
AUTOMATIC IMAGE RECOGNITION

OF RAPID MALARIA EMERGENCY

DIAGNOSIS: A DEEP NEURAL

NETWORK APPROACH

ZHAOHUI LIANG

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN

PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE

OF MASTER OF ARTS

GRADUATE PROGRAM IN INFORMATION SYSTEMS AND

TECHNOLOGY

YORK UNIVERSITY

TORONTO, ONTARIO

June 2017

c©Zhaohui Liang, 2017

Abstract

Deep learning is the state-of-the-art artificial intelligence (AI) method for visual pattern

detection and automated diagnosis. This paper describes the application of convolutional

neural network (CNN), the deep learning model for visual recognition, to automatic

detection of plasmodium parasitized red blood cells for malaria field screening and rapid

diagnosis. The malaria thin blood smears are from Bangladesh and initially labeled

by a specialist. 27,578 red blood cell images are segmented (raw set). The images are

rotated clockwise three times to generate an augmented dataset with 110,312 red blood

cell images. A 12-layer and an 18-layer CNN-based Malaria Net models are applied to

classify both the raw data set and the augmented dataset. The performance is evaluated

by ten-fold cross-validation and compared to a transfer learning model. In the ten-fold

cross-validation test for Malaria Net, the average accuracy is 97.37% (18-layer) and

96.09% (12-layer) with the raw set, and is 97.93% and 96.75% with the augmented set,

in comparison to 91.99% with the raw set and 94.26% with the augmented set in transfer

learning. In addition, the two CNN models show superiority over transfer learning in all

performance indicators such as sensitivity, specificity, precision, F1 score, and Matthews

correlation coefficient. The Malaria Net can accurately detect malaria-infected red blood

cells. A CNN model trained by domain-specific data shows superior performance over

the transfer-learning method. Automatic image classification powered by deep learning

offers not only an accurate method for the malaria field screening and rapid diagnosis

but also a new solution for malaria control especially in resource-poor regions.

ii

Acknowledgements

I would like to express my gratitude to Prof. Jimmy Huang, my supervisor of my

graduate study in York University, for providing the most helpful advice to my study

in information technology and computer programing, and opportunities to utilize my

knowledge and skill in reality. And I would like to thank Dr. George R. Thoma and

Dr. Stefan R. Jaeger from Lister Hill National Center for Biomedical Communications

(LHNCBC), National Library of Medicine (NLM), National Institute of Health (NIH)

for providing me with an excellent opportunity to apply my knowledge in both medicine

and information technology to biomedicine and to contribute to the global health and

disease control.

I would like to thank my wife for her continuous support for my study in York University

and her hard work to care our children when I worked in NIH in the U.S. in the 2016

summer.

This research is funded by a Discovery grant by the Natural Sciences and Engineering

Research Council (NSERC) of Canada, a NSERC CREATE award in Advanced Disaster,

Emergency and Rapid-response Simulation 1 (ADERSIM 1), and an ORF-RE (Ontario

Research Fund - Research Excellence) award in BRAIN (Big Data Research and An-

alytics Information Network) Alliance 2. The malaria automated diagnosis project is

funded by the US HHS (United States Department of Health Human Services) Innova-

tion Ventures Fund Program 2015-2016. The Master candidate is jointly trained by York

University and by the US Department of Energy program for future scientist in North

America. The deep learning research is also funded by the National Natural Science

Foundation of China (No.81573827).

iii

Contents

Abstract ii

Acknowledgements iii

Contents iv

1 Introduction 1

1.1 Global Control of Malaria . 1

1.2 Machine Learning for Automated Diagnosis 1

1.3 Deep Learning for Automated Diagnosis 3

1.4 Research Background . 4

2 Literature Review 5

2.1 Automatic Diagnosis by Machine Learning 5

2.2 Application of Machine Learning to Image Retrieval 8

2.3 Automatic Diagnosis of Malaria and Machine Learning 9

2.4 Deep learning and convolutional neural network 11

2.5 Advantages of CNN Compared to Other Methods 11

2.6 Challenges to CNN Applications . 12

3 Our Proposed Method 14

3.1 General Procedure of Deep Learning . 14

3.2 Convolutional Layer . 16

3.3 Pooling layer . 17

3.4 Activation Layers . 18

3.5 Output Layers . 20

3.6 Model Optimization and Fine-tuning . 21

3.7 CNN Architecture for Malaria Classification 27

4 Model Evaluation 30

4.1 Data Source . 30

4.2 Experimental Environment . 31

4.3 Data Preprocessing . 31

4.4 CNN Model Training . 34

4.5 Performance Evaluation . 36

5 Results 38

iv

5.1 Training Procedure . 38

5.2 Confusion Matrices of the Malaria Net Evaluation 38

5.3 The Cross Validations of Different Models 40

5.4 Stability and Robustness of the CNN Classifiers 46

6 Discussion 49

6.1 The Global Burden of Malaria . 49

6.2 Application of Deep Learning to Automated Diagnosis 50

6.3 Convolutional Neural Network for Image-based Diagnosis 50

6.4 CNN Applications to Malaria Diagnosis 52

6.5 Expectations of Deep Learning Applications 53

7 Conclusions and Future Work 55

7.1 Conclusions . 55

7.2 Future Work . 56

Bibliography 59

Appendix A Implementation of Deep Learning in MATLAB 68

A.1 General Description . 68

A.2 Install the MatConvNet Toolbox . 68

A.3 Compiling the MatConvNet Toolbox . 69

Appendix B Preparation of the Image Data Object 71

B.1 Instructions . 71

B.2 MATLAB Script to Resize Image . 72

B.3 MATLAB Script to Image Transfer and Partition 72

Appendix C Image Data Preprocessing for Deep Learning 76

C.1 Instructions . 76

C.2 MATLAB Script to Create the imdb Data Object with All Data Prepro-
cessing Steps . 76

Appendix D CNN Model Configuration 82

D.1 Instructions . 82

D.2 The 12-layer Malaria Net . 83

D.3 The 18-layer Malaria Net . 85

Appendix E MATLAB Script for CNN Model Training 89

E.1 Instructions . 89

E.2 MATLAB Script to Implement CNN Training 89

Appendix F MATLAB Script to Implement Ten-fold Cross Validation 107

F.1 Instructions . 107

F.2 CNN Training with Cross Validation . 108

v

Appendix G MATLAB Script for Model Evaluation 111

G.1 Instructions . 111

G.2 MATLAB Script for Model Evaluation . 112

Appendix H MATLAB Code for Malaria Net Cross Validation 113

H.1 Description . 113

H.2 MATLAB Script for Model Evaluation . 113

Appendix I Publications during the MAIST Program Study 115

I.1 Publication in Conference Proceedings . 115

I.2 Publication in Journal . 116

vi

Chapter 1

Introduction

1.1 Global Control of Malaria

Malaria is one of the most common vulnerable diseases that affects the world popula-

tion. Malaria is caused by parasites that are transmitted through the bites of infected

mosquitoes. The pathogen of malaria is genus plasmodium. It is a kind of parasitic

protozoans which can invade the erythrocyte of human and cause a serial of symptoms.

According to WHO report, 214 million people were affected by malaria in 2015 with

an estimated 438,000 deaths (See Figure 1.1)[1]. The disease burden is estimated up

to 12 billion per year [2]. Malaria is a deadly infectious disease that has been present

throughout human history. Although effective medications have been developed to fight

malaria, it remains a major burden on global health in the 21st century, particularly in

tropical and subtropical regions and in the resource poor regions such as Africa, South

America, and South and South-eastern Asia. Most deaths caused by malaria occur

among the children in Africa.

1.2 Machine Learning for Automated Diagnosis

Malaria can be prevented, effectively controlled, and cured if an accurate and efficient di-

agnosis method would be available. The standard diagnosis of malaria is to investigate

the patients’ blood smears under light microscope to count the infected erythrocytes

by qualified pathological technicians. This method is inefficient and the quality of the

1

Figure 1.1: The global burden of malaria in 2015

diagnosis depends on the experience and knowledge of the medical specialists. The im-

provement in diagnosis can certainly enhance the global control of malaria. However,

this method is labor-intensive and heavily dependent on the experience and knowledge

of the microscopists. In addition, it is estimated that a total of 170 million blood smears

are examined annually, imposing a large burden on health resources [3]. Automatic

image recognition technologies based on machine learning and big data have been ap-

plied to malaria blood smears diagnosis since 2005 [4]. An early application of machine

learning to blood cell classification is to detect parasitemia in images of Giemsa-stained

blood smears. In this early study, the correlation of automatic and manual parasitemia

detection was compared, but cells were not classified as infected or uninfected [5].

Depending on the blood smear type, algorithms for automatic recognition of plasmodium-

infected erythrocytes can be divided into two categories: classifiers for thick blood smears

and classifiers for thin blood smears. Elter et al. proposed a model based on Bayesian

pixel-classification which uses a kNN classifier to reduce false-positive detections. The

model was evaluated and it has better performance compared to support vector ma-

chine (SVM) classifiers [6]. On the other hand, Das et al. reported that thin films of

blood smear are more appropriate for automatic image diagnosis because fewer layers of

2

blood cells provide clearer and more reliable patterns. Thus they propose a model using

F-statistics and Information gain for feature selection and Näıve Bayes, RBF Neural

network, and Logistic regression as the main method for pattern classification. This

method is satisfactory for recognizing plasmodium inside the red blood cell, however, its

performance will be weakened by overlapping cells [7].

Based on the current research progress, there is no robust model or algorithm available

so far for automatic image diagnosis of malaria because the patterns for differentiating

infected red blood cells from normal cells are not static. The image characteristics of

plasmodium inside the erythrocytes change depending on the stage of infection. In

addition, color intensities may vary due to staining variability, which can significantly

weaken the reliability of conventional image recognition algorithms.

1.3 Deep Learning for Automated Diagnosis

A deep learning model is a neural network with more than two hidden layers. This

feature allows it to learn representations of data with highly-dimensional abstraction. A

convolutional neural network (CNN) is a deep learning model suitable for two-dimensional

data such as images and videos. CNNs are motivated by the study on the neurophysi-

ological activities in the vision cortex of the brain. In 1959, Hubel and Wiesel discover

that a cat recognizes an object by memorizing its edges observed in multiple directions

[8]. Based on this finding, one can argue that a pattern recognition model should mimic

this information processing mechanism of the brain [9]. The advantage of a CNN model

is that its hierarchical structure of learning layers can be trained in a robust manner

once the topology of the model fits the feature input. The model can efficiently lever-

age the spatial relations of the visual patterns (e.g. the edges in an image) to reduce

the number of parameters that need to be learned. This improves the accuracy of the

feedforward-and-backpropagation training procedure. In addition, a CNN can be fed

with raw data input and automatically discover high-dimensional complex pattern rep-

resentations. Small local regions in an image are captured by the convolutional filters

and treated as inputs to the lower layers of the deep network structure. The infor-

mation then propagates layer by layer through the whole network. When the feature

representations are passed to the next convolutional layer, the convolutional filters cap-

ture the salient features of the input which originate at the edges and corners of the

3

image. The extracted simple pattern can be reassembled to complex visual patterns

such as shapes and color textures. Since deep learning can model very complex features,

a CNN provides a general-purpose learning framework not requiring feature extraction

and fine-tuning beforehand.

The advantage of CNN is that its hierarchy structure of learning layers can be trained

in a robust manner once the topology of the model fits the target features. The model

can efficiently leverage the spatial relations of the visual patterns (e.g. the edges in an

image) to reduce the number of parameters which are needed to be learned and thus

it improves the subsequent general feed-forward back propagation training to achieve

extreme accuracy. Theoretically CNN models can learn very complex features by the

above thorough transformation. It is an expert-independent learning model that saves

time and manpower for data preprocessing. Based on the literature review, we find CNN

is the best solution for the malaria blood smear classification task.

1.4 Research Background

In my research, a new CNN-based neural network model is designed, trained, and applied

as a highly sensitive and reliable diagnostic model for malaria. After sufficient training,

the CNN model can automatically classify the malaria infected erythrocytes from normal

uninfected blood cells from thin blood smears. The CNN model will be training be by

a balanced dataset (i.e. the ratio of infected blood cells and normal blood cells is

1:1) acquired from Chittagong Medical College Hospital in Bangladesh. This research

project is funded by the 2015 HHS Ventures Fund project “Watch it, Parasite!” and

the NIH intramural research funding. The work is organized by the Image Processing

Group at the Lister Hill National Center for Biomedical Communications (LHNCBC),

a branch of National Library of Medicine (NLM), and National Institute of Allergy

and Infectious Diseases (NIAID) affiliated to National Institutes of Health (NIH), at

Bethesda, MD, USA. The thesis candidate received the funding by the U.S. Department

of Energy (DOE) and worked for NIH in the 2016 Summer Internship program from

June to August, 2016. The NIH project primary investigator, Dr. Stefan Jaeger, has

agreed to grant the access of the image data to this master thesis for all relevant research

purposes.

4

Chapter 2

Literature Review

2.1 Automatic Diagnosis by Machine Learning

The application of machine learning for visual diagnosis started in the late 1980s, when

Kersten et. al. proposed that 2-D optical images collected from medical research and

healthcare practice can be represented by neural network models for recognition. The

idea was constrained at that time by limitation of statistical modeling, algorithms, and

computer software [10]. Marr believes that the computer image processing is to mimic

the visual information cognitive procedure of human [11]. Taylor et. al. point out that

the goal of computer image processing is not only to represent the visual information,

but also to recognize or discover the pattern inside them. They also illustrate major

difficulty in image processing for medical image interpretation and face recognition in

the 1990s is that the available algorithms were incapable of sufficiently modelling the

natural vision [12]. The application of machine learning for automatic diagnosis is traced

back to the 1970s and it is developed and improved with the advance and maturity of

the infrastructure of information technology (IT) in the healthcare system [13]. For

example, a predictive model named COMPASS (Computerized Decision Aid for Stroke

thrombolysis) is developed to decide whether the acute stroke patients should have the

thrombolytic treatment based on the available clinical information by balancing the

overall benefits and risks [14]. A smart EMR (electronic medical record) information

retrieval system based on the language model is developed to extract meaningful infor-

mation from two independent databases in England to support the planning of clinical

trial protocols [15].

5

In addition to the applications based on numeric and text data, machine learning is

also applied to image based medical diagnosis and decision making. Nemoto et. al.

review the available machine learning algorithms for medical image processing. They

conclude that the machine learning approach provide a crucial method for computer-

aided detection (CADe) to detect the clinical significant patterns from massive medical

images, which eventually perform computer-aided diagnosis (CADx) [16]. De Bruijne

points out that machine learning is increasingly successful method for image-based di-

agnosis, prognosis and risk assessment. The current challenges are the need of more

robust model architecture, data accessibility, and effective technology translation [17].

The applications of machine learning to image-based medical diagnosis are generally

divided into two categories. At first, this technology is used to detect and classify the

gray-scale image patterns on radiology images generated by CT (computed tomogra-

phy), MRI (magnetic resonance imaging), PET (positron emission tomography) scans.

Depending on different purposes, the applications can be further divided to six cate-

gories: (1) medical image segmentation, (2) registration, (3) computer aided detection

and diagnosis, (4) brain function or activity analysis and neurological disease diagno-

sis, (5) content-base3d image retrieval systems, and (6) natural language understanding

[18]. Wang et. al. reports a dual-dictionary learning model to reconstruct the CT and

MRI images to improve the pattern quality and the model classification capacity due to

insufficient training [19]. Nouretdinov et. al. proposes a transductive conformal predic-

tor (TCP) classification model to predict the significant visual patterns in MRI images

as diagnostic and prognostic markers in depression [20]. Cheng et. al. introduces a

deep learning architecture to discriminate the benign and malignant pulmonary nodules

on CT images [21]. All these studies believe a promising future for applying machine

learning in radiology image-based diagnosis and significant clinical pattern or marker

detection. However, numerous issues such as insufficient training, the uncertainty of

model robustness and capacity are the barriers from applying such technology to meet

the clinical and industrial requirement.

On the other hand, machine learning technology is also used in histopathological pat-

terns detection and classification on tissue images for clinical applications. The main

difference between the histopathological image and radiological image is that the former

are usually color images instead of gray-scale images. In the aspect of data processing,

the color images are represented by the 3-dimension matrices or tensors with 3 color

6

channels. Thus, to apply machine learning models to represent image data, we need

more complex models and more intensive computation to tune these models compared

to the above applications for radiology models. The use of Computer-assisted diagno-

sis (CAD) and machine learning to histopathological image analysis begins in the late

1990s. In accordance with Gurcan et. al., histopathological tissue analysis by CAD

and machine learning can be categorized to two classes: to detect the pathologically

significant visual patterns as the evidence for the presence or absence of diseases, and

to grade the severity of diseases or to quantitatively measure the disease progression

[22]. Lessmann et. al. proposes a content-based image retrieval (CBIR) model based

on Discrete Wavelet Transform to overcome the information gap between the visual

representation and semantic meaning. They applied this method to discriminate the

histopathological images of meningioma at the accuracy at 79% and pointed out the

main difficulty is the computational cost and to use local subsets of features to represent

the overall features [23]. Vanderbeck et. al. proposes a supervised machine learning

method to classify histological features of non-alcoholic fatty liver disease (NAFLD).

Their experiment reports that the classification algorithm has the overall accuracy at

89%, but the performance to different types of historical tissues varies [24]. Svensson et

al. uses a native Bayesian model to detect tumor cells in the blood circulation system.

The experiment compared the Bayesian model with manual classification, support vector

machine and generative mixture model. And conclude the new method can attain the

accuracy to ROI (region of interest) at 99% and 75% to raw images [25]. Gopinath and

Shanthi develop an automated diagnosis system to detect thyroid tumor cells by multi-

ple algorithms including decision tree (DT), k-nearest neighbor (k-NN), Elman neural

network (ENN) and support vector machine (SVM). It implements multi-class classifi-

cation with the overall accuracy at 90% [26]. Gertych et. al. used a machine learning

model consisting of support vector machine (SVM) and random forest (RF) to detect

the pathological patterns on digital images of prostate tissues. The result shows that the

more complex the model is, the better performance it yields but the model robustness

still needs to be improved [27]. A review on histopathological image analysis points out

that computer-assisted diagnosis (CAD) algorithms becomes a complementary option

for disease detection, diagnosis, and prognosis prediction for pathology. It also predicts

that the development fields of CAD in the future are multi-modal data fusion / reg-

istration, correlation between histological signatures with protein and gene expression,

exploratory histopathology image analysis, and computer-aided prognosis [22].

7

2.2 Application of Machine Learning to Image Retrieval

The application of machine learning to automatic image-based diagnosis can be traced

back to the artificial technology for image retrieval. Image retrieval is one of the most

active research fields in information retrieval (IR) since the 1990s when the focuses

were general-purposed applications such as indexing methods, searching models, and

text searching of the image annotations [28, 29]. For example, Tan et. al applied a

Bayesian model combined with stochastic sampling to enhance document ranking [30].

Ayadi et al. introduced a Bayesian network model based thesaurus to link the semantic

meaning to the target images to enhance medical image retrieval by ranking the list of

specific medical features such as image modality and image dimensionality. The result is

compared with the classic information retrieval model BM25 [31] and shows superiority

[32].

The renowned applications of image retrieval include Query By Image Content (QBIC)

by IBM [33] and the Virage image and video retrieval system adopted by CNN [34]. The

image IR systems aims to extract the image features from the digital image such as pixel

distribution, edges, color, etc., and then to rebuild the content representations of the

sematic meaning. A typical content-based image retrieval (CBIR) system is built based

on a retrieval engine supported by the visual feature 7extraction algorithms, the distance

and similarity measuring algorithms, the appropriate storage and access channels and

the user-friendly interface [35]. The visual features or pattern in image retrieval are

divided into two categories: the primitive features such as color, shape, and edges, and

the logical features such as the identity of the combination of an object and a specific

background [35]. Most image IR systems refer primitive features by applying strategies

such as segmentation and local feature extraction to acquire the desired knowledge

domain. However, the sematic meaning of such knowledge is difficult to represent. Some

current studies propose to use the captions and annotated text accompanied with the

image to refill the sematic gap, but the available methods are only capable of rendering

general-purposed information with questionable reliability [36].

Image IR has a broad application scope in the biomedical industry, because compared to

the expensive decision making by human, a reliable image IR system provides an econom-

ical method for diagnosis and relevant decision makings in both hospital or clinic content

8

[37]. The common applications include automatic radiologic diagnosis and histopatho-

logical diagnosis [35, 38]. By a serial of appropriate classifiers, the IR system is able

to extract a variety of useful features from both the visual features and the annotated

texts [39]. If the visual patterns can be extracted from the image and combined with

the most relevant semantic information, we can perform an automated diagnosis based

on the medical image data[29, 40]. For example, a spatially constrained convolutional

neural network (SC-CNN) is applied to detect the nuclei of the cancerous cells from

the whole-slide histological images of colon cancer [41]. Another study annotates the

target image with multiple keywords, and then classifies them by a combined model

consisting of wavelet-based center symmetric and local binary patterns (WCS–LBP). In

the retrieval part, a confidence score will be assigned to each key word based on the

feedback of the machine learning model to reduce semantic gap between the user and

the IR system. This model can reduce the error rate by approximately 10% compared to

the modified support vector machine (MSVM) model [42]. Another attempt by Morioka

et al. who applied the ConText-based algorithm to classify ultrasonic radiology reports

reports that the algorithm is effective for contextual feature identification [39]. In addi-

tion, many information retrieval technologies are proposed to enhance the IR in medical

information systems such as the association rules algorithms [43, 44], the probabilistic

models [45], and Bayesian models [46] etc. They show some promising features in dif-

ferent aspects of the healthcare information systems, but there is no an algorithm of IR

models that has superiority over other methods.

More recent studies focus on improving the semantic linkage between the images and the

text such as captions and annotations, or to apply automatic image annotation methods

based on machine learning models to enhance CBIR performance [47]. Therefore, the

application of the state-of-the-art deep learning algorithm has a promising future in the

application of image processing and classification.

2.3 Automatic Diagnosis of Malaria and Machine Learning

The application of machine learning for malaria blood smear classification started in

the 2000s when a software named MalariaCount was used to detect the parasitemia

images of Giemsa- stained blood smears [6]. However, the study simply compared the

9

correlation of the machine and the manual parasitemia detection and did not classify

the infected red blood cells from the normal ones.

In 2009, a study by Diaz et. al. applied support vector machine (SVM) to classify

preprocessed blood smear images to detected infected erythrocytes. The proposed al-

gorithm has good performance in both specificity and sensitivity with a small dataset

of 450 malaria images. Unfortunately, the model performance decreases when it is ap-

plied exclusively to blood images at the infection stage [26]. Verma et. al. uses a

SVM model to classify the infected red blood cells by detecting the proteins secreted

by malaria parasite into erythroncyte. The model achieves the accuracy at 86.20% and

88.22% respectively in spliting amino acid and dipeptides composition [48]. Kuang et.

al. applies a SVM augmented by profile kernel model (PF-SVM) to detect the malaria

degradomes as the method to predict the anti-malaria drug resistance [49]. Another

attempt is made in 2011 when a new preprocessing algorithm is used to convert the

color image to monochrome image, the method is believed to be able to enhance the

accuracy of the SVM classifier with a data set of 266 images at a sensitivity of 0.97 with

a mean number of 0.8 false-positive detections per image [6].

Except for SVM, other machine learning models are also applied to malaria automated

diagnosis. For example, Wicht et. al. uses the Bayesian model to detect the β-

haematin inhibiting compounds in anti-malarial drug discovery [50]. Yin et. al. proposes

a tree-like Bayesian Structure Learning Algorithm (TL-BSLA) model to classify the

high-throughput transcriptomic data in malaria genomic studies, and believe Bayesian

method can analyze massive genomic data in the future malaria studies [51]. Scotti et.

al. develops the artificial neural network models (ANNs) as the analytic approach for

new discovery of anti-malaria drugs [52]. Das et. al. used a machine model based on

Bayesian learning and support vector machine (SVM) to detect malaria infected pat-

terns from the light microscopic images of malaria infected blood smears. The model

accuracy is reported to be 84% at the cross validation. However, the model requires a

complicated data preprocessing stage that significantly increases the manual workload

[53].

Therefore, we can conclude that the available classification models inevitably require

image preprocessing procedures and are only evaluated by small data sets. As mentioned

in the review by Zinszer et. al., the application of machine learning model can improve

10

the quality of malaria forecasting [54]. Though the reported outcomes are good, the

factors such as the data representability and robustness of algorithm performance are

questionable.

2.4 Deep learning and convolutional neural network

Deep learning is an artificial neural network (ANN) model with multiple hidden layers.

This technology has applied to medical research and recently given the maturity of high

performance general purpose processors [55]. Convolutional neural network (CNN) is a

series of deep learning architecture particularly used for image and vision recognition. A

CNN model processes input data by its multiple layers by the four key ideas: local con-

nections, shared weights, pooling, and the use of many layers [56]. The early applications

of CNN can be traced back to the 1990s for speech recognition [57] and text recognition

[58]. Its use is then extended to handwriting recognition [59] and later to natural im-

age recognition [60]. However, the performance of the CNN models for natural image

classification has not improved until the introduction of ImageNet by Alex Krizevsky

(thus also named as AlexNet) in 2012. The AlexNet is considered the breakthrough of

the application of CNN for multi-categorical classification. In the ILSVRC-2012 compe-

tition, the ImageNet composed of seven convolutional layers successfully classified the

ILSVRC-2012 validation and test set with 10,184 categories and 8.9 million images with

the top-5 error at 15.3% [61]. The record of top-5 error is renewed to 14.8% by the

ZFNet [62], to 7.5% by the VggNet [63], to 6.7% by GoogLeNet in 2014 [64], and to

3.6% by ResNet in 2015 [65].

2.5 Advantages of CNN Compared to Other Methods

The advantage of CNN for visual pattern classification and detection is the complex

topological structure that performs multilayer back-propagation. A set of convolutional

layers are applied on the top of the CNN architecture that can effectively learn com-

plex, high-dimensional, non-linear mappings by the back-propagation process and use

the first few convolutional layers as an appropriate feature extractor for the following

fully-connected multilayer networks as the classifier. [66]. Compared to the conventional

artificial neural network models and other traditional machine learning such as k-nearest

11

neighbor (KNN) and Bayesian model that rely on the independent feature extraction

algorithms to extract features [67], the CNN models can be fed with “raw” image inputs

with the minimal preprocessing such as pixel-normalizing and centering. One of the

major defects of traditional unstructured neural networks for image recognition is the

lack of built-in invariance with respect to translations or local distortions of the inputs.

The CNN model applies a particular topological structure to force the extraction of local

features by restricting the receptive fields of hidden units to be local. The mechanism is

based on the physiological study on the cats’ visual recognition neural system by Hubel

et. Al in 1959. [8] They discover a visual object is remembered by locally-sensitive,

orientation-selective neurons in the neural system. A neural system can extract the ba-

sic visual patterns such as oriented edges, end-points, corners and integrate them on in

the higher layers of the neural system. In a CNN model, the same mechanism is stim-

ulated by applying a serial of convolutional kernels to detect the local visual features

and to represent them as feature maps. As the result, all feature maps are assembled

on in a convolutional layer and passed to the next layer. In general, a CNN use three

methods to ensure some degree of shift and distortion invariance: local receptive fields

by a serial of convolution operations, shared weights by activation functions, and spatial

or temporal subsampling by the average or max pooling layers to improve computing

efficiency. Therefore, the CNN model provides a more straightforward solution for visual

pattern detection and classification. The CNN usually requires higher standard hard-

ware implementations because it needs to compute numerous vector weights and matrix

operations. Taking the advantage of the continuous decreasing of storage cost and the

increasing of cost-effect of cloud computing resource. CNN becomes the state-of-the-art

AI solution for image processing at present.

2.6 Challenges to CNN Applications

The performance of a CNN network is affected by multiple factors. In a simple CNN

architecture, the model starts with a few small convolutional kernels (or filters) in com-

bination with a deep network architecture to capture the discernable image features as

much as possible. In a more complex CNN, the architecture will inevitably increase the

demand for more powerful computing resources. New technologies such as GPU and

cluster computing can effectively improve the training efficiency but they are unable to

12

ensure classification performance. Other factors such as data preprocessing and size of

the training dataset also affect the classification accuracy. Since the accuracy depends

on the amount of training data, small datasets such as those used in earlier approaches

are not large enough for training a deep model with its many parameters.

In order the solve the problem of insufficiency of training data, a compromised method

called transfer learning is introduced where a pre-trained is used for feature extraction

and these features will be used to fine-tune a conventional classifier for final outcomes

[68]. Transfer learning can be used as a shortcut of deep learning where we can save

time for training at the cost of relatively low but still acceptable performance. This

method can be used as a temporary replacement when large training is inaccessible. In

this study, we will implement deep learning by both training a newly configured CNN

model and applying transfer learning in order to evaluate their feasibility for malaria

blood smear classification.

13

Chapter 3

Our Proposed Method

3.1 General Procedure of Deep Learning

As the one of the most important of deep learning, the architecture of the CNN model

will largely determine the final performance. The basic mechanism of deep learning is

to apply a multi-layer network to distort the input space and to transform it by the

hidden nodes. By a serial of transformations, the model can learn the patterns of the

input data by back-propagation. By this procedure, the partial derivative or gradient of

the input parameters are computed from the partial derivative of the output (See Figure

3.1 Figure 3.2) by the chain rule. Thus the changes from one layer can be computed

by measuring the changes of other layers connected to it.

The learning of the CNN model is acquired by two inverse computations: the feed-

forward and the back-propagation [56]. The feed-forward is to compute the output of

one layer from all units in this layer where a non-linear activation function f() is applied

to the sum of weight z from the lower layer. The function can be a rectified linear unit

(ReLU), hyperbolic tangent (tanh), logistic function etc. On the other hand, backward

propagation is applied to fine-tuning the deep network by computing the parameters of

each layer inversely. As shown in Figure 3.3, given the loss function for the unit l in

the output layer is 0.5 × (yl − tl) where tl is the output, the error derivative yl − tl of

the output can be converted to the error derivative of the total by multiplying it by the

partial derivative of f(z).

14

Figure 3.1: A Neuron in a Neural Network

Figure 3.2: Gradient Descent in Backward Propagation

Figure 3.3: Feed-forward and Backward Propagation in a Deep Neural Network

15

By the above operation, the CNN model acquires learning when sufficient raw data enter

and go through the whole network. In general a typical CNN architecture consists of

four type of layers: convolutional layer, pooling layer, activation layer, fully connected

layer, and Softmax layer, which perform different tasks in the training procedure.

3.2 Convolutional Layer

The convolutional layer is the most important component of the CNN architecture. It

consists of a set of filters which are feature maps can are connected to the local patches

in the feature maps of the previous layer by a set of weights.

In mathematics, the convolution of two vectors, u and v, represents the magnitude of

overlap when the filter vector v slides across u. Let m be the length of vector u and

n be the length of the filter vector v, then the vector w of the convolution of u and v

is typically denoted as w = u ⊗ v, where w(k) is the convolutional product of the kth

entry in vector u, as computed by Formula3.1.

w(k) =
∑
j

u(j)v(k − j + 1) (3.1)

In the image processing through a convolutional neural network, an image is represented

by a 3-dimensional matrix where the first two dimensions represent the pixel values and

the third dimension represents a specific color channel (e.g. Red, Green, and Blue). Ac-

cordingly, the convolutional operation on an image can be written in algebraic notation

as:

h(x) = f(x)⊗ g(x) =

∫ +∞

−∞
f(τ)g(x− τ)dτ (3.2)

Where f(x) represents the input image and g(x) is the function of the filter (or kernel).

Then the convolution product is the integral of the dot product of the input image and

the filter, where the filtered output is nonzero.

The local sum of weights of each unit is then passed to a non-linearity such as a ReLU

or a sigmoid function. All units belonging to a feature map share the same set of

16

weights or filter bank, while different feature maps use different filter banks for feature

representation [57]. The reason for this design is based on two considerations. First,

the images are fed into the network as array data which represent the features of the

local pixels. Since local pixels are assumed highly correlated, forming distinctive local

motifs are easier to be detected. Second, images signals are invariant to location, thus

the change of location will not divert the feature of the identical pattern on the other

location. In mathematics, this layer performs filtering operations by a feature map in

a discrete convolution. As illustrated in Figure 3.3, a 32 × 32 pixel color image (i.e.

RGB, 3 channel) is scanned by six filters (5 × 5 pixel, 3 channels) and output as a set

of 28× 28× 6 activation maps.

Figure 3.4: Information Representation in a Convolutional Layer

3.3 Pooling layer

Unlike the convolutional layer to detect local conjunctions of features passed from the

previous layer, the main function of a pooling layer is to perform a merging operation

in order to reduce the size of the feature map. The pooling layers can merge the local

semantically similar features into a more concise representation. Because the motif

formed by the relative positions of the features can vary, the pooling operation can

coarse-grain the position of each feature with the motif by a particular function. The

common operations include computing the maximum of the local patches of units in

the corresponding feature map or maps where the peripheral units in those patches are

shifted by more than one row or column. As the result, the dimension of the feature

representation is reduced and replaced by an invariance formed by the small shifts and

distortions of the pooling operation.

17

Figure 3.5: Information Downsampling in a Pooling Layer

The combination of the convolutional layers and pooling layers forms the basic struc-

ture to reduce the dimension of the feature maps that eventually leads to the desired

dimension for classification by the Softmax function.

3.4 Activation Layers

The activation layers in the CNN architecture are non-linear functions to generate

learned knowledge. The typical structure of a CNN is formed by stacking two or three

stages of convolution, non-linearity, and pooling, and then followed by more convolu-

tional and fully-connected layer [56]. The learned patterns are generated in the networks

when backpropagating gradients go through the CNN model that is trained by repeat-

edly recomputing the weights in all the filters banks. There are three types of activation

layer used in CNN for image classification: the rectified linear unit (ReLU) layer, the

sigmoid layer, and the cross-channel normalization layers.

The ReLU layer can greatly accelerate the convergence of stochastic gradient with the

low-cost operation where all the positive values are kept and all the negative values are

reset to zero (See Formula3.3). However, the overuse of ReLU will easily suppress all

tiny non-zero values to zero which will never be reactivated [62]. On the other hand,

18

the sigmoid layer squashes a real-valued number into the range between 0 and 1 (See

Formula3.4) leading to the increase of representation density. However, the sigmoid

layer will saturate and eventually kill the gradients when the gradient values turn to

small as the absolute values of the input increase.

f(x) =


x x ≥ 0

0 x < 0

(3.3)

f(x, a, c) =
1

1 + e−a(x−c)
(3.4)

The current trend for the activation functions is to simply use ReLU layers for generating

learning. The state-of-art CNN models is composed of 10 to 20 ReLU layers to compute

hundreds of millions of weights between billions of neuron connections [10], which takes

extremely long time and requires continuous upgrades in hardware (e.g. GPU), software

(e.g. CUDA), and algorithms.

Another choice of the activation layer is the cross-channel normalization layer which

returns the local response normalization of each input element (See Formula3.5)

x
′

=
x

κ+ α×ss
windowChannelSize

(3.5)

where κ, α, and β are the hyperparameters, and ss is the sum of squares of the ele-

ments in the normalization window [15]. The normalization scheme can improve feature

generalization by the activity of a neuron aix,y computed by the kernel i and position

(x, y) and then applying the ReLU nonlinearity. The response-normalized activity bix,y

is given by the Formula 3.6.

bix,y =
aix,y

(κ+ α
∑min(N−1,i+n

2
)

max(0,i−n
2
) (ajx,y)2)β

(3.6)

where the sum of n ”adjacent” kernel maps at the same spatial position is computed

and N is the total number of kernels in the layer. The normalization layer performs

the local contrast normalization scheme which can improve learning [68]. However,

19

since we perform a global contrast normalization as a part of data preprocessing, this

normalization layer is not used in our CNN architecture. The comparison of the three

activation functions is illustrated in Figure 3.6.

Figure 3.6: Comparison of Different Activation Functions

3.5 Output Layers

At the end of a CNN architecture, the structure usually has a few fully connected layers

connected to a Softmax function for outputs, which are the typical outputs layers. The

fully connected layers contain neurons that connect to the entire input volume as other

neural networks. Note that we can still add ReLU layers between the fully connected

layers to generate learning but this practice is not common. The Softmax layer returns

the probability regarding the conditional probability of the given class. It is also known

as the normalized exponential and can be considered as the multi-class generalization of

the logistic sigmoid function (See Formula3.7 Figure 3.7) [68].

P (Cr | x) =
P (x | Cr)P (Cr)∑k
j=1 P (x | Cj)P (Cj)

=
exp(ar)∑k
j=1 exp(aj)

(3.7)

(0 ≤ P (Cr | x) ≤ 1 and
∑k

j=1 P (cj | x) = 1)

20

Figure 3.7: Output of the Softmax Layer

3.6 Model Optimization and Fine-tuning

As a common issue of machine learning, model optimization and fine-tuning play a

crucial role to the final performance of the algorithm. In general, the goal of training

a machine learning model (i.e. supervised learning) is to approximate a representation

function to map the input variables (Xs) to an output variable (Y). When a model is

trained, its parameters (the weights of the neurons in deep learning) are adjusted by the

input data patterns. When the training data is a sample with good representation to

the general, the trained model acquires the capacity of generalization to solve the unseen

case with the acquired knowledge, which means a well-tuned machine learning model

can learn and generalize the real-world data. Conversely, if a trained model cannot solve

the unseen problems, there are two cases: over-fitting and under-fitting.

Over-fitting means the model is trained too well by the sample data to solve unseen

analogous problems. It happens when the model learns both the due patterns of the

training data and the noise generated by random fluctuations. As a result, the function

curve of the over-fitting model is so close to the sample data to generalize that it loses the

capacity to approximate the common patterns of the homologous data. (See Figure 3.8).

21

On the other hand, under-fitting means a trained model can neither solve the training

data nor generalize the unseen new data. An under-fitting model can be produced when

a unsuitable model is chosen or the wrong architecture is applied. In practice, it is easy

to detect and solve the issue of under-fitting by the alternative modelling. (See Figure

3.8)

Figure 3.8: Under-fitting v.s. Over-fitting

Over-fitting is one of the major issues in the model optimization in deep learning. There

are many methods to optimize the deep learning models. Many methods are proposed to

minimize over-fitting and to provide the trained models with more generalized cognitive

capacity. The common methods include alternating the activation functions, adjusting

the learning rate based on the change of the outcomes of the loss function after each

training epoch, using a random drop out to discard the over-tuned neurons, and to apply

an appropriate back-propagation algorithm to experdite the learning effect at better cost-

effect. Stochastic gradient descent is an optimization method for back-propagation by

computing the partial derivative or gradients of a series of small subsets instead of the

whole dataset with an appropriate learning rate in different training epoches. [69, 70]

Stochastic gradient descent (SGD) is a series of predominant optimization methods for

deep learning. [70] In comparison with batch gradient descent (BGD) that computes the

gradient of the whole training set, SGD (also known as incremental gradient descent) is

a stochastic approximation of the gradient descent optimization method to minimize the

target function in the form of a sum of differentiable functions by seeking the minima of

22

the loss function in each iteration of computing the deep neural network. In mathemat-

ics, the difference of the ground true value and the approximated value can be present

as:

Qtrain(w) =
1

2m

m∑
i=1

(hw(x(i) − y(i))x(i)j)2 (3.8)

where m is the total number of data points in the training set. The gradient computed

in the jth epoch can be expressed as:

∂

∂wj
Qtrain(w) (3.9)

The minimizing of a function can be written in the form of summation:

Q(w) =
1

n

n∑
i=1

Qi(w) (3.10)

where Qi is the ith observation of the training dataset. Qi(w) is the value of the loss

function at the ith data point and Q(w) is the empirical risk (i.e. theoretical bounds

of the function). To minimize the total loss, a standard batch gradient descent method

can be performed by the following iterations:

w := w − ηOQ(w) = w − η
n∑
i=1

OQi(w)

n
(3.11)

where η is the learning rate to approximate the loss. Note that the batch gradient

descent algorithm requires to compute the gradient of the whole training set. Therefore,

the computing cost is extremely high in big datasets.

By contrast, stochastic gradient descent (SGD) does not compute the true gradient of

Q(w), but the gradient is approximated by the summation of the gradient of a small

subset randomly select from the whole batch. The weight of the ith observed data point

is updated by:

cost(w, (x(i), y(i))) =
1

2
(hw(x(i), y(i)))2 (3.12)

23

then the gradient of the randomly chosen subset is:

Qtrain(w) =
1

n

n∑
i=1

cost(w, (x(i), y(i))) (3.13)

or the above formula can be simplified as:

w := w − ηOQi(w) (3.14)

where i represents the ith randomly selected subset in an epoch of back-propagation. An

computing epoch in a SGD algorithm means that the algorithm go through the whole

training dataset. An iteration means that when a random subset is randomly chosen,

the SGD algorithm goes through the small subset to compute a local summation of

gradient.

As the algorithm goes through the whole training set, it updates the value of w by

each training example until the algorithm converges. A typical SGD algorithm is imple-

mented by the following steps:

1 Choose an initial parameter vector w and learning rate η

2 Repeat until an approximate minimum is achieved:

3 Randomize the data examples in the training set

4 For i = 1, 2, . . . , n do:

5 w := w − ηi(w)

In order to minimize the difference between the true gradient and the gradient computed

from a single observed data example, we can compute the gradient against more than

one training example (or mini-batch) at each step. This method is called mini-batch

gradient descent: w := w− ηOQj(wi:i+n) where j is the jth batch of the whole training

set and n is the batch size. In this study, we apply the classic SGD method with a batch

size of 256 images.

In addition to the classic SGD method, there a series method to optimize the SGD

algorithm because the limits of the conventional stochastic gradient descent method:

first, it is difficult to choose the best learning rate arbitrarily. And an improper learning

24

rate might lead to slow convergence or even divergence. Second, when the algorithm

encounter a saddle point in stead of a local minima. The conventional SGD algorithm is

difficult to escape from the plateau of the saddle point as the surround gradient is close

to zero in all dimensions.

In order to solve the above problem and accelerate the gradient descent procedure, many

gradient descent optimization method are respectively proposed:

Momentum is a method to accelerate the SGD in the most relevant direction and to

suppress the unnecessary oscillations. [71] In addition to compute the gradient, the

momentum method applies a fraction γ from the last iteration to update the current

gradient: vt = γvi−1 + ηOQi(w), then w := w − vt. To further expedite the SGD

based on the momentum method, Nesterov proposed a revised method called Nesterov

accelerated gradient (NAG) [72] where an extra γvi−1 term is added to compute the

gradient of the ith step.

Adaptive gradient algorithm (AdaGrad) is a revised SGD algorithm with per-parameter

learning rate. It is an effective SGD algorithm for the training datasets with sparse

parameters. [73] In an AdaGrad, the basic learning rate η is multiplied by the vector

{Gi,j} which is the diagonal of the outer product matrix.

G =
t∑

τ=1

gτg
T
τ (3.15)

where gτ = OQi(w) is the gradient at the τth iteration. Then the diagonal is given by:

Gi,j =
t∑

τ=1

g2τ,j (3.16)

Then {Gi,j} is updated after each iteration by the formula:

w := w − ηdiag(G)−
1
2 ◦ g (3.17)

where ◦ is the notation of element-wise product. So the update of each parameter is

computed by:

25

wj := wj −
η√
Gi,j

gj (3.18)

Since the denominator of the fraction
√
Gi =

√∑t
r=1 g

2
τ is the `2 norm of the former

derivatives, extreme parameter updates will be suppressed while small updates will be

given a higher learning rate η. The AdaGrad method is reported as the best method for

non-convex optimization. [73]

Similarly, Zeiler [74] proposed another SGD optimization method called AdaDelta which

is consider an revised version of the AdaGrad algorithm. Compared to the AdaGrad

method, the AdaDelta method applied a restricted window to accumulate the former

gradients to enter the computation for new gradient. Therefore, it offers a less aggressive

optimizing method that can adjust the learning rate dynamically instead of decreasing

the learning rate monotonically.

The last group of optimizing method is called Root Mean Square Propagation (RM-

SProp) introduced by Tieleman and Hinton. [75] RMSProp aims to adjust the learning

rate for each parameter by dividing the learning rate for the average decaying squared

gradients. First, the average is computed by:

υ(w, t) := γυ(w, t− 1) + (1− γ)(OQi(w))2 (3.19)

where γ is the forgetting factor (Hinton sugguests that γ is set to be 0.9), then the

updates of the parameters are:

w := w − η√
υ(w, t)

OQi(w) (3.20)

According to Hinton et al. [75], the RMSProp method has excellent capacity to tune

the learning rate for different applications. A revised optimizing algorithm called Adam

(Adaptive Moment Estimation) is proposed in 2014, which uses both the gradients and

the second moments of the gradients. It is considered as the most flexible and universal

SGD optimizer at present, So it is used in this study. [76] Figure3.9 illustrates the

different computing efficiencies of the above mentioned model optimizing methods.

26

Figure 3.9: Comparison of the Efficiencies of Different SGD Optimizers

3.7 CNN Architecture for Malaria Classification

Based on the above discussions, two CNN models named Malaria Net are designed

for the malaria image classification task. The first model (Figure 3.10, Left) has 12

layers based on the ImageNet classifier (Figure 3.6, Right) for the CIFAR-10 data

set(https://www.cs.toronto.edu/ kriz/cifar.html) of MatConvNet toolbox for MATLAB

[77].

As illustrated in Figure 3.10, the models follow the block design pattern, where one

convolutional layer, one pooling layer (maximum pooling or average pooling), and one

activation layer (ReLU or Sigmoid) are stacked as a single learning block. The whole

model is formed by three learning blocks, followed by one fully connected layer, and

then following by one Softmax layer to render the probabilities of each category for

classification.

The second model is following the design pattern of AlexNet proposed by Alex Krizhevsky

in 2012 [61], where the network structure also follows the block design. As shown in

27

Figure 3.10: CIFAR-like CNN architecture

Figure 3.11 on the left, the 18-layer CNN Malaria Net uses a sandwich design. A single

learning block starts with a convolutional layer and ends with a pooling layer. Inside

each block, a convolutional layer is followed by a ReLU layer to enhance learning. The

model is finalized by three fully connected layers to scale the output to the due input

for the Softmax layer to render the probability for each category. The difference of the

Malaria Net and the original AlexNet (see Figure 3.11, on the right) is that we replace

the normalization layers with ReLU or Sigmoid layers because they can improve learning

more efficiently [64, 65].

28

Figure 3.11: AlexNet-like CNN architecture

29

Chapter 4

Model Evaluation

4.1 Data Source

The data set in this study is from National Library of Medicine (NLM), NIH, Bethesda,

USA sponsored by the 2015 HHS Ventures Fund project. The images are acquired from

the archived blood smear images acquired from Chittagong Medical College Hospital,

Bangladesh. The visual region of the erythrocytes is segmented from the original images

as raw input data. (See Figure 4.1).

Figure 4.1: Raw Malaria Images

The training and test set of this study come from a cell image balanced data set composed

of 27,578 erythrocyte images which the ratio of infected cells and uninfected cells is 1:1.

Since the resolution of the images is not equal, we chose the median of width and height

30

of the images as the input resolution. All image are resized to 44× 44, 3 channel for the

training and classification process. In addition, we rotate the images clockwise 4 times

to generate a secondary data set with 110,312 images to increase the amount of data

and to verify whether larger data set can enhance the CNN classifier performance.

4.2 Experimental Environment

The CNN training and cross-validation is performed on a Desktop computer with NVIDIA

GeForce GTX 750 Ti GPU (with 2 GB RAM). The software environment is MATLAB

R2016a with Neural Network Toolbox, Parallel Computing Toolbox, Statistics and Ma-

chine Learning Toolbox and the MatConvNet community Toolbox [77].

4.3 Data Preprocessing

All image data are read by MATLAB and converted to a 4-dimension data object. The

images are resized to the resolution 44 × 44, 3 channel and then concatenated in the

forth dimension. Before the data passed to the CNN model, two steps of preprocessing

are applied. First, we perform a normalization step to improve local brightness and

contrast. After normalizing the image matrix, the entire dataset is whitened by the

eigenvalue decomposition (EVD) operation of the covariance matrix, where x in the

original input matrix and x̃ is the transformed whitened matrix. Since the components

of the input and output are uncorrelated and their variances equal unity, the covariance

matrix of x̃ is equal to the identity matrix.

E
{
x̃ · x̃T

}
= I (4.1)

The covariance matrix is E
{
x̃ · x̃T

}
= EDET where E is the orthogonal matrix of eigen-

vectors of E
{
x · xT

}
andD is the diagonal matrix of its eigenvalues, D = diag(d1, . . . , dn)

[77, 78].

In our experiment, the data preprocessing is separated into three steps.

31

First, the raw images are linked to an ImageDatastore object. The ImageDatastore

class is a subclass of the Datastore Class of MATLAB [79]. A Datastore object is a data

repository for the collection of big data which are too large to store in the RAM of the

machine. By a Datastore object, we can read and process a set of files as a single entity.

As a subclass, an ImageDatastore object is a data repository for image manipulation. It

provides pointers that respectively point to each image file in the designated directory

[80]. By using an ImageDatastore object, we can process a collection of image files that

cannot fit the memory with acceptable efficiency. The ImageDatastore also provides an

abstract method called ’ReadFcn’. It can be used as a function handle and implemented

by a user-defined concrete function. In this study, the raw images are resized to the

median width and median height of the whole image dataset, i.e. 44pixels× 44 pixels,

by the bicubic interpolation method, where the output pixel value is a weighted average

of pixels in the nearest 4-by-4 neighborhood [81]. The following MATLAB code is the

implementation of this step.

1

2 %% define the readAndPreprocessImage function read and resize the raw

image files

3

4 function Iout = readAndPreprocessImage(filename)

5

6 I = imread(filename);

7

8 if ismatrix(I)

9 I = cat(3,I,I,I);

10 end

11

12 % Resize the image as required for the CNN.

13 Iout = imresize(I, [44 44]);

14

15 end

16

17

18 %% Create the imageDatastore image data object

19 % path - the root folder of the images , the name of the classes

20 % should be the next level of the path

21 % group - the cell array containing the names of the classes

22 rootFolder = path;

23

32

24 % define the two -level nominal levels

25 categories = group;

26

27 % create a imageDatastore Object to manage a collection of image files

28 imds = imageDatastore(fullfile(rootFolder , categories), ’LabelSource ’,

’foldernames ’);

29

30 % define the specify the ’ReadFcn ’ parameter of the object

31 % by the ReadFcn , all read -in image are resized to 44*44*3

32 imds.ReadFcn = @(filename)readAndPreprocessImage(filename , 44, 44);

33

34 % Load the image raw data to a 4-dimension matrix

35 all_images = readall(imds)

The Second step is to propare the imdb image data object in the format of the ImageNet

image database [82].

The third step is to perform contrast normalizing of the image matrix (i.e. imdb) and

to whiten the pixels by computing the diagonal eigenvalue of the image matrix. The

MATLAB code for this step is presented below.

1

2 % img_matrix is the 4-dimension image pixel matrix to store

3 % resized input images from the newImgArray

4 img_matrix = newImgArray;

5 labels = newLabels;

6 setCell = newSetCell;

7 clear newImgArray;

8

9 % building imdb

10 imdb = struct ();

11

12 %% Constrast Normalization

13 z = reshape(img_matrix ,[],size(img_matrix ,4)) ;

14 z = bsxfun(@minus , z, mean(z,1)) ;

15 n = std(z,0,1) ;

16 z = bsxfun(@times , z, mean(n) ./ max(n, 40)) ;

17 img_matrix = reshape(z, 44, 44, 3, []) ;

18

19 %% whiten data

33

20 z = reshape(img_matrix ,[],size(img_matrix ,4)) ;

21 W = z*z’/size(img_matrix ,4) ;

22 [V,D] = eig(W) ;

23 the scale is selected to approximately preserve the norm of W

24 d2 = diag(D) ;

25 en = sqrt(mean(d2)) ;

26 z = V*diag(en./max(sqrt(d2), 10))*V’*z ;

27 img_matrix = reshape(z, 44, 44, 3, []) ;

28

29 % IMPORTANT: the image matrix must be single

30 img_matrix = single(img_matrix);

4.4 CNN Model Training

In order to train and evaluate the above CNN model, we implement a ten-fold cross-

validation for the whole data set, where 90% of the images are used for training, and

10% are used for the test. In model training, 10% of the data are separated from the

training set for back-propagation validation and the rest 90% are used for training. The

evaluation procedure of the ten-fold cross validation is shown in Figure 4.2.

Figure 4.2: Ten-fold Cross Validation Flowchart

For comparison, we apply a pre-trained AlexNet which is trained by the CIFAR-100

data set for feature extraction and train the extracted features through the pre-trained

34

model with a conventional support vector machine (SVM) classifier. Furthermore, it is

believed that a larger data set can improve the CNN classifier performance. The images

in the data set are rotated 90 degrees clockwise for four times thus a larger data set with

110,312 images are formed. The two data sets are used to trained the above two CNN

CNN model and the transfer learning model respectively. The results of the ten-fold

cross-validations will be compared in the end. The training procedure is illustrated by

the flowchart below. (See Figure 4.3)

Figure 4.3: Model Training Evaluation Procedure

35

4.5 Performance Evaluation

The performance of the new CNN models is evaluated by the averages of accuracy,

sensitivity, specificity, precision F1 score and Matthews correlation coefficient (MCC)

computed from each iteration of the ten-fold cross-validation. The parameters are calcu-

lated based on the confusion matrices of the classifying. The cell true negative contains

the uninfected erythrocyte images that are correctly classified as negative images; the

cell false negative contains the infected erythrocyte images that are wrongly classified as

negative images; the cell false positive contains the uninfected erythrocyte images that

are wrongly classified as positive images; and the cell true positive contains the infected

erythrocyte images that are correctly classified as positive images.(See Figure 4.4)

Figure 4.4: Confusion Matrix

36

Accuracy (ACC) is the degree of closeness of measurements of a quantity to that quan-

tity’s true value, which is defined as ACC =
∑
TN+

∑
TP∑

TN+
∑
TP+

∑
FN+

∑
FP . Sensitivity (also

called the true positive rate, TPR, or the recall) is used to measure the proportion of

positives that are correctly classified, which is defined as TPR =
∑
TP∑

TP+
∑
FN . Speci-

ficity (or true negative rate, TNR) is the proportion of the correctly classified negative

results, which is defined as TNR =
∑
TN∑

FP+
∑
TN . Precision (or positive predictive value,

PPV) is the the proportion of the correctly classified positive result, which is defined as

PPV =
∑
TP∑

TP+
∑
FP . F1 score is the harmonic mean of precision and sensitivity, which is

defined as F1 = 2
∑
TP

2
∑
TP+

∑
FP+

∑
FN . In this study, F1 score reflects how the infected ery-

throcytes are correctly classified. Matthews correlation coefficient (MCC) is a balanced

measure for binary classifications when the two categories are unbalanced (i.e. in differ-

ent size). It is defined asMCC =
∑
TP ·

∑
TN−

∑
FP ·

∑
FN√

(
∑
TP+

∑
FP)(

∑
TP+

∑
FN)(

∑
TN+

∑
FP)(

∑
TN+

∑
FN)

,

where −1 ≤MCC ≤ 1. When MCC approaches to 1, it represents a perfect prediction;

when MCC = 0, it implies the prediction is no better than random guessing; when

MCC approaches to -1, it indicates the great disagreement between the prediction and

the true result.

37

Chapter 5

Results

5.1 Training Procedure

In the training experiments, the CNN-based Malaria Net models are respectively trained

by the raw image data set and by the secondary rotated data set with 50 epochs. Figure

5.1 illustrates the training curve of the 18-layer Malaria Net model by the large image

dataset with 110.3 thousand images. Figure 5.2 illustrates the training curve of the

12-layer Malaria Net model by the small image dataset with 27.5 thousand images. By

comparing the training procedure of the complex CNN model (18 layers) with the large

dataset to the relative simple CNN model (12 layers) with the small dataset, we can

easily conclude that the more complex 18-layer Malaria Net learns faster and generates

better cognitive capacity than the 12-layer CNN model with higher accuracy in both the

training set and the validation set. This conclusion is further verified by the comparison

of the parameters of the confusion matrix.

5.2 Confusion Matrices of the Malaria Net Evaluation

All the parameters of the CNN model performance can be illustrated illustrated by the

confusion matrix. The vertical axis represents the predicted labels by the trained CNN

model (i.e. the 18-layer Malaria Net). The horizontal axis represents the actual labels

of the images. The label ’1’ represents that the images belong to the infected red blood

cells. The label ’2’ represents that the images belong to the uninfected normal red blood

38

Figure 5.1: Training curve of the 18-layer Malaria Net by the 110.3K (images) dataset

Figure 5.2: Training curve of the 12-layer Malaria Net by the 27.5K (images) dataset

39

cells. When a raw image is classified, if the predicted label is consistent to the actual

label, the prediction is correct. The confusion matrices of the ten-fold cross validation

of the 18-layer Malaria Net is illustrated below.

Figure 5.3: Confusion Matrix of the 1st fold Cross Validation

5.3 The Cross Validations of Different Models

The results of the ten-fold cross validations by the CNN based Malaria Net are re-

spectively presented in Table 5.1 and Table 5.2. It indicates that the highest average

accuracy of the CNN model is 97.93% attained by the 18-layer Malaria Net with the

secondary data set with 110,312 images. When trained by the 27,578 raw image data

set, the 18-layer model can still reach the accuracy at 97.37%. The accuracy of 12-layer

Malaria Net can reach 96.75% at the 50th epoch when trained by with the secondary

data set with rotated images and reach 96.09% when trained by the with the raw data

set with 27.5 K images. Note that all the rest parameters such as sensitivity, specificity,

and precision all reach very high levels with the trained CNN models. (See Table 5.1

and Table 5.2)

40

Figure 5.4: Confusion Matrix of the 2nd fold Cross Validation

Figure 5.5: Confusion Matrix of the 3rd fold Cross Validation

41

Figure 5.6: Confusion Matrix of the 4th fold Cross Validation

Figure 5.7: Confusion Matrix of the 5th fold Cross Validation

42

Figure 5.8: Confusion Matrix of the 6th fold Cross Validation

Figure 5.9: Confusion Matrix of the 7th fold Cross Validation

43

Figure 5.10: Confusion Matrix of the 8th fold Cross Validation

Figure 5.11: Confusion Matrix of the 9th fold Cross Validation

44

Figure 5.12: Confusion Matrix of the 10th fold Cross Validation

Table 5.1: Average Outcome of the 18-layer Malaria Net Cross Validation

27.5K raw data set 110.3K secondary data set

Accuracy 97.37% 97.93%
Sensitivity 96.99% 97.55%
Specificity 97.75% 98.32%
Precision 97.73% 98.30%
F1 score 97.36% 97.92%
MCC 94.75% 95.87%

In comparison, a transfer learning model is also applied to be trained by the same

malaria image data. The transfer learning model consists of a pre-trained CNN model

as the feature extractor, and a linear SVM model as the classifier. Note that the pre-

trained CNN is trained by irrelevant images to tune the model parameters for achieving

cognitive capacity. The experiment shows that the transfer learning model has lower

performance compared to the outcomes by the original Malaria Net models which are

trained by the relevant malaria image data. Table 3 shows that the transfer learning

model achieves the overall accuracy at 91.99% at the 50th epoch of the training by the

27.5 K raw image dataset, and its average accuracy reaches 94.26% at the 50th epoch of

the training by the 110.3 K secondary dataset with the rotated images. (See Table 5.3).

45

Table 5.2: Average Outcome of the 12-layer Malaria Net Cross Validation

27.5K raw data set 110.3K secondary data set

Accuracy 96.09% 96.75%
Sensitivity 95.57% 96.44%
Specificity 96.61% 97.06%
Precision 96.59% 97.05%
F1 score 96.06% 96.75%
MCC 92.22% 93.50%

Table 5.3: Average Outcome of the Cross Validation of Transfer Learning

27.5K raw data set 110.3K secondary data set

Accuracy 91.99% 94.26%
Sensitivity 89.00% 95.04%
Specificity 94.98% 93.49%
Precision 95.12% 93.70%
F1 score 90.24% 94.30%
MCC 85.25% 88.66%

In addition, the F1 score and the Matthews correlation coefficient (MCC) of the trained

CNN based Malaria Net models are both more than 7% larger than the numbers achieved

by the transfer learning model. This reflects that the trained CNN model is a much better

representation of the training images compared to the transfer learning model, which

relies on feature extraction from a pre-trained model trained on an entirely different

image set.

5.4 Stability and Robustness of the CNN Classifiers

The stability and robustness of the CNN classifier can be measured by the accuracy of

the classification in each fold in the cross validation. In our study, both the 18-layer

Malaria Net and the 12-layer Malaria Net show stable performance (from the highest

at 99.28% by the 18-layer CNN to the lowest at 92.85% by the 12-layer CNN) in the

malaria image classification. This result reflects that the convolutional neural network

model are robust classifiers for microscopic image classification. (Figure 5.3 to Figure

5.6).

46

Figure 5.13: Performance Stability of the 18-layer Malaria Net by the 110.3K (images)
Dataset

Figure 5.14: Performance Stability of the 18-layer Malaria Net by the 27.5K (images)
Dataset

47

Figure 5.15: Performance Stability of the 12-layer Malaria Net by the 110.3K (images)
Dataset

Figure 5.16: Performance Stability of the 12-layer Malaria Net by the 27.5K (images)
Dataset

48

Chapter 6

Discussion

6.1 The Global Burden of Malaria

Malaria is a major threat to global health. Most deaths by malaria occur among children

resource-poor regions. The 2015 WHO report estimates that malaria causes 438,000

deaths annually among which 69% are in children. The statistics implies that a child

dies every two minutes from malaria in our world. Therefore it is a leading cause of

childhood neuro-disability [1].

Though the existing drugs such as quinine and artemisinin make malaria a curable

disease, inadequate diagnostics and emerging drug resistance are the major barriers for

successful mortality reduction. Therefore, a fast and reliable diagnostic test is one of

the most promising ways of controlling malaria, together with more timely and effective

treatment, development of new malaria vaccines, and mosquito control.

The current standard diagnosis method for malaria is the light microscopic counting of

malaria infected red blood cells from blood smears. About 170 million blood samples are

to be examined every year for field diagnosis for malaria thus the accuracy of parasite

counts is essential to correct diagnosis, drug-resistance testing, and drug efficacy assess-

ment. This non-standardized method depends heavily on the experience and skill of the

microscopists. However, the training and working environment for microscopists is poor

in malaria epidemic regions. These places are generally in underdeveloped countries and

resource-poor regions which are incapable of providing reliable and rigorous system for

49

malaria diagnosis. This status leads to incorrect diagnosis in the field and the consequen-

tial healthcare decisions: the false negative cases lead to unnecessary use of antibiotics,

a second consultation, lost days of work, and progression to severe syndromes; the false

positive cases cause the misdiagnosis leading to unnecessary use of anti-malaria drugs

and the potential adverse drug reactions (ADRs), and sometimes severe complications.

6.2 Application of Deep Learning to Automated Diagnosis

Deep learning provides a solution to enhance healthcare decision making by implement-

ing the state-of-the-art technology of artificial intelligence (AI) to the healthcare informa-

tion system. The unique strength of deep learning is that it can automatically discover

complex and abstract general patterns from the raw data with minimal pre-processing

through learning via their multiple layers of neurons connected by the non-linear acti-

vation function layers between them.

Taking the advantage of the complex artificial neural networks, a deep learning model

can interpret complicated real-world instances via the complex functions by thorough

transformations through a general-purpose procedure. This feature makes deep learning

a relatively expert-independent machine learning method with extremely high prediction

accuracy. At present, the deep learning technology offers a series of deep neural network

models suitable for various kinds of big data.

6.3 Convolutional Neural Network for Image-based Diag-

nosis

Image-based diagnosis methods such as histopathology diagnosis by biopsy tissue images,

radiology diagnosis by X-ray, CT (computed tomography), MRI (magnetic resonance

imaging), and PETS (positron emission tomography) images are commonly applied for

the medical decision making process in Ontario healthcare providers and research in-

stitutions, which usually play a key role in the most critical cases such as cancer, cere-

brovascular accidents, and severe accidental trauma, etc. These kinds of Image-based

diagnosis are currently heavily relied on the expertise and experience of the specialists

who are easily interfered by external factors such as working environment, pressure, and

50

fatigue etc. Thus, a misdiagnosis is likely to be made and to brings unnecessary loss in

proper treatment and unnecessary healthcare expense.

Automatic diagnosis based on AI is a perfect solution for the above issue. However,

the conventional machine learning models such as SVM, k-nearest neighbor (kNN), and

shallow neural networks with limit hidden neurons / layers are incapable of effectively

representing all latent features of the complexity of image pixels and end up with the

underfeeding issue. On the other hand, a complex ensemble learning approach which

integrates multiple learning models will generate an unsolvable overfeeding issue. There-

fore, the available AI technology based on shallow learning models cannot reach an

acceptable performance for industrial application, especially for image-based diagnosis.

Convolutional neural networks (CNN) is the state-of-the-art deep learning algorithm that

has been successfully applied to many industries such as automatic handwriting recogni-

tion, text recognition, natural image recognition and vision recognition with extremely

accurate predictions. Compared to other conventional machine learning models, the

CNN can be fed with the raw images and automatically discover high and abstract rep-

resentations by non-linear activation function layers. A CNN model with multiple layers

can learn complex functions by thorough transformations through a general-purpose pro-

cedure. Therefore, a CNN learning model is expert-independent and renders extremely

high classification accuracy with relatively simple data preprocessing procedure. In com-

parison, the conventional machine learning models are incapable of processing natural

image data directly. The complexity of raw image lets the feature extraction difficult,

time consuming, and expert knowledge dependent. (See Figure 6.1 and Figure 6.2)

Figure 6.1: Comparison between CNN and Shallow learning models

51

Figure 6.2: Information Transfer in a CNN Model

6.4 CNN Applications to Malaria Diagnosis

The above merits of CNN make the implementation of CNN a promising solution for the

automatic diagnosis of malaria and other epidemic infectious disease whose diagnosis

heavily replies on image observation. In our study, an android App with a machine

learning classifier is being developed with a CNN classifier trained by the massive images

in the image achieve of National Library of Medicine (NLM). A smartphone equipped

with the APP can be connected to a light microscope to perform automatic blood cell

segmentation, classify the infected and uninfected cells and render the counting directly

to the EHR system. This system hopefully provides an efficient and inexpensive solution

for malaria field screening and diagnosis.

Since the training set in the study contains over 27 thousand original blood cell images

which outnumber all the previous studies [4, 5, 7], the newly trained CNN classifier

is expected to have good performance compared to the previous studies. In addition,

the CNN architecture also affects the performance. A reasonably complex design helps

to improve the total classification performance. In the above experiment, the 18-layer

AlexNet-like Malaria Net model has an average classification accuracy at 97.37% in the

27.5K raw image data set and 97.93% in the 110.3K secondary data set with rotated

images. In comparison, the 12-layer CIFAR-like Malaria Net model has an average

classification accuracy at 96.09% in the 27.5K raw image data set and 96.75% in the

110.3K secondary data set with rotated images. The results imply that the complexity

of the CNN model affects the CNN classification performance and a more complex model

with more convolutional layers can render more accurate predictions

52

Deep learning is widely applied in many fields of biomedical research. The major merit

of deep learning is that it can discover intricate structure in large data sets and provide

extremely accurate predictions. The previous work on the application of deep learning to

genomics studies [83] and electronic medical information retrieval [84] also indicates deep

learning is applicable for many health-related issues. Therefore, the models designed in

this study will be hopefully applied to the other deep learning based applications and

computer software to provide efficiency and accurate automatic diagnosis.

In the comparison of an originally trained CNN model and a transfer learning model,

the overall prediction accuracy of the originally trained CNN model is approximately 5%

higher than the transfer learning model. This implies the homogeneity of the training

set directly affects the deep learning accuracy. A CNN classifier trained by homogeneous

images works much better than a transfer learning model which is composed of a pre-

trained model by heterogeneous images and a conventional machine learning model as

the classifier.

Therefore, we confirm from this experiment that CNN provides a good solution for the

image based automatic diagnosis. CNN is the state-of-art model for image classifica-

tion algorithm and is able to provide extremely accurate prediction for relevant image

classification with high efficiency.

6.5 Expectations of Deep Learning Applications

Deep learning is the state-of-the-art machine learning model of artificial intelligence (AI)

to mimic the information processing of human brain. The advantages of deep learning

are its accuracy and reliability after sufficient training, and the overwhelmingly rapid

data processing capacity backed by parallel computing over human brain.

The current restriction of deep learning is that the deep learning models need to be

trained by a large amount of data to develop good cognitive capacity. Small datasets

will be insufficient to train a deep model with its many parameters. As a compromise,

the method of transfer learning is introduced where a pre-trained network model is used

to extract features that a conventional classifier (e.g. support vector machine, or SVM)

can use for fine-tuned classification.

53

Transfer learning can be used as a shortcut to deep learning where the time for training

is saved at the cost of performance, which might be lower but still acceptable. It may be

used as a temporary replacement when large training data is not immediately available

.The merits of transfer learning include less training time, less computation, and sim-

pler data preprocessing. The experiment outcome shows that using a transfer learning

model consisting of a pre-train CNN feature extractor and a linear classifier can still

achieve an acceptable performance that can satisfy most of the industrial requirements.

Therefore, transfer learning provides an effective strategy for deep learning if massive

data is unavailable.

54

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this study, a convolutional neural network model consisting of six convolutional layers

is designed to detect the visual patterns of infected red blood cells (RBC) in thin blood

smear images. The deep learning model is evaluated by a original malaria RBC im-

age dataset containing 27,578 raw images and a secondary image dataset with 110,312

images. The training set in this experiment outnumbers all the previously reported

studies. The model performance is tested by the ten-fold cross validation and compared

to a transfer learning model which is trained by the same two datasets.

The result implies that the amount of images of the training set has a direct influence

on the performance of the trained classifier. A larger data set certainly improves the ac-

curacy and other performances of the CNN classifier. In addition, the CNN architecture

also affects the performance. A reasonably complex design is likely to improve the total

classification performance. However, we cannot conclude the more complex the model,

the higher accuracy we shall expect because it is also affected by other factors such as

the combination of different kinds of layers and the steps for data preprocessing.

The training results of transfer learning indicate that transfer learning can achieve good

performance (over 90% of accuracy) that can fulfill most of the industrial requirements.

The feature extractor of the transfer learning model is a pre-trained AlexNet trained by

the ImageNet from the ImageNet Large Scale Visual Recognition Challenge (ILSVRC),

it has good cognitive capacity by the sufficient training thus it can act as a pattern

55

encoder for a relatively simple classifier. We expect the performance of transfer learning

can be improved when a more appropriate classifier is attached to a fine-tuned CNN

feature extractor.

Based on the above findings, we conclude that we successfully develop an automated

diagnosis solution based on a deep convolutional neural network model named Malaria

Net. The ten-fold cross validation result confirms that the newly developed model

has better performance in detecting the malaria infected blood cells than the machine

learning model proposed by the US National Library of Medicine in 2015 [85]. A initial

result paper on the Malaria Net design has been published on the IEEE international

conference in 2016. [86]

7.2 Future Work

Deep learning is the machine learning framework requires high performance computing.

New technology such as cloud computing and parallel computing provide one of the ideal

solution to implementing deep learning to processing big data. The big data has the

four V features: volume, velocity, variety, and veracity.

Deep learning provides the best trade-off for high performance and accuracy, thus it

renders accurate results after trained by large volume and variety of data. However, to

let a deep learning model acquire high-performance cognitive capacity requires powerful

technology and hardware support such as parallel computing, multi-thread processing

and GPUs.

In this work, it takes about 30 hours to train the 18-layer Malaria Net with the GPU.

However, if using the CPU only, the same training will take a whole week. Thus it

indicates that deep learning require good computing resource. Another solution is the

application of cloud computing platforms such as Amazon AWS, Microsoft Azure, IBM

Watson, and Google Cloud etc. Therefore, a could computing platform with large

memory (including GPU RAM) can significantly improve the training performance of

deep learning, because more data points can be read in for model training and tuning

in large batch size. Larger RAM can save the massive I/O time for data searching and

reading. The complexity of deep learning requires to send the data to the trained model

56

by batch mode. Large memory system can effectively reduce the number of batches and

increase the batch size, which can also improve the training efficiency of deep learning

On the other hand, deep learning is new AI technology. Thus, it still stays in the

academia circle. The development of deep learning products is restricted by giant com-

panies such as Google, IBM, Microsoft, etc. For example, Google publish their deep

learning library TensorFlow, which provides various APIs including C++ and Java

for software development. Microsoft also produces its python-based cognitive toolkit

(CNTK) to implement deep learning on the Windows platform, and provides C library

and APIs of CNTK that can be applied to its Visual Studio development platform. The

governments of many countries believe that AI will be one of the key driving forces

for the next industrial revolution. For example, both the Canadian federal government

and the Ontario provincial government believe that AI supported by deep learning and

other machine learning methods is one of the pillars of the economic growth strategy

of Canada in the short future. The new booming industry is in urgent need of highly

qualified personnel trained by both academia and industry.

Based on the research of Malaria Net which is proved to be perform highly reliable

classification of malaria infected red blood cells. Our future work will focus on applying

the trained malaria net model with high classification accuracy to construct a region-

based convolutional neural network (R-CNN) model for object detection and region of

interest (ROI) segmentation. [87] The R-CNN model can automatically detect, classify,

and count the ROIs in the raw images with multiple interested visual features. (See

Figure7.1) By counting the total ROIs in a certain amount of image sample and com-

bined with other state-of-the-art knowledge representation technology [88, 89], this new

technology will provide a good solution for automatic medical diagnosis and other visual

information management and retrieval applications.

Deep learning for visual pattern recognition has a massive demand from both the com-

mercial market and academic communities. For example, face recognition is widely used

in government agencies (e.g. military, intelligence, border costumes, etc.) and com-

mercial organizations. Object recognition is commonly applied in image retrieval (e.g.

Google image) and automations (e.g. automatic driving). In addition, the available

pre-trained models are initially trained by common images such as animals, human, and

common objects (e.g. cars). These heterogeneous models are obviously unsuitable to be

57

Figure 7.1: A Fast R-CNN model

apply for medical and health proposes. As the response to the above demands, we will

initially train a series of CNN models / classifiers for health-related problems, especially

for histology and pathology diagnosis and the relevant health decision making. This

work will provide strong support for the implementation of deep learning and artificial

intelligence to medical informatics and the relevant AI research.

From the year 2016, a group of scientists led by François Chollet from Google develop

the Python-based Keras library which acts as the universal interface running on the

top of many deep learning libraries including MxNet in R, Deeplearning4J in Java, and

Python libraries including Tensorflow by Google, CNTK by Microsoft, and Theano by

the University of Montreal. [90] The Keras library provides a bridge to integrate the

implementation of deep learning on different platforms with the same coding syntactic

style in Python. Since 2017, many institutions and individual developers keep publishing

58

new libraries in different programming languages that support to transfer the trained

deep learning model with Keras to different development environments including Java

and C. In addition, Google publishes their Android library based on Java to implement

deep learning in the Android based smart phones. For example, to transfer the deep

learning technology to the most popular mobile platform, we can apply the Xamarin

technology with the C-based cross-platform development environment to simultaneously

develop mobile applications on the Android, iOS, and Windows phone platform. All the

above software provides the necessary technical to implement deep learning in the short

future.

59

Bibliography

[1] WHO. World malaria report 2015, 2015. URL http://www.who.int/malaria/publications/

world-malaria-report-2015/en/.

[2] Sonja Mali, S. Patrick Kachur, and Paul M. Arguin. Malaria surveillance—united states, 2010.

MMWR Surveillance Summary, 61(2):1–17, 2012.

[3] Michael L. Wilson. Malaria rapid diagnostic tests. Clinical Infectious Diseases: an official publica-

tion of the Infectious Diseases Society of America, 54(11):1637–41, 2012.

[4] Fuyuki Tokumasu, Rick M. Fairhurst, Graciela R. Ostera, Nathaniel J. Brittain, Jeeseong Hwang,

Thomas E Wellems, and James A. Dvorak. Band 3 modifications in plasmodium falciparum-infected

aa and cc erythrocytes assayed by autocorrelation analysis using quantum dots. Journal of Cell

Science, 118(5):1091–1098, 2005.

[5] Selena WS Sio, Weiling Sun, Saravana Kumar, Bin Wong, Zeng, Tan Soon, Shan, Ong Sim, Heng,

Haruhisa Kikuchi, Yoshiteru Oshima, and Kevin SW Tan. Malariacount: an image analysis-based

program for the accurate determination of parasitemia. Journal of Microbiological Methods, 68(1):

11–18, 2007.

[6] Matthias Elter, Erik Haßlmeyer, and Thorsten Zerfaß. Detection of malaria parasites in thick blood

films. In Proceedings of Annual International Conference of the IEEE Engineering in Medicine and

Biology Society, pages 5140–5144. IEEE, 2011.

[7] D.K. Das, A.K. Maiti, and C. Chakraborty. Automated system for characterization and classifi-

cation of malaria-infected stages using light microscopic images of thin blood smears. Journal of

Microscopy, 257(3):238–252, 2015.

[8] David H. Hubel and Torsten N. Wiesel. Receptive fields of single neurones in the cat’s striate

cortex. The Journal of physiology, 148(3):574–591, 1959.

[9] Itamar Arel, Derek C. Rose, and Thomas P. Karnowski. Deep machine learning-a new frontier in

artificial intelligence research. IEEE Computational Intelligence Magazine, 5(4):13–18, 2010.

[10] Daniel Kersten, Alice J. O’toole, Margaret E. Sereno, David C. Knill, and James A. Anderson.

Associative learning of scene parameters from images. Applied Optics, 26(23):4999–5006, 1987.

60

http://www.who.int/malaria/publications/world-malaria-report-2015/en/
http://www.who.int/malaria/publications/world-malaria-report-2015/en/

[11] David Marr. Visual information processing: the structure and creation of visual representations.

Philosophical Transactions of Royal Society of London. Series B, Biological Sciences, 290(1038):

199–218, 1980.

[12] CJ Taylor, TF Cootes, A Lanitis, G Edwards, P Smyth, and AC Kotcheff. Model-based interpreta-

tion of complex and variable images. Philosophical Transactions of Royal Society of London. Series

B, Biological Sciences, 352(1358):1267–1274, 1997.

[13] Sholom M. Weiss, Kulikowski Casimir A., Saul Amarel, and Aran Safir. A model-based method for

computer-aided medical decision-making. Artificial Intelligence, 11(1-2):145–172, 1978.

[14] Darren Flynn, Daniel J. Nesbitt, Gary A. Ford, Peter McMeekin, Helen Rodgers, Christopher

Price, Christian Kray, and Richard G. Thomson. Development of a computerised decision aid for

thrombolysis in acute stroke care. BMC Medical Informatics and Decision Making, 15(127), 2015.

[15] Hanaa F. Elkhenini, Kourtney J. Davis, Norman D. Stein, John P. New, Mark R. Delderfield, Martin

Gibson, Jorgen Vestbo, Ashley Woodcock, and Diar Bakerly, Nawar. Using an electronic medical

record (emr) to conduct clinical trials: Salford lung study feasibility. BMC Medical Informatics and

Decision Making, 15(8), 2015.

[16] M. Nemoto, Y. Masutani, Y. Nomura, S. Hanaoka, S. Miki, T. Yoshikawa, N. Hayashi, and

K. Ootomo. Machine learning for computer-aided diagnosis. Japanese Journal of Medical Physics:

an Official Journal of Japan Society of Medical Physics, 36(1):29–34, 2016.

[17] Marleen de Bruijne. Machine learning approaches in medical image analysis: From detection to

diagnosis. Medical Image Analysis, 33:94–97, 2016.

[18] Shijun Wang and Ronald M. Summers. Machine learning and radiology. Medical Image Analysis,

16(5):933–951, 2012.

[19] Bigong Wang and Li Liang. Recent development of dual-dictionary learning approach in medical

image analysis and reconstruction. Computational and Mathematical Methods in Medicine, 2015

(152693), 2015.

[20] Ilia Nouretdinov, Sergi G. Costafreda, Gammerman Alexander, Alexey Chervonenkis, Vladimir

Vovk, Vladimir Vapnik, and HY Fu, Cynthia. Machine learning classification with confidence:

application of transductive conformal predictors to mri-based diagnostic and prognostic markers in

depression. Neuroimage, 56(2):809–813, 2011.

[21] Jie-Zhi Cheng, Dong Ni, Yi-Hong Chou, Jing Qin, Chang Yeun-Chung Tiu, Chui-Mei, Chiun-Sheng

Huang, Dinggang Shen, and Chung-Ming Chen. Computer-aided diagnosis with deep learning ar-

chitecture: Applications to breast lesions in us images and pulmonary nodules in ct scans. Scientific

Reports, 6(24454), 2016.

[22] Metin N. Gurcan, Laura E. Boucheron, Ali Can, Anant Madabhushi, Nasir M. Rajpoot, and Bulent

Yener. Histopathological image analysis: a review. IEEE reviews in biomedical engineering, 2:147–

171, 2009.

61

[23] Birgit Lessmann, Tim W. Nattkemper, Volkmar H. Hans, and Andreas Degenhard. A method for

linking computed image features to histological semantics in neuropathology. Journal of Biomedical

Informatics, 40(6):631–641, 2007.

[24] Scott Vanderbeck, Joseph Bockhorst, Richard Komorowski, David E. Kleiner, and Samer Gawrieh.

Automatic classification of white regions in liver biopsies by supervised machine learning. Human

Pathology, 45(4):785–792, 2014.

[25] Magnus Svensson, Carl, Solveigh Krusekopf, Jörg Lücke, and Marc Thilo, Figge. Automated de-

tection of circulating tumor cells with naive bayesian classifiers. Cytometry. Part A: the Journal of

the International Socieity for Analytical Cytology, 85(6):501–511, 2014.

[26] B. Gopinath and N. Shanthi. Development of an automated medical diagnosis system for classifying

thyroid tumor cells using multiple classifier fusion. Technology Cencer Research Treatment, 14(5):

653–662, 2015.

[27] Arkadiusz Gertych, Nathan Ing, Zhaoxuan Ma, Thomas J. Fuchs, Sadri Salman, Sambit Mohanty,

Sanica Bhele, Adriana Velásquez-Vacca, Mahul B. Amin, and Beatrice S. Knudsen. Machine learn-

ing approaches to analyze histological images of tissues from radical prostatectomies. Computerized

Medical Imaging and Graphics: the Official Journal of the Computerized Medical Imaging Society,

46:197–208, 2015.

[28] Amarnath Gupta and Ramesh Jain. Visual information retrieval. Communications of the ACM, 40

(5):70–79, 1997.

[29] Zheng Ye and Jimmy Xiangji Huang. A learning to rank approach for quality-aware pseudo-

relevance feedback. Journal of the Association for Information Science and Technology, 67(4):

942–959, 2016.

[30] Xing Tan, Jimmy Xiangji Huang, and Aijun An. Ranking documents through stochastic sampling

on bayesian network-based models: A pilot study. In Proceedings of the 39th International ACM

SIGIR conference on Research and Development in Information Retrieval, pages 961–964. ACM,

2016.

[31] Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and

beyond. Foundations and Trends R© in Information Retrieval, 3(4):333–389, 2009.

[32] Hajer Ayadi, Mouna Torjmen Khemakhem, Jimmy Xiangji Huang, Mariam Daoud, and Maher Ben

Jemaa. Learning to re-rank medical images using a bayesian network-based thesaurus. In European

Conference on Information Retrieval, pages 160–172. Springer, 2017.

[33] Myron Flickner, Harpreet Sawhney, Wayne Niblack, Jonathan Ashley, Qian Huang, Byron Dom,

Monika Gorkani, Jim Hafner, Denis Lee, Dragutin Petkovic, et al. Query by image and video

content: The qbic system. Computer, 28(9):23–32, 1995.

[34] Jeffrey R Bach, Charles Fuller, Amarnath Gupta, Arun Hampapur, Bradley Horowitz, Rich

Humphrey, Ramesh C Jain, and Chiao-Fe Shu. Virage image search engine: an open framework

62

for image management. In Electronic Imaging: Science & Technology, pages 76–87. International

Society for Optics and Photonics, 1996.

[35] Henning Müller, Nicolas Michoux, David Bandon, and Antoine Geissbuhler. A review of content-

based image retrieval systems in medical applications—clinical benefits and future directions. In-

ternational Journal of Medical Informatics, 73(1):1–23, 2004.

[36] Yansong Feng and Mirella Lapata. Automatic caption generation for news images. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 35(4):797–812, 2013.

[37] C Kulikowski, E Ammenwerth, A Bohne, K Ganser, R Haux, P Knaup, C Maier, A Michel,

R Singer, and AC Wolff. Medical imaging informatics and medical informatics: Opportunities and

constraints. Methods of Information in Medicine-Methodik der Information in der Medizin, 41(2):

183, 2002.

[38] Arnold WM Smeulders, Marcel Worring, Simone Santini, Amarnath Gupta, and Ramesh Jain.

Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 22(12):1349–1380, 2000.

[39] Craig Morioka, Frank Meng, Ricky Taira, James Sayre, Peter Zimmerman, David Ishimitsu, Jimmy

Huang, Luyao Shen, and Suzie El-Saden. Automatic classification of ultrasound screening exami-

nations of the abdominal aorta. Journal of digital imaging, 29(6):742–748, 2016.

[40] Jun Miao, Jimmy Xiangji Huang, and Jiashu Zhao. Topprf: A probabilistic framework for inte-

grating topic space into pseudo relevance feedback. ACM Transactions on Information Systems

(TOIS), 34(4):22, 2016.

[41] Korsuk Sirinukunwattana, Shan E Ahmed Raza, Yee-Wah Tsang, David RJ Snead, Ian A Cree,

and Nasir M Rajpoot. Locality sensitive deep learning for detection and classification of nuclei in

routine colon cancer histology images. IEEE Transactions on Medical Imaging, 35(5):1196–1206,

2016.

[42] Byoung Chul Ko, JiHyeon Lee, and Jae-Yeal Nam. Automatic medical image annotation and

keyword-based image retrieval using relevance feedback. Journal of Digital Imaging, 25(4):454–465,

2012.

[43] Hajer Ayadi, Mouna Torjmen, Mariam Daoud, Maher Ben Jemaa, and Jimmy Xiangji Huang.

Correlating medical-dependent query features with image retrieval models using association rules. In

Proceedings of the 22nd ACM international conference on Information & Knowledge Management,

pages 299–308. ACM, 2013.

[44] Atanaz Babashzadeh, Mariam Daoud, and Jimmy Huang. Using semantic-based association rule

mining for improving clinical text retrieval. In International Conference on Health Information

Science, pages 186–197. Springer, 2013.

[45] Xiangdong An and Jimmy Xiangji Huang. Boosting novelty for biomedical information retrieval

through probabilistic latent semantic analysis. In Proceedings of the 36th international ACM SIGIR

conference on research and development in information retrieval, pages 829–832. ACM, 2013.

63

[46] Jiashu Zhao, Jimmy Xiangji Huang, Xiaohua Hu, Joseph Kurian, and William Melek. A bayesian-

based prediction model for personalized medical health care. In Bioinformatics and Biomedicine

(BIBM), 2012 IEEE International Conference on, pages 1–4. IEEE, 2012.

[47] Ashnil Kumar, Shane Dyer, Jinman Kim, Changyang Li, Philip HW Leong, Michael Fulham, and

Dagan Feng. Adapting content-based image retrieval techniques for the semantic annotation of

medical images. Computerized Medical Imaging and Graphics, 49:37–45, 2016.

[48] Ruchi Verma, Ajit Tiwari, Sukhwinder Kaur, Grish C. Varshney, and PS Raghava, Gajendra.

Identification of proteins secreted by malaria parasite into erythrocyte using svm and pssm profiles.

BMC Bioinformatics, 16(9):201, 2008.

[49] Rui Kuang, Jianying Gu, Hong Cai, and Yufeng Wang. Improved prediction of malaria degradomes

by supervised learning with svm and profile kernel. Genetica, 136(1):189–209, 2009.

[50] Kathryn J. Wicht, Jill M. Combrinck, Peter J. Smith, and Timothy J. Egan. Bayesian models

trained with hts data for predicting β-haematin inhibition and in vitro antimalarial activity. Bioor-

ganic Medicinal Chemistry, 23(16):5210–5217, 2015.

[51] Weiwei Yin, Swetha Garimalla, Alberto Moreno, Mary R. Galinski, and Mark P. Styczynski. A

tree-like bayesian structure learning algorithm for small-sample datasets from complex biological

model systems. BMC Systems Biology, 9(49), 2015.

[52] Luciana Scotti, Hamilton Ishiki, Francisco JB Mendonca, Junior, Marcelo S da Silva, and Mar-

cus T Scotti. Artificial neural network methods applied to drug discovery for neglected diseases.

Combinatorial chemistry high throughput screening, 18(8):819–829, 2015.

[53] Kumar Das, Dev, Madhumala Ghosh, Mallika Pal, K. Maiti, Asok, and Chandan Chakraborty.

Machine learning approach for automated screening of malaria parasite using light microscopic

images. Micron, 45:97–106, 2013.

[54] Kate Zinszer, Aman D. Verma, Katia Charland, Timothy F. Brewer, John S. Brownstein, Zhuoyu

Sun, and David L. Buckeridge. A scoping review of malaria forecasting: past work and future

directions. BMJ Open, 2:e001992, 2012.

[55] Lok-Won Kim. Deepx: Deep learning accelerator for restricted boltzmann machine artificial neural

networks. IEEE transactions on neural networks and learning systems, 2017.

[56] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,

2015.

[57] Alex Waibel, Toshiyuki Hanazawa, Geoffrey Hinton, Kiyohiro Shikano, and Kevin J. Lang. Phoneme

recognition using time-delay neural networks. IEEE Transactions on Acoustics, Speech, and Signal

Processing, 37:328–339, 1989.

[58] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied

to document recognition. In Proceedings of the IEEE, pages 2278–2324. IEEE, 1998.

64

[59] Patrice Y. Simard, David Steinkraus, and John C. Platt. Best practices for convolutional neural

networks applied to visual document analysis. In ICDAR, 3:958–962, 2003.

[60] Régis Vaillant, Christophe Monrocq, and Yann LeCun. Original approach for the localisation of

objects in images. In IEEE Proceedings of Vision, Image and Signal Processing, pages 245–250.

IEEE, 1994.

[61] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep con-

volutional neural networks. Advances in neural information processing systems, pages 1097–1105,

2012.

[62] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In

Proceedings of European conference on computer vision, pages 818–833. Springer International Pub-

lishing, 2014.

[63] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Learning local feature descriptors using

convex optimisation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(8):

1573–1585, 2014.

[64] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-

mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9. IEEE,

2015.

[65] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

recognition. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,

pages 770–778. IEEE, 2016.

[66] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time series.

The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[67] Gang Zhang, Jian Yin, Ziping Li, Xiangyang Su, Guozheng Li, and Honglai Zhang. Automated

skin biopsy histopathological image annotation using multi-instance representation and learning.

BMC medical genomics, 6(3):S10, 2013.

[68] Mathworks. Deep learning, 2016. URL http://www.mathworks.com/discovery/deep-learning.

html.

[69] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of

COMPSTAT’2010, pages 177–186. Springer, 2010.

[70] Jiquan Ngiam, Adam Coates, Ahbik Lahiri, Bobby Prochnow, Quoc V Le, and Andrew Y Ng. On

optimization methods for deep learning. In Proceedings of the 28th International Conference on

Machine Learning (ICML-11), pages 265–272, 2011.

[71] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural networks, 12

(1):145–151, 1999.

65

http://www.mathworks.com/discovery/deep-learning.html
http://www.mathworks.com/discovery/deep-learning.html

[72] Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of conver-

gence o (1/k2). In Doklady an SSSR, volume 269, pages 543–547, 1983.

[73] Maya R Gupta, Samy Bengio, and Jason Weston. Training highly multiclass classifiers. Journal of

Machine Learning Research, 15(1):1461–1492, 2014.

[74] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,

2012.

[75] T Tieleman and G Hinton. Rmsprop: Divide the gradient by a running average of its recent

magnitude. coursera: Neural networks for machine learning. Technical report, Technical report,

2012. 31.

[76] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

[77] A. Vedaldi, K. Lenc, and A. Gupta. Matconvnet convolutional neural networks for matlab, 2016.

URL http://www.mathworks.com/discovery/deep-learning.html.

[78] Kevin Jarrett, Koray Kavukcuoglu, and Yann LeCun. What is the best multi-stage architecture

for object recognition? In Proceedings of International Conference on Computer Vision, pages

2146–2153, 2009.

[79] MathWorks. Datastore, 2017. URL https://www.mathworks.com/help/matlab/datastore.html.

[80] MathWorks. Imagedatastore, 2017. URL https://www.mathworks.com/help/matlab/ref/

imagedatastore-object.html.

[81] MathWorks. Imresize, 2017. URL https://www.mathworks.com/help/images/ref/imresize.

html.

[82] Stanford Vision Lab. About imagenet, 2016. URL http://image-net.org/about-overview.

[83] Zhaohui Liang, Xiangji Huang, Jimmy, Xing Zeng, and Gang Zhang. Dl-adr: a novel deep learning

model for classifying genomic variants into adverse drug reactions. BMC Medical Genomics, 9(2):

48, 2016.

[84] Zhaohui Liang, Gang Zhang, Xiangji Huang, Jimmy, and Vivian Hu, Qmming. Deep learning for

healthcare decision making with emrs. In Proceedings of International Conference on Bioinformatics

and Biomedicine (BIBM), pages 556–559. IEEE, 2014.

[85] Mahdieh Poostchi, Ilker Ersoy, Emile Gordon, Abhisheka Bansal, Kannappan Palaniappan, Susan

Pierce, Sameer Antani, George Thoma, and Stefan Jaeger. Image analysis of blood slides for

automatic malaria diagnosis. In Conference Proceedings of 2015 Healthcare Innovations and Point-

of-Care Technologies Conference (HICPT 15).

66

http://www.mathworks.com/discovery/deep-learning.html
https://www.mathworks.com/help/matlab/datastore.html
https://www.mathworks.com/help/matlab/ref/imagedatastore-object.html
https://www.mathworks.com/help/matlab/ref/imagedatastore-object.html
https://www.mathworks.com/help/images/ref/imresize.html
https://www.mathworks.com/help/images/ref/imresize.html
http://image-net.org/about-overview

[86] Zhaohui Liang, Andrew Powell, Ilker Ersoy, Mahdieh Poostchi, Kamolrat Silamut, Kannappan

Palaniappan, Peng Guo, Md Amir Hossain, Antani Sameer, Richard James Maude, et al. Cnn-

based image analysis for malaria diagnosis. In Bioinformatics and Biomedicine (BIBM), 2016 IEEE

International Conference on, pages 493–496. IEEE, 2016.

[87] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object

detection with region proposal networks. In Advances in neural information processing systems,

pages 91–99, 2015.

[88] Guangyou Zhou and Jimmy Xiangji Huang. Modeling and learning distributed word representation

with metadata for question retrieval. IEEE Transactions on Knowledge and Data Engineering, 29

(6):1226–1239, 2017.

[89] Hajer Ayadi, Mouna Torjmen-Khemakhem, Mariam Daoud, Jimmy Xiangji Huang, and Maher

Ben Jemaa. Mining correlations between medically dependent features and image retrieval models

for query classification. Journal of the Association for Information Science and Technology, 68(5):

1323–1334, 2017.

[90] François Chollet et al. Keras, 2015. URL https://keras.io/.

67

https://keras.io/

Appendix A

Implementation of Deep Learning

in MATLAB

A.1 General Description

The convolutional neural network (CNN) models (i.e. the 12-layer and the 18-layer

Malaria) and the machine learning experiments are implemented by MATLAB 2016a

(License: 40458891). The CNN algorithms is implemented via the MatConvNet Toolbox

and supported by the Computer Vision System Toolbox, Neural Network Toolbox, and

Parallel Computing Toolbox. In this session, the relevant codes are presented in serial

of MATLAB scripts (most are in the form of MATLAB functions).

A.2 Install the MatConvNet Toolbox

In this study, we implement the deep learning experiment on the MATLAB platform.

To install deep learning with MATLAB, we need to install the necessary software by the

following steps:

1. Visit MathWorks via the URL: https://www.mathworks.com/

2. Purchase a MATLAB software package with the Computer Vision System Toolbox,

Neural Network Toolbox, and Parallel Computing Toolbox.

68

3. Visit the MatConvNet community toolbox from the URL:

http://http://www.vlfeat.org/matconvnet/

4. This instruction assumes you use a WINDOWS machine.

5. Download the package from http://www.vlfeat.org/matconvnet/ . It is recom-

mended to download and install the latest version. The current version is 1.0-

beta24.

6. Use the commandline window in MATLAB, create a directory for the MatConvNet

toolbox inside the MATLAB directory. In our case, we create a directory called

’MatConvNet’ inside the MATLAB directory, then unzip the package.

7. Open MATLAB and use the command-line window.

8. Type run < MatConvNet > /matlab/vlsetupnn

9. Run vltestnn to check if the compiling is successful.

10. To test GPU support (assuming the GPU and the CUDA library have been in-

stalled successfully), use the command: vltestnn(′gpu′, true)

A.3 Compiling the MatConvNet Toolbox

1. To compile for CPU support, use the command: vlcompilenn. The use the com-

mand: mex− setup to set up the mex files.

2. To compile for GPU support, use the command:

vlcompilenn(′enableGpu′, true). If you have multiple versions of the CUDA toolkit,

or you want to specify the path to the CUDA toolkit explicitly, then use the com-

mand:

vlcompilenn(′enableGpu′, true,′ cudaRoot′,′ /path/NV IDIA/CUDA− 8.0′)

3. To compile for CUDA and cuDNN library support, use the command:

vlcompilenn(′enableGpu′, true,′ cudaMethod′,′ nvcc′, ...

′cudaRoot′,′ /Developer/NV IDIA/CUDA− 6.5′, ...

′enableCudnn′, true,′ cudnnRoot′,′ local/cudnn− rc2′)

69

Now the MATLAB for deep learning environment is established. The next step is to

create the image data object and set up the deep convolution neural network architec-

ture.

The compiled functions are located in the directory ”/matconvnet−version/matlab/”.

70

Appendix B

Preparation of the Image Data

Object

B.1 Instructions

The Image Data Object is a 4-dimensional matrix created from the imageDatastore

Class. The imageDatastore Class can read image from the designated directories can

assign the names of the directories as data labels for each category. Since an image-

Datastore object only stores the pointers that point to each image inside the collect, it

provides an elastic approach to manage the image files, in which the images only read

into memory when it is needed.

To prepare the image data for deep learning, we need to implement the following data

preprocessing steps:

1. Create an imageDatastore object to read all images from the designated directory,

and save them into a 4-dimensional matrix, where the first dimension is the image

indices, the second dimension is the width, the third dimension is the height, and

the forth dimension is the channel.

2. After the images are converted to the the matrices where the pixels are represented

by single integers, we need to resize the image resolution to 44 × 44, 3 channels.

This step can be performed by the ReadFcn method of the imageDataStore Class,

where a pre-defined function is implemented.

71

3. The read-in image are randomized by the shuffle method of the imageDataStore

Class. Then the image data are separated into ten folds by an iteration.

4. Finally, the image data separated into ten folds are saved into ten .mat files.

5. The raw image data object will be further pre-processed to generate the imdb data

object for training the deep learning model.

B.2 MATLAB Script to Resize Image

1

2 function Iout = readAndPreprocessImage(filename)

3

4 I = imread(filename);

5

6 % Some images may be grayscale. Replicate the image 3 times to

7 % create an RGB image.

8 if ismatrix(I)

9 I = cat(3,I,I,I);

10 end

11

12 % Resize the image as required for the CNN.

13 Iout = imresize(I, [44 44]);

14

15 % Note that the aspect ratio is not preserved. In Caltech 101, the

16 % object of interest is centered in the image and occupies a

17 % majority of the image scene. Therefore , preserving the aspect

18 % ratio is not critical. However , for other data sets , it may prove

19 % beneficial to preserve the aspect ratio of the original image

20 % when resizing.

21 end

B.3 MATLAB Script to Image Transfer and Partition

1

2 function img_load_mat(path , group)

3 % Author: Zhaohui Liang , York University , 2016

4 % use the imageDatastore object to load all the image from the path to a

5 % .mat image array

72

6

7 % path - the root folder of the images , the name of the classes should be

8 % the next level of the path

9 % group - the cell array containing the names of the classes

10 rootFolder = path;

11

12 % define the two -level nominal levels

13 categories = group;

14

15 % create a imageDatastore Object to manage a collection of image files

16 imds = imageDatastore(fullfile(rootFolder , categories), ’LabelSource ’,

’foldernames ’);

17

18 % define the specify the ’ReadFcn ’ parameter of the object

19 % by the ReadFcn , all read -in image are resized to 44*44*3

20 imds.ReadFcn = @(filename)readAndPreprocessImage(filename , 44, 44);

21

22 % adjust to balance the number of images in each class

23 tbl = countEachLabel(imds);

24 minSetCount = min(tbl{: ,2});

25

26 % Use splitEachLabel method to trim the set

27 % the two categories of images are in random locations

28 imds = splitEachLabel(imds , minSetCount , ’randomize ’);

29 imds = shuffle(imds);

30

31 % randomly partition the whole data set by 80/20

32 % trainingSet contains 80% of the whole image set

33 % testSet contains 20% of the whole image set

34 % save the data set to a .mat file

35

36 % alldata_x is a vector for the image raw data

37 % alldata_y is a vector for the image labels

38

39 % Load the image raw data

40 all_images = readall(imds)

41 % Turn the images raw data into vectors and put them in a matrix

42 alldata_x = zeros (3*44*44 , numel(all_images));

43 for i = 1: numel(all_images)

44 alldata_x(:,i) = all_images{i}(:);

45 end

73

46

47 % Load the labels of the images

48 img_number = numel(imds.Files);

49

50 alldata_y = zeros(2, img_number);

51 for i = 1:2

52 for j=1: img_number

53 if imds.Labels(j) == ’Parasitemic ’

54 alldata_y(i,j)=1;

55 else

56 alldata_y(i,j)=0;

57 end

58 end

59 end

60

61 % Save the raw data and labels into a .mat file

62 save(’Cells_alldata.mat’,’alldata_x ’,’alldata_y ’,’-v7.3’);

63

64 % form a 10-fold partition for cross -validation

65 index_x = randperm(size(alldata_x ,1));

66 index_y = randperm(size(alldata_y ,1));

67

68 foldSize_x = floor(size(index_x ,2) / 10);

69 foldSize_y = floor(size(index_y ,2) / 10);

70

71 for k = 1 : 10

72 train_x = [];

73 train_y = [];

74 test_x = [];

75 test_y = [];

76

77 testIndex_x = (k-1)*foldSize_x +1:k*foldSize_x;

78 testIndex_y = (k-1)*foldSize_y +1:k*foldSize_y;

79 test_x = alldata_x(index(1, testIndex_x) ,:);

80 test_y = alldata_y(index(1, testIndex_y) ,:);

81

82 train_x = alldata_x;

83 train_y = alldata_y;

84

85 train_x(index(1, testIndex_x) ,:) = [];

86

74

87 train_y(index(1, testIndex_y) ,:) = [];

88

89 save(strcat(’./data/Cells_fold -’,num2str(k),’.mat’) ,...

90 ’train_x ’,’train_y ’,’test_x ’,’test_y ’,’-v7.3’);

91

92 end

75

Appendix C

Image Data Preprocessing for

Deep Learning

C.1 Instructions

Before the image data matrices are sent to training, we need to perform three steps of

data preprocessing:

1. Randomly partition and label the image into the training set, the validation set,

and the test set.

2. Perform contrast normalization for the image matrices.

3. Perform data whitening to compute the diagonal eigenvalue of the image matrices.

C.2 MATLAB Script to Create the imdb Data Object with

All Data Preprocessing Steps

1 % Date: July 20, 2016

2 % Author: Zhaohui Liang

3 % create an imdb object for ten -fold validation

4

5 %%load image

6 disp(’loading images from disk ...’);

76

7 % total number of all images

8 total_img = 0;

9 % lables for all images

10 labels = [];

11 % labels for each of the 10 fold data set

12 setCell = {};

13 % the image matrix holding all images

14 img_matrix = [];

15 % global index for the whole data set

16 index = 1;

17 disp(’preparing image data ...’);

18

19 for k = 1:10

20 dataset{k} =

21 load(fullfile(’/home/liangz2/MATLAB/matconvnet , ...

22 image_preprocess/raw_data_small_rotated ’, ...

23 strcat(’img_small_rotated -fold -’,num2str(k),’.mat’)));

24 data{k} = dataset{k}. xImg_matrix;

25

26 % the image array in 44*44*3*N

27 % the set of labels in each 1/10 set

28

29 labels_subset = single(dataset{k}. tImages);

30

31 % get the total image number in the current fold

32 num = size(data{k},1);

33 img_matrix=cat(4,img_matrix ,data{k});

34

35 % for i = 1:num

36 % img_matrix (:,:,:,index) = data{k}(i,:,:,:);

37 %% change the image matrix to 44*44*3*N

38 % index = index + 1;

39 % end

40

41 labels = cat(2, labels , labels_subset);

42

43 end

44

45 total_img = size(img_matrix ,4);

46

47 labels = double(labels);

77

48

49 % add the set labels to the data - setCell

50 % train - 1, test - 2, validation - 3

51 %% add labels

52

53 disp(’adding image set labels ... ’);

54

55 for k = 1 : 10

56 subtotal = size(data{k},1);

57 % the total number of the current subset

58 % must be changed when k=10

59 setCell{k} = zeros(1, total_img);

60 % because of the rounding

61 % from fold 1 to fold 8, the training set will be greater than 80%

62 % in fold 9, the validation set will be greater than 10%

63 % in fold 10, the test set will be greater than 10%

64 if k==1

65 % label the test set

66 setCell{k}(1 ,1: subtotal) = 2;

67 % label the validation set

68 setCell{k}(1,(subtotal +1):(subtotal *2)) = 3;

69 % label the training set

70 setCell{k}(1,(subtotal *2+1):total_img)= 1;

71

72 elseif k==2

73 setCell{k}(1,(subtotal +1):(subtotal *2)) = 2;

74 setCell{k}(1,(subtotal *2+1):(subtotal *3)) = 3;

75 setCell{k}(1,(subtotal *3+1):total_img)= 1;

76 setCell{k}(1 ,1: subtotal)= 1;

77

78 elseif k==3

79 setCell{k}(1,(subtotal *2+1):(subtotal *3)) = 2;

80 setCell{k}(1,(subtotal *3+1):(subtotal *4)) = 3;

81 setCell{k}(1,(subtotal *4+1):total_img)= 1;

82 setCell{k}(1 ,1:(subtotal *2))= 1;

83

84 elseif k==4

85 setCell{k}(1,(subtotal *3+1):(subtotal *4)) = 2;

86 setCell{k}(1,(subtotal *4+1):(subtotal *5)) = 3;

87 setCell{k}(1,(subtotal *5+1):total_img)= 1;

88 setCell{k}(1 ,1:(subtotal *3))= 1;

78

89

90 elseif k==5

91 setCell{k}(1,(subtotal *4+1):(subtotal *5)) = 2;

92 setCell{k}(1,(subtotal *5+1):(subtotal *6)) = 3;

93 setCell{k}(1,(subtotal *6+1):total_img)= 1;

94 setCell{k}(1 ,1:(subtotal *4))= 1;

95

96 elseif k==6

97 setCell{k}(1,(subtotal *5+1):(subtotal *6)) = 2;

98 setCell{k}(1,(subtotal *6+1):(subtotal *7)) = 3;

99 setCell{k}(1,(subtotal *7+1):total_img)= 1;

100 setCell{k}(1 ,1:(subtotal *5))= 1;

101

102 elseif k==7

103 setCell{k}(1,(subtotal *6+1):(subtotal *7)) = 2;

104 setCell{k}(1,(subtotal *7+1):(subtotal *8)) = 3;

105 setCell{k}(1,(subtotal *8+1):total_img)= 1;

106 setCell{k}(1 ,1:(subtotal *6))= 1;

107

108 elseif k==8

109 setCell{k}(1,(subtotal *7+1):(subtotal *8)) = 2;

110 setCell{k}(1,(subtotal *8+1):(subtotal *9)) = 3;

111 setCell{k}(1,(subtotal *9+1):total_img)= 1;

112 setCell{k}(1 ,1:(subtotal *7))= 1;

113

114 elseif k==9

115 setCell{k}(1,(subtotal *8+1):(subtotal *9)) = 2;

116 setCell{k}(1,(subtotal *9+1):total_img) = 3;

117 setCell{k}(1 ,1:(subtotal *8))= 1;

118

119 else

120 %very important to prevent logical error

121 subtotal=size(data{k-1},1);

122 %bigger test set

123 setCell{k}(1,(subtotal *9+1):total_img) = 2;

124 setCell{k}(1 ,1: subtotal) = 3;

125 setCell{k}(1,(subtotal +1):(subtotal *9))=1;

126 end

127 end

128

129 %% randomize the image matrix

79

130 disp(’randomizing the image set ...’);

131 imageCount = size(img_matrix ,4);

132 ranNum = randperm(imageCount);

133 newImgArray = [];

134 newLabels = zeros(1, imageCount);

135 newSetCell = [];

136

137 % free RAM

138 clear dataset;

139 clear data;

140

141 for i = 1 : 10

142 newSetCell{i} = zeros(1, imageCount);

143 end

144

145 for i = 1 : imageCount

146 newImgArray (:,:,:,i) = img_matrix (:,:,:,ranNum (1));

147 newLabels(i) = labels(ranNum (1));

148 for j = 1 : 10

149 newSetCell{j}(i)=setCell{j}(ranNum (1));

150 end

151 ranNum (1) =[];

152 end

153

154 img_matrix = newImgArray;

155 labels = newLabels;

156 setCell = newSetCell;

157 clear newImgArray;

158 % building imdb

159 imdb = struct ();

160

161 %% Constrast Normalization

162 z = reshape(img_matrix ,[],size(img_matrix ,4)) ;

163 z = bsxfun(@minus , z, mean(z,1)) ;

164 n = std(z,0,1) ;

165 z = bsxfun(@times , z, mean(n) ./ max(n, 40)) ;

166 img_matrix = reshape(z, 44, 44, 3, []) ;

167

168 %% whiten data

169 z = reshape(img_matrix ,[],size(img_matrix ,4)) ;

170 W = z*z’/size(img_matrix ,4) ;

80

171 [V,D] = eig(W) ;

172 the scale is selected to approximately preserve the norm of W

173 d2 = diag(D) ;

174 en = sqrt(mean(d2)) ;

175 z = V*diag(en./max(sqrt(d2), 10))*V’*z ;

176 img_matrix = reshape(z, 44, 44, 3, []) ;

177

178 % IMPORTANT: the image matrix must be single

179 img_matrix = single(img_matrix);

180 imdb.images.set = setCell;

181 imdb.images.data = img_matrix;

182 imdb.images.labels = labels;

183 imdb.meta.sets = {’train ’, ’test’, ’val’} ;

184 imdb.meta.classes = {’Uninfected ’,’Parasitemic ’}’;

185 save(’imdb -preprocess -rotated.mat’,’-struct ’, ’imdb’,’-v7.3’) ;

81

Appendix D

CNN Model Configuration

D.1 Instructions

To initiate a convolutional neural network (CNN) architecture, we use the MATLAB

structure (struct) to defined a net structure. Depending on the types of the layer, we

need to defined different parameters in the net structure.

1. The parameters for a convolution layer: name, type, weights, dimension and num-

ber of the convolutional kernels, learning rate, stride.

2. The parameters for a pooling layer: name, type, method of pooling, stride.

3. The parameters for a activation (function) layer: name, type.

4. The parameters for a softmax layer: name, type (set to softmaxloss for computing

the loss value).

5. The parameters for a fully connected layer: name, type (the same as a convolu-

tional layer), dimension of convolutional kernel is set to be 1× 1, the stride is set

to 1.

6. call the vlsimplenntidy function to convert the configured structure to a CNN

model: vlsimplenntidy(net).

82

D.2 The 12-layer Malaria Net

1

2 function net = cnn_init_18malarianet(varargin)

3 opts.networkType = ’simplenn ’ ;

4 %opts.networkType = ’dagnn’ ;

5 opts = vl_argparse(opts , varargin) ;

6

7 disp(’Calling 18-layer Malaria Net ...’);

8

9 lr = [.1 2] ;

10

11 % Define network Cells -quick

12 net.layers = {} ;

13

14 % Block 1

15 net.layers{end +1} = struct(’name’, ’conv1’, ...

16 ’type’, ’conv’, ...

17 ’weights ’, {{0.01* randn (5,5,3,...

18 16, ’single ’), zeros(1, 16 ,...

19 ’single ’)}}, ...

20 ’learningRate ’, lr, ...

21 ’stride ’, 1) ;

22 % 40*40*16

23 net.layers{end +1} = struct(’name’, ’poo1_1 ’, ...

24 ’type’, ’pool’, ...

25 ’method ’, ’max’, ...

26 ’pool’, [13 13], ...

27 ’stride ’, 2) ;

28 %(40 -13+1) / 2 = 14 14*14*16

29 net.layers{end +1} = struct(’name’, ’relu1’, ’type’, ’relu’) ;

30

31 % Block 2

32 net.layers{end +1} = struct(’name’, ’conv2’, ...

33 ’type’, ’conv’, ...

34 ’weights ’, {{0.01* randn (5,5,16,32,...

35 ’single ’), zeros(1, 32 ,...

36 ’single ’)}}, ...

37 ’learningRate ’, lr, ...

38 ’stride ’, 1) ;

39 % 10*10*32

83

40 net.layers{end +1} = struct(’name’, ’relu2’, ’type’, ’relu’) ;

41 net.layers{end +1} = struct(’name’, ’poo1_2 ’, ...

42 ’type’, ’pool’, ...

43 ’method ’, ’average ’, ...

44 ’pool’, [5 5], ...

45 ’stride ’, 2) ;

46 %(10 -5+1) / 2 = 3 3*3*32

47

48 % Block 3

49 net.layers{end +1} = struct(’name’, ’relu3’, ’type’, ’relu’) ;

50 net.layers{end +1} = struct(’name’, ’conv3’, ...

51 ’type’, ’conv’, ...

52 ’weights ’, {{0.05* randn (3,3,32,64,...

53 ’single ’), zeros (1,64,’single ’)}} ,...

54 ’learningRate ’, lr, ...

55 ’stride ’, 1) ;

56 % 1*1*64

57 net.layers{end +1} = struct(’name’, ’sig1’,’type’, ’sigmoid ’) ;

58

59 % Block 4

60 net.layers{end +1} = struct(’name’, ’conv4’, ...

61 ’type’, ’conv’, ...

62 ’weights ’, {{0.05* randn (1,1,64,2,...

63 ’single ’), zeros(1,2,’single ’)}} ,...

64 ’learningRate ’, lr, ...

65 ’stride ’, 1) ;

66 % 1*1*64

67

68 % Loss layer

69 net.layers{end +1} = struct(’name’, ’softmax ’, ’type’ ,...

70 ’softmaxloss ’) ;

71

72 % Meta parameters

73 net.meta.inputSize = [44 44 3] ;

74 net.meta.trainOpts.learningRate = [0.05* ones (1,20) 0.03* ones (1,3)

0.02* ones (1,2) 0.01* ones (1,5) 0.008* ones (1,5) 0.004* ones (1,5)

0.002* ones (1,5) 0.001* ones (1,5)] ;

75 % net.meta.trainOpts.learningRate = [0.05* ones (1,25) 0.01* ones (1,10)

0.005* ones (1 ,10) 0.0005* ones (1,5)] ;

76 net.meta.trainOpts.weightDecay = 0.0001 ;

77 net.meta.trainOpts.batchSize = 100 ;

84

78 net.meta.trainOpts.numEpochs = numel(net.meta.trainOpts.learningRate) ;

79

80 % Fill in default values

81 net = vl_simplenn_tidy(net) ;

82

83 % Switch to DagNN if requested

84 switch lower(opts.networkType)

85 case ’simplenn ’

86 % done

87 case ’dagnn ’

88 net = dagnn.DagNN.fromSimpleNN(net , ’canonicalNames ’, true) ;

89 net.addLayer(’error’, dagnn.Loss(’loss’, ’classerror ’), ...

90 {’prediction ’,’label’}, ’error’) ;

91 otherwise

92 assert(false) ;

93 end

D.3 The 18-layer Malaria Net

1

2 function net = cnn_init_18malarianet(varargin)

3 opts.networkType = ’simplenn ’ ;

4 %opts.networkType = ’dagnn’ ;

5 opts = vl_argparse(opts , varargin) ;

6

7 disp(’Calling 18-layer Malaria Net ...’);

8

9 lr = [.1 2] ;

10

11 % Define network Cells -quick

12 net.layers = {} ;

13

14 % Block 1

15 net.layers{end +1} = struct(’name’, ’conv1’, ...

16 ’type’, ’conv’, ...

17 ’weights ’, {{0.01* randn (5,5,3,...

18 32, ’single ’), zeros(1, 32 ,...

19 ’single ’)}}, ...

20 ’learningRate ’, lr, ...

21 ’stride ’, 1) ;

85

22 % 40*40*32

23 net.layers{end +1} = struct(’name’, ’relu1’, ’type’, ’relu’) ;

24 net.layers{end +1} = struct(’name’, ’conv2’, ...

25 ’type’, ’conv’, ...

26 ’weights ’, {{0.01* randn (5,5,32,32,...

27 ’single ’), zeros(1, 32 ,...

28 ’single ’)}} ,...

29 ’learningRate ’, lr, ...

30 ’stride ’, 1) ;

31 % 36*36*32

32 net.layers{end +1} = struct(’name’, ’relu2’, ’type’, ’relu’) ;

33 net.layers{end +1} = struct(’name’, ’poo1_1 ’, ...

34 ’type’, ’pool’, ...

35 ’method ’, ’max’, ...

36 ’pool’, [5 5], ...

37 ’stride ’, 2) ;

38 %(36 -2+1) / 2 = 16 16*16*32

39

40 % Block 2

41 net.layers{end +1} = struct(’name’, ’conv3’, ...

42 ’type’, ’conv’, ...

43 ’weights ’, {{0.05* randn (5,5,32,64,...

44 ’single ’), zeros (1,64,’single ’)}} ,...

45 ’learningRate ’, lr, ...

46 ’stride ’, 1) ;

47 % 12*12*64

48 net.layers{end +1} = struct(’name’, ’relu3’,’type’, ’relu’) ;

49 net.layers{end +1} = struct(’name’, ’conv4’, ...

50 ’type’, ’conv’, ...

51 ’weights ’, {{0.05* randn (3,3,64,64,...

52 ’single ’), zeros (1,64,’single ’)}} ,...

53 ’learningRate ’, lr, ...

54 ’stride ’, 1) ;

55 % 10*10*64

56 net.layers{end +1} = struct(’name’, ’pool2_3 ’, ...

57 ’type’, ’pool’, ...

58 ’method ’, ’avg’, ...

59 ’pool’, [3 3], ...

60 ’stride ’, 1) ;

61 % 10-3+1 = 8, 8*8*64

62

86

63 % Block 3

64 net.layers{end +1} = struct(’name’, ’conv5’, ...

65 ’type’, ’conv’, ...

66 ’weights ’, {{0.05* randn (5,5,64,128,..

67 ’single ’), zeros (1,128,’single ’)}} ,...

68 ’learningRate ’, lr, ...

69 ’stride ’, 1) ;

70 % 8 - 5 + 1 = 4 4*4*128

71 net.layers{end +1} = struct(’name’, ’relu4’, ’type’, ’relu’) ;

72 net.layers{end +1} = struct(’name’, ’conv6’, ...

73 ’type’, ’conv’, ...

74 ’weights ’, {{0.05* randn (4 ,4 ,128 ,256 ,...

75 ’single ’), zeros (1,256,’single ’)}} ,...

76 ’learningRate ’, lr, ...

77 ’stride ’, 1) ;

78 % 4 -4+1=1 1*1*256

79

80 % Block 4

81 net.layers{end +1} = struct(’name’, ’fc1’, ...

82 ’type’, ’conv’, ...

83 ’weights ’, {{0.05* randn (1 ,1 ,256 ,256 ,...

84 ’single ’), zeros (1,256,’single ’)}}, ...

85 ’learningRate ’, .1*lr, ...

86 ’stride ’, 1) ;

87 net.layers{end +1} = struct(’name’, ’fc2’, ...

88 ’type’, ’conv’, ...

89 ’weights ’, {{0.05* randn (1 ,1 ,256 ,256 ,...

90 ’single ’), zeros (1,256,’single ’)}} ,...

91 ’learningRate ’, .1*lr, ...

92 ’stride ’, 1) ;

93 net.layers{end +1} = struct(’name’, ’fc3’, ...

94 ’type’, ’conv’, ...

95 ’weights ’, {{0.05* randn (1,1,256,2,...

96 ’single ’), zeros(1,2,’single ’)}}, ...

97 ’learningRate ’, .1*lr, ...

98 ’stride ’, 1) ;

99 net.layers{end +1} = struct(’name’, ’sigmoid1 ’,’type’ ,...

100 ’sigmoid ’) ;

101

102 % Loss layer

103 net.layers{end +1} = struct(’name’, ’softmax ’, ’type’ ,...

87

104 ’softmaxloss ’) ;

105

106 % Meta parameters

107 net.meta.inputSize = [44 44 3] ;

108 net.meta.trainOpts.learningRate = [0.05* ones (1,20) 0.03* ones (1,3)

0.02* ones (1,2) 0.01* ones (1,5) 0.008* ones (1,5) 0.004* ones (1,5)

0.002* ones (1,5) 0.001* ones (1,5)] ;

109 % net.meta.trainOpts.learningRate = [0.05* ones (1,25) 0.01* ones (1,10)

0.005* ones (1 ,10) 0.0005* ones (1,5)] ;

110 net.meta.trainOpts.weightDecay = 0.0001 ;

111 net.meta.trainOpts.batchSize = 100 ;

112 net.meta.trainOpts.numEpochs = numel(net.meta.trainOpts.learningRate) ;

113

114 % Fill in default values

115 net = vl_simplenn_tidy(net) ;

116

117 % Switch to DagNN if requested

118 switch lower(opts.networkType)

119 case ’simplenn ’

120 % done

121 case ’dagnn ’

122 net = dagnn.DagNN.fromSimpleNN(net , ’canonicalNames ’, true) ;

123 net.addLayer(’error’, dagnn.Loss(’loss’, ’classerror ’), ...

124 {’prediction ’,’label’}, ’error’) ;

125 otherwise

126 assert(false) ;

127 end

88

Appendix E

MATLAB Script for CNN Model

Training

E.1 Instructions

We use the compiled functions in the MatConvNet toolbox to implement training for the

configured CNN model. The CNN network optimization method is stochastic gradient

descent (SGD). The initial learning rate starts from 0.001, the maximal number of

training epochs is set to 300. The training batch size is set to 512 images given the

dimension of the images is 44×44×3 and the GPU has 2 GB RAM. During the training

process, the loss error computed from each training epoch will be displayed on a line

plot to show the learning curve of the model compared with the validation loss error.

E.2 MATLAB Script to Implement CNN Training

1

2 function [net , stats] = cnn_train(net , imdb , getBatch , varargin)

3 %CNN_TRAIN An implementation of SGD for training CNNs

4 % CNN_TRAIN () applies stochastic gradient descent with

5 % momentum to train a CNN. It can be used

6 % with different datasets and tasks by providing a suitable

7 % getBatch function.

8 %

9 % The function automatically restarts after each training epoch by

89

10 % checkpointing.

11 %

12 % The function supports training on CPU or on one or more GPUs

13 % (specify the list of GPU IDs in the ‘gpus ‘ option).

14

15 % This file is part of the VLFeat library and is made available under

16 % the terms of the BSD license (see the COPYING file).

17 addpath(fullfile(vl_rootnn , ’malaria ’));

18 opts.expDir = fullfile(’data’,’exp’) ;

19 opts.continue = true ;

20 opts.batchSize = 256 ;

21 opts.numSubBatches = 1 ;

22 opts.train = [] ;

23 opts.val = [] ;

24 opts.gpus = [] ;

25 opts.epochSize = inf;

26 opts.prefetch = false ;

27 opts.numEpochs = 300 ;

28 opts.learningRate = 0.001 ;

29 opts.weightDecay = 0.0005 ;

30

31 opts.solver = [] ; % Empty array means use the default SGD solver

32 [opts , varargin] = vl_argparse(opts , varargin) ;

33 if ~isempty(opts.solver)

34 assert(isa(opts.solver , ’function_handle ’) && nargout(opts.solver) ==

2,...

35 ’Invalid solver; expected a function handle with two outputs.’) ;

36 % Call without input arguments , to get default options

37 opts.solverOpts = opts.solver () ;

38 end

39

40 opts.momentum = 0.9 ;

41 opts.saveSolverState = true ;

42 opts.nesterovUpdate = false ;

43 opts.randomSeed = 0 ;

44 opts.memoryMapFile = fullfile(tempdir , ’matconvnet.bin’) ;

45 opts.profile = false ;

46 opts.parameterServer.method = ’mmap’ ;

47 opts.parameterServer.prefix = ’mcn’ ;

48

49 opts.conserveMemory = true ;

90

50 opts.backPropDepth = +inf ;

51 opts.sync = false ;

52 opts.cudnn = true ;

53 opts.errorFunction = ’multiclass ’ ;

54 opts.errorLabels = {} ;

55 opts.plotDiagnostics = false ;

56 opts.plotStatistics = true;

57 opts.postEpochFn = [] ; % postEpochFn(net ,params ,state) called after

each epoch; can return a new learning rate , 0 to stop , [] for no

change

58 opts = vl_argparse(opts , varargin) ;

59

60 if ~exist(opts.expDir , ’dir’), mkdir(opts.expDir) ; end

61 if isempty(opts.train), opts.train = find(imdb.images.set ==1) ; end

62 if isempty(opts.val), opts.val = find(imdb.images.set ==2) ; end

63 if isscalar(opts.train) && isnumeric(opts.train) && isnan(opts.train)

64 opts.train = [] ;

65 end

66 if isscalar(opts.val) && isnumeric(opts.val) && isnan(opts.val)

67 opts.val = [] ;

68 end

69

70 %

71 %

Initialization

72 %

73

74 net = vl_simplenn_tidy(net); % fill in some eventually missing values

75 net.layers{end -1}. precious = 1; % do not remove predictions , used for

error

76 vl_simplenn_display(net , ’batchSize ’, opts.batchSize) ;

77

78 evaluateMode = isempty(opts.train) ;

79 if ~evaluateMode

80 for i=1: numel(net.layers)

81 J = numel(net.layers{i}. weights) ;

82 if ~isfield(net.layers{i}, ’learningRate ’)

83 net.layers{i}. learningRate = ones(1, J) ;

84 end

91

85 if ~isfield(net.layers{i}, ’weightDecay ’)

86 net.layers{i}. weightDecay = ones(1, J) ;

87 end

88 end

89 end

90

91 % setup error calculation function

92 hasError = true ;

93 if isstr(opts.errorFunction)

94 switch opts.errorFunction

95 case ’none’

96 opts.errorFunction = @error_none ;

97 hasError = false ;

98 case ’multiclass ’

99 opts.errorFunction = @error_multiclass ;

100 if isempty(opts.errorLabels), opts.errorLabels = {’top1err ’,

’top5err ’} ; end

101 case ’binary ’

102 opts.errorFunction = @error_binary ;

103 if isempty(opts.errorLabels), opts.errorLabels = {’binerr ’} ; end

104 otherwise

105 error(’Unknown error function ’’%s’’.’, opts.errorFunction) ;

106 end

107 end

108

109 state.getBatch = getBatch ;

110 stats = [] ;

111

112 %

113 % Train and

validate

114 %

115

116 modelPath = @(ep) fullfile(opts.expDir , sprintf(’net -epoch -%d.mat’, ep));

117 modelFigPath = fullfile(opts.expDir , ’net -train.pdf’) ;

118

119 start = opts.continue * findLastCheckpoint(opts.expDir) ;

120 if start >= 1

121 fprintf(’%s: resuming by loading epoch %d\n’, mfilename , start) ;

92

122 [net , state , stats] = loadState(modelPath(start)) ;

123 else

124 state = [] ;

125 end

126

127 for epoch=start +1: opts.numEpochs

128

129 % Set the random seed based on the epoch and opts.randomSeed.

130 % This is important for reproducibility , including when training

131 % is restarted from a checkpoint.

132

133 rng(epoch + opts.randomSeed) ;

134 prepareGPUs(opts , epoch == start +1) ;

135

136 % Train for one epoch.

137 params = opts ;

138 params.epoch = epoch ;

139 params.learningRate = opts.learningRate(min(epoch ,

numel(opts.learningRate))) ;

140 params.train = opts.train(randperm(numel(opts.train))) ; % shuffle

141 params.train = params.train (1: min(opts.epochSize , numel(opts.train)));

142 params.val = opts.val(randperm(numel(opts.val))) ;

143 params.imdb = imdb ;

144 params.getBatch = getBatch ;

145

146 if numel(params.gpus) <= 1

147 [net , state] = processEpoch(net , state , params , ’train’) ;

148 [net , state] = processEpoch(net , state , params , ’val’) ;

149 if ~evaluateMode

150 saveState(modelPath(epoch), net , state) ;

151 end

152 lastStats = state.stats ;

153 else

154 spmd

155 [net , state] = processEpoch(net , state , params , ’train’) ;

156 [net , state] = processEpoch(net , state , params , ’val’) ;

157 if labindex == 1 && ~evaluateMode

158 saveState(modelPath(epoch), net , state) ;

159 end

160 lastStats = state.stats ;

161 end

93

162 lastStats = accumulateStats(lastStats) ;

163 end

164

165 stats.train(epoch) = lastStats.train ;

166 stats.val(epoch) = lastStats.val ;

167 clear lastStats ;

168 if ~evaluateMode

169 saveStats(modelPath(epoch), stats) ;

170 end

171

172 if params.plotStatistics

173 switchFigure (1) ; clf ;

174 plots = setdiff (...

175 cat (2,...

176 fieldnames(stats.train)’, ...

177 fieldnames(stats.val)’), {’num’, ’time’}) ;

178 for p = plots

179 p = char(p) ;

180 values = zeros(0, epoch) ;

181 leg = {} ;

182 for f = {’train’, ’val’}

183 f = char(f) ;

184 if isfield(stats .(f), p)

185 tmp = [stats.(f).(p)] ;

186 values(end+1,:) = tmp(1,:)’ ;

187 leg{end +1} = f ;

188 end

189 end

190 subplot(1,numel(plots),find(strcmp(p,plots))) ;

191 plot (1:epoch , values ’,’o-’) ;

192 xlabel(’epoch ’) ;

193 title(p) ;

194 legend(leg {:}) ;

195 grid on ;

196 end

197 drawnow ;

198 print(1, modelFigPath , ’-dpdf’) ;

199 end

200

201 if ~isempty(opts.postEpochFn)

202 if nargout(opts.postEpochFn) == 0

94

203 opts.postEpochFn(net , params , state) ;

204 else

205 lr = opts.postEpochFn(net , params , state) ;

206 if ~isempty(lr), opts.learningRate = lr; end

207 if opts.learningRate == 0, break; end

208 end

209 end

210 end

211

212 % With multiple GPUs , return one copy

213 if isa(net , ’Composite ’), net = net {1} ; end

214

215 %

216 function err = error_multiclass(params , labels , res)

217 %

218 predictions = gather(res(end -1).x) ;

219 [~, predictions] = sort(predictions , 3, ’descend ’) ;

220

221 % be resilient to badly formatted labels

222 if numel(labels) == size(predictions , 4)

223 labels = reshape(labels ,1,1,1,[]) ;

224 end

225

226 % skip null labels

227 mass = single(labels (:,:,1,:) > 0) ;

228 if size(labels ,3) == 2

229 % if there is a second channel in labels , used it as weights

230 mass = mass .* labels (:,:,2,:) ;

231 labels (:,:,2,:) = [] ;

232 end

233

234 m = min(5, size(predictions ,3)) ;

235

236 error = ~bsxfun(@eq , predictions , labels) ;

237 err(1,1) = sum(sum(sum(mass .* error (:,:,1,:)))) ;

238 err(2,1) = sum(sum(sum(mass .* min(error (:,:,1:m,:) ,[],3)))) ;

239

240 %

95

241 function err = error_binary(params , labels , res)

242 %

243 predictions = gather(res(end -1).x) ;

244 error = bsxfun(@times , predictions , labels) < 0 ;

245 err = sum(error (:)) ;

246

247 %

248 function err = error_none(params , labels , res)

249 %

250 err = zeros (0,1) ;

251

252 %

253 function [net , state] = processEpoch(net , state , params , mode)

254 %

255 % Note that net is not strictly needed as an output argument as net

256 % is a handle class. However , this fixes some aliasing issue in the

257 % spmd caller.

258

259 % initialize with momentum 0

260 if isempty(state) || isempty(state.solverState)

261 for i = 1: numel(net.layers)

262 state.solverState{i} = cell(1, numel(net.layers{i}. weights)) ;

263 state.solverState{i}(:) = {0} ;

264 end

265 end

266

267 % move CNN to GPU as needed

268 numGpus = numel(params.gpus) ;

269 if numGpus >= 1

270 net = vl_simplenn_move(net , ’gpu’) ;

271 for i = 1: numel(state.solverState)

272 for j = 1: numel(state.solverState{i})

273 s = state.solverState{i}{j} ;

274 if isnumeric(s)

275 state.solverState{i}{j} = gpuArray(s) ;

276 elseif isstruct(s)

96

277 state.solverState{i}{j} = structfun(@gpuArray , s,

’UniformOutput ’, false) ;

278 end

279 end

280 end

281 end

282 if numGpus > 1

283 parserv = ParameterServer(params.parameterServer) ;

284 vl_simplenn_start_parserv(net , parserv) ;

285 else

286 parserv = [] ;

287 end

288

289 % profile

290 if params.profile

291 if numGpus <= 1

292 profile clear ;

293 profile on ;

294 else

295 mpiprofile reset ;

296 mpiprofile on ;

297 end

298 end

299

300 subset = params .(mode) ;

301 num = 0 ;

302 stats.num = 0 ; % return something even if subset = []

303 stats.time = 0 ;

304 adjustTime = 0 ;

305 res = [] ;

306 error = [] ;

307

308 start = tic ;

309 for t=1: params.batchSize:numel(subset)

310 fprintf(’%s: epoch %02d: %3d/%3d:’, mode , params.epoch , ...

311 fix((t-1)/params.batchSize)+1,

ceil(numel(subset)/params.batchSize)) ;

312 batchSize = min(params.batchSize , numel(subset) - t + 1) ;

313

314 for s=1: params.numSubBatches

315 % get this image batch and prefetch the next

97

316 batchStart = t + (labindex -1) + (s-1) * numlabs ;

317 batchEnd = min(t+params.batchSize -1, numel(subset)) ;

318 batch = subset(batchStart : params.numSubBatches * numlabs :

batchEnd) ;

319 num = num + numel(batch) ;

320 if numel(batch) == 0, continue ; end

321

322 [im , labels] = params.getBatch(params.imdb , batch) ;

323

324 if params.prefetch

325 if s == params.numSubBatches

326 batchStart = t + (labindex -1) + params.batchSize ;

327 batchEnd = min(t+2* params.batchSize -1, numel(subset)) ;

328 else

329 batchStart = batchStart + numlabs ;

330 end

331 nextBatch = subset(batchStart : params.numSubBatches * numlabs :

batchEnd) ;

332 params.getBatch(params.imdb , nextBatch) ;

333 end

334

335 if numGpus >= 1

336 im = gpuArray(im) ;

337 end

338

339 if strcmp(mode , ’train ’)

340 dzdy = 1 ;

341 evalMode = ’normal ’ ;

342 else

343 dzdy = [] ;

344 evalMode = ’test’ ;

345 end

346 net.layers{end}. class = labels ;

347 res = vl_simplenn(net , im , dzdy , res , ...

348 ’accumulate ’, s ~= 1, ...

349 ’mode’, evalMode , ...

350 ’conserveMemory ’, params.conserveMemory , ...

351 ’backPropDepth ’, params.backPropDepth , ...

352 ’sync’, params.sync , ...

353 ’cudnn ’, params.cudnn , ...

354 ’parameterServer ’, parserv , ...

98

355 ’holdOn ’, s < params.numSubBatches) ;

356

357 % accumulate errors

358 error = sum([error , [...

359 sum(double(gather(res(end).x))) ;

360 reshape(params.errorFunction(params , labels , res) ,[],1) ;]],2) ;

361 end

362

363 % accumulate gradient

364 if strcmp(mode , ’train ’)

365 if ~isempty(parserv), parserv.sync() ; end

366 [net , res , state] = accumulateGradients(net , res , state , params ,

batchSize , parserv) ;

367 end

368

369 % get statistics

370 time = toc(start) + adjustTime ;

371 batchTime = time - stats.time ;

372 stats = extractStats(net , params , error / num) ;

373 stats.num = num ;

374 stats.time = time ;

375 currentSpeed = batchSize / batchTime ;

376 averageSpeed = (t + batchSize - 1) / time ;

377 if t == 3* params.batchSize + 1

378 % compensate for the first three iterations , which are outliers

379 adjustTime = 4* batchTime - time ;

380 stats.time = time + adjustTime ;

381 end

382

383 fprintf(’ %.1f (%.1f) Hz’, averageSpeed , currentSpeed) ;

384 for f = setdiff(fieldnames(stats)’, {’num’, ’time’})

385 f = char(f) ;

386 fprintf(’ %s: %.3f’, f, stats.(f)) ;

387 end

388 fprintf(’\n’) ;

389

390 % collect diagnostic statistics

391 if strcmp(mode , ’train ’) && params.plotDiagnostics

392 switchFigure (2) ; clf ;

393 diagn = [res.stats] ;

394 diagnvar = horzcat(diagn.variation) ;

99

395 diagnpow = horzcat(diagn.power) ;

396 subplot (2,2,1) ; barh(diagnvar) ;

397 set(gca ,’TickLabelInterpreter ’, ’none’, ...

398 ’YTick’, 1: numel(diagnvar), ...

399 ’YTickLabel ’,horzcat(diagn.label), ...

400 ’YDir’, ’reverse ’, ...

401 ’XScale ’, ’log’, ...

402 ’XLim’, [1e-5 1], ...

403 ’XTick’, 10.^(-5:1)) ;

404 grid on ; title(’Variation ’);

405 subplot (2,2,2) ; barh(sqrt(diagnpow)) ;

406 set(gca ,’TickLabelInterpreter ’, ’none’, ...

407 ’YTick’, 1: numel(diagnpow), ...

408 ’YTickLabel ’,{diagn.powerLabel}, ...

409 ’YDir’, ’reverse ’, ...

410 ’XScale ’, ’log’, ...

411 ’XLim’, [1e-5 1e5], ...

412 ’XTick’, 10.^(-5:5)) ;

413 grid on ; title(’Power ’);

414 subplot (2,2,3); plot(squeeze(res(end -1).x)) ;

415 drawnow ;

416 end

417 end

418

419 % Save back to state.

420 state.stats .(mode) = stats ;

421 if params.profile

422 if numGpus <= 1

423 state.prof.(mode) = profile(’info’) ;

424 profile off ;

425 else

426 state.prof.(mode) = mpiprofile(’info’);

427 mpiprofile off ;

428 end

429 end

430 if ~params.saveSolverState

431 state.solverState = [] ;

432 else

433 for i = 1: numel(state.solverState)

434 for j = 1: numel(state.solverState{i})

435 s = state.solverState{i}{j} ;

100

436 if isnumeric(s)

437 state.solverState{i}{j} = gather(s) ;

438 elseif isstruct(s)

439 state.solverState{i}{j} = structfun(@gather , s, ’UniformOutput ’,

false) ;

440 end

441 end

442 end

443 end

444

445 net = vl_simplenn_move(net , ’cpu’) ;

446

447 %

448 function [net , res , state] = accumulateGradients(net , res , state ,

params , batchSize , parserv)

449 %

450 numGpus = numel(params.gpus) ;

451 otherGpus = setdiff (1: numGpus , labindex) ;

452

453 for l=numel(net.layers):-1:1

454 for j=numel(res(l).dzdw):-1:1

455

456 if ~isempty(parserv)

457 tag = sprintf(’l%d_%d’,l,j) ;

458 parDer = parserv.pull(tag) ;

459 else

460 parDer = res(l).dzdw{j} ;

461 end

462

463 if j == 3 && strcmp(net.layers{l}.type , ’bnorm ’)

464 % special case for learning bnorm moments

465 thisLR = net.layers{l}. learningRate(j) ;

466 net.layers{l}. weights{j} = vl_taccum (...

467 1 - thisLR , ...

468 net.layers{l}. weights{j}, ...

469 thisLR / batchSize , ...

470 parDer) ;

471 else

472 % Standard gradient training.

101

473 thisDecay = params.weightDecay * net.layers{l}. weightDecay(j) ;

474 thisLR = params.learningRate * net.layers{l}. learningRate(j) ;

475

476 if thisLR >0 || thisDecay >0

477 % Normalize gradient and incorporate weight decay.

478 parDer = vl_taccum (1/ batchSize , parDer , ...

479 thisDecay , net.layers{l}. weights{j}) ;

480

481 if isempty(params.solver)

482 % Default solver is the optimised SGD.

483 % Update momentum.

484 state.solverState{l}{j} = vl_taccum (...

485 params.momentum , state.solverState{l}{j}, ...

486 -1, parDer) ;

487

488 % Nesterov update (aka one step ahead).

489 if params.nesterovUpdate

490 delta = params.momentum * state.solverState{l}{j} - parDer ;

491 else

492 delta = state.solverState{l}{j} ;

493 end

494

495 % Update parameters.

496 net.layers{l}. weights{j} = vl_taccum (...

497 1, net.layers{l}. weights{j}, ...

498 thisLR , delta) ;

499

500 else

501 % call solver function to update weights

502 [net.layers{l}. weights{j}, state.solverState{l}{j}] = ...

503 params.solver(net.layers{l}. weights{j},

state.solverState{l}{j}, ...

504 parDer , params.solverOpts , thisLR) ;

505 end

506 end

507 end

508

509 % if requested , collect some useful stats for debugging

510 if params.plotDiagnostics

511 variation = [] ;

512 label = ’’ ;

102

513 switch net.layers{l}.type

514 case {’conv’,’convt ’}

515 if isnumeric(state.solverState{l}{j})

516 variation = thisLR * mean(abs(state.solverState{l}{j}(:))) ;

517 end

518 power = mean(res(l+1).x(:) .^2) ;

519 if j == 1 % fiters

520 base = mean(net.layers{l}. weights{j}(:) .^2) ;

521 label = ’filters ’ ;

522 else % biases

523 base = sqrt(power) ;%mean(abs(res(l+1).x(:))) ;

524 label = ’biases ’ ;

525 end

526 variation = variation / base ;

527 label = sprintf(’%s_%s’, net.layers{l}.name , label) ;

528 end

529 res(l).stats.variation(j) = variation ;

530 res(l).stats.power = power ;

531 res(l).stats.powerLabel = net.layers{l}.name ;

532 res(l).stats.label{j} = label ;

533 end

534 end

535 end

536

537 %

538 function stats = accumulateStats(stats_)

539 %

540

541 for s = {’train’, ’val’}

542 s = char(s) ;

543 total = 0 ;

544

545 % initialize stats stucture with same fields and same order as

546 % stats_ {1}

547 stats__ = stats_ {1} ;

548 names = fieldnames(stats__ .(s))’ ;

549 values = zeros(1, numel(names)) ;

550 fields = cat(1, names , num2cell(values)) ;

551 stats.(s) = struct(fields {:}) ;

103

552

553 for g = 1: numel(stats_)

554 stats__ = stats_{g} ;

555 num__ = stats__ .(s).num ;

556 total = total + num__ ;

557

558 for f = setdiff(fieldnames(stats__ .(s))’, ’num’)

559 f = char(f) ;

560 stats .(s).(f) = stats.(s).(f) + stats__ .(s).(f) * num__ ;

561

562 if g == numel(stats_)

563 stats.(s).(f) = stats.(s).(f) / total ;

564 end

565 end

566 end

567 stats.(s).num = total ;

568 end

569

570 %

571 function stats = extractStats(net , params , errors)

572 %

573 stats.objective = errors (1) ;

574 for i = 1: numel(params.errorLabels)

575 stats.(params.errorLabels{i}) = errors(i+1) ;

576 end

577

578 %

579 function saveState(fileName , net , state)

580 %

581 save(fileName , ’net’, ’state ’) ;

582

583 %

584 function saveStats(fileName , stats)

585 %

586 if exist(fileName)

104

587 save(fileName , ’stats ’, ’-append ’) ;

588 else

589 save(fileName , ’stats ’) ;

590 end

591

592 %

593 function [net , state , stats] = loadState(fileName)

594 %

595 load(fileName , ’net’, ’state ’, ’stats ’) ;

596 net = vl_simplenn_tidy(net) ;

597 if isempty(whos(’stats ’))

598 error(’Epoch ’’%s’’ was only partially saved. Delete this file and try

again.’, ...

599 fileName) ;

600 end

601

602 %

603 function epoch = findLastCheckpoint(modelDir)

604 %

605 list = dir(fullfile(modelDir , ’net -epoch -*. mat’)) ;

606 tokens = regexp ({list.name}, ’net -epoch -([\d]+).mat’, ’tokens ’) ;

607 epoch = cellfun(@(x) sscanf(x{1}{1} , ’%d’), tokens) ;

608 epoch = max([epoch 0]) ;

609

610 %

611 function switchFigure(n)

612 %

613 if get(0,’CurrentFigure ’) ~= n

614 try

615 set(0,’CurrentFigure ’,n) ;

616 catch

617 figure(n) ;

618 end

619 end

620

105

621 %

622 function clearMex ()

623 %

624 %clear vl_tmove vl_imreadjpeg ;

625 disp(’Clearing mex files ’) ;

626 clear mex ;

627 clear vl_tmove vl_imreadjpeg ;

628

629 %

630 function prepareGPUs(params , cold)

631 %

632 numGpus = numel(params.gpus) ;

633 if numGpus > 1

634 % check parallel pool integrity as it could have timed out

635 pool = gcp(’nocreate ’) ;

636 if ~isempty(pool) && pool.NumWorkers ~= numGpus

637 delete(pool) ;

638 end

639 pool = gcp(’nocreate ’) ;

640 if isempty(pool)

641 parpool(’local’, numGpus) ;

642 cold = true ;

643 end

644 end

645 if numGpus >= 1 && cold

646 fprintf(’%s: resetting GPU\n’, mfilename) ;

647 clearMex () ;

648 if numGpus == 1

649 disp(gpuDevice(params.gpus)) ;

650 else

651 spmd

652 clearMex () ;

653 disp(gpuDevice(params.gpus(labindex))) ;

654 end

655 end

656 end

106

Appendix F

MATLAB Script to Implement

Ten-fold Cross Validation

F.1 Instructions

The imdb image data object has been separated into ten subsets in the data preprocess-

ing stage. To implement the ten-fold cross validation, we can use the iteration code to

extract the imdb.images.set label from the imdb object where ’1’ denotes the training

set, ’2’ denotes the test set, and ’3’ denotes the validation set.

The training set is used to tune the CNN model. The validation set is used to suppress

over-fitting. And the test set is used for trained model evaluation. Note that the test

set will not be used during the training stage.

Before execute the train procedure, we need to define several parameters for the training:

1. To define the opts.modelType for which model will be trained.

2. To define the path to the imdb data object with the field opts.imdbPath.

3. To define the training model by the field opts.networkType, where the ’simplenn’

is to use the SGD method, and the ’dagnn’ is to use the directed acyclic graph

(DAG) topology method.

4. To define the ’fold’ iteration to control which fold of training will be performed.

107

F.2 CNN Training with Cross Validation

1

2 function [net , info] = cnn_cells_cross_validate(varargins)

3

4 varargins = {};

5

6 run(fullfile(fileparts(mfilename(’fullpath ’)) ,...

7 ’..’, ’..’, ’matlab ’, ’vl_setupnn.m’)) ;

8

9 opts.modelType = ’malaria18 ’ ;

10 [opts , varargins] = vl_argparse(opts , varargins) ;

11

12 opts.expDir = sprintf(’.\data\%s’, opts.modelType) ;

13 [opts , varargins] = vl_argparse(opts , varargins) ;

14

15 opts.imdbPath = ’imdb -small -unrotated.mat’; % give the full path of

your imdb.mat file

16 opts.networkType = ’simplenn ’ ;

17 %opts.networkType = ’dagnn’ ;

18 opts.train = struct () ;

19 opts = vl_argparse(opts , varargins) ;

20

21 if ~isfield(opts.train , ’gpus’), opts.train.gpus = [1]; end;

22

23 %

24 % Prepare model and

data

25 %

26

27 switch opts.modelType

28 case ’malaria12 ’

29 net = cnn_init_12malarianet(’networkType ’, opts.networkType);

30 case ’malaria18 ’

31 net = cnn_init_18malarianet(’networkType ’, opts.networkType) ;

32 otherwise

33 error(’Unknown model type ’’%s’’.’, opts.modelType) ;

34 end

35

108

36 imdb = load(opts.imdbPath) ;

37

38 net.meta.classes.name = imdb.meta.classes (:)’;

39

40 %

41 %

Train

42 %

43

44 switch opts.networkType

45 case ’simplenn ’, trainfn = @cnn_train ;

46 case ’dagnn ’, trainfn = @cnn_train_dag ;

47 end

48

49 baseDir = opts.expDir;

50

51 setCells = imdb.images.set;

52

53 for fold = 1 : 1

54

55 opts.expDir = strcat(baseDir ,’\fold -’,num2str(fold));

56

57 if ~exist(opts.expDir)

58 mkdir(opts.expDir);

59 end

60

61 imdb.images.set = setCells{fold};

62

63 [net , info] = trainfn(net , imdb , getBatch(opts), ...

64 ’expDir ’, opts.expDir , ...

65 net.meta.trainOpts , ...

66 opts.train , ...

67 ’val’, find(imdb.images.set == 3)) ;

68 end

69

70 imdb.images.set = setCells;

71

72 %

109

73 function fn = getBatch(opts)

74 %

75 switch lower(opts.networkType)

76 case ’simplenn ’

77 fn = @(x,y) getSimpleNNBatch(x,y) ;

78 case ’dagnn ’

79 bopts = struct(’numGpus ’, numel(opts.train.gpus)) ;

80 fn = @(x,y) getDagNNBatch(bopts ,x,y) ;

81 end

82

83 %

84 function [images , labels] = getSimpleNNBatch(imdb , batch)

85 %

86 disp(strcat(’batch ’,num2str(batch)));

87

88 images = imdb.images.data(:,:,:,batch) ;

89 labels = imdb.images.labels(1,batch) ;

90 if rand > 0.5, images=fliplr(images) ; end

91

92 %

93 function inputs = getDagNNBatch(opts , imdb , batch)

94 %

95 images = imdb.images.data(:,:,:,batch) ;

96 labels = imdb.images.labels(1,batch) ;

97 if rand > 0.5, images=fliplr(images) ; end

98 if opts.numGpus > 0

99 images = gpuArray(images) ;

100 end

101 inputs = {’input ’, images , ’label ’, labels} ;

110

Appendix G

MATLAB Script for Model

Evaluation

G.1 Instructions

This script is to perform the model evaluation of the trained CNN models. The trained

CNN models from every training epoch are automatically saved as a .mat file. To use

a trained to predict the label of a new image, we need to call the vlsimplenn function

with a load model by the vlsimplenntidy function by the steps below:

1. Load the trained model from the .mat file.

2. Apply the vlsimplenntidy function to extract the neural network.

3. Extract the raw image data and the corresponding labels.

4. replace the output layer from a softmaxloss function to a softmax function to

compute the probability of each image label.

5. Use the vlsimplenn function and the squeeze function to get the probability of

each color channel of the image pixel matrices.

6. Get the highest value from the probabilities of all labels.

7. Plot the confusion matrix representing the overall outcome.

111

G.2 MATLAB Script for Model Evaluation

1

2 disp(’loading imdb ...’);

3 % load the imdb here

4 imdb = load(fullfile(’imdb -small -unrotated.mat’));

5 %% load trained model

6 disp(’loading pretrained model ...’);

7 % run the toolbox

8 run(fullfile(fileparts(mfilename(’fullpath ’)) ,...

9 ’..’, ’..’, ’matlab ’, ’vl_setupnn.m’)) ;

10 fold = 1;

11 %load the trained model here

12 model = load(’net -epoch -50. mat’);

13 %get the network for computing

14 model.net = vl_simplenn_tidy(model.net);

15 % get the indice of the test set

16 testSet = imdb.images.set{fold};

17 testImgs = imdb.images.data(:,:,:, testSet == 2);

18 testLabels = imdb.images.labels(:,testSet == 2);

19 % change from softmaxloss

20 model.net.layers{end}.type = ’softmax ’;

21 predictLabel = zeros(size(testImgs ,4) ,1);

22 dummy_test = dummyvar(testLabels ’);

23 total = size(testImgs ,4);

24 res = vl_simplenn(model.net , testImgs (:,:,:,1: total)) ;

25 scores = squeeze(gather(res(end).x)) ;

26 bestScores = max(scores);

27 %%

28 disp(’performing predictions ...’);

29 for i = 1 : size(testImgs ,4)

30 maxScores = max(bestScores (:,:,:,i));

31 [maxScore index] = max(maxScores);

32 predictLabel(i) = index;

33 end

34

35 %%

36 dummy_predict = dummyvar(predictLabel);

37 figure

38 plotconfusion(dummy_test ’, dummy_predict ’)

112

Appendix H

MATLAB Code for Malaria Net

Cross Validation

H.1 Description

This section contains the MATLAB code to to perform cross validation of the trained

18-layer Malaria Net. The code can be used to validate any convolutional neural network

(CNN) models trained by the MATLAB MatConvNet Toolbox by small revision.

The code will generate the confusion matrix that illustrate the ground true labels on

the X-axis (horizontal) versus the predicted labels on the Y-axis (vertical). The label ’1’

represents that the images belong to the infected red blood cells. The label ’2’ represents

that the images belong to the uninfected normal red blood cells. When a raw image is

classified, if the predicted label is consistent to the actual label, the prediction is correct.

H.2 MATLAB Script for Model Evaluation

1

2 disp(’loading imdb ...’);

3 % load the imdb here

4 imdb = load(fullfile(’imdb -small -unrotated.mat’));

5 %% load trained model

6 disp(’loading pretrained model ...’);

7 % run the toolbox

113

8 run(fullfile(fileparts(mfilename(’fullpath ’)) ,...

9 ’..’, ’..’, ’matlab ’, ’vl_setupnn.m’)) ;

10 fold = 1;

11 %load the trained model here

12 model = load(’net -epoch -50. mat’);

13 %get the network for computing

14 model.net = vl_simplenn_tidy(model.net);

15 % get the indice of the test set

16 testSet = imdb.images.set{fold};

17 testImgs = imdb.images.data(:,:,:, testSet == 2);

18 testLabels = imdb.images.labels(:,testSet == 2);

19 % change from softmaxloss

20 model.net.layers{end}.type = ’softmax ’;

21 predictLabel = zeros(size(testImgs ,4) ,1);

22 dummy_test = dummyvar(testLabels ’);

23 total = size(testImgs ,4);

24 res = vl_simplenn(model.net , testImgs (:,:,:,1: total)) ;

25 scores = squeeze(gather(res(end).x)) ;

26 bestScores = max(scores);

27 %%

28 disp(’performing predictions ...’);

29 for i = 1 : size(testImgs ,4)

30 maxScores = max(bestScores (:,:,:,i));

31 [maxScore index] = max(maxScores);

32 predictLabel(i) = index;

33 end

34

35 %%

36 dummy_predict = dummyvar(predictLabel);

37 figure

38 plotconfusion(dummy_test ’, dummy_predict ’)

114

Appendix I

Publications during the MAIST

Program Study

I.1 Publication in Conference Proceedings

1. Liang Zhaohui, Zhang Gang, Huang Jimmy Xiangji, Hu Qinming Vivian. Deep

learning for healthcare decision making with EMRs. In Proceedings of IEEE Inter-

national Conference on Bioinformatics and Biomedicine (BIBM). 2014, Nov 2-5,

Belfast, UK, pp.556-559, DOI: 10.1109/BIBM.2014.6999219.

2. Liang Zhaohui, Zhang Gang, Huang Jimmy Xiangji. Discovery of the relations

between genetic polymorphism and adverse drug reactions. In Proceedings of

IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 2015,

Nov 9-12, Washington DC, USA, pp. 543-548, DOI: 10.1109/BIBM.2015.7359741.

3. Liang Zhaohui, Powell Andrew, Ersoy IIker, Poostchi Mahdieh, Silamut Kamolrat,

Palaniappan Kannappan, Guo Peng, Hossain Md Amir, Sameer Antani, Maude

Richard James, Huang Jimmy Xiangji, Jaeger Stefan, Thoma George. CNN-based

image analysis for malaria diagnosis. In Proceedings of IEEE International Con-

ference on Bioinformatics and Biomedicine (BIBM), 2016, Dec 15-18, Shenzhen,

China, pp. 493-496, DOI:10.1109/BIBM.2016.7822567.

115

I.2 Publication in Journal

1. Liang Zhaohui, Huang Jimmy Xiangji, Zeng Xing, Zhang Gang. DL-ADR: a novel

deep learning model for classifying genomic variants into adverse drug reactions.

BMC Medical Genomics. 2016 Aug 10; 9(2):48, DOI: 10.1186/s12920-016-0207-4.

2. Zhaohui Liang, Honglai Zhang, Guozheng Li, Jimmy Xiangji Huang. Special Issue

on Health and Clinical Informatics in Chinese Medicine (Editorial). International

Journal of Computers in Healthcare. 2015; 2(2): 69-71.

3. Zhaohui Liang, Xiangji Huang, Byeongsang Oh, Josiah Poon. Bioinformatic-

s/Medical Informatics in Traditional Medicine and Integrative Medicine (Edito-

rial). The Scientific World Journal. 2015; 2015, Article ID 460490.

116

	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Global Control of Malaria
	1.2 Machine Learning for Automated Diagnosis
	1.3 Deep Learning for Automated Diagnosis
	1.4 Research Background

	2 Literature Review
	2.1 Automatic Diagnosis by Machine Learning
	2.2 Application of Machine Learning to Image Retrieval
	2.3 Automatic Diagnosis of Malaria and Machine Learning
	2.4 Deep learning and convolutional neural network
	2.5 Advantages of CNN Compared to Other Methods
	2.6 Challenges to CNN Applications

	3 Our Proposed Method
	3.1 General Procedure of Deep Learning
	3.2 Convolutional Layer
	3.3 Pooling layer
	3.4 Activation Layers
	3.5 Output Layers
	3.6 Model Optimization and Fine-tuning
	3.7 CNN Architecture for Malaria Classification

	4 Model Evaluation
	4.1 Data Source
	4.2 Experimental Environment
	4.3 Data Preprocessing
	4.4 CNN Model Training
	4.5 Performance Evaluation

	5 Results
	5.1 Training Procedure
	5.2 Confusion Matrices of the Malaria Net Evaluation
	5.3 The Cross Validations of Different Models
	5.4 Stability and Robustness of the CNN Classifiers

	6 Discussion
	6.1 The Global Burden of Malaria
	6.2 Application of Deep Learning to Automated Diagnosis
	6.3 Convolutional Neural Network for Image-based Diagnosis
	6.4 CNN Applications to Malaria Diagnosis
	6.5 Expectations of Deep Learning Applications

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	Bibliography
	Appendix A Implementation of Deep Learning in MATLAB
	A.1 General Description
	A.2 Install the MatConvNet Toolbox
	A.3 Compiling the MatConvNet Toolbox

	Appendix B Preparation of the Image Data Object
	B.1 Instructions
	B.2 MATLAB Script to Resize Image
	B.3 MATLAB Script to Image Transfer and Partition

	Appendix C Image Data Preprocessing for Deep Learning
	C.1 Instructions
	C.2 MATLAB Script to Create the imdb Data Object with All Data Preprocessing Steps

	Appendix D CNN Model Configuration
	D.1 Instructions
	D.2 The 12-layer Malaria Net
	D.3 The 18-layer Malaria Net

	Appendix E MATLAB Script for CNN Model Training
	E.1 Instructions
	E.2 MATLAB Script to Implement CNN Training

	Appendix F MATLAB Script to Implement Ten-fold Cross Validation
	F.1 Instructions
	F.2 CNN Training with Cross Validation

	Appendix G MATLAB Script for Model Evaluation
	G.1 Instructions
	G.2 MATLAB Script for Model Evaluation

	Appendix H MATLAB Code for Malaria Net Cross Validation
	H.1 Description
	H.2 MATLAB Script for Model Evaluation

	Appendix I Publications during the MAIST Program Study
	I.1 Publication in Conference Proceedings
	I.2 Publication in Journal

