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Abstract

Recent advances in Artificial Intelligence, especially in Machine Learning (ML),

have brought applications previously considered as science fiction (e.g., virtual per-

sonal assistants and autonomous cars) into the reach of millions of everyday users.

Since modern ML technologies like deep learning require considerable technical ex-

pertise and resource to build custom models, reusing existing models trained by

experts has become essential. Currently the ML models are shared, distributed, or

retailed on multiple ML model platforms which can be divided into two categories

based on their usage patterns: (1) ML model stores whose models can be deployed

and served with the help of cloud infrastructure, and (2) ML package repositories

whose models are free but need to be deployed and used (e.g., embedded into users’

applications as a software component) manually.

We conducted an exploratory study on the above two categories of ML model

platforms: ML model stores and ML package repositories. We analyzed the struc-
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ture and the contents of the ML models platforms, as well as functionalities provided

by the package managers. The research subjects were three general purpose ML

model stores (AWS marketplace, ModelDepot, and Wolfram neural net repository)

and two popular ML package repositories (TensorFlow Hub and PyTorch Hub).

When studying the structure of ML model platforms and functionalities of package

managers, we compared them against their counterparts from traditional software

development: ML model stores vs. mobile app stores (e.g., Google Play and Ap-

ple App Store), and ML package repositories vs. programming language package

repositories (e.g., npm, PyPI, and CRAN). Through our study, we identified special

software engineering practices and challenges for sharing, distributing, and retailing

ML models. The implications from this thesis will be helpful for stakeholders to

make the ML model platforms better serve the users (i.e., software engineers, data

scientists and researchers).
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1 Introduction

The development of artificial intelligence (AI) (especially machine learning (ML))

software is in great demand. ML is making revolutionary changes in many different

fields (e.g, healthcare, retail, energy and software) [1]. A recent estimate showed

that ML applications have the potential to create between $3.5 and $5.8 trillion in

value annually [2].

Unfortunately, the development of ML models, which is the core of AI software,

is a non-trivial task. First, the implementation of ML algorithms is difficult as

specific skills are required in reading and understanding professional AI literature,

and the ML algorithms themselves are complicated. ML frameworks (e.g., Tensor-

Flow [3], PyTorch [4], etc.), however, has greatly lowered the skill requirements for

ML model development. With such frameworks, the development of ML models can

be as simple as calling appropriate APIs, allowing developers to devote more time

and energy to other tasks such as obtaining, pre-processing, labeling and filtering

data, adjusting and testing the models’ structure, or proposing new ML algorithms.

1



Secondly, training ML models requires significant computational resources. Mod-

els that perform complex tasks like image classification or text embedding need in-

tensive calculation and require a long time to finish training on large-scale datasets [5].

Although expensive equipment such as GPUs can be used to shorten the training

duration, they may not always be available to software developers.

As a result, there is such a high demand for shareable and reusable pre-trained

ML models. Recently, Gartner has identified that leveraging pre-trained ML mod-

els deployed as web services to be one of the top technology trends [6]. Fortunately,

there have already been quite a few ML models that are shared, distributed or

retailed online via ML model platforms, which bridge the gap between AI ex-

perts (e.g., researchers in ML algorithms, mathematician) and general users (e.g.,

AI software developers, data scientists and researchers).

In this thesis, ML model platforms are divided into the following two categories

based on their usage patterns.

• The first category is referred to as ML model stores. They provide cloud-

based model deployment support. They are comparable to the traditional

mobile app stores (e.g., Google Play [7] and Apple’s app store [8]) in terms of

organizing and retailing products, and deployment facility. ML model stores

are introduced by various organizations to facilitate the distribution and re-

tailing of ML models to organizations/developers. Usually, users need to
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pay for using and hosting models on the cloud computing resources provided

by ML model stores. AWS marketplace [9], ModelDepot [10], and the Wol-

fram neural net repository [11] are representative examples of such ML model

stores.

• The second category is referred to as ML package repositories. The models

on ML package repositories need to be embedded into consumers’ applica-

tions like dependencies [12]. These ML packages are generally free to use, but

users have to manually deploy and manage these models and other dependen-

cies locally. ML package repositories contain tens to hundreds of pre-trained

models that specially bundled up into ML packages that are distributed via

ML package managers (including ML frameworks, ML-related libraries

and APIs). For example, the PyTorch Hub repository [13] contains packages

that can be accessed by a user via the APIs in PyTorch framework. The most

popular examples of such repositories are TFHub [14] and PyTorch Hub [13].

Their distribution practices are similar to programming language-specific soft-

ware package repositories like npm [15], PyPI [16], and CRAN [17].

Unfortunately, there are no studies reporting the best practices and common

pitfalls involving ML model platforms. In particular, what information about mod-

els/packages is provided by ML model platforms and how helpful are they to the
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users? What ML domains and task types are supported by these ML packages?

How are ML models/packages organized and distributed? How are such ML pack-

ages/models used? Are there any common practices between these ML model

platforms and their counterpart mobile app stores/ software package repositories?

Hence, in this thesis we conducted an exploratory study on three ML model

stores (i.e., AWS marketplace (referred to as AWS in later parts of the thesis), Mod-

elDepot and Wolfram Neural Net Repository (referred to as Wolfram in later parts

of the thesis)) and two ML package repositories (i.e., TensorFlow Hub (referred to

as TFHub in later parts of the thesis) and PyTorch Hub). We not only compared

the structure and the information elements (features and policies) among these ML

model platforms, but also compared them against their counterparts: mobile app

stores (Google Play and Apple’s app store) and programming language package

repositories (npm, PyPI and CRAN). For ML model stores, we found some spe-

cial practices like cloud deployment and user instructions, while some information

elements (e.g., review policy) are still missing in ML model stores. And we also

found few similar offerings between ML model stores. For ML package reposito-

ries, our results showed three significant differences between the practices of reusing

ML packages and traditional software packages. First, although some of the prac-

tices on software package repositories have been adopted by their ML counterparts

(e.g., product line architecture, multiple usage contexts), most of the established
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SE practices are either not adopted by or in their infant stages on the ML package

repositories (e.g., release management, dependency management, security, package

management functionalities). Secondly, some practices on the ML package repos-

itories that are not yet adopted by the software package repositories (e.g., quality

evaluation of packages). Thirdly, the processes of installing and using ML pack-

ages differ from those of software packages. The findings of this research will help

software engineers and researchers who are familiar with traditional software engi-

neering practices, but not yet with ML package practices, to have a clear and easier

understanding of sharing and using reusable ML models.

1.1 Contributions

The contributions of this thesis are:

• We provided an overview of the current practices on sharing reusable ML

packages through a study of the structure and contents of ML model plat-

forms. To the best of our knowledge, this is the first empirical study on ML

model platforms.

• By comparing against the sharing mechanism of mobile app stores and soft-

ware package repositories, we identified a set of unique practices and chal-

lenges on distributing, sharing, and using pre-trained ML packages and mod-
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els.

• Our comparison between the practices of ML and their counterparts in tra-

ditional software engineering presents stakeholders of ML model platforms

with opportunities of how to adopt the established practices from traditional

software engineering.

1.2 Thesis Organization

The remaining part of this thesis is divided into four chapters. Chapter 2 describes

the background and related work of this thesis. Chapter 3 and Chapter 4 present

the studies on ML model stores and ML package repositories, respectively. To

be noted that when this thesis was under editing, studies in Chapter 3 had been

accepted by IEEE Software, and the studies in Chapter 4 had been submitted to

Empirical Software Engineering and under review. Chapter 5 concludes the thesis

and provides some future work directions.
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2 Background and Related Works

This chapter presents the background and related works on ML model platforms.

2.1 Background and Related Work for ML Model Stores

2.1.1 App Stores and Model Stores

Despite their difference in age, app and model stores provide platforms for devel-

opers to distribute and retail their products to their intended target audience (end

users vs. organizations/developers). App stores have been around for over ten

years. Apple’s App Store and Google Play, both started in 2008, are currently two

of the most popular app stores. Each contains over two million apps. These app

stores include mobile apps and software applications for computers (e.g., Mac App

Store) and tablets (e.g., Chromebook and iPad). In contrast, the concept of “model

store” is relatively new, with ModelDepot starting in 01/2018, Wolfram neural net

repository in 06/2018, and AWS marketplace in 11/2018. For brevity, we will call

these three model stores as “ModelDepot”, “Wolfram”, and “AWS”.
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There are two types of model stores: (1) general purpose, and (2) specialized

model stores. General purpose model stores (e.g., AWS) contain all sorts of ML

models, whereas specialized model stores (e.g., Nuance AI market [18]) only contain

models from certain domains. We focus on the general purpose model stores, since

the

2.1.2 Empirical Studies on Mobile App Stores

There is a large corpus of research on empirical studies of the mobile app stores

(e.g., information elements [19], user reviews [20], and update frequency [21]) on

understanding and improving the quality of the apps. Since the information el-

ements in app stores by now are widely understood, this chapter focuses on an

empirical comparison of app stores to the newly introduced model stores.

2.2 Background and Related Works for ML Package Repos-

itories

Package managers are a set of software tools that automate the process of package

installation, upgrade, and removal in a consistent manner. Packages are hosted in
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Table 2.1: Statistics of software package repositories. “+” indicates a reposi-

tory containing a small percentage of packages in other programming languages.

The software package repository statistics were gathered on April 19, 2020 from

Libraries.io.

Repository
Language(s) or

Framework

Launch Time # Packages

Software

Package

Repository

Bower JavaScript+ Sep 2012 69,678

Cargo (Crates.io) Rust+ Jun 2014 40,142

Clojars Clojure+ Nov 2009 25,913

CRAN R ≥ Aug 1993 17,370

Go Package Community Go+ ≥ Mar 2008 1,818,628

Hackage Haskell+ Jun 2008 14,758

Hex Elixir+ Dec 2013 9,911

Maven Java+ Sep 2003 185,402

MELPA (Emacs) Emacs Lisp+ Oct 2011 5,026

MetaCPAN (CPAN Search) Perl+ Nov 2010 37,790

npm JavaScript Sep 2009 1,366,638

NuGet C#+ Jan 2011 201,192

Packagist PHP+ Apr 2011 328,953

PyPI Python Oct 2008 250,533

Rubygems Ruby+ Nov 2003 164,749
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Table 2.2: Statistics of ML package repositories, whose statistics were gathered on

March 25, 2020.

Repository
Language(s) or

Framework

Launch Time # Packages

ML

Package

Repository

AIHub

TensorFlow Module

TensorFlow

(Python)

(March 2019) 322

DL4J Zoo Models DL4J (Java) Jun 2019 16

MXNet GluonCV Model Zoo
MXNet

(Python, Scala, etc.)

≥ Apr 2014 323

MXNet GluonNLP Model Zoo MXNet (Python, Scala, etc.) ≥ Apr 2014 42

PyTorch Hub
PyTorch

(Python, C++, Java)

Jun 2019 26

spaCy Models
spaCy

(Python)

≥ Feb 2015 6

TFHub

TensorFlow

(Python, JavaScript,

C++, Java, etc.)

March 2018 471

Torch7 Model Zoo Torch7 (LuaJIT, C) Jan 2015 20
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and downloaded from package repositories1,2. Generally speaking, package man-

agers can be divided into two groups. The first group (e.g., dpkg for Debian, Home-

brew for macOS, and Windows Store for Windows) provides compiled (binary) or

source code package management for operating system-specific applications, while

the second group (e.g., npm for JavaScript and PyPI for Python) provides package

management for programming language-specific API-level packages. This research

focuses only on API-level software package repositories (referred from this point

simply as software package repositories), and contrasts them to ML package repos-

itories.

In order to gain some basic knowledge of the existing software package reposi-

tories, Table 2.1 presents the basic statistics of the popular software package repos-

itories (containing more than 4,000 packages) from Libraries.io [22], which is a

popular index of the most common software package repositories — it monitors the

information about the packages within different software package repositories. As

shown in the table, we measured the launch time of repositories as the time of the

first commit of the GitHub repository that stores the actual source code powering

the package sharing websites. There are a few exceptions: the launch times of the

Go and CRAN repositories cannot be found, so we noted the time as no earlier

1https://en.wikipedia.org/wiki/Package manager

2https://en.wikipedia.org/wiki/List of software package management systems#Application-
level package managers
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than (≥) the initial date of their respective programming language (Go and R);

NuGet’s launch time is gathered from Microsoft’s documentation, not GitHub.

Unfortunately, since the concept of ML package repository is relatively new,

their information is not tracked yet by Libraries.io and we had to manually

gather information for ML package repositories. The list of ML package repositories

was obtained from the study of Braiek et al. [23]. Their launch times were retrieved

from multiple sources (e.g., twitter and blog posts) that announced the launch, the

first release, or commit of their respective GitHub repositories. We noted the launch

time as no earlier than the release time of the frameworks if no information is found

from the previously mentioned sources. The total number of ML packages were

counted manually since most of the ML package repositories (except for AIHub

TensorFlow module [24] and TFHub [14]) do not provide these statistics. The

results are shown in Table 2.2.

Due to their recency and relatively high learning curve (requiring deep ML ex-

pertise) and computing resource requirements, there are fewer reusable packages in

ML package repositories, compared to software package repositories. We observed

an average growth of approximately eight new packages per week in TFHub and

two new packages every week in the AIHub repository, indicating that ML package

repositories are still an upcoming phenomenon. Despite the relatively slow growth

of the number of packages within these ML repositories, we observed a high usage

12



of TFHub and PyTorch Hub ML packages in open source projects. For example,

a preliminary search of PyTorch Hub package loading API keyword3 shows that

PyTorch Hub packages are loaded in over 143K source code files on GitHub. An-

other search4 showed that Huggingface Transformers, a package containing most of

the complex NLP models, is used within 3.2K source code files on GitHub. These

results show that users prefer to reuse such existing models given the difficulty of

training custom ML packages. Thus, these limited number of ML packages can

power unlimited possibilities in ML software development and ML research.

2.2.1 Software Package Repositories

Exploratory Study: There are a few exploratory studies on software package

repositories. Bommarito et al. [25] analyzed the basic data of all of the packages on

PyPI at that time, including information elements like packages, releases, depen-

dencies, category classifications, licenses, package imports, authors, maintainers,

and organizations. They reported the evolution of the PyPI repository in terms of

active packages, new authors and new import statements. They observed highly

right-skewed distributions of package release numbers, authors’ package and re-

lease numbers, package import numbers, size of packages and releases. They also

3“https://github.com/search?q=torch.hub.load%28&type=Code”

4“https://github.com/search?q=torch.hub.load(‘huggingface/transformers’%28&type=Code”
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found that most of the packages are contributed by single individuals. Raemaekers

et. al. [26] presented a dataset that contains code metrics, dependencies, breaking

changes between library versions of more than 148 thousand jar files and a complete

call graph of the entire Maven repository.

Dependency Management: Dependency management on software package repos-

itories is an aspect that attracted lots of prior work. Some researchers have studied

the impact of dependencies (from software package repositories) on project health.

Alqahtani et. al. [27] used a unified ontological representation to establish bi-

directional traceability links between security vulnerability databases and software

software repositories. It is shown that when packages are shared, knowledge, in-

formation and vulnerabilities are also shared. Eghan et. al. [28] took Maven as

research subject and found that dependencies on external libraries have an im-

pact on project quality in terms of security vulnerabilities, license violations, and

breaking changes.

Decan et. al. [29] conducted a study about R packages distributed on CRAN

and GitHub and found that on GitHub, which is an increasingly used R package

distribution platform, packages are subject to inter-repository dependency prob-

lems that interfere their automatic installation. Cogo et al. [30] looked at the

phenomenon that developers downgrade the dependencies in the npm repository.
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They found the reasons behind the occurrence of downgrades, how the versioning

of dependencies changed when downgrades occur and how fast downgrade occurs.

Valiev et al. [31] explained that the interdependent network of open source

projects is the software repository, the sustainability (maintainability, attractive to

new comers, economic value of the project, etc.) of the projects that comprising

an repository may be determined by the repository context as well. Through the

case study of the PyPI repository, they found that project ties and relative position

in dependency network have impact on sustained project activity. Abdalkareem

et al. [32] calculated the proportion of trivial packages in npm and PyPI package

repositories. They surveyed the developers about the reasons and drawbacks of us-

ing trivial packages. They also found that only part of trivial packages are tested,

and few studied trivial packages have more than 20 dependencies.

Quality: In addition to dependency management, prior work also studied the

quality aspects of various software package repositories. For example, Claes et

al. [33] studied the phenomenon that developers copy the code from CRAN packages

to their code rather than depend on packages. They learned the characteristics of

the evolution of cloned code and the reasons behind the cloning activity. Trockman

et al. [34] explained that project maintainers use badges to signal the quality of their

projects to contributors and users on social coding platforms. Their investigation

15



into the badges in npm repository identifed the key quality attributes of interest to

project maintainers and how well these qualitity attributes are reflected by badges.

2.2.2 Sharing Reusable ML Packages

Currently there are limited researches in this area. Research mentioning TFHub

and PyTorch Hub are mostly using the ML packages from those hubs or contributing

new ML packages to them. Touvron et al. [35] proposed an image classification

optimization strategy relying on the fine-tuning of PyTorch Hub pre-trained ML

packages. Yang et al. [36] proposed a new NLP algorithm and published the pre-

trained ML packages on TFHub. Braiek et. al. [23] examined the evolution of ML

frameworks and their repository (actors and adoption over time) to understand the

role of open-source development in modern ML. They found that ML is between the

early adoption and early maturity stage. They also found that companies are the

main drivers of open-source ML, with the development teams consisting mostly of

engineers and industry scientists. They also identify that the big cloud computing

companies introduce a risk of a vendor lock-in for future ML development.
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3 An Exploratory Study on Machine Learning

Model Stores

In this chapter, we conducted an exploratory study on the current practices of

sharing ML models via the ML model store. We focused on the following two

research questions.

RQ1: What kind of information elements do model stores provide?

This RQ compares (1) the information elements among three model stores; and (2)

the information elements between model stores and app stores. By studying (1),

we intended to derive a set of software engineering practices (e.g., documentation

and delivery) of ML applications. By studying (2), we hoped to identify the com-

monalities and differences between conventional app stores and ML model stores.

The findings of this RQ may be helpful for ML model stores, which is still in their

infancy, to learn from established practices and grow faster and stronger in the

future.

RQ2: How unique are the models provided by each model store? In
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this RQ, we sought to investigate whether different model stores have their unique

offerings of ML models. On one hand, the more applications in one store, the more

likely that users can find the applications which suits their needs. Hence, app stores

periodically report and compare the number of applications in their app stores. On

the other hand, application developers hoping to reach more users by porting their

applications to different app stores. So the findings of this RQ will be helpful for

both users and developers of the models.

For each RQ in this chapter, the first section describes the experiments we did

(i.e., how the data is extracted), the second section presents our findings, and the

third section discusses the results and their implications.

Here we explain the choice of the research subjects. While the concept of “ML

model store” is relatively new (ModelDepot started in January 2018, Wolfram in

June 2018, and AWS in November 2018), mobile app stores have been around for

more than 10 years. We focused on Apple’s App Store (started in July 2008) and

Google Play (October 2008), as they are two of the most popular app stores right

now, each containing more than two millions apps. Both types of stores provide

platforms for developers to distribute and retail their applications.
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3.1 RQ1: What kind of information elements do model

stores provide?

In this RQ, we compared the information elements between ML model stores and

their counterparts mobile app stores. We extracted the information elements from

the stores and provide the results in a list. Then through comparison of the informa-

tion elements, the findings and implications of the commonalities and differences

between two types of stores, and the unique software engineering practices and

challenges of the ML models were derived.

In this RQ, collectively, we use the term “product” to refer to either an ML

model or a mobile app. When referring to products from individual stores, we use

the term “models” and “apps”, respectively.

3.1.1 Approach

For each of the three considered model stores, we used open coding [37] to label

the structure of the webpages used to sell/provide models. Two coders separately

split up each page into “information elements”, sections that provide a specific

functionality geared towards the store’s clients. For example, a section can provide a

description or the price of a product. We started with the two app stores and tried to

rediscover the reported information elements from Jansen et al. [19]. Since two app
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stores may use terms differently, we manually merged the corresponding information

elements among them. Certain elements from that paper are in considerable detail

(e.g., different revenue models), we merged those detailed elements under higher-

level elements, where they apply. In the end, all information elements from [19] were

found by our study. Furthermore, ten additional store elements were found by us

concerning release notes and product permissions, as app stores kept evolving since

2013. A similar process was performed on model stores and new elements unique

to the model stores were found. For all stores, we grouped related elements into

larger dimensions (e.g., user feedback, usage statistics, pricing under the

Business dimension). This process was conducted by the me and my supervisor

(Zhenming (Jack) Jiang), and later verified by a SE colleague (Bram Adams) to

ensure correctness, for details please refer to this paper [38].

In the end, we have identified 26 unique elements across six different dimensions

among all the stores as shown in Table 3.1 to Table 3.4. Each row corresponds to

one element, while a 3 indicates the presence of that element in a given store.
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Table 3.1: Comparing elements among the five mobile app and model stores. We

used the term “product” to refer to both “mobile apps” and “ML models”.

Dimension Element
Model Store App Store Description

(AWS ModelDepotWolfram)(Apple Google)

Product

Information

Owner 3 3 3 3 3 Developer information of this

product.

Description 3 3 3 3 3 The objectives and the func-

tionalities of this product.

Demo 3 A functionality provided for

end users, so that they can try

before buying/deploying the

product.

Language 3 Languages used in the user in-

terface of this product.

Size 3 3 3 3 Size of the product in disk.

Version

number

3 3 3 3 The version number of the cur-

rent release.

Permission 3 The list of hardware/software

resources needed from a user’s

device to properly run this

product.

Age rating 3 3 Constraints about the user’s

age.
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Table 3.2: Continued Table 3.1.

Dimension Element
Model Store App Store Description

(AWS ModelDepotWolfram)(Apple Google)

Technical

Documentation

User

instruction

3 3 3 Instructions on how to use this

product.

Framework 3 3 3 The underlying development

framework for the ML algo-

rithms used in this product.

ML

Algorithms

3 3 3 The types of ML algorithms

used in this product.

Training set 3 3 3 Datasets used for training the

underlying ML algorithms.

Performance 3 3 3 The performance (e.g., preci-

sion, recall, and accuracy) of

the underlying ML algorithms.

Origin 3 3 3 Source of where the prod-

uct originally came from (e.g.,

academic papers, open source

products).

Release notes 3 3 3 Information regarding the

changes in the current version

of the product.
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Table 3.3: Continued Table 3.2.

Dimension Element
Model Store App Store Description

(AWS ModelDepotWolfram)(Apple Google)

Delivery

Deployment

instructions

3 3 3 Instructions on how to deploy

and configure the product.

Compatibility 3 3 Information on which plat-

forms and versions are compat-

ible with the product.

Local

installation

3 3 Automated installation of the

product to a user’s device.

Cloud

deployment

3 3 3 Automatically deploying the

product within the provider’s

cloud infrastructure.

Business

Pricing 3 3 3 3 3 The pricing information about

this product.

User feedback 3 3 3 3 3 User feedback (e.g., rating and

comments) of this product.

Usage

statistics

3 3 Number of downloads for this

product.
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Table 3.4: Continued Table 3.3.

Dimension Element
Model Store App Store Description

(AWS ModelDepotWolfram)(Apple Google)

Product

Submis-

sion &

Store

Review

Online

submission

3 3 3 3 Developers can automatically

submit new versions of their

products online.

Store review

policy

3 3 Documentation on policies for

developers to follow in order to

get approval of the product.

Legal

Information

End user

license

3 3 3 3 3 Regulations on how users can

use this product.

Developer

license

3 3 Regulations on how developers

can further expand, integrate,

and distribute a product in an

authorized way.
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3.1.2 Findings

3.1.2.1 Comparison among Model Stores

Among the total of 26 store elements, 20 exist in one or more model stores and 13

are common among the three studied model stores. Below, we detail our comparison

results for each dimension:

• The Product Information dimension contains elements describing the char-

acteristics of the model that is being distributed on the model stores. Only

two elements (owner and description) are common among the three model

stores. The owner element shows the contact information from the developers

who submitted a model, while the description explains its objectives and

functionalities. In addition to the above elements, ModelDepot and Wolfram

provide information regarding the models’ size on disk. ModelDepot also

has a unique demo element allowing users to try out an ML model inside the

browser without installing it. Models in AWS and Wolfram usually include a

version number for each release, so that their users can easily tell whether

they are using the current version of the model.

• The Technical Documentation dimension contains the development-specific

information related to an ML model. Different from app stores, all three
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model stores contain user instructions, as the users of ML models gener-

ally are organizations/developers. They will likely reuse a model as is in a

similar or different product context (transfer learning), re-train a model using

the provided training scripts or extend it by adding additional elements to the

model. Hence, instead of a purely textual description, the user instruction

for ML models generally contains programming examples in the form of scripts

(e.g., Jupyter notebooks).

Different from AWS, ModelDepot and Wolfram contain many models origi-

nating from research prototypes or open source software products published

on GitHub or authors’ websites. The origin information of the models from

these two stores is displayed in a dedicated section. So does the informa-

tion about the framework (e.g., TensorFlow) used to train a model and the

ML algorithm (e.g., Convolutional Neural Network). In ModelDepot, the

information regarding the framework and the ML algorithm is prominently

displayed at the top of each ML model’s page. In Wolfram, more detailed

framework and ML algorithm information is provided (e.g., number of layers

and parameters for neural network architectures). In contrast, only about

4% of AWS models provide the origin information, 6% provide framework

information, and 20% provide ML algorithm information.

Among the three model stores, Wolfram and ModelDepot have dedicated ar-
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eas to display detailed information about the training set used for a model,

and its statistical performance on a test dataset. However, usually only a URL

is provided, without deeper discussion of the expected data schema. Fur-

thermore, different performance metrics are used for different models, even

for products within the same domain. For example, some image classifica-

tion models used the overall accuracy metric under 10-fold cross validation,

whereas others used “top-1”/“top-5” accuracy under 2-fold cross validation.

Very few (∼ 3%) AWS models provide performance results and such informa-

tion is not presented in a structured manner. Whenever a model is updated

to a newer version, it is important to document the changes (e.g., feature

updates or bug fixes) in a release notes document. However, such informa-

tion is missing or poorly presented in model stores. Although AWS contains

release notes, they are usually very brief with only one or two sentences.

ModelDepot does not contain version number and release notes.

• The Delivery dimension contains two elements related to the installation

and configuration of ML models. Running ML models usually requires spe-

cialized hardware (e.g., GPU) or high performance servers. Furthermore, in-

stalling and configuring the needed software components for an ML model

is a non-trivial task. Hence, all three model stores provide deployment

instructions. AWS and Wolfram provide dedicated cloud infrastructure
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to run all their models, which greatly eases the deployment of these ML mod-

els for users. While ModelDepot also provides cloud support, it currently

only supports one model.

• The Business dimension contains three elements related to the business as-

pects of the products. All three model stores contain price information

for their products. This information usually includes the costs of using the

store’s cloud infrastructure (e.g., VMs and ML APIs). However, the pricing

scheme is rather complex and not directly tied to the usage context of end

users. For example, AWS charges users on the cloud VM infrastructure and

the usage of the model package for training and predicting. Without any

performance estimations (e.g., the duration of training/prediction under a

particular setup), it is not clear how much one user will be charged for their

tasks. The usage statistics are missing in AWS and Wolfram. Although

ModelDepot provides the number of downloads for each model, it did not

provide any information about the types of infrastructure nor the number of

API calls for individual products. Such information would be very valuable

for software engineers to scale and optimize their ML applications.

• The Product Submission & Store Review dimension contains the infor-

mation related to submission of a model to the store and to review feedback
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from the stores. The submission process for AWS and ModelDepot just re-

quires to upload a model online, whereas developers have to contact the store

owners of Wolfram in advance to arrange the model submission. None of

the three model stores contain any publicly available development policies

regarding product reviews and approval.

• The Legal Information dimension contains elements related to licensing in-

formation of this product. For example, all model stores contain end user

licenses. The majority of AWS products are developed by commercial com-

panies, whereas the most of the models from Wolfram and ModelDepot are

based on research prototypes or open source projects. As such, those models

usually adopt open source licences (e.g., Apache or MIT licenses), which allow

users to access the models’ source code to further modify or extend them.

3.1.2.2 Comparison between Model Stores and App Stores

When comparing the elements between the app and the model stores, we only

focused on the elements missing in either all model stores or in both app stores.

Under the Technical Documentation dimension, there are one unique element

in model stores and three unique elements for app stores.

• The Demo element only exists in ModelDepot and is missing in all other model
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stores and app stores. Compared to mobile apps, which are meant to be

downloaded on mobile devices and hence are harder to disable after the expiry

of the demo, it is much easier to support model demos as models are meant

to be deployed in a container/server.

• Although ML products require access to various computing resources (e.g.,

images/videos/audio), permission, the list of required computing services

(e.g., microphone) or data (e.g., calendar), of models are not explicitly docu-

mented. The former can be derived through trial-and-error, or by skimming

through the annotated scripts. The content of some of the ML products

might not be suitable for certain users (a.k.a., age or language). For exam-

ple, one model in Wolfram is about determining whether an image contains

pornographic content.

Except release notes, all other elements under the Technical Documenta-

tion are missing in both app stores. The difference is mainly due to their different

target audience (software engineers vs. end users). Apps are products targeted to-

wards the general population, and hence come with a rich GUI. Furthermore, most

of these apps provide in-app tutorials when users initially launch them. In contrast,

models generally do not come with a GUI but instead correspond to APIs or com-

ponents that require programming in order to integrate them into an application.
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Instead of detailed developer documentation, models usually provide sample usage

in form of annotated scripts.

The elements under the Delivery dimension are completely disjoint, with two

elements only present in model stores, and two only in app stores. Such differences

are mainly because the automated product deployment techniques differ between

two types of products: apps installed on the users’ devices (app stores) or models on

the providers’ cloud infrastructure (model stores). The deployment instructions

and cloud deployment information are provided for all model stores, while all

app stores check compatibility of apps with the user’s device and allow one-click

purchase/installation of apps.

Although all elements under the Business dimension exist in both types of

stores, the pricing information is presented differently. For model stores, the pric-

ing is usually subscription-based or pay-per-use, whereas mobile apps have a wider

range of pricing schemes (e.g., entirely free, one-time purchase, and in-app pur-

chase). The store review policy under the Submission & Review dimension

is missing in model stores. As more models are being introduced into the stores,

such policies will be needed to protect users and developers. Similar to the Techni-

cal Documentation dimension above, the developer license element is missing

under the Legal Information dimension for app stores.
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3.1.3 Implications

• Emerging Practices: Since model stores have been introduced recently,

only 65% of the information elements are common across the three model

stores. For example, ML model information elements related to technical

details like ML algorithms, type of training datasets and cloud deployment,

are supported across all three stores. However, some other elements (e.g.,

demo or release notes) are only present in one or two stores. It would be

interesting to study the evolution of the information elements from the model

stores, as they are being used by more organizations/developers.

• Target Audience: Both model and app stores have several unique elements.

For example, model stores contain common usage for each ML model whereas

app stores contain age ratings for different apps. This is mainly due to their

different target users: app stores for end-users and model stores for organiza-

tions/developers.

• Reviewing Policy: Some important elements in app stores are currently

missing in model stores. In particular, there is no clear policy for submit-

ting and reviewing ML models before they can appear in the model stores.

The reviewing of ML models is a very challenging task and requires further

research in the following three areas: (1) Requirement specification: Mod-
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els used in different context (e.g., health care vs. gaming) need different

quality thresholds in order to be usable or safe. For example, how should

the safety requirements for radiology-related prediction models be defined?,

and (2) Automated monitoring mechanisms: To evaluate the safety and the

correctness of different ML models under submission, automated monitoring

mechanisms are needed; and (3) Standard quality measurement: common per-

formance measures of ML models are needed as indictors of qulity of service

(QoS) to enable users to compare among similar product offerings.

• Hidden Bias: Each model in the model store contains three components:

the source code, the training dataset, and the trained model(s). However,

little information is provided regarding the underlying data distributions and

the steps for data pre-processing of the training set. Yet such information is

very important in order to identify and remove the hidden bias in models.

For example, the deployed ML models can perform poorly, if the images

used during training are high resolution images and lower resolution images

taken from mobile phones are used in production. Further research is needed

to assist organizations/developers to properly identify, report, and remove

such bias in model stores in order to yield satisfactory performance of ML

applications.
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3.2 RQ2: How unique are the models provided by each

model store?

In this RQ, we first identified different types of models in model stores, then com-

pared them across model stores.

3.2.1 Approach

In order to obtain information about all models offered by the three studied model

stores, we first developed a model store crawler. Since each model store has a dif-

ferent structure (JSON for AWS, HTML sections for Wolfram and ModelDepot)

and displays its data differently (typically using Javascript to dynamically reveal

information), we had to write a different crawler for each store leveraging headless

Chrome to obtain the dynamic store content. Using the manually labeled infor-

mation elements used in RQ1, we developed parsers to automatically extract the

sections of each store. In this RQ, we studied the most recent snapshot obtained

using our crawlers at the time of this study (mid March 2019).
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3.2.2 Findings

3.2.2.1 Quantitative Analysis

Different model stores have different heuristics to group their models. AWS labels

each model using seven criteria (e.g., input and server location) and each model

can be under multiple criteria. For example, the input for a computer vision model

in AWS can be image(s) or video(s). The model can be deployed in US East or

Europe.

After manually studying the grouping criteria of each model store, we decided

to group the models based on their input data domain for the following two reasons:

(1) it is a common criteria among three stores; and (2) each model can only belong

to one input domain. Table 3.5 shows the number of models under each group.

AWS has the largest number of models, followed by Wolfram, and ModelDepot.

AWS is the only model store with models in all five groups. Neither ModelDepot

nor Wolfram contain any models in structured data, while this group contains

the majority (45%) of AWS models. The majority of the ModelDepot (75%) and

Wolfram (75%) models are focused on images, which is the second largest group

in AWS (27%). All three models stores contain only few models in the audio and

video group.

Since RQ1 shows that models in the model stores provide their technical doc-
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umentations, we manually went through each model to track their origin. As a

result, we found that 91% of the Wolfram and 72% of the ModelDepot models refer

to 34 and 20 academic papers, respectively. One paper/URL may correspond to

multiple ML models even in the same store. For example, we found two different

models in ModelDepot using the same implementation of one research prototype,

but were trained on two different datasets and used in two different contexts: gender

recognition and emotion classification. Similar cases also exist in Wolfram. Very

few (4%) models in AWS referenced academic papers, each of which corresponds

to different AWS models. Seven models in Wolfram and three in ModelDepot do

not contain paper references but GitHub URLs for the model implementation.

3.2.2.2 Similar Offerings of ML Models

We considered two ML models from different model stores as similar offerings

(a.k.a., similar models), if they share three information elements in common: ML

algorithms, training datasets, and objectives. For example, all three model stores

contain an image classification model that uses the same algorithm (ResNet50) and

training dataset (Imagenet). Most ML models have such information elements in

their individual product webpage. Note that similar ML models may not be ex-

actly identical. For example, although two similar ML models use the same ML

algorithms, their underlying implementations can be different. Table 3.5 shows the
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Table 3.5: The breakdown of ML models under different model stores. Note that

AWS contains 231 URLs, each of which corresponds to one model. Yet there are

three models that have two URLs for their two different versions. This brings

the number of AWS models to 228. We considered two models from two different

stores as similar offers, when the ML algorithms, the training dataset(s), and the

objective(s) are the same.

Group AWS ModelDepot Wolfram

Image
Count 61 (27%) 24 (75%) 59 (75%)

Similar 2 (0.8%) 6 (19%) 7 (9%)

Video
Count 13 (6%) 2 (6%) 0 (0%)

Similar - - -

Natural Count 35 (15%) 5 (16%) 18 (23%)

language Similar - 1 (3%) 1 (1%)

Audio
Count 12 (5%) 1 (3%) 2 (2%)

Similar - - -

Structured
Count 107 (47%) - -

Similar - - -

Total
Count 228 (100%) 32 (100%) 79 (100%)

Similar 2 (0.8%) 7 (22%) 8 (10%)
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results. there are only two similar models in AWS to the other two stores, whereas

ModelDepot and Wolfram had seven and eight common models. Most of the similar

ML models were found under the image group.

3.2.3 Implications

• Product Maturity: More than 70% of the models from ModelDepot and

Wolfram are based on research prototypes. This demonstrates the practical

impact of current AI research, which can be converted into production-ready

models in a relatively short time-frame. It would to be interesting to track

their future development activities of such models to understand the unique

challenges and opportunities for maintaining and evolving ML models.

• Cross-store Support: The amount of similar models across different model

stores is very small. This is mainly due to vendor lock-in. Migrating one

model to different stores requires adapting it to different frameworks, like

SageMaker for AWS and the Wolfram language for Wolfram. Similar to mo-

bile app stores, cross-platform frameworks for developing and maintaining

ML models are needed.
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3.3 Threats to Validity

External Validity We studied a variety of models and mobile apps across the three

popular model stores and two popular mobile app stores. Among the three studied

general purpose model stores, AWS models mainly are developed by commercial

companies, whereas the majority of models from Wolfram and ModelDepot are

derived from research prototypes. Google Play and Apple’s App Store are two of

the most popular app stores currently, hosting millions of applications. Despite

this variety in models and apps, future work should consider other model and app

stores.

Internal Validity Since we did not claim any causality, there are no threats

to internal validity.

Construct Validity We used the paper titles, model links, training datasets,

and application descriptions as our criteria for deciding whether or not two models

are the same, as most of the models from Wolfram and ModelDepot are origi-

nated from research prototypes or open source projects. Two models with different

usage contexts (e.g., detecting gender vs. detecting emotions) are considered as

different applications, even though they could share the same research references.

Furthermore, if more ML applications, especially the ones developed by commercial

companies, are added into the model stores in the future, these models will contain
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sparse references to papers/URLs. Our current approach will not be able to extract

the full list of overlapping applications

3.4 Summary

This chapter presented the exploratory study on ML model stores. We first empir-

ically compared the information elements among three model stores and two app

stores. Since model stores have been introduced fairly recently, only 65% of the

elements are common among model stores. We found some elements (e.g., cloud

deployment and user instructions) which are unique to the model stores. Certain

elements (e.g., review policy) which are presented in app stores are missing in model

stores. Further studies of the models inside the three model stores showed very few

offerings of the similar ML models among the model stores, with the majority of

the ML models from Wolfram and ModelDepot originating from research proto-

types. In the future, better support for effective reviewing of ML models in terms

of safety and quality are needed in model stores. Before integrating into ML appli-

cations, automated methods are needed to detect, report, and remove hidden bias

in pre-trained ML models.
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4 Empirical Study on the Software Engineering

Practices in Open Source ML Package

Repositories

In this chapter, we conducted an exploratory study on the practices of sharing

reusable ML models via the ML package (ML packages contain one or multiple ML

models One or multiple ML models can be packaged into a package) repositories.

We focused on the the following three research questions (RQs).

RQ1 - What types of information are presented on software package

repositories and ML package repositories? Given the relatively short exis-

tence of ML package repositories, this RQ (Section 4.1) aims to provide us with

insights on the structure (e.g., the organization of packages by task types) and

practices (e.g., release management) of the ML repositories, as well as to discover

any missing or non-formalized information elements (based on the comparison with

their counterparts in the software engineering domain). Such discoveries will be
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helpful in building a better ML package repository in the future in the sense of pro-

viding more information transparency, benefiting more users, especially software

engineers without solid background in ML.

RQ2: How are packages organized in ML package repositories? Next,

we investigated the organization practices of ML package repositories, in Section 4.2.

More specifically, we studied the family phenomenon within these repositories, and

its implications on package task type distribution, package similarity, and release

management.

RQ3 - What is the process needed in order to use the functionalities

from software/ML package repositories? Finally, we studied the function-

alities of the package managers (tools and libraries) provided by the ML package

repositories and how they are used in Section 4.3. These ML package managers,

provide functionalities that allow users to explore, manage and use the ML pack-

ages. In this RQ, we aimed to discover the unique practices of the ML package

managers by comparing them with the practices of traditional software package

managers. The findings and implications of this RQ may point out if there are any

practices of traditional software package managers that can be adopted to improve

the functionality of ML package managers.

For each RQ, the first section describes our approaches, the second section

presents our findings, followed by the third section discussing the results and their
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implications. However, before addressing the RQs, we first discuss the five reposito-

ries selected from Table 2.1 and Table 2.2 as the subjects of our exploratory study

here.

Among the ML package and software package repositories mentioned in Sec-

tion 2.2, our case study focused on npm, PyPI and CRAN as software package

repositories, and TFHub and PyTorch Hub as ML package repositories. The ratio-

nales of selecting these repositories are as follows:

• npm, PyPI, and CRAN respectively are the top three “mono-language” soft-

ware package repositories in terms of the number of packages they host, based

on the statistics presented in Table 2.1. They cover JavaScript, Python and

R, respectively

• TFHub and PyTorch Hub are the official repositories of TensorFlow and Py-

Torch, the most popular ML frameworks in academia and industry [39,40].

4.1 RQ1: What types of information are presented on soft-

ware package repositories and ML package reposito-

ries?

In this RQ, we aimed to understand the types of information presented in the

software package and ML package repositories. We focused on the information
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elements (IE), each of which describes one aspect of the packages or the repository,

e.g., the basic description of the package, the dependencies of the package, hyper-

parameter value settings, etc. By comparing the IEs in ML and software package

repositories, we learned the structure of the repositories, as well as the missing and

new/additional IEs needed by ML packages and ML package repositories. In what

follows, we presented the methodology used to achieve this (based on Chapter 3),

and a discussion of our findings.

4.1.1 Approach

Here we explained our process of extracting IEs from different repositories. This

process is based on the process that has been used in Chapter 3

We referred to several sources to determine the full list of IEs per repository.

The fundamental source was the website of the packages. Secondary sources such as

the software package description/documentation files5,6,7, ML package contribution

instructions8,9 and the JSON data structures generated upon loading a package

website were also analyzed.

The author of the thesis independently analyzed the information sources in a

5https://docs.npmjs.com/files/package.json

6https://github.com/pypa/sampleproject/blob/master/setup.py

7https://cran.r-project.org/web/packages/policies.html#Source-packages

8https://github.com/tensorflow/hub/blob/master/tfhub dev/README.md

9https://github.com/pytorch/hub/blob/master/docs/template.md
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Package Name

Developer(s)

Version Number

Description

Training
Information

Figure 4.1: An example comparing the IEs in TFHub (left) and PyTorch Hub

(right) packages. The example highlights the same IE in both repositories (green),

similar IEs with different representations (yellow), and IEs unique to only one

repository (red)
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first iteration to identify 39 IEs. Following several discussions and 6 more iterations

of analysis involving his supervisor and two other SE colleagues (Ellis E. Eghan and

Bram Adams), a final set of 33 IEs was agreed upon. The first iteration of analysis

by the authors achieved an IRR score (based on the Cohen Kappa coefficient [41])

of 94.87%, and increased to 100% at the last iteration.

It is normal for repositories to present the same IE differently, especially by

referring to the same IE by different terms. For example, Figure 4.1 shows how IEs

are presented on sample packages on the TFHub and PyTorch Hub repositories.

In our approach, we manually unified the IEs that are essentially the same. Fur-

thermore, we grouped related IEs into dimensions. We referred to the previous

work of Bommarito et al [25] to verify the sanity of IEs. In their work, the au-

thors used several IEs extracted from PyPI to study the repository’s evolution and

the distributions of important statistics (package release numbers, authors’ package

numbers, package import numbers, sizes, etc.). The IEs (packages, releases, depen-

dencies, category classifications, licenses, package imports, authors, maintainers,

and organizations) investigated by Bommarito et al. can all be extracted from our

analyzed repositories, except for package imports, which is an internal property of

packages and not related to this RQ.

The final list of extracted IEs are presented in Table 4.1 to Table 4.4. Each
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row is an IE, and the 3 represents its presence in the associated repository10. For

example, in the Package Information dimension, the Demo row shows that

npm, TFHub and PyTorch Hub have this IE while PyPI and CRAN do not. IE

dimensions are ordered alphabetically, and the IEs in every dimension are implicitly

grouped as follows. The first group contains IEs that belong to all five repositories.

The second group contains IEs that exist only in software package repositories (at

least one). The third group contains IEs that exist only in ML package repositories

(at least one). The fourth group contains other IEs in the dimension that cannot

be classified into the aforementioned groups, i.e., IEs that belong to some of the

ML repositories and some of the software repositories. Within each implicit group,

the IEs are ordered alphabetically.

4.1.2 Findings

4.1.2.1 Comparison between Software Package Repositories and ML

Package Repositories

We analyzed the common and unique IEs between the two types of repositories:

software package and ML package repositories. It should be noted that if we say a

type of repository has an IE, it means that this IE appears in at least one of the

10The IEs are extracted from software package and ML package repository pages at the end of
March, 2020.
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Table 4.1: Information elements among the three software package repositories and

two ML package repositories. Information elements in bold are unique to either

software package repositories (at least one) only or ML package repositories (at

least one) only.

Dimension Element
SW Pkg Repo ML Pkg Repo Description

(npm PyPI CRAN) (TFHub PyTorch Hub)

Delivery

Dependencies 3 3 3 3 3 The packages this package depends on.

Without them, this package cannot function

normally.

Running Envi-

ronment

3 3 3 3 3 Information related to usage context. E.g.,

multiple formats, hardware and software en-

vironment requirements.

Dependents 3 3 The packages that depend on this package.

Without this package, those packages cannot

function normally.

Downloadable

Provided

3 3 3 The package can be downloaded as files or

a zipped file other than using deployment,

installation or initialization command

Legal

Information

License 3 3 3 3 Regulations on how users can use this pack-

age.

Copyright 3 Information claiming the owner of the copy-

right (not necessarily the author).
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Table 4.2: Continued Table 4.1

Dimension Element
SW Pkg Repo ML Pkg Repo Description

(npm PyPI CRAN) (TFHub PyTorch Hub)

Package

Information

Description 3 3 3 3 3 The objectives, functionalities and other ba-

sic information of this package.

Developer(s) 3 3 3 3 3 Owner, publisher or collaborators of this

package.

Extra Informa-

tion

3 3 3 3 3 Other information related to this package,

e.g., homepage links, more resources, aca-

demic references.

Indexing Key-

words

3 3 3 3 3 Keywords of this package that can be used to

search similar packages. Classify and select

packages according to keywords.

Package Name 3 3 3 3 3 Name of the package.

# Downloads 3 Number of downloads of this package.

GitHub

Statistics

3 3 E.g., # PRs, # Issues, # Stars, # Forks.

Demo 3 3 3 A functionality through which users can try

before downloading/deploying the package.

Published Time 3 3 3 3 The publish date of this version.

Size 3 3 Package’s disk size.

Version Alert 3 3 3 Information indicating that this package is

either not the latest version or not suitable

for use.

Version Number 3 3 3 3 The version number of the current release.
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Table 4.3: Continued Table 4.2

Dimension Element
SW Pkg Repo ML Pkg Repo Description

(npm PyPI CRAN) (TFHub PyTorch Hub)

Package

Submission &

Review

Developer Con-

tribution

3 3 3 3 3 General developers have access to submit and

publish packages.

Review Mecha-

nism

3 3 3 Review process for submitted package. E.g.,

policies, pull request review.

Security Vulnerability

Report

3 Report a security vulnerability for this pack-

age.

Software

Development

Issue Tracking

Information

3 3 3 3 3 Information for reporting issues. E.g.,

GitHub repository issue link.

Source Code

Repo

3 3 3 3 3 The GitHub or other repository for this pack-

age.
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Table 4.4: Continued Table 4.3

Dimension Element
SW Pkg Repo ML Pkg Repo Description

(npm PyPI CRAN) (TFHub PyTorch Hub)

Technical

Documentation

User Instruction 3 3 3 3 3 Instructions on how to use this package. E.g.,

example code snippets.

Package Com-

ponent Infor-

mation

3 3 3 Information about the package’s compo-

nents. E.g., source code file location, data

file location.

Algorithm 3 3 Information describing the algorithm of this

package. E.g., neural network architecture.

Data Descrip-

tion

3 3 Information about the dataset. E.g., dataset

name, IO data shape, data pre-procession.

Package Qual-

ity Evaluation

3 3 Information about how good the package is.

Training In-

formation

3 Details about training this package. E.g.,

the training checkpoint file used, hyper-

parameter settings.

Pre-defined In-

terfaces

3 3 3 3 E.g., the entrypoint(s) of the program, the

main file/ function of a package, a special

function related to a command.

Package Domain 3 3 3 3 The application domain or task type of the

package, e.g., image classification for

ML packages, front-end for software pack-

ages.

Release History 3 3 3 3 Accessible old versions of this package.

Release Notes 3 3 Information explaining the changes that have

been made for each release.
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repositories of this type. For example, since npm has Demo, we say software package

repositories have this IE. By comparing between the two types of repositories, we

identified what meaningful IEs are missing in ML package repositories.

In the Delivery dimension, both types of repositories have four IEs each, with

three IEs (Dependencies, Running Environment, Downloadable Provided) in

common.

While software package repositories usually provide a special area for depen-

dencies on the package’s webpage, dependencies in ML package repositories are

often in free-text within the package description. Furthermore, ML packages’ de-

pendencies are usually Python packages that can be installed from PyPI, e.g., de-

pendency software packages of ML packages typically are related to data processing

like opencv-python 11, tensorflow-text 12, rather than other ML packages.

Although the Dependents IE is unique to software package repositories, we

found evidence of its possible inclusion in ML packagage repositories given the

observed dependencies between ML packages such as llr-pretrain-adv-latents

and llr-pretrain-adv-linear. The output of the former is the input of the latter,

and the output of the latter ML package can be used as the basis for classification.

11https://pypi.org/project/opencv-python/

12https://pypi.org/project/tensorflow-text/

52



In other words, to complete the classification task, two ML packages must be used

in combination. PyTorch Hub also has similar examples. The output of ML package

Tacotron2 is used as the input of ML package WaveGlow. The two ML packages

can be used together to complete the text to speech task. Because the existence of

such examples, it is worthy to consider adding a special dependents/dependencies

IE to the ML package page to illustrate the interrelationship between ML packages.

In the Legal Information dimension, License is the only common IE between

both types of repositories. Packages on both type of the repositories are licensed.

Software package developers need to explicitly specify a license in the description

file of the software package. In ML package repositories, however, packages bear

the default license unless specially declared.

If the Copyright belongs to people other than the author, the copyright holder

is also needed to be specified. This IE is only found in the CRAN software package

repository.

In Package Information, Software package repositories have 12 IEs, including

all ten IEs that ML package repositories have.

The Developers of software packages tend to be individuals while the ML pack-

age owners are usually organizations. Generally, software packages are less likely to

be connected with an organization. Previous studies show that 75% of npm pack-
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ages are published by individual developers [42], and only about 5% of PyPI pack-

age authors are organizations [25]. Conversely, we observe that both the TFHub

and PyTorch Hub repositories each contain only three ML packages published by

individual developers.

There is no formal versioning mechanism in ML package repositories. Software

package repositories mostly adopt the semantic versioning format, e.g., x.y.z where

x means a major change, y means a minor change and z means a patch [30]. In

TFHub, the version number is simply represented by integers like version 1, 2 and

3. However, there is no versioning mechanism in PyTorch Hub.

# Downloads and GitHub Statistics are indicators of the popularity of pack-

ages, which are completely missing in ML package repositories. Such an IE can

reflect the wide usage of package and its huge possibility of satisfying the need of

most developers. This will be helpful for ML package users, especially for people

without solid ML expertise (like general software engineers), but might not be of

much use to experienced data scientists and ML researchers.

All the IEs in the Package Submission & Review dimension are found in

both types of repositories. However, different mechanisms are used in both types of

repositories — software package repositories have special command line tools and

review processes while ML package repositories’ contribution is based on GitHub
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pull request. For example, npm and PyPI users use command line tools to submit

their locally developed projects to the package repositories. Successfully submitted

packages do not undergo any further review and are made immediately available

for other users (except for CRAN, which has specific contribution policies13). In

contrast, the contribution of ML package repositories is based on GitHub pull re-

quests. Everyone can contribute their ML packages to TFHub and PyTorch Hub

by creating a pull-request. Pull request-based submission mechanism can be a good

point for ML packages, since pull requests usually go through a specific review pro-

cess before they are merged into code base and afterwards being available to users.

In the Security dimension, only the npm package repository provides the

Vulnerability Report. Though ML packages may also suffer from vulnerabil-

ity issues, no such IE is currently provided in ML package repositories. According

to Wang et al. [43], attackers can use the publicly available knowledge (algorithms,

dataset, architecture, etc.) of pre-trained models to create vulnerabilities to un-

dermine the performance of dependent models (models built based on existing pre-

trained models). In their work, Wang et al. demonstrated how vulnerabilities can

be created for models pre-trained on the ImageNet [44] dataset using the VGG [45]

and ResNet [46] algorithms. Due to the existence of similar packages/models on

13https://cran.r-project.org/web/packages/policies.html
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TFHub and PyTorch Hub, it is extremely important for ML repositories to provide

users with vulnerability detection and reporting functionalities.

In the Software Development dimension. ML package repositories and soft-

ware package repositories share all of the IEs. Software package repositories pro-

vide the GitHub Issue link of a package for users to report issues. This practice is

different from the Issue Tracking Information of ML package repositories (de-

scribed further in Subsection 4.1.2.2). All of the software package repositories, just

like PyTorch Hub, provide the Source Code Repository GitHub links of software

packages/ ML packages in a fixed area on the package’s page.

In Technical Documentation, software package repositories have six IEs

while ML package repositories have nine. Among those IEs, User Instruction,

Pre-defined Interfaces, Package Domain, Release History, Release Notes

are common in both types of repositories.

The Release Notes are organized differently in the different types of reposito-

ries. For example, CRAN’s release note can either be a GitHub commit message

or an HTML page containing all the correlated information. In TFHub, the release

notes will be directly presented at the end of the description and they generally

follow a certain format.
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ML package repositories have four unique IEs. The IEs Algorithm, Data

Description, Package Quality Evaluation, Training Information are all ML

related and need a certain amount of ML expertise. Such IEs provide transparency

to ML package users. Unlike ML packages, most software packages are not devel-

oped based on a single particular algorithm or dataset. Thus, their implementation

details are rarely a concern for users; users just access the functionality of the

package through its provided APIs.

While software packages are considered of high technical quality based on the

proportion of passed test cases, ML packages’ technical quality is determined by

statistical evaluation criteria. This indicator is not in a formalized structure across

ML package repositories (e.g., there is no fixed area on an ML package’s site to show

its performance) and it requires the users to have a relatively good understanding

of the related ML task types (e.g., ML packages in image classification task type use

top-1 or top-5 accuracy to evaluate their performance, ML packages in object detec-

tion task type use intersection over union). In our previous study on model stores

in Chapter 3, we found that limited information in terms of IEs like source code

and training dataset (like how dataset are pre-processed) may introduce the hid-

den bias to the model re-usage. Thus, providing more ML implementation-related

information and making such information more detailed and clearly organized will

help users better understand use and modification of the ML packages easier.
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Software package repositories do not directly provide package quality evalua-

tion information. The quality of a software package is reflected through its usage

statistics. So software package repositories may need to add a quality evaluation

IE to show the test coverage results or CI results (usually captured in the external

websites of software packages) within the repository for users.

4.1.2.2 Comparison among ML Package Repositories

There are 28 IEs (belonging to six dimensions) in at least one of the ML package

repositories. Among them, 16 are common in both of the ML package repositories.

We presented a detailed analysis of the results of each dimension below. By doing

these comparisons between ML package repositories, we identified the common IEs

of both ML package repositories and what unique IEs of one repository should also

be possessed by another one.

In the Delivery dimension, ML package repositories have two IEs in common

(Dependencies and Running Environment) while the Downloadable Provided IE

is unique to TFHub.

In TFHub, the running environment IE describes the format(s) of the package

and version of TensorFlow required to load the package. TFHub packages can con-
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tain models of different formats e.g., general package formats (hub.Module, TF2

SavedModel), format for TensorFlow on JavaScript, and format for deployment on

edge device (computational equipment that have limited computational resource,

like mobile phone). The format of a packages/model determines its usage context

(more details are in Section 4.3.2.3). PyTorch Hub packages do not provide the

packages that are suitable for multiple usage context. However, they use the run-

ning environment IE to indicate if an ML package needs accelerator support like

GPU and CUDA [47](NVIDIA parallel computing architecture for GPU); having

an accelerator can make a big difference in ML efficiency.

Only TFHub provides links for directly downloading the package files in multi-

ple formats.

Legal Information contains a single IE related to licensing. According to the

TFHub contribution tutorial, if no license is specified, the default license for an ML

package will be Apache 2.0 [48]. No information was found about the licenses used

by PyTorch Hub packages.

Package Information. ML package repositories have ten IEs in this dimen-

sion, with Description, Developer(s), Extra Information, Indexing Keywords,

Package Name, Demo are common between the two repositories. The Description

59



are actually in freestyle and may contain other IEs. ML packages generally will

provide academic papers and GitHub links as Extra Information. These aca-

demic papers are usually the original sources of the algorithms used by the ML

packages. So this IE can be helpful for users like data scientists and researchers

who may benefit from dig into the basic principle of the algorithms. As for the

Indexing Keywords, they can be task types (text embedding, image classification,

etc.), datasets (ImageNet, etc.), algorithms (CNN, Transformer, etc.) and some

other ML attributes that help users narrow down the search scope. The Names of

TFHub ML packages are more complicated than PyTorch Hub ML packages, be-

cause the former contain not only the key algorithm names but also the names of

dataset or configuration values used during training. Their Demo is supported by

Google Colab, an online Python notebook environment. These example notebooks

usually contain complete use cases of this ML package.

There are four other IEs unique to TFHub. Due to Pytorch Hub’s lack of a

versioning mechanism, the Version Alert, Version Number, and Publication

Time are missing. Also, there is no Size information in PyTorch Hub. We discuss

the implication of this lack of a formalized versioning mechanism in Section 4.1.3.

Both IEs in the Software Development dimension are found in the two ML

package repositories.
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Regarding the Issue Tracking Information IE, PyTorch Hub provides a link

to its GitHub issue page while TFHub provides a form for users to submit any

kind of feedback directly from the repository. In both ML package repositories,

users can also report bugs identified in either the frameworks or ML packages

on the tensorflow hub library’s GitHub repository14 and PyTorch Hub’s GitHub

repository15.

Though both repositories also provide links to the Source Code Repository,

most packages in TFHub include these links as freestyle text in the package de-

scription (not in a dedicated area like in PyTorch Hub), making this information

difficult to identify.

The Technical Documentation dimension has six common IEs (User Instruction,

Algorithm, Data Description, Package Quality Evaluation, Training Information,

Package Domain) in both ML package repositories. However, these common IEs

are usually not organized as independent IEs or formally presented; they are a part

of the ML package description.

The Package Domain can usually be the indexing keywords of the ML packages.

It contains ML application domains (computer vision, natural language processing,

14https://github.com/tensorflow/hub

15https://github.com/pytorch/hub
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etc.) and ML task type (image classification, text embedding etc.). Note that ML

package repositories do not have Package Quality Evaluation in all of their ML

packages. Only 17 (out of 26) and 35 (out of 383) packages in the PyTorch Hub and

TFHub repositories, respectively, provide their quality evaluation result. In TFHub

this IE is also a part of the general package description rather than independent

IE.

In addition to the shared IEs, both ML package repositories have unique IE(s).

Because of the lack of versioning mechanism, PyTorch Hub does not have Release

History and Release Note. As for Training Information, TFHub ML pack-

ages may provide more detailed algorithm information like the model optimizer

arguments16. PyTorch Hub usually does not provide such details, but it has a

unique area in a ML package page for listing the Pre-defined Interfaces which

are the entrypoints. Entrypoint is a mechanism in PyTorch Hub to manage variant

models within a single ML package. Users specify an entrypoint when loading a

PyTorch package to get the needed variant of a model. On the other hand, TFHub

ML packages do not have entrypoints but rather utilize a signature mechanism.

The signature mechanism is used by TFHub packages to organize combinations of

input and output tensors (basic data structure in ML). These two mechanisms will

be explained in detail in Section 4.3.

16https://tfhub.dev/deepmind/spiral/default-fluid-gansn-celebahq64-gen-19steps/1
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Only 173 TFHub packages (out of 383) introduced signatures (e.g., telling users

about what this signature can do, what hyper-parameter it needs) in their descrip-

tion section. Though the signatures are not listed formally, the TFHub users can

get a full list of the signature they supports by calling an API of the packages. In

PyTorch Hub, only 10 (out of 26) packages provide a list of their entrypoints within

their package pages.

4.1.3 Implications

Dependency Management. ML package repositories currently assume that,

unlike software packages with several dependencies and dependents, ML packages

rarely depend on each other but rather depend on existing Python packages and

the core ML frameworks. However, our analysis was able to identify dependencies

between ML packages (as discussed in Section 4.1.2.1).

Hidden dependencies are a major risk for developers. Dependency-related infor-

mation helps developers to make a better estimation of the effort needed to upgrade

to a given software/ML package. For example, users may be concerned of the risk of

introducing bugs or breaking changes during an upgrade, as well as the extra work

needed to make their current dependencies compatible with the new dependencies

introduced by the included software/ML package. Thus, dependency-related IEs
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may have an impact on when and whether developers decide to upgrade the ML

package.

Release Information. TFHub implements a basic incremental versioning mech-

anism (version numbers and release notes) while PyTorch Hub has no mechanism

in place. Versioning helps users learn whether the ML packages have been updated

and whether it is worthy to upgrade to a new release. ML package repositories can

adopt a practice similar to the semantic versioning of software package repositories

to indicate the severity of changes and backward-compatibility of APIs (more de-

tails on this discussion in versioning is provided in Section 4.2). Given the numerous

points of change in ML packages (e.g., algorithm, training dataset, configurations,

etc.), a consensus among ML package stakeholders would have to be reached on the

definition of a major and minor changes, as well as patches.

Popularity Indicator. Experienced users of ML packages can tell which ML pack-

age is better by looking at the performance evaluation result, while users without

solid ML expertise (like general software engineers or researchers not in ML area),

however, may refer to information such as the popularity, reviews and the quality

of technical functionalities when deciding on a ML package or software package

to use. Intuitively, such users may choose the packages with the most downloads
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(popularity) [49] or the most positive reviews from other users (common in some

traditional software engineering repositories like mobile app stores) [50].

Such indicators make it easier for users who do not know how to differentiate be-

tween algorithm performance and datasets to know which ML package is the most

popular or has a good reputation. So the quality indicator information elements

are highly recommended to be provided by ML package repositories.

Security. TensorFlow, PyTorch and most of the other popular ML related libraries

are mainly Python-based and can be installed through PyPI. However, since PyPI

does not provide any submission review and security vulnerability report mecha-

nism, this increases the quality and security risks of ML packages. These security

risks are hard to discover. For example, an ML engineer may expend much effort

to locate a bug in the model’s source code, but the bug may actually originate in

an imported Python library installed from PyPI.

Although the bugs may originate from the external Python dependencies, there

are several vulnerability analysis tools (e.g., WhiteSource [51], snyk [52]) that ML

developers need to include in their workflow to identify the propagation of vulner-

abilities from dependent packages into the ML application.

Technical Documentation. There is no formalized (or unified) structure or or-

65



ganization of the technical information within ML package repositories. ML pack-

ages have some unique technical documentation like algorithms, dataset descrip-

tion, training details, ML package tune-ability and ML package quality evaluation.

Given this lack of formalism, users of ML packages need to read the documentation

or description of packages in order to extract such information. These technical

documentation vary in style and form, making it difficult for users to understand

and compare ML packages. It would be beneficial if packages within a ML package

repository are required to follow a documentation standard that ensures the same

structure of information elements across different packages.

4.2 RQ2: How are packages organized in ML package repos-

itories?

In Section 4.1, we identified and compare the IEs presented in software and ML

package repositories, while this RQ is specific to the domain of machine learning

(packages). In this RQ, we went one step further by investigating some of the

major IEs (e.g., task types, algorithms, datasets) and the inter-relationship (e.g.,

similarities, distributions in different task types) of ML packages within the ML

package repositories. In particular, the analysis performed in this RQ is centered
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around a unique phenomenon in ML package repositories: ML package/model fam-

ilies, which are groups of packages/models that are similar with each other in terms

of task types, algorithms and datasets. Thus, through the study of this RQ, we

provided details on the organization practices within such ML package repositories

and provide the users with information about what kind of packages to expect in

each ML repository.

4.2.1 Approach

Using web crawlers and custom scripts (see our replication package [53]), we ex-

tracted the IEs from the JSON data structures (generated by each ML package’s

individual page) and webpages of each package in the TFHub and PyTorch Hub

repository.

It should be noted that PyTorch Hub provides models in PyTorch’s general for-

mats (.pt or .pth files) only. So in order to perform a fair comparison, we only con-

sidered the two general formats of TFHub, i.e., hub.Module and TF2 SavedModel.

For example, we did not consider TFHub packages that are not provided in either

hub.Module or TF2 SavedModel formats (e.g., mobilenet v2 1.0 224 quantized

17). However, if a package provides extra formats in addition to the two general ones

17https://tfhub.dev/tensorflow/coral-model/mobilenet v2 1.0 224 quantized/1/default/1
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(e.g. imagenet/mobilenet v2 075 96/feature vector 18 ), we only took those

two general formats into account. Thus, the analysis in this RQ was performed on

383 TFHub packages (741 versions) and 26 PyTorch Hub packages (including 132

models). The snapshots for both repositories were taken in the middle of March

2020.

For each ML package, we extracted information about the task type, algorithm,

and training dataset. For TFHub, the values and contents of IEs in our research

scope were extracted automatically from the JSON data structure. Although Py-

Torch Hub does not provide such a data structure, we manually extracted the

needed information from the PyTorch Hub packages due to their limited number.

4.2.2 Findings

4.2.2.1 Task Type of ML Packages/Models

Each published ML package in the studied repositories is trained with a specific

algorithm on a specific dataset to help developers with a particular ML task (e.g.,

image classification). TFHub and PyTorch Hub define different type task classi-

fications. In our research, we adopt TFHub’s classification due to its clarity, and

manually apply this classification on PyTorch Hub’s packages. Task types unique

to PyTorch Hub are added to the task type set. It should be noted that we further

18https://tfhub.dev/google/imagenet/mobilenet v2 075 96/feature vector/4
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Table 4.5: Task types and ML package/model distribution on TFHub and PyTorch

Hub

Application

Domain
Input

ML

Task Type

# ML Packages
Task Type Description

TFHub

(%)

PyTorch Hub

(%)

Audio

Processing
Audio

Embedding 3 (0.8%) 0 (0.0%) Changing the audio into a mathematical vector.

Pitch

Extraction

1 (0.3%) 0 (0.0%) Recognize the dominant pitch in sung audio.

Mel

Spectrogram

Audio

Generative

0 (0.0%) 1 (3.8%)

Synthesizes audio taking

Mel Spectrogram(an acoustic time-frequency

representation of a sound [54]) as input.

categorized similar task types under new created task types. The result of this

process are the task types in Table 4.5 to Table 4.7, among which two are in audio

processing, six are in computer vision and two are in natural language processing.

As shown in Table 4.5 to Table 4.7, image feature vector ML models take up the

largest proportion (around 29%) in TFHub; the second and third largest task types

in TFHub are text embedding (around 26%) and image classification (around 25%).

In PyTorch Hub, the top three largest task type groups are text embedding (around

52%), image classification (around 39%) and image generator (around 3.8%).

Both repositories have ML models of the image classification, image generator,

object detection, image segmentation and text embedding task types. TFHub has

more ML models in all five types than PyTorch Hub. Only TFHub has ML models
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Table 4.6: Continued Table 4.5

Application

Domain
Input

ML

Task Type

# ML Packages
Task Type Description

TFHub

(%)

PyTorch Hub

(%)

Computer

Vision

Image

Augmentation 6 (1.6%) 0 (0.0%)
Augment the images.

(like rotation, shearing)

Classification 94 (24.5%) 15 (57.7%) Classify the images according to their contents.

Feature

Vector

111 (29.0%) 0 (0.0%) Extract image features.

Generator 42 (11.0%) 2 (7.7%)

Generate images.

(e.g., synthesize a photo, picture style transfer,

enhance resolution)

Object

Detection

4 (1.0%) 1 (3.8%) Find the objects in an image.

Segmentation 10 (2.6%) 3 (11.5%) Divide the different regions of a image.

Other 1 (0.3%) 0 (0.0%) -

Video

Classification 2 (0.5%) 0 (0.0%) Classify the videos according to their contents.

Generator 5 (1.3%) 0 (0.0%) Generate videos.

Text 2 (0.5%) 0 (0.0%) Extract video features.
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Table 4.7: Continued Table 4.6

Application

Domain
Input

ML

Task Type

# ML Packages
Task Type Description

TFHub

(%)

PyTorch Hub

(%)

Natural

Language

Processing

Text

Question

Answering

3 (0.8%) 0 (0.0%) Answer questions in natural language

Embedding 99 (25.8%) 3 (11.5%)
Changing the text (word, phrase, document)

into a mathematical vector.

Text to

Mel Spectrogram

0 (0.0%) 1 (3.8%)
Generates Mel Spectrogram

with natural language text

of audio embedding, audio pitch extraction, image augmentation, image feature

vector, text question answering and video processing types. At the same time,

users have to go to PyTorch Hub for ML models of audio generative (with Mel

Spectrogram), text to Mel Spectrogram, and image semantic segmentation task

types.

4.2.2.2 ML package Organization Practices: Family Phenomenon

ML packages are not organized in the same fashion in the TFHub and PyTorch Hub

repositories. Although each ML package (in either TFHub or PyTorch Hub) has its

individual page, we observed possible similarities among ML packages in terms of

algorithm, training dataset and task type. Thus, in this section, we performed an

in-depth analysis of the organization of these two ML package repositories through
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Figure 4.2: The feature diagram of ML models

a study of the family phenomenon (introduced at the beginning of this RQ).

4.2.2.2.1 Definition

ML packages differ from each other in terms of task types, algorithms, datasets

and package formats, as illustrated in Figure 4.2. The former three are ML-related

information elements and the last one depends on the package’s implementation

(e.g., different frameworks provide different model formats).

ML packages usually contain one or multiple ML models; a TFHub package

always contains a single model while a PyTorch Hub package may contain several

models through the entrypoint mechanism (generally speaking, one entrypoint maps

to one model). From the perspective of models, we found that some of them are the
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same in terms of the task type, algorithm and training dataset, but differ from each

other due to different configurations of the algorithm or different pre-processing of

the dataset. This phenomenon inspires us to group such models as families.

In the context of our research, family members have the same task type,

algorithm and dataset, but may differ in configurations, output sizes and data

pre-processing. Configurations (e.g., network depth, network width, normalization,

etc.) are the most common differences among family members. Such configurations

can cause the ML models to be of different sizes in terms of FLOPs (floating point

operations, a metric for the complexity of the ML model) and number of param-

eters; thus, having an impact on the performance and deployment of ML models.

Generally speaking, the larger a ML model’s size, the better its performance (like

classification accuracy). However, large ML models require more computational

resources and are not suitable for usage contexts like mobile phones. Another dif-

ference observed in family members is the output size. For image generation ML

models, the output size is the size of generated images, or for text embedding ML

models, the length of embedding vectors. Different data pre-processing steps such

as text case normalization (e.g., lower and upper case and accent markers are kept

or removed uniformly) are used among family members, especially in NLP ML

models.

The family phenomenon in ML package repositories is comparable to the prod-
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uct line architecture in traditional software engineering, which makes it easier to

create closely related but varying versions of the same product [55]. It should

however be noted that there is no direct mapping between model families and

signatures/entrypoints. TFHub and PyTorch Hub packages are required to have

signatures and entrypoints, respectively. However, their implementation mostly

depends on the developer of the package. For example, a developer can create mul-

tiple entrypoints within the same package but none would use the same algorithm,

dataset or task type. Thus, a package can contain models belonging to different sets

of families (e.g., the Semi-Supervised and Semi-Weakly Supervised ImageNet

Models package contains 12 models that form four families).

Analyzing the differences between such family members provides additional un-

derstanding about ML model management and presentation; thus, it is essential

that any ML package analysis considers this concept. We provided details on these

different organization practices in the subsequent sections. In order to have a uni-

form analysis and comparison across the two ML package repositories, the subjects

of the research in the subsequent subsections are rather the models within ML

packages.
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Figure 4.3: Distribution of the number of family members in ML models of the

studied ML package repositories based on application domain (ln-scaled). The

total number of families of TFHub and PyTorch Hub are 43 and 28 respectively.

4.2.2.2.2 Family Grouping Result and Analysis

There are 43 and 28 families in the TFHub and PyTorch Hub repositories, respec-

tively. MobileNet V1 and MobileNet V2, both trained on ImageNet, are the two

largest families in TFHub with 32 and 23 members, respectively. TFHub model

families have a median of five family members, with most families having two mem-

bers. In PyTorch Hub, VGG Nets and BERT families have the largest number of

members (eight). The median number of family members is 2.5 and most families

have two members.
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Table 4.8: Statistics of number of families and median number of family members

(only task types with at least a single family in either repository are shown)

Application

Domain
Input

ML

Task Type

# Families
Median

# Family Members

TFHub PyTorch Hub TFHub PyTorch Hub

Audio Processing Audio Embedding 1 - 2 -

Computer

Vision

Image

Classification 7 13 4 4

Feature

Vector

12 - 2 -

Generator 7 1 5 2

Object

Detection

- 1 - 2

Segmentation 1 - 10 -

Video Text 1 - 2 -

Natural Language

Processing

Text

Question

Answering

1 - 3 -

Embedding 13 13 8 2
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Figure 4.3 shows the distribution of the number of family members in TFHub

and PyTorch Hub based on application domain. We observed the family phe-

nomenon in only nine task types across both TFHub and PyTorch Hub (see Ta-

ble 4.8). Six of these tasks belong to the computer vision domain (Image Classification,

Image Feature Vector, Image Generator, Video Text, Image Segmentation and

Object Detection), one (Audio Embedding) belongs to audio processing, and two

(Question Answering and Text Embedding) belong to the natural language pro-

cessing domain. Audio embedding, image feature vector, image segmentation, video

text and text question answering are only discovered in TFHub, while object de-

tection family only exists in PyTorch Hub. Some statistics about the task types

are in Table 4.8.

In both ML package repositories, the text embedding type has the largest num-

ber of families. TFHub has more families than PyTorch Hub in the image generator

task type, while PyTorch Hub has more families of image classification task type.

TFHub and PyTorch Hub families use 27 and 20 algorithms, respectively, with

only two algorithms in common: ResNet-V1 (image classification) and BERT (text

embedding). On TFHub, text embedding algorithm NNLM has the largest number of

ML models (58) while the text embedding algorithm BERT has the largest number

of ML models (23) on PyTorch Hub.

A great diversity of datasets is also used to train the ML models within the
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Table 4.9: Similar ML models in the studied ML package repositories (* The ML

model on TFHub is trained on ImageNet 2012, the PyTorch Hub model is trained

on ImageNet 2014)

Application

Domain
Input

ML

Task Type
Algorithm Dataset

# Models

TFHub PyTorch Hub

Computer

Vision
Image Classification

Inception V1

(GoogleNet)

ImageNet* 1 1

Inception V3 ImageNet 2 1

ResNet V1 ImageNet 4 5

MobileNet V2 ImageNet 23 1

identified families. TFHub and PyTorch Hub ML models use 23 and 17 different

datasets, respectively. Among these datasets, only three of them are common across

the two repositories: ImageNet (image classification, image generator), CelebA HQ

(image generation) and Wikipedia & BookCorpus (text embedding). In both of

the TFHub and PyTorch Hub, ImageNet is used in most of the families (20 on

TFHub and 12 on PyTorch Hub).

4.2.2.2.3 Similar Models Across ML Model Repositories

As previously mentioned in Section 4.2.2.1, some task types are unique to a single

ML package repository. To some extent, this finding reflects the difference in terms

of the contents of ML repositories. Having introduced the family concept, this
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section studies the similarity of the contents within the two ML package repositories.

Table 4.9 presents the number of similar ML models across the two studied ML

package repositories.

There are actually only a few ML models that overlap, see Table 4.9. For ex-

ample, in TFHub, there are three ResNet V1 [46] image classification ML models

trained on ImageNet, their names are imagenet/resnet v1 50/classification,

imagenet/resnet v1 101/classification, imagenet/resnet v1 152/classification

and resnet 50/classification. While in PyTorch Hub package ResNet, there

are five models resnet18, resnet34, resnet50, resnet101, and resnet152 cor-

responding to the TFHub models.

4.2.2.2.4 Release Management of ML models

As previously discussed in RQ1, ML package repositories do not have any formalized

release management or versioning mechanisms. We also found that ML package

repositories do not have a well-defined release management practice in terms of

algorithm upgrades. In TFHub’s ML package organization practice, a change to the

algorithm leads to the creation of a new package, rather than an upgraded package.

For example, when the algorithm used by a package is changed from MobileNet

V1 [56] to MobileNet V2 [57], a new package page is built for the upgraded ML

package. Furthermore, except for the algorithm, the two packages are the same
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in terms of the other two family deciding criteria (dataset and task type). We

observed several algorithm changes in TFHub such as ResNet V1 [46] to V2 [58],

and BERT [59] to ALBERT [60].

Though PyTorch Hub does not support an explicit versioning mechanism, there

are some cases of algorithm upgrades; an upgrade of algorithms usually leads to

different entrypoints (different models) in the same package rather than different

versions. Examples of observed algorithm upgrades are BERT to distillBERT [61]

and RoBERTa [62], and GPT [63] to GPT-2 [64].

4.2.3 Implications

Release Management. Currently, the upgrade of ML package’s algorithm is

not a versioned change. It is worthwhile for ML package repositories to consider

new versions of an algorithm as an upgrade. There are two benefits: (1) Users

are better aware of how many versions of an algorithm to choose from. It is a

good practice to provide ML package users with information transparency. For

example, without our research, TFHub users may not easily know that there are

two versions of MobileNet algorithm, two versions of ResNet algorithm and three

versions of Inception algorithm. If the number of ML packages keeps growing,

this transparency will be more helpful for users. (2) This practice helps users

better understand a group of algorithms and help them narrow down the search
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scope. For example, although all MobileNet ML packages are suitable for mobile

platform deployment, MobileNet V2 being better than V1 guides users to choose

ML packages directly from V2 ones, rather than trying out from V1 ones.

Compared to traditional software package evolution, the evolution of an ML

package can involve any of these things: (1) algorithm update, (2) update to non-

algorithm related code (e.g., command line arguments, tuning, etc.), (3) changes

to data, and (4) changes to input/output tensors. Among them, (1) and (3) are

ML package specific, whereas (2) is common for all software projects. (4) can be

applicable under the model family phenomenon. Furthermore, some of these are

orthogonal for ML packages. For example, one product may change the algorithm

but keep the data as it is, or update both the algorithm and the data. Some prod-

ucts may have multiple variants trained on different data. The aforementioned

issues pose several research opportunities in the ML domain. Thus, there is the

need for ML researchers to identify existing release management approaches in the

traditional software engineering and product line domains that can be adopted and

extended.

Impedance mismatch between model families and software package dis-

tribution/versioning. There are many families in the same task type, and there

are many members in a family. Though this provides users with a great diversity of
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ML models, the similarity between families and members makes choosing right ML

model be difficult and confusing for users without solid ML expertise (like general

software engineer and non-ML researchers). In the worst case, users may need to

try the different model families, and probably each ML model within a family, to

identify trade-offs between performance and computational resource consumption.

Based on our findings, we observe that the unit of shipping models is not that

straightforward and formalized: should a package contain a whole family or a subset

of members (based on entrypoints), or even multiple families? In addition, the

family phenomenon may introduce some other software engineering challenges. For

example, how are models in a family upgraded? How are changes within these

families managed as the models evolve over time? Given the inherent similarities

with the family phenomenon, ML researchers should seek to adopt the advanced

practices of the traditional software product line architecture domain [65].

4.3 RQ3: What is the process needed in order to use the

functionalities from software/ML package repositories?

Having identified the information within the studied ML package repositories (Sec-

tion 4.1), as well as their organization practices (Section 4.2), this RQ investigates

the processes needed to reuse these shared ML packages. First, we examined the
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basic functionalities and the package usage practices supported by the ML pack-

age managers (e.g., tensorflow hub library [66] for TFHub, PyTorch Hub API in

PyTorch library). The functionalities and practices were compared against those

of software package managers, whenever applicable, to understand the commonal-

ities and uniqueness between them. Next, we studied the different usage contexts

supported by ML frameworks from their documentation.

4.3.1 Approach

Package managers provide some basic functionalities such as installing, upgrad-

ing and removing packages within a programming language-specific development

environment [67]. Due to the longer existence and wider usage of software pack-

age repositories, we regarded the software package managers and their APIs as a

baseline, and we attempted to identify such similar functionalities for ML libraries.

First, we looked for documentation and online tutorials about the three func-

tionalities (installation, upgrade, removal) of both ML package repositories and

software package repositories. If no corresponding materials of a functionality were

found for a given repository, we regarded this functionality to be unsupported. Ta-

ble 4.10 summarizes the basic functionalities, the supported package formats and

primary usage mechanism of the studied package repositories. Next, we also identi-

fied the different supported usage contexts and the steps needed to use the packages
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of the ML and software package repositories.

4.3.2 Findings

4.3.2.1 Basic functionalities of ML and Software package managers (In-

stallation, Upgrade, Removal)

Though users have to follow similar steps before using packages within software

and ML package repositories, there are, however, a few significant differences in

how these steps are implemented for software and ML packages. It generally takes

2 steps to use any software or ML package: (1) installing/upgrading packages, and

(2) invocation of the functionalities from a loaded/imported package.

Software packages are mostly installed via terminal commands provided by their

package managers (see Figure 4.4(a)). However, there is no clear division between

installation and loading in ML package repositories. ML packages require a run-

time load step that downloads the ML artifacts if not yet in cache, and selects the

right model for further use. For example, figure 4.4(b) demonstrates how to load a

ML package from TFHub. As shown in the figure, TensorFlow’s tensorflow hub

library, which is the library that mainly supports the ML package management func-

tionalities and ML package usage, provides an initialization API called hub.load().

This API takes in an argument for the location of the ML package; this can be ei-
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Table 4.10: Basic functionalities and usage information of software and ML package

repositories

Repositories
Package Manage Functionalities Supported Format(s)

of Packages

Usage

MechanismInstall Upgrade Remove

Software

npm 3 3 3
Various

(code file)

API

PyPI 3 3 3
Standard

(.tar.gz, .whl)

API

CRAN 3 3 3
Standard

(zipped package)

API

ML
TFHub 3

Various

(hub.Module,

TF2 SavedModel,

other formats)

Signature

PyTorch Hub 3

Mostly Standard

(GitHub repository +

.pt/.pth/unknown format)

Entrypoint
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ther a link to TFHub pages, a link to some specified online zip file or a path to local

package. Given the location, the library downloads the package (if not already in

the cache), loads it, and makes it ready for use. A similar practice is used to load

PyTorch Hub packages, as shown in Figure 4.4(c).

Additionally, there is no real support for package upgrades in ML package repos-

itories. Unlike software packagers that provide users with package upgrade com-

mands, users of ML packages have to manually specify the version of a package

to load at runtime. This practice is further exacerbated due to the lack of for-

mal package versioning mechanisms. For example, users of TFHub packages need

to specify the version number as part of the url (e.g., the “../4” at the end of

https://tfhub.dev/google/imagenet/mobilenet v1 050 160/classification/4

shows the version). Given that PyTorch Hub has no versioning support for pack-

ages, users must decide at runtime whether to download an updated PyTorch pack-

age from its GitHub repository19 or use an existing cached copy. As a result, a

different GitHub snapshot of a model can be loaded each time, introducing severe

inconsistency problems to users.

Also, we could not find any similar functionality for the removal of packages

provided by ML libraries. The package initialization API of PyTorch has an argu-

19The source code of PyTorch Hub packages are stored on GitHub. The links to model files
(.pt, .pth files) will be stored in the GitHub code but the model files themselves may be stored
on some other places rather than GitHub.
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ment that if set, would always download a new package even if there is a cached

one. But this is not a real removal functionality as users need to manually remove

the cached models eventually.

4.3.2.2 Package Usage

Despite the close similarities of how ML and software packages are installed or

loaded, the process of actually using these packages is different. Once software

packages are installed, the users only need to import the package and utilize the

various APIs within their system. ML packages, on the other hand, require an

additional step after they are loaded before they can be used. This difference is

brought by the signature mechanism of TFHub packages and entrypoint mechanism

of PyTorch Hub packages. An in-depth discussion of how ML packages are used

under these two mechanisms is provided below.

4.3.2.2.1 TFHub Signature Mechanism

A signature is a particular combination of input and output data-structures (also

called tensors [68]) used by a ML model. Given that some ML packages can be used

for more than one task, the signature mechanism is used to allow users to express the

task to perform. For example, imagenet/mobilenet v1 050 160/classification20

20https://tfhub.dev/google/imagenet/mobilenet v1 050 160/classification/4
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Install package from repositoryPython command: pip install test_pkg

Use the attributes in package

Import a package
import test_pkg 

print(test_pkg.someFunction())

Python command: pip uninstall test_pkg Remove a package

(a) PyPI

Handle: path to a ML
package or urls provided by

TFHub

Loading: hub.load() API + location
of the ML package

Using Step (1) 
Select signature object with

signature name

Using Step (2) 
Provide the Input tensor(s) as the
argument of __call__() method of

signature object

import tensorflow_hub as hub
module = hub.load("where/to/fine/the/module") 

signature_obj = module.signatures["classification_sig"]
output = signature_obj(test_batch)

(b) TFHub

Loading: 
torch.hub.load() API 

+ GitHub Repo Name +
Entrypoint Name + Other
Argument if applicable =

model object

import torch
model = torch.hub.load(
        'minkexiu/vision', 'my_vgg11', 
        pretrained=True, an_arg = 1
)

Using:  
Provide input tensor(s) to

__call__() method of model
object

import torch
output = model(input_batch)

First argument is the GitHub repos name. 
When the loading API is used, the GitHub
repo will be downloaded to local storage. 

The second argument is
the entrypoint name. The argument(s) after the entrypoint name is(are)

the arguments needed for functions whose name
is the specified entrypoint. 

(c) PyTorch Hub

Figure 4.4: The process of loading and using packages
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is a package which allows users to perform either image classification or feature ex-

traction in a set of images. Thus, a user performing an image classification task with

the imagenet/mobilenet v1 050 160/classification package must provide the

input tensor in the expected shape before the correct output tensor will be returned.

4.3.2.2.2 PyTorch Hub Entrypoint Mechanism

When loading a PyTorch package for use, the torch.hub.load() API requires, in

addition to the GitHub repository containing the necessary code of this package, the

name of an entrypoint name and any additional arguments needed by the provided

entrypoint. An entrypoint is essentially a Python function defined in the package’s

source code that implements a particular configuration of an algorithm. It should

be noted that how the function actually works is totally decided by developers,

including the argument settings, implementation logic, and where to find the pre-

trained model files.

We observe that currently the PyTorch Hub entrypoint mechanism is not as

formalized as the TFHub signature mechanism. Several packages on PyTorch Hub

do not provide a complete entrypoint list (an example of how entrypoints are dis-

played for a package is shown in Figure 4.5); one has to manually search within

the source code repository21. Secondly, package developers may implement the en-

21https://pytorch.org/hub/pytorch fairseq translation/
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Figure 4.5: An example of the list of entrypoints of a PyTorch Hub package with

their respective quality measures

trypoint differently given the lack of formalism or best practices. Such differences

in entrypoint definitions makes the loading process of a package difficult for users.

The aforementioned two issues show the need for the package developers to prepare

sufficient documentation that explains the full functionality and loading process

of their packages, rather than expecting general users to read and understand the

source code. In comparison, TFHub packages do a better job by providing APIs to

inform the users of the signatures within packages.
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4.3.2.2.3 Signature/Entrypoint mechanism vs. Model families

We observed that the variation within ML packages can be viewed along different

dimensions: model families (see RQ2) and signatures/entrypoints. There may be

a number of models (in a the same family) that use the same algorithms and

datasets but different training hyper-parameter configurations or computational

features (e.g., with or without batch-normalization hyper-parameters). We could

also have different variations of an ML package defined through entrypoints.

However, we observe that although the number of entrypoints in a PyTorch Hub

package indicates the number of different models in the package, not all entrypoints

in a package belong to the same family; a PyTorch Hub package can have multiple

families, each consisting of a subset of its entrypoints. In TFHub, each package

consists of exactly one model which can have multiple signatures, another form of

ML-specific variation. Thus, there seems to be no relation between signatures and

model families.

Consequently, the development process of ML packages can be considered to

be analogous to the concept of product line architectures. Such product line

architecture-like practices of ML packages bring some benefits. First, it makes

the organization of different variants easier. For example, without the signature

mechanism, the multiple signatures have to be independent packages, causing re-
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dundancy and the synchronization of their changing and maintenance will take

a lot of efforts. Secondly, such mechanism help the users to easily compare the

functionalities of related packages.

4.3.2.3 Usage Contexts Supported by ML Libraries

TensorFlow and PyTorch provide support for using packages in different contexts.

Usage contexts are the specific deployment platforms or software environments upon

which ML packages are loaded and called. Each usage context prioritizes certain

attributes of an ML package such as size, performance and portability. As such,

ML packages and models used in different contexts are usually in different formats.

It should be noted that in this subsection, our analysis is focused at the level of the

models within the ML packages, rather than the packages themselves.

Table 4.11 shows the various usage contexts available to TensorFlow and Py-

Torch packages. In the table, each row represents a group of relevant deployment

scenarios. The first column shows the usage contexts supported by TensorFlow

and PyTorch. It should be noted that edge device and remote device have

some overlap, e.g., TensorFlow models may be run on Python environments on

both Raspberry Pi (as a kind of edge device) and web servers (as a kind of remote

device). The reason for splitting these two rows is to emphasize their most represen-

tative characteristics, i.e., computational resource limitation for edge devices and
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Table 4.11: TensorFlow and PyTorch package/model usage contexts

Deployment

Target

Typical Model

Format

Call (Serve)

Locally or Remotely

TensorFlow PyTorch TensorFlow PyTorch

Python

Checkpoint,

SavedModel,

Frozen GraphDef,

hub.Module

(All the formats) Locally Locally

Edge Device

FlatBuffers

(iOS, Android, RPi)

(Swift, Objective-C)

.pt File

(iOS, Android)

Locally Locally

JavaScript
TensorFlow.js Model

(Browsers, node.js)

- Locally -

Remote

Device

SavedModel .pt, .pth File Remotely

Remotely

(Flask

Needed)

Other

Languages

SavedModel,

.pb File

(C++, Java, Go, etc.)

TorchScript

(C++, Java)

Locally Locally

Other ML

Frameworks

-

ONNX

(Caffe2, MXNet,

CNTK, etc.)

- Locally
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Table 4.12: Advantages and disadvantages of different formats of packages/models

ML Framework
Package/

Model Format

Advantages Disdvantages

TensorFlow

checkpoint Suitable for recording training process. Not suitable for deployment.

SavedModel
Standard model saving format.

Suitable for deployment.

May not support specialized usage context.

Frozen GraphDef
Size saving.

Suitable for inference-only usage.

Parameters in it cannot be changed.

hub.Module Specified for model sharing on TFHub. Out of date in TensorFlow 2.x era.

TensorFlow Lite Model Can be optimized in size. Optimization may reduce performance.

TensorFlow.js Model Can be used in JavaScript environment.
May have less support

than traditional TensorFlow.

PyTorch

.pt, .pth file Standard model saving format. May not support specialized usage context.

TorchScript Can be used in multiple languages.
Inappropriate for internal

model deployments.

ONNX Can be used by different ML frameworks. May not support specialized usage context.
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different calling mechanisms for remote server. The second and third columns rep-

resent the typically used model formats within the given deployment environment

(based on the ML package repository). The fourth and fifth column explain how the

models are called (or served). If the loading and the whole usage process happen

on the same machine, it is considered “local”. However, if the package is loaded

on another machine and the usage process need remote communication between

different machine, it is considered “remote”. For example, a user can use HTTP

requests to obtain inference results from an image classification package deployed

on a remote server. Both ML frameworks have five deployment scenario groups.

In general, TensorFlow supports more usage contexts, which can be attributed to

TensorFlow’s longer existence.

Unsurprisingly, TensorFlow and PyTorch have the best support for integration

directly into a Python code base. It is a general practice that a model is developed

on Python and deployed in other scenarios. For TensorFlow, there are four com-

mon saved model formats: checkpoint22, SavedModel23, Frozen GraphDef24 and

hub.Module25. Checkpoint is suitable for temporarily save the training process,

generally only contains parameter values but not calculations. So this character

22https://www.tensorflow.org/guide/checkpoint

23https://www.tensorflow.org/guide/saved model

24https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/tools/freeze graph.py

25https://www.tensorflow.org/hub/api docs/python/hub/Module
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makes it not very suitable for sharing because the code of algorithm should be sep-

arately provided. SavedModel can save both parameters and calculations, it can be

used off the shelf without any algorithm code. This character makes it suitable for

deployment and sharing. In TensorFlow 2.x it is also the general format for saved

model. Frozen GraphDef is extremely lightweight and suitable for deployment and

doing inference. But its parameter values cannot be changed so models in this

format cannot be further trained or fine-tuned. hub.Module is specially invented

format for model sharing on TFHub and it’s being replaced in TensorFlow 2.x API

era. As for PyTorch, the common saved model formats under Python environment

are .pt and .pth. But shared models in PyTorch Hub package may not be very

suitable for deployment because the parameter values (in .pt or .pth files) and

algorithms (in code base) are separately stored. A summary of the advantages and

disadvantages of each model format is provided in Table 4.12.

TensorFlow and PyTorch models also can be deployed on edge devices, like

mobile platforms, which suffer from limited computational and storage resources.

TensorFlow provides a set of tools in TensorFlow Lite [69] for deployment on edge

device. Normal TensorFlow Python models can be converted into a TensorFlow

Lite format model named FlatBuffers26. In addition, both TensorFlow and PyTorch

provide some quantization methods, like saving the values in lower precision, that

26https://www.tensorflow.org/lite/convert/index
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make models smaller and minimize the degradation of performance.

TensorFlow and PyTorch models can be deployed for use in other languages.

For TensorFlow, the SavedModel can be loaded by the TensorFlow API in C++,

Java, Go, Swift, etc. PyTorch only supports C++ and Java in its documentation

currently. PyTorch uses TorchScript to represent a model that is independent

from Python and can be loaded and executed by PyTorch API in C++.

TensorFlow and PyTorch models can be served remotely and called through a

REST API for inference. For TensorFlow, a served model will be in SavedModel

format. The containerized serving process for TensorFlow models is introduced by

TensorFlow’s documentation in detail. In addition to REST API calling, served

TensorFlow models can also be called through gRPC [70], a high performance RPC

framework. For PyTorch, the models needs to be deployed and served with the

help of Flask [71], a third-party lightweight web framework in Python.

TensorFlow and PyTorch each has some unique usage contexts as well. Tensor-

Flow models can be deployed on JavaScript environments like browsers and Node.js.

TensorFlow in JavaScript is called TensorFlow.js [72]. The TensorFlow.js models

can be converted from normal Python-based models. PyTorch models can be ex-

ported into ONNX format [73] and loaded by any ONNX-supporting frameworks,

like Caffe2, MXNet, CNTK etc..

From the Table 4.11, we found that the usage contexts are more complex in ML
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packages than in software packages. Software packages can be deployed successfully

within any usage context supports the languages and they do not have much varia-

tion in formats. For example, a Python package can be deployed on any platforms

or environments that support Python, and the Python package will always be in

.whl or .tar.gz formats27. However, this is not the case for ML packages/models.

When a user wants to use a model in different contexts, the model formats will vary

and the variation may lead to different loading and usage practices. For example,

different APIs are needed to load and use TensorFlow.js and SavedModel model

formats, or a SavedModel may need to be converted to a TensorFlow.js format

before it is used in a browser. Though package/model formats can be converted

between each other, considering the most suitable format in advance can at least

save the conversion effort.

4.3.3 Implications

Usage Context. Unlike software packages that have similar usage steps, irrespec-

tive of the OS or hardware of a system, this is not the case for ML packages. There

are many usage contexts for ML packages and models. The considerations for ML

packages in different usage contexts are more than those for software packages. The

loading and usage processes may differ according to the usage context (e.g., differ-

27https://packaging.python.org/tutorials/packaging-projects/#generating-distribution-
archives
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ent sets of APIs, different formats of saved models). This characteristic is another

reason for the users (like software engineers and data scientists) to consider the

usage context earlier and make suitable trade-offs.

Pre-defined interfaces for ML packages (signatures and entrypoints). ML

libraries use special mechanisms for loading and using a package: signatures for

TFHub packages and entrypoints for PyTorch Hub packages. These mechanisms

are different from software packages that can be simply imported and then used.

Those mechanisms adopt the product line architecture from traditional software

engineering and leverage some of its benefits. Though these mechanisms provide

the needed flexibility for creating and using variants of an ML package, they also

introduce a steep learning curve for new ML developers, especially traditional soft-

ware engineers.

Package Management Functionalities. These two aspect of the ML package

repositories are still a work in progress. Currently, ML package repositories only

support package installation. The upgrade, and removal functionalities are either

missing or have limited support. In the future, TensorFlow and PyTorch main-

tainers can think about developing the actual ML package upgrade and removal

functionalities.
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Package Documentation. There is limited documentation on how users (es-

pecially with limited ML experience) can integrate pre-trained models into their

applications. Given the relative complexity of ML packages, in comparison to soft-

ware packages, the documentation of ML packages are expected to be very detailed.

Loading a package requires a lot of information in terms of versions, signatures and

entrypoints. Such details need to be in well-described. For example, the docu-

mentation of PyTorch Hub packages’ entrypoints are not complete (5 out of the 15

packages with multiple entrypoints do not provide a full list of their entrypoints).

Contributors of the PyTorch Hub and TFHub packages need to treat the documen-

tation highly to serve the users better. Researchers can also propose code summary

techniques for generating detailed and formalized documentation, and tools to en-

sure that strict naming conventions for parameters can are adhered to.

4.4 Threats to Validity

4.4.1 Construct Validity

Although the information elements in RQ1 were extracted from multiple resources

(like original webpages, definition files, JSON data structure), they may be incom-
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plete. To mitigate this threat, the thesis author, his supervisor and two other SE

colleagues (Ellis E. Eghan and Bram Adams) performed independent analysis of

the studied package repositories to verify the list of identified IEs. We also verified

the information elements with previous work [25].

4.4.2 Internal Validity

As discussed in the research questions, the release management processes for ML

packages are not well-defined. In particular, some of the newer versions of ML

packages are either shown within the same product pages (e.g., V1 to V4 of the

same ML package are organized in the same page28) or on separate product pages

(e.g., two versions of a ML package trained on different algorithms are displayed

in different ML package pages29,30, packages in the same algorithm but trained on

different datasets and saved into different formats are also in separate pages31,32).

However, in software package repositories, new versions of a package will be gener-

ally organized in the same product page (e.g., all the versions of the TensorFlow,

as Python package, are organized on the same page). When counting the number

of ML packages, we actually counted the number of separate ML package pages.

28https://tfhub.dev/google/imagenet/mobilenet v1 100 128/feature vector/4

29https://tfhub.dev/google/imagenet/mobilenet v1 100 128/feature vector/4

30https://tfhub.dev/google/imagenet/mobilenet v2 100 128/feature vector/4

31https://tfhub.dev/google/bert multi cased L-12 H-768 A-12/1

32https://tfhub.dev/tensorflow/bert multi cased L-12 H-768 A-12/1
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These different criteria of counting the number of ML packages and packages may

threaten the results of our repository comparisons.

4.4.3 External Validity

ML package repositories are relatively new and they are rapidly changing. For

example, we noticed during our analysis that TFHub’s information elements and

JSON data structure changes over time (e.g., new information elements are added

and the order of IE was changed). Hence, although our current findings are useful

for practitioners and SE researchers, they may be out-dated in a few years. It would

be worthwhile to replicate this study after a period of time to analyze the evolution

of software practices (e.g., versioning, usage, package organization) within the ML

package repositories.

4.5 Summary

This chapter is an exploratory study on ML package repositories: TFHub and Py-

Torch Hub. First, we compared the information elements between ML package

repositories and software package repositories, and then between two ML package

repositories. We discovered some concerns of ML package repositories in terms

of dependency management, release information, popularity indicator security and

technical documentation information transparency. The second research question
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is about the contents (packages and models within) of ML package repositories. We

looked into how the packages are classified and organized, the similarities between

packages and models across different ML package repositories, and the release man-

agement practices of ML packages. The third research question is closely related to

the basic functionalities (loading and using a package) and usage contexts the ML

libraries support. We discovered that the ML package upgrade and removal func-

tionalities are still missing in ML libraries. Also the signature and entrypoint mech-

anisms provided by TensorFlow and PyTorch, as well as the family phenomenon of

ML packages may bring about package evolution and usage challenges.
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5 Conclusions and Future Work

In this thesis, we looked into two kinds of ML model platforms: ML model stores

and ML package repositories. ML model stores provide commercialized cloud-based

deployment support for models. Though ML package repositories provide free mod-

els, users need to manually manage them. We compared ML model platforms with

their counterparts in traditional software engineering: ML model stores vs. mo-

bile app stores, ML package repositories for deep learning frameworks vs. software

package repositories for programming languages.

We found that both kinds of ML model platforms are in their infancy and have

rooms for improvement. First, some features in traditional software engineering

(e.g., review policy) and conventional app store or package repositories (e.g., user

reviews and usage statistics) are missing in ML model platforms. Secondly, some

package management features are missing in certain ML model platforms. For ex-

ample, existing ML package managers do not fully support package upgrade and

removal. There are some other essential features missing or not in a complete
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form: version control, signature and entrypoint mechanisms that bear the stamp of

product line architecture, cross-platform support, security concerns of ML model-

s/packages, dependency management, etc. Thirdly, ML models and their platforms

have some unique features (e.g., descriptions of the dataset, the model evaluation

approaches and the results) requiring new software engineering practices/processes.

In the future, we will look into the evolution of ML models and their associated

sharing pratices. In addition, we will investigate software engineering practices for

developing and maintaining ML models.
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