

Using K-means Clustering and Similarity Measure

to Deal with Missing Rating in Collaborative

Filtering Recommendation Systems

CHENRUI XIONG

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF ARTS

GRADUATE PROGRAM IN
INFORMATION SYSTEM AND TECHNOLOGY

YORK UNIVERSITY
TORONTO, ONTARIO

 JUNE 2017

ÓCHENRUI XIONG, 2017

	

	
	

ii	

Abstract

The Collaborative Filtering recommendation systems have been developed to address the

information overload problem and personalize the content to the users for business and

organizations. However, the Collaborative Filtering approach has its limitation of data sparsity

and online scalability problems which result in low recommendation quality. In this thesis, a

novel Collaborative Filtering approach is introduced using clustering and similarity technologies.

The proposed method using K-means clustering to partition the entire dataset reduces the time

complexity and improves the online scalability as well as the data density. Moreover, the

similarity comparison method predicts and fills up the missing value in sparsity dataset to

enhance the data density which boosts the recommendation quality. This thesis uses MovieLens

dataset to investigate the proposed method, which yields amazing experimental outcome on a

large sparsity data set that has a higher quality with lower time complexity than the traditional

Collaborative Filtering approaches.

	

	
	

iii	

Acknowledgements

Many people have helped me along the road to completing this Master Degree. First and

foremost, I would take this opportunity to express my greatest appreciation to my supervisor Dr.

Zijiang Yang, who has guided me to develop as a professional researcher and to strength my

personality. Dr. Zijiang Yang has supervised me through the whole study of my Master program

with her extensive knowledge and patient guidance. In my last year, she spent great efforts and

time to help me during the thesis writing with the enthusiastic encouragement and constructive

suggestions.

More, I would like to extend my gratitude to the entire faculty in the School of Information

Technology for their support, and thank all staff in School who had offered support and

assistance to my study. Special thanks go to Dr. Jimmy Huang, who kindly offered to review my

proposal and gave me his valuable advices on how to improve my thesis.

Finally, I want to give my sincerest thanks to my parents, who have loved me

unconditionally and provided much encouragement to me. Many thanks also go to my cousin

Tyrone Xiong who offered insight and gave me another prospective on my research topic by

working together for the recommendation system project. And I would like to thank my friend

Ke Hu, Xing Tan and James Li for their kind support.

	

	
	

iv	

Table of Contents

Abstract ...ii

Acknowledgements ..iii

Table of Contents ..iv

List of Tables..ix

List of Figures...x

Chapter 1 Introduction..1

1.1 Motivation.. 1

1.2 Problem Definition...5

1.3 Significance... 7

1.4 List of Contribution..8

1.5 Thesis Outline…………………………………………………………………...…….9

Chapter 2 Literature Review ...10

2.1 Memory-based Collaborative Filtering..11

2.2 Model-based Collaborative Filtering..17

2.3 Hybrid Collaborative Filtering..20

2.4 Similarity Measure……………………….……………………………………………22

	

	
	

v	

Chapter 3 Techniques………………...25

 3.1 Clustering Methods.. 28

3.1.1 Search-based Clustering... 29

3.1.2 Model-based Clustering………………………………………………...……….30

3.1.3 Center-based Clustering………………………………………………………....32

 3.1.3.1 K-means Clustering………………...……………………...………...….…32

 3.1.3.2 Optimal Cluster and Initial Centroids……………..........……………….….34

3.2 Similarity Measures.. 36

3.2.1 Pearson Correlation Coefficient.. 36

3.2.2 Cosine Similarity..37

3.2.3 Adjusted Cosine Similarity………………………...……………………………39

3.2.4 Distance Measures……………………………………………………………....40

3.3 Neighborhood Selection.. 40

3.3.1 Pre-filtering of Neighbors..40

 3.4 Prediction Computation..42

 3.4.1 Weighted Sum Prediction……………………….……………………………….42

 3.4.2 Average Prediction……………………………………………………...………42

	

	
	

vi	

Chapter 4 Proposed Methodology..44

4.1 K-means Clustering Algorithm.. 46

4.2 Similarity Calculation...48

 4.3 The Off-line Process ……..49

 4.4 Similarity Measure Selection …...50

 4.5 Prediction Computation..50

 4.6 Neighbour Determination and Selection...51

 4.7 Methodology Implementation …………………………………………………….….52

Chapter 5 Results and Discussion .. 54

 5.1 Data Overview …………………………………………………………………….….55

 5.1.1 Exporting the Rating data.. 57

5.2 Evaluation Metrics...60

 5.2.1 MAE and RMSE.. 61

5.2.2 Precision, Recall and F1 Score...62

 5.3 Computing Environments…………...63

 5.4 Improving the Recommendation Quality..63

 5.4.1 Missing Value Prediction..64

	

	
	

vii	

 5.4.2 Neighbour Selection... 67

 5.5 Recommendation Online Scalability...69

 5.5.1 K-Means Clusters Selection..69

 5.6 Recommendation Time Efficiency..71

 5.7 Overall Recommendation Accuracy…..72

 5.7.1 Recall and Precision……..72

 5.7.2 The F1 Score ……..76

Chapter 6 Conclusion ..79

6.1 Conclusion.. 79

6.2 Future Work...81

Bibliography..82

Appendix Coding Reference..91

A. Clustering………………………...91

B. Similarity Calculation..95

C. Evaluation…………………………………..98

D. Graph Generation……………...102

 E. Main Function………………………...103

	

	
	

viii	

 F. Non-clustering method………………………………..118

	

	
	

ix	

List of Tables

Table 1. The User- Item Rating Matrix... 49

Table 2. The Rating Matrix after Missing Value Prediction... 51

Table 3. u.item and u.genre.. 56

Table 4. u.user and u.occupation.. 56

Table 5. Rating table u.data.. 57

	

	
	

x	

List of Figures

Figure 1. Cisco Forecast Report...3

Figure 2. Item-to-Item approach.. 16

Figure 3. K-means Clustering.. 33

Figure 4. K-means Algorithm.. 34

Figure 5. Cluster Center Algorithm.. 35

Figure 6. Cosine Similarity……………………... 38

Figure 7. Recommendation Approach Flowchart... 46

Figure 8. Item Clustering Algorithm………………….. 47

Figure 9. Figure 9 (a), (b) Rating Distribution. …………………………...............................58

Figure 10. Average Rating (a), (b) ..59

Figure 11. Heat-map of rating Matrix ...60

Figure 12. The MAE rate on varying Matrix Density ...65

Figure 13. The RMSE rate on varying Matrix Density..65

Figure 14. The Density MAE Comparison..66

Figure 15. MAE on optimal number of Nearest Neighbours...68

Figure 16. RMSE on optimal number of Nearest Neighbours...68

	

	
	

xi	

Figure 17. MAE of K-means Clusters..70

Figure 18. RMSE of K-means Clustering..70

Figure 19. K-means Clustering Compared to Traditional method...71

Figure 20. The Recall rate of List Range 50 – 500...73

Figure 21. The Comparison of Proposed method to Traditional method..................................74

Figure 22. The Precision rate of List Range100-1000..74

Figure 23. The Precision Comparison on List 100...75

Figure 24. The F1 score..76

Figure 25. F1 score Comparison to the Traditional method..77

	

	
	

1	

Chapter 1. Introduction

A recommendation system has become a vital and necessary component for many web

applications nowadays, and there is an increasing demand for delivery time efficiency and high-

quality prediction by the users. In real-life application, millions of users and Exabytes of data

have resulted in data sparsity, online scalability and time-complexity problems to build high

performance recommendation systems. This thesis is concentrated on solving these problems.

The proposed methodology is applied in a Collaborative Filtering Recommendation system to

address user-item matrix sparsity problems, which improves recommendation accuracy and

speed. The proposed methodology can also be applied to other recommendation systems in

which the dataset is sparse.

1.1 Motivation

A recent statistical report states that the total number of indexed World Wide Webpages has

reached 4.25 billion (World Wide Web Size 2016 [1]) and the number of internet users is 3.6

billion (Cisco Forecast Report，2016 [2]) in 2016. The Internet has become an integral part of

the daily life for many people. People shop, consume, entertain and study online. By way of

	

	
	

2	

illustration, it is said that users generate over 4 million posts on Facebook every minute,

Instagram users click 100 million “likes” per hour (G. Simos, 2015 [3]), and 497 million

products have been sold online by Amazon (Amazon，2015 [4]).

Obviously, the volume of data is incredibly large and is continually growing at a high rate.

In fact, the current Cisco Visual Networking Index (VNI) forecast projects that global data

volume will nearly triple from 2015 to 2020 (Cisco Forecast Report，2016 [2]). However, this

myriad of information has brought an information overload problem. To discover the needed

information from the massive amount of data available poses a significant challenge. Today,

tools like search engines, portal websites and social media outlets are the primary ways in which

people can obtain information faster and more easily. Nevertheless, locating the required object

from hundreds of relevant items can always be time-consuming. Recommendation Systems have

been developed in order to solve this problem. Recommendation System is a subclass of the

information filtering system seeking to predict the ‘rating’ or ‘preference’ that a user would give

to an item (such as movie, music etc.) or social media (e.g. people or organization) (F. Ricci, L.

Rokach and B. Shapira, 2010 [5]). It aims to address the information overload problem and

personalize the content or item to the user. However, the RS is not only designed to find what the

user is looking for, it will also discover the user’s potential interests.

	

	
	

3	

Figure 1. Cisco Forecast Report 2015 [2]

Recommendation systems have been considered an independent research discipline since the

1990s when the study team GroupLens at the University of Minnesota launched the GroupLens

system in 1994 (P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom,and J. Riedl, 1994 [6]).

Based on how recommendations are generated, recommendation systems can usually be

classified into three categories: Content-Based Filtering (CBF), Collaborative Filtering (CF), and

Hybrid Filtering (HF). Each category has its own special features and purpose. The CBF method

extracts features to build user profiles in order to find similar items in the user’s history. While

CBF always recommends similar items, one of its limitations lies in the fact that it lacks novelty.

The CF method suggests new items or predicts the utility of a certain item for a particular user

based on his/her historical likes and the opinions of other like-minded users. While both CBF

and CF approaches have their own advantages, both fail to provide quality recommendations

under specific conditions. The HF method integrates and optimizes the advantages of several

recommendation methods while reducing the disadvantages of either single approach.

Currently, recommendation systems are becoming a standard component of commercial

websites with the dual purpose of helping the users explore their interests, and also help

0

50

100

150

200

250

2015 2016 2017 2018 2019 2020

Exabytes	
Per
Month

	

	
	

4	

businesses drive more sales. This second goal is critical because research shows that 80% of

sales come from 20% of the most popular products, an occurrence known as a ‘long tail

phenomenon’ (C. Anderson, 2006 [7]). The existence of such a significant proportion of low-

volume products indicates the massive increase in profitability available to the business if they

can find a way to sell more of them. The advantage of CF method is that it recommends interests

that the user may have not discovered yet based on his/her previous history and the similar styles

of other users. The CF method can be further sub-divided into two types: the memory-based

approach and the model-based approach. The memory-based approach calculates the user or

item’s previous rating data, whereas the model-based approach uses data mining algorithms to

find patterns based on the user’s behavior history data, which can be either explicit or implicit

(P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom,and J. Riedl, 1994 [6]). Explicit ratings

include user reviews, opinions, and rating scales between 1 and 10. Implicit ratings are the

interaction data between the user and website, usually including web clicks and stay time.

Data input into recommendation system is varied. In general, the data can be categorized

into three categories: user profile such as name, address, and age; item profile such as description,

price, and picture; and reviews such as “likes,” ratings, or written. These categories correspond

to the row, column, and element in an m*n matrix, which is used to determine the relationship

between users and items. The m*n matrix has “m” number of users and “n” number of items.

Rmn means user “m” has rated item “n.”

Amazon extensively uses a unique recommendation system to personalize recommendations

for the user, since traditional Recommendation system cannot scale to Amazon’s massive user

and product database. They utilize their own algorithm called Item-Based Collaborative Filtering,

which calculates the similarity of items and builds a product-to-product matrix; whenever a user

	

	
	

5	

purchases or views a product, Amazon recommends similar items from the product-to-product

matrix. Additionally, on the front page the user will find lists of products titled “You viewed”

and “Customers who viewed this also viewed.” According to scientist Greg Linden’s blog, 35%

of Amazon’s sales come from its recommendation system (B. Sarwar, G. Karypis, J. Konstan

and J. Riedl, 2001[8]) which indicates its significant success.

Netflix began as a DVD-by-mail rental service and grew to a global online movie and

television provider. As the world’s largest online movie provider, Netflix has a wide range of

selections to provide to the users by a recommendation system. They rely heavily on

recommendation technologies to drive customer selections; approximately 60% of its subscribers

select their movies through the recommendation list. In order to achieve a better recommendation

result, Netflix held an open competition from 2006 to 2009: The Netflix Prize for the best CF

algorithm to forecast user ratings based on user history. The prize worth USD 1 million was

based on the improvement of Netflix’s Cinematch recommendation systems (J. Bennett and S.

Lanning, 2007 [9]). In 2007, over 20,000 teams attended this event from over 150 countries and

2,000 teams submitted over 13,000 predication sets. (F. Ricci, L. Rokach and B. Shapira, 2010

[5]).

1.2 Problem Definition

Producing high quality recommendations, performing many recommendations per second

for millions of users and items, and achieving high coverage in the face of data sparsity are the

key challenges for recommendation systems (B. Sarwar, G. Karypis, J. Konstan and J. Riedl,

2001[8]). Although a memory-based approach has been widely implemented in recommendation

	

	
	

6	

systems, a number of problems still exist; typically, building up an efficient RS encounters

problems of dataset sparsity, cold-start, time efficiency, and scalability.

Of these, the key problem of memory-based CF approach is data sparsity of user and item

matrix. In many large scale e-businesses, both users and items are increasing fast. Hundreds and

thousands of items and users may not have any history to begin with, with little in terms of

correlation between them; i.e. most users belonging to the system have seldom used a new item

and most of the tags and items have been used or tagged by only a small subset of users.

Accordingly, the item and user matrix can be extremely sparse and the similarity and correlation

between objects could be zero. The data sparsity causes traditional recommendation systems to

be particularly sensitive to cold start problems (V. Zanardi, [10]). The cold start refers to user,

item, and system cold start problems. Recommendation systems require history data to start with,

but when a user registers with no data, the system basically knows nothing about the user.

Therefore, the recommendation system cannot present any personalized recommendations to this

user. Similarly, when a new item is added to the system with no rating or action data, it will not

be recommended to anyone. To deal with this problem, a website usually asks user to fill up the

personal information such as age, profession, and interests, or even allow users to log in through

their social media accounts to gather information to be able to start recommendations.

In addition, the fact that the size of the dataset continues to grow rapidly causes other

scalability and time efficiency problems. A scalable recommendation system is able to provide

the real-time recommendation; however, the growing volume of users and items makes the

calculation very time consuming and hampers scalability.

	

	
	

7	

1.3 Significance

Many researchers in academia and large business have long been dedicated to the

recommendation system field.

The Xerox Palo Alto Research Center first introduced the term “Collaborative Filtering” in

1992 which was developed to filter files (D. Goldberg, D. Nichols, B.M. Oki, and D. Terry,

1992, [11]). Resnick et al. (P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom,and J. Riedl,

1994 [6]) at the University of Minnesota and MIT proposed automatic recommendation system

GroupLens in 1994. This thesis is focused on the memory-based CF method. Although the

memory-based CF method has been very popular, some problems still impede its application

such as data sparsity in the user or item matrix. In other words, when users and items are

accumulated in the system quickly, there are not enough reviews to generate recommendations.

As a result, the unrated items cause the sparsity of user rating matrix, which affects the

recommendation quality; thus, the missing ratings need to be dealt with.

For the purpose of resolving the data sparsity problem to produce better recommendations,

Breese et al. (J.S. Breese, D. Heckerman,and C. Kadie, 1998 [12]) applied Bayesian network.

Schafer et al. (J.B. Schafer, J.A. Konstan, and J. Riedl, 2001 [13]) used neural network to

achieve better performance. E-business leader company Amazon proposed an “item-based

Collaborative filtering” method in order to scale the very large customer-based retailer (G.

Linden, B. Smith, and J. York, 2003 [14]).

After careful study, this thesis integrates the clustering algorithm and similarity measure to

predict the missing ratings. First, the clustering method is used to group similar users and items

into groups. Then, only the most relevant users or items in the same group will be used to make

	

	
	

8	

rating predictions, which improves time efficiency significantly. Additionally, this thesis

compares the similarity between users and items to determine whether user or item information

should be used to predict the missing ratings. If the similarity between users is greater than that

between items, the user information will be used to make the prediction and vice-versa. The

proposed method is applied to a MovieLens dataset. Experimental results show that the proposed

method can speed up the recommendation significantly and produce a better recommendation

quality.

1.4 List of Contribution

The contributions of this thesis are provided below:

• Time efficiency: K-means clustering is applied to the dataset, which will speed up the later

calculation. The dataset will be divided into smaller clusters and the similar data will be

gathered into one cluster. The similarity calculation will be processed in each cluster instead

of the whole dataset to search similar items or users, which could save a significant amount

of time.

• Improve online scalability: An excellent and scalable recommendation system is able to

provide the real-time recommendation to the users. Applying a clustering method could

increase the system online scalability and decrease the processing time.

• Improve prediction quality: The pre-calculated similarity is used to compare and determine

whether user-based or item-based criteria will be used for the rating forecast, which will

improve the prediction quality.

	

	
	

9	

1.5 Thesis Outline

This thesis is organized into the following chapters:

Chapter 2 - Discusses the Recommendation literature, different solutions to address the data

sparsity, cold start, online scalability and time complexity problems, and how data mining

technologies used to improve the recommendation systems. Chapter 3 - Defines relevant

technologies applied to recommendation system, K-means clustering and several of similarity

measurements. Chapter 4 - Proposes a rating prediction collaborative filtering approach. The

clustering technique will be applied to the dataset first, and then the similarity for both user and

item will be calculated and compared in each cluster. Finally, the rating for unrated item will be

predicted based on the similarity result. Chapter 5 - Introduces the MovieLens data sample,

presents the optimal clusters, best neighbour numbers and comparison of the missing value

prediction method to the non-prediction method, discusses the observed advantages and

limitations of the proposed methodology. Chapter 6 - Concludes the thesis and discusses

possible future work.

	

	
	

10	

Chapter 2. Literature Review

The field of Recommendation Systems has been studied for over a decade, with several

proposed techniques already being implemented into real world applications. Based on recent

researches, recommendation systems can be categorized into two groups, the Collaborative

Filtering recommendation system and the Content-based ones (A.S. Das, M. Datar, A. Garg,

and S. Rajaram, 2007 [15]). The content-based approaches recommend similar objects based on

users’ past experience and extracted object’s content profiles. However, content extraction from

objects like movies, music, and videos is a very challenging and time-consuming task. Therefore,

collaborative filtering, which is based on past ratings, does not require any content information

from neither the user nor the item itself. One of the notable CF advantages is that they can

consider profiles from other users for producing the requested personalized recommendation

unlike the content-based methods that produce similar items only. In this section, a review of CF

approaches will be conducted.

The term ‘Collaborative Filtering’ was firstly introduced in an email handling system called

Tapestry in 1992 at the Xerox Palo Alto Research Center. The system was developed in order to

receive and filter files and documents arriving in a continuous stream. The primary innovation

	

	
	

11	

was that the filter queries had predictable semantics (D. Goldberg, D. Nichols, B.M. Oki, and D.

Terry, 1992, [11]). However, Tapestry was a manual filtering system that required human

intervention to produce the required recommendations. Two years later, (Resnick et al. P.

Resnick, N. Iacovou, M. Suchak, P. Bergstrom,and J. Riedl, 1994 [6]) from the University of

Minnesota and MIT introduced a Netnews system, namely the GroupLens, which was an

automated recommendation system utilizing Nearest Neighbor Collaborative filtering method for

helping users make selections based on other people’s opinions. An additional innovation was

the proposed rating system that allowed users to rate other’s messages allows the query engine to

compare and make suggestions according to these ratings. This concept is considered the

foundation of modern Collaborative Filtering and is used until today.

2.1 Memory-based Collaborative Filtering

Based on a popular previous research, there are two general classes for the CF approaches:

Memory-based Collaborative Filtering and Model-based Collaborative Filtering systems (B.

Sarwar, G. Karypis, J. Konstan and J. Riedl, 2001[8]). The Memory-based Collaborative

Filtering can be defined as an approach that exploits the entire user-item data matrix to generate

the predictions. Usually, these systems tend to seek for groups of similar items or users who

bought or rated similar or even the same items, known as the neighbor-based methods, with the

most popular algorithms being the Top-N and the kNN ones. Memory-based methods also

known as user-based collaborative filtering are found mostly in the recommendation field. The

memory-based CF method is widely used and successful, becoming popular due to its features

that do not require additional user or item information since it produces the personalized

	

	
	

12	

recommendation solely by the user’s interests. However, it suffers also from several

shortcomings, such as the cold-start, the data sparsity and scalability.

Based on previous research, the user-based methods are helpful in addressing the cold-start

problem, considering the stereotype that a user may like an item also liked by someone’s profile

similar to his. To address this, it firstly applies a nearest neighbor to the user’s profile,

considering each user’s profile as a vector, and then by cross-referencing the user’s vector

similarities against the other user’s vectors. The k Nearest Neighbors (kNN) is the most popular

and efficient algorithm used in the CF field. The kNN is an algorithm that determines the

“closeness” between objects based on certain similarity measures. The calculation process

usually involves the similarity computation between two users, a and b, based on their user item

ratings. Similarly, the item based kNN version calculates the similarity between two items x and

y based on the ratings. The user-based CF by using kNN algorithm uses the following three steps

for the final recommendation (S.K. Tiwari and S.K. Shrivastava, 2015 [16]):

(i) Selected similarity measure produces a set of similar user a. The k neighbors of user a are the k

similar users to user b.

(ii) Next, one of the following approaches is selected in order to obtain the prediction of item x on

user a: the average, the weighted sum and the adjusted weighted aggregation (deviation-from-

mean).

(iii) Selection of the top-n recommendations (items or users)

Algorithms like the kNN utilize the entire dataset of user or item preferences when

generating the recommendations. These algorithms are easy to implement with a low training

cost. However, the online performance tends to be slow as the size of the user and item sets grow

	

	
	

13	

larger making the algorithms unsuitable for large datasets. Moreover, since the Top N relevance

is based on a large number of users, the user calculation computational cost is significantly

increased. Sinha and Swearingen（R.R. Sinha, and K. Swearingen, 2001 [17]） proposed a

method to reduce the user calculation range by only targeting at the user’s friend circle since

people are likely to favor items liked by their friends influenced mostly by their social circle

compared to the quality of recommendations made by the total users. During this study, 19

college students were invited for a survey, where each one should pick either three book or

movie systems, as well as evaluate recommendations made from their friends. Comparing

Amazon, Sleeper, RatingZone Quick Picks, Reel, MovieCirtic and Friends recommendation

results showed a 20% better recommendation performance when friends are considered

compared with conventional systems.

In early days, identifying the user’s friends in the internet was challenging, however, current

social network websites make such gathering information possible. In web-based social networks,

the relationship status between the users can also define their similarity. Therefore, Al-

Sharawneh and Williams (J.A. Al-Sharawneh, and M. Williams, 2010 [18]) proposed a

method that relies primarily on people’s trust in social network for making recommendations. In

addition, advice from trusted experts leads to better recommendations improving prediction

quality. The proposed approach generates recommendations based on leader’s credibility in a

“follow the leader” model of Top-N recommenders by incorporating social network information

into a user-based CF approach. This is achieved by firstly extracting the website social

network’s trust information and then a clustering technology is applied to the user’s relationship

database. By testing this approach in three datasets, results showed that a leader based clustering

method was highly effective, providing high accurate predictions.

	

	
	

14	

Today, privacy issues on the internet are of everyone’s main concern. Thus, collecting

sensitive information from people’s social network is challenging. However, user-based CF

approach requires a quite complete historical dataset to meet its good recommendation

accuracies. To help starting with the new users without historical data, Amatriain, Lathia, and

Pujol (X. Amatriain, N. Lathia, JM. Pujol, H. Kwak, and N. Oliver, 2009 [19]) presented a

novel recommendation method based on external expert’s opinions. The authors found that a

considerable error in explicit feedback based CF approach was prominent to the user’s explicit

feedback noise. Therefore, they used an independent dataset completed with expert’s information

instead of applying nearest neighbor algorithm on the user’s rating data. The experts and their

information are selected from independent expert sources with at least certain amount of ratings.

Afterwards, a similarity matrix of the expert dataset is created between each user. Based on

experimental results, the proposed method addressed some of the shortcomings in traditional

Collaborative filtering approach such as the cold-start, privacy and data sparsity.

Konstan, Miller, Maltz, Herlocker, Gordon, and Riedl, (J.A. Konstan, B.N. Miller, D.

Maltz, J.L. Herlocker, L.R. Gordon, and J. Riedl, 1997 [20]) from GroupLens indicated that

users need certain history ratings to start the prediction. However, royal users may abandon the

system when receiving only a fraction of the articles that they had read previously. Moreover,

without any recommendations many users abandoned the system before providing a rating

feedback. To address this data sparsity and cold-start issues, where no history data is available to

start with, they proposed a method of providing average ratings for all the users, by a

combination of implicit ratings and filter-bots, which reduced the effort. The lack of rating

affected also the cold-start and sparsity difficulties, reducing the quality of recommendation

results.

	

	
	

15	

Since the user-based CF approach has attained a great success in recommendation system, it

has also been widely used in many commercial websites. However, the tremendous growth of

users in recent years introduces big challenges for the current recommendation systems.

According to amazon’s report, active users have reached 240 million in 2014 (C. Smith, 2014

[21]). Therefore, Sarwar, Karypis, Konstan and Riedl (B. Sarwar, G. Karypis, J. Konstan and

J. Riedl, 2001[8]) has proposed a novel recommendation technology that collaborate with very

large-scale user databases that can produce quickly high quality recommendations. Like the user-

based approaches, the item-based approaches use a user-item matrix to identify item

relationships and using these relationships to compute user predictions.

Item-based approaches predict the item rating based on similar items’ rating information.

These approaches are based on the assumption of content-based recommendation that a “user

may like a similar item as a one liked in the past”. For example, users who liked pizza may like

pasta. Unlike content-based approaches that use item profiles to make prediction, these approach

used item rating to make the prediction.

The first step of an item-based recommendation is the same as the user-based

recommendation that is to find the nearest neighbor. Every single item and its rating are

considered a vector compared to every other item for checking how closely they relate. The item-

based approach has some advantages as listed below:

• Easy to calculate, especially when the number of users are greater than the number of

items.

	

	
	

16	

• Easy to explain to the users why the system made this recommendation. Moreover, users

can simply change the recommendations by adding or deleting their history data on profile to

affect the recommendation results.

The two traditional memory-based collaborative filtering approaches are the user-based and

item-based methods by finding a group of similar users or items from a user-item matrix based

on rating and purchase history. Then, they match similar items that were rated and purchased by

each customer. For very large-scale datasets, similarity calculation is computationally expensive,

and thus the scalable recommendation system should perform this calculation offline. To meet

the short real-time response for users, developers at Amazon (G. Linden, B. Smith, and J. York,

2003 [22]) have proposed an item-based collaborative filtering method aiming at finding similar

items, which was different from the traditional methods which targeted similar users. Rather than

finding the similar customer with the same taste, the proposed item-item algorithm attempted to

find similar items instead, according to user’s rating and purchase history. The proposed

algorithm utilizes an offline item table that contains similar items. Thus, the algorithm is fast

especially for extremely large datasets.

Algorithm Item-to-Item apporch [22]
For each item in product catalog, I1
 For each customer C who purchased I1
 For each item I2 purchased by customer C,
 Record that customer purchased I1 and I2,
For each item I2
 Computer the similarity between I1 and I2

Figure 2. Item-to-Item Approach (G. Linden, B. Smith, and J. York, 2003 [22])

This method was used immediately by the very large customer-based retailers and favored

high-quality recommendations.

	

	
	

17	

2.2 Model-based Collaborative Filtering

In 1998 one of the earliest works on model-based approaches was by Breese, Heckerman

and Kadie from Microsoft (J.S. Breese, D. Heckerman, and C. Kadie, 1998 [12]), where they

evaluated and compared several algorithms on collaborative filtering approaches, including

correlation coefficients, vector-based similarity, clustering, and Bayesian methods. Moreover,

they presented some comparison results addressing the collaborative filtering scalability and

computational issues. This paper presents extensive results on test methods in several different

situations. Results showed that correlation and Bayesian networks present less advantages

compared over to other techniques when datasets have a low number of votes. Furthermore, they

concluded that only Bayesian networks require small memory sizes, and allow faster

predications compared with the correlation method of memory-based approaches. However,

Bayesian method requires several hours for the learning phase and requires re-building the model

in every update which is cost demanding.

Das, Datar, Gary and Rajaram from Google Inc. (A.S. Das, M. Datar, A. Garg, and S.

Rajaram, 2007 [15]) have used a clustering method to recommend news to the users. As the

number of users grew, Google News faced challenges for large and dynamic datasets, since

millions of users and their underlying item sets were continually updating. These rapid updates

made the system un-scalable and not efficient enough, which made the users no longer interested

in the item unless the model was updated before few hours. For those reasons, Google proposed

scalable collaborative filtering approaches which use three approaches: the MinHash clustering,

the Probabilistic Latent Semantic Indexing, and the co-visitation counts. Additionally, the system

	

	
	

18	

is able to provide instant user gratification feedback by verifying the user clicks. Experimental

results on real world datasets showed the improved scalability and efficiency in live traffic.

In order to maintain the scalability as the information updates very frequently, the

recommendation system must entail a low time complexity for the recommendation calculation

process. Clustering is a popular data mining method and has been used for scalability

improvement and processing time efficiency. However, the traditional clustering method creates

disjoint clusters or enforces the entire dataset partitioning. In order to diminish these issues,

Georgiou and Tsapatsoulis (O. Georgiou, and N. Tsapatsoulis, 2010 [23]) proposed a

clustering method inspired from genetic algorithms. The proposed method creates dense clusters

sharing common elements and converges rapidly even in very high dimensional spaces, allowing

larger cluster to overlap. In order to apply the genetic algorithm into the cluster, the optimal

measure of each string in the random population is firstly calculated. Secondly, genetic operators

corresponding to mathematical models of crossover and mutation are applied to population.

Finally, the new population replaces the old one. Based on results, their clustering method is

faster and more accurate compared to the classic one with significantly better recommendations.

The expectation for reducing the overall prediction and recommendation time is based on

the logical assumption that when training smaller datasets or clusters time will be less compared

with the case when the whole dataset is used for training. In 2009, Braak, Abdulah, and Xu (P.T.

Braak, N. Abdullah and Y. Xu, 2009[24]) clustered the user profiles to improve the model-

based collaborative filtering recommendation performance. The basic idea is partitioning the

training data into user-based profile clusters. Thus, the partitioned data will represent user

segments that are more concisely targeting similar users with an increased prediction speed and

without loss in accuracy. In simple terms, the partitions are defined as user interest groups, with

	

	
	

19	

the author introducing the notion of grouping similar movies into different genres for

determining user’s interest. The interest of user is defined by both the ratings and the viewing

habits. In data pre-processing steps, each movie has to be replaced by its genre and inherit its

rating into each genre. Once the genre interest is determined, the profile is used for clustering.

Results showed that the clustered training data had no impact on the accuracy of the

recommendation system and it allowed significant improvements in the processing time.

A Bayesian method has been studied and applied by many researchers in personalized

model-based collaborative filtering recommendations. Babas, Chalkiadakis and Tripolitakis (K.

Babas, G. Chalkiadakis, and E. Tripolitakis, 2013 [25]) proposed a novel Bayesian approach,

which uses a minimum set of ratings from various users to provide an overall recommendation.

They used a Bayesian analysis that contained labels from items without relying on others’ taste

by not attempting to predict user ratings, providing the ability to define multivariate Gaussian

dimensions that represent users. This method is well suited for sparse datasets, and can be used

as a “bootstrapping” tool providing recommendations until more data is available. After testing

this method on the MovieLens dataset, it performed better than methods utilizing other users’

ratings.

 Besides the clustering and Bayesian, other technologies have also been applied to

collaborative filtering recommendation systems. Aggarwal, Wolf, Wu and Yu from IBM Watson

Research Center (C.C. Aggarwal, J. L. Wolf, K. L. Wu, and P.S. Yu 1999 [26]), believe that

collaborative filtering represents a total different data mining problem. More precisely,

traditional data mining algorithms like clustering, and kNN do not seem to be appropriate in high

dimensionality, closeness measure and incomplete specification problems. To overcome these

problems, they introduced a new graphic-theoretic algorithm based on two novel concept

	

	
	

20	

approaches, namely the Horting and the Predictability. In the Horting technique each node

represents users and edges between nodes indicate the degree of similarity between them. The

similarity is calculated by measuring the nearby nodes to indicate the nearest user. The

difference from the nearest neighbor is that Horting technology may pass through other users

who have not rated the selected items. Results showed that this technology is fast, accurate and

scalable and it requires only a modest learning curve.

Then Zhou, Yang, and Zha (K. Zhou, SH. Yang, and H.Y. Zha, 2011 [27]) proposed a

novel cold-start recommendation method called the Functional Matrix Factorizations (fMF) that

addressed the initial interview construction within the context of user learning and item profiles.

The idea was to ask new users opinion questions. Based on their feedback, the recommendation

system could gradually refine user’s profile. fMF constructs a decision tree with each node being

an interview question, and the user at each node being partitioned into three disjoin subsets

“like”, “dislike” and “unknown” based on the interview answer. Then, the user profiles are built

according to their answers. Experimental results on the current dataset demonstrated that the

proposed FMF algorithm significantly outperformed the existing methods in cased of cold-start

recommendation.

2.3 Hybrid Collaborative Filtering

Memory-based method is an early approach used in many commercial systems. However,

the memory-based method still suffers from two fundamental problems, the data sparsity and

scalability. Thus, to solve these problems many researchers have used hybrid methods that are

combined with model-based method. Xue, Lin, Yang, Zeng, Yu, Chen (G.R. Xue, C. Lin, Q.

Yang, W. Xi, H.J. Zeng, Y. Yu, and Z. Chen, 2005 [28]) proposed a novel hybrid approach

	

	
	

21	

that uses a clustering smoothing technology that combines strengths from both approaches. In

these approaches, the clustering technology is used to generate the basis and neighborhood from

the training data. Clusters are used for grouping and smoothing the unrated user data. Clustering

in smoothing permits the strength characteristic integration of both memory and model-based

methods. By using the history rating information from groups of similar users, the unrated user’s

predicted group can be quickly performed. As a result, such approaches are applied on

EachMovie and MovieLens datasets which exhibit higher accuracy and increased efficiency in

their recommendations.

Yu, Xu, Tao, Ester, and Kriegel (K. Yu, X. Xu, J. Tao, M. Ester, and H. Kriegel, 2002

[29]) noted that the scalability is one of the biggest challenges that memory-based algorithms

currently face. In this paper, they focus on typical user preference datasets containing many

missing values. They proposed four novel instance reduction techniques called TURF1-TURF4

as a preprocess stage before the memory-based collaborative filtering approach. The concept is

to make predictions to relevant instances instead of the entire database, in order to speed up the

process. The proposed approach has four steps; the first algorithm operating in an incremental

manner, starts with a few training instances, and then adds those instances with a novel profile

into the training set. The second algorithm performs the filtering, and selects the instance with

the most rational profile into the training set. The third algorithm combines with former

algorithms to pick the instances with strong rational and novel profile. The final algorithm is

considering the potential of storage reduction. Overall, they focus on clustering algorithms and

methods that reduce the process time and improve the accuracy by limiting potential noise.

Many algorithms have been proposed for solving the data sparsity and scalability. Rashid,

Lam, Karypis and Riedl (Al.M. Rashid, S.K. Lam, G. Karypis, and J. Riedl, 2006 [30])

	

	
	

22	

proposed a Hybrid Collaborative filtering approach that mainly targets in improving the

recommendation quality. Their CLUSTKnn method is a simple and intuitive algorithm which is

inexpensive and well suited for operating in large-scale datasets. Their approaches first compress

the data using BISECTING K-means clustering technologies, and then select the largest cluster

to be split in two sub-clusters, repeating this step until they get the best intra-cluster similarity.

Finally, recommendations are generated quickly using the Nearest Neighbor method.

Comparison results with number of approaches such as the Item-based kNN, user-based kNN,

and SVD model-based Collaborative filtering approach showed that the hybrid method did not

obtain the best results, but it is still intuitive and presents very good recommendation accuracies.

2.4 Similarity Measure

The concept of similarity is important in many scientific fields such as mathematics,

statistics, and Computer Science. The similarity measure can define the relevance between two

items, two users, two queries, two articles, and more. There are many similarity methods

proposed in the literature. Usually, they are categorized based on their data types such as

numerical data, categorical data, time series data, binary data, and mix-type data. Numerical data

similarity methods usually use the Euclidean distance, the Manhattan distance, the Minkowski

distance, and the average distance (G.J. Gan, C.Q. Ma, and J.H. Wu, 2007 [31]). On normal

scale categorical data, the Chi-square statistic and the overlap measure are widely used. The best-

known method dealing with Binary data is the Jaccard coefficient. In practice, the dataset may

be composed of various types of data. In such case, the Gower similarity coefficient and the

generalized Minkowski distance are used since they can deal with complex datasets. In this

	

	
	

23	

thesis, the rating data is considered as ordinal data. Therefore, Cosine, Pearson, and Distance

similarity measures will be discussed in details.

Both user and item-based methods are based on the hypothesis that users will like similar

items or a user will like items liked by similar people. This hypothesis made the similarity

estimation one of the most significant and critical steps while implementing recommendation

systems. Generally, common methods of similarity calculation include the Pearson correlation,

Cosine similarity, Jaccard similarity etc. However, traditional similarity methods are still limited

in meeting today’s requirements. Fiasconaro et al. (A. Fiasconaro, M. Tumminello, V. Nicosia,

V. Latora, and R.N. Mantegna, 2015 [32]) indicated that similarity measures are crucial for the

development of efficient personalized recommendation systems in many cases. The basic idea of

a recommendation system is to predict user interests based on similarities of certain users or

items. They combined recommendation scores derived from users and objects similarities

computed by existing methodologies such as Jaccard, Network-based Inference, and Pearson

correlation. In addition, Y. Zou, A.J. An, and X.J. Huang [33], Y. Liu, X.J. Huang, and A.J.

An [34], J. Wei, J. He, K. Chen, Y. Zhou, and Z. Tang [35], A. Forestiero [36], to mention a

few, also conducted research in this area.

The computation of similarity measures has based on the traditional distance and cosine

vector such as cosine and Pearson. However, it has been proved that they are not effective in the

recommendation problem field. Ahn (H.J. Ahn, 2008 [37]) presented a new heuristic similarity

method that focuses on recommendation quality improvement under a cold-start condition, was

named PIP (Proximity-Impact-Popularity) measure that utilizes specific domain interpretations

for user rating on products, overcoming the drawbacks of traditional methods in cold-start

conditions. Firstly, the Proximity factor evaluates the difference between two ratings checking if

	

	
	

24	

the ratings are in agreement and applying a penalty to the ratings in cases of disagreement. Next,

the impact factor considers the chance of a user’s like or dislike upon the item. Last, the

popularity factor is applied when an impact factor value is further from the average rating value

that similarity could obtain. After extensive tests on MovieLens, Netflix, and Jester datasets,

results showed that the PIP measure is very accurate and can achieve the overall best

performance and lowest absolute mean error. The primary contribution of this method is that it

requires no additional data and minimal additional implementation compared to the existing

collaborative filtering approaches.

	

	
	

25	

Chapter 3. Techniques

The advent of information technology has brought easiness to everyday life in a number of

ways; however, the vast amount of available digital data has introduced several challenges for its

compilation and its access. Companies such as Amazon and Google are successful in solving

these problems, but personalization and prioritization are areas that still need improvement.

Recent studies have shown that a recommendation system possesses the capacity to address these

complex areas. The differ Recommender systems has differ way to analyze these data sources to

develop notions of affinity between user and item. The collaborative filtering systems analyze

historical interactions alone, while content-based filtering systems are based on profile attributes

(P. Melville, and V. Sindhwani, 2011 [38])

Collaborative filtering approaches overcome some of the drawbacks of content-based

approaches. It can be further sub-divided into memory-based (neighborhood-based) and model-

based approaches. Both the memory collaborative filtering approaches and model-based

approach are using the user-item rating matrix as data sources. The memory-based approaches

can be further divided into the user-based and item-based methods. The user-based approaches,

evaluate the interest of a user u for an item i using the ratings for item by other users, called

	

	
	

26	

neighbors that have similar rating patterns (P. Melville, and V. Sindhwani, 2011 [38]). Item-

based approach, on the other hand, predicts the rating of user u for an item i based on the ratings

of u for items similar to i (P. Melville, and V. Sindhwani, 2011 [38]). Differ to the memory-

based approaches, the model-based approached use these ratings to study the pattern of a

predictive model. The general idea is to model the user-item rating matrix with factors

representing latent characteristics of the users and items. The model-based methods usually

include clustering, classification, Singular Value Decomposition and Support Vector Machines

etc.

The main advantage of collaborative filtering recommendations is simply to implement,

efficiency, and it provides a concise and justification for the computed predications. However,

current recommendation systems still suffer from data sparsity, cold start, online scalability, and

information overload issues. This thesis focusses on the current recommendation system

challenges such as data sparsity, cold start and scalability problems. This chapter will study the

following two types of recommendation related technologies: clustering methods and missing

value handling using similarity measures. Moreover, it will examine in depth these two

techniques in order to explore their advantages and disadvantages.

Traditional clustering methods are used primarily in the Data Mining field. The clustering

methods are characterized by their descriptive functions and mostly used in unsupervised

learning (G.J. Gan, C.Q. Ma, and J.H. Wu, 2007 [31]). They are used to determine new sets of

categories with the objects of the same set being highly similar. Thus, a big dataset is divided

into smaller clusters and similar data are including in one cluster. This operation is widely used

in recommendation system where the target users or items are clustered within similar sets. The

clustering operation is then applied in each cluster instead of the whole dataset, in order to

	

	
	

27	

further classify similar items or users. In such way, recommendation systems can be scalable and

efficient to provide real-time recommendations to the user. In this thesis, the clustering method is

used to pre-process the dataset, where the proposed method calculates the similarity of the target

user or item within each cluster to determine the nearest neighbors which are relevant to the

objects, reducing the computational burden.

Cases of missing value often occur when no data value is stored in a variable under

observation. There are several types of missing value: Missing completely at random, missing at

random, and missing not at random (J.L. Schafer and J.W. Graham, 2002 [40]). The issue of

missing value is an active topic of research and requires data processing. Handling an incomplete

data set can cause inaccurate inferences to the final result and may affect further operations.

Nowadays, many technologies or methods have been proposed to solve the missing value

problem, such as replacement, deletion, mean calculation, mod average and statistic models for

predicting the missing value.

The key step of collaborative filtering approaches is to identify the most relevant user or

item through the user-item rating matrix by utilizing the rating history. Thus, correct and

accurate ratings are crucial to the collaborative filtering approaches. However, since the size of

user and item data has grown exponentially, cases of many unrated objects can lead to a very

sparse user-item rating matrix affecting the recommendation quality. The missing value is

addressed in this thesis by the use of similarity methods since it is identified as a critical and

necessary step in Collaborative filtering recommendation systems.

For this reason, an unrated item in user-item rating matrix is treated as a missing value that

must be predicted using similarity methods for improving the final prediction quality. Moreover,

	

	
	

28	

a similarity pre-calculation has been performed for both items and users, arranging the top

similar groups for further improvement on the online scalability and recommendation speed.

The pre-calculated similarity is used to compare and determine whether user-based or item-based

criteria should be selected for the rating forecast. This selection improves the prediction quality

upon the used similarity method.

3.1 Clustering Methods

Clustering is one of the most commonly used techniques in collaborative filtering

technology and is applied across diverse research fields including machine learning,

bioinformatics, data mining and image analysis. The clustering technique, also known as

clustering analysis, has been proved a very popular statistical tool widely used also in pattern

recognition, knowledge discovery, and statistical data analysis (A.K. Jain, 2010 [39]). This

technique creates partitions in a set of data to create similar data subsets. Once a cluster has been

created, it is easy to calculate the other user’s feedback in the subgroup and create the desired

response to the individual user. One of the characteristics of a properly clustered group is its high

intra-group similarity and its low similarity with other groups. Self-organizing maps (SOM) and

K-means clustering are two of the most widely used techniques in clustering. The Self-

organizing maps (SOM) perform an unsupervised learning while the K-means clustering

classifies a set of n items into K clusters (G.J. Gan, C.Q. Ma, and J.H. Wu, 2007 [31]). These

clustering techniques can be used to reduce the set of candidates in a collaborative algorithm by

increasing the intra-group similarity and decreasing the inter-group similarity.

Typical clustering methods can be categorized to hierarchical clustering, center-based

clustering, fuzzy clustering, search-based clustering, graph-based clustering, grid-based

	

	
	

29	

clustering, model-based clustering, subspace clustering, and density-based clustering (G.J. Gan,

C.Q. Ma, and J.H. Wu, 2007 [31]). The following section will discuss the three most popular

clustering methods: Center-based Clustering, Search-based Clustering, and Model-based

Clustering.

3.1.1 Search-based Clustering

The Search-based Clustering includes several methods such as Tabu Search, Variable

Neighborhood Search for Clustering, Al-Sultan’s Method, J-means, Global k-means, and the

well-known genetic algorithms.

Genetic algorithms were proposed by John Holland (J.H. Holland, 1975 [41]) in the 1970s.

Genetic algorithms are adaptive heuristic search algorithms based on the evolutionary idea of

natural selection and genetics. In general, the procedure of genetic algorithms includes the

following steps: initialization, selection, crossover, and mutation (D.E. Goldberg, 1989[42]).

They are commonly used to address optimization problems by an intelligent exploitation of the

random search. The beauty of the genetic algorithms is its easiness of use and the limited

mathematics knowledge necessary for their operation. The drawbacks of genetic algorithms lie in

the fact that they cannot guarantee a global optimum, and cannot assure optimization response

time.

Georgiou and Tsapatsoulis applied genetic based clustering method in model-based

collaborative filtering approaches (O. Georgiou and N. Tsapatsoulis, 2010 [23]). The authors

prove that there is no need to generate the disjoint clusters to all the data. By this method dense

clusters appropriate for model-based collaborative filtering recommendation system are created

and moreover, the created clusters are allowed to present overlaps to each other. Both solutions

	

	
	

30	

are almost constant and independent of the number of clusters, which subsequently minimizes

the time complexity.

3.1.2 Model-based Clustering

Early works of model-based clustering methods were firstly introduced by Wolfe (J.H.

Wolfe, 1965[43]) in the 1960s. Unlike the traditional clustering which determines the groups of

objects, the model-based techniques attempt to identify the clustering patterns and optimize

matching between the dataset and the model. Common model-based algorithms include

Expectation-Maximization algorithm, Gaussian Clustering, model-based clustering, COOLCAT,

and STUCCO.

 In the recommendation research field, Cadez, Heckerman, and Meek el at. (I. Cadez, D.

Heckerman, C. Meek, P. Smyth, and S. White, 2003[44]) proposed a mixture of Markov

model-based clustering using the Expectation-Maximization (EM) algorithm to cluster users.

The runtime of this algorithm scales linearly with the number of clusters and it is implemented

easily to handle hundreds of user sessions in memory. Nilashi, Ibrahim, Ithnin, and Sarmin (M.

Nilashi, O.B. Ibrahim, N. Ithnin, and N.H. Sarmin, 2015 [45]) proposed several new hybrid

approaches that utilize Gaussian mixture models with EM algorithms for enhancing the

prediction accuracy. EM algorithms are distance-based methods which can solve the clustering

problem even when the data is incomplete. They assign a certain probability to each data

instance for every cluster and begin with initial iterations in order to find the maximum like-hood

estimation for the parameters (M. Nilashi, O.B. Ibrahim, N. Ithnin, and N.H. Sarmin, 2015

[45]). The algorithm is an iterative method for finding maximum likelihood or maximum a

	

	
	

31	

posteriori (MAP) estimates of parameters where the model depends on unobserved latent

variables (M. Verma, M. Srivastava, N. Chack, A.K. Diswar, and N. Gupta, 2012 [46]).

EM algorithm includes two steps: Expectation step and the Maximization step (G.

McLachlan and T. Krishnan, 2007 [47]). This name was given by Dempster and Laird in 1977

on their paper Maximum likelihood from incomplete data via the EM algorithm. Where p is an

unknown parameter of distribution, give a set y of observed data, let x be the vector of random

variables. The idea behind the EM algorithm is that for the unknown x1 and x2, knowledge of the

underlying distribution f (x1, x2, x3|p) can be used to determine for p. Then, let p[k] indicate the

estimate of p after the kth iteration, k=1, 2, 3…n, the algorithm of EM consists of two steps as

below (T.K. Moon, 1996 [48):

The Expectation step computes the expected value of the x data using the current estimate

of parameter p and y observed data.

𝑥"
[$%"] = 𝐸[𝑥"|𝑦", 𝑝 $]

The Maximization step uses the data from the first step. The maximum-likelihood

estimation is a means of estimating the parameters of a distribution based on observed data. Let θ

= [θ1, θ2 ,θ3 ,…., θr]T denote a set of values, θ[k+1] be that value of θ which maximizes Q(θ| θ[k])

(T.K. Moon, 1996 [48]):

θ	[$%"] = 	argmax
4
𝑄(𝜃|	𝜃[𝑘])

 The EM algorithm consists of choosing an initial θ[k], and then implements the E-step and

the M-step successively until convergence.

	

	
	

32	

3.1.3 Center-based Clustering

In a center-based model, each cluster is represented by a central vector. This category

includes methods such as k-means, x-means, k-harmonic means, mean shift, k-probabilities, k-

prototypes, and k-modes algorithms, where we use the well-known k-means algorithm as an

example (G.J. Gan, C.Q. Ma, and J.H. Wu, 2007 [31]).

K-means clustering is considered a dynamic clustering algorithm proposed by Macqueen in

1967 (J. MacQueen, 1967 [49). The k-means algorithm was designed to process numerical data;

each cluster has a defined center, called centroid or Mean. The basic steps require the selection

of K points as the initial centroids and the assignment of data points to their closest centroids. In

each recursive step, a re-calculation of the centroid of each cluster is initiated until the centroids

remain stable. Being the most popular clustering algorithm, the K-means algorithm is efficient in

large data sets and performs well on numerical data. However, there are some drawbacks such as

its performance which depends on the initialization of the centers and the pre-selection of the K-

value. Moreover, the K-means algorithm does not perform well on high-dimensional data.

3.1.3.1 K-means Clustering

K-means clustering is a popular machine learning algorithm that is extensively used on

recommendation systems. With the volume of users, items, and profiles growing fast on

commercial websites, the datasets are becoming less scalable for online recommendations and

moreover, the sparse data lowers the recommendation quality. Therefore, many researchers have

utilized and proved that K-means clustering algorithm is suitable for recommendation systems

since it can adequately address the aforementioned problems.

	

	
	

33	

The process of k-means algorithm can be divided into two stages: initialization stage and

iteration stage (R. Salman, V. Kecman, Q. Li, R. Strack, and E. Test, 2011 [50]). In the first

stage, the k-means algorithm assigns randomly the observations into k clusters. In the iteration

step, the algorithm calculates each distance between observation and cluster centroid and assigns

each observation into the nearest cluster.

Figure 3. K-means Clustering (A.K. Jain, 2010 [39])

As we can see from the Figure 3, the clustering method aims to group similar objects into

one cluster and effectively locates target objects to clusters similar to the object. Thus, the

nearest neighbors in each cluster can be found easily since all objects in each cluster are similar

to the target object, lowering the dimension of the data and saving processing time. The most

used distance metrics are the Euclidean distance, Manhattan distance, and Minkowski distance.

One of the most commonly used is the Euclidean distance, two multi-dimensional data points X

= (𝑥", 𝑥:, 𝑥;, … , 𝑥=) and Y = (𝑦", 𝑦:, 𝑦;, … , 𝑦=) and which is described as follows(I.H. Witten,

and E. Frank, 2005 [53]):

D (x, y) = 𝑥" − 𝑦" : + 𝑥: − 𝑦: : + ⋯+ 𝑥= − 𝑦= :

	

	
	

34	

The k-means algorithm showed in Figure 4, starts by picking k (the number of clusters) and

initializing clusters by selecting n points per cluster. Then, for each point, the algorithm places it

in the cluster whose current centroid is nearest and computes the new mean for each cluster. Last

step to loop the step two until points do not move between clusters and centroids. Although the

k-means clustering algorithm is simple to implement, it has some drawbacks like it highly

depends on the arbitrary selection of the initial centroids.

Algorithm K-Means clustering algorithm [39]
Require: D = {d1 , d2 , d3, ..., dn } // Set of n data points.
Set: K number of clusters.
Steps:

1. Arbitrarily choose k data points from D as initial
centroids;
2. Repeat

• Assign each point di to the cluster which has the
closest centroid;

• Calculate the new mean for each cluster;

End: until convergence criteria is met.

Figure 4. K-means Algorithm (A.K. Jain, 2010 [39])

3.1.3.2 Optimal Cluster and Initial Centroids

 Although the k-means algorithm has been used in several recommendation approaches, the

algorithm is defined by three parameters: K number of clusters, initial clusters, and the distance

metric. There does not exist an algorithm for selecting the optimal K value, however various

heuristics can be used to provide a reasonable value. The initial clusters affect the final clusters

due to the nature of the algorithm to converge upon the local minima (A.K. Jain, 2010 [39]).

The usual approach to overcome this is to run the K-means, for a given K, with different initial

	

	
	

35	

clusters which can be chosen randomly, dynamically, or based on the lower and upper bounds.

Generally initial cluster center initialization algorithm are select randomly, afterwards I compare

the results and choose the partition with the smallest squared error.

Figure5. Clustering Center Algorithm (K.A. Nazeer, and M.P. Sebastian, 2009 [51])

Like most clustering algorithms, the K-means algorithm is efficient in large data sets and

works efficiently on numerical data. Since a recommendation system has to process a massive

dataset, the K-means cluster provides the ability for fast calculation of larger volume of variables,

unlike hierarchal clustering. Moreover, it can produce tighter clusters than the ones of hieratical

clustering and can work well in cases of the hyper-spherical shaped clusters, being also a

Algorithm Cluster Center Initialization Algorithm [51]
Input: D = {d1 , d2 , ..., dn} // set of n data, and items K // Number of
clusters
Output: A set of K initial centroids.
Steps:

1. Set m = 1;
2. Compute the distance between each data point and all other data points

in the set D;

3 Find the closest pair of data points from the set D. From a data point set
Am (1 ≤ m ≤ K) which contains these two data points, delete these two

data points from data set D;
4. Find the data point in D that is closest to the data point set Am, add it to

Am and delete it from D;

5. Repeat step 4 until the number of data points in Am reaches 0.75 *
(n/K);

6. If m < K, then m = m+1, find another pair of data points from D
between which the distance is the shortest, form another data-point set Am

and delete them from D, Go to step 4;

7. For each data point set Am (1 ≤ m ≤ K) find the arithmetic mean of the
vectors of data points in Am, these means will be the initial centroids

End

	

	
	

36	

significant advantage over other clustering techniques. However, it is hard to compare the

cluster quality provided by the K-means clustering. Another disadvantage is that different initial

partitions may result in different final partitions since the choice of the initial clustering center

has a direct effect on the clustering results. Finally, its performance depends on the center

initialization does not work adequately on high-dimensional data.

3.2 Similarity Measures

In the field of recommendation systems, similarity methods are used to determine the

relation between objects and are considered as the key step for determining the nearest

neighbours for each object. The accuracy of the calculation impacts on the accuracy of the

prediction since the recommendation results are generated from the nearest neighbours, proving

that the similarity process is the core function of a recommendation system. Traditional

similarity methods that have been used in the recommendation field include Pearson Correlation

Coefficient, Distance Measures, and Cosine Similarity and adjusted Cosine Similarity.

3.2.1 Pearson Correlation Coefficient

The Pearson correlation is a measure of the linear degree between two variables X and Y

with the coefficient lying between [-1, 1]. When the linear relationship between two variables

increases, the correlation coefficient tends to reach 1 or -1. When there is a related increase in

both variables, a positive correlation exists and the correlation coefficient is greater than zero. In

the case of an increase and decrease to the two variables, respectively, a negative correlation

exists and the correlation coefficient is less than zero.

Let Ru,i indicate the user u that has rated an item with rating i. The value 𝑅B denotes the

	

	
	

37	

average rating of item i, and the user set U includes all the users who bought both items i and j.

The similarity between item i and j can be calculated by the Pearson Correlation Similarity

equation as follows (Q. Li, and B.M. Kim, 2003 [52]):

𝑠𝑖𝑚 𝑖, 𝑗 = 	
𝑢𝜖𝑈(𝑅J,B − 𝑅B)(𝑅J,K − 𝑅K)

𝑢𝜖𝑈(𝑅J,B − 𝑅J): 𝑢𝜖𝑈(𝑅J,K − 𝑅J):

This equation is used to denote the item-based similarity calculation. In user-based

approaches, the similarity calculation between user a and b can be expressed by the Pearson

Correlation Similarity shown below (Q. Li, and B.M. Kim, 2003 [52]):

𝑠𝑖𝑚(𝑎, 𝑏) 	=
𝑖𝜖𝐼(𝑅O,B − 𝑅O)(𝑅P,K − 𝑅P)

𝑖𝜖𝐼(𝑅O,B − 𝑅O): 𝑖𝜖𝐼(𝑅P,K − 𝑅P):

where 𝑖𝜖𝐼 denotes the rating sum from rated items by both users a and b; and 	𝑅O indicates the

average rating of user a.

3.2.2 Cosine Similarity

The vector similarity method was firstly used in text mining and Natural Language

Processing fields to calculate similarities between two documents, where every document can be

represented by a vector based on the frequency of words (G.J. Gan, C.Q. Ma, and J.H. Wu,

2007 [31]). In recommendation, Cosine similarity can be used also for similarity computation.

The item features can be considered as vectors in the user space and the similarity between two

items is described as the cosine of the angle. It measures the inner product space of the cosine

angle in order to calculate the difference between two or more vectors. A 0º angle means that the

	

	
	

38	

two lines overlap in the same direction where a 90º angle denotes that their direction is

completely dissimilar. A 180º angle means that they are in opposite direction.

Figure 6. Cosine Similarity (I.H. Witten, and E. Frank, 2005 [53])

As illustrated above, the smaller the angle between two vectors, the higher the degree of

similarity between them.

For I being the total item rating set from user, let 𝐼Q,R denote the total item rating set which

has been rated by both users A and B with 𝐼Q,R={	𝑖 ∈ 𝐼 𝑅Q,B ≠ ∅, 𝑅R,B ≠ ∅ , 𝑅Q,B	, 𝑅R,B indicate

all the ratings of user A and B for item i. The cosine similarity for user A, B can be written as

below (I.H. Witten, and E. Frank, 2005 [53]):

𝐶𝑜𝑠𝑖𝑛𝑒	𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, 𝐵) =
𝑅Q,B𝑅R,BB∈_`,a

2B∈_`,a	c`,d 2B∈_`,a	ca,d

The cosine similarity is a popular similarity measure as it considers the user ratings as vectors

and is efficient to evaluate. However, one drawback lies in the fact that the difference in rating

scale is not taken into consideration.

	

	
	

39	

3.2.3 Adjusted Cosine Similarity

Since the traditional similarity measure does not consider the item rating variation by the

different users, the recommendation accuracy might be deteriorated. The adjusted cosine

similarity overcomes this by considering the rating scale from each user eliminating the rating

difference from different users. Therefore, it can more accurately express the similarity between

each item.

Let 𝑅Q,B be the rating of item i by user A. 𝑅Q stands for the average rating of user A and the

user set U includes the users who rated both items i and j. Then the adjusted cosine similarity of

item i and j can be calculated as following (Q. Li, and B.M. Kim, 2003 [52]):

𝑠𝑖𝑚 𝑖, 𝑗 = 	
𝑢𝜖𝑈(𝑅J,B − 𝑅J)(𝑅J,K − 𝑅J)

𝑢𝜖𝑈(𝑅J,B − 𝑅J): 𝑢𝜖𝑈(𝑅J,K − 𝑅J):

These advantages of the adjusted cosine similarity method overcome the traditional cosine

similarity drawback by subtracting the average from each user which results in reduced rating

preference.

3.2.4 Distance Measures

The basic concept in distance measures is to calculate the distance of two or more objects in

order to understand their similarity, dissimilarity, and correlation. Typical methods in this

category include Euclidean distance, Manhattan distance, Maximum distance, Minkowski

distance, Mahalanobis distance, and average distance (G.J. Gan, C.Q. Ma, and J.H. Wu, 2007

[31]).

	

	
	

40	

In the data mining and analysis fields, we can use the similarity measurement to determine

the differences between objects, in order to estimate their similarity or category. The Minkowski

distance is commonly used in such similarity measurements. The Minkowski distance is a metric

in normed vector spaces which can be considered as a generalization of both Manhattan distance

and Euclidean distance (A. Herrero, J. Sedano, B. Baruque, H. Quintián, and E. Corchado,

2015 [54]). For two datasets X and Y, with X= {x1, x2, x3 … xn} and Y= {y1, y2, y3 … yn}, the

Minkowski similarity of XY can be defined as (I.H. Witten, and E. Frank, 2005 [53]):

𝑠𝑖𝑚 𝑋, 𝑌 = |𝑥B − 𝑦B|g
=

Bh"

i

where n indicates the X and Y dimensions, with xi, and yi the points of dimension i. For q= 1, the

equation calculates the Manhattan distance, and for q=2 it calculates the Euclidean distance.

3.3 Neighborhood Selection

After the similarity computation between objects, how many of nearest-neighbors to select

for recommendation cans serious impact the quality of recommendation system. In

recommendation system the neighbor selection normally include two steps:1) an overall filtering

step where only the most similar candidates are kept, and 2) a per prediction step which chooses

the best candidates for this forecast (P. Melville, and V. Sindhwani, 2011[38]).

3.3.1 Pre-filtering of neighbors

There are several popular ways in pre-filtering of similar neighbors like Top-N, Threshold

	

	
	

41	

method, and Negative filtering (P. Melville, and V. Sindhwani, 2011[38]). In the large scale data

environment that the large matrix contains millions of value, usually it is very expensive to load

and store the data into memory for similarity process. More, it is extremely wasteful as the only

propose of these values are used for predictions. Therefore, the above listed method could reduce

the amount of similarity weight has to store in memory and it save the cost and time as well.

Top-N filtering: During the recommendation generation that for either user or item only a

list of the N nearest-neighbors and their respective similarity weight will be kept (P. Melville,

and V. Sindhwani, 2011[38]). To increase the recommendation efficiency and accuracy, the N

should be chosen carefully. Therefore, too large or too small N will result in large number of

neighbors holding memory with slow process speed and less value in calculation reduces the

recommendation coverage.

Threshold filtering: Instead of using a fixed number of neighbors, the threshold method

keeps all the neighbors whose similarity weight has a magnitude greater than a given threshold

Vmin (P. Melville, and V. Sindhwani, 2011[38]). This method is more flexible than Top-N

method since the most significant neighbors are kept. However, the value of the threshold Vmin is

difficult to determine.

Negative filtering: The negative rating correlations are less reliable than Top-N and

Threshold methods. Intuitively, this is because strong positive correlation between two users is a

good indicator of their belonging to a common group (P. Melville, and V. Sindhwani,

2011[38]).

	

	
	

42	

3.4 Prediction Computation

By using the results from previous optimal neighbour selection step the next rating

prediction method utilizes neighbor’s similarity results for an unrated item’s prediction. These

prediction results can be used in the final step where items with higher scores will be

recommended to the users. Usually, two methods are commonly used including the weighted

sum and regression (B. Sarwar, G. Karypis, J. Konstan and J. Riedl [8]).

3.4.1 Weighted sum prediction

Where user u, item i, computer prediction Pu,i, by calculate the sum of the ratings given by u

on the items similar to i. Each rating weighted by the similarity Si,j between i,j. The weighted

sum rating prediction formula sees below (B. Sarwar, G. Karypis, J. Konstan and J. Riedl,

2001 [8]).:

𝑝J,B = 	
(𝑆B,k ∗ 𝑅J,k)mnmOo	pBqBOorB	Bmsq	k,

𝑆B,kmnmOo	pBqOBor	Bmsq,k

While user-based methods rely on the users with similar taste to predict rating, and item-

based method look at the ratings given to the similar items. In general, in large commerce

database that has fewer items than users, in situation of dataset MovieLens with thousands of

items but more users to recommended, may benefit more from item-based neighborhood

methods.

3.4.2 Average prediction

The average prediction method was the most used and simplest method to implement. There

are several method commonly used for average prediction including: user rating average, item-

	

	
	

43	

rating average and overall average.

Let user u, item i, rui denote item i has real rating from user u, the user average rating 𝑟J

calculated below (F. Ricci, L. Rokach and B. Shapira, 2010 [5]):

𝑟J =
𝑟JBB∈t(J)

1B∈t(J)

	

	
	

44	

Chapter 4. Proposed methodology

During the past years, many recommendation systems have been proposed with notable

results. While collaborative filtering recommendation approaches have been proved quite

successful in practice, the methods along with their learning process present several limitations.

More precisely, the memory-based collaborative filtering presents fundamental issues related to

the previously mentioned online scalability and limited recommendation quality. This thesis has

proposed an intuitive solution to address the problem is by partition the entire dataset and predict

the missing rates in the user-item matrix respectively.

Given the attributes in matrix, the rating prediction performs the desired similarity

computation based only on the user or item information. Therefore, in case of sparse ratings, the

quality of the recommendation could be deteriorated since an adequate amount of user or item

information is required. Ma, King and Lyu (H. Ma, I. King and M.R. Lyu, 2007 [55]) have

proposed an effective missing data prediction method for recommendation system. Sarwar,

Karypis, Konstan and Riedl (B. Sarwar, G. Karypis, J. Konstan and J. Riedl, 2001 [8])

introduced clustering techniques into recommendation. Li and Kim (Q. Li, and B.M. Kim, 2003

[52]) have proposed hybrid recommendation methods based on item-based clustering. These

	

	
	

45	

results could be considered promising but not adequate enough for modern recommendation

systems. In this chapter, a novel collaborative filtering approach is proposed that entails

clustering along with missing value prediction. To be more precise, clustering is used for dataset

pre-processing. Similarity, between users and items, is exploited for determining whether user or

item information should be used in missing ratings. In case of higher user similarity, the user

information will contribute to the prediction; otherwise, prediction will be based on the item

information. The proposed recommendation method adequately addresses the data sparsity and

cold-start issues for new users or items, and presents an improved time performance as well.

Collaborative filtering recommendation approaches with clustering and missing value

prediction require the following five steps showed in Figure 7: Item clustering, similarity pre-

calculation, approach selection, missing value prediction, and recommendation calculation.

• Apply item clustering, group the items into k clusters.

• User and item similarity calculation for each cluster with results stored in different tables.

• Table similarity comparison for determining which method (user/item) presents the highest

similarity scores.

• Missing value prediction for each user-item rating matrix using the chosen method in Step 3.

• Recommendation list generating.

	

	
	

46	

Figure 7. Recommendation Approach Flowchart

4.1 K-means Clustering Algorithm

Sarwar, Karypis, Konstan and Riedl (B. Sarwar, G. Karypis, J. Konstan and J. Riedl,

2001 [8]) introduced clustering techniques into recommendation systems in order to improve

their time performance by scaling up the neighborhood formation in large-scale datasets for

faster recommendation calculation. In this paper, the large item sets are clustered based on the

item contents. Items in the same cluster usually share similar characters, thus the collaborative

filtering approaches can improve the recommendation quality using the intra-similarity features

of the same cluster. Moreover, the clustering method discards dissimilar items which could

potentially affect the prediction accuracy. However, the recommendation quality is cluster

dependent; therefore, accuracy might vary in different clusters.

Since the used experimental dataset includes more items than users, the clustering process is

	

	
	

47	

item-based (movie) and performed offline. Utilizing the k-means algorithm, k number of clusters

is initialized by selecting one point per cluster. Each point is then grouped in the cluster with the

nearest centroid. After grouping all points, the centroids of the k clusters are updated reassigning

all points to the new closest centroids. This process is repeated until all points remain in the same

cluster for a number of steps.

Algorithm Item Clustering Algorithm
Input: N records of Dataset D
Output: Initial Cluster set S
(1) Randomly pick k items as the initial cluster
center.
(2) For (read each record pi in dataset D)
 //Calculate the point density of record.
(3) Order the dataset D in descending order based
on the point density size.
(4) While (Read unassigned records in dataset D)
 {
 //Read the current record;
 If (this record is read twice
 //Put the record into the set S;
 Else{
 Calculate the distance of unassigned records
between each initial cluster center in the set S;
 //Store the minimum distance in the dist-min;
 If (dist-min < minimum distance between
records in set S)
 If (the number of record in set S<k)
 //Added the current record into set S;
 Else if(the number of record in set S =k)
 // Repeat the steps, until the center is not
changed;
 }
 }

Figure 8. Item Clustering Algorithm

	

	
	

48	

After clustering, all the items have been assigned into k clusters C, D= {C1, C2, C3… Ck-1,

Ck}. However, as mentioned in the previous part, it is difficult to determine the value k in

advance and the choice of k affects the final recommendation results. In order to determine the

optimal value k, a trial and error process will be used to determine the favorable cluster value.

4.2 Similarity calculation

The similarity measurement is a key step in a recommendation system since its value affects

the accuracy of the rating prediction and the recommendation results. In traditional user-based or

item-based collaborative filtering approach, the similarity calculation is based solely on past user

ratings with the sparse user-item matrix, which directly leads to low prediction accuracies. Ma,

King and Lyu (H. Ma, I. King, and M.R. Lyu, 2007 [55]) have proposed an effective missing

data prediction method, which considers both the user and the item rating history in order to

enhance the prediction accuracy in data sparsity cases. In this paper, due to the limitation of user-

item ratings or items rated by limited users, false recommendation results are likely to be

generated. The proposed framework suggests an effective missing value prediction method

which analyzes the available rating information in Table 1 and determines the best missing data

process for optimal results. Its fundamental novelty against similarity calculation of conventional

user-based and item-based collaborative filtering approach is its row-wise user-based similarity

calculation in the user-item rating matrix and its column-wise item-based similarity calculation

(B. Sarwar, G. Karypis, J. Konstan and J. Riedl, 2001 [8]).

As discussed in the Chapter 3, three common similarity methods are used including the

Pearson Correlation, the Cosine similarity and the adjusted Cosine similarity. In this paper, the

adjusted cosine similarity of item i and j used to find out the similarity and the equation as

	

	
	

49	

following:

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑖, 𝑗 = 	
𝑢𝜖𝑈(𝑅J,B − 𝑅J)(𝑅J,K − 𝑅J)

𝑢𝜖𝑈(𝑅J,B − 𝑅J): 𝑢𝜖𝑈(𝑅J,K − 𝑅J):

Let 𝑅J,B and 𝑅J,K denotes the rating of item i and j rated both by user u, 𝑅J stands for the average

rating of user u and the user set U includes all the users from dataset.

i1 i2 i3 i4 i5

u1 3

u2 3

u3

u4 2 5

u5 4

u6

u7 4

u8 5 1

u9

un 2

Table 1. The User- Item Rating Matrix (m x n)

4.3 The Off-line Process  
The datasets in business environment are usually very large and the running cost is

extremely high. Therefore, some off-line process is necessary. In this thesis, the off-line K-

means clustering and similarity measures are pre-processed and the results are stored for future

calculation in order to save time and cost. The off-line process can be run every day or every

hour depending on the business requirement.

	

	
	

50	

4.4 Similarity Measure Selection
In user-item rating matrix, each row represents one user and each column states one item.

When the traditional algorithms produce the recommendation process, they only consider one

approach (row or column) at a time. However, the dataset is sparse and the ratings are distributed

randomly. Therefore, a process to compare the similarity between user and item is carried out.

The proposed method calculates the similarity based on both item and user data. Then the higher

similarity is used in the missing value prediction process.

4.5 Prediction Computation

 The fourth step in rating prediction utilizes similarity results for an unrated item’s prediction.

These results will be used in the final step where items with higher scores will be recommended

to the users. For this step, two methods are commonly used including the weighted sum and

regression (B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, 2001 [8]). To reduce the

proposed algorithm’s complexity and increase its efficiency, the weighted sum method was

chosen. Hence, the prediction is scaled by the sum of the similarity terms, ensuring that the

prediction results lie within the predefined range. Table 2 shows that the user-item rating matrix

has been filled up with predicted rating Pm,n.

1. As discussed previously, the similarity results between items will be sorted from top to low.

2. Set user u, item i, compute the prediction Pu,i on an item i for a user u:, by calculating the sum of

the ratings given by u on the items similar to i. Each rating weighted by the similarity Si,j

between i,j. The weighted sum rating prediction formula is provided below:

𝑝J,B = 	
(vd,w∗cx,w)yzy{|	}d~d{|�d	dy�~	w,

vd,wyzy{|	}d~{d|�	dy�~,w

	

	
	

51	

3. Based on the prediction results, the top score items will be delivered to the user.

i1 i2 i3 i4 im

u1 R3 P2,1 P3,1 P4,1 Pm,1

u2 P1,2 P2,2 P3,2 R3 Pm,2

u3 P1,3 P2,3 P3,3 P4,3 Pm,3

u4 P1,4 R2 P3,4 P4,4 R5

u5 R4 P2,5 P3,5 P4,5 Pm,5

u6 P1,6 P2,6 P3,6 P4,6 Pm,6

u7 P1,7 P2,7 P3,7 P4,7 R4

u8 R5 P2,8 R1 P4,8 Pm,8

u9 P1,9 P2,9 P3,9 P4,9 Pm,9

un P1,n P2,n P3,n R2 Pm,n

Table 2. The Rating Matrix after Missing value Prediction

4.6 Neighbours Determination and Selection

Finding the most appropriate objects / neighbours is not only challenging but also critical for

the prediction step in recommendation systems. If the selected neighbours are not optimal, poor

recommendation results might be produced. In this thesis, Top-N filtering method has been used

for neighbor selection and determination. During the recommendation process that for either user

or item only a list of the Top-N nearest-neighbors and their respective similarity weight will be

kept (P. Melville, and V. Sindhwani, 2011[38]). More, a trial and error method is exploited to

determining the best number of neighbours which contribute in the recommendation results.

	

	
	

52	

4.7 Methodology Implementation

Python is a great object-oriented, interpreted, and interactive programming language. More,

Python is a scripting language that combines remarkable power with very clear syntax. It has

included the modules, classes, exceptions, high level dynamic type system and automatic

memory management. There are available to many system calls and libraries, as well as to

various GUI systems (Python, [56]). This open-source language provided a large library to

support recommendation system, and data mining tasks.

R programming is widely used in academia and industry for statistical computation and

graphics, developed in Bell Labs by John Chambers and his colleagues (R. Gentleman, W.

Huber, and V.J. Carey, 2011[57]). The R framework is an integrated software suite that can be

easily extended with 7000+ supported packages available on CRAN. The suite is oriented for

data manipulation, graphics display, and statistical calculation providing a wide variety of data

mining statistical tools like clustering, classification, time series analysis, linear and non-linear

modeling. Effective data manipulation is possible using libraries explicitly developed for array

and matrix calculations and graphic data analysis (R. Gentleman, W. Huber, and V.J. Carey,

2011 [57]).

The overall proposed methodology recommendation platform was mainly built in Python

with its coding and development. Some additional R functions were coded to facilitate the

analysis and computational steps described in this research.

User-item-matrix.r, this file utilizes the reshape2 and Matrix library for R. The function first

loads the data file into the system, reformats it and converts its values to numeric type. The data

is then saved to the user-item matrix.

	

	
	

53	

Evaluation.py, this file calls the related function to calculate the MAE, RMSE, recall,

precision and F1 measure to verify recommendation results in different situations and determine

their variations.

Estimate.py, this file use to stores the data array, average data array, user mean, and item

mean.

Main.py, this is a main file does the most functions for proposed recommendation

approaches, which including similarity calculation, missing value prediction, set up k value, list

length, neighbours size and matrix density.

 Nonclustering.py and Cofilter.py, this files does the traditional method calculation, calls the

calculated data array to performs the comparison between user and item’s similarities for

evaluating the best score to be used in the missing value prediction. Moreover, it generates the

results used to compare with the proposed method.

Pic.py, this file calls all the calculate functions to print the results and draw the pictures.

	

	
	

54	

5. Results and Discussion

This chapter gives in-depth analysis of the K-means clustering technology and Cosine

similarity calculation designed to implement the proposed recommendation methodology.

Several experiments are conducted aiming at measuring the quality of the proposed

recommendation approach against the other start-of-the-art methods.

The results are presented through the following questions:

• How does the k-means clustering process affect the recommendation result?

• How does the number of neighbors affect the recommendation quality?

• Does the percentage of missing value predicted affect the final result?

• What is the time complexity difference between the proposed method and the traditional

methods?

• What is the Recall, Precision, and F1 score of the final recommendation result?

In the experiment R functions were coded to facilitate the data analysis and Python functions

	

	
	

55	

were developed for clustering, similarity computation, recommendation generation, and result

evaluation. In order to obtain the accurately results, the five-fold cross validation method is

applied in the evaluation process.

5.1 Data Overview

The MovieLens 100k dataset used for evaluation process were obtained from GroupLens

Research Lab in the Department of Computer Science at the University of Minnesota

(https://grouplens.org). The dataset has been released to the public for many years and is

becoming a popular dataset used in the recommendation literature. It uses five-star rating scale

containing ratings from one to five: 1. Poor, 2. Fair, 3. Good, 4. Very Good, 5. Excellent. The

dataset has six main files including u.data, u.info, u.item, u.genre, u.user, and u.occupation.

The u.item and u.genre files are combined and shown in Table 3. There are 24 attributes in

total representing the information about movies. Those attributes include movie id, movie title,

release date, video release date, IMDb URL, and 19 genres of each movie such as unknown,

Action, Adventure, Animation, Children's, Comedy, Crime, Documentary, Drama, Fantasy, Film-

Noir, Horror, Musical, Mystery, Romance, Sci-Fi, Thriller, War, and Western. One in the movie

genre cell indicates that the movie belongs to that genre and 0 otherwise.

	

	
	

56	

Table 3. u.item and u.genre

The u.user and u.occupation files contain the demographic information about each user and

their occupation information. The two files are combined and the sample data are provided below

in Table 4, which includes user id, age, gender, occupation, and zip code.

user
id age sex occupation zipcode

1 24 M technician 85711

2 53 F other 94043

3 23 M writer 32067

4 24 M technician 43537

5 33 F other 15213

6 42 M executive 98101

7 57 M administrator 91344

8 36 M administrator 5201

Table 4. u.user and u.occupation

The u.data file contains four attributes: user id, movie id, rating, and timestamp. The sample

data are provided in Table 5. Each row shows one movie rating by one user. This is the most

movie
id

movie
name

release
date

video
release

date

IMDB
URL unknow … Action Adventure Animation

1 Toy
Story(199 01-Jan-95 0

http://us.i
mdb.com/

0 … 0 0 1

2 GoldenEy
e(1995) 01-Jan-95 0

http://us.i
mdb.com/

0 … 1 1 0

3 Four
Rooms(19 01-Jan-95 0

http://us.i
mdb.com/

0 … 0 0 0

4 Get
Shorty(19 01-Jan-95 0

http://us.i
mdb.com/

0 … 1 0 0

5 Copycat(1
995) 01-Jan-95 0

http://us.i
mdb.com/

0 … 0 0 0

6 Shanghai
Triad(199 01-Jan-95 0

http://us.i
mdb.com/

0 … 0 0 0

7 Twelve
Monkeys(01-Jan-95 0

http://us.i
mdb.com/

0 … 0 0 0

8 Babe(199
5) 01-Jan-95 0

http://us.i
mdb.com/

0 … 0 0 0

9 Dead Man
Walking(1 01-Jan-95 0

http://us.i
mdb.com/

0 … 0 0 0

	

	
	

57	

important file used to compose the matrix in the later experiment analysis.

Table 5. Rating table u.data

The u.info file shows that the full u.data dataset has 100,000 ratings rated by 943 users on

1682 movies. Each user rated more than 20 movies in average in the dataset. The density of the

user-item matrix is computed as below:

Density: "�����
"��:×��;

= 6.3%

5.1.1 Exporting the Rating data

According to the documentation, ratings marked as 0 indicate missing value. 100,000 ratings

in total can be plotted using R language ggplot2 package. The following Figure 9 (a) and (b)

show the distribution of the user ratings. Figure 9a shows the majority of ratings are above two,

and Figure 9b shows the most common rating is between three and four, and the mean is 3.53

(O.R. Zaíane, 2002 [58]).

	

	
	

58	

(a) Rating Histogram

(b) Rating box-plot

Figure 9, (a), (b) Rating Distribution

Figure 10(a) clearly shows that most movie ratings are contributed by the first 200 users.

Figure 10(b) implies that few movies were rated one star or five stars, and the common rating

range is between three and four stars.

	

	
	

59	

(a) Movie rated by users

(b) Average movie rating

Figure 10 (a), (b) Average Rating

The user-item rating matrix has 1664 rows and 943 columns. Each row of the matrix

represents a user, each column corresponds to a movie, and each cell represents the rating.

	

	
	

60	

Figure 11. Heat-map of rating Matrix

As the full dataset is too large to display and the dataset is too sparse. From Figure 11 we

can see the data randomly split from full dataset. The heat-map has data dimension 471 x 107.

The blue color indicates the missing value and the red color states the highest rating score.

Generally speaking, the heating-map is sparse where the blue color is dominant. Moreover, the

blue rows or columns represent that users or items receive low ratings or no rating, while the red

lines represent the high-rated movies.

5.2 Evaluation Metrics

In the evaluation stage, the recommendation accuracy will be evaluated by five metrics

including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Recall, Precision and

F1 score based on 14 evaluation files which have been split into 80% training and 20% testing

from u.data file. The MAE and RMSE are the most commonly used evaluation metrics in

recommendation field. In literature, Chou, Yang, and Lin (S.Y. Chou, Y.H. Yang, and Y.C. Lin,

	

	
	

61	

2015 [59]) used RMSE to evaluate music recommendation in a real-world setting. Zheng,

Mobasher, and Bruke (Y. Zheng, B. Mobasher, and R. Burke, 2015 [60]) used RMSE to

evaluate their novel Java-Based Context-aware Recommendation algorithms. Choi, Oh, Kim,

and Ryu (I.Y. Choi, M.G. Oh, J.K. Kim, and Y.U. Ryu, 2016 [61]) used MAE to evaluate the

collaborative filtering with facial expressions for online video recommendation. Moreover, Wu,

Zhang, Lu (D. Wu, G. Zhang, and J. Lu, 2015 [62]) used MAE to evaluate the fuzzy preference

tree-based recommender system for the personalized Business-to-Business E-services as well.

5.2.1 MAE and RMSE

MAE method calculates the average error between prediction values and the actual values in

order to measure the recommendation quality where 𝑝J,B	 indicates the predicted rating for user u

on item i, 	𝑟J.B denotes the real rating, and N is the total number of rating in the testing dataset.

The MAE is defined as below (F. Ricci, L. Rokach, and B. Shapira, 2010 [5]):

𝑀𝐴𝐸 =	
𝑢, 𝑖 𝑝J,B	 − 	𝑟J.B

𝑁

RMSE measures the square error between the predicted values and the actual known values.

The predicted rating 𝑝J,B	 is predicted by user u on item i, 	𝑟J.B is the real rating and n is the total

number of ratings. Smaller RMSE indicates better recommendation result. The RMSE is defined

as below (F. Ricci, L. Rokach, and B. Shapira, 2010 [5]):

𝑅𝑀𝑆𝐸 = 	
1
𝑛 𝑝J,B − 𝑟J.B	

:

J,B
		

Moreover, RMSE method has been used by Netflix Prize competition to evaluate the

	

	
	

62	

recommendation result for those who can improve the result by 10% compared to the old

CineMatch recommendation system. However, the RMSE evaluation method puts more

emphasis on larger absolute error than MAE. The lower the RMSE is, the better the

recommendation result is. Furthermore, some studies show that the rounding of the prediction

results will reduce the MAE error if the rating scores are integers. In general, RMSE and MAE

are easy to understand and simple to calculate.

5.2.2 Precision, Recall and F1 Score

According to the former Amazon scientist Greg Linden (G. Linden, 2009 [63]), he indicated

that the purpose of movie recommendation was to find out which movie users was most likely to

be interested in, rather than predict what rating score would be given to the movie. Therefore, the

Top-N recommendation method is more in line with the actual movie recommendation

evaluation.

The Top-N recommendation generally provides a personalized recommendation list to users

which can be evaluated by precision and recall measurement. The precision and recall measures

are used to measure the items classified as good (true positive) or bad. Precision is the

probability whether the truly classified records are relevant. Recall is the probability whether the

relevant records are truly classified. F1 is a measure of recommendation accuracy, which

combines both precision and recall into a single measure. F1 score can be defined as a weighted

average of both precision and recall. The Precision, Recall and F1 are defined below: (O.R.

Zaíane, 2002 [58]).

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑡𝑝

𝑡𝑝 + 𝑓𝑝 = 	
𝑔𝑜𝑜𝑑	𝑚𝑜𝑣𝑖𝑒𝑠	𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑

𝑎𝑙𝑙	𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑠

	

	
	

63	

𝑟𝑒𝑐𝑎𝑙𝑙 = 	
𝑡𝑝

𝑡𝑝 + 𝑓𝑛 	= 	
𝑔𝑜𝑜𝑑	𝑚𝑜𝑣𝑖𝑒𝑠	𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑

𝑎𝑙𝑙	𝑔𝑜𝑜𝑑	𝑚𝑜𝑣𝑖𝑒𝑠

 F1 score = 2 ∗ �rs�BpBn=∗rs�Ooo	
�rs�BpBn=%rs�Ooo

False negative (fn) means all the responses where the actual response is positive, but what

the model predicted is negative. True positive (tp) means all the responses where the actual

response is negative and what the model predicted is positive. False positive (fp) denotes all the

responses where the actual response is negative, however what the model predicted is positive

(O.R. Zaíane, 2002 [58]).

The MSE and RMSE metrics are too sensitive and application specific, thus they cannot

provide a good estimate of whether the recommendation results are liked by users. Therefore, the

Recall metric is used to evaluate the probability of a good recommendation over the total number

of recommendations, and the Precision metric is used for measuring the truly good

recommendations over the good recommendations.

5.3 Computing Environment

In the experiment, a Dell Laptop equipped with Quad-core Intel Core i7-4700MQ processor,

16 GB memory, 750 GB Hard disc, and Nvidia Geforece 765M with 2GB memory Graphic card

is used. The functions are coded by Python 2.7 and R language 3.3.3.

5.4 Improving the Recommendation Quality

Experiments are conducted in this thesis in order to demonstrate the performance of the

proposed missing value and clustering method. In addition, the experiments use a five-fold cross-

	

	
	

64	

validation scheme, where the MovieLens dataset D is randomly split into five subsets Du , u = 1,

2…, 5.

5.4.1 Missing Value Prediction

When the traditional algorithms produce the recommendation process, they predict all the

missing values in the matrix. However, the 100k MovieLens dataset is very sparse and more than

half of the users have no rating records. Therefore, it is not efficient and accurate to use

conventional way. Then, I consider carrying out a research on finding the optimal density of

matrix which only certain percentage of missing values is predicted. Furthermore, the proposed

method is concerned with both item and user data in order to determine the higher similarity used

for the missing value prediction process.

To perform the task, the proposed method determines whether the user-based or the item-

based method should be used. Since two similarities were calculated from both user and item

method, the higher similarity value will be used to enable the proposed missing value prediction.

The prediction experiment, starting from 5% of missing value prediction and increasing every 5%

each run until 100% of the missing values, has been predicted in the user-item rating matrix.

	

	
	

65	

Figure 12. The MAE rate on varying matrix density

Figure 13. The RMSE rate on varying matrix density

 As we can see from two graphs above, the general trend of MAE and RMSE are rising as

the percentage of missing values predicted increases. In Figure 12, at the starting point with 5%

missing value prediction, while the lowest point of MAE graph line is at 0.0819. When the MAE

line steadily raises to 15%, it then boosts to 20% from 0.8191 to 0.8230. The rest of the MAE

line reveals a general trend of up and down before it reaches the peak (100%). As indicated in

	

	
	

66	

Figure 13, the starting point 5% is the lowest point at the RMSE graph line. The general trend of

graph line is steady-going, while two section of line are increasing fast from 15% to 20% and

from 80% to 90%. Generally speaking, two graphs show that both MAE and RMASE share the

same optimal missing value percentage at 5%. That embraces with an obvious trend that as

missing value percentage decreases, recommendation accuracy keeps improve.

Figure 14. The Density MAE comparison

Figure 14 shows the comparison of the prediction qualities on the traditional non-clustered

recommendation method and proposed method with various matrix density rates. It is obvious

that the proposed method has better results in general for each density level. Moreover,

compared with the best rate from traditional method, the optimal density level improves 4.5%.

As discussed previously，the hypothesis was to use the similarity method to fill the spare matrix

for the purpose of boosting the recommendation quality. However, when the matrix density

reaches a certain percentage, the accuracy curve initially rises and eventually drops due to the

prediction error accumulation. Since the predicted values are not real values, the prediction

formula can only show the similar values which are based on the user history data. As the density

	

	
	

67	

increases, the error is accumulated as well. When the error reaches a threshold that affects the

quality of the recommendation accuracy, the results are inferior. Accordingly, the optimal

density has to be taken into consideration.

5.4.2 Neighbour Selection

In order to improve recommendation accuracy, the optimal number of neighbors has been

tested in this section. The experiments are conducted to demonstrate that the neighbor has a link

with the recommendation performance. Finding the most appropriate neighbour is a challenging

and critical task for overall recommendation performance.

To obtain the rate of MAE and RMSE on optimal number of neighbours, according to (J.L.

Herlocker and J.A. Konstan, 2002 [64]), we select the range of k neighbours from candidate

neighbors k∈{5，10, 20, 25, 30,…, 90}. The trial and error method is applied to find the best

neighbour size which will finally contribute to the recommendation results. The experimental

test starts with 5 neighbours, and it increases 5 neighbours in each iteration. Meanwhile, the

optimal density from pervious test will be applied in test.

	

	
	

68	

Figure 15. MAE rate on Optimal number of Nearest Neighbours

Figure 16. RMSE rate on Optimal number of Nearest Neighbours

From Figures 15 and 16, it can be read that MAE and RMSE are respectively 0.8201 and

1.0362 when the test started with 5 neighbors. Then, as the size increases to 10, both lines have a

quick rise to 0.823 and 1.037. As the iteration process goes, when the number of neighbour

steadily increases, while the curved line has a bottomed out at size 40 and has MAE rate 0.81847.

In the meantime, the RMSE rate reaches the lowest point at size 30 and got rate 1.03575. When

	

	
	

69	

the number of neighbours is equal to 50, both MAE and RMSE start to rise and keep stable until

the highest point when the number of neighbours reaches 90.

The experimental results validate the hypothesis that the various sizes of neighbours affect

the recommendation results. And more precisely, when the number of neighbours is between 30

and 40, the average MAE and RMSE lines reach their lowest points indicating the best results in

neighbour selection process. With the neighborhood’s increasing by size 40, MAE and RMSE

graphs embrace with a general trend of steady increase.

5.5 Recommendation Online Scalability

5.5.1 K-Means Clusters Selection

This section examines how the k-means clustering method improves the online scalability.

Since the MovieLens dataset includes more items than users, here I used item clustering method

and performed approaches offline.

Since the dataset size includes only 943 users and 1682 items, the k value is tested in small

range from 1 to 10. The optimal k is evaluated during the experiments by trial and error. The

applied K-means method starts with k=1, and is increases one cluster in each iteration until ten

clusters. Subsequently, the optimal neighbour n = 40 from past experiments is used for

neighbour selection. Finally, the recommendation results are compared to traditional non-

clustered recommendation method.

	

	
	

70	

Figure 17. MAE of K-means clusters

Figure 18. RMSE of K-means Clustering

The K-means clustering algorithm has been implemented and tested with python functions.

From Figures 17 and 18, we can see the general trend of the graph lines first drops then rises as

the number of clusters increases. When k=1 has applied to the dataset, the average of MAE is

0.821 and the average of RMSE is 1.036. As the k value increases while the MAE curved line

has dropped to the lowest point when k = 3 where MAE is 0.819. In the meantime, RMSE drops

to the lowest point while k = 2. When k value is larger than 3, the average MAE and RMSE are

	

	
	

71	

progressively increased until to the top of curved lines which get rate 0.8362 and 1.065, denoting

the lowest recommendation quality in the experimental test. By comparing the optimal k value to

the other k vales in experiment, it can be observed a significant improvement to the

recommendation quality.

It clearly shows that the recommendation accuracy is affected by the number of clusters.

Starting from small number of k value and progressively increasing them, there is an initial drop

followed by an increase. When k value is equal to 1, which generates one big cluster including

large amount of data in cluster, it results in poor quality. When k increases to a proper size of

two and three where items inside the same clusters were highly similar, it helps the missing value

prediction and subsequently the recommendation quality. Then, as the k value keeps increasing,

the available data in each cluster are limited and inadequate to make correct predictions as

denoted by the MAE and RMSE metrics, contributing to a poor recommendation quality

5.6 Recommendation Time Efficiency

Figure 19. K-means clustering compared to traditional method

	

	
	

72	

As discussed from pervious chapter, the recommendation system suffers from the scalability

problem, especially in large-scale dataset. The time of generating recommendations with the high

amount of missing values in dataset could not meet the online recommendation requirements.

Therefore, the proposed method uses K-means clustering, which is effective by comparing the

process speed with the traditional non-clustered method. From Figure 19, we find that the total

speed of offline clustering plus recommendation process was improved by 163%. Since the

offline k-means clustering pre-process includes all similar items into the same groups, the

similarity process will be less time consuming. In such a way, the clustering process contributes

to the overall time efficiency by speeding up the calculations and improving the online

scalability allowing real-time recommendations.

5.7 Overall recommendation accuracy

5.7.1 Recall and Precision

Typically, the Recall and Precision are measured over the total number of recommendations

list L, while a larger L could improve the recall results but likely reduce the precision. Therefore,

this section is evaluating the recommendation approaches over a range of L, rather than using a

fixed length.

From previous experimental test results, the optimal k clusters, neighbours and the matrix

density of missing value prediction have been applied to the process. The list length has been

tested by trial and error in a range from 50 to 500 items for observing the recall rate by

increasing 50 items in each iteration. And the precision rate will be observed by trial and error

with the list length in a range starting from 100 until 1000 items with increases 100 items in each

iteration. The experimental results have compared to the traditional approach.

	

	
	

73	

Figure 20. The recall rate of list range 50 – 500.

As we can see from Figure 20, the general trend of the recall curved line has risen

perpendicularly. When L = 100 items, the recall rate is 0.201, and for L= 500 items the recall

rate is 0.64. It clearly shows that the recall rate has rapid raise in list range [50,200] which has

good recall rate and short list in both. Generally speaking, when the length of the

recommendation list is increased, the recall rate has increased as well. When recommended with

more items, the users are more likely to like one or several of them. However, the

recommendation list cannot be excessively expanded, in that case, the information overload

problem makes less meaning to the recommendation system. Thus, a quality recommendation

system containing short list and high recall rate.

	

	
	

74	

Figure 21. The Comparison of proposed method to Traditional method

From Figure 21, it shows the comparison of the recall rate from the proposed method along

a traditional method. When L = 50 the proposed method gets recall rate 0.134 with the traditional

one being at 0.113, indicating an improved recall rate by 18.5%. With L =100 the recall rate has

improved by 48.8%. This proves the superiority of the proposed method against to the traditional

one.

Figure 22. The precision rate of list range100-1000

	

	
	

75	

Theoretically, the recall rate has a negative correlation with the precision rate, that a longer

list increases the recall rate while it reduces the precision rate at the same time. From the Figure

22, we can see the precision curved line with a list range from 100 -1000 items, when L = 100

has rate 0.0481 which is on the highest point at the line. Then, the list size increases while the

precision rate has persistently reduced. The range of precision rate is between 0-1, due to the fact

that the experimental dataset does not have enough sample which makes the results smaller than

usual, therefore, in this test the precision rate has been compared to the traditional method.

Figure 23. The precision comparison on list 100

From Figure 23, we can see the precision rate comparison of the proposed method with the

traditional one. On best result length L = 100, the precision rate reaches its value 0.0481, and the

traditional method has 0.0327, proving that the proposed method achieves a 47.1% improvement.

Based on the overall experimental tests, the proposed method presents a better recall and

precision rate compared to the traditional method. Moreover, among several recommendation list

	

	
	

76	

values, the number of list = 100 is suggested as the optimal length for use in recommendation

algorithms.

5.7.2 The F1 Score

As we can see from the recall and precision experimental test, the proposed method can be

improved on certain length of the result list. What is more, by comparing with the best recall and

precision result with the traditional result, it shows good improvement to the recommendation

results. To further evaluate the recommendation accuracy, this section takes recall and precision

both into consideration. Thus, the F1 score has been tested and the result has been compared to

the traditional method.

The experimental results from previous test has been applied. Afterwards, the list length has

been tested in a range from 50 to 1000 items to observing the change of F1 score.

Figure 24. The F1 Score

The Figure 24 has showed the F1 graph for list range 50 – 1000, the curved line first raises

to L = 100 which is the highest point, then it downward oscillations to L =300, afterward the

	

	
	

77	

curved line has dropped to L= 1000 reached the lowest point. From the graph, we can see the list

range [50,200] keeps good F1 rate and manage the list in short range simultaneously. Meanwhile,

by considering the results from previous section, I find the list range [50,200] is the optimal

range for this dataset, which clearly shows a better result on recall, precision and F1 scores.

Moreover, as we can see from Figure 25, the F1 scores comparison of the proposed method to

the traditional method showed below.

Figure 25. F1 score comparison to the traditional method

In the optimal range [50,200], the Figure 25 shows the proposed method has F1 = 0.0761 on

L 50, and 0.07176 on L = 200, compared to traditional method which has L =50 has 0.0602 and

L= 200 has 0.0576 has improved 24% in average.

In this chapter, the k-means clustering and similarity prediction methods have been used to

experiment and verified the factors which may affect the recommended accuracy, including the

ratio of matrix estimation density, the number of neighbors, the k value of k-means clustering

and the length of recommendation list.

	

	
	

78	

The experimental results show that 1. The optimal matrix density at 5% of missing value

predicted has the best recommendation accuracy. However, as perdition percentage increases

while the final recommendation quality decreases due to the reason of perdition error

accumulation. 2. The number of the optimal neighbours improved the recommendation accuracy,

experiment shows that the MAE and RMSE graph line reaches the peak when the number of

nearest neighbours is in range of 30 – 40. As the number continues increases while the results

first raises then trending to smooth. 3. The offline clustering algorithm saves computation time

while improves the recommendation efficiency and online scalability. When the optimal k value

= 2 has the best recommended quality. However, by continuing to increase the k value results,

the accuracy decreases as large number of clusters reduce the relevant data in each cluster. 4.

The metrics including precision, recall rate and F1 score being used to measure the overall

recommendation accuracy, and compared it with the traditional method, the proposed method

has significant advantage and more than 20% overall improvements.

	

	
	

79	

Chapter 6. Conclusion

Typical challenges faced by traditional collaborative filtering recommendation system are

information dataset sparsity, online scalability and time complexity problems which affect the

recommendation quality and decrease the user’s satisfaction. This thesis has presented a novel

collaborative filtering approach which uses clustering technology, then predicts the missing

value using similarity measure. The clustering and similarity measures are commonly used in

data mining tasks. Meanwhile, it is suitable in recommendation system as well.

6.1 Conclusion

 In the implementation of the clustering with missing value prediction approach, the

algorithm compares the similarity between users and items to determine whether user or item

information should be used to predict the missing ratings that showed improvements to the

recommendation quality. The clustering method is partitioning the user-item rating matrix using

K-means algorithm to identify similar items that grouped the most similar items (movies) into

one cluster which address the data sparsity, online scalable problems and increase the time

efficiency.

	

	
	

80	

The proposed method is developed from traditional collaborative filtering combined with

data mining technologies. The contributions of this thesis are provided below:

• The data mining technology K-means clustering is applied to the dataset grouping the

similar objects into one cluster, which addresses the data sparsity problem. More, the similarity

calculation will be processed in each cluster instead of the whole dataset, which could save a

significant amount of time.

• An excellent and scalable recommendation system is able to provide the real-time

recommendation to the users. Applying a clustering method could increase the system online

scalability and decrease the processing time.

• This thesis uses the effective optimal missing value prediction, neighbours and length of

list to the sparsity dataset. The pre-calculated similarity is used to compare and determine

whether user-based or item-based criteria will be used for the rating forecast, which improves the

prediction quality.

• According to the experiments by Python and R language, this thesis found out: 1. the

result of missing value prediction method has better result compared to non-predicted dataset. 2.

Prove that the clustering method could improve the recommendation speed and investigate how

different k clusters affect the recommendation quality. 3. By overall evaluation in RMSE, Recall,

Precision and F1 measure, the proposed method has 20% improvement compared to the

traditional collaborative filtering method.

 Moreover, from user and business side, this thesis presents a solution of collaborative

filtering recommendation system which helps users to select the interesting items. The system

supports the user in decision making process, increases the business sale amount, and strengthens

	

	
	

81	

user’s satisfaction and royalty. This approach could be applied to the recommendation system in

large-scale business environment which dataset is sparse.

6.2 Future Work

The proposed method which pre-processes the dataset based on clustering method; however,

the k-means clustering has its own limitation on optimal clusters and its performance depends on

the center initialization, which does not work adequately on high-dimensional data. Moreover,

the missing value prediction method is based on the accuracy of how user and item similarity is

computed. More research is needed to conduct on the relationship between user and item

information. Therefore, the following work will be developed in future:

• To implement the approach in Apache hadoop framework which is suitable for very large

data environment.

• To experiment different data mining algorithms, such as SVD, decision tree, deep

learning, and other clustering algorithms. Compare and study how they improve the

recommendation system.

• To test hybrid recommendation system that combine content-based recommendation

system with collaborative filtering recommendation system , add or reduce data dimension by

applying text mining processing techniques.

	

	
	

82	

Bibliography:

 [1] WorldWideWebSize.com (2016), “The size of the World Wide Web (The Internet)" [Online].

Available: http://www.worldwidewebsize.com/.

[2] Cisco (2016), "The Zettabyte Era—Trends and Analysis" [Online] Available:

http://www.cisco.com/c/en/us/solutions/collateral/service-,provider/visual-networking-index-

vni/vni-hyperconnectivity-wp.html

[3] G. Simos (2015), "How Much Data Is Generated Every Minute on Social Media?” WeRSM |

We Are Social Media, [Online]. Available: http://wersm.com/how-much-data-is-generated-

every-minute-on-social-media.

[4] Web Scraping and Data Scraping (2015). “Walmart Earnings Disappoint – How To Catch

Up With Amazon” [online]. Available at: http://learn.scrapehero.com/walmart-earnings-

disappoint-how-to-catch-up-with-amazon/

[5] F. Ricci, L. Rokach and B. Shapira, “Recommender Systems Handbook,” Springer, pp.1-35,

2010.

[6] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom,and J. Riedl, “GroupLens: An Open

Architecture for Collaborative Filtering of Netnews”, in Proc. of 1994 ACM Conference on

Computer Supported Cooperative Work, Chapel Hill, NC, pp.175-186, 1994.

[7] C. Anderson, “The Long Tail: Why the Future of Business is Selling Less of More,” New

York, NY: Hyperion. ISBN 1-4013-0237-8, 2006.

	

	
	

83	

[8] B. Sarwar, G. Karypis, J. Konstan and J. Riedl, "Item-Based Collaborative Filtering

Recommendation Algorithms,” in Proc. of 2001 the 10th international conference on World

Wide Web, 2001.

[9] J. Bennett and S. Lanning "The Netflix Prize," in Proc. of KDD Cup and Workshop, pp.35,

2007.

[10] V, Zanardi, “Addressing The Cold Start Problem in Tag-based Recommender Systems,”

Doctoral Dissertation, University College London, UK, 2011.

[11] D. Goldberg, D. Nichols, B.M. Oki, and D. Terry, "Using Collaborative Filtering to Weave

an Information Tapestry," Communications of the ACM. no12, pp. 61-70, Dec. 1992.

[12] J.S. Breese, D. Heckerman, and C. Kadie, “Empirical Analysis of Predictive Algorithms for

Collaborative Filtering,” in Proc .of the Fourteenth conference on Uncertainty in artificial

intelligence, Morgan Kaufmann Publishers Inc, pp. 43-52,1998.

 [13] J.B. Schafer, J.A. Konstan, and J. Riedl, “E-commerce Recommendation Applications,”

In Applications of Data Mining to Electronic Commerce. Springer US, pp.115-153, 2001.

[14] G. Linden, B. Smith, and J. York. "Amazon. com Recommendations: Item-to-Item

Collaborative Filtering," Internet Computing, IEEE vol.7, no. 1, pp. 76-80, 2003.

[15] A.S. Das, M. Datar, A. Garg, and S. Rajaram, "Google News Personalization: Scalable

Online Collaborative Filtering," in Pro. of the 16th International Conference on World Wide

Web, ACM, pp. 271-280, 2007.

	

	
	

84	

[16] S.K. Tiwari and S.K. Shrivastava, “An Approach for Recommender System by Combining

Collaborative Filtering with User Demographics and Items Genres,” International Journal of

Computer Applications, Volume 128- no.13, pp.16-24, 2015.

[17] R.R. Sinha, and K. Swearingen, "Comparing Recommendations Made by Online Systems

and Friends," in Proc. of ELOS Workshop: Personalisation and Recommender Systems in Digital

Libraries, Vol. 1. 2001.

[18] J.A. Al-Sharawneh, and M. Williams. "Credibility-aware Web-based Social Network

Recommender: Follow the Leader," in Proc. of 2010 ACM Conference on Recommender Systems,

pp. 1–8, 2010.

 [19] X. Amatriain, N. Lathia, JM. Pujol, H. Kwak, and N. Oliver, "The Wisdom of the Few: A

Collaborative Filtering Approach Based on Expert Opinions From the Web," in Proc. of the

32nd International ACM SIGIR Conference on Research and Development in Information

Retrieval, pp.532-539, 2009.

[20] J.A. Konstan, B.N. Miller, D. Maltz, J.L. Herlocker, L.R. Gordon, and J. Riedl. "GroupLens:

Applying Collaborative Filtering to Usenet News," Communications of the ACM. no3, pp. 77-87,

Mar. 1997.

[21] C. Smith, (2014), “Amazing Amazon Statistics,” [online] DMR. Available at:

http://expandedramblings.com/index.php/amazon-statistics/.

[22] G. Linden, B. Smith, and J. York, "Amazon. com Recommendations: Item-to-Item

Collaborative Filtering," Internet Computing, IEEE vol.7, no. 1, pp. 76-80, 2003.

	

	
	

85	

[23] O. Georgiou, and N. Tsapatsoulis, “Improving the Scalability of Recommender Systems by

Clustering using Genetic Algorithms," in Proc. of International Conference on Artificial Neural

Networks, Springer Berlin Heidelberg, pp. 442-449, 2010.

[24] P.T. Braak, N. Abdullah and Y. Xu, “Improving the Performance of Collaborative Filtering

Recommender Systems Through User Profile Clustering,” in Proc of the 2009 IEEE/WIC/ACM

International Joint Conference on Web Intelligence and Intelligent Agent Technology-Volume 03,

IEEE Computer Society, pp. 147-150, 2009.

[25] K. Babas, G. Chalkiadakis, and E. Tripolitakis. "You are What You Consume: A Bayesian

Method for Personalized Recommendations," in Proc. of the 7th ACM Conference on

Recommender Systems, ACM, pp. 221-228, 2013.

[26] C.C. Aggarwal, J. L. Wolf, K. L. Wu, and P.S. Yu, “Horting Hatches an Egg: A New

Graph-theoretic Approach to Collaborative Filtering,” in Proc. of the fifth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, ACM, pp. 201-212, 1999.

[27] K. Zhou, SH. Yang, and H.Y. Zha, "Functional Matrix Factorizations for Cold-start

Recommendation," in Proc. of the 34th International ACM SIGIR Conference on Research and

Development in Information Retrieval, pp. 315-324, 2011.

[28] G.R. Xue, C. Lin, Q. Yang, W. Xi, H.J. Zeng, Y. Yu, and Z. Chen, “Scalable Collaborative

Filtering using Cluster-based Smoothing,” in Proc. of the 28th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, ACM, pp. 114-121, 2005.

	

	
	

86	

[29] K. Yu, X. Xu, J. Tao, M. Ester, and H. Kriegel, “Instance Selection Techniques for

Memory-Based Collaborative Filtering,” in Proc. of the Second Siam Intl. Conf. on Data Mining,

SDM, 2002.

[30] A.l.M. Rashid, S.K. Lam, G. Karypis, and J. Riedl, "ClustKNN: A Highly Scalable Hybrid

Model-& Memory-based CF Algorithm," in proc. of WebKDD, 2006.

[31] G.J Gan, C.Q. Ma, and J.H. Wu, “Data Clustering: Theory, Algorithms, and Applications,”

vol. 20, Siam, 2007.

[32] A. Fiasconaro, M. Tumminello, V. Nicosia, V. Latora, and R.N. Mantegna. "Hybrid

recommendation methods in complex networks," Physical Review E:92.1:012811, 2015.

 [33] Y. Zou, A.J. An, and X.J. Huang, “Evaluation and Automatic Selection of Methods for

Handling Missing Data.” Granular Computing, IEEE International Conference on (Vol. 2, pp.

728-733), 2005.

[34] Y. Liu, X.J. Huang, and A.J. An, “Personalized Recommendation with Adaptive Mixture of

Markov Models.” Journal of the American Society for Information Science and Technology,

58(12), pp.1851-1870, 2007.

[35] J. Wei, J. He, K. Chen, Y. Zhou, and Z. Tang, “Collaborative Filtering and Deep Learning

Based Recommendation System for Cold Start Items.” Expert Systems with Applications, 69,

pp.29-39, 2017.

[36] A. Forestiero, “Multi-agent Recommendation System in Internet of Things.” in Proc. of the

17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (pp. 772-775).

IEEE Press, 2017.

	

	
	

87	

[37] H.J. Ahn, “A New Similarity Measure for Collaborative Filtering to Alleviate the New User

Cold-starting Problem,” Information Sciences, 178(1), pp.37-51, 2008.

[38] P. Melville, and V. Sindhwani, “Recommender Systems,” Encyclopedia of machine

learning, Springer US, pp. 829-838, 2011.

[39] A.K. Jain, “Data Clustering: 50 Years Beyond K-means,” Pattern Recognition Letters 31,

no.8, pp.651-666, 2010.

[40] J.L. Schafer and J.W. Graham. "Missing Data: our view of the state of the art,"

Psychological methods, 7, no. 2, pp.147, 2002.

[41] J.H. Holland, “Adaptation in Natural and Artificial Systems: An Introductory Analysis with

Applications to Biology, Control, and Artificial Intelligence,” U Michigan Press, 1975.

[42] D.E. Goldberg, “Genetic Algorithms in Search, Optimisation and Machine Learning,”

Addison Wesley Longman, Inc. 1989.

[43] J.H. Wolfe, “A Computer Program for the Computation of Maximum-likelihood Analysis of

types,” U.S. Naval Personnel Research Activity, Technical Report, SRM, pp. 65-112, San Diego,

1965.

[44] I. Cadez, D. Heckerman, C. Meek, P. Smyth, and S. White, “Model-based Clustering and

Visualization of Navigation Patterns on a web site,” Data Mining and Knowledge Discovery,

7(4), pp.399-424,2003.

[45] M. Nilashi, O.B. Ibrahim, N. Ithnin, and N.H. Sarmin, “A Multi-criteria Collaborative

Filtering Recommender System for the Tourism Domain using Expectation Maximization (EM)

and PCA–ANFIS,” Electronic Commerce Research and Applications, 14(6), pp.542-562, 2015.

	

	
	

88	

[46] M. Verma, M. Srivastava, N. Chack, A.K. Diswar, and N. Gupta, “A Comparative Study of

Various Clustering Algorithms in Data Mining,” International Journal of Engineering Research

and Applications (IJERA), 2(3), pp.1379-1384, May 2012.

[47] G. McLachlan and T. Krishnan, “The EM Algorithm and Extensions Vol. 382 of Wiley

series in Probability and Statistics,” 2007.

[48] T.K. Moon, "The Expectation-maximization Algorithm," IEEE Signal Processing Magazine,

13, no. 6, pp. 47-60,1996.

[49] J. MacQueen, "Some Methods for Classification and Analysis of Multivariate

Observations." in Proc. of the 5th Berkeley Symposium on Mathematical Statistics and

Probability, vol. 1, no. 14, pp. 281-297, 1967.

[50] R. Salman, V. Kecman, Q. Li, R. Strack, and E. Test, “Fast K-means Algorithm

Clustering.” arXiv preprint arXiv:1108.1351, 2011.

[51] K.A. Nazeer, and M.P. Sebastian, “Improving the Accuracy and Efficiency of the K-means

Clustering Algorithm,” in Proc. of the World Congress on Engineering, Vol. 1, pp.1-3, May

2009.

[52] Q. Li, and B.M. Kim, "Clustering Approach for Hybrid Recommender System," In Web

Intelligence 2003, in Proc. IEEE/WIC International Conference, pp. 33-38. IEEE, 2003.

[53] I.H. Witten, and E. Frank, “Data Mining: Practical Machine Learning Tools and

Techniques,” Morgan Kaufmann. July 2005。

	

	
	

89	

[54] A. Herrero, J. Sedano, B. Baruque, H. Quintián, and E. Corchado, “10th International

Conference on Soft Computing Models in Industrial and Environmental Applications” vol. 368,

Springer, pp. 122, 2015.

[55] H. Ma, I. King and M.R. Lyu, “Effective Missing Data Prediction for Collaborative

Filtering,” in Proc. of the 30th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, ACM, pp. 39-46, July 2007.

[56] Python, “Python FAQ" [Online]. Available: http://python.net/~gherman/Python.html.

[57] R. Gentleman, W. Huber, and V.J. Carey, “R Language. In International Encyclopedia of

Statistical Science,” Springer Berlin Heidelberg, 2011.

[58] O.R. Zaíane, “Building a Recommender Agent for E-learning Systems,” In Computers in

Education, in Proc. of International Conference, IEEE,2002.[59] S.Y. Chou, Y.H. Yang, and

Y.C. Lin, “Evaluating Music Recommendation in A Real-world Setting: on Data Splitting and

Evaluation Metrics,” IEEE International Conference on Multimedia and Expo (ICME), pp. 1-6,

IEEE, June 2015.

[60] Y. Zheng, B. Mobasher, and R. Burke, “Carskit: A Java-based Context-aware

Recommendation Engine,” IEEE International Conference on Data Mining Workshop (ICDMW),

pp. 1668-1671, IEEE, November 2015.

[61] I.Y. Choi, M.G. Oh, J.K. Kim, and Y.U. Ryu, “Collaborative Filtering with Facial

Expressions for Online Video Recommendation,” International Journal of Information

Management, 36(3), pp.397-402, 2016.

	

	
	

90	

[62] D. Wu, G. Zhang, and J. Lu, “A Fuzzy Preference Tree-based Recommender System for

Personalized business-to-business E-services,” IEEE Transactions on Fuzzy Systems, 23(1),

pp.29-43, 2015.

[63] G. Linden (2009), "What is a Good Recommendation Algorithm?” [Online]. Available:

http://cacm.acm.org/blogs/blog-cacm/22925-what-is-a-good-recommendation-algorithm/fulltext.

[64] J.L. Herlocker, J.A. Konstan, “An Empirical Analysis of Design Choices in Neighborhood-

based Collaborative Filtering Algorithms.,” Information Retrieval, 5, 287–310, 2002.

	

	
	

91	

Appendix: Coding Reference
The function below is coded by Python.

A. Clustering

This function implements the K-means clustering to group items into k clusters.

import sys

import random

import copy

def init_arr(r, c):

for i in range(c):

tmp_arr = [0] * c

arr.append(tmp_arr)

return arr

def kmeans_init(data_arr, clus_k):

users_num = len(data_arr)

items_num = len(data_arr[0])

center = []

seed = set()

resd = [-1] * user_num

for i in range(clus_k):

idx = int(random.uniform(0, users_num))

while idx in seed:

idx = int(random.uniform(0, users_num))

seed.add(idx)

print idx

 center.append(copy.deepcopy(data_arr[idx]))

print len(center)

print center[0][:20]

	

	
	

92	

return center, resd

def power(data_list):

res = 0.0

for it in range(len(data_list)):

res += data_list[it] * data_list[it]

return res

def getDistance(element, center):

todo: the i-th calculate

res = 0.0

for i in range(len(elements)):

dif = element[i] - center[i]

res += dif * dif

#res = math.sqrt(res)

return res

def kmean(data_arr, k):

r = len(data_arr)

if r < 1:

print "data error, stop cluster"

return None

c = len(data_arr[0])

try:

center,resd = kmeans_init(data_arr, k)

except:

return None

count = 0

flag = True

while flag and count < 100:

	

	
	

93	

flag = False

print 'round :' + str(count)

#cal dist

for i in range(0, r):

dist = sys.maxint

cent_id = 0

for j in range(0, k):

dist_item = getDistance(data_arr[i], center[j])

if dist_item < dist:

dist = dist_item

cent_id = j

if cent_id != resd[i]:

resd[i] = cent_id

flag = True

#cal new center

for j in range(0, k):

cluster_num = 0

tmp_center = [0] * c

for it in range(len(resd)):

if resd[it] == j:

cluster_num += 1

for l in range(c):

tmp_center[l] += data_arr[it][l]

if cluster_num == 0:

print 'xxxx'

raise Exception

for l in range(c):

	

	
	

94	

tmp_center[l] /= float(cluster_num)

center[j] = tmp_center

count += 1

return resd

	

	
	

95	

B. Similarity Calculation

This function stores the pre-calculated user and item similarity and mean in array.

import sys

import copy

import random

def estimate(data_arr, resd, aver_data_arr, users_mean, items_mean, pcnt):

users_num = len(data_arr)

item_num = len(data_arr[0])

estm_arr = copy.deepcopy(data_arr)

item_estm_list = [0] * item_num

for j in range(item_num):

user_count = 0.0

for i in range(user_num):

if data_arr[i][j] > 0:

item_estm_list[j] += ave_data_arr[i][j]

user_count += 1

if users_count == 0:

user_count += 1

item_estm_list[j] /= user_count

for i in range(user_num):

for j in range(item_num):

if estm_arr[i][j] == 0:

ran = random.random()

if ran > pcnt

continue

estm_arr[i][j] = user_mean[i] + item_estm_list[j]

	

	
	

96	

if estm_arr[i][j] < 0:

estm_arr[i][j] = 1

elif estm_arr[i][j] > 5:

estm_arr[i][j] = 5

return estm_arr

def estimate_new(data_arr, resd, ave_data_arr, user_mean, item_mean, pcnt):

user_num = len(data_arr)

item_num = len(data_arr[0])

estm_arr = copy.deepcopy(data_arr)

users_list = []

for i in range(user_num):

tmp_set = set()

for j in range(user_num):

if i != j and resd[i] == resd[j]:

tmp_set.add(j)

user_list.append(tmp_set)

item_list = []

for j in range(item_num):

item_set = set()

for k in range(item_num):

if j != k and abs(item_mean[j] - item_mean[k]) < 0.1:

item_set.add(k)

item_list.append(item_set)

for i in range(user_num):

if estm_arr[i][j] == 0:

estm_arr[i][j] = user_mean[i]

user_v = 0

	

	
	

97	

user_counts = 0.0

for k in user_list[i]:

if data_arr[k][j] > 0:

user_v += ave_data_arr[k][j]

user_count += 1

if user_count == 0:

user_count += 1

user_v /= user_count

estm_arr[i][j] += 0.5 * user_v

item_v = 0

itemsw_count = 0.0

for m in item_list[j]:

if data_arr[i][m] > 0:

item_v += ave_data_arr[i][m]

item_count += 1

if item_count == 0:

item_count += 1

item_v /= item_count

estm_arr[i][j] += 0.5 * item_v

if estm_arr[i][j] < 0:

estm_arr[i][j] = 1

elif estm_arr[i][j] > 5:

estm_arr[i][j] = 5

return estm_arr

	

	
	

98	

C. Evaluation

This file evaluates the recommendation results using MAE, RMSE, Precision, Recall and F1
score.

import sys

import time

import math

def rmse(test_arr, res_arr):

r = len(test_arr)

c = len(test_arr[0])

sum_res = 0.0

count = 0

test_user = []

for i in range(r):

for j in range(c):

if test_arr[i][j] > 0:

test_user.append(i)

for i in test_user:

for j in range(0, c):

if test_arr[i][j] > 0:

sum_res += (res_arr[i][j] - test_arr[i][j]) ** 2

count += 1

if count == 0:

raise Exception,Exception('No test data', 'in evaluate.py')

return math.sqrt(sum_res / count)

def mae(test_arr, res_arr):

r = len(res_arr)

c = len(res_arr[0])

	

	
	

99	

sum_res = 0.0

count = 0

test_user = []

for i in range(r):

for j in range(c):

if test_arr[i][j] > 0:

test_user.append(i)

break

for i in test_user:

for j in range(0, c):

if test_arr[i][j] > 0:

sum_res += abs(res_arr[i][j] - test_arr[i][j])

count += 1

if count == 0:

raise Exception,Exception('No test data', 'in evaluate.py')

print count

return sum_res / count

def cal(res_arr, test_arr, outfile):

res_rmse = rmse(res_arr, test_arr)

res_mae = mae(res_arr, test_arr)

outfile.write("exp result is : \nrmse : " + str(res_rmse) + "\nmae : " + str(res_mae) + "\n")

return res_rmse, res_mae

def pre_recal(test_arr, rec_items):

pres = 0.0

recall = 0.0

f1 = 0.0

	

	
	

100	

r = len(test_arr)

c = len(test_arr[0])

tp = 0

fp = 0

test_user = []

for i in range(r):

for j in range(c):

if test_arr[i][j] > 0:

test_user.append(i)

break

for i in test_user:

for j in range(len(rec_items[i])):

if test_arr[i][rec_items[i][j]] > 0:

tp += 1

else:

fp += 1

for j in range(len(test_arr[i])):

if test_arr[i][j] > 0 and j not in rec_items[i]:

tn += 1

print "tp " + str(tp)

print "tn " + str(tn)

print "fp " + str(fp)

pres = float(tp) / float(tp + fp)

recall = float(tp) / float(tp + tn)

if pres + recall == 0:

f1 = 0

	

	
	

101	

else:

f1 = 2 * pres * recall / (pres + recall)

return pres, recall, f1

	

	
	

102	

D. Graph Generation

This file generates the graph of the recommendation results.

-*- coding:utf-8 -*-

import matplotlib.pyplot as plt

import sys

def draw(image_path, xlist, ylist, xlabel, ylabel):

colorList = ['b','g','r','c','m','y','k']

plt.xlabel(xlabel)

plt.ylabel(ylabel)

plt.title('recsys')

lines = []

titles = []

line1, = plt.plot(xlist, ylist)

plt.setp(line1, color=colorList[0], linewidth=2.0)

titles.append(ylabel)

lines.append(line1)

plt.legend(lines, titles)

plt.savefig(image_path, dpi=120)

plt.close()

	

	
	

103	

E. Main Function

import sys

import math

import time

import estimation

import cluster

import copy

import evaluate

import res_pic

def init_arr(r, c):

"""

init array with 0

"""

arr = []

for i in range(r):

tmp_arr = [0] * c

arr.append(tmp_arr)

return arr

def init_arr_n(r, c):

"""

init array with -1

"""

arr = []

for i in range(r):

tmp_arr = [-1] * c

	

	
	

104	

arr.append(tmp_arr)

return arr

def get_input(filename, item_num, user_num):

"""

get input data

"""

data_arr = init_arr(user_num, item_num)

with open(filename) as f:

for lines in f:

arr = lines.strip().split('\t')

u = int(arr[0]) - 1

i = int(arr[1]) - 1

r = int(arr[2])

data_arr[u][i] = r

return data_arr

def get_ave_data_arr(data_arr, user_mean):

"""

get average rank (data - user_mean)

"""

user_num = len(data_arr)

item_num = len(data_arr[0])

ave_data_arr = copy.deepcopy(data_arr)

for i in range(user_num):

for j in range(item_num):

ave_data_arr[i][j] -= user_mean[i]

return ave_data_arr

	

	
	

105	

def get_pear_data_arr(data_arr, item_mean):

"""

get average rank array (data - item_mean): used for pearson similarity calculation

"""

user_num = len(data_arr)

item_num = len(data_arr[0])

pear_data_arr = copy.deepcopy(data_arr)

for i in range(user_num):

for j in range(item_num):

pear_data_arr[i][j] -= item_mean[j]

return pear_data_arr

def get_sqr_data_arr(ave_data_arr):

"""

get square of data

"""

user_num = len(ave_data_arr)

item_num = len(ave_data_arr[0])

sqr_data_arr = copy.deepcopy(ave_data_arr)

sqr_data_list = [0] * item_num

for i in range(user_num):

for j in range(item_num):

sqr_data_arr[i][j] = ave_data_arr[i][j] * ave_data_arr[i][j]

for l in range(item_num):

sq_sum = 0

for m in range(user_num):

	

	
	

106	

sq_sum += sqr_data_arr[m][l]

sqr_data_list[l] = math.sqrt(sq_sum)

if sqr_data_list[l] == 0:

sqr_data_list[l] = 1

return sqr_data_list

def get_user_mean(data_arr):

"""

get user mean

"""

user_num = len(data_arr)

item_num = len(data_arr[0])

user_mean = [0] * user_num

for i in range(user_num):

user_ave = 0.0

user_count = 0.0

for j in range(item_num):

if data_arr[i][j] > 0:

user_ave += data_arr[i][j]

user_count += 1

if user_count > 0:

#user_mean[i] = user_ave / user_count

user_mean[i] = user_ave / item_num

else:

user_mean[i] = 0

return user_mean

def get_item_mean(data_arr):

"""

	

	
	

107	

get item mean

"""

user_num = len(data_arr)

item_num = len(data_arr[0])

item_mean = [0] * item_num

for j in range(item_num):

user_ave = 0.0

user_count = 0.0

for i in range(user_num):

if data_arr[i][j] > 0:

user_ave += data_arr[i][j]

user_count += 1

if user_count > 0:

#item_mean[i] = user_ave / user_count

item_mean[] = user_ave / user_num

else:

item_mean[j] = 0

return item_mean

def cosin_similarity(ave_data_arr, sqr_data_list, data_arr):

"""

calculate cosin similarity

"""

user_num = len(ave_data_arr)

item_num = len(ave_data_arr[0])

sim_arr = init_arr(item_num, item_num)

for i in range(item_num):

	

	
	

108	

for j in range(0, i):

sim_arr[i][j] = sim_arr[j][i]

sim_arr[i][i] = 1

for j in range(i + 1, item_num):

ms = 0.0

for l in range(user_num):

sim_arr[i][j] += ave_data_arr[l][i] * ave_data_arr[l][j]

sim_arr[i][j] /= (sqr_data_list[i] * sqr_data_list[j])

return sim_arr

def sim_sort(sim_arr):

"""

sorted by similarity for each item

"""

item_num = len(sim_arr)

sim_sorted = []

for i in range(item_num):

temp = {j:sim_arr[i][j] for j in range(0, len(sim_arr[i]))}

sim_s = sorted(temp.items(), key = lambda k:k[1], reverse=True)

tmp_list = [sim_s[j][0] for j in range(0, len(sim_arr))]

sim_sorted.append(tmp_list)

return sim_sorted

def rec(data_arr, sim_sorted, sim_arr, top_rec):

"""

calculate the recommand result

"""

	

	
	

109	

res_arr = copy.deepcopy(data_arr)

user_num = len(data_arr)

item_num = len(data_arr[0])

for i in range(user_num):

for j in range(item_num):

if res_arr[i][j] == 0:

user_count = 0

sim_sum = 0.0

for k in sim_sorted[j]:

if k == j:

continue

if user_count >= top_rec:

break

if res_arr[][k] > 0:

user_count += 1

res_arr[i][j] += sim_arr[j][k] * data_arr[i][k]

sim_sum += abs(sim_arr[j][k])

if sim_sum == 0:

sim_sum = 1

res_arr[i][j] /= sim_sum

if res_arr[i][j] < 1:

#print " " + str(res_arr[i][j])

res_arr[i][j] = 1

elif res_arr[i][j] > 5:

#print " " + str(res_arr[i][j])

res_arr[i] = 5

return res_arr

	

	
	

110	

def get_rec_item(data_arr, res_arr, k_rec):

"""

get the k_rec items for recommendation

"""

user_num = len(data_arr)

item_num = len(data [0])

rec_items = init_arr_n(user_num, k_rec)

for i in range(user_num):

tmp_list = []

for j in range(item_num):

if data_arr[i][j] == 0 and res_arr[i][j] > 0:

tmp_list.append([j, res_arr[i][j]])

tmp_sorted_list = sorted(tmp_list, key = lambda k:k[1], reverse=True)

tmp_sorted_list = tmp_sorted_list[:k_rec]

for m in range(len(tmp_sorted_list)):

rec_items[i][m] = tmp_sorted_list[m][0]

return rec_items

def main():

"""

single round calculation

"""

in_file = sys.argv[1]

test_file = sys.argv[2]

#out_file = sys.argv[3]

#user_num = 5

#item_num = 8

	

	
	

111	

user_num = 943

item_num = 1682

data_arr = get_input(in_file, item_num, user_num)

test_arr = get_input(test_file, item_num, user_num)

user_mean = get_user_mean(data_arr)

item_mean = get_item_mean(data_arr)

cluster_num = 1

k_neighbour = 40

#k_neighbour = int(sys.argv[3])

k_rec = 10

#pcnt = float(sys.argv[3])

pcnt = 1

cluster_res = cluster.kmeans(data_arr, cluster_num)

ave_data_arr = get_ave_data_arr(data_arr, user_mean)

estm_arr = estimation.estimate_new(data_arr, cluster_res, ave_data_arr, user_mean,
item_mean, pcnt)

ave_data_arr = get_ave_data_arr(data_arr, user_mean)

sqr_data_list = get_sqr_data_arr(ave_data_arr)

ave_data_arr = get_ave_data_arr(estm_arr, user_mean)

sqr_data_list = get_sqr_data_arr(ave_data_arr)

#pear_data_arr = get_pear_data_arr(estm_arr, item_mean)

#pear_sqr_data = get_sqr_data_arr(pear_data_arr)

	

	
	

112	

sim_arr = cosin_similarity(ave_data_arr, sqr_data_list, estm_arr)

#sim_arr = cosin_similarity(pear_data_arr, pear_sqr_data, estm_arr)

#sim_arr = cosin_similarity(pear_data_arr, pear_sqr_data, data_arr)

#sim_arr = cosin_similarity(ave_data_arr, sqr_data_list, data_arr)

sim_sorted = sim_sort(sim_arr)

#res_arr = rec(data_arr, sim_sorted, sim_arr, k_neighbour)

res_arr = rec(estm_arr, sim_sorted, sim_arr, k_neighbour)

rec_items = get_rec_item(data_arr, res_arr, k_rec)

rmse = evaluate.rmse(test_arr, res_arr)

print 'rmse: %.5f' % rmse

mae = evaluate.mae(test_arr, res_arr)

print 'mae: %.5f' % mae

pres, recall, f1 = evaluate.pre_recal(test_arr, rec_items)

print 'precise: %.5f' % pres

print 'recall: %.5f' % recall

print 'f1: %.5f' % f1

def run(cluster_num, k_neighbour, k_rec, pcnt, data_arr, test_arr, user_mean, item_mean):

"""

run the process

"""

ave_data_arr = get_ave_data_arr(data_arr, user_mean)

estm_arr = estimation.estimate_new(data_arr, cluster_res, ave_data_arr, user_mean,
item_mean, pcnt)

ave_data_arr = get_ave_data_arr(data_arr, user_mean)

sqr_data_list = get_sqr_data_arr(ave_data_arr)

ave_data_arr = get_ave_data_arr(estm_arr, user_mean)

sqr_data_list = get_sqr_data_arr(ave_data_arr)

#pear_data_arr = get_pear_data_arr(estm_arr, item_mean)

	

	
	

113	

#pear_sqr_data = get_sqr_data_arr(pear_data_arr)

sim_arr = cosin_similarity(ave_data_arr, sqr_data_list, estm_arr)

#sim_arr = cosin_similarity(pear_data_arr, pear_sqr_data, estm_arr)

#sim_arr = cosin_similarity(pear_data_arr, pear_sqr_data, data_arr)

#sim_arr = cosin_similarity(ave_data_arr, sqr_data_list, data_arr)

sim_sorted = sim_sort(sim_arr)

#res_arr = rec(data_arr, sim_sorted, sim_arr, k_neighbour)

res_arr = rec(estm_arr, sim_sorted, sim_arr, k_neighbour)

rec_items = get_rec_item(data_arr, res_arr, k_rec)

#rmse = evaluate.rmse(test_arr, res_arr)

#mae = evaluate.mae(test_arr, res_arr)

#pres, recall, f1 = evaluate.pre_recal(test_arr, rec_items)

rmse = evaluate.rmse(test_arr, res_arr)

print 'rmse: %.5f' % rmse

mae = evaluate.mae(test_arr, res_arr)

print 'mae: %.5f' % mae

pres, recall, f1 = evaluate.pre_recal(test_arr, rec_items)

print 'precise: %.5f' % pres

print 'recall: %.5f' % recall

print 'f1: %.5f' % f1

return rmse, mae, pres, recall, f1

def test():

in_file = sys.argv[1]

u = 6

i = 8

	

	
	

114	

data_arr = get_input(in_file, i, u)

test_arr = get_input(test_infile, i, u)

#data_arr = init_arr(3, 4)

#data_arr = init_arr_n(3, 4)

print 'data:'

print data_arr

user_mean = get_user_mean(data_arr)

print 'user_mean:'

print user_mean

item_mean = get_item_mean(data_arr)

print 'item_mean:'

print item_mean

ave_data_arr = get_ave_data_arr(data_arr, user_mean)

print 'ave_data_arr:'

prnt ave_data_arr

pear_data_arr = get_pear_data_arr(data_arr, item_mean)

print 'pear_ave_data_arr:'

print pear_data_arr

sqr_data_arr = get_sqr_data_arr(ave_data_arr)

print 'sqr_data_arr:'

print sqr_data_arr

sim_arr = cosin_similarity(ave_data_arr, sqr_data_arr, data_arr)

print 'sim_arr:'

print sim_arr

sim_arr_sort = sim_sort(sim_arr)

print 'sim_sorted:'

	

	
	

115	

print sim_arr_sorted

res = rec(data_arr, sim_arr_sorted, sim_arr, 2)

print 'res arr:'

print res

print test_arr

rmse = evaluate.rmse(test_arr, res)

print 'rmse: %.5f' % rmse

mae = evaluate.mae(test_arr, res)

print 'mae: %.5f' % mae

#pres, recall, f1 = evaluate.pre_recal(test_arr, rec_items)

pic_file = './ad'

axis_list = [1,2, 3,4,5,6,7,8]

res_pic.draw(pic_file + '.rmse.png', axis_list, item_mean, 'pcnt' , 'rmse')

print axis_list

res_pic.draw(pic_file + '.f1.png', axis_list, test_arr[0], 'pcnt' , 'f1')

print axis_list

#print user_mean

#print item_mean

data_arr[2][3] = 1

#print data_arr

def process():

in_file = sys.argv[1]

test_infile = sys.argv[2]

pic_file = sys.argv[3]

user_num = 943

item_num = 1682

	

	
	

116	

data_arr = get_input(in_file, item_num, user_num)

test_arr = get_input(test_infile, item_num, user_num)

user_mean = get_user_mean(data_arr)

item_mean = get_item_mean(data_arr)

cluster_num = 3

k_neighbour = 40

k_rec = 50

pcnt = 0.06

rmse_list = []

mae_list = []

pres_list = []

recall_list = []

f1_list = []

axis_list = []

for i in range(10):

k_rec = i * 100 + 100

rmse, mae, pres, recall, f1 = run(cluster_num, k_neighbour, k_rec, pcnt, data_arr, test_arr,
user_mean, item_mean)

rmse_list.append(rmse)

mae_list.append(mae)

pres_list.append(pres)

recall_list.append(recall)

f1_list.append(f1)

res_pic.draws(pic_file + '.rmse.png', axis_list, rmse_list, 'List' , 'RMSE')

res_pic.draw(pic_file + '.mae.png', axis_list, mae_list, 'List' , 'MAE')

res_pic.draw(pic_file + '.pres.png', axis_list, pres_list, 'List' , 'pres')

res_pic.draw(pic_file + '.recall.png', axis_list, recall_list, 'List' , 'recall')

res_pic.draw(pic_file + '.f1.png', axis_list, f1_list, 'List' , 'f1')

	

	
	

117	

if __name__ == '__main__':

main()

#test()

#process()

	

	
	

118	

F. Non-clustering Method

Non-clustering method used for comparison.

import sys

import time

import cofilter

import datasetInput

import evaluate

import ConfigParser

from numpy import *

def getConfig(ConfigPath):

config = ConfigParser.ConfigParser()

config.read(ConfigPath)

return

def getDictConf(ExpConfig, section):

conf_dict = dict()

try:

para = ExpConfig.items(section)

except Exception as e:

print 'Error conf item: ' + section

return conf_dict

for item in para:

conf_dict[item[0]] = item[1]

return conf_dict

def main():

ExpConfig = getConfig('../recommand.conf')

	

	
	

119	

user_num = int(ExpConfig.get('Dataset', 'user_num'))

item_num = int(ExpConfig.get('Dataset', 'item_num'))

para = getDictConf(ExpConfig, 'Parameters')

res_file = ExpConfig.get('Files', 'output')

data_file = ExpConfig.get('Files', 'train')

test_file = ExpConfig.get('Files', 'test')

pic_file = ExpConfig.get('Files', 'pic')

if 'clus_k' not in para:

print 'Error Parameters Conf: lost cluster k'

return -1

clus_k = int(para['clus_k'])

if 'top_k' not in para:

print 'Error Parameters Conf: lost top k'

return -1

top_k = int(para['top_k'])

if 'rec_l' not in para:

print 'Error Parameters Conf: lost rec l'

return -1

rec_l = int(para['rec_l'])

data_arr = zeros((user_num, item_num))

res_arr = zeros((user_num, item_num))

test_arr = zeros((user_num, item_num))

datasetInput.load(data_file, data_arr)

datasetInput.load(test_file, test_arr)

pic_axis = list()

rmse_list = list()

	

	
	

120	

mae_list = list()

outfile_name = res_file + time.strftime(".%Y%m%d-%H%I%S",
time.localtime(time.time()))

outfile = open(outfile_name, 'w')

for ti in range(top_k, 25, 10):

outfile.write("exp condition is : \n")

para['top_k'] = ti

for item in para:

outfile.write(item + " : " + str(para[item]) + "\n")

res_arr, simi_arr = cofilter.run(para, data_arr, res_arr)

savetxt(outfile_name + '.res_arr_' + str(ti), res_arr)

savetxt(outfile_name + '.simi_arr_' + str(ti), simi_arr)

res_rmse, res_mae = evaluate.cal(res_arr, test_arr, outfile)

pic_axis.append(ti)

mae_list.append(res_mae)

rmse_list.append(res_rmse)

#res_pic.draw(pic_file + '.mae.png', pic_axis, mae_list, 'clus_k', 'mae')

#res_pic.draw(pic_file + '.rmse.png', pic_axis, rmse_list, 'clus_k', 'rmse')

outfile.close()

if __name__ == '__main__':

main()

