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Abstract

Code review is essential for maintaining software development standards, yet

achieving effective reviews and issue resolution remains challenging. This thesis

introduces RefineCode, an application tool to find actionable code reviews and pro-

vide similar code reviews as references within an organization, aiding developers in

resolving issues effectively. To this end, we collected 9,500 code reviews from five

private projects in an industrial setting and empirically evaluated various classifi-

cation methods for identifying actionable code reviews. RefineCode automatically

recommends relevant solutions from Stack Overflow based on textual similarity and

entity linking between code reviews and Stack Overflow issues. Additionally, it in-

tegrates a chatbot feature, leveraging large language models to propose potential

solutions for actionable code reviews. These features empower developers to make

informed decisions, enhancing code quality by guiding issue resolution without re-

inforcing misunderstandings.
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1 Introduction

Code review is a fundamental practice in software development that aims to improve

code quality, fix bugs, and increase developer productivity. This process involves

project developers reviewing each other’s code to determine if it meets the neces-

sary quality standards for inclusion in the project’s main codebase [8]. However,

with the growing size and complexity of software projects, developers often face

the challenge of navigating through a large volume of code review comments. Fur-

thermore, there is a high rate of irrelevant comments and a lack of personalization,

making it difficult for developers to efficiently find and utilize relevant comments.

The manual inspection of code review can present a significant challenge, as it is

both complex and time-consuming [55]. As a result, in contemporary code review

practices, the utilization of tool-assisted reviews, specifically automated code review

tools, has gained popularity[4]. Despite this trend, there is a notable absence of ap-

plication tools offering automated code review recommendations and classifications

to developers on GitHub.
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Test: Added virtual and non-virtual methods. #155

class Base:
def show(self):
print("This is a virtual-like method in the base class.")

class Derived(Base):
def show(self):
print("This is an overridden method in the derived class.")
def display(self):
print("This is a non-virtual method in the derived class.")

# Usage
base_obj = Base()
derived_obj = Derived()

Reviewer #1: Please write virtual and non virtual method in separate
block?

Reviewer #2: I don't like the formatting of your code.

Reviewer #3: Got it. I will be fixed in next patch.

Reviewer #4: This code is terrible.

Figure 1.1: An example of classifying code reviews to solve the issue for specific

code commit #155. The text in bold font identifies the actionable code review.

To address this gap, we focus on the following key tasks: (i) Classifying code

review : where the objective is to categorize actionable review comments based on

a new code commit and a set of code reviews provided by peers (See figure 1.1).

(ii) Suggesting similar reviews from GitHub and entity linking to recommend Stack
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Overflow posts : When actionable reviews are identified, the task is to provide

similar code reviews that were previously resolved by other developers in the same

organization. Additionally, it provides relevant information from Stack Overflow

to help resolve the issue (See figure 4.3). (iii) Providing solutions based on search

queries, wherein actionable reviews are treated as search queries, and the goal is to

offer solutions based on the given query by leveraging large language models (See

figure 4.5)

1.1 Motivation

Nowadays, many industries have increasingly adopted modern code review prac-

tices as a fundamental strategy to constantly monitor and improve the quality of

code changes. This approach highlighted in research by Alomar et al. [2] and Cunha

et al. [13], not only ensures code reliability but also fosters a culture of collabora-

tive learning and continuous improvement among developers. Sadowski et al. [55]

focused on Google’s practice and analyzed its current state of code review. They

point out in this analysis that tool-based code reviews have become the norm for

a wide range of open-source and industrial systems. Bachelli et al. [4] focuses on

the evolution of code review techniques in software development. Their study high-

lights the significance of the transition by emphasizing how modern methods are

more adaptive and efficient in today’s dynamic software development environment.
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This evolution of code review practices reflects broader changes in software engi-

neering aimed at optimizing the review process for better quality and productivity

in software projects. In their research, they conducted a study on code review

anticipations and found that automated code review tools can effectively identify

certain types of problems and reduce the number of manual inspections required.

Pascarella et al. [45] provided a taxonomy of information needs in a code review.

According to this taxonomy, reviewers require information with regards to sustain-

ability of an alliterative solution, correct understanding, rationale, code context,

necessity, specialized expertise, and modularity of changes (splittable) for a suc-

cessful review process. Nowadays, it has become a difficult task for developers to

find important bug issues from code review comments. In that case, recommen-

dation and classification systems have become the modern solution to the growing

number of code review comments. Rahman et al. [57] introduced an application

tool called ToxicCR, which detects toxic discussions in code review. They antic-

ipate that this tool helps combat toxicity in the FOSS community. Manual code

review is time-consuming, and automating it can increase efficiency. Existing tech-

niques struggle to capture the subtle differences between the two code versions. As

a response, Shi et al. [59] introduce DACE, a deep model that excels at learning

correction features by contrasting code changes in the context of the source code.

Their experiments on six open-source projects show that DACE outperforms other

4



automated code review methods.

Analogies and examples have been human’s conventional way of explaining their

cognition and decisions. In today’s world, the use of examples is one of the methods

for decision explanation and explainable AI. Adequately explaining machine-made

decisions proved to be effective in convincing domain experts to follow the recom-

mendation and accept the intelligence of the machines. In this context, and to

address developers’ requirements for rationale, code context, and a clear under-

standing of code reviews [4], we studied the use of analogies by providing context-

specific examples along with code reviews. The use of examples to elucidate code

review issues within software teams has been largely unexplored in existing litera-

ture. While developers traditionally engage in manual searches for examples, the

automated retrieval of such instances from software repositories is not only feasible

but also streamlines developers’ activities.

1.2 Thesis Contributions

This thesis focuses on enhancing the efficiency and effectiveness of the code review

process using natural language processing techniques. The key contributions are

summarized below:

• For improving code quality, we developed a classifier to predict actionable

5



code review comments using feature engineering-based classifiers and transformer-

based classifiers.

• We evaluated the classification methods for identifying actionable code re-

views and presented a corpus of code reviews for this task. Through an

empirical evaluation, we examined the effectiveness of different models in ad-

dressing this classification challenge.

• We introduced RefineCode, a system leveraging the aforementioned classifier

to identify similar code reviews within a GitHub project. It also extracts rel-

evant information from Stack Overflow based on the developer’s code reviews

using the entity linking process. Finally, RefineCode incorporates a chatbot

using the pre-trained Stable Beluga (Llama2) [64] model, which aims to sup-

port developers by showing relevant example solutions to understand code

problems mentioned in the code reviews.

Overall, this thesis addresses code review challenges by aiding in issue prioritization

and promoting efficient problem-solving. The proposed techniques contribute to a

more streamlined and effective code review process, ultimately enhancing software

quality and fostering improved collaboration among developers.

6



1.3 Research Questions (RQs)

In this research, we have briefly analyzed the code review comments and performed

a unique technique for classifying and recommending code reviews. Here, we devel-

oped RefineCode, a tool that uses feature engineering-based approaches and large

language models to identify actionable review comments and provide relevant sug-

gestions in code reviews. It utilizes entity linking and text similarity measures

to fetch relevant information from Stack Overflow to help developers solve coding

problems. In addition, we implemented the RefiCode chatbot to facilitate code

review by showing developers clear examples to understand code review issues. In

pursuit of our research objectives, we address two key research questions (RQs):

RQ1: Which model is the most effective in identifying actionable reviews from

GitHub projects?

Why and How: Identifying actionable reviews in GitHub projects is crucial for

prioritizing and addressing critical issues. To address this research question, we

collected data from five major projects, labeled 9,500 code reviews, and evaluated

various feature engineering-based approaches and transformer-based models (BERT

and DistilBERT) to determine the most effective one. Our findings provide valuable

insights that can guide developers and project managers in prioritizing important

code reviews and enhancing the overall code review processes.
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RQ2: How can RefineCode assist developers in resolving coding issues based

on code reviews?

Why and How: Developers often encounter coding issues and rely on platforms

like Stack Overflow for solutions. However, finding relevant answers and under-

standing code examples can be challenging due to the vast amount of information.

In our thesis, we find similar code reviews from GitHub projects by measuring

textual similarity. We also help developers find potential solutions from Stack

Overview using Named Entity Recognition (NER) and chunking processes. Fi-

nally, RefineCode Chatbot utilizes the Stable Beluga (Llama2) pre-trained model

to potential solutions based on specific comments in code reviews.

1.4 Organization of the Thesis

Before moving to the next chapter, we give a brief description below regarding how

the following chapters of this thesis are organized.

• We begin Chapter 2 with a brief introduction to machine learning and deep

learning, followed by their applications in natural language processing that

are relevant to our research problem. We then discuss various deep learning

architectures followed by various word embedding and sentence embedding

techniques that have been widely used in recent years in deep neural models

8



for a wide range of natural language understanding and generation problems.

We then review the Transformer architecture and the various language models

based on it. Finally, we reviewed the research questions (RQs) that we studied

in this thesis.

• Then in Chapter 3, we first briefly discuss the background of the Code Review

Classification that we study for improving the code quality in this thesis. In

the same chapter, we describe our proposed approaches for this task along

with the datasets that we used to evaluate the proposed models. Moreover,

our experimental details as well as the results are also discussed in this chap-

ter.

• In Chapter 4, we present the RefineCode application that assists the developer

in solving the issue based on code reviews. We present the key features of the

system and demonstrate the utility of the system with illustrative use case

scenarios.

• Finally, the concluding remarks of this thesis as well as our plans for future

work are discussed in Chapter 5.

9



2 Literature Review

In this section, we provide an overview of the recent work in identifying code re-

view, recommendations, and entity linking with Stack Overflow. We start with a

literature review on the code review analysis which we are motivated to use in our

thesis. Then we describe recent state-of-the-art models based on machine learning

and transformers. After a literature review on machine learning and transformer-

based models, we describe the related work on research question tasks that we plan

to solve: i) automating code review, ii) suggesting similar code review, and iii)

entity linking with Stack Overflow based on review.

2.1 Supervised Learning in Code Review

Code review is a complex software engineering practice that aims to improve code

quality, identify bugs, and ensure maintainability. Traditional code review processes

rely heavily on manual inspections by developers, which can be time-consuming

and error-prone. With the advent of machine learning (ML) techniques, there
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is increasing interest in automating and improving code review processes. This

section explores the state of the art in applying machine learning to code review

and highlights key research contributions to the field.

Fregnan et al. [20] aims to identify the immediate impact of the review on the

codebase. Despite their contributions, these classifications were conducted man-

ually, limiting scalability, and their practical implications for software developers

were underappreciated. This work advances the area of research by exploring the

potential of machine learning in modifying auto-classifying reviews and assessing its

real-world relevance through developer interviews and qualitative analysis. Dorin

et al. [18] explore the integration of machine learning and image recognition to iden-

tify pre-screen and immature code segments. Such an approach builds on previous

efforts to automate code quality testing with the goal of increasing code review

efficiency by focusing on relevant application details. Unlike their approach, our

approach focuses on providing actionable feedback and providing developers with

a more personalized and contextually relevant code review experience.

Staron et al. [63] addressed the challenge of automating the massive flow of code

patches in a CI flow. They aimed to auto-extract coding guideline rules and pin-

point specific code fragments or lines that would benefit most from manual reviews,

targeting the perspective of software designers. Lin et al. [35] builds on the exist-

ing literature by emphasizing the potential of Neural Machine Translation (NMT)

11



models that, especially when combined with code granularity, mark a step forward

in the efficiency of automated code review. Ochodek et al.[42] introduced an au-

tomated approach to detect violations of companyspecific coding guidelines within

large industry codebases. They developed a machine-learning tool capable of learn-

ing from a limited sample of non-consistent code lines and efficiently identifying

similar instances across millions of lines of code. Lal et al. [29] introduced a novel

machine learning technique designed to further optimize and accelerate the code re-

view process, aiming to ensure a more efficient and accurate evaluation of submitted

code. While their methodology is commendable, our work on RefineCode under-

scores the importance of clarity and context in code reviews, ensuring developers

gain deeper insights from the feedback.

2.2 Deep Learning in Code Review

Traditional code reviews rely heavily on human expertise, leading to potential over-

sights and inconsistencies. Deep learning, a subset of machine learning, has demon-

strated its ability to understand complex patterns in data, and its application to

code review is beginning to transform this domain. Deep learning (DL) has wit-

nessed rapid advances in natural language processing, with significant advances in

language modeling, machine translation and paragraph understanding [30], [40], [43], [58].

Gupta et al. [24] introduced DeepCodeReviewer (DCR), an advanced system

12



powered by deep learning. DCR efficiently recommends relevant reviews for com-

mon code issues, using historical peer reviews from Microsoft’s internal code repos-

itory for its training. Initial tests demonstrated the model’s ability to determine

the relevance of reviews related to specific code snippets Additionally, a user study

and survey confirmed a high acceptance rate for DCR’s suggestions, aligning with

the goal of making code reviews more error-focused. Unlike their recommendation-

focused approach, our work highlights a holistic review process that caters to both

fresher and experienced developers.

Li [34] proposed model, CodeReviewer, uses a large dataset obtained from open-

source projects and employs four unique pre-training tasks designed specifically for

the code review context. This model has been evaluated across three essential

tasks in code review, demonstrating a significant superiority over previous models.

This superiority is attributed to the adaptive pre-training task and the multilin-

gual dataset, which improves the understanding of code switching. Li et al. [32]

presents AUGER, a tool that uses the text-to-text transfer transformer (T5) model

to automatically generate review comments. Based on data from 11 Java projects,

AUGER outperforms other methods in ROUGE-L by 37.38% and generates 29%

valuable comments. While Li’s model focuses on adaptability, our approach is

prepared towards scalability, ensuring efficient code reviews for projects of all sizes.

Hong et al. [26] introduce CommentFinder, a more efficient method for recom-

13



mending code review comments. In tests of more than 151,000 modified methods,

CommentFinder outperformed previous methods in accuracy by 32% and was 49

times faster, suggesting that it can provide faster and more accurate review sup-

port in real-world settings. The intersection of deep learning and code review has

opened up exciting avenues of research. As models become more sophisticated and

datasets more extensive, the potential for fully automated, highly accurate code re-

view systems increases. Our work diverges from Hong’s by incorporating real-time

collaboration features, which allow developers to interact and discuss instantly gen-

erated code review comments.

2.3 Code Review Analysis

Recognizing the substantial time spent by software developers on code reviews, it is

crucial to determine the factors that contribute to their effectiveness and enhance

their overall code quality. Rahman et al.[50] compared useful and non-useful review

comments, focusing on textual features and reviewer experience. Similarly, Bosu et

al. [8] conducted a hybrid three-stage research, qualitatively examining factors that

make code reviews valuable for developers. They developed a classification model

to distinguish between useful and non-useful feedback. In a more recent study,

Rahman et al. [52] focused on predicting the clarity of code review comments in

GitHub projects.
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In contrast to the aforementioned studies, our focus centers on predicting which

code reviews necessitate actions, in terms of making specific changes to the code.

By identifying actionable reviews, our objective is to streamline the process for

developers, reducing the time and effort required to discern which reviews need

immediate attention and resolution.

In 2017, Bachelli et al.[4] identified the information needs of developers during

code review. Their research highlighted that automated code review tools can pin-

point specific problem types, reducing the need for manual checks. Moreover, many

industries now use modern code review techniques as a crucial method for continu-

ous monitoring and enhancement of code quality[2, 13, 51]. Our research expands

on this theme by exploring how industries can seamlessly integrate traditional and

modern review practices.

Anderson et al. [66], in their study involving 57,498 code changes across seven

open-source projects, examined the effectiveness of six machine learning algorithms

in predicting successful design modifications. They focused on how machine learn-

ing can aid in understanding the nuances of code review by analyzing the content

of reviewers’ discussions. In a separate study, Li et al. [33] conducted an analysis of

three well-known open-source software projects hosted on GitHub. They developed

a detailed classification system for review comments, dividing them into 11 distinct

sub-categories. Furthermore, Li et al.[31] in a later 2019 study introduced a new
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deep learning model called DeepReview, which is based on Convolutional Neural

Networks (CNN). While they use deep learning for automated review, our work

focuses on combining deep learning insight with human insight for a more balanced

review.

Yang et al. proposed CodeHow, an approach that recommends relevant code

snippets from existing code reviews to assist developers in understanding and fixing

issues [37]. Silva et al. developed CROKAGE, a tool that improves code search

by providing comprehensive solutions with code examples and explanations [61].

It outperforms baselines and the state-of-the-art, showcasing the potential of rec-

ommendation systems in supporting developers. Siow et al. [62] proposed CORE,

an automated code review system based on code changes and reviews, which is

evaluated for Java projects from GitHub. Balachandran et al. [5], introduced a tool

called Review Bot for the integration of automated static analysis with the code

review process. Review Bot uses the output of multiple static analysis tools to

automatically publish reviews. Through a user study, they show that integrating

static analysis tools into the code review process can improve code review quality.

Code reviews become challenging when a changeset contains multiple separate code

changes. Barnett et al. [6] presented CLUSTERCHANGES, an automated method

for breaking changesets. They evaluate its effectiveness through quantitative analy-

sis and a user study for a comprehensive evaluation. Although various studies have
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contributed significantly to understanding and improving the code review process,

our work proposes a holistic, integrated approach, which best bridges traditional

and modern practices.

2.4 Transformer Models for Automating Code Reviews

Transformer models have catalyzed a transformative leap in the automation of code

reviews. Their capability to understand intricate patterns in code and natural lan-

guage has been harnessed by various studies. In this section, we delve into notable

efforts in this space and contrast them with our unique approach. Tufano et al. [65],

leverage a pre-trained Text-To-Text Transfer Transformer (T5) model to outper-

form previous DL models in automating code review tasks. Their experiments use

a larger and more challenging dataset of code review activities, building on prior

research. Unlike their approach which mainly relies on raw transformer power, our

approach integrates domain-specific optimizations tailored for different code review

contexts.

Zhang et al. [73] conducted a systematic evaluation of five existing SA4SE

tools (Stanford CoreNLP, SentiStrength, SentiStrength-SE, SentiCR, and SentiSD)

and fine-tuned four state-of-the-art pre-trained Transformer-based models ( BERT,

RoBERTa, XLNet, and ALBERT ) on six SE datasets. This marks the first at-

tempt to fine-tune these models for SA4SE tasks. While Zhang et al. Primarily
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focused on sentiment analysis, our application tools provide a more holistic review

solution by considering multifaceted factors beyond just sentiment in code review.

Wang et al. [68] introduced CodeT5, a unified pre-trained encoder-decoder

Transformer model. They also present a novel identifier-aware pre-training task,

allowing the model to distinguish code tokens that are identifiers and recover them

when masked. Additionally, they proposed a bimodal dual-generation task that uti-

lizes user-written code comments to enhance alignment between Natural Language

(NL) and Programming Language (PL). Feng et al. [19] presented CodeBERT, a

bimodal pre-trained model designed for both programming language (PL) and nat-

ural language (NL). For that, they fine-tune CodeBERT on two NL-PL applications

and achieve state-of-the-art performance in natural language code search and code

documentation generation.

Paul et al. [46] investigated the potential of large language models pre-trained

in both Natural Language (NL) and Programming Language (PL) to improve au-

tomated program repair. They applied state-of-the-art models like PLBART and

CodeT5 to natural language-based program repair datasets, which contained code

review and subsequent code changes. They also explored the performance of code

generative models like Codex and GPT-3.5-Turbo. Our research extends this by

not only using dual-model training but also embedding real-time developer feed-

back to ensure alignment with actual coding objectives. In our application tools,
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we applied pre-train models BERT and DistilBERT with fine tuning to identify

the code reviews and provide code examples using code generative models Stable

Beluga (Llama2) [64].

2.5 Recommendation in Code Review

There are four main recognized methods for clarifying decision-making processes

to domain experts[1]. The recommendation is a widely acknowledged and effective

method for elucidating decisions. The emergence of machine learning (ML) in au-

tomating decision-making has broadened the scope of research into ML explanation

methods[23]. The advent of ML for automating decisions has expanded research

in ML explanations. Domain experts tend to trust and follow machine-generated

decisions if they align with logical reasoning.

Zanjani et al. [71] introduce cHRev, a method that recommends reviewers based

on their historical contributions to previous reviews. They evaluate cHRev on

open-source projects at Microsoft and a commercial codebase, showing significant

improvements over existing approaches that rely on generic review information or

source code repository data.

In our study, we build upon these previous works by proposing a novel tech-

nique that combines code review recommendations and entity linking with Stack

Overflow solutions. By integrating these approaches, we aim to provide developers
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with personalized and contextually relevant recommendations, assisting them in

understanding and resolving coding issues effectively.
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3 Actionable Code Review Classification

In this chapter, we answer the RQ1, i.e., which model is the most effective in

identifying actionable reviews from GitHub projects? In particular, we provide an

overview of the techniques for classifying actionable code reviews including Feature

Engineering with Machine Learning (ML) algorithms and transformer-based models

to classify code reviews. We then compare the performance of different models to

understand their effectiveness. The ultimate goal is to develop an application sys-

tem capable of handling Review Extraction, text preprocessing, text mining, model

training and evaluation, and classification of review text using Natural Language

Processing (NLP) techniques.

Figure 3.1 shows an overall overview of the research workflow. First, we ex-

tracted code reviews from Github Projects using the GitHub REST API. Then,

We filter out the ambiguous and unclear reviews. After that, we applied classi-

fiers to identify actionable code reviews. After identifying actionable reviews, we

developed RefineCode which utilizes text similarity measures and entity-linking
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techniques to identify potential solutions from StackOverflow. In this Chapter, we

will describe the code review classification techniques. Then, we will discuss the

RefineCode application in the next Chapter.

Gathering Data Building Corpus     Classification Recommendation   Entity Linking 

Data Collection
Extracted developer code

reviews from GitHub Projects
using GitHub Rest API

Review Extraction
Collected useful and clear

reviews from raw data using
the EDRE application   

Review Classification
Applied several classifiers for

identifying actionable code
reviews

Similar suggestion

 Applied cosine similarity to
suggest similar reviews within

organization 

StackOverflow Solution 
Applied NER and Chunking
Process to entity linking with

Stackoverflow to provide
similar solutions

      Chat Bot

RefineCode Chatbot
Applied the StableBeluga2
7B model to provide code
examples to solve code

issues.

Figure 3.1: The overall overview of the research workflow

3.1 Code Reviews Extraction

At first, we created a corpus of code reviews from GitHub projects, which consists

of a total of 9,500 reviews (the data collection process is described in detail in

Section 3.5). However, some code reviews exhibit ambiguity or lack meaningful

content, therefore it is important to filter them out before identifying actionable

code reviews. To address this challenge, we employ a text classifier designed to

identify clear code reviews, as detailed in Rahman et al. [52]. Specifically, we opted

for the Support Vector Machine Classifier utilizing TF-IDF word vectors as features.

This choice resulted in a high F-score of 92% in categorizing the code reviews.

22



3.2 Text Prepossessing

We apply a standard text preprocessing pipeline to our code reviews, which includes

punctuation removal, tokenization, noise removal, POS tagging, lemmatization, and

extraction of n-grams. We remove unnecessary punctuation from our sentences.

Then, we apply the tokenization process to split words within each sentence. We

also remove stop words from the text using NLTK Library [7]. We then use the

lemmatization process to map words to their base or root form. Next, we generate a

set of sequential word combinations from the input sentences using n-gram models

(bi-grams and tri-grams).

3.2.1 Tokenization Process

In this part, we created a bag of words in our text documents and divided them

into punctuation marks. However, we made sure that short words like “don’t”,

“I’ll”, “I’d” remain as one word. Splitting a given text into smaller parts is called

a token. We used the NLTK word tokenizer to parse the input text into a list of

words.
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3.2.2 Stop Words Removal

To remove the stop words, we used the NLTK library which erases the common

and dispensable words from our text sentences. Stop words are common words in

a language like ”an”, ”almost”, ”the”, ”is”, ”in”. These words have no important

meaning and we usually remove the words from our corpus data.

3.2.3 Part of Speech Tagging(POS)

After Text Tokenization, we used the POS tagger function from NLTK to level each

word in a sentence into nouns(NN), verbs(VB), adverbs(RB), and adjectives(JJ)

etc. For example in the sentence “I should understand how to inject code” we have

collected words like ‘should’ (VB), ‘understand’ (VB), ‘how’ (RB), ‘inject’(VB),

and ‘code’ (NN).

3.2.4 Lemmatization Process

We used the Lemmatization Process of modifying words to their word Lemma, base,

or root form. The goal of lemmatization is to reduce the reflective form of a word

and sometimes derive similar forms to a common base form (e.g., worked–work,

removed–remove, changes-change, etc.).
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Table 3.1: Process of an N-gram

2-gram(bigram) 3-gram(trigram)

”Please enter” ”Please enter your”

”Enter your” ”Enter Your code”

”Your code” ”Your code review”

”code review” ——

3.2.5 N-Gram Process

An N -gram is a contiguous sequence of N words used for predicting the next item

in such a sequence. In the context of N -grams, p(w | h) denotes the probability of a

word w occurring, given the history or context denoted by h, which is the sequence

of words preceding w [10]. We used N-gram models to analyze the developer code

reviews. This approach allowed us to examine patterns and sequences of language

used within the review. By breaking the text into sequences of N words, we gain

insight into general phrase structure and word associations. For example, 2-grams

and 3-grams of “Please enter your code review” are shown in Table 3.1.
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3.3 Feature Extraction Approaches

In this work, we explore feature extraction approaches for classification at two

levels: Word-level and sentence-level. By considering different levels of embeddings,

we aim to capture a more comprehensive understanding of the data and compare

which embedding performed better for our training models.

3.3.1 Word Embedding

For word embedding, we experiment with Term Frequency-Inverse Document Fre-

quency (TF-IDF) for word weighting. TF-IDF calculates the importance of words

based on their term frequency and inverse document frequency, providing a suitable

text representation for our classifiers. We used TF-IDF to select features and train

our classifier, exploiting its strengths in text representation. TF-IDF vectorization

assigns a higher weight to words that are more important in a document and less

frequent in the corpus. This means that common words such as ”the” and ”a” are

assigned a lower weight while rare words are given higher importance. Apart from

that, we also used the N-gram process for sequences between words.
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3.3.2 Sentence Embedding

Sentence embedding is a technique in natural language processing where sentences

are mapped to vectors of real numbers, representing the sentences in a high-

dimensional space. For this process, we utilize models such as Sentence-BERT [17],

Universal Sentence Encoder (USE) [11], and Mirror-BERT [36] to train our models.

3.3.2.1 Sentence-BERT

Bidirectional Encoder Representations from Transformers (BERT)[17] is a language

model based on the transformer architecture. While we used TF-IDF to extract

the term frequency (which works at the word level) we used the BERT model to

consider the bidirectional representation of words at the sentence level. Specifically,

we adopt Sentence-BERT [53], which generates sentence embeddings by utilizing a

modified version of the pretrained BERT network. The embeddings derived from

Sentence-BERT serve as features for our classifications. This choice is motivated

by the model’s ability to yield rich sentence-level embeddings, effectively capturing

the contextual nuances of words within each code review.
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3.3.2.2 Universal Sentence Encoder

Universal Sentence Encoder(USE) is another sentence embedding technique from

Google Research[11]. USE has two separate models of encoding sentences. The

first one constructs sentence embeddings using the encoding sub-graph of the trans-

former architecture. The subgraph utilizes attention to capture the context as well

as the sequence of words to generate high-quality embeddings. In this method, the

sentence embeddings are generated from word embeddings by simply computing

an element-wise sum of the individual word representations. The second variant of

USE is called Deep Averaging Network (DAN) which computes the average of input

embeddings for words and bi-grams together and then passes the combined repre-

sentation through a feedforward neural network to generate sentence embeddings.

In our thesis, we used the transformer architecture for sentence embedding.

3.3.2.3 Mirror-BERT

Mirror-BERT [36] is a contrastive learning technique that converts pretrained lan-

guage models like BERT into universal text encoders without any supervision. In

this thesis, we used Mirror-BERT for sentence embedding because it is known to be

an efficient technique and it does not require any supervised or manually annotated

data.
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Figure 3.2: Overview of processes used to extract actionable issues from code re-

views using supervised classification methods.

3.4 Code Review Classification

In our Section, we describe how we classify code reviews into actionable vs. non-

actionable reviews based on feature engineering-based and transformer-based mod-

els.

3.4.1 Feature Engineering Based Classification

We utilize the following five supervised learning classification methods which are

known to be effective for various text classification tasks [70, 74]. Figure 3.2 shows

the overall overview of the code review classification process using these approaches.

• Logistic Regression: Logistic regression[27] is a predictive analysis algo-

rithm primarily used for binary classification tasks. It works by estimating
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the probability that a given input point belongs to a certain class, making

it particularly useful in our context, where the task is a binary classification

(”Actionable Review” or ”Non-Actionable Review)”.

• Naive Bayes: Naive Bayes [39] is a simple and efficient classification algo-

rithm based on the Bayes Theorem, widely used in machine learning for tasks

such as text classification and sentiment analysis. We used multinomial naive

Bayes [28] for code review classification, which is particularly well-suited for

code review classification due to its proficiency in handling text data. This

model efficiently manages the high-dimensional nature of text by leveraging

word frequencies, making it ideal for identifying key patterns in code review

comments.

• Support Vector Machine(SVM): SVM [12] is a robust and versatile su-

pervised machine learning algorithm which widely used for various classifi-

cation problems. Its primary objective is to find a hyperplane in a multi-

dimensional space that best separates different classes of data points. We

chose the SVM for classifying code review comments due to its effectiveness

in high-dimensional spaces.

• Random Forest: Random Forest [9] is an ensemble machine learning al-

gorithm renowned for its versatility and accuracy in both classification and
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regression tasks. We used Random Forest to classify code reviews because

of its robustness and accuracy in handling complex, high-dimensional data,

which is common in textual analysis. Additionally, its ability to handle un-

balanced datasets is critical, given the often skewed nature of code review

comments.

• K-Nearest Neighbors (KNN): KNN [47] is another supervised classifica-

tion technique that identifies the k closest data points in the feature space to

a given query point and makes predictions based on these neighbors. KNN is

distinctive for its lack of an explicit training phase, instead saving the entire

training dataset for use during estimation. While this simplicity is advanta-

geous, it comes at the cost of increased computational load, particularly with

large datasets. We used KNN for classifying code reviews due to its simplic-

ity and effectiveness, especially in handling the diverse and complex patterns

often found in textual data.

Cross-validation: For Cross-validation, we use Scikitlearn’s SearchGrid func-

tion to tune our cross-validation parameter. After building the grid, we execute

our GridSearchCV model passing classifiers() for finding the best estimator

parameter (.best params ) and n-fold value. As the result of this search, we use

n = 10 for the cross-validation. So, among the total of 9,500 sentences, we train
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our models using 80% of the corpus.

3.4.2 Transformer-based Classification

In this work, we utilize two transformer-based language models, namely BERT [16]

and DistilBERT [56], for the classification of reviews into actionable and non-

actionable categories. Figure 3.3 provides an overview of the code review clas-

sification process employing transformer-based models which are fine-tuned on our

labeled data. We describe the two models below.

• BERT: BERT [16] leverage the transformer architecture for the deep bidi-

rectional understanding of textual contexts. Unlike traditional models that

process text in a linear sequence, BERT analyzes text in both directions

simultaneously, allowing for a more nuanced and comprehensive understand-

ing of language. It goes through a two-stage process: extensive pre-training

on a large body of text using tasks such as masked language modeling and

next-sentence prediction, followed by fine-tuning for specific applications such

as sentiment analysis, question answering, and language inference. This ap-

proach enables BERT to achieve state-of-the-art results on various NLP tasks,

although its large size and complexity require considerable computational re-

sources. In this work, we chose to fine-tune the BERT model on the code

review text data given its effectiveness in understanding the textual contexts.
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• Distil-BERT: DistilBERT [56] is a distilled version of the BERT model,

designed to be smaller and more computationally efficient while retaining

much of the original model’s performance. The model’s efficiency makes it a

suitable choice for our code review classification tasks.

Fine-tining: For fine-tuning BERT (bert-base-uncased) and DistilBERT

(distilbert-base-uncased) models, we utilize our labeled GitHub project dataset.

During the fine-tuning process, we adjust the model’s parameters, including hid-

den layer=”gelu”, hidden size=768, max position embeddings=512, and num hid-

den layers=12, to align with our specific task requirements. Then, we optimize the

hyper-parameter using Adam optimizer(Adam) for the training model. The BERT

and DistilBERT models are trained with an initial learning rate of (2e-5) which

determines the step size for adjusting the weights of the model during training.

We use a batch size of 32, which determines the number of samples used in each

training iteration, and conduct training for 5 epochs.

For the classification task, we initially employ the SparseCategoricalCrossen-

tropy loss function. However, we consider modifications to the loss function to

enhance performance based on our dataset characteristics. One such modification

is the weighted cross-entropy loss, where we assign higher weights to the minority

class to address class imbalance:
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Figure 3.3: Overview of processes used to extract actionable issues from code re-

views using transformer-based techniques.

Loss = −
N∑
i=1

C∑
j=1

wj · yij log(pij)

Here, N represents the total number of instances in the dataset, while C denotes

the number of classes. The term wj is the assigned weight for class j, implemented

to address class imbalance. The variable yij is a binary indicator, set to 1 if class j is

the correct classification for instance i, and 0 otherwise. Lastly, pij is the predicted

probability that instance i belongs to class j.

Moreover, we incorporate L2 regularization into the loss function to mitigate

overfitting and promote generalizability:
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Loss = −
N∑
i=1

C∑
j=1

yij log(pij) + λ
K∑
k=1

∥Wk∥

In the equation, λ represents the strength of the regularization parameter, K

denotes the number of weight matrices in the model, and ∥Wk∥ signifies the L2

norm of the kth weight matrix, which is a measure of the magnitude of the weights,

contributing to the regularization term in the loss function

By integrating these modifications into the training process, we aim to optimize

the performance of our BERT and DistilBERT models. Through experimentation,

we fine-tune the weights, regularization parameters, and other adjustments to tailor

the loss function according to our specific requirements and challenges.

Then, we use cross-validation to evaluate our model performance. Specifically,

we employ 10-fold cross-validation to evaluate the performance of our classifier

using the StratifiedKFold function of Scikit-learn library. In each round of

cross-validation, we train our models using 80% of the data and use the remaining

20% of the data for testing.

3.5 Experimental Setup

In this section, we describe the dataset collection and data labeling process that we

used to evaluate the performance of our proposed method. We first describe the
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datasets that we used in our thesis and then follow the evaluation results.

3.5.1 Empirical Data

We analyzed the availability software of an industry partner through collaborative

projects that mainly focus on developing mobile apps and are practicing a rigorous

code review process while hosting their code on GitHub repositories. We gathered

information on GitHub projects using GitHub Rest API to mine the code review

comments. Figure 3.4 shows the process of data extraction from GitHub projects.

Start

Search Query

Enter Repository & Access Token

Check Query

GitHub Rest API

Extraction Data 

Analysis Data 

Match Query

End
Save CSV

Access Denied
Not Match Query

Figure 3.4: Process Flow of gathering data from GitHub Projects
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3.5.1.1 Data Gathering

For this thesis, we created a corpus by collecting code reviews from GitHub projects,

which consists of a total of 9,500 reviews and 11 columns: Repo Name, Branch

Name, Project Name, Commit ID, User Info, Comment, Line Number, File Name,

Revision ID, Creation Date, and Last Update. We collected data from five major

projects using the GitHub Rest API and mined clean code reviews from raw data

using a classifier [52]. These projects are all management tools for mobile devices.

Project Alpha began in January 2019 and included 1,929 code reviews. Project Beta

was launched in January 2019 and included 2,167 reviews, and Project Gamma has

been in development since 2019 and has included 1,126 reviews. The Delta Project

has been developed since 2019 and has involved 2,152 reviews. Project Sigma was

started in January 2019 and included 2,126 reviews, for all these projects, we col-

lected historical data from the GitHub repository from January 2019 to November

2019, resulting in 11 months of data overall. This includes 9,500 reviews overall

and across the five projects.

3.5.1.2 Labelling Code Reviews

As the first step to answer our research questions, we labeled the code reviews. A

total of 44 Developers have worked directly on these five projects. We launched a
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What is your opinion on the below code review?

Please write virtual and non virtual method in separate block?

Actionable Review Non-Actionable Review

Figure 3.5: A sample of labeling task assigned to the developers.

survey on the team management channel of the team and requested all 44 Devel-

opers to participate in labeling the data. Eight developers agreed to participate in

labeling the data (response rate of 18%).

We asked developers to classify code reviews into actionable and non-actionable.

Figure 3.5 shows an example of the labeling task. We explain the two categories of

code reviews below.

Actionable Code Review: This type of code review suggests specific imple-

mentable changes or highlights issues needing attention. For example, the code

review “Please write virtual and nonvirtual methods in separate blocks” suggests a

specific change to the source code that requires developers’ attention. In table 3.2

shows several sample actionable code reviews in our corpus.

Non-actionable Code Review: This category encompasses code reviews that

do not propose specific actions for developers. For instance, a comment such as
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“Got it. It will be fixed in the next patch” merely acknowledges an issue with-

out an immediate call to action. Similarly, a comment like “Actually, I have no

idea how to provide attributes for lines” suggests a lack of direction rather than

providing a clear step for code revision, placing it in the ”non-actionable” classi-

fication. These comments primarily focus on understanding the code rather than

explicitly prompting changes. Sample non-actionable code reviews from our corpus

are illustrated in Table 3.2.

We completed the labeling of 9,500 (actionable 4,313 and non-actionable 5,187)

reviews with the help of eight developers working on these projects. In Table 3.3,

we summarized the statistics of the three projects dataset.
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Table 3.2: The sample labeled review comments of our corpus dataset

Commit ID Code Review Comments Labels

c8108e70fd Please write virtual and non virtual methods Actionable

in separate block.

468c5b40b4 Please include Debug file of Settings project Actionable

which is StDebug instead of WDebugBase file.

Instead of calling redundant remove observer

method, it is better to add logic at the

119ae63011 end of this method. if self.suotaBinaryCopyStatus Actionable

== false {// Remove observer}

remove the save method, data will be store

with the device info dictionary. Here keep

0eb16a1e91 only getSKUcodeValue like func getSKUcodeValue() Actionable

String? Note: add SKU code value into

getGearInfoDictionary method

b122675352 I don’t like the formatting of your code. Non Actionable

b122675434 Got it. I will be fixed in next patch. Non Actionable

b122675443 change has been applied with new patch Non Actionable

b122675468 Actually, now, I have no idea how to provide Non Actionable

attributes for lines.

40



Table 3.3: Overview of Statistics for the 9,500 labeled reviews.

Labels Alpha Beta Gamma Delta Sigma

Actionable 29% 30% 11% 15% 15%

Non-Actionable 25% 19% 14% 30% 12%

3.6 Results and Discussions

In this section, we describe the performance of various feature engineering-based

and transformer-based models for code review classification. Table 3.4 shows the

results of feature engineering-based approaches. We observe that SVM and Random

Forest achieved the highest precision (0.93 and 0.94, respectively) and F1 score

of 0.95, while Sentence-BERT exhibited excellent recall of 0.98. In contrast, K-

Neighbor and Naive Bayes did not achieve good performance.

Table 3.4: The results of feature engineering based approaches

MODEL TF-IDF Sentence-BERT USE Mirror-BERT

Classifiers Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

SVM 0.93 0.96 0.94 0.93 0.90 0.91 0.93 0.94 0.93 0.94 0.91 0.92

Random Forest 0.94 0.97 0.95* 0.87 0.98 0.93 0.90 0.97 0.93 0.93 0.96 0.93

Logistic Regression 0.91 0.98 0.95* 0.94 0.93 0.93 0.89 0.94 0.92 0.94 0.95 0.94

K-neighbour 0.75 0.64 0.69 0.94 0.92 0.93 0.95 0.85 0.90 0.96 0.84 0.90

Naive Bayes 0.93 0.96 0.94 0.89 0.79 0.81 0.88 0.80 0.80 0.85 0.83 0.84

Table 3.5 presents the results of the transformer-based model, where both
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Table 3.5: The result of Transformer Based Models

MODEL Precision Recall F1 Score

BERT 0.96 0.97 0.96*

DistilBERT 0.95 0.96 0.95

BERT and DistilBERT showed impressive precision (0.96 and 0.95, respectively),

recall (0.97 and 0.96), and F1 scores (0.96 and 0.95). Our findings suggest that

transformer-based models, especially BERT, outperform traditional feature engineering-

based supervised learning classifiers on various measures.
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Figure 3.6: The Confusion Matrix to measure classifier performance

We further analyze the errors made by classification models. Figure 3.6 shows
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the confusion matrix for the BERT classifier which achieved the best performance

in terms of the F1 score. These results indicate a strong predictive performance by

the BERT classifier, with a high true positive rate and a low false negative rate for

both classes, demonstrating the model’s ability to effectively distinguish between

’actionable’ and ’non-actionable’ categories. This level of performance underscores

the robustness of the BERT model in handling classification tasks where contextual

nuances of text are crucial for accurate categorization.

The BERT model was trained using our labeled dataset and demonstrated

high accuracy in identifying actionable reviews, achieving an outstanding

F-score of 0.96. This level of accuracy emphasizes the model’s effectiveness

in this particular task.

3.7 Threats to Validity

Although our code review classification approach makes important contributions

to the literature, it is essential to acknowledge certain threats to validity. We aim

to address these limitations in the future to refine our approach and enhance its

broader applicability.

• Limited Data Size: Our dataset, consisting of 9,500 code reviews from

five private GitHub projects, is relatively small, which raises concerns about
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higher F1 scores and may restrict the generalizability of our results to larger

datasets.

• Code Contexts: While we collected the review comments, we could not

have associated code snippets or source code files to them. Due to privacy

and proprietary concerns in collecting data from private industry projects, we

were unable to provide additional contextual data. Including code contexts

could potentially enhance the classification of code reviews.

• Limited Timeframe: Our study’s temporal scope, spanning from January

2019 to November 2019, might not fully capture the dynamic evolution of

code review practices and tool advancements over time.

• Industry-Specific Focus: Our dataset focusing on a specific industry part-

ner primarily involved in mobile app development may limit the applicability

of our findings to a broader spectrum of software development domains.

• Biases in Labelling Process: The labeling process, carried out by a small

number of developers (8 out of 44), may introduce potential biases, and the

binary classification of code reviews as actionable or non-actionable might

oversimplify the intricate nature of such feedback.
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3.8 Summary

This Chapter presents several techniques for classifying code reviews to identify the

ones that require immediate actions from developers. Through an empirical eval-

uation in an industrial setting, we analyzed 9,500 code reviews across five distinct

projects. We experimented with both traditional supervised classification methods

as well as transformer-based models. We noticed that the BERT classifier for code

review exhibited superior performance, achieving an F-score of 0.96. In the next

Chapter, we will discuss how we can integrate the code review classification to im-

prove software development practices by supporting the developers in addressing

the issues raised in the actionable code reviews.
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4 Improving Code Quality with RefineCode

In this Chapter, we exploreRQ2, focusing on how RefineCode can assist developers

in addressing coding issues identified in code reviews. Specifically, we examine how

the RefineCode application tool utilizes code review classification to support de-

velopers in resolving these issues. RefineCode encompasses three primary features

as shown in Figure 3.1. Firstly, it recommends similar code reviews from GitHub

Projects within an organization, aiding developers in addressing specific issues.

Secondly, it analyzes code reviews to automatically extract relevant information

from Stack Overflow, providing valuable insights for issue resolution. Thirdly, Re-

fineCode integrates a ChatBot feature, offering potential solutions tailored to a

given code review.

In the remainder of the Chapter, we first provide motivation for the adoption

of the aforementioned features in RefineCode. Subsequently, We explain the imple-

mentation details of these features. Then, we demonstrate the Application system

using real-world use case scenarios. Finally, we delve into a discussion on various
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potential threats to the validity of the RefineCode system.

4.1 Motivation

Based on our analysis of the code reviews and relevant work in the literature, we

identified the required features for RefineCode. In the following, we elucidate the

rationale behind incorporating the three key features of RefineCode.

Why similar code reviews from GitHub projects? Siam et al. under-

score the imperative for automatic code review recommendations in project devel-

opment and maintenance, particularly in large companies, as pertinent and useful

reviews can significantly alleviate the workload of developers [62]. When develop-

ers encounter issues, their initial recourse often involves checking if the team has

previously resolved analogous problems. his process is crucial, allowing developers

to learn from past solutions and apply insights to their ongoing work. Examining

how similar issues were addressed in prior code reviews enables developers to swiftly

identify effective strategies. Furthermore, leveraging past reviews not only enhances

efficiency but also fosters a deeper understanding of common challenges and solu-

tions within the project, contributing to a more collaborative and knowledge-rich

development environment.

Why recommendation and entity Linking with Stack Overflow issues?

Software developers frequently use technical question-and-answer platforms like
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Stack Overflow to adopt potential solutions or to get some clues on how to re-

solve the issues pertinent to a code review. However, identifying posts from Stack

Overflow that are related to the entities mentioned in a code review can be time-

consuming for a developer. A previous study suggests that developers may struggle

to find suitable code from Stack Overflow and integrate it into different contexts

[69]. To address this challenge, RefineCode aims to reduce developers’ efforts by

linking entities of a code review to relevant Stack Overflow issues so that developers

quickly find solutions tailored to their specific problems.

Why the chatbot for providing potential solutions? Recent advance-

ments in automatic code generation from natural language have shown promise

[41]. Large language models (LLMs) have demonstrated their ability to assist de-

velopers in code revision for resolving code quality issues [67]. In this context,

we implement the chatbot feature with a prompt engineering approach, leveraging

LLMs to automatically generate candidate code revision solutions. The RefineCode

Chatbot offers an example-driven solution to enhance code quality and assist de-

velopers in programming tasks for specific feature implementations. By providing

real-time code samples and suggestions based on specific developer actionable re-

views and selected prompts, the chatbot empowers developers to learn and apply

best practices in coding, ultimately contributing to more efficient and error-free

software development.
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4.2 RefineCode Implementation

We now provide the implementation details of the three key features of RefineCode.

4.2.1 Retrieving Similar Code Reviews

For retrieving similar code reviews from GitHub projects, we utilize cosine similarity

among code reviews. Specifically, we measure the cosine similarity between the

feature representations of two sentences. The features are computed based on

TF-IDF and N-gram, where TF-IDF measures the importance of words within

each review, adjusting for their frequency across all reviews, while N-gram analysis

captures context by considering sequences of N words together.

4.2.2 Recommendation and Entity Linking with Stack Overflow

For recommending Stack Overflow discussions related to a code review, we apply

an entity linking process that involves chunking and Named Entity Recognition

(NER) in NLTK.

Chunking Process: Chunking is the process of segmenting a text into short

phrases or word groups that are more meaningful than individual words but less

detailed than full sentences. Chunking enables the extraction of key parts of speech

(verbs, adverbs, adjectives, and nouns) through regular expression patterns. When
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we apply a chunking process to the code review comment ”Please write virtual

and non-virtual methods in separate blocks”, and focus only on verbs, adverbs,

adjectives, and nouns, then we identify and group the relevant words as ”Virtual

methods”, ”non-virtual methods”.

Named Entity Recognition (NER): NER [38] identifies and classifies named

entities in text into specific groups such as names of people, organizations, locations,

and more. When we applied NER to pick out key terms for code review ’Please

write virtual and non-virtual methods in separate blocks’, ’Virtual methods’ and

’non-virtual methods’ are identified as entities, indicating that these terms provide

useful information as a category of programming concept.

After applying the chunking and NER, we prepare the search parameters con-

taining the candidate embeddings (e.g., [“Virtual methods”, ”non-virtual meth-

ods”]) and then send them to the Stack Overflow API using the GET request. The

API then returns the relevant information from Stack Overflow1, 2. Figure 4.1

shows the enhanced code review process with recommendations and entity linking.

1Title: C++ Calling pure virtual function from non virtual function in base class

2Link: https://stackoverflow.com/questions/49095676/c-calling-pure-virtual-function-from-
non-virtual-function-in-base-class

50



Code Review

Why you are using nil-coalescing
operator?

Search 
Query

Application Tool

Chunking

NER

Classification 

Recommendation

Identify the topics entities
from code reviews

Similar
Reviews

StackOverflow API

Candidate
Embeddings

GET request to the API
with the candidate

embeddings

Why you are using nil-coalescing operator?

StackOverflow Title:
Why does the nil-coalescing operator return an  
optional?

StackOverflow URL:
https://stackoverflow.com/questions/59290538/why- 
does-the-nil-coalescing-operator-return-an-optional

Most Relevant
Candidate 

Figure 4.1: Enhanced Code Review Process with Recommendation and Entity

Linking.

4.2.3 Example Driven Solutions By RefineCode Chatbot

For implementing the RefineCode chatbot, we used the StableBeluga-7B [64], which

is a state-of-the-art LLM designed for generating text-based responses. In this

chatbot interface, developers can provide actionable code reviews as input. In

addition, they have the flexibility to specify the programming language relevant to

their review such as C, C++, Java, Python, etc. The chatbot also allows developers

to select specific scenarios or features related to their review comments such as

‘API integration’, ‘User authentication’, ‘User interface enhancement’, etc within

the prompt. This feature is particularly useful as it tailors the chatbot’s response

to the specific context of the developer’s current project.

4.3 System Demonstration

In this section, we demonstrate the utility of the three key features of the Re-

fineCode system with illustrative examples.
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 Added virtual and non-virtual methods. #155

rahman case-1master

rahman commented 4 hours ago

Please write virtual and non virtual methods in separate block.

case-1 added new commit message... cbb043

RefineCode provides similar code reviews from main branch

You need to made it virtual and delete mDataTransportlmpl... I5eb82cdaf

Application 

Please put log here to write "gearld"...

Do this in a separate method and reuse...

No need for virtual destructor for static Util class...

I87bfdfd21

I7964cdcde

I5eb82cdaf

Separate the names. I56f91be6c

Figure 4.2: An example of providing similar code reviews to solve the specific

actionable code review

Code Review Recommendation: Given an actionable code review, Re-

fineCode provides similar code reviews from the GitHub code repository. Figure 4.2

shows an example scenario, where given the code review “Please write virtual and

non-virtual methods in separate block.”, the system identifies it as an actionable
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 Added virtual and non-virtual methods. #155

rahman case-1master

rahman commented 4 hours ago

You need to made it virtual and delete mDataTransportlmpl......

case-1 added new commit message... cbb043

RefineCode provides similar code reviews from main branch

Added virtual method. #141

Application 

I5eb82cdaf. 2 months agohasan

1        class BaseRecord {
2            private Object data;
3            public Object getData() {
4                return data;
5            }
6           public void setData(Object newData) {
7                this.data = newData;
8            }
9            public void getVirtualMethod() {
10                System.out.println("Calling the virtual method BaseRecord");
11            }
12        }
13        class ExtendedRecord extends BaseRecord {
14            @Override
15            public void getVirtualMethod() {
16                System.out.println("Method overridden in ExtendedRecord");
17            }
18        }

18 lines (16 loc)  .  664 Bytes

Please write virtual and non virtual methods in separate block.

I5eb82cdaf

Figure 4.3: Example of providing code review solution commit based on previous

similar code review

review and therefore it suggests similar five code reviews which are similar to this

review. Then, a developer can open any of these similar code reviews to possibly
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get ideas on how to fix this issue. Figure 4.3 shows an example where the developer

opens a similar code review to get possible ideas to resolve the issues mentioned in

the specific actionable code review.

 Added virtual and non-virtual methods. #155

rahman case-1master

rahman commented 4 hours ago

Please write virtual and non virtual methods in separate block.

case-1 added new commit message... cbb043

Entity linking provides similar resources to solve the review from 

https://stackoverflow.com/questions/49095676/c-calling-pure-virtual-function-
from-non-virtual-function-in-base-class link

Title: C++ Calling pure virtual function from non virtual function in base class

Stack Overflow

Title: Private virtual method in C++

https://stackoverflow.com/questions/2170688/private-virtual-method-in-c link

Title: Inheritance and virtual Methods

https://stackoverflow.com/questions/8995396/inheritance-and-virtual-methods?
rq=3 link

Figure 4.4: An example of providing relevant information from Stack Overflow to

solve the specific actionable code review

Entity Linking with Stack Overflow: Similar code reviews from an organi-
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zation’s GitHub project may not provide specific solutions and developers may look

to Stack Overflow to understand their code reviews. Figure 4.4 shows an example of

recommending related question-answer posts retrieved from Stack Overflow, given

the code review “Please write virtual and non-virtual methods in separate block.”

RefineCode Chatbot: The RefineCode chatbot is designed to solve the is-

sues in actionable code reviews for specific problem scenarios. For example, when

a developer needs to understand how to implement a new user authentication fea-

ture (Scenario 1) or integrate a third-party RESTful API for payment process-

ing (Scenario 2), RefineCode can provide specific code snippets and best practice

suggestions. This direct and context-sensitive support accelerates the problem-

solving process, enabling developers to quickly resolve review comments and in-

crease the quality of code. Figure 4.5 shows a test example provided by a developer

request to distinguish between virtual and non-virtual methods in Python with a

specific scenario.

“ Scenario 1: Provide a sample code for implementing a user authentication

feature using OAuth 2.0 in a React Native mobile app, considering best

practices for security and user experience.”

— User Authentication
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RefineCode Chatbot 
This is a streaming Chat Interface implementation of StableBeluga2 Hosted on
Lambda Cloud☁  Sometimes you will get an empty reply, just hit the "Retry"
button. Also sometimes model wont stop itself from generating. Again, try a
retry here.

System Prompt
A system prompt can be used to guide model behavior.

Type your own or select a system prompt

Python

RefineCode Chatbot

Please write virtual and non virtual method in separate block

Type a message... Submit

Retry Undo Clear

Here are examples of virtual and non-virtual methods in separate blocks:

# Virtual method
class Parent:
   def __init__(self):
       self.data = None

   def get_data(self):
       return self.data

   def set_data(self, new_data):
       self.data = new_data

   def get_virtual_method(self):
       print("Calling a virtual method")

class Child(Parent):
   def __init__(self):
       super().__init__()

API integration:  Demonstrate integrating a third-party RESTful API....

Select a specific scenario

Figure 4.5: Example-driven solution to improve code quality by RefineCode chat-

bot.
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“ Scenario 2: Demonstrate integrating a third-party RESTful API for pay-

ment processing in an e-commerce mobile app, focusing on secure transac-

tions and error handling.”

— API Integration

4.4 Threats to Validity

Although our study makes valuable contributions to the field, it is essential to ac-

knowledge certain threats to validity. Addressing these limitations will be paramount

in future work to refine our approach and enhance its broader applicability.

• Code review recommendation technique: We utilized cosine similarity

among vector representations of code reviews to recommend GitHub code

reviews. However, employing more advanced similarity measures could po-

tentially enhance the relevance and diversity of search results. Additionally,

the current focus on code review texts as input may be expanded to include

relevant code snippets, further improving the algorithm.

• User study: Our preliminary evaluation of the RefineCode application in-

volved system demonstrations, providing anecdotal evidence of the efficacy of

its key features. Nevertheless, we recognize the need for more comprehensive

quantitative and qualitative evaluations. Specifically, assessing the usefulness
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of recommended code reviews and GitHub posts and retrieved posts from

Stack Overflow in addressing review comments requires further investigation.

Conducting user studies can offer deeper insights into how RefineCode sup-

ports developers in real-world settings. In the future, it would be useful to

run longitudinal studies to understand how these features from RefineCode

may support developers in large industry projects.

4.5 Summary

This chapter presents RefineCode, an application that incorporates code review

classification to facilitate developers in refining the code. We present the key fea-

tures of the system and demonstrate the utility of the system with illustrative use

case scenarios. Overall, this work presents the potential of combining machine

learning techniques and external resources to support developers in their coding

tasks and foster collaboration within software development teams. In the next

chapter, we will revisit the key contributions of this thesis along with an overview

of future work.
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5 Conclusions and Future Work

In this concluding chapter, we first reflect on our main findings and insights and

then outline our perspectives and directions for further research.

5.1 Conclusion

In this thesis, we utilize feature engineering-based and transformer-based model

architecture to address the two types of research challenging tasks: (i) improve

code quality and (ii) Assist developers in solving issues.

The rapidly evolving landscape of software development, characterized by col-

laboration and communication, highlights the absolute importance of code review.

The main challenges of the code review process, mainly stemming from the ambi-

guity of feedback and communication barriers, demand a sophisticated solution.

For improving code quality, we propose two main approaches. First, we pro-

pose a new binary classification task that categorizes the code reviews into either

actionable or non-actionable reviews. Second, we introduced the RefineCode ap-
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plication tool that utilizes the actionable reviews to find similar code reviews from

the GitHub projects within an organization as well as external solutions from Stack

Overflow and LLM-driven chatbot. Our empirical evaluation demonstrates the high

accuracy of the transformer-based classification on a dataset comprising 9,500 code

reviews from five private projects in an industrial setting. The system demonstra-

tion, with illustrative examples, also suggests that RefineCode system may help

developers in facilitating refining their code.

5.2 Future Work

In future work, we aim to expand our research by incorporating larger and more

complex datasets, providing a greater challenge to our models. Additionally, we

plan to expand the scope of our dataset beyond mobile app development, enhance

the granularity of our labeling process, and explore more advanced recommendation

algorithms beyond cosine similarity. We will also emphasize experimenting with

more advanced techniques such as Code Llama [54], a state-of-the-art large language

model for coding. Then, we will prioritize the ongoing training of our models to

keep pace with modern software methodologies. Our focus will be squarely on

enhancing the user experience, analyzing broader code contexts for more pertinent

feedback, facilitating collaborative code reviews, and advancing the capabilities of

the Stable Beluga (Llama2) chatbot. we will integrate the GPT-4 model into our
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RefineCode chatbot to yield improved responses.

Furthermore, we plan to fine-tune pre-trained models like Stable Beluga (Llama2)

and GPT-4 on code review data, tailoring them to deliver precise solutions for ac-

tionable code reviews. This customization will enable the models to generate code

that aligns closely with a developer’s style, as they will learn from an organization’s

specific code repositories. This approach promises to provide developers with con-

textually relevant and organization-specific coding solutions. Additionally, we will

utilize various new transformer-based models [60], [14], [22], [21], [25], [15], [49] and

Machine Learning [48], [44], [72] , [3] to investigate their effectiveness in identify-

ing reviews. Ultimately, our overarching goal is to develop a system that not only

addresses the current needs of developers in resolving concerns expressed in code

reviews but also promotes teamwork and enhances the overall quality of software

development processes.
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