without respecting any laws of physics. In this work, a new framework referred to as 

“physics-informed neural networks (PINN)” was used which adds governing physical 

relationships between data parameters to neural networks to generate more robust 

models, with less data. 

The proposed research advances GNSS-R soil moisture estimations, exploiting Cyclone 

Global Navigation Satellite Systems (CYGNSS) satellite signals using PINN 

methodology. In PINN’s structure, reflected GPS signals from CYGNSS and land surface 

geophysical parameters are used as input features. Since reflected signal power 

variations are not only sensitive to changes in soil moisture, but also to changes in 

vegetation, surface roughness, soil texture, and elevation angle, the effects of land 

surface geophysical parameters involved in physical relationships are considered in the 

model. For reference data, soil moisture measurements of the International Soil Moisture 

Network (ISMN) were used in both training and validation.  
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The proposed PINN model generates daily soil moisture values with a root mean squared 

error (RMSE) of 0.05 𝑐𝑚3/ 𝑐𝑚3, which is an improvement from 0.0774 𝑐𝑚3/ 𝑐𝑚3 for the 

underlying NN model due to adding physical models. Four different soil dielectric constant 

models (Dobson, Hallikainen, Mironov, and Wong models) have been used to investigate 

the impact of soil dielectric constant models as part of physical relations. The RMSE 

distinction and correlation coefficient difference of the best model (Hallikainen) and worst 

model (Mironov) is 0.02 and 0.13, respectively demonstrating PINN sensitivity to different 

soil dielectric constant models. Consequently, the soil dielectric constant model selection 

influences overall PINN results. Thus, calibration of soil dielectric models is necessary for 

GNSS-R soil moisture retrieval in the future. 
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1. INTRODUCTION 

 

Soil moisture determination is essential in the environmental sciences. Global Navigation 

Satellite Systems (GNSS) reflected signal strength has shown correlations to moisture 

content of soil. Earth's surface soil moisture can be monitored using reflected signals of 

the Global Navigation Satellite System (GNSS) as a cost-effective method. In this 

chapter, the motivation for using GNSS reflectometry (GNSS-R) for soil moisture is 

discussed. Finally, the objective and novelty of the physics-informed neural network 

(PINN) method as the proposed method to model the relationship between reflected 

signal power and soil moisture is explained. 

 

1.1 Soil moisture measurement techniques 

 

The knowledge of soil moisture impacts different environmental industries and research 

fields such as hydrology, meteorology, climatology, and agriculture. The water content in 

soil is a key variable in the understanding of the terrestrial environment and energy fluxes 

between the land and atmosphere. Soil water content controls the extent of plants’ 

sunlight exploitation; therefore, knowledge of soil moisture can be effective in agriculture 

and forestry. Soil moisture is the representative of water source and is useful in water 

resource management. Soil moisture plays an important role in the estimation of the 

different components of the water and energy transfer between the land and atmosphere, 

thus understanding the hydrological cycles (Brocca et al. 2017). The distribution of soil 

moisture controls the division of incoming radiant energy into heat fluxes via evaporation 

and transpiration (Space Studies Board and National Research Council 2000). Since 
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water in soil can be returned directly to the atmosphere via evaporation from land 

surfaces, and transpiration from plants, this returning moisture can itself affect the local 

weather. Therefore, soil moisture is a principal parameter in the development of weather 

patterns and desired input to weather prediction models (Njoku and Entekhabi 1996). 

Critical environmental issues such as floods and landslides can also be modelled with 

soil moisture. 

Soil moisture is measured with two main methods: 1) in situ and 2) remote sensing 

methods. In situ methods such as gravimetric instrumentation and electromagnetic 

probes are popular for soil scientists and agronomists (Chew 2015). Remote sensing 

methods include microwave radars as active remote sensing and radiometers as passive 

remote sensing which are more popular for hydrologists and climatologists. The 

difference between radars and radiometers is that radar systems compare transmitted 

and received energy of signal; however, radiometers receive natural thermal emission of 

microwave radiation coming from soil passively (Njoku and Entekhabi 1996). In addition 

to traditional remote sensing tools, available signals of Global Navigation Satellite 

Systems (GNSS) can be used as a new remote sensing technique to survey the Earth’s 

surface properties such as ocean height (Ruffini et al. 2004, Rius et al. 2012), ocean wind 

speed (Komjathy et al. 2004; Guan et al. 2018), ice depth (Fabra et al. 2011, Cervellera 

2013), soil moisture content (Larson et al. 2008a; Larson et al. 2008b; Camps et al. 2016; 

Pierdicca et al. 2021) and vegetation (Chew 2015; Wu et al. 2012) measurements. This 

research focuses on the application of reflected GNSS signals for soil moisture 

assessment. In the following subsections different methods of soil moisture 

measurements are explained. 
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1.1.1  In situ soil moisture measurements 

 

In-situ measurements are classified into direct and indirect methods. Direct or oven drying 

methods include gravimetric and volumetric soil moisture methods for soil moisture 

determination. Automated techniques for soil moisture estimation are indirect soil-water 

dielectric techniques such as time-domain and frequency-domain reflectometry. In the 

direct method, also known as a destructive method, soil moisture is estimated by drilling 

holes into the ground, disturbing the soil root zone and eventually affecting infiltration and 

drainage behaviour. In contrast, indirect methods estimate soil moisture by developing a 

functional relationship between the chemical and physical properties of soil moisture and 

soil matrix (Dirksen 1999). A soil matrix is a mass of soil consisting of solid particles and 

voids filled with water and air. 

The gravimetric method for soil moisture estimation has been counted as the most reliable 

and robust method (Schmugge et al. 1980). Gravimetric soil moisture (𝑚𝑔) is defined as 

the ratio of the mass of the water (𝑚𝑤𝑎𝑡𝑒𝑟) in the soil sample to the mass of the dry soil 

(𝑚𝑠𝑜𝑖𝑙) expressed in (kg/kg) or percentage. Gravimetric soil moisture can be calculated 

as follows (Dirksen 1999), 

 

𝑚𝑔 =
𝑚𝑤𝑎𝑡𝑒𝑟

𝑚𝑠𝑜𝑖𝑙
=

𝑚𝑤𝑒𝑡−𝑚𝑑𝑟𝑦

𝑚𝑑𝑟𝑦
                                                                        (1.1) 

 

where 𝑚𝑤𝑎𝑡𝑒𝑟 is the mass of the water in the soil sample, expressed as the difference 

between the weight of the soil sample before drying (𝑚𝑤𝑒𝑡) and after drying (𝑚𝑑𝑟𝑦).  𝑚𝑠𝑜𝑖𝑙 

and 𝑚𝑑𝑟𝑦 are both the mass of the dried soil.  
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Volumetric soil moisture (𝑚𝑣) is more relevant than gravimetric soil moisture as it 

considers the soil’s bulk density and porosity (Singh 2023). Volumetric soil moisture (𝑚𝑣) 

is the ratio of the water volume ( 𝑉𝑤𝑎𝑡𝑒𝑟) to the volume of the soil (𝑉𝑠𝑜𝑖𝑙), which is 

expressed in both percentage and (m3 m3⁄ ). Mathematically, 𝑚𝑣 is defined as (Singh 

2023)  

 

𝑚𝑣 =
𝑉𝑤𝑎𝑡𝑒𝑟

𝑉𝑠𝑜𝑖𝑙
                                                                                                   (1.2) 

 

Equation (1.2) can be extended to produce a relationship between volumetric soil 

moisture (𝑚𝑣) and gravimetric soil moisture (𝑚𝑔) as follows 

 

𝑚𝑣 =
𝑚𝑤𝑎𝑡𝑒𝑟/𝜌𝑤𝑎𝑡𝑒𝑟

𝑚𝑠𝑜𝑖𝑙/𝜌𝑠𝑜𝑖𝑙
= 𝑚𝑔 ×

𝜌𝑠𝑜𝑖𝑙

𝜌𝑤𝑎𝑡𝑒𝑟
                                                    (1.3) 

 

where 𝜌𝑠𝑜𝑖𝑙 is the soil bulk density and 𝜌𝑤𝑎𝑡𝑒𝑟 is the water density both expressed in 

(g cm3⁄ ). Since the density of water is about g cm3⁄ , Equation (1.3) can be reduced to 

 

𝑚𝑣 ≈ 𝑚𝑔 × 𝜌𝑠𝑜𝑖𝑙                                                                                          (1.4) 

 

If the soil sample contains a substantial amount of stone or gravel, the estimated soil 

moisture content can be affected, as the stones that are present in the sample contribute 

directly to the mass measurement of the sample without contributing equally towards the 

soil porosity. To avoid the effect of stones, Klute (1988) proposed the following 

expression. 
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𝑚𝑣 =
𝑚𝑤𝑎𝑡𝑒𝑟/𝜌𝑤𝑎𝑡𝑒𝑟

𝑚𝑠𝑜𝑖𝑙/𝜌𝑠𝑜𝑖𝑙
= 𝑚𝑔 × (

𝜌𝑠𝑜𝑖𝑙

𝜌𝑤𝑎𝑡𝑒𝑟
) × (1 + 

𝑀𝑠𝑡𝑜𝑛𝑒𝑠

𝑀𝑓𝑖𝑛𝑒𝑠
)                                         (1.5) 

 

where 𝑀𝑠𝑡𝑜𝑛𝑒𝑠 and 𝑀𝑓𝑖𝑛𝑒𝑠, respectively represent the masses of the stone and fine soil 

fraction in the soil sample. 

The concept of using dielectric properties of soil to measure soil moisture was first studied 

by Canadian geophysicists Baker and Allmaras (Baker and Allmaras 1990). Soil-water 

dielectric techniques such as time-domain reflectometry (TDR) and frequency-domain 

reflectometry (FDR) estimate soil moisture content indirectly. Both TDR and FDR 

measure soil dielectric constant and use soil moisture dielectric constant models to 

convert dielectric constant measurements to soil moisture values. Dielectric constant is 

defined as the ratio of the electric permeability of the material to the electric permeability 

of free space. The dielectric constant of soil-water mixture is between 2 to 40, while the 

dielectric constant of dry soil is 2 and the dielectric constant of pure water is 80 (Ulaby et 

al. 1986). For different electromagnetic wave frequencies ranging from 1 to 1000 MHz, 

the gradient of dielectric constant for soil-water mixture from dry soil to pure water is 

explained in (Ulaby et al. 1986). 

First, TDR determines the bulk dielectric constant (𝜀𝑏) of the soil from travel time. The 

travel time (𝑡) of the electromagnetic wave initiated along the waveguide, formed by the 

parallel rods of length (𝐿) with soil as the dielectric material in between is calculated. The 

propagation velocity (𝜐) can be calculated, by 𝜐 = (2𝐿/𝑡) through travel time analysis. 

Since electromagnetic waves travel the rod twice (down and back), 2𝐿 length is 

considered. After calculating propagation velocity (𝜐), the bulk dielectric constant (𝜀𝑏) is 

calculated as follows (Brocca 2007) 
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𝜀𝑏 = (
𝑐

𝜐
)2 = (

𝑐𝑡

2𝐿
)2                                                                            (1.6) 

 

where 𝑐 is the speed of light in vacuum and equal to 3 × 108 m/s and 𝑡 is the travel time 

for the pulse to traverse the length of the embedded waveguide (2𝐿).  

The TDR sensors send an electromagnetic wave pulse into an electrode inserted in the 

soil. Electrodes are conductors used to make electrical contact with a non-metallic part. 

As the permittivity changes between electrode and soil, a reflection occurs with a delay 

and intensity depending on soil properties. A complete overview of TDR principles, 

equipment and procedures can be found in (Jones et al. 2002).  

After measurement of dielectric constant, soil moisture can be calculated. Different factors 

influence dielectric constant measurements, including soil texture, soil porosity and bulk 

density, measurement frequency, temperature, water status (bound or free) and dipole 

moments induced by mineral, water, and air shapes. Several empirical and semi-

empirical soil dielectric mixing models have been developed to relate soil water content 

to soil bulk dielectric constant (𝜀𝑏). These soil moisture dielectric models are explained in 

detail in Section 3.2. 

Advantages of TDR over direct methods are as follows: i) The TDR probes measure the 

soil moisture with high accuracy (within 1% or 2%), ii) TDR does not contain radiation 

hazards, iii) minimum calibration is required, for example soil specific calibration is not 

required, iv) TDR have minimal soil disturbance, and have high spatial and temporal 

resolution (Topp et al. 1980).  

However, the TDR measurements can be affected by high saline and high conductive 

soils. High soil salinity or high clay contents in soil cause attenuation of the reflected 
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pulses resulting in overestimating the value of the dielectric constant and hence the soil 

moisture (Chen et al. 2007; Jonnalagadda 2004). 

The frequency-domain reflectometer (FDR) method uses radio frequencies and the 

electrical capacitance of a capacitor, formed by using the soil and embedded rods as a 

dielectric for determining the dielectric constant (Munoz-Carpena 2005) and thus 

calculation of the soil water content using soil dielectric models. FDR and capacitance 

probes consist of two or more capacitors (rods, plates, or rings) that are inserted into the 

soil. When the capacitor is connected to an oscillator to form an electric circuit, changes 

in soil water can be detected by changes in the circuit's operating frequency. FDR method 

uses an oscillator to propagate an electromagnetic signal through a metal tine or other 

wave guide. The difference between the output wave and the return wave frequency is 

measured to determine soil moisture. In FDR, the oscillator frequency is controlled within 

a certain range to determine the resonant frequency at which the amplitude is greatest, 

which is a measure of the soil water content. FDR method outperforms TDR in following 

cases: i) FDR is more flexible in probe design, ii) FDR works better in highly salinity 

conditions, iii) FDR is less expensive than TDR (Kuncham and Rao 2014). Still, FDR 

performs poorly due to variations of soil bulk electrical conductivity and spatial variability 

of vegetation water content. Also, installation can greatly affect the results. Although FDR 

works better in high salinity conditions compared to TDR, FDR has an accuracy between 

2.5% to 4% which is lower than TDR accuracy (Rasheed et al. 2022). 

Networks of in situ sensors using in situ measurement techniques include the Delaware 

Environmental Observing System (DEOS; http://www.deos. udel.edu/data/), Enviro‐

weather (formerly Michigan Automated Weather Network; https://mawn.geo. msu.edu/), 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/capacitance-probes
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/capacitance-probes
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the NOAA Hydrometeorological Testbed (NOAA; https://hmt.noaa.gov), the Oklahoma 

Mesonet (https://www.mesonet.org/), the USDA‐Natural Resources Conservation 

Service Soil Climate Analysis Network (SCAN; https://www.wcc.nrcd.usda.gov/scan/), 

the USDA‐Natural Resources Conservation Service SNOwpack TELemetry (SNOTel; 

https://www.wcc.nrcs.usda.gov/snow/), the Soil Moisture Sensing Controller and Optimal 

Estimator (SoilScape; https://www.soilscape.usc.edu/), and the West Texas Mesonet 

(WTX Mesonet, http://www.depts.ttu.edu/nwi/research/facilities/wtm/index.php). In this 

research, the SCAN data are used as in-situ measurements. More details on ISMN SCAN 

data can be found in Section 5.2.  

Indirect soil moisture sensors such as time domain reflectometry sensors or frequency 

domain reflectometry or capacitance sensors are capable of measuring soil moisture 

continuously using a data logger, thereby enabling the final user to save time. However, 

they suffer from the typically low number of in situ sensors that provide an incomplete 

picture of a large area.  

While measurements of in situ network sensors (such as USDA’s Soil Climate Analysis 

Network (SCAN) or NOAA’s Climate Reference Network (CRN) in the continental United 

States) have potentially high soil moisture measurement accuracy, measurements are 

spatially very sparse. The main disadvantage of in situ measurement methods is that 

these measurements are time-consuming; users must go to the field to collect soil 

samples and place them in the oven for a long time. 

Remote sensing methods can provide soil moisture estimates over larger areas and at a 

global scale without the need to be in the field. Remote sensing measurements are taken 

http://www.depts.ttu.edu/nwi/research/facilities/wtm/index.php
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remotely, while in-situ measurements require direct contact to soil. In the next subsection, 

remote sensing techniques for soil moisture studies are explained.  

 

1.1.2 Remote sensing techniques  

 

Active and passive microwave remote sensing provides a unique capability to obtain 

observations of soil moisture at global and regional scales that help satisfy the science 

and application needs for hydrology (Njoku and Entekhabi 996; Shmugge et al 2002). 

However, coarse spatial and temporal resolution, along with limited depth signal 

penetration can be obstacles in hydrological applications of remote sensing. Another 

issue with some sensors used for remote sensing of soil moisture is that their signals are 

affected by cloud cover. In addition, launching, designing, and maintenance of remote 

sensing satellites are expensive. 

Remote sensing can estimate soil moisture continuously over large areas. In remote 

sensing, soil moisture estimations refer to the near-surface soil moisture representing the 

first 5 cm (or less) of the topsoil profile. In recent years, remote sensing techniques have 

improved and diversified their estimation tools for monitoring soil moisture along with 

other variables such as the Normalized Difference Vegetation Index (NDVI) and the land 

surface temperature (LST), (Fontanet et al. 2018). Different satellite missions have been 

developed for estimation of near-surface soil moisture, for example the Soil Moisture 

Active Passive (SMAP) satellite, the Advanced Scatterometer (ASCAT) remote sensing 

instrument on board the Meteorological Operational (METOP) satellite, the Advanced 

Microwave Scanning Radiometer 2 (AMSR2) instrument on board the Global Change 



10 
 

Observation Mission 1-Water (GCOM-W1) satellite, and the Soil Moisture and Ocean 

Salinity (SMOS) satellite.  

Additionally, C- and X-band radiometers (with frequency range of 6 to 11 GHz and 

wavelength range of 3 to 5 cm) such as EOS Advanced Multichannel Scanning 

Radiometer (AMSR-E) and WindSat can provide soil moisture measurements with 

shallow sensing depth (~ 1 cm), and coarse resolution (>50 km). Nevertheless, satellite-

based C- and X-band radiometers have low sensitivity to soil moisture for even small 

amounts of vegetation, leading to high soil moisture retrieval errors (Entekhabi et al. 

2014). Therefore, L-band signals have been recently considered for soil moisture studies 

(Entekhabi et al. 2014). At L-band signals (with frequency range of 1 to 2 GHz and 

wavelength range of 15–30 cm), the atmosphere is less opaque, and soil penetration is 

higher in L-band observations (up to 5 cm). C-band observations are also more affected 

by vegetation attenuation (Njoku and Li 1999). L-band is one of the chief operating ranges 

used by various applications such as radars, Global Positioning System (GPS), radio, 

telecommunications, and aircraft surveillance. 

The European Space Agency’s (ESA) Soil Moisture and Ocean Salinity (SMOS) satellite, 

launched in November 2009, is the first wide-swath L-band soil moisture mission 

(operating at 1.4 GHz frequency and ~21 cm wavelength), and retrieves soil moisture 

over a much higher range of vegetation conditions at a spatial resolution of ~40 km with 

a sensing depth of ~5 cm (Kerr et al. 2001). The SMOS single payload, the Microwave 

Imaging Radiometer by Aperture Synthesis (MIRAS), is the first 2D synthetic aperture 

interferometric passive radiometer in space which operates in L-band at 1.4 GHz 

frequency and 21 cm wavelength. The spatial resolution of SMOS ranges from 35 to 
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55 km, depending on the incident angle. The SMOS mission can retrieve near-surface 

soil moisture with a target accuracy of 0.04 m3 m3⁄  (Kerr et al., 2012). 

The SMAP mission is another soil moisture retrieval satellite mission with a real aperture 

radiometer on board which operates in an L-band channel. NASA’S SMAP satellite was 

launched on January 31, 2015, including an L-band radar and an L-band radiometer that 

provide global radar backscatter and brightness temperature measurements, 

respectively, every 2–3 days. SMAP aimed to retrieve the soil moisture content of the 

upper ∼5 cm of soil and freeze–thaw state (Entekhabi et al. 2014) and provide three soil 

moisture products (Panciera et al. 2013) including: i) low-resolution (∼36 km) radiometer-

only (L2_SM_P), ii) high-resolution (∼3 km) radar-only (L2_SM_A), and iii) intermediate-

resolution (∼9 km) combined radar/radiometer (L2_SM_AP). Table (1.1) demonstrates a 

comparison between two L-band soil moisture missions (SMAP and SMOS). The SMAP 

radar transmitter failed on July 7th, 2015, while the SMAP radiometer continues to 

function. 

 

Table 1.1 Comparison between SMAP and SMOS mission (Ray et al. 2017) 

Satellite 
mission 

 

Launch 
date 

Frequency Revisit 
coverage (days) 

Spatial 
resolution 

Data 
level 

SMOS 
 

2009 1.4 3 25 km L3 

SMAP 
 

2015 1.41 3 3, 9 and 36 km L2 

 

SMAP uses the combination of passive radiometer and active radar. Active sensors have 

higher spatial resolution. Therefore, SMAP provides higher resolutions than SMOS. 

However, the backscatter commonly has a low temporal resolution (around one week) 
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and may be significantly affected by soil roughness and the soil-covering vegetation 

canopy, which complicates the active-only soil moisture retrieval (Portal et al. 2020). 

 

1.2 Motivation for using GNSS-R in soil moisture retrieval 

 

Beside traditional remote sensing techniques, reflected GNSS signals have been used 

for a variety of remote sensing applications, for instance altimetry (Rius et al. 2012; Li et 

al. 2018; Tabibi et al. 2021), soil moisture retrieval (Larson et al. 2008a; Larson et al. 

2008b; Camps et al. 2016; Chew et al. 2016; Chew et al. 2018), snow depth and ice 

thickness determination (Rius et al. 2017; Ghiasi et al. 2020), and wind speed estimation 

(Clarizia et al. 2014; Foti et al. 2015; Asgarimehr et al. 2022). GNSS-R (GNSS 

reflectometry) is a remote sensing technique that uses surface-reflected GNSS signals to 

infer information about the Earth’s surface (Jin and Komjathy 2010). GNSS-R leverages 

free available and ubiquitous signals of GNSS and is considered as a passive and low-

cost system (Yu et al. 2014). Furthermore, GNSS systems use L-band microwave signals 

suitable for soil moisture studies because of their all-weather detection and vegetation 

penetration ability (Jin et al. 2014). The L-band signal emitted by the Earth surface can 

be related to land parameters like surface soil moisture, roughness, or vegetation 

characteristics. In addition, in comparison to radiometry, GNSS reflected signals are not 

affected by thermal variations of background.  

Hall and Cordey (1988) were the pioneers of GNSS-R application in ocean remote 

sensing. Afterward, Martin-Neira (1993) suggested an ocean altimetry concept known as 

Passive Reflectometry and Interferometry System (PARIS). Then, research on the ocean 

surface roughness retrieval (Garrison et al. 1998) and wind speed and direction 
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estimation from the reflected Global Positioning System (GPS) signals (Garrison et al. 

2002) were investigated. Similar to sea surface wind speed retrieval, it was later shown 

that model fitting between the theoretical and measured delay waveforms can be used to 

determine the roughness of the ice surface (Rivas 2007). 

The first space-based GNSS-R signals were observed for altimetry in the SIR-C and SAC-

C missions (Lowe et al. 2002). From 2003 to 2011, the UK-Disaster Monitoring 

Constellation (UK-DMC) experimented GNSS reflectometry for sea state and wind speed 

estimates (Gleason et al. 2005). Such early experiments have indicated the feasibility of 

GNSS-R space missions. The UK-DMC experiment was used in optimizing new version 

of Surrey Satellite Technology Ltd (SSTL) GNSS-R payload instrument (Foti et al. 2015), 

which have been used in next GNSS-R missions such as UK TDS-1 and CYGNSS 

missions. Following the successful detection of reflected signals by UK-DMC, SSTL 

launched the UK TDS-1 on 8 July 2014. UK TDS-1 has been used for several remote 

sensing applications such as ice altimetry (Hu et al. 2017; Rius et al. 2017), ocean 

altimetry (Mashburn et al. 2018), ocean wind (Foti et al. 2015), and soil moisture (Camps 

et al. 2018). However, data collection for this mission was challenging for scientists 

because this mission was active two days out of eight (repeat time ~10–35). UK TDS-1 

mission ended operations after December 2018 (Unwin et al. 2016; Yang et al. 2020). 

On December 15, 2016, eight satellites of Cyclone Global Navigation Satellite System 

(CYGNSS) were launched on a near circular orbit with the inclination of 35° and orbit 

height of about 500 km (Ruf et al. 2012). This inclination improves the spatial and 

temporal sampling in critical latitudes for tropical cyclones which is between 35°N and 

35°S (Rose et al. 2013). CYGNSS satellites have been developed by the University of 
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Michigan, Southwest Research Institute and NASA for forecasting hurricanes and the 

wind speed measurement (Ruf et al. 2016).  

One of the main applications of GNSS reflectometry and the focus of this research is soil 

moisture retrieval. CYGNSS and similar GNSS-R instruments have several 

characteristics that make them functional for soil moisture (SM) remote sensing. First, 

GNSS signals are in L-band, which is optimal for SM remote sensing due to the increased 

ability to penetrate vegetation relative to shorter wavelengths (De Roo et al. 2001). 

Second, available constellation of GNSS satellites receivers shorten revisit time and 

increases temporal and spatial resolution. Third, transmitted GNSS satellites already exist 

for other purposes, reducing the cost of the complete sensing system. Sensitivity of GNSS 

reflectometry data to soil and vegetation parameters have been studied by several 

researchers. Initially, focusing more exclusively on soil moisture application, Zavorotny 

and Voronovich (2000) presented the capability of GPS scattering signals for soil moisture 

remote sensing. Research into the possibility of using GNSS reflections for sensing soil 

moisture was continued at the University of Colorado (Masters 2004) and NASA Langley 

Research Center (Katzberg et al. 2006) using measurements from aircraft flights and 

Earth based platforms. For satellite-based platforms, Gleason et al. (2005) experimented 

detectability of GNSS reflectometry signals for soil moisture studies in low Earth orbits 

using UK-DMC data collected from land surfaces. Gleason (2006) studied possibilities 

and challenges of GNSS reflectometry over land surfaces. Later, sensitivity of TDS1 

space mission GNSS-R reflectivity data to SMOS satellite soil moisture was examined in 

(Chew et al. 2016; Camps et al. 2018). 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018GL077905#grl57193-bib-0009
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Although CYGNSS satellites were designed for ocean applications, they provide 

reflections over land enabling use for soil moisture studies using GNSS-Reflectometry 

data. For instance, SMAP satellite data were compared with reflected signal power of 

CYGNSS to show the relationship between the soil moisture and reflected signals in 

(Chew and Small 2018; Al-Khaldi et al. 2019).  

While high correlation between reflected signal power and water content of soil has been 

shown, variations in reflected GNSS signals are not only sensitive to changes in soil 

moisture, but also to changes in vegetation, surface roughness, soil texture and elevation 

angle (Chew and Small 2018). Most published research works have focused on the 

correlation of soil moisture with signal return power (Chew et al. 2016; Chew and Small 

2018; Camps et al. 2018); however, the model between soil moisture and signal power 

has been poorly understood.  

In cases that the model between input and output parameters is difficult to be solved 

mathematically due to the complexity of the electromagnetic relationship between 

measurements, Artificial Neural Networks (ANNs) have shown high performance in model 

learning (Goodfellow et al. 2016, Ali et al. 2015). For example, Prakash et al. (2018) 

applied recurrent neural networks for soil moisture prediction. The performance of the 

predictor was evaluated for three different hydrological monitoring network datasets. 

Convolutional neural networks were also used in remote sensing for soil moisture retrieval 

using brightness temperature data from the Advanced Microwave Scanning Radiometer-

Earth Observing System (AMSR-E) in (Rodriguez-Fernandez et al. 2015). Application of 

neural network as a soil moisture retrieval algorithm for different passive and active 

sensors; for example, datasets from spaceborne radiometers (AMSR-E/AMSR2), SAR 
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(Envisat/ASAR, Cosmo-SkyMed) and real aperture radar (MetOP ASCAT) have been 

studied in (Santi et al. 2016).   

Focusing on GNSS-R technique, relevant research has been dedicated to soil moisture 

retrieval using GNSS-R with machine learning. Nevertheless, the problem of GNSS-R soil 

moisture retrieval using machine learning techniques is challenging due to the following 

reasons:  

i) Feature selection: As different surface data parameters affect signal power and 

the relationship between these land parameters and reflected signal power is 

complex, choosing the best surface parameters can affect results significantly. 

ii) Sufficient data availability: Machine learning techniques’ performance is highly 

dependent on data availability and lack of sufficient data can be problematic.  

iii) Scale imbalances and differences: Different datasets are in different scales and 

ranges which will affect machine learning results convergence. 

 

Understanding physics of the problem and inclusion of physical models in training process 

of machine learning process can help us to select features that are involved in physical 

relationships between parameters and use less data. Therefore, the problem of soil 

moisture retrieval using GNSS reflected signals still needs further study in terms of 

understanding both physics of the problem and consideration of all surface data 

parameters in solving for soil moisture. 

 

1.3 Machine learning in GNSS-R soil moisture studies 
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Machine learning (ML) methods are one of the most developed technologies in recent 

years. Due to the growth and emergence of big data in reflectometry, ML methods have 

been widely used in GNSS-R scientific modelling. For example, a Neural Network 

application for soil moisture retrieval from reflectivity data of CYGNSS satellites was 

surveyed (Eroglu et al. 2019). In (Eroglu et al. 2019), the potential of soil moisture 

estimation using Neural Networks with CYGNSS observations without the need for spatial 

gridding or temporal averaging has been presented. Surface ancillary data introduced to 

NN in (Eroglu et al. 2019) as input features include normalized difference vegetation index 

(NDVI), vegetation water content (VWC), elevation, slope, and h-parameter (roughness 

parameter). The proposed NN in (Eroglu et al. 2019) was able to predict soil moisture 

values from reflected signals of CYGNSS with an unbiased root mean squared error of 

0.0544 cm3 cm3⁄  and Pearson correlation coefficient of 0.9009 for 2017 and 2018 

datasets.  

A comparison between two different NN approaches in GNSS-R soil moisture studies 

was addressed by (Roberts et al. 2022). The performance of a Convolutional Neural 

Network (CNN) and Artificial Neural Network (ANN) in CYGNSS soil moisture estimation 

have been compared using delay-Doppler maps (DDMs) data. Different soil moisture data 

sources can be used for training and validation of NNs. As in (Eroglu et al. 2019), 

International Soil Moisture Network (ISMN) data were used for both training and testing, 

whereas researchers in (Roberts et al. 2022) used SMAP data as a reference.  

The capability of NN inversion in GNSS-interferometric reflectometry (GNSS-IR) soil 

moisture retrieval also has been studied by (Shi et al. 2021). GNSS-IR technique uses 

one antenna to capture both direct and reflected signals simultaneously for signal to noise 
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ratio (SNR) data (Larson 2016). However, GNSS reflectometry (GNSS-R) benefits from 

a receiver using two zenith and nadir antennas to acquire waveform (Zavorotny et al. 

2014). While GNSS-IR studies changes in the interference pattern of the direct and 

reflected signals recorded in SNR data, GNSS-R use delay-Doppler maps (DDMs) related 

to acquired scattered GNSS signals (Zavorotny et al. 2014). In (Shi et al. 2021), ten 

surface parameters such as latitude and longitude information, precipitation, temperature, 

land cover type, elevation, slope, slope direction, and shading were used in NN inversion 

model as well as GNSS-IR data to retrieve soil moisture. The NN model in (Shi et al. 

2021) produced soil moisture values with RMSE of 0.0346 cm3 cm3⁄  and Pearson 

correlation coefficient of 0.8724.   

Research in GNSS-R soil moisture retrieval using machine learning are not limited to 

neural networks. The XGBoost method has been utilized in soil moisture retrieval using 

GNSS-R data (Jia et al. 2019). In addition, a comparison of different machine learning 

methods has been accomplished in (Senyurek et al. 2020) analyzing three widely used 

machine learning approaches: artificial neural network (ANN), random forest (RF), and 

support vector machine (SVM). It has been shown that random forest had better results 

in estimating soil moisture trained and validated from the International Soil Moisture 

Networks (ISMN).  

 

1.4 Research objectives 

 

Although machine learning techniques have shown promising results in modelling the 

relationship between reflected signals of GNSS and soil moisture, the performance of 

such ML methods is highly dependent on data. Machine learning’s capability is reliant on 
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both quality and quantity of data significantly. Traditional machine learnings that are only 

trained using data are called “Data-driven machine learning”. To work with data-driven 

machine learning, the role of quality of data as well as quantity of data should be 

considered such that majority of workload includes data preparation. Prior to high-level 

accessibility to big data, physics-based numerical models have been used more than 

data-driven MLs. With full knowledge of physics and algebraic relationships, scientific 

problems can be modelled with physics-based numerical models. On the other hand, 

data-driven ML eliminates the need to understand complicated and unsolvable physics-

based models. When we have a complete understanding of the physics of the problem, 

physics-based numerical models are used. However, with the availability of big data, MLs 

are able to find patterns, predict and classify without physics parametric modelling 

(Tartakovsky et al. 2020). Given that in case of small data ML fails to converge and lack 

of knowledge on physics is problematic in most scenarios, both physics-based and ML 

models can be insufficient in some ways and in real cases.  

Development of a model to retrieve soil moisture from GNSS-R signals in an incomplete 

physics knowledge and imperfect observational data situation deserves more studies. In 

GNSS-R soil moisture retrieval, some physics knowledge is available; however, the 

electromagnetic relationships between soil moisture and GNSS reflected signal power 

are difficult to solve with a mathematical parametric model. Therefore, a model is required 

to introduce available physics principles to a NN model while still benefiting from data 

driven NN capabilities in solving complex problems.  

The main goal of this dissertation is then to form a GNSS-R soil moisture retrieval model 

that can work in less data regime due to inclusion of available physical principles. Physical 
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relationships between geometrical and soil physical properties affecting reflected signal 

power can be added to a data driven NN through a methodology called “physics-informed 

neural network (PINN)”. Figure 1.1 compares a data-driven NN with a physics-informed 

neural network (PINN). In a data driven NN model, the focus is on big data and physics 

relationships are not added to the modelling and training process. However, in a physics-

informed neural network, some physical principles are added to modelling to reduce the 

need for big data and also provide some physical knowledge in the process of training 

and modelling. The application of a physics-informed neural network (PINN) model is 

proposed in this research to provide additional physics knowledge into traditional NN 

models and reduce a need for availability of large amounts of data. 

 

 

 

Figure 1.1. The top picture shows the data driven NN structure which lacks physics. For NN, big 

data is needed for training. In the physics informed NN structure, which is shown in the bottom 

picture, by adding some physics, the results can converge sooner with less data (Yang, Zhang 

and Karniadakis 2018). 
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1.5 Research Novelty and significance 

 

A new emerged deep learning framework named as “Physics-Informed Neural Networks 

(PINN)”, (Raissi et al. 2019; Mao et al. 2020) is used in this research to model the 

relationship between soil moisture and GNSS reflected signals. This research is the first 

practice of PINN in GNSS-R soil moisture estimation, to the author’s knowledge. PINN 

algorithms have the advantage of being both data-driven to learn a model and also being 

able to ensure consistency with physics relationships between data parameters. As such, 

PINNs can generate more robust models, with less data. PINN algorithms are designed 

to consider any symmetries, invariances, or conservation principles originating from the 

physical relationships between observables (Shin et al. 2020). PINNs are trained while 

respecting any governing physics equations between datasets. A physics-data space can 

be defined to have a better comparison for different kinds of scientific modelling (See 

Figure (1.2)). Figure1.2 explains how physics-informed neural networks take advantage 

of both NN regression and physics-based laws at the same time in order to reduce the 

need for more / big data (Tartakovsky et al. 2020). In PINN, a neural network is trained 

with data that does not necessarily need to be large or complete due to the addition of 

physics laws. 

The problem of GNSS-R soil moisture retrieval can be improved by physics-informed 

neural networks (PINN). Predictive modelling of soil moisture with GNSS-R data due to 

partially known physics and sparse data still presents a significant challenge. The main 

advantage of using PINN will be convergence of results with less data and more 

understanding of physics especially with comparison to NN algorithms. In NN modelling, 

the physical relationship of parameters is neglected. Therefore, the research aim is to 
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combine physics laws and NN in soil moisture retrieval problem to inform NN with physics 

of the problem using PINN as a new emerging methodology. 

Although previous research has shown that neural networks can be used to retrieve soil 

moisture from GNSS-R signals, a single reliance on data in data-driven NNs may not be 

enough to truly understand a scientific problem. In this research, we investigate the 

suitability of PINNs to retrieve soil moisture from GNSS-R signals for the first time to the 

best of the author’s knowledge. Here, the PINN model is learned using a data-driven 

supervised neural network, but also using physics equations to make sure it is consistent 

with the known physics. The advantages of using PINN in GNSS-R soil moisture 

estimation are that PINNs can learn a model from fewer data, and they can also ensure 

consistency with the physics and extrapolate beyond data. 

 

1.6 Dissertation outline 

 

The integration of NN regression and electromagnetic physics relationships in PINN 

algorithm to produce soil moisture estimates from GNSS reflected signals is explained in 

this dissertation. The performance of PINN in different scenarios such as different soil 

texture and land cover classes are investigated. Chapter 2 explains GNSS-R theory and 

important GNSS-R observables. Chapter 3 describes physical models added to NN 

training in PINN modelling. Chapter 4 describes the structure of PINN for soil moisture 

retrieval using CYGNSS data and other geophysical parameters. Chapter 5 details the 

data used in PINN. Data used in this research includes GNSS-R data from CYGNSS 

satellites, surface parameters data such as vegetation, surface roughness, soil texture, 

soil temperature and land cover data. 
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Figure 1.2 Physics-informed machine learning comparison with physics-based models and data-

driven machine learning in data-physic space plot. Physics-informed Machine learning techniques 

work with less data and more physics knowledge as they integrate benefits of both machine 

learning techniques and physics laws (Tartakovsky et al. 2020). 

 

 

PINN performance is discussed for different NN structures and land covers in Chapter 6. 

In Chapter 7, the effect of different soil dielectric models on PINN is investigated as soil 

dielectric constant models are an important part of physics dependencies of data. Finally, 

Chapter 8 summarizes the dissertation and suggests future possible research. 
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2. PRINCIPLES OF GNSS REFLECTOMETRY 

 

Due to the advancement of Global Navigation Satellite Systems (GNSS), more 

applications than navigation and positioning have been discovered for these systems. 

The freely-available signals of GNSS signals can be used as a remote sensing tool to 

survey the Earth’s surface geophysical properties. GNSS-Reflectometry (GNSS-R) 

applies reflected GNSS signals for the Earth’s surface characteristics assessments such 

as ocean and sea altitude (Rius et al. 2012; Ruffini et al. 2004), ocean wind speed 

measurements (Komjathy et al. 2004; Guan et al. 2018), soil moisture content (Camps et 

al. 2016; Chew et al. 2016; Chew et al. 2018;) and ice depth (Rius et al. 2017; Ghiasi et 

al. 2020). This research focuses on soil moisture studies application of GNSS-R.  

In this chapter, the basics of GNSS reflectometry are explained, then GNSS-R 

observables are described, and GNSS-R scattering geometry is detailed. 

 

2.1 GNSS-R theory 

 

Reflected GNSS signals have been used in remote sensing of soil moisture due to 

following reasons: First GNSS signals are in L-band, which is able to penetrate in soil up 

to 5 cm and is sensitive to moisture variations in soil. Secondly, in contrast to microwave 

radiometry, even though variations in thermal background influence land bio-geophysical 

observables, they do not contaminate the GNSS reflected signals. Thirdly, GNSS 

scatterometry from space has potentially higher spatial resolution than microwave 

radiometry, due to the highly stable carrier and code modulations of GNSS signals. 
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Factors that affect the reflected signal power are categorized as geometric and physical 

properties. The effect of changing geometry defined by satellite elevation angle, 

transmitter and receiver position, and velocity on signal energy changes should be 

considered in the soil moisture retrieval algorithm. Physical surface parameter effects for 

instance surface roughness, vegetation, and soil texture must be better estimated in the 

soil moisture algorithm.  

 

2.1.1 Global Navigation Satellites Systems 

 

Global Navigation Satellite Systems (GNSS) are constellations of satellites designed for 

providing time and position information. The worldwide GNSS satellites are the United 

States Global Positioning System (GPS), the Russian GLONASS, the European Union 

Galileo, and the Chinese Beidou. For regional positioning missions, the Japanese Quasi-

Zenith Satellite System (QZSS), the Indian Regional Navigation Satellite System (NavIC), 

and the first Beidou constellation were launched. The first demonstration satellite of the 

Japanese Quasi-Zenith Satellite System (QZSS), QSZ-1 was launched in 2010 by the 

Japan Aerospace Exploration Agency (JAXA). The building of NavIC was authorized by 

the Indian government in 2006. NavIC combines 3 geostationary and 4 geosynchronous 

satellites for a similar purpose. QZSS uses just 3 satellites, each 120° apart, in highly 

inclined, slightly elliptical, geosynchronous orbits, whose ground tracks are asymmetrical 

8-like patterns, designed to ensure that at least one is always almost directly at an 

elevation of 60° or higher over Japan.  

GLONASS was developed as a military system as a continuous study on the Doppler 

satellite system Tsikada by USSR the Union of Soviet Socialist Republics (USSR) 
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(Hofmann-Wellenhof et al. 2007). GLONASS satellite orbits have an altitude of 19,100 

km with an inclination of 64.8 degrees and a period of 11 hours and 15 minutes (see 

Table 2.1). GLONASS transmits in Frequency Division Multiple Access (FDMA) on 15 

channels. The signals are modulated with Direct Sequence Spread Spectrum (DSSS) 

and Binary Phase Shift Keying (BPSK) modulation (Franco 2013). Figure 2.1 shows a 

GLONASS satellite. 

Galileo was built by the European Union (EU) and the European Space Agency (ESA), 

with a constellation of 30 satellites at 23.222 km of altitude, (see Table 2.1). The Galileo 

signal modulation is the BOC (Binary Off-set Carrier) modulation, which improves the 

tracking performance. Figure 2.2 illustrates a Galileo satellite. 

BeiDou Navigation Satellite System (BDS) was developed by China for the Asian-Pacific 

region in 2012 (Gao et al. 2014). BeiDou constellation consists of 40 satellites including 

five geostationary (GEO) satellites, five satellites with an Inclined Geosynchronous Orbit 

(IGSO,) and 30 Medium Earth Orbit (MEO) satellites similar to GPS, GLONASS, and 

Galileo satellites, but with different orbital parameter values (Santerre et al. 2014), (see 

Table 2.1). Figure 2.3 shows a MEO BeiDou satellite. 

For this research, the focus is on GPS as it is the most widely used GNSS, started by the 

United States in the early 1970s (Parkinson and Gilbert 1983; Spilker et al. 1996). GPS 

is an all-weather, space-based system initiated by the U.S. Department of Defense (DoD) 

for military use to determine position, velocity, and time in a common reference system. 

While the GPS primary goals were military, civil use of GPS was later promoted by the 

US congress (Hofmann-Wellenhof et al. 2007). 
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Figure 2.1 Russian GLONASS satellite (www.russianspaceweb.com/uragan.html) 

 

 

 

Figure 2.2. European Galileo satellite 
(https://www.esa.int/ESA_Multimedia/Images/2011/08/OHB-designed_Galileo_satellite) 
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Figure 2.3. China Beidou satellite (https://www.csno-tarc.cn/en/system/introduction) 

 

 

In 1993, the system achieved operational capability of 24 satellites with 4 satellites in 

each of 6 elliptical orbits. Each orbit is in nearly circular with an eccentricity of 0.01 and 

an inclination of 55° with a period of 12 sidereal hours, and the orbit has a semi-major 

axis of 26,560 km (Spilker et al. 1996; El-Rabbany 2002). 

The GPS constellation is a mix of different satellites. Different generations of GPS 

satellites include Block IIA (2nd generation, "Advanced"), Block IIR ("Replenishment"), 

Block IIR-M ("Modernized"), Block IIF ("Follow-on"), GPS III, and GPS IIIF ("Follow-on"). 

Figure 2.4 summarizes the current operational GPS satellites. 

 

2.1.2 GNSS-R  

GNSS reflectometry (GNSS-R) is the technique of studying GNSS scattered signals from 

the Earth’s surface to assess geophysical parameters of Earth (Gleason and Gebre-

https://www.csno-tarc.cn/en/system/introduction
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Egziabher 2009). GNSS-R signals are transmitted from GNSS satellites and received in 

a receiver with a considerable distance from the transmitters; therefore, GNSS-R 

geometry can be considered as a bistatic system (see Figure 2.5). However, the GNSS-

R system has been described as a multi-static system by (Jin et al. 2014) due to the 

simultaneous use of multiple transmitters increasing the coverage and data samples (see 

Figure 2.6). So, GNSS-R utilizes multiple observations from free, versatile, and available 

signals of GNSS as a low-cost system for different Earth’s surface studies. Reflected 

signals of GNSS satellites enable sensing the Earth’s surface geophysical parameters as 

a new, continuous, all-weather remote sensing tool. Comparison of direct and reflected 

signals is the principle of GNSS reflectometry theory.  

 

Table 2.1 Comparison of different GNSS constellations (Shi and Wei 2020). 

 GPS 
 

GLONASS Galileo BeiDou 

Owner 
 

United States Russia European 
Union 

 

China 

First Launch 
 

1978-02-22 1982-10-12 2005-12-28 2017-11-05 

Number of satellites 32  
(at least 24  
by design) 

28 
(at least 24  
by design) 

30 30 MEO 
And 

5 GEO 

Number of orbital planes 
 

6 3 3 3 (MEO) 

Orbital inclination 
 

55° 64.8° 56° 55° 

Orbital altitude 
 

20,200 19,100 23,222 21,528 

Orbital period 
 

11 h 58 m 11 h 15 m 14 h 04 m 12 h 53 m 
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Figure 2.4 GPS operational satellites (https://www.gps.gov/systems/gps/space/). 

 

 

Surface properties assessment using reflected GNSS signals includes two techniques 

based on the receiver antenna (Zhang et al. 2017). The first technique known as GNSS 

interferometric reflectometry (GNSS-IR) considers the use of one antenna and the 

resulting signal-to-noise ratio (SNR) data (Larson 2016) (see Figure 2.7a).  

However, the second technique, GNSS reflectometry (GNSS-R), benefits from a receiver 

with two zenith and nadir antennas to acquire waveform (Zavorotny et al. 2014) (see 

Figure 2.7b). While GNSS-IR studies changes in the interference pattern of the direct and 

reflected signals recorded in SNR data, GNSS-R uses delay-Doppler maps (DDMs) 

related to acquired scattered GNSS signals (Zavorotny et al. 2014). 

Using GNSS-IR, Larson et al. (2008 a) compared estimated multipath phase to measured 

Volumetric Water Content (VWC) from Water Content Reflectometers (WCR) and 

expressed their relationship with a 2nd order polynomial (Larson et al. 2008 a). In Larson 

et al. (2008b), a good correlation between the GPS multipath amplitude and a land model 

precipitation record was found. 

https://www.gps.gov/systems/gps/space/
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In GNSS-IR, the main data is SNR of GNSS L band C/A signal. GPS multipath SNR can 

be defined in terms of the multipath amplitude (𝐴) and phase (𝜙) using Equation 2.1, 

(Larson et al. 2008b) 

 

 

𝑆𝑁𝑅 = 𝐴𝑐𝑜𝑠 (
4𝜋ℎ

𝜆
𝑠𝑖𝑛𝐸 + 𝜙)                                                                               (2.1) 

 

where ℎ is antenna height from the top of the soil, 𝐸 is the elevation angle of the satellite 

and 𝜆 is the GPS wavelength. To calculate the multipath amplitude and phase from the 

SNR data, a least square estimation method can be applied as explained in (Larson et 

al. 2008a; Larson et al. 2008b). With the knowledge of multipath amplitude and phase, 

soil moisture changes can be studied. Larson et al. (2008a) demonstrated that the 

multipath SNR amplitude variations are a function of soil moisture content (Larson et al. 

2008a). However, most studies practiced phase data for soil moisture retrieval since 

variations of shallow soil moisture owning to phase are larger than amplitude (Larson et 

al. 2008b). A strong relationship between phase and soil moisture measurements was 

later corroborated using a model of ground-reflected signal (Chew et al. 2013).  

The gain pattern and multipath intensity factors influences are included in the amplitude 

term. Both the antenna’s gain and multipath intensity vary with the elevation angle, 

however, the variations due to satellite elevation angle changes are not large in 

amplitude. Therefore, in an analysis of SNR data, it is assumed that amplitude does not 

vary with elevation angle (Larson et al. 2008a). 
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Figure 2.5. GNSS-R technique as a bistatic system 

(https://www.hydro-international.com/content/news/sea-level-mapped-from-space-with-gps-reflections) 

 

 

 

Figure 2.6. GNSS-R as a multi-static system (Jin et al. 2014) 

https://www.hydro-international.com/content/news/sea-level-mapped-from-space-with-gps-reflections
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Figure 2.7. Comparison of GNSS-IR and GNSS-R in terms of antenna use, a) GNSS-IR with one 

right hand circular polarized antenna (RHCP), and b) GNSS-R with two antennas including one 

zenith RHCP and one nadir left hand circular polarized antenna (LHCP). 
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GNSS-IR SNR data is not only used in soil moisture studies, but also for vegetation 

permittivity. Chew et al. (2016) suggested that for the changes in vegetation permittivity 

and canopy height, the amplitude is more effective metric than phase. The normalized 

amplitude time series can demonstrate the vegetation effects significance (Chew et al. 

2016). 

GNSS satellites transmit electromagnetic waves of the radio or microwave type with 

frequency in the range of 1 to 2 GHz, in the L band close to the frequencies used in SMOS 

and SMAP orbital missions. When such waves reflect on surfaces around a GNSS 

antenna, they can reach the receiver’s antenna indirectly, delayed due to the additional 

distance travelled. Receiver antenna can be mounted on different platforms such as 

ground-based (Jia et al. 2019), UAV-based (Senyurek et al. 2021; Imam et al. 2019), 

aircraft-based (Jia et al. 2015; Lowe et al. 2020), and satellite-based GNSS receivers 

(Eroglu et al. 2019) (see Figure 2.8).  

 

2.2   GNSS-R observables  

 

GNSS receivers have been traditionally more dependent on hardware. However, with a 

software GNSS receiver, hardware is still needed, known as the frontend, that digitizes 

the signal from the satellites. A software-defined radio (SDR) implements most 

processes. The SDR finds the transmitted signal by searching over a wide range of 

Doppler shifts and code delays (Gleason and Gebre-Egziabher 2009) (see Figure 2.9). 

The result of the SDR operation can be shown as Delay Doppler Maps (DDMs), delay 

waveforms, and a measurement of bistatic radar cross section (BRCS) which are the 

main observables in GNSS-R. 
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Figure 2.8. Different platforms that can be used for GNSS-R soil moisture retrieval (Rodriguez-

Alvarez et al. 2023). 

 

 

The GPS receiver cross-correlates the incoming signal (𝑢) at a time (𝑡0 + 𝜏)  with a replica 

of PRN code (𝑎) taken at a different time (𝑡0) for a variety of time delays (𝑡′ + 𝜏) to 

measure the similarity between two signals. When the maximum correlation 𝑦 is found, 

the signal is aligned with the replica code. The result is expressed as follows (Parkinson 

1996)  

 

𝑦(𝑡0, 𝜏, 𝑓𝑐) = ∫ 𝑎(𝑡0 + 𝑡′)𝑢(𝑡0 + 𝑡′ + 𝜏)exp (2𝜋𝑖𝑓𝑐𝑡
′)

𝑇𝑖

0

𝑑𝑡′                                                         (2.2) 
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where 𝑇𝑖 is the coherent integration time, 𝑎(𝑡) is the replica of the PRN code, 𝜏 is the time 

delay of incoming signal with respect to the replica code. A GPS signal is received by 

multiplying the incoming signal (𝑢) by a replica code (𝑎) and carrier frequency (2𝜋𝑖𝑓𝑐𝑡
′). For the 

signal to be received out of the noise the replica code and carrier must align with that in 𝑢. Carrier 

frequency compensates for the possible doppler shift of the signal with the oscillating factor 

including the code C/A frequency fc.  

The possible Doppler shift of the signal is compensated with the oscillating factor 

including the C/A code frequency 𝑓𝑐 in local carrier term (exp(2𝜋𝑖𝑓𝑐𝑡
′)). The cross-

correlated signal power is then used to form delay waveforms, DDM, and BRCS which 

are the basic observables for the Earth’s surface studies.  

A delay Doppler map (DDM) is formed from the correlation of the incoming signal 𝑢(𝑡) 

with a replica of the code 𝑎(𝑡) for several Doppler and code values. A DDM shows the 

correlation power versus both the code delay and the Doppler frequency that is produced 

due to the relative motion between the transmitter and the receiver. A delay waveform 

represents correlation power distribution over code phase/delay for a constant Doppler 

(see Figure 2.9). Figure 2.9 demonstrates how correlation power 𝑦 is calculated using 

Equation 2.2 over different delays and possible Doppler shifts. 

After finding correlation power values, averaging of the signal over consecutive 

correlations is necessary due to fading caused by the surface scattering (Gleason and 

Gebre-Egziabher 2009). This process is called incoherent integration. In GPS signal 

processing a coherent integration of 1 ms is usually used due to the length of GPS PRN 

repeat sequence (Gleason 2006). The signal must be summed or averaged over 

consecutive 1 ms coherent integrations to increase signal power over fading noise. The 

only adjustment needed between consecutive averaged power outputs at a given 
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frequency and delay is the centre delay, which needs to be adjusted at each millisecond 

to correctly align the signal as it moves across the Earth’s surface (Gleason 2006). No 

matter what the desired output is, averaging the signal is necessary in generating all 

products including delay waveforms, DDMs, BRCS. Incoherent integration is used both 

for GNSS signal acquisition and to estimate DDMs, delay waveforms, and BRCS as it 

increases the observable SNR and signal power and reduces fading noise (Gleason and 

Gebre-Egziabher 2009). In incoherent integration, signals must be summed or averaged 

over 1000 number of consecutive 1ms coherent correlations. From experience, it has 

been found that when the summation interval is limited to 1 second, the only term that 

has a noticeable effect on the shape of the returned signal is the first derivative of the 

code delay. The basic processing ignores all dynamics-related frequency terms over the 

summation interval, as well as higher order derivatives related to delay. Over one second, 

the relative centre frequency (the change in frequency between the first and 1000th look 

at the reflected signal) changes on the order of several 10's of Hz. For 1 second of 

summation, this is negligible, but needs to be taken into consideration for longer 

summation intervals. Therefore, 1 second of summation has been accepted by 

researchers (Marchan-Hernandez et al. 2008; Hu et al. 2019; Huang et al. 2021). 

To estimate the GNSS signals behaviour after scattering, the Kirchhoff approximation 

model can be used (Bass and Fuks 2013). The received GNSS signal 𝑢(�⃗� , 𝑡) at the 

receiver position of �⃗�  is computed as Equation 2.3 

 

𝑢(�⃗� , 𝑡) = ∫𝐷(𝑝 )𝑎 [
𝑡 − (𝑅𝑡(𝑡) + 𝑅𝑟(𝑡))

𝑐
] 𝑔(𝑝 , 𝑡)𝑑2𝑝                                                  (2.3) 
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where 𝐷(𝑝 ) is the amplitude footprint of the receiver antenna, 𝑎(𝑡) is the GNSS signal 

PRN code, 𝑅𝑡(𝑡) is the distance to the transmitter and 𝑅𝑟(𝑡) is the distance to the receiver 

for the point 𝑝 , and 𝑔(𝑝 , 𝑡) defines propagation and scattering processes in Equation (2.4), 

with respect to Fresnel reflection coefficient (𝑉), and distances of reflection point to 

transmitter 𝑅𝑡(𝑡), and receiver 𝑅𝑟(𝑡) (Gleason and Gebre-Egziabher 2009) 

 

𝑔(𝑝 , 𝑡) = −𝑉(𝑝 )𝑞2 exp
[𝑖𝑘(𝑅𝑡(𝑡) + 𝑅𝑟(𝑡))]

4𝜋𝑖𝑅𝑡𝑅𝑟𝑞𝑧
                                                                   (2.4) 

 

where 𝑉 is the Fresnel reflection coefficient, 𝑞 is the scattering vector, and 𝑘 is the radio 

wave number ( 𝑘 = 2𝜋
𝜆⁄ ). Fresnel reflection coefficient describe the reflection of light 

when incident on an interface between different optical media .After multiple calculations 

(Zavorotny and Voronovich 2000), the bistatic radar equation computing the power of a 

scattered GNSS signal is obtained as follows (Jin et al. 2014) 

 

〈|𝑌(𝜏, 𝑓)|2〉 =
𝜆2𝑇𝑖

2

(4𝜋)3
𝑃𝑡 ∫

𝐺𝑡𝐺𝑟

𝑅𝑡
2𝑅𝑟

2 Λ2(𝜏 − 𝜏(𝑟))|𝑆(𝑓𝐷(𝑟) − 𝑓𝑐)|
2𝜎0𝑑2𝑟                     (2.5) 

where: 

. 𝑇𝑖 is the integration time 

. 𝑃𝑡 is the transmitter power 

. 𝜆 is the electromagnetic wavelength  

. 𝐺𝑡 and 𝐺𝑟 are the transmitter and receiver antenna gains, respectively  

. 𝜏(𝑟) is the delay of the ray path from the transmitter to the surface point r and from there    

to the receiver, and 𝑓𝐷(𝑟) is the Doppler frequency of the ray path 
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. 𝑅𝑡 and 𝑅𝑟 are the transmitter and receiver distances to point 𝑟, respectively 

. Λ2 function defines the annulus zone, and |𝑆|2 function defines the Doppler zone 

. 𝜎0is the normalized bistatic radar cross-section (BRCS) of the rough surface 

 

The BRCS function can be obtained from the Kirchhoff approximation through Equation 

(𝜎0). BRCS function is one of the GNSS-R observables that can be used to study the 

ocean wind speed and direction (Zavorotny and Voronovich 2000; Elfouhaily et al. 2002). 

 

Figure 2.9. Delay Doppler Map (DDM) calculation in a software defined radio (SDR) (Jales 2012). 

For every delay and Doppler value, the correlated power can be drawn (blue plot). These blue 

plots are different delay waveforms while Doppler is constant. 
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Correlated powers drawn over delay and Doppler represented as DDMs are the primary 

data used in GNSS-R. Surface roughness can be declared with the distribution of 

correlative power across the DDM (Chew 2016). DDM shape shows the surface 

roughness. When the frequency is set to a constant value (normally the value at the 

reflection point), the delay waveform is obtained. The delay waveform is simply a two-

dimensional representation of DDMs for a constant frequency (see Figures 2.10 and 

2.11).   

When the surface is smooth, the delay waveform has an undistorted triangular shape 

(similar to direct received signals with a time delay), and the reflection is mostly coherent 

coming from the area equal to the size of the Fresnel zone. For a smooth surface, DDM 

can have the shape of Figure 2.10. 

When the surface is roughened (e.g., oceans), delay waveform has a horseshoe shape 

(Figure 2.11) and is mostly incoherent coming from a larger area known as glistening 

zone (Jin et al. 2014). In this case, the maximum power appears on the trailing edge of 

the waveform corresponding to the specular point. For points further than specular point, 

the reflection is not specular and the reflected power decreases. 

The distribution of correlation power over delay ranges mapped as delay waveforms 

provide the basic measurements in GNSS-R. Figure 2.12 explains how different shapes 

for correlation power distribution over delay as waveforms can be applied to different 

GNSS-R applications. The delay of reflected signal with respect to the direct signal is the 

main concept of altimetry in GNSS-R (see Figure 2.12). The distribution of reflected power 

signal is the idea of surface roughness in the ocean or dielectric changes of soil. 
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Figure 2.10. The left picture shows the delay waveform plot for a smooth surface with the specular 

reflection (Jin et al. 2014), and the right picture shows DDM over a smooth surface (Chew et al. 

2016). 

 

 

 

 

Figure 2.11. The left figure demonstrates the delay waveform for a rough surface reflection which 

can be expressed as coherent components showing in triangular shape (Jin et al. 2014), the right 

figure demonstrates DDM over a rough surface (Chew et al. 2016). 
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As the roughness increases the peak power of delay waveform decreases (Masters 

2004). For example, bistatic cross section estimated from reflected power is a function of 

surface slope; therefore, a representative of roughness (Zavorotny and Voronovich 2000). 

Slope of delay waveform can later be related to trailing edge slope (TES) data, which is 

an indicator for coherency / incoherency of waveforms (Dong and Jin 2021; Rodriguez-

Alvarez et al. 2019). Higher TES shows higher incoherency characteristics (see Figure 

2.12). 

The presence of coherent scattering is clearly seen in the shape of the DDMs over sea 

ice and over land, while over the ocean, DDMs spread over many delay (vertical axis) 

and Doppler (horizontal axis) cells (see Figure 2.13) (Clarizia et al. 2014). Some reasons 

explaining this behaviour are: i) for many scattering geometries (i.e., incidence angles), 

the long electromagnetic wavelength (e.g., λ = 19 cm at fL1 = 1575.42 MHz) allows the 

surface to be considered “smooth,” despite natural surfaces exhibit a wide range of root 

mean square (rms) heights and correlation lengths; and ii) due to the long chip duration 

(Tchip ≈ 1 μs for the GPS C/A code, c · Tchip ≈ 300 m), volumetric effects are usually not 

resolved.  
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Figure 2.12. The relationship between delay waveform and GNSS-R applications (Masters 2004). 

Delay from the direct signal which can be expressed in phase difference is sensitive to receiver 

antenna relative height and provides altimetry information. The distribution of correlation power in 

waveform plots is the idea of studying surface properties such as ocean.  

 

 

2.3. Scattering geometry 

 

The magnitude of GNSS reflected signal power is highly affected by roughness of the 

scattering surface especially over the ocean. For example, with a fixed Doppler 

frequency, the correlation signal power of the reflected GNSS signal can be used to 

measure the roughness of the scattering area (Rodriguez-Alvarez et al. 2012). As surface 

roughness increases, the scattering zone area also increases. To understand the 

geometry of GNSS-R signals reflection, two physics terms should be studied: i) the 

specular point or reflection point explained in Subsection 2.3.1; and ii) the scattering zone 

or glistening zone explained in Subsection 2.3.2. The specular point and the zone around 
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it called the glistening zone represent the scattering geometry of the GNSS reflected 

power signal (Clarizia et al. 2009). Figure 2.14 shows basic geometry of GNSS reflected 

signals over land for specular points and glistening zone around it. 

 

 

Figure 2.13. Comparison of coherent DDM for sea ice, calm lakes, and open wetlands versus 

incoherent DDM with horseshoe shape for open oceans and heavily vegetated areas. (Rodriguez-

Alvarez et al. 2023). 

 

 

2.3.1 Specular point calculation 

 

Specular point is a reflection point on the earth’s surface that satisfies two conditions: i) 

this point minimizes the total path between transmitter or GNSS satellite to reflection point 

and then to receiver; and ii) specular point satisfies the Snell’s law as incident and 

reflected angles must be equal (see Figure 2.14).  
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Figure 2.14. The geometry of GNSS reflected signals including specular point reflection and 

reflection area around it called glistening zone. For specular point, the incident and reflection 

angle are equal (𝜽) and the path between the receiver, reflection point, and transmitter is minimum 

(Gleason and Zavorotny 2006).  

 

 

Different algorithms have been proposed to determine the positions of specular points. 

The first specular point position computation was proposed by Martin-Neira (1993) 

suggesting a quadric polynomial equation to find specular point on the spherical Earth. 

Then, a complete report on specular point position calculation was investigated by 

Roussel et al. (2014) that proposed three different algorithms based on the Earth’s 

surface shape: the first considering the Earth as a sphere, the second as an ellipsoid, and 

the third with consideration of Earth’s topography with digital elevation model (DEM). The 

precision of these methods is studied by Roussel et al. (2014). All these specular point 
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calculations use iterative methods to meet two conditions (path minimization and Snell’s 

law). 

Juang (2021) suggested an analytical methodology to determine specular points on the 

ellipsoidal Earth. Therefore, a sextic polynomial equation was found to determine 

specular point without a need for initial conditions and iterative methods (Juang 2021). 

More recent methodologies have focused on improving specular point position 

determination by adding geoid information and mean dynamic topography (Wu et al. 

2021). In regions with high geoid undulations like the Greenland Sea, it’s recommended 

to use a locally accurate Earth geoid model in specular point calculations. 

The most famous approach is based on Gleason (2006). The computation of specular 

point is explained by Gleason (2010) in this subsection. To find the reflection point on the 

Earth’s surface, the signal path P (S) is defined as a function of the specular point location 

as  

 

              𝑃(𝑆) = |(𝑇 − 𝑆) + (𝑅 − 𝑆)|                                                                                                 (2.8) 

 

where T is the transmitter (GNSS satellite) position vector, R is the receiver position vector 

and S is specular point position vector in WGS84 reference frame. Equation 2.8 can be 

expanded to Equation 2.9, as (Gleason 2010) 

 

𝑃(𝑆) = √(𝑇𝑥 − 𝑆𝑥)
2 + (𝑇𝑦 − 𝑆𝑦)

2
+ (𝑇𝑧 − 𝑆𝑧)

2 + √(𝑅𝑥 − 𝑆𝑥)
2 + (𝑅𝑦 − 𝑆𝑦)

2
+ (𝑅𝑧 − 𝑆𝑧)

2      (2.9) 
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Receiver and transmitter locations are both known from navigation output of GNSS. 

Therefore, the coordinates of both receiver vector R and transmitter vector are known in 

WGS84 reference frame. As a result, specular point location is the only unknown 

parameter. Due to the non-linearity of Equation 2.9, to solve for specular position, an 

iterative approach with an initial guess is needed. To minimize the total path 𝑃(𝑆) as the 

first condition of specular point, the partial derivatives of specular point with respect to x, 

y and z should be calculated.  

In order to minimize this path, we first take the partial derivatives of the specular point (𝑆) 

with respect to x, y, and z. The partial derivative with respect to 𝑆𝑥 is shown in Equation 

(2.10). The same approach can be applied for 𝑆𝑦 and 𝑆𝑧. 

 

𝜕𝑆𝑥
𝑃(𝑆) =

(𝑇𝑥 − 𝑆𝑥)

√(𝑇𝑥 − 𝑆𝑥)
2 + (𝑇𝑦 − 𝑆𝑦)

2
+ (𝑇𝑧 − 𝑆𝑧)

2

+
(𝑅𝑥 − 𝑆𝑥)

√(𝑅𝑥 − 𝑆𝑥)
2 + (𝑅𝑦 − 𝑆𝑦)

2
+ (𝑅𝑧 − 𝑆𝑧)

2 

            (2.10) 

 

Simplifying Equation (2.10) and including all three dimensions results in (Chan 2017) 

 

𝑑S = 𝜕𝑆𝑃(𝑆) =
(T − S)

|(T − S)|
+

(R − S)

|(R − S)|
                                                                                        (2.11) 

 

The Earth’s radius with respect to WGS84 ellipsoid parameters is formulated as a function 

of the specular point z coordinate with  𝜆 = sin (
𝑆𝑧

|S|
)  as follows,  

 

𝑟 = 𝑎𝑊𝐺𝑆84√
1 − 𝑒𝑊𝐺𝑆84

2

1 − (𝑒𝑊𝐺𝑆84
2 + cos (𝜆))

                                                                                         (2.12) 
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where 𝑎𝑊𝐺𝑆84 = 6378137 m and 𝑒𝑊𝐺𝑆84 = 0.08181919084262 are the semi-major axis 

and the eccentricity of the Earth’s WGS84 ellipsoid, respectively.  

To solve for specular point position that satisfies the conditions mentioned, a correction 

gain (𝐾) is considered. Magnitude of this correction gain depends on how far the sub-

receiver Earth point can be from the actual specular point. Therefore, the initial guess for 

specular point location is sub-receiver Earth point and in each iterative step, the specular 

point location changes are modelled as (Chan 2017) 

 

S𝑡𝑒𝑚𝑝 = (S + 𝐾 �̂�)                                                                                                                               (2.13) 

 

 

where   �̂� =
𝜕𝑆

|𝜕𝑆|
   is the directional unit vector for the correction.  

The new estimate for specular point S in each step of iteration will be calculated by 

Equation (2.14) with unit vector of S𝑡𝑒𝑚𝑝 scaled by the Earth’s radius (Gleason 2010). 

Earth radius can be calculated from Equation (2.12). 

𝑆 = 𝑟�̂�𝑡𝑒𝑚𝑝 = 𝑟
𝑆𝑡𝑒𝑚𝑝

|𝑆𝑡𝑒𝑚𝑝|
                                                                                                                        (2.14) 

 

Calculations will be repeated till the difference between the old and new values of S is 

below a predefined threshold. Finally, Snell’s law as the last condition should be checked 

with consideration of the incoming and reflected vectors directions. Although Gleason’s 

method has widely been used, choosing a suitable threshold for iterations and correction 

gain can affect the results of specular point position.  
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2.3.2 Resolution 

 

The receiver experiences two scattering cases, hence affecting resolution of the 

scattering area in two different ways. With respect to the surface roughness, the 

scattering contains both coherent and incoherent types of reflection contributions (see 

Figure 2.15). From an electromagnetic point of view, surface roughness or smoothness 

definition is dependent on the transmitted wave frequency (or wavelength 𝜆) and incident 

angle (𝜃) which are not inherent properties of the surface itself. Considering Rayleigh 

criterion, the surface is defined smooth when the phase differences ∆𝜙 between two 

reflected rays from two separate points on the surface is less than 𝜋/2 radians (Moreira 

et al. 2013). The phase difference between reflected rays from two separate points with 

a roughness height standard deviation ℎ  is calculated as (Wolf 2007)  

 

Δ𝜙 = 2ℎ
2𝜋

𝜆
𝑐𝑜𝑠𝜃                                                                                                                      (2.15) 

 

Moreover, the reflection from a smooth surface is coherent indicating that the transmitted 

wave and received wave sources have a constant phase difference and the same 

frequency. Coherent scattering results in high spatial resolution GNSS reflectivity values 

because most of the power comes from the first Fresnel zone when coherent scattering 

occurs (see Figure 2.15). 

Coherent reflection occurs in smooth flat surfaces where heights ℎ of roughness are 

smaller than the wavelength 𝜆 of the signal. To be more precise in  recognition of coherent 

reflection, if Rayleight parameter calculated as Equation (2.15) is less than 1, the surface 

reflection is coherent (Zavorotny et al. 2014). The most power of reflected signals comes 
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mainly from the first Fresnel zone under coherent scattering (Beckmann and Spizzichino 

1987). Fresnel zone is an ellipse with a semi-major axis 𝑎 and semi-minor axis 𝑏 defined 

as Equation (2.16) and Equation (2.17), respectively (Larson and Nievinski 2013). 

 

𝑎 =
𝑏

si n(𝜖)
 ,                                                                                                                         (2.16) 

𝑏 = √
𝜆ℎ

𝑠𝑖𝑛(𝜖)
+ (

𝜆

2𝑠𝑖𝑛(𝜖)
)2                                                                           (2.17) 

 

where 𝜆 is the wavelength (m), ℎ is the receiver height (m) and 𝜖 is the satellite’s elevation 

angle seen from the specular point (rad). 

Due to the weakness of the reflected GNSS signals, the GNSS bistatic radars only receive 

the strongest scattered signals. Therefore, receivers capture signals coming from 

specular point and the glistening zone angular area around it (see Figure 2.15). 

In summary, for coherent scattering, the spatial resolution of reflection is high being as 

small as 400-500 m for a LEO satellite. However, as the roughness heights become 

significant with respect to the signal’s wavelength, diffuse scattering occurs instead of 

specular reflection. Although diffuse scattering is still centered on the nominal specular 

point, reflections come from the larger area called glistening zone resulting in coarse 

spatial resolutions (see Figure 2.15). 
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Figure 2.15. The left picture shows specular scattering or reflection from smooth surfaces which 

comes from the first iso-delay ellipsoid called Fresnel zone. The right picture demonstrates diffuse 

scattering from rough surfaces from larger area called glistening zone (Jin et al. 2014). 
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3.      PHYSICAL MODELS IN GNSS-R SOIL MOISTURE 

RETRIEVAL 

 

In this Chapter, the theoretical relationship between soil moisture and reflected signal, 

and datasets employed in PINN problem are explained. For soil moisture retrieval using 

bistatic radar observations, theoretical physics relationships between different surface 

parameters must be understood. Theoretical physics relationships in Section 3.1 describe 

how datasets in PINN are connected in terms of physics models of the scattering surface.  

 

3.1    Theoretical relationships in soil moisture retrieval using GNSS-R 

 

The GNSS-R works as a bi-static system receiving GNSS L-band signals because the 

signals are transmitted from GNSS satellites and received by a CYGNSS receiver with a 

considerable distance from the transmitters as described in Subsection 2.1.2. Therefore, 

the bistatic radar equation describes the relationship between the bi-static received power 

and scattering properties of the surface in GNSS-R. The correlation between the reflected 

signal power and soil moisture is mostly due to the reflectivity coefficient. Surface 

reflectivity coefficient is one of the main data used in GNSS-R.  

The total power of the forward scattered L-band signals is a sum of both coherent and 

incoherent components. However, it has been reported that reflections coming from the 

land surface are dominated by the coherent component (Nghiem et al. 2017).  

The coherent component of the bistatic received power can be written as follows (Aubert 

et al. 2011; De Roo and Ulaby 1994; Voronovich and Zavorotny 2017): 
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 𝑃𝑅𝐿
𝑐𝑜ℎ = (

𝜆

4𝜋
)
2 𝑃𝑡𝐺𝑡𝐺𝑟

(𝑟𝑠𝑡 + 𝑟𝑠𝑟)2
Γ𝑅𝐿(𝜃𝑖), (3.1) 

 

where  𝑃𝑅𝐿
𝑐𝑜ℎ is the coherent received power, 𝜆 is the wavelength, and 𝑃𝑡 is the peak power 

of the transmitted GNSS signals. 𝐺𝑡 and 𝐺𝑟are the antenna gain of the transmitter and 

receiver, respectively. 𝑟𝑠𝑡 and 𝑟𝑠𝑟 are the distance between specular point to transmitter 

and receiver, respectively. Finally, Γ𝑅𝐿(𝜃𝑖) is the surface reflectivity at incidence angle of 

𝜃𝑖. The subscripts 𝑅 and L denote the right-hand circularly polarized (RHCP) GNSS 

transmit antenna and the LHCP downward-looking, left-hand circularly polarized GNSS-

R antenna, respectively. 

The incoherent component of the bistatic received power can be written as follows 

(Zavorotny and Voronovich 2000): 

𝑃𝑅𝐿
𝑖𝑛𝑐 =

(𝜆)2

(4𝜋)3

𝑃𝑡𝐺𝑡𝐺𝑟

𝑟𝑠𝑡
2𝑟𝑠𝑟

2
𝜎𝑅𝐿 .   (3.2) 

 

where 𝑃𝑅𝐿
𝑖𝑛𝑐 is the bistatic received power including diffuse scattering over the surface. 𝜎𝑅𝐿 

denotes the bi-static radar cross section (BRCS) in 𝑚2. 

Similar to previous studies (Chew and Small 2018; Clarizia et al. 2019; Eroglu et al. 2019), 

we also assume that majority of the reflections recorded by CYGNSS originate from 

coherent reflections. With the assumption that surface is relatively flat, smooth, and less 

vegetation covered, the coherent component of the reflected power is significant, and the 

incoherent component calculated by (3.2) can be ignored. Then, the surface reflectivity is 

calculated by Equation (3.1), as follows (Chew and Small 2018; Eroglu et al. 2019): 
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 𝛤𝑅𝐿(𝜃𝑖)  = (
4𝜋

𝜆
)
2  𝑃𝑅𝐿

𝑐𝑜ℎ(𝑟𝑠𝑡 + 𝑟𝑠𝑟)
2 

𝑃𝑡𝐺𝑡𝐺𝑟
. (3.3) 

 

For soil moisture retrieval, the Fresnel reflection coefficient (ℜ𝑅𝐿(𝜃𝑖)) should be acquired 

from reflectivity ( 𝚪𝑹𝑳(𝜽𝒊)), see Equation (3.4). Since near surface soil moisture affects the 

surface dielectric constant, and surface dielectric constant affects the Fresnel reflection 

coefficient (Beckmann and Spizzichino 1987). 

 

      𝛤𝑅𝐿(𝜃𝑖) = ℜ𝑅𝐿(𝜃𝑖)
2𝛾2𝑒𝑥𝑝(−ℎ𝑐𝑜𝑠2(𝜃𝑖)),      (3.4) 

 

where 𝛾 is the transmissivity parameter related to the wave attenuation due to vegetation 

canopy, and the h-parameter is related the root-mean-height surface roughness 

(Choudhury et al. 1979). The transmissivity 𝛾, depends on the vegetation optical depth 

(𝜏) and incidence angle (𝜃𝑖) through following equation (Eroglu et al. 2019): 

 

𝛾 = exp(−𝜏 𝑠𝑒𝑐(𝜃𝑖)). (3.5) 

  

The vegetation optical depth can be calculated from vegetation water content (VWC) and 

land cover-based proportionality value (b) as Equation (3.6) (Chan et al. 2013). 

 

𝜏 = 𝑏 × 𝑉𝑊𝐶 (3.6) 

 

The VWC values can be obtained from normalized difference vegetation index (NDVI) 

and stem factor parameter as Equation (3.7). NDVI values come from Moderate 
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resolution imaging spectroradiometer (MODIS) satellites. Land cover-based 

proportionality b-parameter and stem factor values are provided in Soil moisture active 

passive (SMAP) mission look up table (LUT) (Chan et al. 2013). 

 

Finally, the Fresnel reflection coefficient (ℜ𝑅𝐿(𝜃𝑖)) is related to the dielectric constant of 

soil through Equations (3.8) to (3.10). This relationship between soil dielectric constant 

and Fresnel reflection coefficient explains the correlation between soil moisture content 

and reflected signal power. Equation (3.8) presents that the Fresnel reflection coefficient 

of circularly polarized waves is expressed as a combination of linear polarized horizontal 

( ℜ𝐻𝐻(𝜃𝑖)) and vertical (ℜ𝑉𝑉(𝜃𝑖)) Fresnel reflection coefficients. 

 

 ℜ𝑅𝐿(𝜃𝑖) =
1

2
(ℜ𝑉𝑉(𝜃𝑖) − ℜ𝐻𝐻(𝜃𝑖)).                                                            (3.8) 

 ℜ𝐻𝐻(𝜃𝑖) =
𝑐𝑜𝑠𝜃𝑖 − √𝜀𝑟 − 𝑠𝑖𝑛2𝜃𝑖

𝑐𝑜𝑠𝜃𝑖 + √𝜀𝑟 − 𝑠𝑖𝑛2𝜃𝑖

. (3.9) 

ℜ𝑉𝑉(𝜃𝑖) =
𝜀𝑟𝑐𝑜𝑠𝜃𝑖 − √𝜀𝑟 − 𝑠𝑖𝑛2𝜃𝑖

𝜀𝑟𝑐𝑜𝑠𝜃𝑖 + √𝜀𝑟 − 𝑠𝑖𝑛2𝜃𝑖

.     (3.10) 

 

Finally, to derive soil moisture values from dielectric constant (𝜀𝑟) soil dielectric models 

should be used. The soil dielectric constant models define the relationship between the 

volumetric water content and the dielectric constant by consideration of soil properties 

                             

𝑉𝑊𝐶 = (1.9134 × 𝑁𝐷𝑉𝐼2 − 0.3215 × 𝑁𝐷𝑉𝐼) + 𝑠𝑡𝑒𝑚 𝑓𝑎𝑐𝑡𝑜𝑟 ×
𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

1 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛
.                   

 

(3.7) 
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such as temperature, soil bulk density, clay, and sand percentage of soil. A complete 

explanation of soil dielectric constant models can be found in the next section. 

 

3.2    Soil moisture – dielectric constant models 

 

Soil dielectric constant or permittivity consists of a real part and an imaginary part. The 

real part of permittivity represents the ability of the material to polarize in response to the 

electric field compared with the free space, whereas the imaginary part is the ability of the 

medium to absorb the wave (Ulaby et al. 1982). For L-band frequencies in GPS, the 

imaginary component of the soil dielectric constant is negligible (Ulaby et al. 1986); 

therefore, only the real part is considered in soil moisture studies using reflected GPS 

signals (Katzberg et al. 2006).  

Soil water content is particularly related to soil dielectric constant. The dependence of the 

soil moisture on the dielectric constant increases as frequency decreases. Accordingly, 

for lower frequencies higher connection between soil moisture and dielectric constant has 

been seen (Ulaby et al. 1982; Ulaby et al. 1986).  

At L-band frequencies, the difference between the dielectric constant of dry soil (~4) and 

pure water (~80) is very large (Ulaby et al. 1986). Hence, soil moisture and dielectric 

constant of soil are highly connected working with L-band instruments.  

This large contrast between the dielectric constants of dry and moist soil in L-band has 

resulted in various soil moisture studies using microwave measurements (Schmugge, et 

al. 1986; Kerr 2007; De Jeu 2008). Dielectric constant is not only affected by moisture 

content in soil, but also by soil properties such as soil temperature, salinity, soil density, 

clay and sand percentage. For this reason, to understand the relationship between soil 
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moisture and soil dielectric constant, the effect of soil properties should be considered in 

modelling.  

Three approaches can be used to compute soil moisture from dielectric constant: i) 

Empirical models such as the Hallikainen model (Hallikainen et al. 1985), and Wang–

Schmugge model (Wang and Schmugge 1980), ii) Semi-empirical models like the Dobson 

(Dobson et al. 1985), and Mironov model (Mironov and Sergey 2009; Mironov et al. 2009) 

and iii) Complex analytical physical models (Shi et al. 2002; Lawrence et al. 2013). SMOS 

and SMAP missions used semi-empirical and empirical models since complex analytical 

models have not been manageable to a global scale (Kerr et al. 2012). 

For passive L-band frequency soil moisture retrieval, dielectric models given by Mironov 

(Mironov and Sergey 2009; Mironov et al. 2009), Dobson (Dobson et al. 1985), Wang and 

Schmugge (Wang and Schmugge 1980), and Hallikainen (Hallikainen et al. 1985) are 

reported to have the best performances due to their easy implementation and requirement 

of relatively fewer input parameters for calculation of various soil properties such as bulk 

density and sand and clay fractions compared to other models. 

First, Dobson model (Dobson et al. 1985) was chosen in soil moisture retrieval in SMOS 

as the best available option at that time. Mironov model has been proposed as the new 

semi-empirical model (Mironov and Sergey 2009; Mironov et al. 2009) afterward showing 

better performance verified by in-situ L-band measurements (Escorihuela et al. 2007; 

Wigneron et al. 2010; Wigneron et al. 2012). Mironov was developed on a wider range of 

data while Dobson was developed on five soil type datasets with sand ratios of less than 

50%. Dobson and Mironov dielectric models have been implemented in the SMOS level-

2 soil moisture processor version V6 (Kerr et al. 2012).  
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Dobson, Mironov and Wang models have been also widely used in SMAP mission due to 

their simple parameterizations and applicability at L-band frequencies (1.26-1.41 GHz). 

As part of SMAP calibration/validation, the performance of these dielectric models in soil 

moisture retrieval soil moisture was evaluated for production of SMAP data products 

(O'Neill et al. 2021). The SMAP L2_SM_P processing software has a switch that selects 

the dielectric model in the soil moisture retrieval. While all three dielectric models are 

coded and available in the SMAP software, L2_SM_P currently uses the Mironov model. 

For comparison, SMOS mission currently uses land cover classification to choose the 

appropriate dielectric model between Dobson and Mironov. In this research, empirical 

models (Hallikainen and Wang) and semi-empirical models (Dobson and Mironov) are 

used since they have been used widely in SMAP and SMOS soil moisture retrieval 

algorithms.  

 

3.2.1 Empirical models 

 

The most popular empirical models are the Wang and Schmugge (Wang and Schmugge 

1980) and Hallikainen (Hallikainen et al. 1985) models. 

The Hallikainen model is an empirical model based on frequency and soil texture. The 

Hallikainen model was developed from experimental data of soil permittivity for five 

different soil types at frequencies between 1.4 to 18 GHz frequency regions (Hallikainen 

et al. 1985). Table 3.1 includes soil texture data for soil experimental data used in the 

Hallikainen model development. 

Hallikainen et al (1985) have shown that dielectric constant of a soil-water mixture is a 

function of its volumetric moisture content (𝑚𝑣) and of the soils texture compositions such 
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as clay percentage (𝐶) and sand percentage (𝑆). Equation (3.11) is the general polynomial 

function expressing the relationship between soil moisture (𝑚𝑣), relative complex 

dielectric constant (𝜀) and sand (𝑆) and clay textural (𝐶) components. 

 

𝜀 = (𝑎0 + 𝑎1𝑆 + 𝑎2𝐶) + (𝑏0 + 𝑏1𝑆 + 𝑏2𝐶)𝑚𝑣 + (𝑐0 + 𝑐1𝑆 + 𝑐2𝐶)𝑚𝑣
2                                  (3.11)  

 

Coefficients of polynomial expressions (𝑎0, 𝑎1, 𝑎2, ), (𝑏0, 𝑏1, 𝑏2), (𝑐0, 𝑐1, 𝑐2) were generated 

by Hallikainen measurements for each soil type and frequency parameters. Experimental 

values for these coefficients for different frequencies can be found in (Hallikainen et al. 

1985). 

 

Table 3.1. Experimental data used in Hallikainen model development (Hallikainen et al. 

1985). 

Designation Sand % Silt % Clay % 

Field 1 51.51 35.06 13.43 

Field 2 41.96 49.51 8.53 

Field 3 30.63 55.89 13.48 

Field 4 17.16 63.84 19.00 

Field 5 5.02 47.60 47.38 

 

Moist soil is a mixture of soil particles, air voids, and liquid water. The water in soil is 

divided into two fractions in hydrology (Baver et al. 1972): 1) bound water and 2) free 

water (see Figure 3.1). Bound water is an extremely thin layer of water surrounding soil 

particles tightly held by the soil particles due to influence of matric and osmotic forces 

(see Figure 3.1). Bound water includes clay-bound water and capillary-bound water. 

While bound water is held by electro-molecular and molecular forces, free water is only 

related to gravitational forces and can be evaporated without external energy.  
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The Wang model considers the impacts of both bound water and free water. However, 

Wang model determines the effect of bound water on soil dielectric constant by a linear 

combination of free water and ice, without consideration of the substantial characteristics 

of bound water (Jin et al. 2017). Wang and Schmugge (1980) suggested a value for bound 

water dielectric constant between free water and ice which is calculated by a linear 

combination of both. 

 

 

Figure 3.1. Soil as a mixture of sand grain, bund and free water and oil 

(https://glossary.slb.com/en/terms/c/clay-bound_water) 

 

Wang and Schmugge (1980) also used soil wilting point and its relationship to soil texture 

in their modeling. Wilting point is defined as the minimum amount of water in the soil that 

the plant requires not to wilt. The wilting point (𝑊𝑃) of soils in terms of volumetric water 

content (cm3 cm3⁄ ) was derived from a multiple regression of over 100 soil humidity data 

sets by (Schmugge et al. 1974) as follows, 

https://glossary.slb.com/en/terms/c/clay-bound_water
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𝑊𝑃 = 0.06774 − 0.00064 × 𝑆 + 0.00478 × 𝐶                                                                       (3.12) 

 

where C and S are the clay and sand contents in percent of dry weight of a soil. 

Wang introduced a parameter called transition moisture (𝑊𝑡) to divide data to two 

categories since changes of dielectric constant due to volumetric water content (𝑊𝑐). is 

not always with same pace. The first region occurs at 𝑊𝑐 ≤ 𝑊𝑡 , where the real part of the 

dielectric constant increases slowly with volumetric water content (𝑊𝑐). In the second 

region at 𝑊𝑐 > 𝑊𝑡, the real part of the dielectric constant increases steeply with 𝑊𝑐. 

Transition moisture (𝑊𝑡) is not a constant value and depending on soil texture is larger 

for clay soils versus sandy soils (Newton 1977; Wang et al. 1978). A linear regression 

was found for calculation of transition moisture (𝑊𝑡) using soil data used in Wang model 

(Wang and Schmugge 1980) as follows, 

 

𝑊𝑡 = 0.49𝑊𝑃 + 0.165                                                                                                       (3.13) 

 

The expressions for the dielectric constants of a soil-water mixture for these two different 

regions are given by (Wang and Schmugge 1980) 

 

𝜀 = 𝑊𝑐𝜀𝑥 + (𝑃 − 𝑊𝑐)𝜀𝑎 + (1 − 𝑃)𝜀𝑟 ,                                                   𝑊𝑐 ≤ 𝑊𝑡                             (3.14) 

 

with 

 

𝜀𝑥 = 𝜀𝑖 + (𝜀𝑤 − 𝜀𝑖)
𝑊𝑐

𝑊𝑡
 . 𝛾                                                                                                    (3.15) 
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and 

 

𝜀 = 𝑊𝑡𝜀𝑥 + (𝑊𝑐 − 𝑊𝑡)𝜀𝑤 + (𝑃 − 𝑊𝑐)𝜀𝑎 + (1 − 𝑃)𝜀𝑟 ,                     𝑊𝑐 > 𝑊𝑡                             (3.16) 

 

with 

 

𝜀𝑥 = 𝜀𝑖 + (𝜀𝑤 − 𝜀𝑖) 𝛾.                                                                                                     (3.17) 

 

Here 𝑃 is the porosity of the dry soil and is assumed to be 2.65 g cm3⁄  for simplification 

as explained in (Wang and Schmugge 1980). 𝜀𝑎, 𝜀𝑤, 𝜀𝑟 , 𝑎𝑛𝑑 𝜀𝑖 are the dielectric constants 

of air, water, rock, and ice, respectively and are equal to 1, 80, 5.5, and 3.2 in sequential 

order. 𝜀𝑥 is the dielectric constant of the initially absorbed water. 𝛾 is a parameter which 

can be chosen to best fit Equations (3.15) and (3.17) to experimental data. Wang and 

Schmugge (1980) applied a linear regression and suggested following equation for 

calculation of 𝛾 (see Equation 3.18) 

 

𝛾 =  −0.57 𝑊𝑃 + 0.481 .                                                                                                (3.18) 

 

 

3.2.2 Semi-empirical 

 

Dobson and Mironov are the semi-empirical models used in L-band satellite missions. 

The Dobson model is a semi-empirical mixed dielectric constant model based on the soil 

permittivity experimental data at conditions of five soil types, and in frequency ranges of 

0.3-1.3 GHz and 1.4-18 GHz, and temperature of 22 °C (Dobson et al. 1985; Peplinski et 

al. 1995). The Soil experimental data used in Dobson model development is the same as 
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Hallikainen model, (see Table 3.1). The model requires frequency, soil moisture, soil 

temperature, sand fraction, clay fraction, and bulk density as input parameters. The 

Dobson model requires the following input data: the soil moisture (m3 m3⁄ ), the soil 

effective temperature, the clay percentage and the sand percentage content, the dry soil 

bulk density (g cm3⁄ ), and the solid particle density.  

 

Table 3.2. Experimental data used in Wang model development (Wang and Schmugge 

1980). 

Designation Sand % 
 

Silt % Clay % 

Field 1 88.0 7.3 4.7 

Field 2 56.0 26.7 17.3 

Field 3 19.3 46.0 34.7 

Field 4 2.0 37.0 61.0 

Field 5 100.0 0 0 

Field 6 90.0 7.0 3.0 

Field 7 82.0 14.0 4.0 

Field 8 70.0 22.0 8.0 

Field 9 22.0 70.0 8.0 

Field 10  58.0 28.0 14.0 

Field 11 48.0 36.0 16.0 

Field 12 45.0 39.0 16.0 

Field 13 26.0 56.0 18.0 

Field 14 22.0 56.0 22.0 

Field 15 16.0 56.0 28.0 

Field 16 6.0 54.0 40.0 

Field 17 86.0 7.0 7.0 

Field 18 40.0 26.0 34.0 

Field 19 36.0 29.0 35.0 

Field 20 52.0 9.0 39.0 

Field 21 44.0 12.0 44.0 

Field 22 3.0 35.0 62.0 

 

Dobson considers that the soil dielectric constant is composed of four parts: soil solid 

particle dielectric constant, soil air dielectric constant, soil free water and soil combined 

water permittivity. However, since it is difficult to get the dielectric constant of the bound 
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water, the model combines the combined water and free water contribution into a free 

water contribution parameter by introducing an empirical coefficient.  

Dobson model also known as semiempirical mixing dielectric model (SMDM) has the 

following form (Dobson et al. 1985; Mironov et al. 2009):  

 

 

𝜀𝑚
′ = [1 +

𝜌𝑏

𝜌𝑠
(𝜀𝑠

′𝛼 − 1) + 𝑚𝑣
𝛽′

𝜀𝑓𝑤
′𝛼 − 𝑚𝑣]

1/𝛼

                                                                     (3.19) 

 

𝜀𝑚
′′ = [𝑚𝑣

𝛽′′

𝜀𝑓𝑤
′′𝛼]

1/𝛼

                                                                                                         (3.20) 

 

where 𝜀𝑚
′  and 𝜀𝑚

′′  are the moist soil dielectric constant (DC) and loss factor (LF), 

respectively, 𝜀𝑠
′   is a composite DC of the soil mineral contents, 𝑚𝑣 is the volumetric 

moisture content, 𝜌𝑏 is the bulk density in grams per cubic centimetre, 𝜌𝑠 is the specific 

gravity of the solid soil particles, 𝛼 = 0.65 is an empirically determined constant, 

and 𝛽′ and 𝛽′′ are the empirically determined soil-type-dependent constants given by 

 

𝛽′ = 1.2748 − 0.00519 𝑆 − 0.00152 𝐶                                                                         (3.21) 

 

𝛽′′ = 1.33797 − 0.00603 𝑆 − 0.00166 𝐶                                                                      (3.22) 

 

where 𝑆 and 𝐶 are sand and clay percentages of soil, respectively.  

The relationship between the specific gravity, 𝜌𝑠 , and DC of soil mineral contents, 𝜀𝑠
′ , is 

represented as equation (3.23), and the relationship between the soil bulk density, 
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𝜌𝑏 , and dry-soil dielectric constant, 𝜀𝑚0
′ , is expressed as Equation (3.24) as follow 

(Mironov et al. 2009), 

  

𝜀𝑠
′ = (1.01 + 0.44𝜌𝑠)

2 − 0.062                                               (3.23) 

 

𝜌𝑏 = [(𝜀𝑚0
′ )𝛼 − 1]𝜌𝑠/(𝜀𝑠

′𝛼 − 1)                                                                                    (3.24) 

 

 

The quantities 𝜀𝑓𝑤
′  and 𝜀𝑓𝑤

′′   are the DC and LF of free water, respectively, given by the 

Debye equations, with the latter being modified to include a term that accounts for the 

effective conductivity of the free-soil water (FSW) 

 

𝜀𝑓𝑤
′ = 𝜀𝜔∞ + 

𝜀𝜔0−𝜀𝜔∞

1+(2𝜋𝑓𝜏𝑤)2
                                                                                                 (3.25) 

 

𝜀𝑓𝑤
′′ =

2𝜋𝑓𝜏𝑤(𝜀𝜔0−𝜀𝜔∞)

1+(2𝜋𝑓𝜏𝑤)2
+

𝜎𝑒𝑓𝑓

2𝜋𝜀0𝑓
 
(𝜌𝑠−𝜌𝑏)

𝜌𝑠𝑚𝑣
                                                                (3.26) 

 

 

Where 𝜀0 is dielectric constant of free space and equal to 8.854 × 10−12𝐹/ 𝑚, 𝜏𝑤 is the 

relaxation time for free water, 𝑓 is the frequency in hertz, 𝜀𝜔0 is the low-frequency limit of 

dielectric constant for water, 𝜀𝜔∞ = 4.9 is the high-frequency limit of 𝜀𝑓𝑤
′ . Relaxation Time 

(𝜏𝑤) is the time it takes for a system to return to equilibrium after a change or disturbance. 

Expressions for 𝜏𝑤 and 𝜀𝜔0 are given as functions of temperature by Ulaby et al. (1986). 

At room temperature (20°C), 2𝜋𝜏𝑤 = 0.58 × 10−10𝑠 and 𝜀𝜔0 = 80.1. The effective 

conductivity 𝜎𝑒𝑓𝑓 was determined in the following form, 
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𝜎𝑒𝑓𝑓 = 0.0467 + 0.2204𝜌𝑏 − 0.004111𝑆 − 0.00614𝐶 .                                                (3.27) 

 

All parameters which were empirically determined through regressions analysis to field 

data are 𝜎𝑒𝑓𝑓 , 𝜀𝑠
′ , 𝛼, 𝛽′ and 𝛽′ (Mironov et al. 2009). Then, the dielectric constant and loss 

factor of free water, are calculated with the analytical Debye relaxation formulas (See 

Equations 3.25 and 3.26). The Mironov model is a physical semi-empirical mixed 

dielectric constant model based on experimental data of wide frequency soil permittivity 

of various soil types, a wider range with comparison to Dobson, which has been improved 

several times (Mironov et al. 2004; Mironov et al. 2008; Mironov et al. 2009; Mironov and 

Fomin 2009).  

The Mironov model discriminates the dielectric properties of the bound water and free 

water in the soil. The simulated soil dielectric constant in Mironov model is composed of 

four contribution parts of the soil solid particle, the soil air, the free water, and the 

combined water. Mironov was developed from a wider range of soil types and requires 

fewer input parameters in comparison with Dobson model. The Mironov model, also 

known as the Generalized Refractive Mixing Dielectric Model (GRMDM), uses the total 

mixed complex refractive index by calculating the weighted refractive index of these 

different components, and translating into the dielectric of the soil constant (Mironov et al. 

2012). The Mironov model applies to a wider range of soil types, but also requires fewer 

input parameters – with clay percentage as the only soil input parameter. 

Mironov and Sergey (2009) proposed the physically based generalized refraction mixing 

dielectric model, to consider the effect of the soil temperature allowing model to 
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distinguish between bound and free water (Mironov et al. 2012). The Mironov model uses 

soil moisture, soil effective temperature, and clay as input, thus avoiding uncertainties 

introduced by the computation of the global bulk density map compared with the Dobson 

model. Mironov was developed and validated on entire samples and texture ranges of 

soil including samples used in Dobson. Generally, the Mironov model tends to retrieve 

higher soil moisture values than the Dobson model.  

In the Mironov model, the dielectric constant as functions of soil moisture (𝑚𝑣) is 

expressed as follow (Mironov et al. 2004),  

 

𝜀𝑚
′ = 𝑛𝑚

2 − 𝑘𝑚
2                    , 𝜀𝑚

′′ = 2𝑛𝑚𝑘𝑚                                                                    (3.28) 

 

 

𝑛𝑚 = {
 𝑛𝑑 + (𝑛𝑏 − 1)𝑚𝑣,                                                                𝑚𝑣 ≤ 𝑚𝑣𝑡 

𝑛𝑑 + (𝑛𝑏 − 1)𝑚𝑣𝑡 + (𝑛𝑢 − 1)(𝑚𝑣 − 𝑚𝑣𝑡),                  𝑚𝑣 ≥ 𝑚𝑣𝑡
                          (3.29)       

 

             

𝑘𝑚 = {
 𝑘𝑑 + (𝑘𝑏)𝑚𝑣,                                                                𝑚𝑣 ≤ 𝑚𝑣𝑡  

𝑘𝑑 + (𝑘𝑏)𝑚𝑣𝑡 + (𝑘𝑢)(𝑚𝑣 − 𝑚𝑣𝑡),                           𝑚𝑣 ≥ 𝑚𝑣𝑡
                                     (3.30) 

 

 

where 𝑛𝑚, 𝑛𝑑 , 𝑛𝑏 , 𝑛𝑢, and 𝑘𝑚, 𝑘𝑑, 𝑘𝑏 , 𝑘𝑢 are the refractive index and normalized attenuation 

coefficients. The subscripts 𝑚, 𝑑, 𝑏, and 𝑢 in Equations (3.28-3.30) stand for moist, dry 

soil, bound soil water (BSW) and free soil water (FSW), respectively. Using both BSW 

and FSW coefficients are representative of the fact that the Mironov model differentiates 

between bound and free water in the modeling unlike the Dobson model. Parameter  𝑚𝑣𝑡 

is a value of the maximum bound water fraction (MBWF) that depends on the soil mineral 

contents (Mironov 2004). The values of refractive indexes and normalized attenuation 
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coefficients can be computed using their dielectric constant (𝜀′) and loss factor (𝜀′′) 

through following Equations (3.31-3.32) 

 

𝑛𝑑,𝑏,𝑢√2 = √√(𝜀𝑑,𝑏,𝑢
′ )2 + (𝜀𝑑,𝑏,𝑢

′′ )2 + 𝜀𝑑,𝑏,𝑢
′                                                                   (3.31) 

 

𝑘𝑑,𝑏,𝑢√2 = √√(𝜀𝑑,𝑏,𝑢
′ )2 + (𝜀𝑑,𝑏,𝑢

′′ )2 − 𝜀𝑑,𝑏,𝑢
′                                                                   (3.32) 

The dielectric constant and the loss factor for bound and free water components are as 

follows with the Debye relaxation equations (Mironov et al. 2009) 

 

𝜀𝑏,𝑢
′ = 𝜀∞ +

𝜀0𝑏,0𝑢−𝜀∞

1+(2𝜋𝑓𝜏𝑏,𝑢)2
  ,                                                                                                   (3.33) 

 

𝜀𝑏,𝑢
′′ =

𝜀0𝑏,0𝑢−𝜀∞

1+(2𝜋𝑓𝜏𝑏,𝑢)2
 2𝜋𝑓𝜏𝑏,𝑢 +

𝜎𝑏,𝑢

2𝜋𝑓𝜀0
                                                                                      (3.34) 

 

where 𝑓 is the wave frequency, 𝜎𝑏,𝑢, 𝜏𝑏,𝑢 , and 𝜀0𝑏,0𝑢 are the conductivities, relaxation 

times and low-frequency limit of dielectric constants (BSW or FSW components), 

respectively. The value 𝜀0 is the dielectric constant for free space, while 𝜀∞ represents 

the dielectric constant in the high-frequency limit equal to 4.9 for both bound and free soil 

water.  

Data used in Mironov model development were measured in the temperature range from 

20°C to 22°C with clay contents varying from close to 0% to 54%. Therefore, 
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spectroscopic parameters were correlated to clay percentages and correlation analysis 

resulted following regression equations (Mironov et al. 2008) 

 

𝑛𝑑 = 1.634 − 0.539 × 10−2𝐶 + 0.2748 × 10−4𝐶2                                                         (3.35) 

 

𝑘𝑑 = 0.03952 − 0.04038 × 10−2𝐶                                                                               (3.36) 

 

𝜎𝑢 = 0.3631 + 1.217 × 10−2𝐶                                                                                     (3.37) 

 

𝜎𝑏 = 0.3112 + 0.467 × 10−2𝐶                                                                                     (3.38) 

 

𝜏𝑢 = 8.5 × 10−2𝐶                                                                                                         (3.39) 

 

𝜏𝑏 = 1.062 × 10−11 + 3.450 × 10−12 × 10−2𝐶                                                             (3.40) 

𝜀0,𝑏 = 100                                                                                                                     (3.41) 

 

𝜀0,𝑏 = 79.8 − 85.4 × 10−2𝐶 + 32.7 × 10−4𝐶2                                                                (3.42) 

 

Finally, for each type of soil all these parameters can be derived using these equations. 

However, although the Mironov and Dobson models have fewer empirical parameters, 

still they suffer from empirical model errors. 
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4.      PHYSICS-INFORMED NEURAL NETWORK STRUCTURE 

 

In this research, a physics-informed neural network (PINN) algorithm is discussed to 

model the relationship between soil moisture and reflectivity. The problem of GNSS-R 

soil moisture retrieval can be improved by PINN as a new emerging technique. In PINN, 

the objective is to minimize the loss function or mean squared error of both NN regression 

and physics equations. PINN methodology is a multi-objective learning framework in 

which a NN must fit observed data while reducing physics equation loss functions.  

 

4.1 PINN applications 

 

Physics-informed neural networks (PINNs) have already been used for a variety of 

applications in the field of computational physics and engineering, including i) solving 

partial differential equations (PDEs) in fluid dynamics (Cai et al. 2021) and heat transfer 

(Zobeiry and Humfeld 2021), ii) inverse problems to determine the underlying physical 

parameters or variables connecting a set of observations in fields such as image 

processing (Wu et al. 2022), tomography (Guo et al. 2023; Saba et al. 2022) and remote 

sensing (Chen and Negro 2022), iii) data-driven models of physical systems that can be 

useful for predicting and generating new insights to existing physics model, for example 

in weather forecasting and climate modelling (Kashinath et al. 2021; Chattopadhyay et al. 

2022), and iv) uncertainty quantifications associated with predictions made by physical 

models to find the potential source of error or uncertainty in an engineering system (Daw 

et al. 2020). The main advantage of PINN is the convergence of results with less data 

and more understanding of physics.  
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To implement PINNs efficiently, new algorithms can be built with current machine learning 

libraries, such as TensorFlow150, PyTorch151, Keras152, and JAX153. Several software 

libraries have been specifically designed for physics-informed machine learning. Table 

4.1 includes information on software libraries developed for physics-informed machine 

learning. At the present time, some of the actively developed libraries include SciANN159 

(Haghighat and Juanes 2021), DeepXDE154 (Lu et al. 2021), SimNet155 (Hennigh et al. 

2021), PyDEns156 (Koryagin et al. 2019), NeuroDiffEq157 (Chen et al. 2020), 

NeuralPDE158 (Rackauckas and Nie 2017) and ADCME160 (Xu and Darve 2020). 

Because Python is the dominant programming language for ML, it is more convenient to 

use Python for physics-informed ML, and thus most of these libraries are written in 

Python, except NeuralPDE158 and ADCME160, which are written in Julia. 

 

Table 4.1. Software libraries specifically designed for physics-informed machine learning. 

Software 
name 
 

Language Backend Reference 

SciANN Python TensorFlow (Haghighat and Juanes 2021) 

DeepXDE Python TensorFlow (Lu et al. 2021) 

SimNet Python TensorFlow (Hennigh et al. 2021) 

PyDEns Python TensorFlow (Koryagin, Khudorozkov and Tsimfer 2019) 

NeuroDiffEq Python PyTorch (Chen et al. 2020) 

GPyTorch Python PyTorch (Gardner et al. 2018) 

NeuralPDE Julia Julia (Rackauckas and Nie 2017) 

ADCME Julia TensorFlow (Xu and Darve 2020) 
  

 

4.2 PINN design for GNSS-R 

 

In PINN, the objective is to minimize the loss function, which is the mean squared error 

of both NN regression and mathematical physics models at the same time. Therefore, 
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PINN structure includes both NN regression and physics-based models. In this research, 

the input layer includes CYGNSS data (reflectivity, incidence angle), vegetation data 

(NDVI, VWC), surface roughness data (h-parameter), soil temperature, soil texture data 

(clay, sand percentage and bulk density) and land cover related data (b-parameter and 

stem factor) (see Figures 4.1 and 4.2). All these geophysical parameters and their 

relationships with soil moisture and reflectivity are explained in Section 3.1. The input 

matrix has a dimension of 11 × 𝑆, when 11 is the number of inputs and S is the number 

of data samples. In a fully connected neural network, all neurons in one layer are 

connected to all neurons in the next layer. Each layer has a weigh array that is updated 

by forward and backward propagation. Updating of the weight array for each layer in NN 

is referred to as training or learning. In other words, NN learns the non-linear relationship 

between input and output parameters by updating these weigh-arrays in training. The 

result of weight multiplication is added to a bias vector which also updates in each step 

of training (Hinton 1990). Weight-arrays and bias are updated so that the loss function (𝐿) 

is minimized. Here, the loss function is the summation of two mean squared errors: First, 

the mean squared error between the calculated soil moisture from NN model and 

reference ISMN soil moisture data (𝑀𝑆𝐸𝑆𝑀); and secondly, the mean squared error 

between inversely calculated reflectivity from mathematical equations and reflectivity data 

from CYGNSS (𝑀𝑆𝐸Γ) (see Figures 4.1 and 4.2). The minimization of loss function (𝐿) is 

done through a gradient based optimizer. In the PINN model, the Adam solver first-order 

gradient-based optimizer with learning rate of 0.001 has been used due to its best 

performance for stochastic objective functions (Kingma and Ba 2014). ISMN soil moisture 

values were used as output layer for both training and validation.  
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The inverse reflectivity calculations are embedded in the PINN as a physics model. In 

each step of PINN training, first soil moisture is calculated through NN regression using 

a set of input data (X) including GNSS-R and surface properties data, explained in Section 

3.1. Second, NN calculated soil moisture (SMNN) is used to compute reflectivity 

(𝛤 𝑆𝑀) inversely using Equations 3.10 to 3.4, described in Section 3.1.  Since initial soil 

moisture data is available, Equations 3.4 to 3.10 are included in PINN model inversely to 

calculate reflectivity. The PINN goal is to minimize NN regression and physics model loss 

function simultaneously. NN regression or soil moisture loss function (𝑀𝑆𝐸𝑆𝑀) is the 

difference between calculated soil moisture from NN (SMNN) and soil moisture data 

(SMdata)  (see Figure 4.2). Physics model loss function (𝑀𝑆𝐸Γ) is the difference between 

inversely calculated reflectivity (𝛤 𝑆𝑀) and CYGNSS reflectivity data (𝛤 𝐶𝑌𝐺𝑁𝑆𝑆). Figure 4.1 

demonstrates the process of PINN loss function calculations for N number of samples. 

The total loss function (𝑀𝑆𝐸) is the summation of both soil moisture loss function (𝑀𝑆𝐸𝑆𝑀) 

and reflectivity loss function (𝑀𝑆𝐸Γ) (see Figure 4.1).  

In the inverse calculation of reflectivity, first dielectric constant (𝜀) is obtained from NN 

computed soil moisture (SMNN) using the soil dielectric constant model (see Figure 4.2). 

Next, reflectivity (𝛤𝑆𝑀) will be calculated inversely from dielectric constant (𝜀) using 

Equations (3.10 to 3.4), while reflectivity data (𝛤𝐶𝑌𝐺𝑁𝑆𝑆) comes from CYGNSS data. 

Equations 3.4 to 3.10 are embedded in the PINN model inversely since these Equations 

are not directly mathematically solvable due to non-linearity. Inverse calculated reflectivity 

(𝛤𝑆𝑀) is then compared with reflectivity data (𝛤𝐶𝑌𝐺𝑁𝑆𝑆) from CYGNSS to compute 

reflectivity mean squared error. Reflectivity mean squared error (𝑀𝑆𝐸𝛤) should be 

minimized in each step of training, as well as mean squared error of NN regression for 
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soil moisture (𝑀𝑆𝐸𝑆𝑀). Therefore, as soil moisture values are updated in each step of NN 

training, the inverse calculated reflectivity changes as well. Figure 4.2 summarizes the 

PINN processing methodology and computations with all soil surface parameters and 

GNSS-R data. PINN structure allows the inclusion of physical models in the training 

process. Here, inverse calculation of reflectivity is added to NN in the PINN modelling as 

a new methodology to retrieve soil moisture using GNSS-R signals. 

 

 

 

 

Figure 4.1. Physics-informed neural network loss function calculations. PINN aim is to minimize 

two loss functions: i) 𝑀𝑆𝐸𝑆𝑀 as NN regression loss function which is the difference between NN 

calculated soil moisture (SMNN ) and soil moisture data (SMdata), and ii) 𝑀𝑆𝐸Γ as physics model 

loss function which is the difference between inversely calculated reflectivity (Γ𝑆𝑀 ) from SMNN and 

reflectivity data from CYGNSS (Γ𝐶𝑌𝐺𝑁𝑆𝑆). 
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Figure 4.2. Physics-informed Neural Network (PINN) structure for CYGNSS soil moisture 

estimation. PINN consists of two parts: a NN regression and mathematical physics models. In 

PINN, the aim is to minimize two loss functions related to NN (SM loss function,𝑀𝑆𝐸𝑆𝑀) and 

physics (Γ loss function, 𝑀𝑆𝐸Γ), together. Then, the summation of both mean squared errors is 

minimized in each step of training. 

 

Neural network performance error is highly dependent on optimal hyper-parameters. 

Hyper-parameters are parameters defining the network structure, for example number of 

hidden layers and neurons, variables determining how the network is trained like learning 

rate, batch size, epoch, activation function and optimization algorithms. Hyper-

parameters are set before training and updating the weights and bias. Choice of the best 

hyper-parameter requires expansive trial and error rather than science practices. The 
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process of finding a suitable set of hyper-parameters can be time consuming and 

ultimately not necessarily effective (Smith 2018). However, research has suggested 

practical ways to set hyper-parameters (Bengio 2012).  

 

Hyper-parameters in both NN and PINN with and without physics are as follows: 

 

• Learning rate: Learning rate is the most important hyper-parameter in NN. As 

suggested by (Bengio 2012; Goodfellow et al. 2016, 429-430) if one has time to 

optimize only one hyper-parameter, learning rate should be tuned as it is the most 

substantial hyper-parameter. Learning rate is simply the rate at which a NN learns. 

Learning rate specifies the step size of each step of the optimization problem which 

is stochastic gradient descent. Learning rate value determines how fast or slow a 

NN learns. So that, with a small learning rate, the model will converge slowly, and 

the computation time is high (see Figure 4.3). With a large learning rate, the 

descent steps are high, and the model will miss the global minimum (see Figure 

4.3). To start with a prior value, Bengio (2012) suggests a default value of 0.01, 

which works well for most multi-layer neural networks. Learning rate is practically 

speaking a value between 10−6 to 1 (Bengio 2012). The best way is to start with a 

prior 0.01 learning rate and check which learning rate works best for a specific 

problem. However, instead of working with a constant value for learning rate, some 

researchers have recommended varying learning rates. For example, Smith (2017) 

suggests a method in which the learning rate cyclically varies between reasonable 

boundary values. Another good practice is to use a decaying learning rate – that 

is one that starts out large and changes to a small value over time. 
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Figure 4.3. Different learning rate occurrences in a weight and cost plot. How different 

learning rates react in a similar weight and cost situation. a) optimal learning rate. b) small 

learning rate with slow convergence that need many steps to converge to minimum. c) 

large learning rate that jumps too much (Do et al. 2020). 

 

 

• Epoch and iterations:  One epoch is when the entire dataset is passed forward and 

backward through propagation of the neural network once and updates weights 

and biases parameters. Since one epoch is too big to feed to the computer at once 

it is divided into several smaller batches. The number of iterations is the total 

number of passes (Figure 4.4). For example, for a dataset of 6 images (6 training 

samples), three states are considered to understand the concept of epoch, batch 

size and iterations (Figure 4.4). A) In this case, batch size, epoch, and iteration are 

3, 1, and 2, respectively. When batch size is 3 and epoch is 1, only 2 passes 

(iterations) are required to go through the entire dataset (6 images) once, since 

epoch is one (Figure 4.4). B) When batch size is 2, and epoch is 1, then 3 passes 

are required to move through entire datasets once. C) If two epochs are 

considered, it is required to pass through the entire dataset twice. Therefore, for 

batch size of 2, 6 passes (3 for each epoch, entire dataset) are needed to go 

through entire dataset twice. Therefore, number of iterations can be calculated as: 
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𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑥 (
𝑒𝑝𝑜𝑐ℎ

𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒
)                                   (4.1)     

 

Higher numbers of epochs are used to allow neural networks to go through the 

process of training. The right number of epochs depends on the complexity and 

size of your dataset. Best practice is trial and check the maximum epoch that the 

neural network loss changes significantly.  

• Batch size: Batch size defines the number of samples divided as batches or groups 

in one epoch to train a neural network. Batch size usually ranges from 1 to 128. 

The higher the batch size, the more memory space will be needed. Some authors 

suggest that when multiplying batch size by k, the learning rate should also be 

multiplied by √k to keep the variance in the gradient expectation constant. More 

commonly, a simple linear scaling rule is used. For learning rates of 0.0001 and 

0.001 as common learning rates used in GNSS-R research (Eroglu et al. 2019; 

Roberts et al. 2022), batch sizes of 32, 64, and 128 can be used. In this research, 

batch size of 64 with learning rate of 0.001 was the most efficient combination. 

• Activation functions:  Each neural network has two operations including a linear 

function and a non-linear function. Activation function helps the network to learn 

the non-linear properties of the data set. The Rectified Linear Unit (ReLU) is usually 

the most popular choice for NN hidden layers. ReLU activation function is used in 

PINN in this research too due its common appearance in most published GNSS-R 

research (Eroglu et al. 2019; Roberts et al. 2022). 
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Figure 4.4. Dataset of 6 images for three different states of epoch, batch, and iteration. A) 

With batch size of 3, 2 iterations are needed for one epoch, B) Batch size is 2 and algorithm 

is set to 1 epoch, 3 iterations are needed for one epoch to cover all 6 images C) batch 

size is 2, and algorithm is set to run for 2 epochs. Therefore, in each epoch, there are 3 

batches. Each batch gets passed through algorithm, so there are 3 iterations per epoch. 

Since 2 epochs were specified, there are total of 6 iterations (3 × 2 = 6) for training (Do et 

al. 2020).  

 

 

• Number of hidden layers and neurons: To determine the number of neurons in the 

hidden layers, you can use common rule-of-thumb methods, such as: i) The 

number of hidden neurons should be between the size of the input layer and the 

size of the output layer. ii) The number of hidden neurons should be 2/3 the size 

of the input layer, plus the size of the output layer. iii) The number of hidden 
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neurons should be less than twice the size of the input layer. Number of neurons 

and layers can be selected with cross validation techniques too. High number of 

neurons or layers can result in overfitting while low number of neurons and layers 

can result in underfitting. PINN models usually have higher numbers of neurons 

and layers in comparison to NN, e.g., number of neurons as large as 10, 20, and 

100 (Cai et al. 2021; Haghighat and Juanes 2021). In this research, the minimum 

number of neurons and layers that guaranteed acceptable results without 

underfitting were 12 and 20. Therefore, PINN models with the same data as NN 

models can have higher number of neurons and layers without experiencing 

overfitting. This matter is explained in more details in Section 6.2. 
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5. DATASETS 

 

The performance of a neural network depends highly on both data quality and quantity. 

In this research, different datasets have been used to fulfill the physics theoretical 

dependencies explained in Sections 3.1 and 3.2. For this reason, different datasets such 

as CYGNSS, ISMN soil moisture and temperature, SMAP soil texture (Clay, sand 

percentage and bulk density), and MODIS land cover data have been used.     

 

5.1   CYGNSS data 

 

The Level 1 version 2.1 of CYGNSS data was used for a time duration of two years, from 

January 1st of 2020 to the end of 2021. Level 1 version 2.1 of CYGNSS data is available 

at the Physical Oceanography Distributed Active Archive Center (PODAAC; 

https://podaac.jpl.nasa.gov/dataset/CYGNSS_L1_V2.1). For each day, PODAAC 

provides a set of 8 NetCDF files—one for each CYGNSS satellite. Since the CYGNSS 

satellites are capable of recording 4 simultaneous reflections per second, each file 

includes 4 Delay Doppler Maps (DDMs) of analog scatter power for 1 second long for 

each day. 

CYGNSS observables used in this research are as follows: i) reflectivity, ii) specular 

incidence angle, iii) specular point latitude and iv) specular point longitude. Reflectivity is 

the primary CYGNSS observable that must be input to the PINN algorithm to investigate 

soil moisture changes. The surface reflectivity can be derived from the CYGNSS data 

from four approaches: (i) reflectivity can be calculated by substituting the DDM SNR 

(𝑑𝑑𝑚_𝑠𝑛𝑟) into  𝑃𝑅𝐿
𝑐𝑜ℎ in Equation (3.3) and calibrating for the instrumental and geometric 
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parameters (Mathur 2021). DDM SNR (𝑑𝑑𝑚_𝑠𝑛𝑟) is in dB and equal to 10𝑙𝑜𝑔(𝑆𝑚𝑎𝑥/

𝑁𝑎𝑣𝑔), where 𝑆𝑚𝑎𝑥 is the maximum value (in raw counts) in a single DDM bin and 𝑁𝑎𝑣𝑔 

is the the average per-bin raw noise counts. (ii) reflectivity can also be generated from 

the peak value of the analog power DDM (𝑝𝑜𝑤𝑒𝑟_𝑎𝑛𝑎𝑙𝑜𝑔) into  𝑃𝑅𝐿
𝑐𝑜ℎ in Equation (3.3) 

instead of DDM SNR (Chew and Small 2018; Clarizia et al. 2019). For cases where error 

level in the DDM noise floor is high, reflectivity of peak could provide increased 

correspondence to SM (Eroglu et al. 2019), iii) as explained in (Rodriguez-Alvarez et al. 

2019; Eroglu et al. 2019), bistatic radar cross section (BRCS) explained in Section 2.2 

can also be used for reflectivity calculations by correcting the incoherency assumption 

and compensating the path loss and 4π term, iv) Reflectivity can also be defined and 

computed as the ratio of the reflected and direct SNRs (𝑑𝑑𝑚_𝑠𝑛𝑟 and 𝑑𝑖𝑟𝑒𝑐𝑡_𝑠𝑛𝑟, 

respectively), which are first calibrated by the range terms, as previously practiced 

(Carreno-Luengo et al. 2018). 

In this research, reflectivity is calculated from the peak of analog power. Peak of DDM 

cross-correlation is commonly used for soil moisture applications since the peak value of 

each DDM is controlled by surface properties such as surface roughness and dielectric 

constant (Chew and Small 2018; Clarizia et al. 2019). CYGNSS DDM is represented as 

“𝑝𝑜𝑤𝑒𝑟_𝑎𝑛𝑎𝑙𝑜𝑔”, which is a 17 x 11 element array of calibrated power (in Watts) from a 

reflecting surface, where each array value represents the power at a specific time delay 

and Doppler shift.  

Therefore, reflectivity was calculated from Equation (3.3) by substituting the peak of the 

𝑝𝑜𝑤𝑒𝑟_𝑎𝑛𝑎𝑙𝑜𝑔 data from Level 1 CYGNSS products into  𝑃𝑅𝐿
𝑐𝑜ℎ  in Equation (3.3) in Section 
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3.1. Calculated reflectivity is calibrated for antenna gain and instrumental parameters in 

Equation (5.1) as explained by (Chew and Small 2018; Clarizia et al. 2019) 

 

   𝛤𝑅𝐿(𝑑𝐵) = 10 𝑙𝑜𝑔  𝑃𝑅𝐿
𝑐𝑜ℎ − 10 𝑙𝑜𝑔𝑁 − 10 𝑙𝑜𝑔𝐺𝑟 − 10𝑙𝑜𝑔𝐺𝑡 − 10𝑙𝑜𝑔𝑃𝑟

𝑡 + 20 𝑙𝑜𝑔(𝑅𝑡𝑠 + 𝑅𝑠𝑟)     (5.1) 

 

where 𝑃𝑟
𝑡 is the transmitted RHCP power, 𝐺𝑡 is the gain of the transmitting antenna, 𝑅𝑡𝑠 

is the distance between the transmitter and the specular reflection point, 𝑅𝑠𝑟 is the 

distance between the specular reflection point and the receiver, 𝐺𝑟 is the gain of the 

receiving antenna, λ is the GPS wavelength, and   𝛤𝑅𝐿 is the reflectivity of the surface in 

dB. Incidence angle was also added as an input to model since calculations of Fresnel 

reflection coefficient and reflectivity are dependent on the incidence angle (see Equations 

3.4, 3.8-3.10) in Section 3.1. 

Since CYGNSS satellites provide reflections over the ocean rather than land, the 

reflections overland was chosen using quality flags. In CYGNSS level-1 data, a unique 

quality flag directly differentiates land surface observations from other observations. 

Common data quality control in the land applications is also used (Mathur 2021). The 

DDM SNR lower than 2dB, receiver antenna gains at the specular point direction lower 

than 0 dB, and specular incidence angles over 60°are filtered.  

In summary, the CYGNSS products needed for calculations here are (see Table 5.1): (i) 

peak of the 𝑝𝑜𝑤𝑒𝑟_𝑎𝑛𝑎𝑙𝑜𝑔 for 𝑃𝑅𝐿
𝑐𝑜ℎ (ii) 𝑠𝑝_𝑙𝑎𝑡, 𝑠𝑝_𝑙𝑜𝑛 and 𝑠𝑝_𝑖𝑛𝑐_𝑎𝑛𝑔𝑙𝑒 for latitude, 

longitude and incidence angle of specular points, (iii) 𝑔𝑝𝑠_𝑒𝑖𝑟𝑝 which is GPS equivalent 

isotropically radiated power calculated from 𝑃𝑡𝐺𝑡 , (iv) 𝑟𝑥_𝑡𝑜_𝑠𝑝_𝑟𝑎𝑛𝑔𝑒 and 𝑡𝑥_𝑡𝑜_𝑠𝑝_𝑟𝑎𝑛𝑔𝑒 

as distances between the receiver and transmitter to specular point, respectively, and (v) 

𝑠𝑝_𝑟𝑥_𝑔𝑎𝑖𝑛 as receiver antenna gain.  
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Table 5.1. CYGNSS Level 1 data used in this study. 

CYGNSS data 
 

Description 

𝒑𝒐𝒘𝒆𝒓_𝒂𝒏𝒂𝒍𝒐𝒈 17 × 11 array of DDM bin analog power, Watts. analog_power is the true 
power that would have been measured by an ideal (analog) power 
sensor. power_digital is the power measured by the actual 2-bit sensor, 
which includes quantization effects. power_analog has been corrected 
for quantization effects. 

𝒔𝒑_𝒍𝒂𝒕 
 

Specular point latitude, in degrees North 

𝒔𝒑_𝒍𝒐𝒏 
 

Specular point longitude, in degrees East. 

𝒔𝒑_𝒊𝒏𝒄_𝒂𝒏𝒈𝒍𝒆 Specular point incidence angle, in degrees. This is the angle between the 
line normal to the Earth’s surface at the specular point and the line 
extending from the specular point to the spacecraft. 

𝒓𝒙_𝒕𝒐_𝒔𝒑_𝒓𝒂𝒏𝒈𝒆 The distance between the CYGNSS spacecraft and the specular point, 
in meters, at ddm_timestamp_utc. 

𝒕𝒙_𝒕𝒐_𝒔𝒑_𝒓𝒂𝒏𝒈𝒆 The distance between the GNSS spacecraft and the specular point, in 
meters, at ddm_timestamp_utc. 

𝒔𝒑_𝒓𝒙_𝒈𝒂𝒊𝒏 Specular point Rx antenna gain. The receive antenna gain in the direction 
of the specular point, in dBi. 

𝒈𝒑𝒔_𝒕𝒙_𝒑𝒐𝒘𝒆𝒓_𝒅𝒃_𝒘 
 

GPS transmit power. Power input to transmitter antenna, in dBw. 

𝒈𝒑𝒔_𝒂𝒏𝒕_𝒈𝒂𝒊𝒏_𝒅𝒃_𝒊 
 

GPS transmit antenna gain. Antenna gain in the direction of the specular 
point, in dBi. 

𝒅𝒅𝒎_𝒏𝒐𝒊𝒔𝒆_𝒇𝒍𝒐𝒐𝒓 
 

For non-black-body DDMs: Is equal to the average bin raw counts in the 
first 45 delay rows of the uncompressed 20 x 128 DDM, in counts, at 
ddm_timestamp_utc.  
 
For black body DDMs: Is equal to the average bin raw counts in all 128 
delay rows of the uncompressed 20 x 128 DDM, in counts, at 
ddm_timestamp_utc. 
 

 

 

5.2   Soil moisture data 

 

To provide global access to in situ soil moisture measurements, the International Soil 

Moisture Network (ISMN) was launched in 2009 as a community effort, funded by the 

European Space Agency. ISMN serves as a central repository for in situ soil moisture 
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measurements collected and freely shared by numerous organizations, harmonizes them 

by units, sampling rates, and applies advanced quality controls (Dorigo et al. 2011). Users 

can freely access the data from this database through an online web portal 

(https://ismn.earth/). The number of networks and stations covered by the ISMN is still 

growing. In this research, we exploited Soil Climate Analysis network (SCAN) stations 

from ISMN networks. SCAN began as a project of the Natural Resources Conservation 

Service in 1991 to measure soil moisture and soil temperature. SCAN network includes 

200 stations over agricultural areas of U.S. SCAN station site monitors soil moisture 

content at several depths, air temperature, relative humidity, solar radiation, wind speed 

and direction, liquid precipitation, and barometric pressure. Table 5.2 shows SCAN data 

provided in detail.  

Figure 5.1 displays dielectric constant measuring device probes which are in three 

different depths (2, 4, and 8 inches). However, the standard depths are at 2, 4, 8, 20 and 

40 inches in most cases. Figure 5.2 also presents all data collectors and sensors needed 

in a SCAN station to obtain data explained in Table 5.2. 

In this research, soil moisture and soil temperature are used from SCAN ISMN networks. 

Soil temperature is an important parameter in dielectric constant calculations from soil 

moisture data in experimental soil-dielectric constant models (see Section 3.2). Soil 

temperature and soil moisture data of 2 inches should be used in GNSS reflectometry 

since GNSS-R works with the first 5 cm depth of soil. 

 

5.3   Ancillary data 

 

https://ismn.earth/
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Since GNSS-R signals are affected by different parameters other than soil moisture as 

described in theoretical Section 2.1, the effect of these parameters must be included in 

the PINN model. These parameters include vegetation, soil texture, soil temperature, 

surface roughness and land cover related parameters.  

 

Table 5.2. Data measured at SCAN stations.  

Data Sensor Accuracy and units 
 

Soil 
moisture 

 

Collected by a dielectric constant measuring 
device; typical measurements are at 2, 4, 8, 
20, and 40 inch 

±0.03 𝑚3𝑚−3 
 
𝑉𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑠𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 

Soil 
temperature 

 

Collected by an encapsulated thermistor; 
typical measurements are at 2, 4, 8, 20, and 
40 inch. 
 

±0.6°𝐶 

Dielectric 
constant 

 

Measured by a dielectric probe ± 0.2 (𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠) 

Precipitation 
 

Collected by storage gauge or tipping-bucket ± 0.01 𝑖𝑛 

Air 
temperature 

 

Collected by a shielded thermistor ±2°𝐶 

Relative 
humidity 

 

Collected by a thin-film capacitance-type 
sensor 

±2 % 

Wind speed 
and 

direction 
 

Collected by a propeller-type anemometer ± 3 𝑚𝑝ℎ 𝑎𝑛𝑑 355° 

Solar 
radiation 

 

Collected by a pyranometer 5% 𝑜𝑓 𝑠𝑖𝑔𝑛𝑎𝑙 (𝑊 𝑚−2) 

Barometric 
pressure 

 

Measured by a silicon capacitive pressure 
sensor 

𝐼𝑛𝑐ℎ 𝑜𝑓 𝐻𝑔 
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Figure 5.1. Soil moisture and temperature sensors at a SCAN site with different depths. 

https://www.nrcs.usda.gov/wps/portal/wcc/home/aboutUs/monitoringPrograms/automatedSoilCli

mateMonitoring 

 

5.3.1 Vegetation  

 

For vegetation, NDVI and VWC were included as input data to the PINN model. 

Normalized difference vegetation index (NDVI) has been used widely by the remote 

sensing community to determine vegetation cover (Gandhi et al. 2015; Meroni et al. 

2019). NDVI parameter can be calculated from the near-infrared (NIR) and red (RED) 

bands of reflectance data (see Equation 5.2). 

 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 (5.2) 

 

For NDVI data, the reflectance data were obtained from MODIS Aqua Surface 

Reflectance Daily Global 500m data set available at 

(https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod09ga_v00

6). 

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod09ga_v006
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod09ga_v006
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Figure 5.2. SCAN station sensors and data collectors. 

https://www.nrcs.usda.gov/wps/portal/wcc/home/aboutUs/monitoringPrograms/automatedSoilCli

mateMonitoring 

 

 

https://www.nrcs.usda.gov/wps/portal/wcc/home/aboutUs/monitoringPrograms/automatedSoilClimateMonitoring
https://www.nrcs.usda.gov/wps/portal/wcc/home/aboutUs/monitoringPrograms/automatedSoilClimateMonitoring
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Then, NDVI values were calculated for each 500 m grid and averaged for a 4 km grid 

around the CYGNSS specular point to be respectful to previous research approaches 

(Eroglu et al. 2019). NDVI data usually suffers from clouds because it is generated by 

optical instruments such as in the MODIS mission. To deal with this problem, a cloud 

mask approach was applied to avoid cloudy pixels. Although MODIS satellites provide 

NDVI data directly, reflectance data was used since NDVI data of MODIS has a temporal 

resolution of 16 days. For example, in Senyurek et al. (2020), MODIS NDVI data with 

temporal resolution of 16 days were added to NN training. However, daily temporal 

resolution is preferred in this research for better resolution. To process MODIS data, 

Google Earth Engine (GEE) was used which is explained in detail in Section 5.4. GEE 

includes MODIS images. MODIS acquires images in 36 spectral bands, the spatial 

resolutions of which vary from 250 m to 1 km. MODIS time series are available in the 

GEE Data Catalog from 2000 to the present, facilitating temporal analysis over the globe. 

Vegetation water content (VWC) as another vegetation parameter was calculated from 

NDVI and stem factor data with Equation (3.7) in Section 3.1 and added to PINN inputs. 

To derive VWC values from NDVI, minimum and maximum values of NDVI are needed. 

Two different approaches can be used for calculation of VWC through NDVI: i) maximum 

and minimum of NDVI data (𝑁𝐷𝑉𝐼𝑚𝑎𝑥, 𝑁𝐷𝑉𝐼𝑚𝑖𝑛) are computed from data, and ii) the 

current NDVI is considered as 𝑁𝐷𝑉𝐼𝑚𝑎𝑥 , and a global constant value of 0.1 is used for 

𝑁𝐷𝑉𝐼𝑚𝑖𝑛, as recommended in SMAP’s VWC report (Chan et al. 2013). The second 

approach is only suggested for croplands and grasslands landcovers. Since data used in 

this research only includes grasslands and croplands, we also have used the second 

approach suggested by SMAP VWC report. In addition, Eroglu et al. (2019) have shown 
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that the second approach outperforms the first approach in CYGNSS soil moisture 

retrieval using NN.   

 

5.3.2 Land cover and surface roughness 

 

To include land cover parameters effects in PINN, stem factor and b-parameter were 

used. Stem factor and b-parameter were obtained from SMAP look-up-table (LUT) for 

each station (Chan et al. 2013). First, land cover type should be determined by data 

coming from MODIS Terra and Aqua combined MCD12Q1 products. Then, stem factor 

and b-parameter data can be specified using land cover data and LUT (Chan et al. 2013). 

International geosphere-biosphere program (IGBP) land cover classification data 

provides open access 500-m spatial resolution data available at 

https://lpdaac.usgs.gov/products/mcd12q1v006/ by NASA EOSDIS Land Processes 

DAAC, USGS Earth Resources Observation and Science (EROS) Center. MODIS time 

series are available in GEE Data Catalog from 2000 to present (Gorelick et al. 2017).  

The stem factor and b-parameter values for the 4-km grid of each CYGNSS observation 

in this study were calculated as a weighted sum of LUT stem factors and b-parameters 

based on the land cover percentages, respectively. 

Following the fact that only homogenous ISMN land cover stations have been selected, 

ISMN stations used in this research include croplands and grasslands land covers. For 

croplands and grasslands as suggested in (Chan et al. 2013), the instant NDVI value for 

 NDVImax and universal constant value of 0.1 for NDVImin were used.  

For surface roughness, h-parameter which is dependent on land cover was used. The h-

parameter was also found in LUT of SMAP data like stem factor and b-parameter (Chan 

https://lpdaac.usgs.gov/products/mcd12q1v006/
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et al. 2013). The same averaging computation as stem factor and b-parameter was done 

for h-parameter over the 4 km grids. 

The SMAP L2_SM_P team calibrates, and updates values related to h-parameter, b-

parameter, and stem factor as effective parameters in soil moisture calculations. The 

recent set of SMAP parameters are available for download from NSIDC website 

(https://nsidc.org/data/smap/tools). The values of h-parameter, b-parameter, and stem 

factor are provided as a land cover-based look up table in O’Neil et al. (2021), released 

in October 2021 and have been used in this research. 

 

5.3.3 Soil texture  

 

Soil texture is defined as the relative proportions of each class (clay, silt, and sand). Sand 

gives material strength while clay binds it together and silt fulfils a less clear intermediate 

function. Soil texture data such as soil sand, clay and silt percentages have been used 

widely for soil classification.  International soil classifications rely on relative fractions of 

soil particles of different sizes to establish soil textural class boundaries. These traditional 

classifications are convenient because grain size distributions can be measured relatively 

easily and can be estimated quickly and accurately in the field. Currently, soil texture 

classification is used commonly within agricultural, geotechnical, hydrological, and other 

related disciplines. 

Soil classification with soil texture ratio was first appeared with Atterberg (1905) and the 

United States Department of Agriculture (USDA) (Whitney 1911). The international and 

USDA systems were accepted formally and led to the soil classification systems in wide 

use today (Davis 1927; International Society of Soil Science 1927). Figure 5.3 shows soil 

https://nsidc.org/data/smap/tools
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classification with respect to clay, sand, and silt percentages in the USDA system 

(Groenendyk et al. 2015). To read soil texture classes based on clay, sand, and silt 

percentages, Figure 5.4. can be used to obtain soil texture classes with only two 

percentages, and one other can be calculated. 

To retrieve soil moisture from dielectric constant, in addition to soil temperature, soil 

texture data including soil bulk density, clay and sand percentage are required.  

Soil bulk density, clay and sand percentage were obtained from SMAP ancillary data 

available at http://smap.jpl.nasa.gov/science/dataproducts/ATBD/. The soil texture data 

are provided globally at 36 km, 9 km, 3 km and 1 km grid resolutions named the SMAP 

L2_SM_P, L2_SM_P_E, and L2_SM_SP, respectively. It is assumed that clay, sand 

percentage and bulk density are constant over the 9 km x 9 km grid, allowing the use of 

ancillary data provided with “L2_SM_P_E”. 

 

5.4   Bulk data processing 

 

Neural networks require high numbers of data to be trained. However, processing 

different datasets of GNSS-R and remote sensing is time consuming and needs strong 

computer systems. So that even downloading data without processing it may take hours 

and days. Remote sensing systems have been collecting massive volumes of datasets 

for decades, managing and analyzing of which are not practical using common software 

packages and desktop computing resources. In this regard, Google has developed a 

cloud computing platform, called Google Earth Engine (GEE), to effectively address the 

challenges of big data analysis. This platform facilitates processing large amounts of geo 

data over large areas and monitoring the environment for long periods of time. 

http://smap.jpl.nasa.gov/science/dataproducts/ATBD/
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Figure 5.3. USDA Soil texture triangle (Groenendyk et al. 2015).   

 

 

Figure 5.4. USDA Soil texture triangle visual assess (Harries and Sharma 2019).   
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Cloud computing platforms in general are efficient ways of storing, accessing, and 

analyzing datasets on very powerful servers, which virtualize supercomputers for the 

user. These systems provide infrastructure, platform, storage services, and software 

packages in a variety of ways for the customers (Chi et al. 2016; Ma et al. 2015). Several 

cloud computing platforms have so far been developed (Amani et al. 2020). 

First, Amazon Web Services (AWS) which is a pay-as-you-go platform, where users pay 

based on the hours that they use the services (Tamiminia et al. 2020). AWS has a cloud 

Earth Observation (EO) platform called “Earth on AWS” as part of its public dataset 

program open data from several satellites such as Landsat-8, Sentinel-1, Sentinel-2, 

China–Brazil Earth Resources Satellite program, National Oceanographic, and 

Atmospheric Administration Advanced (NOAA) image datasets, as well as global model 

outputs. 

Second, Azure is another cloud computing platform hosted by Microsoft. This platform 

has established the Artificial Intelligence (AI) for earth initiative to facilitate the use of its 

AI tools for addressing environmental challenges in four main areas of climate, 

agriculture, biodiversity, and water. Azure only contains Landsat and Sentinel-2 products 

for North America, since 2013, as well as moderate resolution imaging spectroradiometer 

(MODIS) imagery. Azure is also a pay-as-you-go platform which provides virtual systems 

for the users (Wilder 2012).  

Google Earth Engine (GEE) is another cloud computing platform launched by Google in 

2010. GEE uses Google’s computational infrastructure and available open access remote 

sensing datasets (Gorelick et al. 2017). GEE is the most popular big geo data processing 

platform due to following facts: i) GEE facilitates scientific processes by providing users 
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with free access to datasets (Tamiminia et al. 2020). Users can freely access GEE via an 

internet-based Application Programming Interface (API) and a web-based Interactive 

Development Environment (Tamiminia et al. 2020; Gorelick et al. 2017); ii) Users do not 

need to have expertise in web programming or HyperText Markup Language to use GEE; 

and iii) GEE has the features of an automatic parallel processing and fast computational 

platform to effectively deal with the challenges of big data processing (Hird et al. 2017). 

GEE was used in this research since downloading different datasets was time consuming. 

MODIS NDVI and land cover data are available on GEE platform for post processing. 

Using GEE, instead of downloading data and applying post processing tasks on them, 

MODIS data was available on GEE and no software was needed to do further post 

processes as various built-in analysis functions were already available on GEE. As a 

result, coding and processing all were done on GEE itself. 

GEE main part is (Earth Engine) EE code editor. The Earth Engine (EE) Code Editor 

available at code.earthengine.google.com is a web-based integrated development 

environment (IDE) for the Earth Engine JavaScript API. Code Editor features are 

designed to make developing complex geospatial workflows fast and easy. The Code 

Editor has the following elements (illustrated in Figure 5.5): 

• JavaScript code editor 

• Map display for visualizing geospatial datasets. 

• API reference documentation (Docs tab). 

• Git-based Script Manager (Scripts tab). 

• Console output (Console tab). 

• Task Manager (Tasks tab) to handle long-running queries 

https://code.earthengine.google.com/
http://git-scm.com/
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• Interactive map query (Inspector tab) 

• Search of the data archive or saved scripts 

• Geometry drawing tools. 

 

 

Figure 5.5. Diagram of components of the Earth Engine Code Editor from 

https://developers.google.com/earth-engine/guides/playground 

 

The Code Editor has a variety of features to help you take advantage of the Earth Engine 

API. You can view example scripts or save your own scripts on the Scripts tab. Query 

objects are placed on the map with the Inspector tab. Google Visualization API can be 

used to display and chart numeric results. To share a unique URL to your script with 

collaborators and friends, the Get Link button can be used. 

https://developers.google.com/earth-engine/guides/charts
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Figure 5.6. Different data sources used in PINN. Various data utilized in PINN are differentiated 

by different colours and summarized. GNSS-R data is obtained from CYGNSS mission explained 

in section 5.1, Vegetation, land cover and surface roughness, and soil texture data are explained 

in subsections 5.3.1, 5.3.2, and 5.3.3, respectively. Soil moisture and soil temperature data are 

also discussed in Section 5.2. 

 

 

Scripts you develop in the Code Editor are sent to Google for processing and the 

generated map tiles and/or messages are sent back for display in 

the Map and/or Console tab. All you need to run the Code Editor is a web browser 

(use Google Chrome for best results) and an Internet connection. To summarize Chapter 

5 and datasets used in PINN, a complete reference of data sources is listed in Figure 5.6. 

The following chapter describes the results of PINN using datasets explained in this 

Chapter. 

 

https://www.google.com/chrome/
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6.      GNSS-R SOIL MOISTURE RETRIEVAL BASED ON PINN 

APPROACH 

 

The PINN model approach is examined in this chapter for GNSS-R soil moisture retrieval. 

Performance of PINN is expressed with RMSE and Pearson correlation coefficient 

metrics. The PINN model considers physics-based relationships despite NN. Therefore, 

parameters involved in physics have been used in this research, which leads to promising 

RMSE and Pearson correlation values.  

 

6.1    PINN model performance analysis 

 

As discussed in Section 4.2, the PINN model aims to minimize two loss functions together 

(𝑀𝑆𝐸𝑆𝑀 , 𝑀𝑆𝐸Γ) (see Figures 4.1 and 4.2). Figures 6.1 and 6.2 display how these two loss 

functions in PINN have changed during training. Figure 6.1 is a representative of the soil 

moisture loss function changes during training epochs. Figure 6.2 indicates reflectivity 

loss function variations. Soil moisture values are updated to satisfy both the physics 

model and NN regression. Soil moisture is computed in each step of training and then 

used in the inverse reflectivity calculation. As the soil moisture updates, the reflectivity 

loss function also changes as inverse calculated reflectivity (𝛤𝑆𝑀) changes, while 

CYGNSS reflectivity data (𝛤𝐶𝑌𝐺𝑁𝑆𝑆) is fixed.  

The PINN algorithm is trained in order to minimize both soil moisture and reflectivity loss 

functions. In each step of training, soil moisture mean squared error values are updated 

(see Figure 6.1) as the PINN is learning. However, the reflectivity loss function (𝑀𝑆𝐸𝛤) 

has a slower learning process and remains within a specific range due to the following 
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reasons (see Figure 6.2): i) since the physics model equations are steady and the 

reflectivity data are constant, the reflectivity loss function (𝑀𝑆𝐸𝛤) changes are not 

significant as physics laws avoid sudden or large changes, iii) reflectivity is not the output 

of PINN training here; therefore, reflectivity variations are only because of soil moisture 

variations, and iii) although, the inverse calculated reflectivity values change due to soil 

moisture changes, the scale of reflectivity and soil moisture changes are not in the same 

range. For example, a change with magnitude of 0.2 in soil moisture can only cause a 

small change around 0.005 in reflectivity. Scale imbalances between two loss functions 

is a common issue in PINN. Conflicts can arise from different scales in loss function and 

can complicate convergence. Here, the soil moisture loss function has a higher scale than 

reflectivity values; therefore, the training was more affected by soil moisture loss function. 

Since soil moisture is the final output of the PINN, train and test dataset only apply to the 

soil moisture loss function (Figure 6.1).  

The total data set is split into 20% test data and 80% train data. To find the best numbers 

of layers and neurons, an 8-fold cross-validation technique was applied to test the NN 

structure’s overfitting and predictive ability. The train data set is divided randomly into 

eight portions. One portion is used as validation, and the other seven portions are used 

as training in each iteration. Therefore 10% of the data is used as validation, and 70% as 

training data in each iteration. After eight iterations, the mean squared error (MSE) for 

each combination is calculated. The NN structure with the best average MSE is chosen. 

Here, cross-validation is applied to NN and not PINN. Because the PINN model is more 

complex than NN, the PINN model with numbers of neurons as high as 20 is still not 

overfitted while NN is overfitted with 20 neurons. Since a comparison between NN and 
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PINN is worthwhile and is done in section 6.1.1, the number of layers and neurons is 

chosen to satisfy both NN and PINN. After choosing the best NN model using cross-

validation, the best model with three layers with 12, 8, and 6 neurons in each layer, 

respectively, and the best model for two layers with 12, and 8 neurons in each layer are 

tested on test data. 

As explained in Section 4.2, the PINN structure includes both NN regression and physics-

based models. Therefore, the performance of PINN is dependent on both the NN model 

and the physics relationship. Hence, for PINN models still a strong NN is needed. To 

examine the impact of NN, an experiment was performed using different neural network 

sizes for PINN (number of layers and neurons per layer). In Section 6.1.1, different NN 

structures were used in the soil moisture retrieval PINN model to test NN size impact on 

PINN. Furthermore, Section 6.1.1 includes a comparison between NN and PINN 

performance before and after the addition of physics model loss function. To test the PINN 

sensibility, the PINN performance was then studied for different land covers. Pearson’s 

correlation coefficient (R) and RMSE performance metrics have been used to validate 

results of PINN. Pearson’s coefficient is a standard method of estimating the degree to 

which two series are correlated. On the other hand, RMSE quantifies the exact value of 

differences between the soil moisture reference data and the predicted soil moisture for 

the model. In Section 6.1.2, sensitivity of PINN model to various land covers were 

surveyed.  
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6.1.1   PINN results for different NN structures 

 

To investigate the effect of NN design on PINN results, different NN structures have been 

tested. First, two different NN structures have been used in the PINN model: i) two-layer 

NN (with 12 neurons on first layer and 8 on second layer), and ii) three-layer NN (with 12, 

8 and 6 neurons on first, second and third layer, respectively). Physics-based 

relationships are fixed for both models. The number of layers and neurons have been 

chosen through experience with train-test learning curves to check over fitting. ISMN 

stations’ information used in this processing is shown in Table 6.1. 

 

Table 6.1 ISMN stations used in PINN. 

ISMN sites  
(SCAN) 

Location Dominant 
Soil texture 

Latitude Longitude Dominant  
Land Cover 
(IGBP) 

1. Adams Ranch New 
Mexico 

Loam 34.25 -105.42 Grasslands 

2. Alkali Mesa Utah Sand 37.67 -109.36 Grasslands 

3.Donkey 
Reservoir 

Utah Clay Loam 38.21 -111.47 Grasslands 

4. Fort Reno Oklaham
a 

Clay 35.55 -98.01 Croplands, 
Grassland 

5. Manderfield Utah Sand 38.37 -112.65 Grasslands 

6. Navajo Whiskey 
CK 

New 
Mexico 

Loam 36.18 -108.95 Grasslands 

7. Panguitch Utah Loam 37.87 -112.43 Grasslands 

8. Reese Center Texas Loam 33.62 -102.03 Croplands, 
Grassland 

9. Uapb Dewitt Arkansas Loam 34.28 -91.35 Croplands 

10. Vermillion Utah Loam 37.18 -112.2 Grasslands 

11. West Summit Utah Sandy Loam 38.02 -109.13 Grasslands 
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Figure 6.1. Soil moisture loss function (𝑀𝑆𝐸𝑆𝑀) changes over 1000 epochs. 

 

 

 

Figure 6.2. Reflectivity loss function (𝑀𝑆𝐸𝛤) changes over 1000 epochs. 
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Figure 6.3 shows the correlation scatter plots of the ISMN soil moisture data and 

CYGNSS-retrieved soil moisture values from PINN. For both PINN models, high overall 

agreement between the PINN soil moisture predictions and the reference ISMN data has 

been indicated. For example, for both two-layer and three-layer structures, the PINN 

model is able to generate soil moisture values with 0.82 and 0.85 Pearson’s correlation 

coefficient (R) and RMSE of 0.0547 and 0.0500, respectively (see Table 6.2). While the 

number of layers is different for the two PINN models, the correlation coefficients have 

remained stable. The RMSE has almost the same value as well. For a two-layer PINN, 

the Pearson correlation coefficient improves from 0.78 for NN to 0.82 for PINN. On the 

other hand, for a three-layer PINN, the Pearson correlation value reduces from a 0.91 for 

NN to 0.85 (see Table 6.2). Although for a three-layer NN correlation coefficient was 

higher than PINN, for both PINN models RMSE have improved. For two-layer NN, RMSE 

improved from 0.0707 to 0.0547 𝑐𝑚3/ 𝑐𝑚3. For three-layer NN, the RMSE improved from 

0.0774 to 0.0500 𝑐𝑚3/ 𝑐𝑚3.Table 6.2 illustrates how with changes of layers, the Pearson 

coefficient changes significantly for NN, but remains in the same range for the PINN.  

 

Table 6.2. PINN performance metric values for different NN and PINN designs 

Model RMSE Pearson’s coefficient 

Two layer NN 0.0707 0.78 

Three layer NN 0.0774 0.91 

Two layer PINN 0.0547 0.82 

Three layer PINN 0.0500 0.85 

 

Second, two different test-train ratios were applied to the PINN model. At first, the train / 

test ratio was 80% / 20% (see Figure 6.4 (i)). Second, a train / test ratio of 70% / 30% 
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was applied (see Figure 6.4 (ii)). For the three-layer NN, using the train / test ratio of 80% 

/ 20%, the RMSE and correlation coefficient are 0.0519 and 0.82, respectively. For the 

train / test ratio of 70% / 30%, the RMSE and correlation coefficient values are 0.0469 

and 0.83. Table 6.3 shows the comparison between two different train / test ratio options. 

With changes of train / test ratio, results of PINN remain within a solid range for both 

RMSE and Pearson coefficient (R).  

 

Table 6.3. PINN performance metric values for different train test ratios. 

Train-Test split ratio RMSE Pearson coefficient 

80% - 20% 0.0519 0.82 

70% - 30% 0.0469 0.83 

 

 

6.1.2   PINN sensitivity to different land covers 

As discussed in Chapter 5, homogeneous land cover stations (see Table 6.1) with 

relatively less vegetation cover are used, since physics relations explained in Section 3.1 

are valid for coherent reflections. Therefore, three categories (grasslands, mixed of 

grasslands and croplands, and croplands) have been studied to analyze PINN sensitivity 

to different land cover with different NDVI ranges. To study the impact of PINN on land 

covers only 7 stations were used to prevent addition of too many data points with 

grassland land cover as most of the stations in Table 6.1 have grassland land cover. 

Stations 3,6,7, and 11 from Table 6.1 were removed to have a fair distribution of data for 

each of three different land cover categories used. 
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Figure 6.3. Correlation scatterplots of soil moisture retrievals from PINN with two different 

NN structures: (i) two-layer and (ii) three-layer. 



106 
 

 

 

 

Figure 6.4. Correlation scatterplots of soil moisture retrievals from PINN for two different 

train/ test ratios: (i) 80% train and 20% test dataset (ii) 70% train and 30% test dataset. 
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The correlation of PINN calculated soil moisture values with ISMN soil moisture data are 

also examined for these three different land cover categories (see Figure 6.5). The 

Pearson correlation coefficients for grassland, mixed of grassland and croplands are 

90%, 85% and 79% for three-layer NN (see Table 6.5) and 87%, 82% and 75% for two-

layer NN (see Table 6.4), respectively (see Figure 6.5). These results show that PINN 

works better for less vegetated land covers, since physics equations explained in Section 

3.1 are accurate for coherent reflections. As incoherent characteristics increase in 

datasets, the performance of PINN worsens. The sensitivity of performance metrics 

(RMSE and Pearson correlation coefficient) to different land covers are shown in Figures 

(6.5) and (6.6).  

 

Table 6.4. PINN performance metric values for different land cover for two-layer PINN. 

Land cover RMSE Pearson’s coefficient 

Grassland 0.0212 0.87 

Mix of grassland and cropland 0.0331 0.82 

Croplands 0.0435 0.75 

 

Table 6.5. PINN performance metric values for different land cover for three-layer PINN. 

Land cover RMSE Pearson’s coefficient 

Grassland 0.0187 0.90 

Mix of grassland and cropland 0.0316 0.85 

Croplands 0.0374 0.79 

 

The same pattern exists for the RMSE values for various land covers. For instance, as 

the NDVI value ranges increase from grassland to croplands, the Pearson correlation 

coefficient (R) increases and RMSE decreases. These results indicate that the PINN is 

sensitive to physical parameters. For grassland, mixed of grasslands and croplands 
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RMSE values are 0.0212, 0.0331 and 0.0435, respectively, for a two-layer NN (see Table 

6.4) and 0.0187, 0.0316 and 0.0375, respectively, for a three-layer NN (see Table 6.5). 

This result indicates increase in RMSE as land cover gets more vegetated (see Figure 

6.6). The highest correlation value and lowest RMSE, which shows best performance, is 

related to grassland land cover with less vegetation. The lowest correlation value and 

highest RMSE is for croplands with higher vegetation and NDVI values. Two different NN 

structures are employed to ensure that same pattern of sensitivity to different land cover 

still exists for different neural network structures. As a result, after changing of the number 

of layers, grasslands still have the best result and croplands have the worst (see Tables 

6.4 and 6.5, and Figures 6.5 and 6.6). 

Figure 6.7 demonstrates correlation plots of PINN soil moisture retrievals and ISMN soil 

moisture data for different land covers. For grasslands having 90% of correlation shows 

PINN works better for less vegetated areas due to physics of the problem. Sample 

numbers for different land covers are 892, 1029, and 1264 for grasslands, mixed of 

grassland and cropland and croplands, respectively. 

 

6.2    Discussion  

 

The PINN algorithm was able to estimate soil moisture values using a set of GNSS-R 

data and surface land surface parameters. Due to the fact that some physics 

understanding is provided in PINN, PINN was able to be trained on relatively less data 

due to integrating physics models with NN. This research was the first practice of PINN 

in CYGNSS soil moisture estimation, to the author’s knowledge.  
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Figure 6.5 Sensitivity of PINN Pearson correlation coefficient metric to different land covers with 

two PINN structures (two-layer and three-layer PINN). Best performance (highest correlation) is 

related to grasslands with less vegetation and worst performance of PINN (lowest correlation) is 

for croplands with higher vegetation. 

 

To confirm PINN capability in CYGNSS-derived soil moisture retrieval, PINN is compared 

with NN for the same data sets (see Table 6.2). Performance of PINN was expressed 

with RMSE and Pearson correlation coefficient metrics. The PINN model considers 

physics-based relationships in the modelling despite NN. Therefore, parameters involved 

in physics have been used in this research, which leads to promising RMSE and Pearson 

correlation values.  
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Figure 6.6. Sensitivity of PINN RMSE metric to different land covers with two PINN structures 

(two-layer and three-layer PINN). Best performance (lowest RMSE) is for grasslands with less 

vegetation and worst performance of PINN (highest RMSE) is related to croplands with higher 

vegetation.  

 

The PINN model is capable of obtaining soil moisture values with an RMSE of 0.05 and 

a Pearson correlation coefficient of 0.85 for a three-layer PINN and an RMSE of 0.0547 

and a Pearson correlation coefficient of 0.82 for a two-layer PINN. The RMSE difference 

between a two-layer NN and PINN is 0.016 and for a three-layer NN and PINN is 0.0274. 

PINN has a lower RMSE due to the addition of physics knowledge in modelling. NN has 

RMSEs around 0.07 showing its less capability over an approximately low number of 

stations in comparison to PINN. 
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Figure 6.7. Correlation plots of PINN soil moisture retrievals and ISMN soil moisture data. (i) For 

grasslands with 90% Pearson’s correlation. (ii) For mixed of grasslands and croplands with 85% 

Pearson’s correlation. (iii) For Croplands with 79% Pearson’s correlation. 

 

 

As suggested by (Colliander et al. 2017; O'Neill et al. 2021), RMSEs lower than around 

0.055 are required for soil moisture studies. Therefore, here PINN has acceptable results 

with RMSEs around 0.05 while NN has worse results with RMSEs around 0.07. Although 

the number of stations were relatively low for both NN and PINN cases, PINN has shown 

better results than NN in less data regime due to the addition of physical modelling. In 

addition, changes in NN design, such as number of layers and neurons, and train/test 

ratio have affected NN results; however, PINN results have remained consistent (see 

Tables 6.2 and 6.3). While NN structure can affect the outcome of the PINN model – as 
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a consequence of adding physics relationships to NN, results are in a relatively 

sustainable range. 

Since this research is the first attempt of PINN in GNSS-R soil moisture retrieval, 

comparison of results with NN research was not straightforward. Validation of PINN 

results with comparison with previous published works using NN was challengeable 

owing to two issues: 

 

i) It is not easy to choose the best NN model and compare it with PINN. As there 

are several differences between the previous publications based on NN 

algorithms including time span, number of observations, number of inputs in 

NN, reference sources for soil moisture data, ancillary datasets, and pre-

processing and labeling filters and different resolutions. Each NN model 

includes different datasets and number of inputs. For example, in (Eroglu et al. 

2019) researchers used elevation, h-parameter and slope for surface 

roughness; however, in (Senyurek et al. 2020) researchers used only elevation 

for surface roughness. The current study uses only h-parameter for surface 

roughness, since it was the only parameter affecting the physics of the problem. 

In both (Eroglu et al. 2019) and (Senyurek et al. 2020), for example, TES 

(Trailing Edge Slope) is added as a coherency/incoherency indicator. The 

current study only focuses on coherent reflections and TES is not involved in 

physics model. Therefore, TES is not used in PINN modeling. Soil moisture 

reference data for validation and testing can also come from different sources 

which makes comparison complicated. For example, in (Senyurek et al. 2020), 
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authors used SMAP data for reference while in (Eroglu et al. 2019) authors 

used ISMN data for soil moisture reference. Finally, due to the difference in the 

data used, comparison of PINN with previous NN models is futile and difficult.  

ii) Although PINN algorithms are physically and scientifically more consistent 

predictive models, the PINN model suffers from the complexity of physics 

models. By adding physics to NN, new parameters and their uncertainties are 

added to the model. For example, by inclusion of soil moisture-dielectric 

constant model, more parameters are added to the problem. Semi-empirical 

models like Mironov and Dobson were developed for different purposes other 

than GNSS-R applications. These empirical parameters need to be calibrated 

or modified for GNSS-R applications. Uncertainty in soil moisture-dielectric 

constant models is added to the PINN as physics is added in the model. As a 

result, a more complex NN was needed to train datasets due to additional 

parameters. Although the number of inputs remains the same, PINN needed 

higher numbers of neurons and layers to learn.  For example, a high parameter 

NN like three-layer NN with 20 neurons in each layer has been overfitted (see 

Figure 6.8 (i)). But PINN with same three layers NN with 20 neurons in each 

layer has shown a good fitting for our dataset (see Figure 6.8 (ii)). Because 

both train and test data set were decreasing, overfitting occurs when the NN 

does not respond well to test dataset with same number of layers and neurons. 

Consequently, a PINN requires higher numbers of neurons and layers in 

comparison to NN models, due to complexity and uncertainties of involving 

physics parameters, as the same number of layers and neurons may cause 
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overfitting for NN (see Figure 6.8 (i)), but still be a good choice for PINN 

structure (see Figure 6.8 (ii)). Figure 6.8 shows that the same number of layers, 

neurons and hyper parameter choice seemed to be over-fitted for NN and good 

fit for PINN. This complicates the comparison of NN with PINN. 

 

To check PINN sensibility to physical parameters such as land cover and vegetation, the 

dataset was separated into three categories (see Subsection 6.1.2). After separation of 

datasets by land cover categories, RMSE values decreased from RMSE value for entire 

data set (see Tables 6.4 and 6.5 and compare with Tables 6.2 and 6.3). Because after 

separation of the data to same land cover categories, the data points have higher 

similarities in each land cover category. Therefore, it is easier for PINN to learn. PINN 

was sensitive to different land cover categories and since physical equations involved in 

PINN obey coherent reflection assumption, as incoherency characteristics like vegetation 

increased in land cover categories, e.g., with comparison of croplands to grasslands, 

grasslands have better results due to higher possibility of coherent reflections because of 

less vegetation.  

While PINN has been sensitive to different land covers, more diverse stations are needed 

to validate this consequence. Development of electromagnetic relations for more 

incoherent characteristics has been challenging in GNSS-R community. As physics 

understanding and models between soil moisture and dielectric constant improves, the 

PINN model can become stronger and more ubiquitous. This study only focused on 

homogenous flat stations with less vegetation. Development of PINN algorithms for 

diverse stations deserve future research.  
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Figure 6.8. Learning curve plots for a three-layer NN and PINN comparison with 20 neurons in 

each layer. (i) Soil moisture loss function (𝑴𝑺𝑬𝑺𝑴) changes for NN. Three-layer NN with 20 

neurons in each layer shows over fitting because as test loss increases as epoch increases. It 

shows NN was not capable of learning new test dataset because of high number of neurons. (ii) 

Three-layer PINN with 20 neurons have shown a good fit indicating that PINN was able to learn 

test new dataset. Three layers with 20 neurons was a good fit for PINN while it caused overfitting 

for simple NN.  
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7.      COMPARISON OF DIFFERENT SOIL DIELECTRIC 

CONSTANT MODELS FOR PINN SOIL MOISTURE ESTIMATES 

 

As explained in Section 3.2, different soil dielectric constant models exist that connect 

soil dielectric constant to soil moisture content. Since soil dielectric constant models play 

an important part in physical relationships between reflected signal power and soil 

moisture as discussed in Sections 3.1 and 3.2, the effect of these models on soil moisture 

predictions needs to be studied. Data used in these models also differ slightly; therefore, 

input data in PINN differs for different soil dielectric constant models. Concerning which 

soil dielectric constant model is used, physics models part in PINN changes resulting 

changes in PINN structure. In this chapter, the impact of four soil dielectric constant 

models on PINN results is investigated. Using different soil dielectric constant models in 

PINN changes physics models added to PINN. As a result, the performance of PINN 

changes as the soil dielectric constant model changes in PINN model.  

Soil dielectric constant models differ from each other in two aspects: i) Soil dielectric 

constant model parameters were generated based on dissimilar base datasets with 

different soil texture values. For example, the Dobson and Hallikainen models used data 

sets from 5 soil fields with sand percentages less than 50% and clay percentages less 

than 47% (see Table 3.1). However, Wang and Mironov models were studied on a wider 

range of sand and clay percentages, ii) These four models, Hallikainen, Wang, Dobson, 

and Mironov, use different parameters in their modelling (see Table 7.1).  

In Table 7.1, data used in PINN algorithm for different soil dielectric constant models is 

shown. For all four models land cover, surface roughness, CYGNSS GNSS-R data, and 

vegetation data are the same. The PINN model for these four soil-dielectric models varies 
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only in soil texture and soil temperature data. According to Table 7.1, Mironov has fewer 

physical features. In terms of soil texture data, Mironov only considers clay percentage. 

However, all other models (Hallikainen, Wang, and Dobson) contain sand percentage as 

well. Dobson is the only model that uses bulk density data. Wang and Dobson models 

consider temperature in their modeling while Hallikainen and Mironov models ignore 

temperature data. Consequently, Dobson has the highest numbers of data features used 

while Mironov has the lowest numbers of data features. In addition, Wang has the second 

highest numbers of features. The performance of four different soil dielectric constant 

models has been studied in Subsections 7.1 and 7.2. 

 

Table 7.1. Comparison of soil dielectric models used in PINN algorithm in terms of 

required data. 

Data 

category 

Hallikainen Wang Dobson Mironov 

Land cover b-parameter, 

stem factor 

b-parameter, 

stem factor 

b-parameter, 

stem factor 

b-parameter, 

stem factor 

Surface 

roughness 

h-parameter h-parameter h-parameter h-parameter 

CYGNSS  
GNSS-R data 

Reflectivity, 
Incidence angle 

Reflectivity, 
Incidence angle 

Reflectivity, 
Incidence angle 

Reflectivity, 
Incidence angle 

Vegetation NDVI, VWC NDVI, VWC NDVI, VWC NDVI, VWC 

Soil texture Clay%, Sand% 
 

Clay%, Sand% Clay%, Sand%, 
Bulk density 

Clay% 

Soil 
temperature 

Not included Included Included Not included 

Total 
numbers  
of data in 
PINN 

9 inputs 10 inputs 11 inputs 8 inputs 
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To investigate the effect of soil dielectric constant models in the PINN algorithm 

performance, two years of data, from January 1st of 2020 to the end of 2021, as explained 

in Chapter 5 were used. However, more stations were added to include more diverse soil 

texture classifications for further studies and comparison of models. Eight stations were 

added to the stations used in Chapter 6 (see Table 6.1 and Table 7.2 for comparison). 

Details of the stations used in processing different soil dielectric models are shown in 

Table 7.2. All of these stations come from SCAN ISMN networks explained in Section 

5.2. 

 

7.1 Impact of different soil dielectric models on PINN performance  

 

Four different soil dielectric models were used to understand their effect on PINN results. 

PINN produced soil moisture values highly correlated with initial soil moisture data. Figure 

7.1 demonstrates four correlation plots related to PINN soil moisture retrievals for all four 

soil dielectric models studied in this research. 

The PINN model is able to generate soil moisture values with four different soil dielectric 

models with following metrics (see Table 7.3 and Figures 7.2 and 7.3): i) Hallikainen 

model with Pearson’s correlation coefficient (R) of 0.94, RMSE of 0.0478 and ubRMSE 

of 0.0473, ii) Wang model with Pearson’s correlation coefficient (R) of 0.92, RMSE of 

0.0509 and ubRMSE of 0.0499, iii) Dobson model with Pearson’s correlation coefficient 

(R) of 0.86, RMSE of 0.0568 and ubRMSE of 0.0560, and iv) Mironov model with 

Pearson’s correlation coefficient (R) of 0.81, RMSE of 0.0687 and ubRMSE of 0.0685. 

Table 7.3 compares Pearson’s correlation coefficient, RMSE and ubRMSE values of four 

different soil dielectric models.  
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Table 7.2. ISMN stations used in comparison of soil dielectric models’ performance in 

PINN algorithm.  

ISMN sites  
(SCAN) 

Location Dominant 
Soil 
texture 
 

Latitude Longitude Dominant  
Land  
Cover (IGBP) 

1. Adams Ranch New 
Mexico 

Loam 34.25 -105.42 Grasslands 

2. Alcalde New 
Mexico 

Sandy 
Loam 

36.08 -106.05 Grasslands 

3. Alkali Mesa Utah Sand 37.67 -109.36 Grasslands 

4. Beasley Lake Mississippi Sandy 
Loam 

33.38 -90.65 Croplands 

5. Cochora Ranch California Loam 35.12 -119.60 Shurblands, 
Grassland 

6. Donkey Reservoir Utah Clay Loam 38.21 -111.47 Grasslands 

7. Fort Reno Oklahama Clay 35.55 -98.01 Croplands, 
Grasland 

8. Jornada Exp 
Range 

New 
Mexico 

Sandy 
Clay Loam 

32.55 -106.7 Shurblands 

9. Manderfield Utah Sand 38.37 -112.65 Grasslands 

10. Mccracken Mesa Utah Clay Loam 37.45 -109.33 Shurblands, 
Grassland 

11. Navajo Whiskey 
CK 

New 
Mexico 

Loam 36.18 -108.95 Grasslands 

12. Panguitch Utah Loam 37.87 -112.43 Grasslands 

13. Reese Center Texas Loam 33.62 -102.03 Croplands, 
Grassland 

14. San Angelo Texas Loam 31.55 -100.50 Grasslands 

15. Sevilleta New 
Mexico 

Sandy 
Clay Loam 

34.35 -106.68 Shurblands, 
Grassland 

16. Shadow Mtns California Loam 35.47 -115.72 Shurblands 

17. Uapb Dewitt Arkansas Loam 34.28 -91.35 Croplands 

18. Vermillion Utah Loam 37.18 -112.2 Grasslands 

19. West Summit Utah Sandy 
Loam 

38.02 -109.13 Grasslands 

 

 

Hallikainen model has the best result due to the lowest RMSE and ubRMSE values, and 

highest correlation coefficient (see Figures 7.2 and 7.3, and Table 7.3). The second and 

third best model results are for Wang and Dobson models, respectively. Finally, the 
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Mironov model has the worst results due to the highest RMSE and ubRMSE values and 

lowest correlation coefficient. Figure 7.2 compares PINNRMSE and ubRMSE of four 

different soil dielectric constant models and Figure 7.3 shows the correlation coefficient 

values for different models. Figures 7.2 and 7.3 demonstrate that Mironov has the worst 

results and Hallikainen has the best results with respect to RMSE, ubRMSE and 

correlation coefficient values. RMSE and ubRMSE values range change are around 

0.0209 and 0.0212 from the best model (Hallikainen) and worst model (Mironov). 

Pearson’s correlation coefficient changes from 0.94 to 0.81 decreasing 0.13 when 

changing soil dielectric models from Hallikainen model to Mironov model.  

 

Table 7.3. Comparison of four soil dielectric models’ performance used in PINN.  

Soil dielectric constant 
model 
 

RMSE ubRMSE Pearson’s correlation 
coefficient 

Dobson    0.0568 0.0560 0.86 

Hallikainen 0.0478 0.0473 0.94 

Mironov 0.0687 0.0685 0.81 

Wang 0.0509 0.0499 0.92 

 

To understand the differences of the four soil dielectric models better, dielectric constant 

values were calculated from PINN retrieved soil moisture values and compared with soil 

moisture ISMN reference data as shown in Figures 7.4 and 7.5. Figures 7.4 and 7.5 

display computed dielectric constant values from PINN soil moisture retrievals with 

respect to soil moisture data for 2020 and 2021, respectively. The dielectric constant 

calculated using Dobson model generally has a separation gap with other soil dielectric 

models (Liu and Liu 2020; Zhang et al. 2020; Guo et al. 2016) due to lack of physical 

consideration of the dielectric properties bound and free water as explained in Section 

3.2. Figures 7.4 and 7.5 demonstrate rigidity of Dobson and Mironov model with 
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comparison to Wang and Hallikainen models. The differences among models cannot be 

neglected at medium and high moisture contents which increases with the sand content. 

Differences between Dobson model and other models are due to the lack of distinction 

between bound water and bulk water in the Dobson model.  

 

Figure 7.1. Correlation plots of PINN soil moisture retrievals for different soil dielectric models. 

Pearson’s correlation coefficients for Dobson, Hallikainen, Mironov, and Wang models are 0.92, 

0.94, 0.81, and 0.88, respectively. Hallikainen model resulted in highest correlation and Mironov 

resulted in the lowest correlation. 
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Figure 7.2. RMSE and ubRMSE comparison of four soil dielectric constant models used in PINN 

algorithm.  

 

 

Figure 7.3. Pearson’s correlation comparison of four soil dielectric constant models used in PINN 

algorithm. 
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Figure 7.4. Dielectric constant calculated from soil moisture retrievals from PINN relationship with 

soil moisture reference ISMN data for 2020. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5. Dielectric constant calculated from soil moisture retrievals from PINN relationship with 

soil moisture reference ISMN data for 2021. 
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7.2 Investigation of different soil dielectric models’ performance for 

different soil texture classes 

 

When using the PINN algorithm, soil texture data used is different depending on which 

soil dielectric constant model is applied. Due to the difference in soil texture data used in 

soil dielectric constant models, studying models’ performance under different soil texture 

scenarios is worthwhile. For this reason, 4 soil texture classes were defined to examine 

performance of four soil dielectric constant models particularly (see Figure 7.6). Soil 

texture classes defined are as follows (see Table 7.4), i) Class 1 with sand percentage 

lower than 50% and clay percentage lower than 20% with 2174 data points, ii) Class 2 

with sand percentage lower than 50% and clay percentage higher than 20% with 6469 

data points, iii) Class 3 with sand percentage higher than 50% and clay percentage lower 

than 20% with 5882 data points, iv) Class 4 with sand percentage higher than 50% and 

clay percentage higher than 20% with 2280 data points. This classification enables us to 

differentiate the Dobson and Hallikainen model performance, which were developed on 

data with sand percentages lower than 50% with Mironov and Wang model. Figure 7.6 

shows 4 different soil texture classes regarding the USDA soil texture classification 

triangle. Table 7.5 shows clay and sand percentages for 18 stations used in the 

processing and their assigned soil texture classes with respect to soil texture 

classification. Clay percentage of data ranges from 0.05 to 0.46 and sand percentage of 

data ranges from 0.29 to 0.89. Four classes are defined to investigate soil dielectric 

models’ performance for different soil texture classes. Table 7.5 demonstrates which 

stations are assigned with each soil texture class. 
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Table 7.4. Classes defined for soil dielectric constant model’s assessment. 

Category  Sand percentage Clay percentage Sample number 

Class 1 Lower than 50% Lower than 20% 2174 

Class 2 Lower than 50% Higher than 20% 6469 

Class 3 Higher than 50% Lower than 20% 5882 

Class 4 Higher than 50% Higher than 20% 2280 
 

 

 

Figure 7.6. Four soil texture classes are defined to investigate soil dielectric constant model’s 

performance. These four classes are i) Class 1 with sand percentage lower than 50% and clay 

percentage lower than 20% with 2174 data points (shown in orange), ii) Class 2 with sand 

percentage lower than 50% and clay percentage higher than 20% with 6469 data points (shown 

in blue), iii) Class 3 with sand percentage higher than 50% and clay percentage lower than 20% 

with 5882 data points (shown in green), iv) Class 4 with sand percentage higher than 50% and 

clay percentage higher than 20% with 2280 data points (shown in red). 
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Table 7.5. ISMN stations used in comparison of soil dielectric models’ performance in 

PINN algorithm.  

ISMN sites  
(SCAN) 
 

Clay % Sand % 
 

Bulk density Soil texture Classification 

1. Adams Ranch 0.104569 0.517212 1.460556 Loam Class 3 

2. Alcalde 0.130993 0.618444 1.464444 Sandy Loam Class 3 

3. Alkali Mesa 0.058642 0.873457 1.38 Sand Class 2 

4. Beasley Lake 0.0998611 0.508195 1.3631524 Sandy Loam Class 2 

5. Cochora Ranch 0.216815 0.378059 1.47962964 Loam Class 3 

6. Donkey Reservoir 0.272009 0.392611 1.380988 Clay Loam Class 2 

7. Fort Reno 0.46 0.29 1.386579 Clay Class 2 

8. Jornada Exp 
Range 

0.2647654 0.54390 1.0466667 Sandy Clay 
Loam 

Class 1 

9. Manderfield 0.05 0.89 1.5 Sand Class 1 

10. Mccracken Mesa 0.2983334 0.368889 1.4738271 Clay Loam Class 3 

11. Navajo Whiskey 
CK 

0.21 0.39 1.31 Loam Class 3 

12. Panguitch 0.21 0.38 1.4 Loam Class 3 

13. Reese Center 0.153333 0.42 1.35 Loam Class 2 

14. San Angelo 0.228333 0.427333 1.35622227 Loam Class 4 

15. Sevilleta 0.314814 0.527833 1.4033333 Sandy Clay 
Loam 

Class 2 

16. Shadow Mtns 0.2300000 0.43000 1.35 Loam Class 2 

17. Uapb Dewitt 0.143457 0.470093 1.35 Loam Class 4 

18. West Summit 0.06 0.56 1.35 Sandy 
Loam 

Class 2 

 

 

The PINN model for four soil texture classes generated soil moisture values with RMSE, 

ubRMSE and correlation values as follows (see Tables 7.6 to 7.8 and Figures 7.7 to 7.9 

and correlation plots can be found in Figures 7.10 to 7.13). 

a) Cass 1 resulted in following metrics for i) Dobson model with Pearson’s 

correlation coefficient (R) of 0.90, RMSE of 0.056 and ubRMSE of 0.053, ii) 

Hallikainen model with R of 0.95, RMSE of 0.040 and ubRMSE of 0.040, iii) 

Mironov model with R of 0.75, RMSE of 0.079 and ubRMSE of 0.079, and iv) 

Wang model with R equal to 0.87, RMSE of 0.060 and ubRMSE of 0.059. 
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b) Class 2 resulted in following performance metrics for i) Dobson model with 

Pearson’s correlation coefficient (R) of 0.88, RMSE of 0.057 and ubRMSE of 

0.057, ii) Hallikainen model with R of 0.84, RMSE of 0.063 and ubRMSE of 

0.063, iii) Mironov model with R of 0.71, RMSE of 0.080 and ubRMSE of 0.080, 

and iv) Wang model with R of 0.81, RMSE of 0.069 and ubRMSE of 0.068. 

c) Class 3 resulted in following performance metrics for i) Dobson model with 

Pearson’s correlation coefficient (R) of 0.94, RMSE of 0.048 and ubRMSE of 

0.048, ii) Hallikainen model with R of 0.96, RMSE of 0.041 and ubRMSE of 

0.040, iii) Mironov model with R of 0.85, RMSE of 0.069 and ubRMSE of 0.069, 

and iv) Wang model with R of 0.95, RMSE of 0.042 and ubRMSE of 0.041. 

d) Class 4 resulted in following performance metrics for i) Dobson model with 

Pearson’s correlation coefficient (R) of 0.88, RMSE of 0.047 and ubRMSE of 

0.047, ii) Hallikainen model with R of 0.96, RMSE of 0.045 and ubRMSE of 

0.045, iii) Mironov model with R of 0.82, RMSE of 0.049 and ubRMSE of 0.048, 

and iv) Wang model with R of 0.94, RMSE of 0.046 and ubRMSE of 0.046. 
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Table 7.6. RMSE results of different soil dielectric constant models for four different soil 

texture classes. 

RMSE 
  

class1 class2 class3 class4 

Dobson 0.056 0.057 0.048 0.047 

Hallikainen  0.040 0.063 0.041 0.045 

Mironov 0.079 0.080 0.069 0.049 

Wang 0.060 0.069 0.042 0.046 

 

 

 

 

Figure 7.7. RMSE comparison of four soil dielectric constant models used in PINN algorithm for 

four defined soil texture classes. 
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Table 7.7. ubRMSE results of different soil dielectric constant models for four different 

soil texture classes. 

ubRMSE 
  

class1 class2 class3 class4 

Dobson 0.053 0.057 0.048 0.047 

Hallikainen 0.040 0.063 0.040 0.045 

Mironov 0.079 0.080 0.069 0.048 

Wang 0.059 0.068 0.041 0.046 

 

 

 

 

 

Figure 7.8. ubRMSE comparison of four soil dielectric constant models used in PINN algorithm 

for four defined soil texture classes. 
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Table 7.8. Pearson correlation coefficient results of different soil dielectric constant 

models for four different soil texture classes. 

Correlation 
Coefficients 
  

class1 class2 class3 class4 

Dobson 0.90 0.88 0.94 0.88 

Hallikainen 0.95 0.84 0.96 0.96 

Mironov 0.75 0.71 0.85 0.82 

Wang 0.87 0.81 0.95 0.94 

 

 

 

 

Figure 7.9. Pearson’s correlation coefficients comparison of four soil dielectric constant models 

used in PINN algorithm for four defined soil texture classes. 
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Figure 7.10. Correlation plots of PINN soil moisture retrievals with Dobson soil dielectric 

constant model for four different soil texture classes. Pearson’s correlation coefficient 

values for class1, class2, class3 and class4 while using Dobson model are 0.90, 0.88, 

0.94, and 0.88, respectively. 
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Figure 7.11. Correlation plots of PINN soil moisture retrievals with Hallikainen soil 

dielectric constant model for four different soil texture classes. Pearson’s correlation 

coefficient values for class1, class2, class3 and class4 while using Hallikainen model are 

0.95, 0.84, 0.96, and 0.96, respectively. 
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Figure 7.12. Correlation plots of PINN soil moisture retrievals with Wang soil dielectric 

constant model for four different soil texture classes. Pearson’s correlation coefficient 

values for class1, class2, class3 and class4 while using Wang model are 0.87, 0.81, 0.95, 

and 0.94, respectively. 
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Figure 7.13. Correlation plots of PINN soil moisture retrievals with Mironov soil dielectric 

constant model for four different soil texture classes. Pearson’s correlation coefficient 

values for class1, class2, class3 and class4 while using Mironov model are 0.75, 0.71, 

0.85, and 0.82, respectively. 
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7.3 Discussion 

 

Different soil dielectric constant models affected results of the PINN in soil moisture 

retrieval; therefore, the soil dielectric constant models play an important role in the 

physical relationship between soil moisture and reflected signal power. The RMSE 

distinction and correlation coefficient difference of the best model (Hallikainen) and worst 

model (Mironov) is around 0.0209 and 0.13, respectively (see Table 7.3). These 

differences can affect the results of soil moisture retrieval in some cases. For instance, 

SMAP mission requirement for the 36-km and 9-km soil moisture products is ubRMSE 

and RMSE of a maximum of 0.04, and 0.052, respectively (Colliander et al. 2017; O'Neill 

et al. 2021). Therefore, working with PINN algorithm, the Mironov model with RMSE of 

0.0687 and ubRMSE of 0.0685 cannot be used while the Hallikainen model with RMSE 

of 0.0478 and ubRMSE of 0.0473 is sufficient to be used. For GNSS-R missions, higher 

values of RMSE and ubRMSE have been accepted (Eroglu et al. 2019; Senyurek et al. 

2020; Jia et al. 2021) since both CYGNSS and GNSS missions were not designed for soil 

moisture retrieval initially and calibration of data for soil moisture studies is required to 

improve results. Still, ubRMSE of CYGNSS-derived soil moisture products compared with 

SMAP soil moisture is around 0.045 𝑐𝑚3/𝑐𝑚3 after calibration of CYGNSS reflectivity data 

(Chew and Small 2020). Consequently, choice of the soil dielectric constant model 

impacts the overall results of PINN and in case of low RMSE and ubRMSE mission 

requirements (around 0.05) the Mironov model with PINN algorithm is not suggested 

while other models can be used with PINN.  

The choice of a suitable soil dielectric constant model in PINN is therefore recommended 

for better results. Since all soil dielectric constant models were developed on in-situ 
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experimental data, understanding the reasons for differences in the models’ performance 

can be helpful in development of new soil dielectric constant models for satellite remote 

sensing data especially GNSS-R applications. As shown in Table 7.1, the only difference 

between different soil dielectric models are soil texture data and soil temperature data. 

However, models were developed on different reference data as well. It was shown that 

these dissimilarities in models can affect the overall result of PINN depending on which 

soil dielectric model is used.   

The Mironov model has presented the least capability in predicting soil moisture values 

due to the following reasons: i) Mironov model used in the PINN algorithm only considers 

clay percentage data for soil texture and ignores the effect of sand percentage, bulk 

density, and soil temperature. Therefore, the effect of sand percentage as well as the clay 

percentage must be included in the soil dielectric constant modeling as removing it from 

Mironov model worsens the results, ii) The Mironov model is a less empirical model and 

is the strictest model in comparison to other three models. The integration of physical 

relations into the architecture of neural networks in PINN must be applied with care since 

strict physical analytical relations may overly constrain the neural network training in the 

PINN on condition that the weight of physical relationships is very high. Mironov model is 

a semi-empirical model in which most of the model includes rigid analytical expressions 

that narrow training process more compared with other models, and iii) Different Mironov 

coefficients (explained in Subsection 3.2.2) such as refractive indexes 𝑛𝑚, 𝑛𝑑 , 𝑛𝑏 , 𝑛𝑢, and 

normalize attenuation coefficients 𝑘𝑚, 𝑘𝑑 , 𝑘𝑏 , 𝑘𝑢 are all calculated from clay percentage 

data which results in calculation cumulative errors as soil moisture values get updated in 
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each step of training. In each step of training these coefficients must be calculated which 

increases loss function. 

The Hallikainen model has shown the best results in soil moisture predictions due to 

following facts: i) The model is the simplest amongst other models and PINNs training is 

not limited by rigidity of the physics model, and ii) Less calculation cumulative errors are 

added in each step of training as Hallikainen model directly calculates dielectric constant 

from soil moisture and soil texture data without introducing secondary coefficients in 

model. The other two soil dielectric constant models (Dobson and Wang), both include 

calculation of secondary coefficients which with comparison to Hallikainen increases the 

cumulative error in each step of training. After calculation of dielectric constant values 

with PINN, all models have shown consistent behaviour; however, the Dobson model has 

the largest soil moisture estimate deviations, especially in medium to high soil moisture 

values due to lack of distinction between bound and free water in Dobson modelling. 

In Section 7.2, a more detailed investigation for different soil dielectric constant models 

has been studied with definition of four soil texture classes. For class 1 and class 2 with 

sand percentages lower than 50%, Hallikainen and Dobson models have the best results. 

Because Hallikainen and Dobson models were developed on datasets with sand 

percentages lower than 50%. In addition, for class 3 and class 4 with sand percentages 

higher than 50%, Wang model has better results with comparison to Dobson model since 

Wang model was originated on datasets with higher ranges than Dobson and not only 

sand percentages lower than 50%. This shows the importance of suitable reference 

databases on soil dielectric constant modeling development. Since these models 

originated from limited numbers of soil data field, development of a new soil dielectric 
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constant model for GNSS-R applications is worthwhile. Still, the Mironov model has the 

worst results for all classes due to limited soil texture data and more strict physics 

relationships. 
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8.      CONCLUSIONS AND FUTURE WORK 

 

This chapter provides the summary of the dissertation, as well as future work that can be 

continued in this research, as the proposed method for soil moisture retrieval still needs 

further improvements. 

 

8.1     Conclusions 

 

Soil moisture is an essential variable for understanding natural processes such as 

hydrology and meteorology. As reflected GNSS signals can be used as a remote sensing 

tool for soil moisture studies, the development of a model connecting soil moisture to 

reflected signal using PINN algorithm is proposed in this research. A sufficient GNSS-R 

soil moisture retrieval model should be capable of accounting for effective soil surface 

parameters such as vegetation, soil texture, surface roughness, and soil temperature. 

This dissertation proposed using a learning algorithm called the physics-informed neural 

network (PINN) for GNSS-R soil moisture retrieval considering all surface parameters 

impacting reflected signal. 

The use of reflected GNSS signals as sources of opportunity has been added to traditional 

remote sensing systems as a free, ubiquitous, and available technique. Reflected GNSS 

signals are related to more soil parameters than soil moisture alone. The relations 

between land surface parameters, soil moisture, and reflectivity are modelled through a 

PINN model. This study finds that PINN is capable of soil moisture estimation using 

GNSS-reflected signals in less data regimes due to additional physics knowledge. 

Therefore, the application of PINN is studied in this research as a new emerging approach 
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to model the relationship between soil moisture and GNSS-R signals offering: i) the 

addition of physics knowledge in the training process of NN, ii) convergence with less 

data, and iii) more investigations on different physical models impacts on soil moisture 

retrieval. 

The PINN algorithm has been designed to predict soil moisture estimates using both NN 

regression and inclusion of physical dependencies of soil and land surface parameters 

affecting the reflected signals. PINNs are useful for a wide range of tasks in computational 

physics and engineering (Raissi et al. 2019; Mao et al. 2020; Cai et al. 2021; Guo et al. 

2023), where the goal is to model and understand physical systems using both data and 

knowledge of the underlying physics. They have the advantage of being flexible and 

expressive, while also ensuring that the solution is physically meaningful and consistent 

with known laws of physics. The PINN model still uses NN regression as part of the 

algorithm; thus, relevant datasets to fulfill both physical laws and NN were used. PINN 

uses two loss functions, one related to soil moisture calculated from NN regression and 

the other related to inversely calculated reflectivity calculated from physical relations.  

The main challenge in data preparation for PINN was bulk data processing of different 

datasets. For this reason, a free clouding platform called Google Earth engine was used.  

One of the main advantages of PINN over NN is its ability to converge over small data 

regime. In PINN, the addition of physics-based laws can improve generalization or 

regularize training. As suggested by previous works (Raissi et al. 2017; Karniadakis et al 

2021; Muther et al. 2022), PINN can be trained on less available data due to additional 

information acquired by imposing physical constraints. Here, PINN also has shown 

promising results with quite a smaller number of stations compared to some previously 
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published works that only used NN. In spite of the fact that the number of stations were 

low, PINN has been able to generate soil moisture estimates in an acceptable RMSE 

range with correlation coefficients higher than 80. PINN has been able to generate daily 

soil moisture estimates with a root mean squared error (RMSE) of 0.0547 𝑐𝑚3/ 𝑐𝑚3, and 

Pearson’s correlation coefficient of 0.82 which is an improvement from RMSE of 0.0707 

𝑐𝑚3/ 𝑐𝑚3 and Pearson’s correlation coefficient of 0.78 for the underlying NN model due 

to adding physical models. Imposed physical relations in PINN have improved RMSE 

from 0.0707 𝑐𝑚3/ 𝑐𝑚3 to 0.0547 𝑐𝑚3/ 𝑐𝑚3. The performance of PINN is compared with 

NN for the same data sets (see Table 6.2) in Section 6.1. As a result of the addition of 

physical modeling, PINN has improved upon NN despite relatively low number of stations. 

PINN has been able to provide promising soil moisture estimates with CYGNSS data with 

a more physically robust model in less data regime. Since RMSEs of not higher than 

around 0.052 are required for L-band microwave satellite-based soil moisture products 

(O'Neill et al. 2021), the 2% difference between NN’s RMSE and PINN’s RMSE can be 

substantial.  

PINN results also remain stable while changing NN structure. The RMSE and correlation 

coefficient variations after switching from a two-layer to a three-layer NN are around 

0.0047 and 0.03 for PINN, respectively. PINN metric variations are lower than NN metric 

variations when changing NN layers. For instance, the correlation coefficient of NN has 

changed around 0.13 after switching from a two-layer NN to three-layer NN which is 

almost four times higher than PINN correlation coefficient changes. In addition, the RMSE 

of NN has changed around 0.067 after switching from a two-layer NN to a three-layer NN 

which is almost 1.4 times higher than PINN RMSE changes. Changing the number of 
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layers affects NN more than PINN since the PINN model is more robust in comparison 

with NN. In addition, PINN results remain steady after changing train test ratios. The 

addition of physics relations to NN strengthens PINN design to have more stable results. 

Subsection 6.1.1 contains PINN results compared to NN for different structures. PINN 

results remain stable after changes in number of layers and NN structure. 

PINN is also sensitive to different land covers and physical characteristics. Three land 

cover categories including grasslands, mixed grassland and cropland, and croplands 

were used to inspect PINN performance depending on land cover properties. Because 

physical models used in PINN follow coherent reflection conditions, as incoherency 

characteristics such as vegetation increase, PINN results worsen. Therefore, the best 

results are for the grasslands that have less vegetation, and the worst results are related 

to croplands with the highest vegetation. 

As a consequence, by incorporating physical principles and governing laws into neural 

networks in this research, PINN offers following:  

- Physically and scientifically consistent GNSS-R soil moisture retrieval models.  

- Increase data efficiency as models can be trained with less data compared to 

neural networks owing to inclusion of physical relationship.  

- Improve steadiness of models as PINN remains cohesive even after changing NN 

structures.  

- Enhance interpretability, for example relating results to physical properties of soil 

such as land cover.  

One of the most important parts of physical dependencies between soil moisture and 

signal power is soil dielectric constant models. Soil dielectric constant models reflect the 
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relationship between soil moisture and soil permittivity. Multiple soil dielectric constant 

models exist as discussed in section 3.2. Four soil dielectric constant models used in this 

research are Dobson, Hallikainen, Mironov, and Wang models. The PINN model was 

tested with all these four soil moisture dielectric constant models. The Hallikainen model 

has the best results with Pearson’s correlation coefficient (R) of 0.94, RMSE of 0.0478 

and ubRMSE of 0.0473. The Mironov model has the worst results with Pearson’s 

correlation coefficient (R) of 0.81, RMSE of 0.0687 and ubRMSE of 0.0685. Wang and 

Dobson models have the second and third place, respectively. The Wang model has 

Pearson’s correlation coefficient (R) of 0.92, RMSE of 0.0509 and ubRMSE of 0.0499 

and the Dobson model has Pearson’s correlation coefficient (R) of 0.86, RMSE of 0.0568 

and ubRMSE of 0.0560. The RMSE and correlation coefficient variance between the best 

model (Hallikainen) and the worst model (Mironov) are around 0.0209 and 0.13, 

respectively (see Table 7.3). These differences while applying different soil moisture 

dielectric constant models confirm the importance of choosing an appropriate soil 

moisture dielectric constant model in PINN modelling. For example, when using PINN 

algorithm, the Mironov model with RMSE of 0.0687 and ubRMSE of 0.0685 is not 

recommended, while Hallikainen model with RMSE of 0.0478 and ubRMSE of 0.0473 is 

sufficient to be used. This is due to the accepted ranges for RMSE and ubRMSE for soil 

moisture retrieval application (Colliander et al. 2017). As an example, SMAP mission 

requirements for 36-km and 9-km soil moisture products require ubRMSE and RMSE of 

no more than 0.04, and 0.052, respectively (O'Neill et al. 2021). For GNSS-R mission, 

there has been some discussion regarding the acceptable values of RMSE and ubRMSE 

(Eroglu et al. 2020; Senyurek et al. 2020; Jia et al. 2021) which accepts higher values of 
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RMSE and ubRMSE. In CYGNSS and GNSS missions, soil moisture retrieval was not 

planned initially, so calibration of data for soil moisture studies is required in order to 

improve results and RMSEs as low as 0.04 may not be met. Therefore, RMSEs higher 

than 0.04 have also been accepted (Eroglu et al. 2020; Senyurek et al. 2020). 

Section 7.1 explains that Hallikainen model surpasses other models due to less rigidity 

and less cumulative errors. The Hallikainen model is the simplest model and in contrast 

to other models does not include secondary defined coefficients. For models like Mironov, 

many coefficients are included in the model. These refractive coefficients need to be 

calculated in each step of training leading to cumulative errors. Also, the Mironov model 

only considers clay percentage data and ignores sand percentage and soil temperature. 

Consequently, sand percentage and soil temperature should be included in modelling. 

In Section 7.2, different soil texture classes are defined to understand different soil 

dielectric constant model’s behaviour in PINN algorithm and check PINN’s sensitivity to 

soil texture as a physical property. These classes of soil texture are as follows: 1) Class 

1 consists of sands at or below 50% and clay at or below 20%, 2) Class 2 consists of 

sands at or below 50% and clays at or above 20%, iii) Class 3 has a sand percentage of 

over 50% and a clay percentage of over 20%, and iv) Class 4 has a sand percentage of 

over 50% and a clay percentage of over 20%. Still, the Hallikainen model has the best 

results and Mironov has the worst results. However, for class 1 and 2 Dobson model 

excels Wang model. The Dobson model was developed on datasets with sand 

percentages lower than 50%. Owing to the fact that class 1 and class 2 soil texture 

classes also have soil sand percentages lower than 50%, the Dobson model has a better 
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outcome than Wang model for these two classes. However, for class 3 and class 4 Wang 

model has better results with comparison to Dobson models.  

Although PINN has been able to generate daily soil moisture estimates in an incomplete 

model (Uncertainties in semi-empirical models), imperfect data and small data regime, 

enhancement of PINN model needs further studies in near future. Consequently, the 

proposed PINN algorithm should be further developed as understanding between physics 

relations of parameters improves. Subsequently, modifying soil moisture dielectric 

constant models to improve uncertainties in physics of problem can be contemplated for 

future work. Some future works suggestions can be found in the following section. 

 

8.2     Future work 

 

PINN algorithm has the following advantages in soil moisture studies using CYGNSS 

data: (i) PINN model has been able to successfully estimate soil moisture using CYGNSS-

based reflectometry data with less data than previous research owing to physics 

dependencies of parameters. (ii) The PINN model is sensitive to physical parameters 

such as land cover and vegetation, soil dielectric constant models, and their soil texture 

parameters. (iii) The PINN model is a scientifically consistent GNSS-R soil moisture 

retrieval model due to embedding physical constraints between parameters. And iv) PINN 

models’ performance remains sturdy with different structures of NN due to additional 

physics.  

Despite the fact that PINN has presented promising results, the PINN algorithm suffers 

from the following disadvantages: (i) The PINN is a combination of both NN and physics 

models; hence, a strong NN structure is still needed. Thus, all practices related to NN 
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optimization such as optimization function, loss function choice and more still should be 

done. These practices can be time-consuming, and the final choice is not always the best 

suggestion. (ii) The PINN is dependent on initial soil moisture data like NN algorithms. 

High numbers of soil moisture data are still needed as reference data. (iii) The proposed 

method was only applicable for coherent reflections, as physics models respectful to 

coherent reflections have been used. The PINN algorithm deserves further improvements 

for more diverse stations in terms of land cover and vegetation. And (iv) The physics 

model for inverse calculation of reflectivity is dependent on experimental soil moisture-

dielectric constant models which were originated based on the in-situ measurements of 

microwave frequency waves rather than a satellite remote sensing technique. Because 

soil dielectric constant models are not customized for GNSS-R, the process consistently 

contains unexpected errors in conversion. Empirical parameters of soil moisture dielectric 

constant models should be modified in GNSS-R applications, especially in PINN 

algorithm.  

With consideration of PINN algorithm advantages and disadvantages, future work is 

required to improve the current PINN model’s performance in the following directions. 

i) The PINN algorithm has a good performance for ISMN stations, while its 

performance for larger areas is unclear. The generalization ability of PINN model 

needs to be further investigated for larger number of stations and global scale. 

The proposed methodology is only applicable to coherent reflection conditions due 

to the coherent reflection assumption. The effects of other error sources are 

reduced, e.g., resolution error in stations with non-homogenous land cover over 

4km x 4km grid and complexity of electromagnetic physics models in incoherent 
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reflections in our PINN methodology with the coherent reflection assumption. This 

simplification enables PINN accuracy assessment without concern for additional 

possible error sources especially in incoherent reflection cases. In addition, as 

suggested by (Chew et al. 2016; Nghiem et al. 2017) most of reflections from land 

are coherent. However, the application of PINN should be further studied for 

reflections with incoherent characteristics. Since our physics model obeys 

coherent reflection rules, stations with high vegetation and roughness that have 

more incoherent characteristics in their reflections were not added and studied in 

this research. 

ii) The PINN algorithm consists of both NN regression and physical models. As 

physics relationships in GNSS-R modeling develop, the PINN model can be 

improved in further studies. Development of electromagnetic relations for more 

incoherent characteristics has been challenging in GNSS-R community. As 

physics understanding and models between soil moisture and dielectric constant 

improves, the PINN model can become stronger and more ubiquitous. 

Development of PINN algorithms after improvement of physical relationships can 

be further studied as knowledge in physical relationship between soil moisture and 

GNSS-R signal enhances. 

iii) The main benefit of PINN is the addition of physics laws because neural networks 

neglect analytical/empirical physics relationships. PINN reduces the search space 

and convergence to an answer faster due to additional physics. However, 

convergence is not always improved by addition of physics relations in PINN. 

Inclusion of physics in PINN may restrict the training process. While addition of 
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physics analytical equations decreases the space of acceptable solutions, it also 

narrows the training of the network naturally (Rohrhofer et al. 2023). Training a 

physics-informed neural network is a multi-objective optimization problem and 

conflicting objectives is one of the main issues complicating training (Rohrhofer et 

al. 2023; Maddu et al. 2022). Scale imbalances between different loss functions 

can cause conflicts and worsen convergence. Different methods have been 

proposed to solve convergence and training issues in PINN research. For 

example, weighting loss functions either manually or with adaptive weights, which 

adjust weights for different loss functions during training (Cai et al.2021; Jin et al. 

2021; Maddu et al. 2022) or working with more smooth activation functions such 

as self-scalable activation function for scale imbalances (Gnanasambandam et al. 

2022). Choosing suitable weights for different loss function objectives can control 

stiffness of physics involved and improve PINN performance. Since this research 

was the first practice of PINN in CYGNSS soil moisture estimation, to the author’s 

knowledge, the application of PINN was explored and tested without including 

extra improvement strategies such as weighted sum of loss functions. Here, 

reflectivity loss function coming from physical dependencies of parameters 

inherently has a lower weight than soil moisture loss function coming from NN 

regression balancing the stiffness of physical model; however, it is possible to 

investigate different weights for physics related loss functions and explore their 

results. 

iv) Soil moisture dielectric constant models were developed from a small number of 

soil fields with in-situ measurements. In Chapter 7, it is shown that Hallikainen and 
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Dobson models have the best results for datasets with sand percentages lower 

than 50% while Wang model has better results for datasets with sand percentages 

higher than 50% in comparison with Dobson model. This illustrates the importance 

of appropriate reference databases when developing soil dielectric constant 

models. Because Dobson model was developed on soil data with sand 

percentages lower than 50% and Wang model was developed on a larger dataset. 

GNSS-R soil moisture studies applications can benefit from a new soil dielectric 

constant model developed from larger satellite remote sensing data rather than 

few in-situ soil data fields.  

v) Both empirical and semi-empirical soil moisture dielectric constant models were 

originated for different purposes other than GNSS-R applications. Uncertainty and 

errors in these models’ empirical parameters are constantly added to PINN 

algorithm. Soil moisture dielectric constant models need to be modified by 

modification of empirical parameters with GNSS-R data for reflectometry 

applications. Soil moisture products from GNSS-R data can be considered as a 

new source to calibrate and modify soil moisture dielectric constant models. 
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