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Abstract— Oscillatory Behavior-based Signal Decomposition 

(OBSD) is a new technique which decomposes a signal 

according to oscillatory behavior, instead of frequency bands. 

It has been used for bearing fault signature extraction under 

constant speed conditions, where the bearing fault-induced 

vibration signal can be regarded as a low oscillatory 

component and the interference can be regarded as a high 

oscillatory component. However, its effectiveness for bearing 

fault signature extraction under time-varying speed conditions 

has not been evaluated. Theoretically, the OBSD is a 

frequency-independent method and should thus be effective 

under time-varying speed conditions. In this paper, the 

performance of the OBSD for bearing fault signature 

extraction under time-varying speed conditions is examined. 

The results show that the OBSD can be effectively utilized to 

extract the bearing fault signature under time-varying speed 

conditions. 

Keywords- Bearing fault feature extraction; Time-varying 

speed; Oscillatory behavior-based signal decomposition 

 

I. INTRODUCTION 

Bearing fault diagnosis is a useful means to prevent early 

bearing faults from developing into severe faults, which may 

lead to machine breakdown. Bearing faults can be detected 

and diagnosed by observing the Fault Characteristic 

Frequency (FCF) and its harmonics in the frequency domain 

of the vibration signal [1]. Each type of fault has a specific 

FCF, which is proportional to the rotational speed [2]. 

However, the collected bearing vibration signal is often 

contaminated by random noise and interferences transmitted 

from other sources, such as gears. Therefore, bearing fault 

signature extraction is an important step to insure the accuracy 

of bearing fault diagnosis. 

Band-pass filtering is a commonly used method to extract 

the bearing fault signature [3]–[5]. The essence of this method 

is to remove the interference signal by using band-pass filters. 

However, the effectiveness of band-pass filters can be 

suppressed if the bearing fault-induced signal and the 

inference signal have similar frequency features. Additionally, 

in reality bearings are often operated under time-varying speed 

conditions which may also reduce the effectiveness of band-

pass filters. Therefore, it is necessary to implement frequency-

independent methods to extract bearing fault signatures under 

time-varying speed conditions. 

Oscillatory Behavior-based Signal Decomposition (OBSD) 

is a newly developed method which can be used to decompose 

a signal according to oscillatory behavior, instead of frequency 

bands [6]. It can be implemented to extract the bearing fault 

signature from the signal contaminated by interferences since 

the bearing fault-induced signal can be considered as a low 

oscillatory component and the inference signal can be 

considered as a high oscillatory component. Its effectiveness 

for bearing fault signature extraction under constant speed 

condition has been validated [7]. However, the performance of 

the OBSD for bearing fault signature extraction under time-

varying speed conditions has not been examined. Theoretically, 

the OBSD should be still effective under time-varying speed 

conditions since it is frequency-independent. 

In this paper, the performance of the OBSD for bearing 

fault signature extraction under time-varying speed conditions 

is investigated. Signals collected from experimental apparatus 

are used to examine the effectiveness of the OBSD. 

 

II. OSCILLATORY BEHAVIOR-BASED SIGNAL 

DECOMPOSITION 

The essence of the OBSD method is utilizing two sets of 

wavelets with two different oscillatory behaviors to estimate a 

given signal [6]. The signal is decomposed into a low 

oscillatory component and a high oscillatory component by the 

OBSD. Therefore, the OBSD method can be used to extract 

the bearing fault signature from a signal obscured by 

interferences.  

Compared to frequency or scale based methods for 

interference removal, the OBSD is superior since the signal 

decomposition is based on oscillatory behavior instead of 

frequencies. A Q-factor, defined as the ratio of the center 
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frequency to the bandwidth of the frequency response, is used 

to describe the oscillatory behavior of a wavelet [8]. A higher 

value of the Q-factor indicates a higher level of oscillation. 

Four wavelets and their frequency spectra are shown in Figure 

1. The Q-factors of the waveforms are also given. It can be 

seen that waveform 1 and waveform 2 have different 

oscillatory behaviors, however, their frequency spectra share 

the same center frequency. The same can be observed for 

waveform 3 and waveform 4. Under such circumstances, 

frequency-based band-pass filters would not be able to 

separate waveforms 1 and 2, nor waveforms 3 and 4. However, 

they can be separated according to their Q-factors. It is 

calculated that waveforms 1 and 3 have a Q-factor of 1 since 

they exhibit low oscillatory behavior, and waveforms 2 and 4 

have a Q-factor of 5 since they have relatively high oscillatory 

behavior. Additionally, this demonstrates that waveforms that 

have the same oscillatory behavior have the same the Q-factor, 

even if the center frequencies are different. This makes the 

OBSD effective for capturing the true features that are useful 

for bearing fault signature extraction under time-varying speed 

conditions. 
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Figure 1 Wavelets and their frequency spectra 

The OBSD method employs the Tunable Q-factor Wavelet 

Transform (TQWT) and Morphological Component Analysis 

(MCA) to realize the signal decomposition [6]. The TQWT is 

used to generate a set of wavelets that have the same Q-factor, 

i.e. the same oscillatory behavior. The wavelets can be 

obtained with the selection of three parameters, Q (Q-factor), r 

and P, where Q is related to the oscillatory behavior, r is 

related to the redundancy of the frequency responses, and P is 

the number of wavelets. By setting up two sets of wavelets, 

one with low oscillatory behavior with parameters Ql, rl, and 

Pl, and the other set with high oscillatory behavior with 

parameters Qh, rh, and Ph, then the signal decomposition can 

be completed by MCA. The wavelet coefficients are obtained 

via optimization [6] as  
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where wl refers to wavelet coefficients for the low oscillatory 

component, wh stands for the wavelet coefficients for the high 

oscillatory component, opt

lw  and opt

hw  are results after 

optimization, y is the signal to be decomposed, Sl refers to 

wavelets obtained via the TWQT for the low oscillatory 

component, Sh represents wavelets for the high oscillatory 

component, λl is the regularization parameter for the low 

oscillatory component, λh is the regularization parameter for 

the high oscillatory component, and║║1 and║║2 are the norm-

1 operation and the norm-2 operation, respectively. This 

optimization problem can be solved using an iterative 

algorithm called the Split Augmented Lagrangian Shrinkage 

Algorithm (SALSA), obtained as [6] 
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where μ is the penalty parameter and K is the maximum 

number of iterations. Details of the solution can be found in 

the appendix in [7]. By selecting the maximum number of 

iterations, the optimal wavelet coefficients are obtained as 
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With the calculated wavelet coefficients, the decomposed 

low oscillatory and high oscillatory components can then be 

obtained by inverse TQWT with the optimized wavelet 

coefficients.  

 

III. IMPLEMENTATION OF OBSD ON BEARING FAULT 

FEATURE EXTRACTION UNDER TIME-VARYING 

SPEED CONDITIONS 

According to the characteristics of the bearing fault-

induced signal and the interference signal, the bearing fault-

induced signal is more impulsive. which can be considered as 

low oscillatory behavior, and the interference is smoother 

which can be considered as high oscillatory behavior [9]. 

Therefore, the decomposed low oscillatory component and the 

high oscillatory component via the OBSD are taken to be the 

bearing fault signature and interference, respectively. 

The bearing fault-induced signal can be simulated as 

impulse responses which occur at the FCF along the time span 

[10]. For a bearing operating under time-varying speed 

conditions, the equation is given as [11] 
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where M is the number of impulse responses which is 

determined by the signal length T and Instantaneous Fault 

Characteristic Frequency (IFCF), Lm is the amplitude of the 

mth impulse response, β is the coefficient related to damping, 

ωr is the excited resonance frequency or damped frequency of 

the vibration system, ϕm is the phase of the mth impulse 

response, and u(t) is unit step function. In the previous 

equation, tm is the occurrence time of the mth impulse response 

which is calculated as 
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  (5) 

where t0=0, δm is the random slippage ratio with the average 

varying between 0.01 and 0.02, fc(t) denotes the IFCF, and the 

time interval between the (m-1)th impulse response and the 

mth impulse response is (1+δ)/ fc(tm-1). 
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The interference signal can be simulated as the sum of 

sinusoidal functions of the frequency of the interference and 

its harmonics, given as [11] 
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where N is the number of sinusoidal functions, Bn is the 

amplitude, and fh is the time-varying frequency of the 

interference, called Instantaneous Interference Frequency (IIF) 

in this paper. 

 

Figure 2 Implementation of the OBSD on bearing fault signature extraction 
under time-varying speed conditions 

An example of the implementation of the OBSD on 

bearing fault signature extraction is illustrated in Figure 2. The 

original signal, shown in Figure 2(e), is a mixture of bearing 

fault impulses (Figure 2(a)) and interference (Figure 2(c)). The 

bearing fault signal is modeled by equation (4) with IFCF 

fc(t)=35t+35 Hz, Lm=1, β=500, ωr=4000*2π rad/s, ϕm=0, 

δm=0.01 and signal length T=0.6s. In addition, the interference 

is modeled by equation (6) with fh=50t+50 Hz, N=2 and Bn= [1, 

0.5]. Under constant speed, the bearing fault is generally 

detected by the envelope spectrum which is the spectrum of 

the envelope preceded by the computation of a Hilbert 

transform [2]. Under time-varying speed, since the IFCF and 

its harmonics are time-varying, they can be observed in the 

Time-Frequency Representation (TFR) obtained via Short-

Time Fourier Transform (STFT) [12]. As shown in Figure 2(b), 

the envelope TFR of the bearing fault-induced signal is 

composed of time-frequency curves at IFCF and its multiples, 

which can be used to detect the presence of a bearing fault. 

Similarly, the frequency of interference IIF and its 2nd 

harmonic show curves in the TFR of the interference signal, 

shown in Figure 2(d). However, it can be seen from Figure 2(f) 

that the envelope TFR of the original signal is dominated by 

the IIF, which implies that the bearing fault cannot be detected 

without additional signal treatment. By applying the OBSD to 

the contaminated original signal with OBSD parameters Ql=1, 

rl=6, Pl=40, Qh=6, rh=6, Ph=124, λl=λh=0.3, µ=2 and K=150, 

the signal is decomposed into a low oscillatory component 

(shown in Figure 2(g)) and a high oscillatory component 

(shown in Figure 2(i)). The bearing fault-induced impulses, 

which is the fault signature, are clearly seen in the low 

oscillatory component (Figure 2(g)). Furthermore, the 

envelope TFR of the low oscillatory component, shown in 

Figure 2(h), is dominated by the IFCF and its harmonics 

which is the same case as in Figure 2(b). The bearing fault can 

thus be easily detected. Additionally, the TFR of the high 

oscillatory component shown in Figure 2(j) is dominated by 

the IIF and its 2nd harmonic, which is the same case as in 

Figure 2(d). It can be seen from this implementation that the 

OBSD can be effectively used to separate the bearing fault 

signature from a signal contaminated by interference under 

time-varying speed conditions. 

 

IV. EXPERIMENTAL EVALUATION 

To test the performance of the OBSD method for bearing 

fault signature extraction under time-varying speed conditions, 

it is applied to signals collected from an experiment. The 

experiment is conducted on a SpectraQuest machinery fault 

simulator (MFS-PK5MT) to collect the bearing vibration 

signal which is contaminated by interference transmitted from 

a gearbox and noise.  

Motor

AC driver

Tachometer

Sensor

Gearbox

BeltsRotor
Faulty 

Bearing

 

Figure 3 Experimental set-up 

The set-up of this experiment is shown in Figure 3. The 

shaft is supported by two bearings and one of them is a faulty 

bearing with an outer race fault. The shaft is driven by a motor 
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and the motor is controlled by an AC drive. A gearbox is 

connected to the shaft by a belt. Dimensions of bearings and 

gears used in this experiment are given in Table I. The IFCF is 

3.57 times the shaft rotational frequency and the gear meshing 

frequency is (18/2.6)=6.92 times the shaft rotational frequency. 

A sensor (accelerometer) is mounted on the base of the test rig 

to collect the vibration signal. Therefore, the collected signal 

contains not only the bearing vibration signal but also the gear 

meshing signal. The signal is sampled by Labview with 

sampling frequency 20kHz and the duration of the signal is 

4.46s. Additionally, to verify the results obtained by the 

proposed method, a tachometer is used to measure the time-

varying shaft rotational speed. 

Table I Dimensions of bearings and gears 

Bearing 

type 

Pitch 

diameter 

Ball 

diameter 

Number of 

balls 
BPFO 

ER16K 38.52mm 7.94mm 9 3.57fr 

Diameter ratio of sheaves 
Number of 

teeth 

Gear meshing 

frequency 

1:2.6 18 6.92fr 

 

 

Figure 4 Results of the experiment 

The collected raw signal is shown in Figure 4(a) and the 

measured ISRF is shown in Figure 4(b) which increases from 

30.25Hz to 60.5Hz. The TFR of the raw signal is obtained via 

the STFT, as shown in Figure 4(c). It can be seen that the TFR 

of the raw signal is dominated by the instantaneous gear 

meshing frequency, i.e. the IIF. The IFCF and its harmonics 

cannot be observed. Moreover, in the envelope TFR of the raw 

signal, shown in Figure 4(d), no clear T-F curves can be 

observed. Obviously, the bearing fault cannot be detected and 

diagnosed with the raw signal directly. 

The OBSD is then applied to the raw signal with 

parameters Ql=1, rl=6, Pl=51, Qh=8, rh=6, Ph=210, λl=λh=0.1, 

µ=1 and K=250. The decomposed low oscillatory component 

is shown in Figure 4(e) and the high oscillatory component is 

shown in Figure 4(g), respectively. The envelope TFR of the 

low oscillatory component is obtained via the Hilbert 

transform and STFT, shown in Figure 4(f). The IFCF and its 

harmonics can be observed in Figure 4(f) without the presence 

of the IIF and its harmonics. The TFR of the high oscillatory 

component is also obtained (Figure 4(h)) in which the IIF can 

be observed without the IFCF and its harmonics. The results in 

Figure 4(f) and Figure 4(h) demonstrate that the OBSD has 

effectively separated the bearing fault signature and the 

interference. Therefore, the OBSD can be effective for bearing 

fault signature extraction under time-varying speed conditions. 

 

V. CONCLUSIONS 

In this paper, the performance of the OBSD for bearing 

fault signature extraction under time-varying speed conditions 

was examined via experimental data. The results show that the 

OBSD can be effectively used to extract the bearing fault 

signature with the presence of an interference signal. 
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