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Abstract

Novel Examination of Interpretable Surrogates and Adversarial Robustness
in Machine Learning

Sadia Chowdhury

The lack of transparent output behavior is a significant source of mistrust in many

of the currently most successful machine learning tools. Concern arises particularly in

situations where the data generation changes, for example under marginal shift or under

adversarial manipulations. Training a (human-)interpretable surrogate model for a black-

box predictor is a common approach for providing insights into the blackbox’s predictive

behavior. We analyze the use of decision trees for indicating marginal shift. We then

investigate the role of the data generation of the student model for the validity of the in-

terpretable surrogate. We use decision trees as part of the teacher-student framework and

empirically investigate the validity of decision trees as both local and global interpretation

methods.

While investigating local decision trees, we observed that the decision boundaries of

the blackbox model was often sitting close to the original data manifold. This makes

those regions vulnerable to imperceptible perturbations and can falsely flip the network’s

prediction. Hence, we aim to provide a framework for determining whether a model’s label

change under small perturbation is justified (and when it is not). We carefully argue that

adversarial robustness should be defined as a locally adaptive measure complying with

the underlying distribution. We then suggest a definition for an adaptive robust loss, an

empirical version of it and a resulting data-augmentation framework.
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Chapter 1

Introduction

During the past decade, machine learning has become an increasingly integral part of

computer science. Domains including health science, banking sectors, social sciences, and

many others are applying machine learning for their tasks. It’s used for email spam

filtering, traffic predictions, to even social media suggestions about people one may know.

The increasing availability of data, improvements in algorithms and computing power has

led to a lot of advancements in this field. We can define machine learning as the task of

deriving a model or hypothesis from data and the environment around it. We can categorize

it primarily into Supervised, Unsupervised, Semi-Supervised, and Reinforcement learning.

For this thesis, we focused on supervised machine learning, where the idea is to learn to

make predictions. Given a certain set of labeled data, the model or the predictor is trained

to learn the relationship between the input and the output. Once trained and evaluated,

the model is then expected to predict on unseen and unlabeled data. Supervised machine

learning usually produces models with high accuracy given that the available data is a

true representative of the original data distribution. Classification and regression are two

types of supervised learning. During classification, the outputs are grouped into different

classes whereas, for regression, the output generated is a singular value from a continuous

range of values. The figures below show examples of classification and regression tasks.
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Figure 1.1: An example of classification. Figure 1.2: An example of regression.

Currently, neural networks and random forests are among the most successful pre-

dictors in terms of high predictive accuracy. However, these are inherently non-human

understandable and are often also vulnerable to imperceptible adversarial perturbations

of the input data [99]. The increasing use of machine learning in fields that have social

impact, hence, require that the models are more interpretable and also robust to adver-

sarial attacks. There have been several surveys and introductory papers stating different

methods and approaches of interpretability in machine learning [13, 17, 19, 38, 45, 85].

Similarly, many researches studied and developed different types of adversarial attacks by

input modifications [1, 20, 43], and several defense approaches for such attacks [81, 86, 116]

most specifically for image data [3, 4].

In this thesis, we address aspects of both interpretability and robustness to adversarial

perturbations in machine learning. The research started out by investigating how tools for

interpretable machine learning may be exploited for addressing data shift scenarios. We

investigate whether decision trees (a standard interpretable type of predictor) could be

used for detecting covariate shift (we prove that it cannot), how covariate shift affects the

validity of a decision tree surrogate model, and whether decision trees are a suitable local

surrogate for detecting adversarially vulnerable areas of the feature space (Chapter 3). The
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latter then led us to look into the notion of adversarial vulnerability more systematically. In

Chapter 4, we argue that robustness needs to be redefined as a local requirement, propose

a novel locally adaptive data augmentation scheme, and present a thorough empirical

evaluation of this scheme.

1.1 Research Contribution

In the first part of our research, we address interpretable machine learning. We work

with a type of inherently interpretable model, namely with decision trees as means of our

explanation for blackbox models. We study the following research topics for the first part

of the thesis:

• We investigate the use of decision trees for indicating marginal shift. We find that

the decision trees are not reliable for detecting and explaining data shifts.

• We then work with the teacher-student framework where we train a neural network as

the teacher model and decision trees as the surrogate model. We use the framework

to investigate how well a decision tree can mimic and explain a blackbox model’s

performance. Additionally, we investigate the dependence of the surrogates on the

unlabeled data generation. We use different distributions to generate unlabeled data

points that are used for both training and then evaluating the surrogate models.

While we find the trees as surrogate models to mostly be accurate and faithful to

the blackbox models, we show how the validity of the surrogate model in various

areas of the feature space strongly depends on the unlabeled data used for training

the surrogate.

• We finally investigate the use of decision trees as a locally interpretable surrogate

model. We find that decision trees generated locally around adversarial samples

3



provide good explanations of the model behavior. We study this further in Chapter

4.

In the second part of our thesis, we investigate adversarial robustness. We analyze how

the consistency of robust learning is affected by a suitable choice of robustness parameter

r, and argue that robustness should be redefined as a locally adaptive notion. In more

details:

• We show that robust-Bayes and 0/1-Bayes are identical if and only if the distribution

is r-separated. We also show that for every r, there exists a distribution where the

two r-Bayes and 0/1-Bayes differ significantly as functions.

• We introduce the margin-rate, as a relaxed measure of r-separateness (one that allows

for stochastic labels and does not require actual r-separateness of the support of PX

(that is, its support can be the full space), and relate it to suitable choices of r.

• We formally show that a slightly too largely chosen robustness parameter can lead to

undesirable effects. Thus we argue that the robustness parameter r of an adversarial

loss should be locally adaptive.

• We introduce our new adaptive robust loss, introduce its empirical version, and

develop a novel adaptive-robust data-augmentation paradigm.

• We provide an extensive empirical evaluation of our novel adaptive robust loss and

comparison of the adaptive-robust data augmentation with the fixed-range data aug-

mentation.

1.2 Thesis Organization

The thesis is organized as follows: Chapter 2 introduces the basic notations and fun-

damental theorem of learning theory. Chapter 3 provides background on the topics of

4



interpretability and data shift in machine learning. The later sections of this chapter ex-

plain our experiments and evaluations. In Chapter 4, we look at adversarial robustness.

The chapter is divided into sections explaining robustness, margins and robustness re-

quirements. The last part of the chapter introduces the experiments and discussions on

adversarial robustness. Finally, Chapter 5 concludes the thesis along with highlighting

prospects of future work.
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Chapter 2

Formal Framework of Learning

2.1 Overview

In this chapter, we briefly review the basic notations of statistical learning theory. This

provides the basis for our investigations in the subsequent chapters, particularly for chapter

4. All definitions and results here are adapted from the introductory chapters of the

textbook "Understanding Machine Learning" [93].

2.2 Statistical Learning Theory

We consider a standard setup of statistical learning theory for classification [93]. We let

X ⊆ Rd or X = [0, 1]d denote the domain where d is some natural number and Y (mostly

Y = {0, 1}) a (binary) label space. We assume that data is generated by some unknown

distribution P over X × Y and let PX denote the marginal of P over X . Further, we use

notation,

µP (x) = P(x,y)∼P [y = 1 | x] (1)

6



to denote the regression function of P . A hypothesis or classifier is a function h : X → Y .

We let F denote the set of all Borel measurable functions from X to Y (or all functions in

case of a countable domain). A hypothesis class is a subset of F , often denoted by H ⊆ F .

The quality of prediction of a hypothesis on an input/output pair (x, y) is measured by a

loss function ` : (F × X × Y)→ R. For classification problems, the quality of prediction

is typically measured with the binary or classification loss :

`0/1(h, x, y) = 1 [h(x) 6= y] , (2)

where 1 [α] denotes the indicator function for some predicate α.

We denote the expected loss (or true loss) of a hypothesis h with respect to the distri-

bution P and loss function ` by :

LP (h) = E(x,y)∼P [`(h, x, y)] (3)

In particular, we will denote the true binary loss by L0/1
P (h). The Bayes classifier is a (not

necessarily unique) classifier which has the minimal true loss with regard to P . We denote

the Bayes classifier with respect to the binary loss as hBP and its loss, the Bayes risk by

LBP = L0/1
P (hBP ) (4)

and the true robust loss by LUP (h). Further, we denote the approximation error of class H

with respect to distribution P and loss function ` by

LP (H) = inf
h∈H
LP (h) (5)

We denote the training sample set as S = ((x1, y1), . . . , (xn, yn)), a finite set of se-

quence in X ×Y and we assume that the examples in S are independently and identically

7



distributed according to P , this is known as the i.i.d assumption. The empirical loss of

a hypothesis h with respect to loss function ` and sample S is defined as:

LS(h) =
1

n

n∑
i=1

`(h, xi, yi) (6)

Empirical risk minimization ERM is the approach of finding a predictor h from a hy-

pothesis class H that minimizes the empirical error. We restrict the class of predictors

to a fixed finite class H, to prevent ERM from overfitting given sufficiently large training

samples. For some labeled training samples, hs is the result of applying ERMH to S,

hs ∈ argminh∈HLS(h) (7)

Realizability Assumption We say that P is realizable by H if there is a h∗ ∈ H so

that the true loss LP (h∗) = 0 (and therefore LS(h∗) = 0 for all S generated from P ).

A learner A is a function that takes in a finite sequence of labeled instances S =

((x1, y1), . . . , (xn, yn)) and outputs a hypothesis h = A(S). We interpret LP (hs) ≤ ε as an

approximately correct predictor, successful output of the learner. The accuracy parameter

is ε and it informs about the quality of prediction whereas δ is the probability of getting

non-representative sample and (1− δ) is the confidence parameter of the prediction.

Definition 1 (Agnostic PAC Learning). A hypothesis class H is agnostic PAC (Probably

Approximately Correct) learnable if there exist a function mH : (0, 1) −→ N, and a learning

algorithm A with the following property: for all ε, δ > 0, and every distribution P , with

m ≥ mH(ε, δ) i.i.d examples generated from P , the algorithm returns a hypothesis h with

probability of at least (1− δ),

LP (h) ≤ min
h′∈H
LP (h′) + ε (8)
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Here, ε corresponds to the “approximately correct” part, and δ indicates the “probably”

part of “PAC”. The function mH determines the number of samples needed to achieve a

probably accurate predictor for class H. We define the sample complexity of learning H as

the smallest possible function mH that satisfies the requirements of PAC learning. Every

finite hypothesis class is PAC learnable with sample complexity:

mH(ε, δ) ≥ [ log|H|/δ]
ε

]

ERM works by ensuring that empirical risk of all hypothesis in H are good approximations

of their true risk. If this is ensured uniformly over all hypothesis in H, we can say that

ERM is a PAC learner.

A training set is called ε-representative (with distribution P , loss function l, domain

X × Y and hypothesis class H) if

∀h ∈ H, |LS(H)− LD(H)| ≤ ε

Definition 2 (Uniform Convergence). We say that a hypothesis class H has uniform

convergence property if there exists a function mUC
H : (0, 1)2 −→ N such that for every ε, δ ∈

(0, 1) and for every distribution P over X ×Y and i.i.d samples S of size m > mUC
H (ε, δ),

then with probability of at least 1− δ, S is ε-representative.

If H has uniform convergence with mUC
H (ε, δ), then H is PAC learnable with the ERM

algorithm and mUC
H ( ε

2
, δ). In most cases, the empirical risks of hypothesis h, where h ∈ H

will faithfully represent the true risk, if the uniform convergence property holds for a

hypothesis class H. In general, a class is PAC learnable if and only if it has finite VC

dimension.

Definition 3 (Shattering). Let H be a class of functions from X to {0, 1} and C =

{c1, ..., cm} ⊂ X and there are 2m possible labeling. If hypothesis class H can represent all

2m of the functions, then we can say that H shatters C.

9



Definition 4. The VC dimension of hypothesis class H is the largest finite set C that can

be shattered by H.

Some examples of VC dimension of different concept classes include, rectangle classes,

which has VC dimension 4 while for interval classifiers it is 2. It is also possible for VC

dimension to be infinite, in which case H is not PAC learnable. We can combine all the

definitions explained above to state the fundamental theorem of learning.

Theorem 1 (The Fundamental Theorem of Statistical Learning). Let H be a hypothesis

class of functions from a domain X to {0, 1} and let the loss function be the 0 − 1 loss.

The the following is equivalent:

1. H has uniform convergence

2. ERM is a PAC learner for H

3. H is PAC learnable

4. H has a finite VC dimension

The following notion of a consistent learner captures a more general notion of success of

a learning algorithm: as the learner sees larger and larger samples from the data-generating

distribution, the loss of the learner’s output should converge to the Bayes risk.

Definition 5 (Consistency). We say that a learner A is consistent with respect to a set of

distributions P if, for every P ∈ P, every ε, δ > 0 we have there is a sample-size n(P, ε, δ)

such that, for all n ≥ n(P, ε, δ), we have

PS∼Pn

[
LP (A(S)) ≤ LBP + ε

]
≥ 1− δ (9)

We say that A is universally consistent, if A is consistent with respect to the class of

all data-generating distributions.
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List of Notations

Symbol Description

Rd A set of d dimensional vectors over a set of real numbers

X Domain Space (a set of object that we may wish to label)

Z Example Space (a set of examples)

Y Label Space (set of possible labels)

S Training Data (a sequence of labeled domain points)

P A distribution over some set

PX Marginal Distribution of P over X

A Learning algorithm

H A hypothesis class

l A loss function

`0/1 A binary loss function

LP (h) A true loss with respect to the distribution P

LP 0/1(h) A true binary loss with respect to the distribution P

LS(h) Empirical loss, the error the classifier h incurs over the training
samples S

S ∼ P n Sampling S = z1,..., zn i.i.d. according to P

C Concept Class

Table 2.1: List of Notations
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Chapter 3

Learning interpretable surrogate models

3.1 Overview

In this chapter, we present our investigations on whether and how techniques developed

in the context of interpretability in machine learning may be exploited for dealing with

data shift phenomena. We start out by providing brief introductions into both the topic

of interpretability and transfer learning (Sections 3.2 and 3.3 respectively). We then turn

to introduce decision trees as a particular type of inherently interpretable predictors and

analyze them in three different scenarios: We started out by investigating whether decision

trees could be employed for the purpose of detecting marginal shifts. We prove that we

cannot indicate marginal shift using decision trees and provide a solid argument for why

they do not seem suitable for this purpose (Section 3.5.2). We then turned to investigate

decision trees as surrogate models, with an emphasis on understanding how the data used

for training the surrogate affects the validity of the surrogate in various areas of the feature

space. This study is summarized in Section 3.5.3. Finally, we investigated decision trees as

local surrogate models (Section 3.5.4). In this section, we show that small locally trained

decision trees are suitable indicators of data points lying close to the decision boundary.

This led us to explore the decision boundaries of neural network blackbox predictors in

12



the context of adversarial perturbations more systematically in Chapter 4.

3.2 Interpretability

Machine learning provides an automated way of making decisions or predictions through

learning and improving from experience. From autonomous cars [49] to judicial systems

[59], machine learning is now being used in almost every field. However, the systems

that are usually performing well are mostly blackbox in nature, which means that the

internal mechanism of the model is unknown. Hence, it is crucial to give reasonings for

the decision being made, specially in cases where human lives are involved. The goal

of interpretability research for machine learning is to allow humans to comprehend why

each decision is being taken. Justification of any decision is even more important now, as

recently European Union legislation General Data Protection Regulation (GDPR) requires

explanations from companies, that work with automatic decision systems which have a

substantial impact on human lives [30]. Hence, interpretability is crucial to make systems

more socially acceptable, reliable and, trustworthy.

Research on interpretability has been taking place over the past few years [38, 57, 82].

It is an interdisciplinary work where different fields of machine learning, social science, and

linguistics are involved. It has also been applied in different domains such as medicine [78],

finance [28], data science [71], natural language processing [52], etc. Interpretability is also

needed to meet certain criteria such as fairness, ethics, safety [30], etc. It allows human to

verify the correctness of the model, identify prejudiced features in data [51], justify medical

diagnosis [118], judgments by judicial systems [120] and also help to understand why

models perform worse in certain situations. However, interpretability potentially comes

with a trade-off with model performance [50]. Hence, researchers are recently attempting

to make systems and decisions both accurate and interpretable [46, 62].

There have been several survey papers [2, 18, 38, 45, 58, 101] that summarized the

13



recent work done on the interpretability of machine learning. These surveys identify various

categories of interpretability and also discuss various explainability strategies. There are

taxonomies for both evaluations of interpretability and methods of interpretability. These

are listed below:

Intrinsic vs Post Hoc This category explains whether the complexity of the model is

restricted to allow for interpretation or if the model interpretation is added after

training. Intrinsic interpretability means that the model is inherently interpretable

due to its simple structure, as one example, decision trees [8]. Whereas post hoc

refers to the implementation of interpretation methods on the trained blackbox to

explain its prediction. For example, live and breakdown [65, 96]. Live learns local

model for regression tasks whereas breakdown is a greedy approach that decomposes

model predictions into parts.

Local vs global This groups interpretability methods based on whether the model ex-

plains the behavior of a single prediction or it explains the overall blackbox behavior.

Local indicates that the interpretation is done locally around one data point, such

as:

• Lime [83] learns interpretable model locally around the prediction of one data

point.

• Anchors [84] explain blackbox behavior with high precision rules for each sam-

ple.

• Shap [61] assigns importance values to all features for each prediction.

• Lore [44] is similar to [83] but generates more samples near decision boundaries

for a better local model.

Global explanation gives interpretation to the overall model behavior. One example

is the teacher/student framework [8]. The teacher is a complex blackbox model

14



and the student is a simpler interpretable model. The student model tries to mimic

the blackbox behavior as an interpretation to the complex model.

Model specific vs model agnostic Interpretation tools that are model specific only

works on one type of model, such as:

• SmoothGrad saliency maps [94] which produces saliency maps (also termed

pixel attribution maps, or sensitivity maps as an explanation for a particular

input and prediction) for SmoothGrad technique.

• Grad-CAM [44] generates visual explanations for deep neural networks.

while model agnostic methods work on any model. Examples are:

• PDP [32] produces partial dependence plots that shows the relationship be-

tween targets and features.

• ICE Plots [72] are an extension of [32]. The plots illustrate the distribution of

individual conditional expectations functions.

• Aggregated local rules (MAGIX) [73] produces global if then rules from

local explanations.

Types of output Interpretation methods also differ in the various outputs they have

such as:

• Summary of Features: Interpretation methods may return feature impor-

tance [37] or interaction of features [22] which can be used to explain a complex

model behavior.

• Visualizations: Many interpretability tools output visualizations as means of

interpretation of a task, such as TreeView [100] which visualizes a random forest

and Nomograms [105] which provide visualization for feature interactions.
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• Model weights: The learned weights of the model may also give insight into

its behavior. This is very similar to the summary of features.

• Data Points: Methods may return new or existing data points that can help

explain a prediction, such as counterfactual explanation [42].

3.3 Data Shift

Traditional Machine learning assumes the data generation process is the same during both

training and testing. Learning is usually considered in isolation and algorithms are trained

to solve specific tasks. However, in most practical tasks, the data generating distribution

is different in both the training and the target domain. Traditional machine learning

algorithms are unable to address the shift in domains. The form of learning in these

scenarios is known as transfer learning [76].

Transfer learning aims to overcome the shortcoming of traditional machine learning by

utilizing knowledge from previously learned tasks [69, 102]. Here, training the model for

a new task relies on previously learned tasks. This is particularly useful when there is

insufficient data in the new domain, so the knowledge from the old domain can be used

to learn in the new field. Labeled data might also be unavailable as unlabelled data are

generally cheaper and easier to obtain. Hence, the goal of transfer learning in all these

settings is to make use of the already trained predictors (or various sources of data) and

avoid training from scratch. As humans, we always use knowledge from previously learned

tasks to help us do new tasks. For example, learning to ride a motorcycle makes it easier to

learn to drive a car. Transfer learning is being used in different domains including natural

language processing [88], image classification [48], and time-series prediction [33].

Transfer learning is an umbrella term for dealing with the phenomenon of data shift,

that is, situations where the data generation differs between training and testing. Examples

of transfer learning frameworks are: Domain adaptation [27, 107] (adapting a predictor
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trained on one source of data to perform well on one target task); Multi-source Domain

adaptation [98, 119] (the same but multiple data sources); Lifelong learning [35] (the

data generation change is tracked over time and predictors continuously adapted, ideally

without fully retraining).

Domain adaptation is a special case of transfer learning. Domain adaptation occurs

when learning takes place from source data distribution and then the learned model pre-

dictors is adopted to predicting on a different target data distribution. Data shift can

occur both naturally and also due to adversarial manipulation. It is impossible to develop

successful transfer learning without knowledge of the type of shift [10]. The types of shift

can be categorized into [68, 77]:

• Covariate Shift: Also known as the shift of independent variables. The shift occurs

in the distributions of the training and testing input variables. This is also the most

common type of shift [12]. If x is the feature vector, y is the label and Ptrain, Ptest

describe the training and testing distribution, we can define covariate shift as:

Ptrain(y|x) = Ptest(y|x), Ptrain(x) 6= Ptest(x) (10)

• Prior Probability Shift: This shift occurs due to the change in distribution of the

training and testing label class [95]. Here,

Ptrain(y|x) = Ptest(y|x), Ptrain(y) 6= Ptest(y) (11)

• Shift under sample selection Bias: This arises from non uniform selection of

samples for training and can fall under covariate shift. So biases are formed during

training and the true distribution is not captured. Hence there is a shift between the

training and the testing data [47].
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• Shift under Adversarial Manipulation: Adversaries may be powerful enough to

change the test dataset; resulting in a dataset shift between the training and the

testing data. This can be seen in several situations such as spam filtering classifi-

cation, where the adversaries attempt to defeat the trained model with adversarial

examples. [26].

There have been several surveys that looked into transfer learning such

as [109], [121], [80]. Most of the work done on data shift and specifically under adver-

sarial settings has been done for image data [70], [40], [24]. Interpretability is potentially

very beneficial for dealing with data shift as it provides explanations for the shift. Firstly,

it may help us to understand the linkage between the source and the target domain. This

can help us evaluate how to adopt before applying the model. Secondly, results can also be

used to explain if a shift has happened and it will also be possible to understand the extent

and the type of shift that took place. Lastly, domain experts can get insight into the shift

and improve algorithm/data accordingly. Hence, interpretability allows easy debugging

and optimization of the model. w

3.4 Literature

Several surveys [2, 18, 38, 101] have been conducted on the interpretability of machine

learning. The methods and taxonomy that these surveys introduced were discussed in

Section 3.2. Additional papers on interpretability and specifically the ones exploring con-

nections between interpretability and data shift are discussed here in this section.

Apart from the application of global and local interpretation tools for standard learning

settings, some researches looked into interpretability for other learning settings such as, Lu

et al. [60] considers interpretability from an active learning perspective. They introduce

active decision set induction (ADS) to learn a set of interpretable if-else rules. On the other
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hand, Thiagarajan et al. [100] suggest obtaining global interpretability via hierarchical

partitioning of feature space of a complex model. The authors then use visualization

to identify the changes in factors behind the predictions. An interpretable decision tree

surrogate is generated based on the meta-features. Bhattacharjee et al. [9] introduce

interpretability to models with non-linear kernels. They generate color based nomogram

where the length/color range shows the contribution of each input variable.

[79] and [106] are introductory papers for interpretability in terms of transfer learning.

The first one highlights the emerging area of interpretable explanation for transfer learning

in sequential tasks. Similarly, Lee et al. [106] explains the process of learning a new task

from a partial decision tree that has been generated using knowledge from a previous task.

The usage of decision trees adds inherent interpretability due to the simple tree structure.

Kim et al. [54] also address the lack of enough labeled data to train the complex models.

Hence, they introduce Feature Network, which trains models with defined interpretable

features. It allows more efficient and interpretable transfer learning due to the usage

of interpretable features. Additionally, a mapping layer is used, which helps humans to

understand the relationship between the features and the outputs. Similarly, Krishnan

et al. [56] utilizes the attention layer of a deep neural network as an explanation of the

model predictions. They use unsupervised domain adaptation to filter out tweets in an

emergency without using new examples.

Segev et al. [92] [91] also focus on model transfer learning and introduce simple model

transformations based on local (and greedy) changes that rely on decision trees, which

makes their algorithm interpretable. Although research on interpretability has been in-

creasing over the past few years, there’s very limited work done on interpretable domain

shift. Hence, in this research, we work with explainable models and also attempt to inter-

pret data shift.
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3.5 Exploring the role of decision trees in data shift

In this section, we describe our approach and experimental findings for achieving inter-

pretability through decision trees in data shift scenarios. We initially formally explain

what decision trees are and how they are constructed (Section 3.5.1). We then investigate

the trees under three different scenarios:

• We attempt to explain marginal shift using the trees as global interpretable models.

We find that the decision trees are not reliable for explaining data shift.

• We then conduct experiments with the teacher-student framework where a neural

network is trained as the teacher model and a decision tree is used as the surrogate

model. We explore the effects of using different distributions to generate unlabeled

data for both training and evaluating the trees. While we find the trees as surrogate

models to mostly be accurate and faithful to the blackbox models, we show how the

validity of the surrogate model in various areas of the feature space strongly depends

on the unlabeled data used for training the surrogate.

• We then investigate local interpretability with decision trees. We locally train small

decision trees around samples that are potentially susceptible to adversarial pertur-

bations. We study this further in Chapter 4.

3.5.1 Decision Trees

Decision trees are non-parametric predictors that can be used in various fields for both

classification and regression tasks. They are tree-based models that are considered to be

inherently interpretable due to their simple hierarchical structures. The models are trained

to predict the value of a target variable by learning decision rules based on the data. A

decision tree is hence a predictor, h : X → Y , which predicts the label y of a data instance
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x that travels from the root node to the leaf node. For most of our work on this thesis,

we will focus on binary classification by decision trees.

The trees consists of one root node and two other types of nodes: decision nodes and

leaf nodes. We start with the root node, and then examine the attributes in the decision

nodes and move to the other nodes based on the results from the examination. This is

repeated until a leaf node is reached. For classification, the prediction is the majority value

of the training data in the leaf node. For regression, the prediction is the mean value of

training data in the leaf node.

Decision trees divide the feature space into axis-aligned rectangles. Each path from

the root-to-leaf node defines an area of the input space. To learn a tree from a given set

of data points, we initially start with an empty tree. Next, the best attribute is chosen for

splitting the data to minimize the impurity of the label classes. This is a greedy approach

where the chosen attribute partition is the one that minimizes the impurity of the child

node relative to the parent node. There are several impurity measures to determine the

best split, such as: Entropy, Gini Index, Miss-classification. Since we mostly focus

on classification, we use Gini Index as the impurity measure. The attribute with the lowest

Gini index is chosen for splitting, where Pi is the empirical probability of class i. Gini

impurity measures the frequency of the mislabeling of any samples from the dataset when

they are being randomly labeled.

Gini = 1−
n∑
i=1

(Pi)
2 (12)

To avoid overfitting of the tree, the growth of the tree can either be prevented by using

any stopping criterion or can be pruned after its fully fitted to the training data. There are

several stopping criterion such as using validation set or penalization of the tree com-

plexity. Similarly, for pruning a top down approach called pessimistic error pruning
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or a bottom up approach called the critical value pruning can be taken. There are sev-

eral standard algorithms for learning decision trees, such as: ID.3 [75], C4.5 [74],CART

[14], etc.

The illustration below shows a simple binary classification using decision trees in a two

dimensional setting:

Figure 3.1: Simple 2D
dataset

Figure 3.2: Decision tree after first, second and third split and the final outcome respec-
tively.

Similar to the several methods described in section 3.2, decision trees are one of the

procedures for achieving interpretability [8]. Decision trees are inherently interpretable

as the decision path of the tree can be decomposed to explain the predictions [65]. For

the next part of this chapter, we test decision trees in three different ways. We firstly

investigate if the trees can indicate and explain the shift in the marginal data distribution

over the feature space (covariate shift setting). We find that the trees cannot always

explain data shift in all settings. Hence, decision trees are misleading as indicators for

covariate shift.
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Next, we conduct experiments with the teacher-student framework. The teacher-

student framework consists of training two models, a complex teacher model and a simpler

surrogate model known as the student. The student is trained to mimic the performance

of the blackbox teacher. We again use decision tree as the interpretable surrogate model

as was done in earlier work [8]. Our results confirm that the trees are mostly accurate

and highly faithful to the blackbox model; they are able to produce results that mimic the

blackbox performance. We then create a covariate shift settings by generating unlabeled

data from various distributions for both training and testing the trees. We find that the

tree performance is highly dependent on the unlabeled data generation process and how

it relates to the areas the surrogate is tested on. Additionally, we show how the complex-

ity of the trees also influence this performance. Lastly, we investigate decision trees as

local surrogate models around different training samples. We find the trees to be a good

indicator of local behavior around data points. We study this further in chapter 4. All

the experiments in this section were done on both artificial and real UCI datasets. The

UCI datasets include: Breast Cancer Diagnosis, Car, Dermatology, Iris, Postoperative and

Wine data [31].

3.5.2 Trees as detectors of marginal shift

One of the questions we asked was whether we could utilize decision trees as indica-

tors/explanations for the change in the marginal distribution of the input space. Marginal

distribution defines the percentage of points that exist in certain subareas/marginals of

the total area. As explained in section 3.3, several types of shift can occur which can

change the marginal distribution of the overall space.

To investigate this, the marginals of the data distribution was altered to understand

if the decision trees can be used to identify the underlying marginal shift that has taken

place. We generated two-dimensional artificial data under the covariate shift setting, with
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different marginals but the same conditional labeling in each setting. The use of artificial

datasets allowed us to visualize and capture various structures. We used scikit-learn [16] to

train and generate decision trees on these datasets. We generated three synthetic datasets,

each containing two features, two label classes, and 5000 data points on a 10 × 10 input

space. Only the marginal distributions were changed for each dataset. We named the

three different datasets as Marginal A, Marginal B, and Marginal C. The colors of the

data points on Fig 3.3 represent the two classes. The marginal distributions on all three

datasets on Fig 3.7, 3.3 and 3.4 are different from each other. Decision trees were then

trained for each of these datasets and the tree structures were compared.

Figure 3.3: Marginal A Dataset Figure 3.4: Marginal B Dataset

As seen on Fig 3.5, the tree trained from the dataset on Fig 3.3 favors a vertical split

on feature 0 while the tree on Fig 3.6 trained from the dataset on Fig 3.4 splits on feature

1. The topmost split of both the tree tried to separate the largest marginals in the space.

The trees were biased towards the larger marginals and the tree structures altered along

with the change in the marginal. From the differing trees, we can identify that data shift

has taken place between the two datasets (Fig 3.3, 3.4).

However, we also observe that the tree generated on Fig 3.8 is very similar to the

tree on Fig 3.6, despite having different marginal distributions (Fig 3.7, 3.4, respectively).

Since we were able to generate identical trees under two different marginal distributions,
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Figure 3.5: Tree generated from Marginal A

Figure 3.6: Tree generated from Marginal B

25



it means that the same tree structure can represent two different marginal distributions.

Additionally, we cannot explain the type of shift or the reasoning behind the shift using

the decision trees. Thus, trees are not suitable as detectors of marginal shift.

To summarize, our construction exhibits the following phenomenon: Out of the three

different marginal distributions (Marginal A, B, C in Fig 3.3, 3.4 and 3.7) two lead to the

same (or almost identical) tree (Fig 3.6 and 3.8), while one lead to a different tree structure

(Fig 3.5). This shows that distributions differing in marginals can lead to differing trees,

but don’t always do so. Thus decision trees can not be viewed as reliable detectors of

marginal (covariate) shift. The trees can give rise to misleading explanations of marginal

shift.

We also explored the variable importance of the tree to see if it is more insightful than

the tree splits in explaining data shift under marginal changes. Variable importance states

the relative influence of each feature on the tree. However, it was very similar to the tree

splits; features that had higher variable importance were also the ones appearing at the

top of the tree.

3.5.3 Dependence of trees as surrogates on unlabeled data gener-

ation

Our next goal was to investigate how the data generation of the unlabeled data affects the

student model in a teacher-student framework. We wanted to investigate the effect of the

unlabeled data from different data distributions on both training and testing the student

model. We propose that the evaluation and validity of the surrogate models should depend

on the underlying data distribution.

The teacher-student framework consists of two training models; a complex model known

as the teacher and a simpler model called the student. In this teacher-student framework,

the student model attempts to mimic the performance of the teacher model. This allows
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Figure 3.7: Marginal C Dataset

Figure 3.8: Tree generated from Marginal C
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an interpretable approximation to the teacher model ideally without compromising on the

performance of the original complex model too much. The student model can then be

used for debugging and understanding the behavior of the blackbox model. If the student

model is successful, it can also be used instead of the blackbox for situations where more

transparency is needed. This framework has in general been applied in many domains

such as reinforcement learning [122], speech recognition [63] and feature selection [64]. A

general algorithm for the teacher-student framework is outlined on algorithm 1.

Algorithm 1: General Teacher-Student Framework
1. Train a teacher model fteacher on the training dataset Strain.
2. Construct a distribution P over the input space X by fitting the new
distribution P to the training data Strain.
3. Generate new unlabeled data Sunlabeled from this newly formed distribution P .
4. Label the new unlabeled Sunlabeled by the trained teacher model fteacher .
5. Now use the new data points Sunlabeled to train a student model fstudent.
6. Evaluate the performance of the student model fstudent relative to the teacher
model fteacher.

For our experiments, we focused on achieving a high relative performance of the student

model in comparison to the teacher, even if the teacher had poor performance. Our goal

was to achieve a surrogate model that correctly approximates a complex model. We

primarily used neural networks as the teacher model and the decision trees as surrogate

models, learned using [8] for the teacher-student experiments.

Bastani et al. [8] introduces an algorithm which only needs to obtain the output

y = f(x) given a input x and a blackbox model f to learn decision trees. The learned

decision trees can then be used as a surrogate model to interpret the blackbox model.

There are few key differences between learning a tree by using CART [14] and [8]. The

algorithm in [8] forms new distribution over the original input space X by fitting a mixture

of a Gaussian distribution to the training data using expectation maximization. This

results in the algorithm having a generative model of the data generating distribution.

Unlabelled data is then generated from this distribution at each node during the training
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of the tree. The newly generated samples are used to calculate the information gain to

decide on the next best split. The optimal leaf labels are also computed according to this

distribution. The algorithm also showed substantial improvement in learning a tree over

using a standard algorithm like CART [14]. Thus, this algorithm was used for our work,

to generate the decision trees.

Along with Gaussian distribution, we introduce two other distributions; Uniform and

a blend of Gaussian and Uniform distribution for generating the decision trees. Similar

to [8], we form the distributions over the original input space X by fitting a mixture of

the selected distribution to the training data. We wanted to investigate the following

questions:

• How the student performs on the original task, how accurate is its performance?

• How well the student mimics the teacher model; if the model is faithful to the teacher

model?

• How well does the student explain the teacher in domain areas that are not covered

by the original training data, in areas of data shift?

• How does this change as a function of the complexity of the surrogate model?

To confirm this, we trained and tested neural networks on the original data distribution and

then trained and tested decision trees with different data distributions. The experiments

were done both on artificial and real UCI datasets [31]. A 80− 20 split was made on the

UCI datasets for training and testing. For the artificial datasets, the training and the test

sets were generated separately. Initially a scikit-learn [16] neural network (1 hidden layer,

500 nodes) was trained on each dataset until a good predictive accuracy was achieved.

The trained teacher model was then kept the same for all the subsequent tests for that

dataset.
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As mentioned previously, we use three different sample generation processes to obtain

new samples for training the student trees. At each node of the trees, 2000 points were

generated to train these decision trees under different distributions. These samples are

used to fit the tree to the data (for which Gini impurity is calculated at each node). For

the tree growth, we iteratively increment the tree size. We score the tree at each step of the

iteration. We set the max node as 55, however, we stopped growing the tree if there was

no change in the scores over 3 iterations. The three different data generating distributions

were:

• Gaussian Extract: A Gaussian mixture model was fitted to original training data

to generate new unlabeled data. The number of components in the Gaussian mixture

was set to 100. The trees trained from this distribution is denoted as Gauss Extract.

• Uniform Extract: Points were sampled uniformly from the range of feature space

covering the training data. The trees generated from this distribution is denoted as

Uni Extract.

• Blend Gaussian Uniform Extract: A Gaussian mixture model was fitted to

original training data to generate 1000 points and the other 1000 points were sampled

uniformly from the range of feature space covering the training data. The trees

formed from this distribution is denoted as BlendGaussUni Extract.

The newly generated points are then labeled by the blackbox and are used to train the

decision trees. We then conducted four types of tests on the various trees. To account

for the randomness in the data and tree generation, tests were conducted three times and

the average scores were taken. For each test, unlabeled data points were again generated

under different distributions. These points were firstly labeled by the blackbox and were

only used for testing the trained student model. The tests were:
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• Original Test: Tests the trained tree performance on original test data points

labeled by the blackbox model.

• Gaussian Test: Tests the trained tree performance on the generated Gaussian

samples labeled by the blackbox model.

• Uniform Test: Tests the trained tree performance on uniform points labeled by

the blackbox model.

• Blend Gaussian Uniform Test: Tests the trained tree performance on a combi-

nation of Gaussian and uniform points labeled by the blackbox model.

We present the results of our experiments in the plots of Figures 3.9 and 3.10. Both

figures contain several plots of the fidelity of the surrogate student model as a function

of the complexity of the surrogate (number of nodes in the decision tree). The fidelity

scores of the surrogates trained on the three different distributions for the unlabeled data

(Gaussian, Uniform and BlendGaussUni) are plotted in three different colors. Each row

in the figures corresponds to a different dataset, whereas each column corresponds to a

different test data distribution. We summarize our findings as follows:

1. We observe the plots in the first two columns (original test data and Gaussian

mixture test data) are qualitatively very similar for almost all datasets. This confirms

that for these datasets, the Gaussian mixture was an adequate approximation of the orig-

inal data-generating distribution and the data generated from the Gaussians had similar

characteristics as the original data with respect to the surrogate training.

2. We observe the fidelity of the surrogate increases with the complexity of the surro-

gate model. While it is natural that a more complex model can achieve higher accuracy

when imitating a (potentially) complex blackbox predictor, in the context of interpretabil-

ity this illustrates a natural trade-off: a more complex surrogate (ie. a larger decision tree)

may achieve higher fidelity, but this comes at the cost of being less readily understandable
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Figure 3.9: Student model (decision tree) trained on 4 data distribution and tested on data
labeled by the blackbox. The graph by column: Original Test, Gaussian Test, Uni-
form Test, BlendGaussianUniform Test. Each row represent different datasets, from
top to bottom: Car, Breast Cancer Diagnosis, Dermatology, Iris, Post Operative,
Wine.
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Figure 3.10: Student model (decision tree) trained on 4 data distribution and tested on
data labeled by the blackbox. The data used is synthetic data from a one-dimensional
manifold in two-dimensional space. The graph by column: Original Test, Gaussian
Test, Uniform Test, BlendGaussianUniform Test. Each row represent different
datasets, from top to bottom: Box, Circle, S, Sine.
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Figure 3.11: The surrogate tree accuracy results on the Iris test dataset

to a human user. Tracking the fidelity closely as a function of the number of nodes in the

tree as we do here can allow for choosing the smallest possible tree that achieves adequate

fidelity.

3. The fidelity of the surrogate on the various test distributions clearly varies largely

with the distribution that the surrogate was trained on. Naturally, the highest fidelity

is achieved when training and test distribution match. We further note that when the

test distribution is uniform on a larger ambient part of the feature space, the surrogate

trained on the Gaussian mixture often performs poorly. This shows that, if a surrogate

model is expected to offer valid explanations outside the original data distribution (here

approximated with the Gaussian mixture) then it is crucial to take this into account at the

training time of the surrogate and train the surrogate on the area that it is expected to

provide explanations for. On the other hand, training the surrogate on the larger ambient

data can reduce the fidelity on the original data distribution. Thus, simply always training

a surrogate on data generated from the surrounding space can lead to poorer performance

on the original data distribution and would therefore not be desirable in situations where
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the explanations are required only for these areas. For many datasets (though not all) the

surrogate trained on a mixture of original (or gaussian approximate) and uniform ambient

data performed well both on the original and on the ambient test. This shows that using

such a mixture as data for training a surrogate can provide a favorable balance of both

providing in-distribution and ambient fidelity.

Similarly, table 3.11 shows the results of the evaluations conducted on the test set

of the Iris dataset [31]. The surrogates trained with the gaussian data (Gauss Extract)

and with the mixture of gaussian and uniform data (BlendGaussUni Extract), performs

well in all three tests. In the table, we also observe that the blackbox manages to get an

accuracy of 95.6% in the domain test data points. The student models (Gauss Extract and

BlendGaussUni Extract) also achieve a very close accuracy of 93.3% when evaluated on

the same data points. Similarly, for the original test, Gauss Extract and BlendGaussUni

Extract achieve high accuracy of 97.8%, which indicates its faithfulness to the blackbox

model.

The results hence show that these surrogate models were both accurate and faithful

to the teacher model. They were able to mimic the blackbox performance and due to

the addition of new data points, the surrogate models can also explain areas that are not

covered by the original domain points. We can use the trees as an explanation or even an

alternative predictive measure.

3.5.4 Trees as local surrogates

Since trees generated globally can give misleading explanations of blackbox behavior, we

investigated decision trees as a local explanation. Local interpretable methods work by

explaining individual predictions of blackbox machine learning models. It helps to under-

stand the reasoning behind each model prediction. The decision trees are generated locally

around each data sample. The tree structure can inform if the data sample is sitting on a
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homogeneous space or on the decision boundary, error or adversarial regions.

Decision boundaries separate the data points into different classes. Throughout differ-

ent experiments, we observed that the decision boundary of a trained blackbox model often

sits close to the original manifold of the dataset. In such a case, we view these regions

as adversarial regions. The model may classify these points (with slight perturbations)

incorrectly into a different label. Hence, the model is vulnerable to adversarial attacks

on these regions as a slight shift in the values of the samples, in this area, can result in

different labels from the blackbox.

To investigate local tree surrogates, we firstly trained neural networks on both real

and artificial datasets. We trained several variations of the network (with different hidden

layers, activation functions, stopping criterion) until a good performance was achieved.

For visualization purposes, we again illustrate the results on a two-dimensional artificial

dataset. For this, the neural network was set as, two hidden layers of size (5,5), ReLU

as the hidden layer activation function, and sigmoid as the last layer activation function.

Binary cross-entropy was used as the loss function to train the network.

One of our synthetic datasets is illustrated in Fig 3.12. We generated 5000 uniform

points on the input space, to see the behavior of the blackbox on areas that are not covered

by the training data points. We labeled the new points by the trained blackbox model

as seen in Fig 3.13. The colors on the original data manifold represent the ground truth

label whereas the surrounding points represent the uniform points labeled by the blackbox

model. The neural network has good predictive accuracy and the labels on the uniform

samples by the blackbox correspond to the original labeling.

From Fig 3.13 we observe that some of the decision boundaries of the neural network

sit on the original data manifold which makes the samples at that region vulnerable to

adversarial perturbations. Hence, we generated decision trees around some of the samples

that are susceptible to adversarial attacks. We also generated decision trees around other
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Figure 3.12: Two dimensional Artificial
Dataset-S with two labels

Figure 3.13: Uniform points around S
dataset labeled by the blackbox

samples for comparison. In Fig 3.13, the red star indicates a sample in an adversarial zone

whereas the yellow star indicates a sample in a non-adversarial (homogeneous labeling)

zone. For the decision trees, we again generated 100 new samples in a ball around the

selected points and labeled those points by the neural network. The radiuses for the balls

of points were based on the range of the features. Finally, we trained a scikit-learn decision

tree on those newly generated points.

From the trees, we can see that sample from non-adversarial zones on Fig 3.14 had a

tree with one node (so, all the points had the same label). This means that the original

data sample was sitting in a space with homogeneous labeling. This area is hence not

vulnerable to adversarial attacks. In contrast, we observe larger trees on Fig 3.15, which

indicates that the points are either sitting on adversarial regions, error regions, or decision

boundaries. The surrounding of those samples has mixed labeling which suggests that the

region is vulnerable to adversarial attacks. Hence, we can use the trees as an indicator of

blackbox behavior on different sub-spaces. The trees can be generated locally for samples

in any type of dataset. This can give insight into the blackbox behavior around different

samples. The trees provide more insight into the blackbox behavior than merely testing
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Figure 3.14: Tree trained on a sample sit-
ting on a non adversarial zone

Figure 3.15: Tree trained on a sample sitting on an adversarial zone

whether the ball around the point is label homogeneous. If we find several large trees, for

samples in certain regions, we can identify that region as adversarial, error, or decision

boundary region. Additionally, we also investigated the vulnerability of the blackbox model

using nearest neighbor and adversarial loss calculations (Algorithm 3, Chapter 4). Using

these metrics, blackbox behavior can be understood further and adversarial samples and

regions can be detected. We investigate adversarial examples further in the next chapter.
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3.6 Discussion

From our systemic experimental evaluations, we found decision trees to be interpretable

and good surrogates to a more complex model (neural networks, random forests). They

can explain both local and global behavior of complex models. The simpler models can

be used as a global explanation for the model performance on the training data and also

on areas that are not originally covered by the domain area. However, we found surrogate

models to be a misleading indicator of data shift. The trees can have the same structure

under two different marginal distributions and hence cannot detect marginal data shift.

We also observed that different types of distribution for generating unlabeled data

affect how faithful the surrogate model is to the teacher model. We see that only Gaussian

or a combination of generated Gaussian and Uniform points for training the surrogate

model, results in better overall performance during all three tests: Gaussian, Uniform,

and Blend-Gaussian Uniform Test. BlendGaussUni and Gauss Extract trees can hence

provide accurate and faithful interpretation to blackbox models. The tests conducted

with points from different distributions are also a good measure of evaluation. These can

give insight into the model performance on areas that are not covered by the original data.

From both our local and global investigation of blackbox models, we observed that

models are often susceptible to adversarial attacks. The generated decision boundaries of

the models were often vulnerable to slight perturbations. Hence, for our next chapter, we

look into adversarial robustness. We theoretically analyze the notion of adversarial robust-

ness and introduce an adaptive adversarial robustness measure and data augmentation.

We investigate empirically on both real and synthetic datasets.
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Chapter 4

A novel measure for adversarial

robustness

4.1 Overview

In this chapter, we carry on our work from the previous chapter where we investigate

adversarial samples. We firstly show that robust-Bayes and 0/1-Bayes are identical if

and only if the distribution is r-separated. We also show that for every r, there exists a

distribution where the two r-Bayes and 0/1-Bayes differ significantly as functions. Next,

we introduce the margin-rate, as a relaxed measure of r-separateness and relate it to

suitable choices of r. We formally show that a slightly too largely chosen robustness

parameter can lead to undesirable effects. Thus we argue that the robustness parameter

r of an adversarial loss should be locally adaptive. We then introduce our new adaptive

robust loss, introduce its empirical version and develop a novel adaptive-robust data-

augmentation paradigm. We finally provide an extensive empirical evaluation of our novel

adaptive robust loss and comparison of the adaptive-robust data augmentation with the

fixed-range data augmentation.
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4.2 Adversarial robustness

Deep learning methods have enjoyed phenomenal successes on a wide range of applications

of predictive tasks in the past decade. However, it has been demonstrated that, while

these networks are often highly accurate at making predictions on natural data inputs, the

performance can degrade drastically when inputs are slightly manipulated [99]. Flipping

a few pixels in an image, a perturbation that is not perceivable by humans, can lead

to misclassifications by the trained network. These unexpected and seemingly erratic

behaviors of deep learning models have caused substantial concern over their reliability

and trustworthiness. Particularly so, if these models are to be employed in applications

where vulnerability to manipulations may have fatal consequences (for example if learning-

based vision technologies are to be employed in self-driving cars).

Recent years have seen a surge in studies aiming to enhance the robustness of deep

learning [3, 18, 39]. Practical approaches are often aimed at smoothing either on the model

or on the training data level. By data-augmentation, the training data gets artificially

augmented with perturbations of natural inputs as a way to promote robustness of the

model during training [110, 115]. Alternatively, a trained model gets smoothed during

post-processing, to not suffer sudden switches of the output class in areas where natural

inputs occur [23, 89].

Theoretical studies on the problem of adversarial robustness have focused on exploring

how adversarial robustness can be phrased in terms of a modified loss function and how this

modified notion of loss affects learnability, both in terms of statistical and computational

aspects [41, 66, 67, 114]. However, both theoretical studies and practical heuristics devel-

oped in the context of promoting robustness to adversarial attacks, are typically aimed at

a fixed notion of smoothness with a fixed degree of perturbations that the model should

be made robust to.

For this thesis, we take a step back, and analyze the question of when a robustness
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requirement is plausible with respect to the underlying data-generating process. It has been

observed before that a requirement of hard margins on a learned predictor (enforcing the

learned predictor to assign constant output label in balls of fixed size around input points)

can be at odds with achieving high accuracy, even if the data-generating distribution, in

principle allows for accurate prediction [29, 41]. In this work, we formally argue that

robustness requirements should be aligned with the underlying data-generating process

and that such an alignment inherently requires a locally adaptive notion of robustness.

More specifically, we start by reviewing properties of Bayes optimal classifiers with

respect to both standard classification loss (0/1-loss) and the most often employed notion

of adversarial loss (which requires that the predictor is constant in balls of a fixed radius

in addition to being accurate). We show that there are various, and natural examples of

distributions, where the optimal classifiers with respect to the classification and robust loss

differ drastically (they assign different labels on a proportion of mass 1/2 of the space).

We then show that the possibility of having predictors of low robust loss implies that

the distribution is clusterable in a strong sense and that on such clusterable tasks, we

can choose a robustness parameter so that the optimal predictors have similar loss values

(in terms of classification and robust loss). However, we also show that choosing the

robustness parameter slightly too large, even on such strongly clusterable tasks, can bring

back the phenomenon of the optimal predictors disagreeing on a proportion of probability

mass 1/2. This implies that, in these situations, any learning method that is consistent

(converges to the best possible loss as training data set size increases) with respect to one

loss is not consistent with respect to the other.

This motivates our proposition of redefining the robustness requirement. We argue that

robustness is inherently a local property and that learned predictors should thus satisfy

a local notion of robustness that is in line with the underlying data-generating process.

While such a requirement can not readily be phrased as a loss function (that operates on a
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pair of predictor and input/output data instances), we derive a natural empirical version

of this requirement. This allows for evaluating the requirement on datasets. Further, we

argue that our notion of locally adaptive robustness yields a natural paradigm for data

augmentation, which adheres to the margin properties of the data-generating distribution.

4.3 Literature

Enhancing robustness to adversarial attacks has received an enormous amount of research

attention in recent years, in particular in terms of practical advancements [3, 18, 39]. We

will focus our discussion of prior work on studies relating to theoretical aspects of learning

under robust loss.

Most recent theoretical studies focus on the parametric setup and analyze how introduc-

ing a robustness requirement may affect statistical convergence of the induced loss classes

[5, 25, 67, 90, 114], whereas others have focused on computational implications [7, 66].

In particular, that there can be arbitrarily large gaps between the sample complexity of

learning a hypothesis with respect to classification versus robust loss [25, 67]. Tsipras et al.

[103] shows the discrepancy between binary and robust loss through a concrete constric-

tion. Several studies have derived convergence bounds for classification under adversarial

manipulations for fixed hypothesis classes [6, 15, 34]. Yang et al. [113] explicitly derives

the connection between robustness and Lipschitzness and analyzes the robustness of the

nearest neighbor classifier under r-separateness. Similarly, Gal et al. [36] uses a Bayesian

framework of analysis and derives guarantees under a (fixed) r-separateness assumption.

Most related to our work are recent studies that also discuss possible options (and their

implications) for phrasing a robust loss [29, 41], as well as recent studies that analyze and

derive properties of optimal predictors under the robust loss and their relation to nearest

neighbor predictors [11, 108]. The latter work is the first to formally study non-parametric

learning for robust classification and proposes a method of data-preprocessing, and proves
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implied consistency. However, robustness is considered only with respect to a fixed ro-

bustness parameter, and the pre-processing consists of pruning rather than augmenting

the data.

Similar to our work, Yang et al. [112] introduces and analyzes the form of the robust-

optimal predictor. It also develops a concrete attack and defense mechanism. Also, Zhang

et al. [117] develops a surrogate loss for the adaptive robust loss and analyzes trade-offs

between the losses in terms of this surrogate. Though different from our research, Khoury

et al. [53] focuses specifically on providing theoretical insights to the phenomenon of

adversarial examples due to the data-distribution sitting on a lower-dimensional manifold.

This is an aspect that we only illustrated in our experiments.

Finally, we note that the relationship between local adaptivity and non-parametric

methods (for example nearest neighbor methods) is well established and our work builds

on this. In particular, it has been shown that nearest neighbor methods’ convergence can

be understood and quantified in terms of local smoothness properties of the underlying

data-generating process for regression [55] as well as for classification tasks [21], and notions

of clusterability of classification tasks have been broadly studied in the context of semi-

supervised learning [87, 104].

4.4 Formal framework for adversarially robust classifi-

cation

If X is equipped with a metric dist (for example the usual Euclidian distance metric

in Rd), then a natural choice for the set of perturbations at x is a ball Br(x) = {z ∈

X | dist(x, z) ≤ r} of radius r around x. For an x ∈ X and h ∈ H, we say that

x′ ∈ Br(x) is an adversarial point of x with respect to h if h(x) 6= h(x′). We use the

following definition of the adversarially robust loss:.
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We consider the most commonly used notion of an (adversarially) robust loss [67, 111]

and adopt some of the notation from [5]. We then define the robust loss as:

`r(h, x, y) = 1 [∃z ∈ Br : h(z) 6= y] . (13)

One can show that, this implies that `r(f, ·, ·) is a measurable function for all f ∈ F

and all r > 0 and all P [5].

marhr

errh

Figure 4.1: Components of robust loss

Note that, we have `r(h, x, y) = 1 if and only if h makes a mistake on x with respect

to label y, or, there is an r-close instance z ∈ Br(x) that h labels different than x, that is,

x is r-close to h’s decision boundary.

The first condition holds when (x, y) falls into the error region,

errh = {(x, y) ∈ X × Y) | h(x) 6= y}. (14)

The second condition holds when x lies in themargin area of h. The following definition

makes this notion explicit. Let h ∈ F be some hypothesis. We define the margin area of

h, as the subset marrh ⊂ X defined by

marhr = {x ∈ X | ∃z ∈ Br(x) : h(x) 6= h(z)} (15)
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We can define notions of a Bayes classifier, and consistency of a learner A with respect to

the robust loss analogously to these notions for the binary loss. We will denote the robust-

Bayes classifier by hrB and the robust Bayes risk by LrBP = LPhrB . We will often simply refer

to the Bayes predictors as the 0/1-optimal or the r-robust optimal predictors. We note

that these optimal predictors are not unique, in particular in the case that the support

of the marginal PX does not cover the full space. For example, if the data-generating

distribution is supported on a lower-dimensional manifold, then a 0/1-optimal predictor

is only uniquely determined on that manifold (and even there only with exception of 0-

mass subsets). Similarly, r-robust optimality can be fulfilled by various predictors if the

data-generating distribution is strongly clusterable (see Definition 6).

4.5 ROBUSTNESS AND MARGINS

In this section, we start by investigating the implications of the existence of a low robust-

loss classifier and the differences between low binary and low robust loss. We show that

the optimal classifiers with respect to these losses can differ significantly, implying that op-

timizing for one can strongly hurt performance with respect to the other. We then analyze

the relationship between the existence of robust classifiers and margin (or clusterability)

properties of the underlying data-generating process and argue that, while clusterability

implies the existence of robust classifiers with respect to some robustness parameter r, us-

ing a fixed robustness parameter can again contravene the intention of deriving predictors

that are both accurate and as robust as possible.

4.5.1 Binary optimal versus robust optimal

It has been noted before that the definition of the r-robust loss implies that, even in

situations where the 0/1-Bayes risk is 0, that is where the labels are deterministic, no
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classifier may have 0 robust loss [29, 41]. In fact, it is not difficult to see that the existence

of a classifier h with LrP (h) = 0 implies that the distribution is clusterable, that is, PX is

supported on r-separated regions of X and these regions are label-homogeneous: LrP (h) = 0

implies that, in particular, L0/1
P (h) = 0, that is the labeling is deterministic. In addition,

we must have P (marrh) = 0, which implies that any point x in the support of PX with

h(x) = 1 has distance at least 2r from any point in that support with h(x) = 0. In this

case, this function h = hBP = hrBP is optimal with respect to both losses.

More generally, even if the labels are not deterministic, the optimal robust loss is larger

than the optimal 0/1-loss if and only if Bayes classifier does not have a strict margin

(independently of whether the labels are deterministic).

Theorem 2. We have LrBP = LBP if and only if there exists a 0/1-optimal classifier hBP

with

PX (marrhBP
) = 0.

Proof. We first assume that PX (marrh) > 0 for all classifiers h that are 0/1-optimal. We

fix one of them and denote it by hBP . Then LrP (hBP ) > L0/1
P (hBP ) = LBP , since on every

point in its margin area, hBP suffers binary loss at most 0.5, while it suffers robust loss

1. Outside the margin area the loss contributions are identical for both loss functions.

Furthermore, for any classifier h that is not 0/1-optimal, we have LrP (h) ≥ L0/1
P (h) > LBP .

Thus, independently of whether an optimal robust classifier hrBP is also 0/1-optimal or not,

we have

LrBP = LrP (hrBP ) > LBP

As for the other direction, if there is a 0/1-optimal classifier hBP with PX (marr
hBP

) = 0, then

it follows immediately, that this classifier is also optimal with respect to the robust loss

and its robust loss is identical to its binary loss. Thus LrBP = LBP .

Moreover, we will now show, that if the data-generating distribution does not have
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a margin in the above strong sense (that is, there exists a 0/1-optimal predictor with a

0-weight margin area), then the optimal classifiers with respect to 0/1-loss and r-robust

loss can differ significantly. This is independent of whether the labels are deterministic or

stochastic.

Theorem 3. Let r > 0 be a robustness parameter. There exist distributions P such that,

for any predictors hBP and hrBP that are optimal with respect to 0/1-loss and r-robust loss

respectively with

PX [hBP ∆ hrBP ] =
1

2
,

where hBP ∆ hrBP = {x ∈ X | hBP (x) 6= hrBP (x)} is the set of domain points on which the

two optimal classifiers differ.

Proof. We consider a distribution P , where PX is supported (uniformly) on just two points

x0 and x1 at distance less than r from each other. x0 is always generated with label 0 and x1

is always generated with label 1. Clearly, the 0/1-optimal classifier hBP labels accordingly:

hBP (x0) = 0 and hBP (x1) = 1, resulting in L0/1
P (hBP ) = 0. However, this classifier has

largest possible r-robust loss: LrP (hBP ) = 1, since both points are at distance less than

r from a point that hBP labels differently. On the other hand, any constant function hc

has robust loss LrP (hc) = 1/2, since it’s margin are has weight 0 and it mislabels with

probability 1/2. This is optimal with respect to the r-robust loss. Thus, we showed that

PX [hBP ∆ hrBP ] = 1
2
.

This example shows that binary and robust optimal predictors can differ vastly. In

particular, when the robustness parameter is not chosen suitably, optimizing for one can

be strongly sub-optimal (by a difference of 1/2 in the respective loss) for the other. More

formally, any learning method, will be inconsistent with respect to one of the two losses in

question.
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Of course, in the above example, the robustness parameter and distribution are con-

structed to not match suitably. For the particular distribution constructed, halving the

robustness parameter would solve the issue.

4.5.2 Choosing a robustness parameter

In the previous section, we saw that, if the distribution is “clusterable” (in the sense

that PX (marr
hBP

) = 0, for some 0/1-optimal classifier hBP ), then the robust optimal and 0/1

optimal predictors coincide. However, this is a very strong “clusterability” or “separability”

assumption on the data-generating process. In this section, we show that, in general, we

can choose the robustness parameter r in dependence on “how clusterable” the distribution

P is and on how close we would like the optimal predictors to be.

Note that, for a fixed predictor h, we have PX (marrh) ≥ PX (marr
′

h ) if r ≥ r′. Thus, the

function

φhP (r) = PX (marrh)

will monotonically decrease to 0 as r goes to 0 for any predictor h. If h is a Bayes predictor,

then the rate at which φhP (r) converges to 0 as r → 0, can be viewed as a measure of “how

clusterable” the data- generating process is, that is, how fast the density of the marginal

PX vanishes towards the boundary between the two label classes.

Definition 6. Let P be a distribution over X × {0, 1} and let hBP be Bayes optimal clas-

sifier with pointwise smallest margin-rate φh
B
P
P (r). Then we define margin-rate of P as the

function

ΦP (r) = φ
hBP
P (r).

and call hBP a margin-optimal Bayes predictor. If there exists an r > 0 such that ΦP (r) = 0,

then we call the distribution P strongly clusterable.
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In the case of deterministic labels, the margin rate coincides with the notion of Prob-

abilistic Lipschitzness, which has been used as a notion of clusterability of the data-

generating process in the context of active, semi-supervised learning [104]. In the case

of stochastic labels, this notion is related to the geometric noise exponent [97]. However,

in contrast to that notion, we do not incorporate bounds on the amount of stochasticity.

We now show that the margin rate can be used to choose a margin parameter for which

the optimal robust and optimal 0/1 predictors will be close.

Theorem 4. Let P be a data-generating distribution over X ×{0, 1}, let ΦP : R+ → [0, 1]

denote its margin rate, and let hBP denote the 0/1-optimal classifier defining the margin

rate. For every ε > 0, if we let r ∈ Φ−1P ([0, ε]), then we have

LrP (hBP ) ≤ LrBP + ε.

In addition, if the labeling of P is deterministic, we have

PX [hBP ∆ hrBP ] ≤ ε

for any robust optimal classifier hrBP .

That is, we can choose the robustness parameter so, that the robust loss of the Bayes-

predictor is close to the optimal robust-loss.

Proof. Due to the way we chose the robustness parameter r here, we immediately get

LrP (hBP ) ≤ L0/1
P (hBP ) + ε = LBP + ε

since P (marr
hBP

) ≤ ε. We need to argue, that no other classifier h can have a significantly

smaller robust loss. As in the proof of Theorem 2, we observe that, we have LrP (h) ≥
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L0/1
P (h) ≥ LBP for any classifier h. Thus, in particular LrP (hrBP ) = LrBP ≥ LBP , which yields

the first claim.

Now we assume that the labeling of P is deterministic. This implies that L0/1
P (hBP ) = 0,

thus LrP (hBP ) = PX (marr
hBP

). Let hrBP be a robust-optimal classifier. By definition of being

robust-optimal, we have LrP (hrBP ) ≤ LrP (hBP ) = PX (marr
hBP

) ≤ ε. Thus, in particular

L0/1
P (hrBP ) ≤ ε, which, in the case of deterministic labels implies PX [hBP ∆ hrBP ] ≤ ε.

Thus, while a clusterability assumption can yield closeness in loss values of the optimal

predictors, it implies closeness of the actual functions only if the labeling is, in addition

deterministic. We next argue that the above theorem’s statements can not be improved

upon in this regard. We show that the assumption of deterministic labels is necessary

for the second part of the statement. On top of this, we show that even if the labels

are deterministic, choosing a robustness parameter slightly larger than what the theorem

suggests can again yield large differences in the optimal predictors (as functions, not just

in terms of their loss values). We start by showing that the assumption of deterministic

labels in Theorem 4 is necessary.

Observation 5. Let ε > 0 be given. There exists a data-generating distribution P over

R2 × {0, 1} with linear margin rate ΦP : R+ → [0, 1], ΦP (r) = 0.5r such that, for any

r ∈ Φ−1P ([0, ε]), we get

PX [hBP ∆ hrBP ] =
1

2

Proof. We consider with uniform marginal over two rectangles in R2: We set R1 =

[−2,−1]× [−1, 1] and R2 = [1, 2]× [−1, 1]. Further, we set the regression function

µ(x1, x2) =


1
2

+ ε
2
if x2 ≥ 0

1
2
− ε

2
if x2 ≤ 0

Now it follows that a 0/1-optimal predictor is hBP = 1 [x2 ≥ 0] while, for any r ≥ ε/2, we
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have hrBP = 1 [x1 ≥ 0], thus PX [hBP ∆ hrBP ] = 1
2
.

Next, we argue that, even under deterministic labels, choosing a robustness parameter

slightly larger than implied by Theorem 4, can yield largely differing optimal predictors.

Observation 6. Let ε > 0 be given. There exists a data-generating distribution P over

R × {0, 1} that is strongly clusterable, such that, for any r > supPhi−1P ([0, ε], we have

PX [hBP ∆ hrBP ] = 1
2
.

Proof. We can use the same construction as in the proof of Theorem 3.

4.5.3 Towards local robustness

In the previous sections, we have shown that the clusterability (as well as the amount of

stochasticity in the labels) of the underlying data-generating process has a strong effect

on what is a suitable robustness parameter to aim for and that, choosing the robustness

parameter slightly too large, can result in inconsistent learning. We now argue that, even

if the distribution is strongly clusterable and the labels are deterministic, then choosing a

uniform robustness parameter may not result in the desired outcomes.

To see this, we consider a distribution over domain R2 × {0, 1}, where the support

is distributed uniformly on four points, (−1, 0.9), (−1, 1.1), (1, 0.9), (1, 2). Then predictor

h(x1, x2) = 1 [x2 ≥ 1] is 0/1-optimal and also r-robust optimal for any r ≤ 0.1. However,

we may prefer a predictor h∗ that keeps a larger distance from the point (1, 0.9), see

illustration in Figure 4.5.3 and is equally optimal with respect to the 0.1-robust loss.
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h0.1BP

h∗

Figure 4.2: Uniform robustness requirement unsuitable.

4.6 REDEFINING THE ROBUSTNESS REQUIRE-

MENT

In the previous section, we have argued that using a fixed robustness parameter r can

lead to inconsistencies (in the sense that the optimal predictors with respect to binary

and robust differ vastly) and that even under conditions where the optimal predictors can

coincide (strong clusterability and suitably chosen robustness parameter), optimizing for

the robust loss can lead to classifiers that do not reflect our intuition about an optimally

robust predictor (Section 4.5.3). Ideally, we would like a learned predictor to be everywhere

as robust as possible. We will next formalize this intuition using the notions developed in

the previous section. We then propose an empirical paradigm based on data-augmentation

to realize the novel objective.

4.6.1 A local robustness objective

Earlier work has considered how robustness can be defined as a requirement of the pre-

dictor to be accurate in balls around input points versus being constant in balls around

input points [29, 41] and discussed implications of these definitions. While the former

requirement better reflects what is actually desired (as well as the fact that being constant

in balls can induce contradictory requirements to accuracy), it can not be phrased as a

loss function ` : F ,X ,Y → R [5], and thus there is no obvious empirical version of this
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requirement.

We propose to phrase robustness in relation to a margin optimal Bayes predictor. A

learned predictor should assign a constant label in a ball Br(x) around a point x if a

margin optimal Bayes predictor does so. For a predictor h and domain point x, we let

Bh(x) denote the largest ball around x on which h assigns a constant label (potentially,

the radius of this ball is 0, in which case we define Bh(x) = {x}).

We will now assume that the data-generating distribution is such that the regression

function is nowhere equal to 0.5. That is, for every point in the support of PX , the

Bayes optimal predictor is uniquely defined and partitions the support into areas X 0 and

X 1 where the Bayes classifier classifies 0 and 1 respectively. We then define the margin

optimal Bayes predictor outside of the support of PX by nearest distance to X 0 and X 1.

Definition 7 (Adaptive robustness). Let P be a data-generating distribution and let hBP

denote a margin-optimal Bayes predictor, and h an arbitrary predictor. Then we define

adaptive robust loss `ar as

`ar(h, x, y) = 1
[
h(x) 6= y ∨ BhBP (x) * Bh(x)

]

This definition implies that at least for hBP the robust loss coincides with the binary loss.

We note that similar to the requirement that a predictor should be accurate in a ball of fixed

radius, the above-proposed loss is not technically a valid loss function, since it depends

on hBP rather than just on h, x, and y. This implies that it can not straightforwardly be

estimated from a data-sample. However, we next propose a substitute notion of empirical

loss for the adaptive robust loss.
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4.6.2 Empirical adaptive robust loss

In this subsection, we suggest an empirical version of the adaptive robust loss. Let S =

((x1, y1), . . . , (xn, yn)) be a labeled dataset. For a labeled domain point (x, y) we let ρS(x)

denote the distance from x to its nearest neighbor with opposite (or different in the case

of more than two classes) label in S:

ρS(x, y) = min
i∈[n]
{‖xi − x‖ | (xi, yi) ∈ S, yi 6= y}.

In the (degenerate) case that no such point in S has a label different from y (that is, all

points in S have the same label), we set ρS(x, y) to∞ (or the diameter of the space). Note

that ρS(x, y) is well defined for points (x, y) = (xi, yi) ∈ S from the dataset S itself.

We now expand the dataset S by replacing each point with a (constant labeled) ball

of radius c · ρS(xi, yi), for some (to be chosen) constant c.

Definition 8. Let S = ((x1, y1), . . . , (xn, yn)) be a labeled dataset. We call the collection

Sc = (Bc·ρS(x1,y1)(x1, y1), . . . ,Bc·ρS(xn,yn)(xn, yn))

the c-adaptive robust expansion of S.

It is easy to see that, as long as c ≤ 1/2, balls in the c-adaptive robust expansion

of S overlap only if they have the same label. Thus, this expansion does not introduce

any inconsistencies in the label requirements. Depending on the geometry of the data-

generating process (eg. the curvature of the decision boundary of the regression function)

we may also employ larger expansion parameters without introducing inconsistencies.

Using the c-adaptive robust expansion of S, we can define an empirical version of the

adaptive robust risk for fixed-parameter c. For this, for a predictor h : X → Y and label

y, we let h−1(y) ⊆ X denote the part of the domain that h labels with y.
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Definition 9. Let c be an expansion parameter, S = ((x1, y1), . . . , (xn, yn)) a labeled

dataset and h a predictor. We define the empirical c-adaptive robust loss of h on S as

Lc−arS (h) =
1

n

n∑
i=1

1
[
Bc·ρS(xi,yi)(xi, yi) * h−1(yi)

]
That is, a point (xi, yi) ∈ S is counted towards the empirical c-adaptive robust empirical

risk, if h does not label the whole ball Bc·ρS(xi,yi)(xi, yi) in the expanded set with label yi.

4.6.3 Adaptive robust data-augmentation

While the empirical c-adaptive robust risk is well defined for any predictor h and

dataset S, it may, computationally, not be straightforward to verify the condition

1
[
Bc·ρS(x,y)(x, y) * h−1(y)

]
, that is, to verify whether both label classes have non-empty

intersections with some ball in the space. A natural estimate is to use m uniform sample

points z1, . . . , zm from the ball Bc·ρS(x,y)(x) and verify whether h labels all of these with y.

Similarly, for training purposes, we may want to use an sample version of the c-adaptive

robust expansion of S. We call this the m-sample-c-adaptive robust augmentation of S.

The so augmented dataset Smc is a set of labeled domain points and can be used as a

training data-set for a learning algorithm.

Definition 10. Let S = ((x1, y1), . . . , (xn, yn)) be a labeled dataset, and m ∈ N. We call

the collection

Smc = ((z11 , y1), . . . , (z
m
1 , y1), . . . (z

1
n, yn), . . . , (zmn , yn)),

where every zji is uniformly sampled from the ball Bc·ρS(xi,yi)(xi), the m-sample-c-adaptive

robust augmentation of S.
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4.7 Experiments on synthetic and UCI dataset

To further validate our proposed adaptive robust data augmentation method, we present

a set of illustrative experiments on various synthetic datasets. To allow for visualizations,

we generate data from a “lower-dimensional manifold” in two dimensions. It has been

conjectured that the data being supported on a lower-dimensional manifold is a source of

the phenomenon of vulnerability to small perturbations. We term our synthetic shapes:

Sines, S-figure, NNN, circles, boxes, see Figures 4.4 and 4.3.

The original support of data generating distributions can be seen as the green and blue

lines in the first column of Figure 4.3, blue and green points representing points from the

two classes. We train a ReLU Neural Network with 2-hidden layers (of 10 neurons each)

data points drawn from these shapes. We also augment the training datasets with both

fixed and adaptive expansion parameter.

For fixed expansion parameter, we iteratively increase the parameter in a fix sequence,

(0.1, 0.5, 1, 2, ...., 16). These expansion parameters were chosen based on the range of the at-

tribute values in the datasets. For each sample in a d-dimensional dataset, a d-dimensional

sphere is generated where the radius is the fixed-parameter and the current sample is the

center of the sphere. Four new points are then generated in this sphere for each sam-

ple. Hence, the dataset is expanded to four times its original size after fixed-parameter

expansion.

Similarly, expansion is done with adaptive expansion parameter. The key difference

is in the calculation of the radius of the sphere. The nearest neighbors of each sample

are investigated and the neighbor which has a different label with respect to the current

sample is selected. A fraction of the distance between the current sample and the chosen

neighbor is used as the radius for the sphere generation. Algorithm 2 describes the process

of adaptive data augmentation.

Each of the middle columns in Figure 4.3 corresponds to augmentation with a fixed
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Figure 4.3: ReLU networks trained on data from a one-dimensional manifold in two-
dimensional space, labeled using two classes (blue and green here). The various shapes
by row: Sines, S-figure, NNN, circles, boxes. Left-most: original training data;
various middle images: training data augmented using increasing expansion parameters;
right-most: training data robust-adaptive expanded. We use data generated uniformly
at random from the ambient space to illustrate the network’s labeling (red and purple).
Using just original training data, or only slightly augmented data, we observe that the
network’s decision boundary is often close to the manifold.
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Algorithm 2: Adaptive Data Augmentation
Input: d dimensional training dataset with N instances x with labels y
Output: Augmented Dataset
for i← 0 to N do

1. Find the nearest neighbor xnn of sample xi where yi 6= ynn
2. Calculate the euclidean distance p between these two sample xi, xnn.
3. Calculate radius, rad = 2

3
∗ p.

4. Use rad as the radius to generate the d-dimensional sphere around sample xi
4. Generate 4 new points in the sphere for each sample xi.
5. Label these new points with yi; the same label as sample xi.
6. Append these new data points to the existing dataset.

end

expansion parameter, while the last column shows the 2/3-adaptive robust augmentation

of the training data. The original training dataset contains 1000 training points and the

augmented datasets 5000 data points each.

We then evaluate the robust loss with various fixed robustness parameters on a test

dataset drawn from the original data generating process. To estimate the robust loss, we

evaluate the network on a test point (x1, x2) and four additional points (x1 − r, x2), (x1 +

r, x2), (x1, x2 − r) and (x1, x2 + r) for increasing robustness parameters r (a data point is

counted towards the r-robust loss here, if these four test or the four tests for an earlier

tested robustness parameter r′ < r resulted in finding a point that the network labels

differently than (x1, x2)). The procedure for one robust parameter r is stated in algorithm

3. Here, r_losstotal contain information of the previous robust loss for each sample with

parameters r′ < r.

We plot these losses in Figure 4.4. The initial point of the curves corresponds to the

0/1-loss of the trained network. Superior performance is thus a combination of a low

starting point and a low continuation of a curve. We observe that the adaptive data

augmentation combines achieving low classification error (the leftmost starting point of

the curves) with overall good robustness for various perturbation parameters. A fixed

expansion parameter on the other hand typically resulted in a higher binary loss.
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Algorithm 3: r-robust loss
Input: Classifier f , N Training data samples x ∈ X with M features, a
temporary sample z, robustness parameter r, a 2D array of previous robust loss
r_losstotal, for all training samples and parameters r′ < r
Output: r-robust loss for a parameter r
z ← [0] ∗M
r_lossrobust ← 0
for i← 0 to N do

if (r_losstotal[i, r′] = 1 for any r′ < r) then
r_lossrobust ← r_lossrobust + 1
r_losstotal[i, r]← 1
continue;

end
r_lossfeature ← 0
for j ← 0 to M do

zi ← xi
zij ← xij + r
t1 ← f(zi)
zij ← xij − r
t2 ← f(zi)
if (f(xi) 6= yi) or (t1 6= f(xi)) or (t2 6= f(xi)) then

lossfeature ← lossfeature + 1;
end

end
if lossfeature > 0 then

r_lossrobust ← r_lossrobust + 1
end

end
return (r_lossrobust)/N
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We also evaluate the adaptive robust loss on the various trained networks. To estimate

the adaptive robust loss at a point (x1, x2), we determine its distance ρ to a point in the

dataset with a different label and then generate 10 test points uniformly at random from

a ball of radius 0.5ρ. If one of these gets a different label than (x1, x2) by the network (or

if the point is mislabeled itself) it suffers adaptive robust loss 1. The table in Figure 4.5

summarizes the binary and adaptive robust losses of the various networks. We see that,

the adaptive augmentation leads consistently to the lowest binary (always rank 1) and low

adaptive robust loss (rank 1 and once rank 2).

Finally, we also trained ReLU neural networks on some simple UCI datasets. For

each dataset, we normalized the features to take values in [0,1]. As in the experiments

on the synthetic data, we trained the networks on the original data, as well as various

augmented datasets, including using the 2/3-adaptive augmentation. The dataset was

split into training and test data with a ratio of 80 − 20 respectively. The r-robust loss

graph on these test datasets can be seen in figure 4.6.

In Figure 4.7 and 4.5, we report the binary and adaptive robust losses of these net-

works. We observe, again, that the robust augmentation promotes the best performance in

terms of 0/1 accuracy. Additionally, the adaptive robust loss is close to the best adaptive

robust loss achieved with a fixed expansion parameter on each dataset. Using the adaptive

augmentation can thus serve to save needing to search for an optimal expansion parameter

on different tasks.

In summary, our initial experimental explorations here showed that the adaptive aug-

mentation consistently yielded a robust predictor with best 0/1-loss. This confirms the

intended design of an adaptive robustness and data augmentation paradigm that avoids

the undesirable tradeoffs between robustness and accuracy.
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Figure 4.4: The loss curves on various synthetic datasets. From left to right: Sines,
S-figure, NNN, circles, boxes
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Dataset Network
Adaptive 

Robust Loss Binary Loss
Sines Original 0.2882 0.104

0.1 0.1693 0.071
0.5 0.2443 0.147
1 0.3116 0.177
2 0.3521 0.208

Adaptive 0.1403 0.038

S-figure Original 0.3516 0.044
0.1 0.1514 0.016
0.5 0.0429 0.027
1 0.0844 0.05
2 0.2373 0.21

Adaptive 0.0393 0.017

NNN Original 0.3841 0.2124
0.1 0.2609 0.1086
0.5 0.2008 0.1048
1 0.1969 0.0952
2 0.386 0.3714

Adaptive 0.08972 0.04

circles Original 0.4483 0.0133
0.5 0.2629 0
1 0.3472 0.0108
2 0.1778 0.0242
4 0.3076 0.0783
8 0.3557 0.1733
16 0.3054 0.1633

Adaptive 0.254 0

boxes Original 0.3427 0.08
0.5 0.2623 0.0775
1 0.2229 0.0775
2 0.2252 0.1667
4 0.2839 0.2283
8 0.4274 0.3458

Adaptive 0.2077 0.075

Figure 4.5: Overview on the binary and adaptive robust losses of the networks trained on
the various synthetic datasets with various augmentations.
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Figure 4.6: The loss curves on various UCI datasets. From left to right: Iris, Breast Can-
cer, Bank Note Authentication,Heart Disease, Immunotherapy, and Parkin-
sons
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Dataset Network
Adaptive 

Robust Loss Binary Loss
Iris Original 0.0957 0.0435

0.1 0.0783 0
0.5 0.1304 0
1 0.3478 0.087
2 0.391 0.3478

Adaptive 0.087 0

Breast Cancer Original 0.1351 0.0263
0.1 0.0956 0.0175
0.5 0.0842 0.0351
1 0.0833 0.0439
2 0.0693 0.0175

Adaptive 0.0719 0.0175

Bank Note Authentication Original 0.0804 0
0.1 0.0479 0
0.5 0.1593 0.0909
1 0.1153 0.0036
2 0.1058 0.0036

Adaptive 0.0167 0

Heart Disease Original 0.3465 0.1628
0.1 0.3791 0.2093
0.5 0.386 0.2093
1 0.4489 0.2791
2 0.507 0.3488

Adaptive 0.3604 0.1395

Immunotherapy Original 0.263 0.1852
0.1 0.2926 0.1111
0.5 0.3482 0.1852
1 0.2333 0.1852
2 0.437 0.2593

Adaptive 0.174 0.0741

Parkinsons Original 0.1423 0.0678
0.1 0.1678 0.0847
0.5 0.1542 0.0678
1 0.2322 0.1017
2 0.2322 0.1186

Adaptive 0.1627 0.0508

Figure 4.7: Overview on the binary and adaptive robust losses of the networks trained on
the various UCI datasets (test sets) with various augmentations.
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Chapter 5

Conclusion

In this work, we work with the inherently interpretable method (decision trees) as means of

our explanation for blackbox models and adversarial robustness as an adaptive requirement.

For the study of interpretability, we first try to explain marginal shift using decision trees

and find that it is not a suitable indicator of data shift. We then conduct experiments

with the teacher-student framework where use different data distributions to generate

unlabeled data to both train and evaluate the student model (decision trees). We find

the surrogate to be mostly accurate and faithful to the blackbox teacher model and that

their performance is strongly dependent on the unlabeled data. We also locally investigate

decision trees around each data sample and find the trees to be a good explanation of local

blackbox behavior.

Similarly, we motivate re-framing adversarial robustness as a requirement that should

be in line with the underlying distribution’s margin properties through a series of construc-

tions where optimal classifiers for robust loss and 0/1-loss differ drastically. We propose a

formal notion of such an adaptive loss, as well as an accompanying empirical version and

implied data-augmentation paradigm. We believe this to be a natural and useful take on

dealing with the inconsistencies (eg in terms of growing loss-class capacities, computational

impossibilities, or diverging Bayes predictors) that earlier theoretical studies on learning
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under adversarial loss have exhibited. We hope that our work will inspire follow-up studies

in a similar vein.

5.1 Future Work

Concerning the future work, we plan to extend interpretability in regards to the logits layers

of the neural network. We hope to identify out of distribution samples from the last layer of

the model. Additionally, we also plan to explain marginal shift with simpler interpretable

models. In terms of adversarial examples, we hope to conduct more experiments on other

datasets and ensure that our adaptive robustness augmentation and loss measure can be

applied to any ML applications.
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