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Abstract

This dissertation presents a series of my contributions to research in theoretical cosmology,

focusing on aspects of the very large scale universe, particularly dark energy, cosmic acceleration,

modified gravity, and cosmic variance. Following an overview of the current understanding of

the standard cosmological model in chapter 1, three pertinent topics are discussed in detail. A

common theme among all chapters is the desire to explain the properties of the universe on

the largest scales.

One of the biggest mysteries on large scales is the need for dark energy to explain the

observed accelerated expansion of the late universe. The unsatisfying explanation offered by

the standard cosmological model and the associated enormous fine tuning problem have driven

considerable interest in infrared (long-distance) modifications of general relativity. In this

work, we consider a particularly well motivated modified theory, massive gravity, in which

the modification is to simply assume that the particle mediating the gravitational force has a

non-zero mass. For a mass on the order of the Hubble constant, this theory offers an alternative

explanation of the accelerated cosmic expansion. Chapter 2 lays the theoretical groundwork

for massive gravity, summarizing its history and formalism.

A fundamental challenge for any modified gravity theory is sequestering the modification

to large enough distance scales, so that the predictions match general relativity on solar

system scales where it has been tested to high precision. Chapter 3 provides a detailed

analysis of massive gravity’s ability to screen its extra degrees of freedom, allowing for

continuity with general relativity on short distance scales. Further, in chapter 4, we explore

the cosmological production and propagation of gravitational waves in an extension of massive

gravity, bigravity, determining whether there may be any testable deviations from general

relativity. Understanding these predictions is crucial, as there is now a vigorous observational

program to probe possible deviations from our standard model.

As rapid progress in observational cosmology unfolds, not only is it paramount to construct

viable modified gravity theories to test against general relativity, it is necessary to explore

which observational methods will be the most powerful for constraining them. This dissertation

contains progress on both of these fronts: analyzing potential modified gravity theories, and

analyzing potential novel observational probes of the large scale universe. Chapter 5 provides

the theoretical framework for one such novel probe, the large scale kinetic Sunyaev-Zeldovich

effect. This effect is particularly intriguing because of its ability to overcome cosmic variance,

and thus help us unlock the secrets of the universe on the largest scales.
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Chapter 1

Our universe

Describing the composition and evolution of our universe is the goal of modern cosmology, in

which the laws of physics are applied to the largest scales. In the last few decades, cosmologists

have made dramatic progress unveiling the mysteries of the universe, transforming the field

from a set of speculative theories to a testable precision science.

Continual improvements in technology have enabled us to collect cosmological measurements

extending all the way to our observable horizon. Through observations of the cosmic microwave

background (CMB), most notably with the Planck satellite [4], we can probe the oldest light

in the universe with remarkable precision. This radiation contains a wealth of information

about the early universe, its dynamics, and its composition. Additionally, deep galaxy redshift

surveys such as the Sloan Digital Sky Survey [5] have mapped millions of galaxies, providing

insight towards the distribution and constituents of large scale structure.

In addition to the many observational efforts, there have also been breakthroughs in the

theoretical understanding of physical processes that have culminated in a consistent theoretical

framework to understand these observations. All measurements to date have led cosmologists

to converge on a standard cosmological model, ΛCDM, which appears to be an excellent fit to

nearly all the data with just six parameters. We have a model through which we can make

predictions, and the technology to conduct experiments through which these predictions can

be tested.

Alongside its successes, ΛCDM contains some parameters that are intrinsically dissatisfying.

The recent decade of experiments in cosmology has tended to confirm the model, including its

dissatisfying aspects, namely the apparent dominance of two unknown quantities: dark matter

and dark energy. This introductory chapter highlights the fundamental features of ΛCDM to

provide an overview of the current understanding of cosmology.
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1.1 Previewing the Cosmological Model

Let us begin by outlining the main discussion points of this chapter and how they are connected

to subsequent chapters. The cosmological model can be broken down into two main ingredients:

• The first ingredient pertains to the physical forces describing the interactions and

evolution of matter and energy. On such large scales, gravity is the only fundamental force

that plays a role. In the standard cosmological model, the force of gravity is described by

Einstein’s theory of general relativity (GR), in which gravity is essentially the geometry

of spacetime. Einstein’s revolutionary discovery of GR has been instrumental throughout

the last century, forming the foundation for a testable model of the universe. The

next section 1.2 provides an introduction and overview of GR and its applications to

cosmology.

• The second is the composition of matter and energy in the universe, which are typically

categorized as baryons, dark matter, dark energy, and radiation. An important aspect of

our theory is identifying the components that dominate the energy budget at various

epochs. This is formalized in section 1.3. The standard model, called ΛCDM, is in fact

named after the most abundant forms of matter and energy in the universe: Λ represents

dark energy described by a cosmological constant, and CDM stands for cold dark matter.

These dark constituents cause us to cast doubt on our understanding of the universe

under the standard model. They are discussed in section 1.4.

Working together with these ingredients is a key feature in contemporary models: the

cosmological principle. The principle is based on the idea that the universe is essentially the

same everywhere: there is no special location or special direction. On the scale of planets,

galaxies, and other dense structure, this simply doesn’t hold. It is meant only to apply on the

very largest scales. This is one of many cosmological statements that is statistical in nature,

as the distribution of over-densities and under-densities, in which local variations are averaged

over, is approximately the same in all regions of the universe. Stated in other words, the

universe is statistically homogeneous. We’ll see how this is built into the theory in section 1.3.1.

To understand the formation of structure in the universe, we have to go beyond the

perfectly homogeneous description above. Section 1.3.2 describes how an inflationary phase

of accelerated expansion in the very early universe can quantum mechanically generate tiny

inhomogeneities on top of a smooth background. Following, in section 1.3.3, we describe

cosmological perturbation theory, which is an essential formalism for evolving these initial

perturbations into large-scale structure.
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The last section of this introduction chapter 1.6, discusses the most important observational

probe of large scales in our universe: the cosmic microwave background (CMB). We describe

how the CMB provides precise measurements of the composition and geometry of the universe,

playing a key role in the development of the cosmological model.

Connection to other chapters

The bulk of this dissertation, appearing in chapters 2-5, relies on the foundation built in this

chapter. All chapters can be unified by the goal of understanding the properties of the universe

on large scales, which of course heavily depends on understanding the standard cosmological

model presented here.

The introduction to GR presented in 1.2 is not only useful as a key component of the

cosmological model, but is especially important for the work presented in chapters 2-4, which

all focus on modifications to standard GR. These modifications are motivated by the mystery

of dark energy and cosmic acceleration as introduced in section 1.4.2, potentially indicating

that GR may not be reliable on cosmological scales. This work focuses on a particular category

of infrared modified gravity theories called massive gravity in which a non-zero graviton mass

offers an alternative explanation for cosmic acceleration. A brief introduction in section 1.5

is supplemented by a thorough review of theoretical aspects of massive gravity in chapter 2,

followed by specific applications in chapters 3 and 4.

The work in chapter 4 considers cosmological tests of bigravity, an extension of massive

gravity. The aim is to study the effects of the tensor perturbations in bigravity, and derive the

prediction for cosmological observables in comparison to the prediction given by GR. This

will rely on applying the Friedmann equations introduced in 1.3.1 to find viable background

cosmologies. We also analyze the production of tensor perturbations produced during inflation

in bigravity, which builds from the discussion of inflation in 1.3.2.

Chapter 5 switches gears slightly to analyze observational probes of large scales. In

particular, we focus on the large scale kinetic Sunyaev-Zeldovich effect, which produces

secondary anisotropies in the CMB. A basic understanding of the CMB as presented in 1.6

will be essential for this work, as will the fundamentals of cosmological perturbation theory

introduced in 1.3.3.

3



1.2 General Relativity

Einstein’s general relativity (GR) describes gravitation through the differential geometry of

curved spacetime. GR is an intrinsic part of modern physics and lies at the heart of the

standard cosmological model. Here, we outline the most important concepts required to

understand cosmology, namely the spacetime metric and the Einstein equations. Applying the

Einstein equations to the Friedmann-Robertson-Walker (FRW) metric yields the fundamental

relationships between the metric parameters and the density components in the universe.

This brief section on GR simply covers the basics of the theory as needed to understand

cosmology in the next section. Both sections 1.2 and 1.3 overview only the fundamentals,

following textbooks such as [6, 7]. Natural units ~ = c = 1 are employed throughout, and

the planck mass is used interchangeably with Newton’s gravitation constant according to

MP = 1/
√

8πGN .

The spacetime metric

In Einstein’s theory, what we experience as gravity is due to the intrinsic curvature of spacetime.

Mathematically, spacetime is a manifold whose points correspond to physical events which are

represented by four coordinates written as a four-vector, xµ = {x0, x1, x2, x3}, for which one

choice is Cartesian coordinates {t, x, y, z}.

The metric is the central object in GR that describes the connection between spacetime

events. Moreover, the metric specifies all of the geometric and causal structure of spacetime,

allowing us to measure distances, times, volumes, and angles. It can be written as a 4 × 4

symmetric matrix with entries labeled gµν , and is commonly expressed as

ds2 = gµνdx
µdxν , (1.1)

where dxµ is an infinitesimal coordinate displacement, and ds is the infinitesimal spacetime

interval or line element. Greek indices µ and ν range from 0 to 3 and repeated indices are

summed over in the Einstein convention. Cosmologists typically employ the mostly positive

Lorentzian metric signature {−,+,+,+}. The inverse metric is denoted with upper indices

and has the property that gµαgµβ = δαβ , where δαβ is the Kronecker delta. The metric is a

tensor, meaning that it has specific transformation properties under a change of coordinates:

gµν =
∂xµ

′

∂xµ
∂xν

′

∂xν
gµ′ν′ (1.2)

The spacetime interval ds2 in (1.1) is invariant under changes of coordinates, called

diffeomorphism invariance, meaning that observers in different inertial frames will all measure

4



the same interval ds. The invariant interval ds2 captures the causal structure of spacetime.

Unlike purely spatial intervals, this spacetime interval can be positive, negative, or zero. When

ds2 < 0, the interval is timelike and
√
|ds2| represents proper time. Only timelike intervals

can be physically traversed by massive objects. When ds2 = 0, the interval is lightlike, or null,

and can only be traversed by light. When ds2 > 0, the interval is spacelike and ds represents

incremental proper length. Spacelike intervals connect events that are outside each other’s

light cones, and therefore cannot be traversed.

Special relativity is described by the simplest metric, a flat spacetime metric, or Minkowski

metric: gµν = ηµν . In matrix notation, it is given by

ηµν =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , (1.3)

and therefore the invariant flat spacetime interval is

ds2 = −dt2 + dx2 + dy2 + dz2. (1.4)

When working in situations with spherical symmetry, it is helpful to use polar coordinates.

This corresponds to a change of coordinates {t, x, y, z} → {t, r, θ, φ}, resulting in a different

foliation of spacetime. The interval in this case is written as,

ds2 = −dt2 + dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (1.5)

Geodesics and Derivatives

Two important sets of equations in GR govern the evolution and interaction of matter, energy,

and spacetime. The first is the geodesic equation which describes the paths of particles in

the absence of any non-gravitational forces. It is the generalization to curved spacetime of

Newton’s second law with no forces, d2~x/dt2 = 0. The full geodesic equation is

d2xµ

dλ2
= −Γµαβ

dxα

dλ

dxβ

dλ
, (1.6)

where λ is any affine parameter that parametrizes the particle’s trajectory, such as proper time,

and Γµαβ are the Christoffel symbols, also known as the metric connection, that capture the

curvature of spacetime. They are given by specific combinations of derivatives of the metric,

Γµαβ =
1

2
gµν (∂βgαν + ∂αgβν − ∂νgαβ) , (1.7)

where ∂µ = d
dxµ . The Christoffel symbols also determine the covariant derivative ∇µ, which can

be thought of as the extension of the partial derivative ∂µ to curved spacetime. This extension
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is required since the partial derivative does not transform as a tensor under coordinate

transformations on an arbitrary manifold. By correcting the partial derivative with the

Christoffel symbols, we obtain a derivative operator that properly transforms as a tensor. For

example, the covariant derivative acting on a vector V ν and tensor Tαβ is

∇µV ν = ∂µV
ν + ΓνµσV

σ, ∇µTαβ = ∂µTαβ − ΓσµαTσβ − ΓσµβTασ. (1.8)

The Christoffel symbols satisfy the metric compatibility condition: ∇αgµν = 0.

Einstein Equations

The second set of fundamental equations in GR are the Einstein equations, which are the

covariant generalization of the Poisson equation for the Newtonian gravitational potential.

These equations relate the metric that describes gravitation to the matter and energy in the

universe. They are compactly written as

Gµν = 8πGNTµν , (1.9)

where the left hand side describes the curvature of spacetime in the Einstein tensor, Gµν , and

the right hand side describes the distribution of matter and energy in the energy-momentum

tensor Tµν . GN is the Newtonian gravitational constant which, in our choice of units, is related

to the Planck mass as MP = 1/
√

8πGN . The Einstein tensor is typically expressed in terms of

the Ricci tensor Rµν and Ricci scalar R,

Gµν = Rµν −
1

2
Rgµν . (1.10)

The Ricci tensor and scalar are built from the Riemann tensor, Rαµβν , which defines spacetime

curvature. The Riemann tensor is constructed from second derivatives of the metric, but can

also be written in terms of the Christoffel symbols:

Rαµβν = ∂βΓαµν − ∂νΓαµβ + ΓασβΓσµν − ΓασνΓσµβ. (1.11)

The Ricci tensor is given by the contraction Rµν = gασg
σβRαµβν = Rαµαν , and the Ricci

scalar by R = gµνRµν = Rµµ.

The Riemann tensor has many symmetry properties in permutations of its indices. An

important consequence of these symmetries is a differential identity known as the Bianchi

identity:

∇λRρσµν +∇ρRσλµν +∇σRλρµν = 0. (1.12)

Some manipulation of the indices reveals that the twice contracted Bianchi identity implies

conservation of the Einstein tensor,

∇µGµν = 0. (1.13)
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From the Einstein equations (1.9), this coincides with the generalization of conservation of

energy and momentum in curved spacetime,

∇µTµν = 0. (1.14)

Although written compactly in equation (1.9), the Einstein equations are extremely complicated

non-linear partial differential equations for the metric tensor field gµν . It is very difficult to

solve these equations in generality, and so it is necessary to assume that the metric has some

degree of symmetry. In the next section 1.3, we’ll see an example, the FRW metric, with

maximally symmetric spatial slices.

Einstein-Hilbert Action

The Einstein equations given above can be derived from an action principle. In this perspective,

GR is a classical field theory in which the dynamical field is the metric tensor itself. This

approach is beneficial because it provides a parallel between GR and other classical field

theories described by an action. GR remains special, however, since most other field theories

rely on a pre-existing spacetime geometry, while the geometry in GR is determined by the

equations of motion. The Einstein equations are yielded as the equations of motion from the

Einstein-Hilbert action, which is the simplest possible action for the metric,

SEH =
M2
P

2

∫
d4x
√
−gR , (1.15)

where g = det (gµν) is the determinant of the metric and R is the Ricci scalar. The full action

of the theory contains an additional term to describe any matter and energy fields, denoted by

a matter lagrangian,

SGR =

∫
d4x
√
−g
(
M2
P

2
R+ Lmatter

)
. (1.16)

The principle of least action implies that the variation of this action with respect to the metric

is zero,
δSGR

δgµν
= 0. (1.17)

This variation requires careful variation of the determinant as well as the Ricci scalar, which is

built out of the Riemann tensor, which contains the Christoffel symbols. These calculations

reveal that the resulting equations of motion are indeed the Einstein equations (1.9) if we

define the relationship between the energy-momentum tensor and the matter lagrangian,

Tµν =
−2√
−g

δ(
√
−gLmatter)

δgµν
= −2

δLmatter

δgµν
+ gµνLmatter. (1.18)
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1.3 Standard Cosmology

1.3.1 The expanding universe with FRW

FRW metric

We would like a metric to describe cosmology that reflects the homogeneity implied by the

cosmological principle. The Friedmann-Robertson-Walker (FRW) metric accomplishes this

task. It is invariant under spatial translations (homogeneous) as well as under spatial rotations

(isotropic), yet still evolving in time. Essentially, the FRW metric is the metric of our entire

universe on the largest scales. It is written as,

ds2 = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
, (1.19)

where a(t) is the dimensionless scale factor which characterizes the size of spatial slices, and K

controls the curvature of spatial slices. By convention, the scale factor today is equal to one,1

atoday ≡ a0 = 1. (1.20)

Symmetries in the metric are apparent by the invariance of the interval under the substitutions

r →
√
|K|r, a→ a/

√
|K|, K → K/|K|. One relevant parameter remains, K/|K|, for which

there are three possibilities, termed flat, closed, and open:

K = 0, flat (no spatial curvature)

K > 0, closed (positive spatial curvature)

K < 0, open (negative spatial curvature) (1.21)

The FRW metric above is written in comoving coordinates. This is a natural coordinate choice

since comoving observers, those at constant {r, θ, φ}, will observe the universe to be isotropic.

Comoving observers are said to be moving along with the “Hubble flow.” The expansion of

the universe is thus built into the scale factor, implying that distances between objects change

according to the scale factor. The FRW metric describes the expanding universe from the big

bang singularity at a = 0 to today a = 1. The comoving time coordinate, t, is the elapsed

time since the big bang according to a comoving observer’s clock. A different time coordinate

τ can be introduced, called conformal time, defined by,

τ =

∫ t

0

dt′

a(t′)
. (1.22)

Changing coordinates to conformal time causes the scale factor to become a conformal factor,

multiplying the entire metric,

ds2 = a2(τ)

[
−dτ2 +

dr2

1−Kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
. (1.23)

1Present day values will always be denoted with a subscript 0.
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With the choice of conformal time, null or lightlike trajectories can all be described by r = r0±τ ,

hence they travel on 45° lines on a spacetime diagram. Let us also mention a commonly used

perturbed form of the FRW metric, referred to as conformal Newtonian gauge. Specializing

for now to k = 0, and assuming no anisotropic stress, the perturbed metric is written in terms

of the Newtonian gravitational potential Ψ of classical Newtonian gravity:

ds2 = a2(τ)
[
−(1 + 2Ψ)dτ2 + (1− 2Ψ)

(
dr2 + r2dθ2 + sin2 θdφ2

)]
. (1.24)

Substituting these metric coefficients into Einstein equations shows that the Newtonian

gravitational potential satisfies the non-relativistic Poisson equation ∇2Ψ = 4πGNρ on small

scales, where ρ = T00 is the mass density. This metric is important for analyzing growth

of structure in the universe in cosmological perturbation theory which will be discussed in

section 1.3.3.

We would like to apply the Einstein equations to the FRW metric to analyze the implications

of GR for cosmology. We first need to think about the right hand side of the Einstein equations

which contains the information about matter and energy in the universe. It turns out that

most of the ingredients in the universe have a decent effective description as a perfect fluid.

The energy-momentum tensor for a perfect fluid is given by

Tµν = (ρ+ p)uµuν + pgµν , (1.25)

where uµ = dxµ/dt is the four-velocity of the fluid elements, ρ is the mass density, and p is

the pressure. The perfect fluid is further specified by an equation of state, a relationship

between ρ and p: p = wρ. Two of the most common examples of cosmological fluids are dust

(or matter) and radiation. Dust is collisionless, pressureless, nonrelativistic matter, and obeys

wm = 0. The equation of state parameter for radiation is wr = 1/3, and is used to describe

actual electromagnetic radiation as well as relativistic massive particles, moving at velocities

so close to the speed of light that they are effectively indistinguishable from photons.

Assuming that the fluid is homogeneous, we can take the fluid to be at rest in comoving

coordinates, in which case the four-velocity is uµ = {1, 0, 0, 0}, and the energy momentum

tensor is,

Tµν =


−ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 . (1.26)
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Gravitational redshift

Let’s explore trajectories of particles in an FRW universe. This will provide insight to the

concept of gravitational redshift in cosmology. Here, we apply the geodesic equation for the

FRW metric to a massless particle. We start by defining a four-vector for the energy-momentum

as,

pµ =
dxµ

dλ
= {E, ~p}. (1.27)

This is in fact an implicit definition of the affine parameter λ in equation (1.6). It’s not

important to determine this explicitly, as it can be eliminated through d/dλ = (dt/dλ)d/dt.

The zeroth component of the geodesic equation (1.6) becomes,

E
dE

dt
=− Γ0

µνp
µpν

=− δijaa′pipj , (1.28)

where we subbed in the non-zero Christoffel symbols calculated from the FRW metric. Since a

massless particle satisfies ds2 = 0 in equation (1.1), we can also write,

0 = gµνp
µpν

= −E2 + δija
2pipj . (1.29)

Combining equations (1.28),(1.29) yields

dE

dt
= −a

′

a
E → dE

da
= −E

a
, (1.30)

the solution to which is,

E ∝ 1

a
. (1.31)

This is an important result: the energy of a massless particle decreases as the universe expands.

Since energy is also inversely proportional to wavelength, we see that wavelength is stretched

along with expansion. A photon emitted with wavelength λem at scale factor aem = a(tem),

will be observed at aobs with a longer wavelength λobs,

λobs

λem
=
aem

aobs
. (1.32)

Cosmologists refer to this phenomenon in terms of the redshift, z, between the two events,

defined by,

z =
λobs − λem

λobs
. (1.33)

Assuming that the observation takes place today (aobs = a0 = 1), the relationship between

scale factor when the photon is emitted and redshift is made clear:

a =
1

1 + z
. (1.34)
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This redshift is different than the conventional Doppler effect, as it is not caused by the

relative velocities of the observer and emitter, but by the actual expansion of space. However,

astronomers do often think of the redshift in terms of a velocity v = cz where c is the speed of

light. Even though it doesn’t make sense to compare relative velocities at different points of

curved spacetime, this rule of thumb works well over sufficiently short distances.

Dynamics of FRW

Before heading to Einstein’s equations, let’s see what we can learn from the conservation of

energy equation (1.14). The zeroth component reads,

0 =∇µTµ0

0 =∂µT
µ

0 + ΓµµνT
ν

0 − Γνµ0T
µ
ν

0 =− ρ′ − 3
a′

a
(ρ+ p)

ρ′

ρ
=− 3(1 + w)

a′

a
, (1.35)

where the prime denotes differentiation with respect to coordinate time t. We can instead

consider the scale factor as the independent variable, in which case the differential equation is

easily solved,

dρ

da
= −3(1 + w)

a
ρ → ρ ∝ exp

[
−3

∫ 1

a

da′

a′
(1 + w(a))

]
. (1.36)

For constant equation of state parameter this reduces to,

ρ = ρ0a
−3(1+w), (1.37)

which describes the evolution of the mass density as a power law with respect to a in terms of

the density today ρ0. For matter and radiation, the power law is,

ρm =
ρm,0
a3

ρr =
ρr,0
a4

. (1.38)

The matter density falls off proportionally to the volume, which is simply interpreted as the

decrease in the number density of particles as the universe expands. Radiation falls off faster

because, although the number density decreases the same way, there is an additional loss of

energy as a−1 as they redshift (see equation (1.31)). These relationships are consistent with

the fact that the early universe, which was smaller and denser, was radiation dominated. With

expansion, radiation has diluted faster than matter, so matter now dominates over radiation

with ρm,0/ρr,0 ∼ 3300.
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Now let’s see what the Einstein equations imply for the FRW metric. Substituting the

metric (1.19) and energy-momentum (1.26) components into equations (1.9), with µν = 00

and µν = ij results in,

H2 ≡
(
a′

a

)2

=
8πGN

3

∑
i

ρi −
K

a2
(1.39)

a′′

a
=− 4πGN

3

∑
i

(ρi + 3pi), (1.40)

where the index i represents the different types of fluid in the universe (matter, radiation, etc).

The above two equations (1.39)-(1.40) are called the Friedmann equations.

Before studying the solutions to these equations, an important cosmological parameter

should be highlighted. The Hubble parameter, H, defined above in (1.39), characterizes the

rate of expansion. Cosmologists often refer to the Hubble radius as H−1 and the “comoving

Hubble radius” as (aH)−1, which is the radius of the comoving Hubble sphere. The value of the

Hubble parameter today is referred to as the Hubble constant, H0, and is conventionally given

in units of km/s/Mpc. The Hubble constant has units of [length]−1 = [time]−1 = [energy] and

therefore sets the most important cosmological length, time, and energy scales.

There is currently controversy over the actual value of the Hubble constant, with different

measurement techniques yielding values in tension at the ∼ 2-3 σ level. For instance, H0 can be

measured from the cosmic microwave background (CMB) in the early universe, as well as from

Cepheid variables and supernovae in the late universe. The latest CMB results from Planck

measure the Hubble constant to be H0 = (67.3± 1.0) km/s/Mpc [8], while recent precise local

measurements yield a significantly higher measurement, H0 = 73.24± 1.74 km/s/Mpc [9]. In

a homogeneous and isotropic universe, these two approaches should yield the same expected

value. This tension remains to be resolved, and could be a hint that we need to consider

extensions beyond the standard model. Putting this issue aside, we will adopt the value from

Planck throughout. In terms of length, time, and energy, this translates to

H−1
0 = 4458 Mpc = 1.4× 1026 m (1.41)

H−1
0 = 14.5 Gyr = 4.58× 1017 s (1.42)

H0 = 1.4× 10−33 eV. (1.43)

It will also be convenient (for chapter 4) to introduce the conformal Hubble parameter using

the definition in (1.22),

Ĥ =
ȧ

a
= a′, (1.44)

where dot represents differentiation with respect to conformal time τ . Since a0 = 1, the present

day Hubble constant and conformal Hubble constant are equal H0 = H0.

12



Using the Friedmann equations and equation (1.35), assuming a flat universe with a single

perfect fluid, and a time-independent equation of state, we arrive at

a′ = H0a
1−3(1+w)/2 → a ∝

t
2

3(1+w) for w 6= −1,

eH0t for w = −1,
(1.45)

implying that in a matter dominated universe, the scale factor grows as a ∝ t2/3, and in a

radiation dominated universe, the scale factor grows as a ∝ t1/2. In either case, we have as

expected, a universe that is growing monotonically. We could also express this in terms of

conformal time,

ȧ

a
= H0a

1−3(1+w)/2 → a ∝

τ
2

1+3w for w 6= −1,

−1
τH0

for w = −1,
(1.46)

which gives a growth rate of a ∝ τ2 for matter domination, and a ∝ τ for radiation domination.

It is useful to recast the Friedmann equations in terms of an energy budget by defining the

density parameter Ω as

Ω =
∑
i

Ωi =
∑
i

ρi
ρcrit

, (1.47)

where the critical density is defined as,

ρcrit =
3H2

8πGN
. (1.48)

With these definitions in hand, the Friedmann equation (1.39) is simply

1 = Ω + ΩK , with ΩK ≡ −
K

H2a2
. (1.49)

Referring back to equation (1.21), it is evident that the universe is flat for Ω = 1 (ρ = ρcrit),

closed for Ω > 1 (ρ > ρcrit), and open for Ω < 1 (ρ < ρcrit).

Connecting with Observations

Let’s now use this machinery to connect with observations of our universe. We need to

observationally determine a number of parameters: what proportions of matter and radiation

are in the universe, what role does curvature play, and what does this mean for the evolution

of the scale factor with time?

It used to be thought that our universe contained two components only: matter and

radiation. By equation (1.40), and the fact that matter and radiation densities and pressures

are positive, we see that a′′ < 0. Since we know from observations of distant galaxies that the

universe is expanding, a′ > 0, this seems to imply that the universe should be decelerating.
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This fits perfectly with our intuition about how gravitational attraction works against the

expansion. The greater the mass density in the universe, the more the expansion is slowed

by gravity. Additionally, the scaling of ρm and ρr with scale factor in equation (1.38) agree

with observations that our universe was initially radiation dominated, followed by matter

domination.

So far, so good, but peculiarities now start to emerge. Let us rewrite the Friedmann

equation (1.39) or (1.49) once more in terms of the present values of the density parameters,

H2

H2
0

=
Ωr,0

a4
+

Ωm,0

a3
− K

H2
0a

2
, (1.50)

This model predicts that the universe should be “curvature dominated” at late times since

the curvature term will overwhelm the matter and radiation terms on the right side of the

equation. However, our observations tell us that, even though our universe is over 10 billion

years old, the K/a2 term still makes an unobservably small contribution to the Friedmann

equations. This is called the flatness problem. Combining data from the Planck satellite

with observations of the baryon acoustic oscillations provides a strong constraint on spatial

curvature: ΩK,0 = 0.000± 0.005 [8]. Remarkably, our universe appears to be extremely flat.

From now on, we can safely set K = 0. From equation (1.49), this also implies that Ω = 1,

and so the total energy density of the universe is equal to the critical density.

With K = 0, another inconsistency emerges. There is strong evidence that matter and

radiation are not enough, and that there must be some other form of energy density in

the universe to reconcile this theory with observations. First of all, we can measure the

contributions of matter and radiation to the energy density budget. There are a variety of ways

to do this, all of which are in good agreement. Recent estimations of the density parameters

yield [8],

Ωm,0 = 0.3099± 0.0062, Ωr,0 ∼ 9× 10−5. (1.51)

To balance the Friedmann equation (1.49), there needs to be another contribution to the

energy density to make up for the remaining ∼ 70%, Ω = Ωr + Ωm + Ω?. Cosmologists call

this mysterious contribution dark energy, denoting its density parameter as ΩDE.

Another crucial observation motivates the need for some sort of dark energy. In the

1990’s astronomers set out to measure the expansion rate of the universe. As discussed

above, it was expected that the universe was decelerating, and the question was, by how

much? Measuring the expansion rate requires some sort of cosmological distance measure.

With precise information about the dependence of a distance measure on redshift, the effects

of geometry and matter content can be disentangled. One such measure is the luminosity

distance which is defined in terms of the luminosity L and the flux F of a distant source as
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dL =
√
L/4πF . In terms of the comoving distance χ, the luminosity distance is related to the

redshift as

dL = (1 + z)χ (1.52)

In a flat universe, the comoving distance χ is equal to the FRW coordinate distance r. Its

formula comes from considering light from a distant source traveling towards us along a radial

null geodesic: ds2 = 0 = −dt2 + a2dχ2. Rearranging gives the comoving distance to the source,

χ ≡
∫ t0

tem

dt
1

a
=

∫ 1

aem

da
1

aa′
=

∫ 1

aem

da
1

a2H
. (1.53)

Using the Friedmann equation to express the Hubble parameter as a function of a, and not yet

making assumptions about the equation of state for dark energy w(a) (recall equation (1.36)),

yields a geometric expression for the luminosity distance,

dL =
1 + z

H0

∫ 1

aem

da

[
Ωr,0 + aΩm,0 + a4ΩDE,0 exp

(
−3

∫ 1

a
da′(1 + w(a′))/a′)

)]−1/2

. (1.54)

Since astronomers typically measure magnitudes, it is useful to convert the luminosity

distance to the difference in apparent (m) and absolute (M) magnitudes using

m−M = 5 log10

dL
10pc

+ κ (1.55)

where κ is a factor to account for the shift in frequency of the source due to the expansion of

the universe. Considering equations (1.54) and (1.55), one sees that if we were able to measure

the magnitudes m−M and redshift z, then we can test our theory by varying the parameters Ωi

in (1.54). This is best achieved with Type Ia supernovae because their absolute magnitude is

always approximately the same (with 10% scatter); they explode at the consistent critical mass

given by the Chandraesekhar limit. Type Ia supernovae are therefore called standard candles.

Any difference between the apparent brightness of two such supernovae must be a result of

their different distances. These objects have been instrumental in allowing astronomers to get

accurate distance measurements to distant objects, thus inferring the expansion rate of the

universe.

In 1998, results were published from two independent research groups, the High-Z Supernova

Search Team [10], and the SuperNova Cosmology Project [11]. Distant supernovae appeared

fainter than one would expect if the universe was dominated by matter and radiation alone.

This surprisingly suggests that the expansion of the universe is in fact accelerating, not

decelerating as expected. The universe must have been expanding more slowly early on, so

light had more time to travel from distant objects to us. These distant objects would therefore

appear fainter to us than if the universe contained only matter and radiation. The data simply

cannot be fit with a matter dominated universe: dark energy is necessary.
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Since then, these measurements have been confirmed by numerous independent experi-

ments. Recently, the pan-STARSS survey [12] has provided additional convincing support

for accelerated cosmic expansion via supernovae measurements. Furthermore, measurements

of the cosmic microwave background, gravitational lensing, and large-scale structure are all

consistent. The researchers who led the original discovery were awarded the Nobel Prize in

Physics in 2011.

Since we know that gravitation acts to pull matter together, the detection of cosmic

acceleration necessitates some form of dark energy that repels gravity and drives the expansion.

Referring back to equation (1.40), it is evident that acceleration, a′′ > 0, requires an energy

component with ρ+ 3p < 0, or w < −1/3. This mysterious fluid must have negative pressure.

It must also comprise about 70% of the energy density budget.

GR has served us quite well in constructing a framework in which we can model our

universe and test the predictions. It has allowed us to link the geometry of spacetime to the

mass density of the universe. However, the observational data indicate a need to go beyond

standard matter and energy. Section 1.4 elaborates on these mysterious dark constituents, and

how we understand them.

1.3.2 Inflation

A discussion of the standard cosmological model would not be complete without inflation.

This brief section motivates the need for inflation in the very early stages of the universe, and

describe its qualitative features.

Based on the crucial observations that the universe is homogeneous, isotropic, and ex-

panding, we can deduce that the universe expanded from a hot and dense early phase where

radiation was the dominant contribution to the energy density. This hot big bang model has

been rather successful in explaining the results from different observations, but some “puzzles”

remain concerning how the radiation era began. The canonical puzzles that motivate the need

for inflation are the flatness problem and the horizon problem. Following a description of these

problems, we present the solution of inflation and its standard implementation with a scalar

field.

Flatness problem

We’ve already been introduced to the flatness problem in the discussion following eq. (1.50).

Our observations tell us that the present day energy density in curvature is very close to
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zero, implying that our universe is quite flat. This also implies that the universe must have

been even more flat in its very early stages. To see this, consider equations (1.49) and (1.45).

Firstly, eq. (1.45) tells us that for any fluid with w > −1/3, a′ will decrease as a increases.

Therefore, the comoving Hubble radius (aH)−1 = 1/a′ has been increasing throughout the

matter (wm = 0) and radiation (wr = 1/3) dominated eras. Now considering eq. (1.49) and

the fact that we measure ρ ' ρcrit today, the density must have been even closer to the critical

density in the past ((aH)−1 will decrease going back in time, making ΩK decrease, and Ω very

close to 1). The flatness problem is: why was the density so extremely close to the critical

density at the start of the radiation era? In other words, how did our universe begin so flat?

Horizon problem

The horizon problem concerns the statistical homogeneity and isotropy of the universe, observed

for instance via the CMB (see section 1.6): the CMB temperature is approximately the same

in all directions. This is a problem because, given the finite speed of light, it is impossible for

the different regions of the universe to have been in contact between the big bang at ti = 0

and decoupling at tdec when the CMB was formed.

This can be formalized by examining the maximum comoving distance χmax from which

we (today a0 = 1) can receive a photon emitted since the big bang (ai = 0). This measure

is helpful since particles that are separated by distances greater than χ could have never

communicated with each other. Recalling the comoving distance from equation (1.53) and

substituting using eq. (1.45) yields,

χmax =

∫ a0

ai

da

aa′
=

∫ 1

0

da

H0a1−(1+3w)/2
. (1.56)

From this expression, we see that χmax is finite for w > −1/3 near a = 0. The finiteness

of the maximum comoving distance implies a serious problem: most spots on the CMB

sky have non-overlapping past light cones and thus were never in causal contact. We can

see this more clearly by relating the size of the horizon at decoupling to an angular scale.

Using equations (1.53) and (1.50), and assuming that the universe was radiation dominated

(wr = 1/3) before decoupling, it follows that the horizon size at decoupling is

χh =

∫ adec

ai

da

a2H(a)
=

∫ adec

0

da

H0

√
Ωr,0

=
adec

H0

√
Ωr,0

. (1.57)

The comoving distance from here to decoupling, assuming the universe has been mostly matter

dominated (wm = 0) throughout this time, is given by

χdec =

∫ a0

adec

da

a2H(a)
=

∫ 1

adec

da

H0

√
a Ωm,0

=
2(1−√adec)

H0

√
Ωm,0

. (1.58)
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The angular size of the horizon at decoupling is therefore

θ =
adec

√
Ωm,0

2
√

Ωr,0(1−√adec)
∼ 2°, (1.59)

where we used the values of the density parameters in eq. (1.51) and adec = 1/(1 + zdec) =

1/(1 + 1090) ∼ 10−3. Given that a spherical surface has about 40000 square degrees, we see

that the surface of last scattering is made of more than 104 causally disconnected patches of

space. If there was not enough time for these regions to communicate before decoupling, how

are they so similar?

Solution

Both of the above problems are related to initial conditions: how could the radiation era begin

so incredibly flat and homogeneous? We’ve seen that both issues arise due to the behaviour of

the comoving Hubble radius during the early radiation era in the standard big bang cosmology.

The fact that (aH)−1 is increasing is the root of the puzzles. A simple solution is to conjecture

a phase preceding the radiation era in which the comoving Hubble radius was decreasing,

d(aH)−1/dt < 0. If the factor by which (aH)−1 decreased during this phase exceeds the factor

by which it has subsequently re-expanded, then we can solve the flatness and horizon problems.

Since a decreasing (aH)−1 implies that a′′ > 0 by (1.40), this phase is called inflation: it is a

brief period of rapid accelerated expansion. The benefit of this period of inflation is that the

universe can start from a completely generic initial state, and be driven towards homogeneity

and isotropy.

How much inflation do we need? At the least, we require that the observable universe

today fits in the comoving Hubble radius at the beginning of inflation: (a0H0)−1 < (aIHI)
−1.

We can relate the present day comoving Hubble radius (a0H0)−1 to its value at the end of

inflation (aEHE)−1 by simply assuming that the Universe has been radiation dominated since

then.
a0H0

aEHE
∼ aE
a0
∼ T0

TE
∼ 10−3 eV

1016 GeV
∼ 10−29, (1.60)

where we assumed the energy scale of inflation was 1016 GeV and that the temperature today

is T0 ∼ 2.7 K ∼ 10−3 eV. Thus, inflation will be adequate if the comoving Hubble radius

shrinks by a factor of 1029: (aIHI)
−1 > 1029(aEHE)−1. This is typically stated in terms of

the number of required “e-folds of inflation”:

Ne-folds > log

(
aEHE

aIHI

)
∼ 67 (1.61)

This is the conventional statement that the solution to the horizon problem requires approxi-

mately 60 e-folds of inflation.
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Slow-roll inflation

So what caused this period of inflation? This is still a wide open question. It’s possible,

however, that a single scalar field ϕ with the simplest potential V (ϕ) = m2
ϕϕ

2/2 can do the

trick [13, 14]. In the toy model picture of inflation that is presented here, this scalar field, the

inflaton, must have a potential in which it can “roll” monotonically down from a “slow-roll”

region to a local minimum with vanishing potential. “Slow-roll” is defined in terms of the

slow-roll parameters:

ε ≡
M2
P

2

[
dV (ϕ)/dϕ

V (ϕ)

]2

, η ≡M2
P

d2V (ϕ)/dϕ2

V (ϕ)
. (1.62)

The slow-roll condition is ε, η � 1, which is satisfied for the simple potential V (ϕ) = m2
ϕϕ

2/2

as long as |ϕ| > MP . A homogeneous scalar field has an energy-momentum tensor given by

Tϕµν = ∂µϕ∂νϕ− gµν
[

1

2
gαβ∂αϕ∂βϕ− V (ϕ)

]
. (1.63)

From this expression, recalling the general form of Tµν from eq. (1.26), we can infer the

inflaton’s energy density and pressure from the time-time and spatial components respectively,

yielding,

ρϕ =
1

2
(ϕ′)2 + V (ϕ), pϕ =

1

2
(ϕ′)2 − V (ϕ). (1.64)

We’ve seen above that a solution to the horizon and flatness problems requires the universe to

be temporarily dominated by some fluid with a negative equation of state w < −1/3. Hence,

this inflaton must obey pϕ < −ρϕ/3, requiring the potential energy to dominate over the

kinetic energy.

We can now examine the evolution of the inflaton in more detail. Substituting pϕ and ρϕ

into the conservation equation (1.35) leads to the equation of motion,

ϕ′′ + 3Hϕ′ +
dV

dϕ
= 0. (1.65)

This resembles the standard evolution equation for a particle experiencing a potential force

dV/dϕ and a friction force 3Hϕ′. The inflaton begins in the slow-roll regime: it is strongly

overdamped and quickly relaxes to its terminal velocity. In this regime, acceleration ϕ′′ is

negligible and the frictional drag approximately balances the potential force,

ϕ′ ' − 1

3H

dV

dϕ
(1.66)

The slow-roll condition ε� 1 becomes (ϕ′)2 � V (ϕ), which implies w ' −1 and hence a′′ > 0.

The accelerated expansion of the inflationary epoch is manifest as the field gradually rolls

down its potential. During this slow-roll phase, we can approximate the spacetime as de

Sitter. Eventually, when the field is close enough to the minimum so that V (ϕ) ∼ m2
ϕϕ

2/2 and
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H < mϕ, the field begins underdamped oscillations ϕ(t) ∝ a−3/2 cos (mϕt). In this oscillatory

phase, the energy density is decaying as ρϕ ∝ a−3, implying w = 0 and hence a′′ < 0. In

summary, when the inflaton rolls close enough to the minimum where the slow-roll conditions

cease to hold, the universe stops accelerating and begins to decelerate.

One last ingredient is needed to ensure that the universe does not end up empty when

inflation ends: the inflaton must couple to other forms of matter and energy. The energy

stored in the inflaton field should be converted into ordinary particles in the oscillatory decay

phase. This is captured in the equation of motion by introducing an inflaton decay rate Γϕ,

ϕ′′ + 3Hϕ′ + Γϕϕ
′ +

dV

dϕ
= 0. (1.67)

The particles produced by the inflaton decay will mix and interact, eventually reaching thermal

equilibrium at a uniform temperature. This process is called reheating, and the temperature

of this epoch, Treh is determined by the energy density at the end of the reheating process.

There exists a wide variety of reheating models that predict different reheating time scales and

energy scales. In any case, upon completion of this thermalization procedure, the standard

hot big bang cosmology begins.

Generation of inhomogeneities

In addition to offering an explanation to the flatness and horizon problems, inflation also

provides an attractive causal mechanism to generate inhomogeneities. The inflationary era

amplifies tiny quantum fluctuations and converts them into classical perturbations that act as

seeds for the formation of large scale structure in the present universe. In fact, in slow-roll

inflation, the same inflaton field is responsible both for the exponential expansion of space,

and the generation of inhomogeneities. We are chiefly interested in the spectrum of scalar

perturbations (also called curvature perturbations) generated during inflation as these directly

couple to matter and radiation and are primarily responsible for the inhomogeneous structure

in the universe.

Inflation generates not only scalar perturbations, but also tensor fluctuations in the

gravitational metric, termed gravitational waves. These fluctuations are in fact a unique

signature of inflation. If we were to observe tensor perturbations in the CMB, it would be the

best confirmation of inflation that cosmologists could hope for.

The standard derivation of the scalar and tensor spectra relies on quantizing the perturba-

tions and imposing vacuum initial conditions. Here we simply state the results for the power
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spectra produced via slow-roll inflation,

∆2
S(k) =

1

8π2

H2

M2
P

1

ε

∣∣∣∣∣
k=aH

, ∆2
T (k) =

2

π2

H2

M2
P

∣∣∣∣∣
k=aH

(1.68)

Both expressions are evaluated at “horizon crossing” defined by k = aH. It turns out that

both scalar and tensor power spectra are roughly scale invariant, meaning that the above

expressions are independent of k. It is conventional to parameterize the deviation from scale

invariance with a reference scale k∗ and spectral indices ns and nt as follows,

∆2
S(k) = AS

(
k

k∗

)ns−1

, ∆2
T (k) = AT

(
k

k∗

)nt
. (1.69)

In terms of the slow roll parameters, the spectral indices are given by ns = 1 − 2ε − η and

nt = −2ε. The tensor-to-scalar ratio is defined as

r =
AT
AS

= 16ε (1.70)

The temperature fluctuations in the CMB are primarily sourced by scalar fluctuations. The

Planck satellite [8] has measured the scalar amplitude and spectral index at k∗ = 0.05 Mpc−1

to be

AS = (2.142± 0.049)× 10−9, ns = 0.9655± 0.0062. (1.71)

Tensor fluctuations produced during inflation should also be present in the CMB, but have not

yet been measured. A primary goal of current efforts in observational cosmology is to detect

the tensor fluctuations produced during inflation in the CMB. This will be discussed further

in section 1.6.

In connection with the upcoming chapters, the tensor power spectrum in eq. (1.68) will be

used in section 4.5 to determine the amplitude of tensor perturbations produced in bigravity.

The scale invariant scalar power spectrum (1.69) and its measured parameters (1.71) will be

important for chapter 5 in which we often refer to the power spectrum of the primordial gravita-

tional potential Ψi, defined by 〈Ψi(k)Ψi(k
′)〉 = (2π)3PΨ(k)δ(3)(k− k′). This quantity is related

to the power spectrum of the curvature perturbation through PΨ(k) = (2/3)22π2∆2
S(k)/k3 [7],

valid in the radiation dominated era.

Summary

Let us summarize the main features of inflation. Firstly, inflation incorporates a decreasing

comoving Hubble radius, providing a causal mechanism for modes to come into contact.

During the required ∼ 60 e-folds of rapidly shrinking horizon, the universe undergoes explosive

expansion, producing a flat and homogeneous universe. Secondly, in the reheating phase, we
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have a mechanism for ending inflation and transitioning to the radiation dominated era. Lastly,

a striking feature of inflation is that it provides a mechanism to generate variations around

the smooth background through quantum fluctuations of the inflaton. The evolution of the

perturbations produced during inflation can then be treated with cosmological perturbation

theory, presented in the next section 1.3.3. Without inflation, the “initial conditions” for the

classical perturbations have to be put in by hand. With inflation and reheating, we have a

precise prescription for these initial conditions.

Before concluding this section on inflation, we note that there are countless inflationary

models that employ more sophisticated potentials, multiple fields, and other complexities [15,

16]. We await more observational evidence to help us discriminate between the various

species of inflationary models. Nevertheless, the general paradigm of inflation is accepted

by the majority of cosmologists. On the other hand, there are serious criticisms of inflation,

which have led to the pursuit of alternative theories that dynamically explain the initial

conditions [17, 18, 19, 20, 21, 22]. There is a lot of work to be done on both the theoretical

and observation side to construct and constrain viable models of the early universe. Hopefully,

there is enough information that we can gather from within our observable horizon to construct

a coherent story of the early universe.

1.3.3 Cosmological perturbation theory

GR’s highly non-linear nature makes it difficult to deal with unless there is a high degree

of symmetry. Fortunately for cosmologists, the observed homogeneity and isotropy of the

universe makes the FRW metric adequate for numerous purposes. However, it’s true that our

universe is not completely homogeneous and isotropic: it is full of structure! It will be nearly

impossible to incorporate inhomogeneities and anisotropies in full generality with GR. The

best way is to use perturbation methods.

Cosmological perturbation theory is ubiquitously used to study the evolution of inhomo-

geneities. It provides a map from the initial perturbations produced during inflation, to the

anisotropies measured in the CMB, and further to the large scale structure that we see today.

Perturbation theory is valid in cosmology because we know that the perturbations are tiny

over a wide range of scales. We’ll see in section 1.6 that inhomogeneities in the CMB are one

part in 105, and so must have been even smaller prior to decoupling. Apart from the smallest

scales that undergo gravitational collapse to form galaxies, inhomogeneities are small on large

scales (& 10 Mpc), justifying the application of perturbation theory.

Here we simply provide an overview to capture the essence of linear cosmological perturba-
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tion theory. The goal is to understand the equations that govern the evolution of perturbations.

Let’s begin with the perturbed Einstein equation: δGµν = (8πGN )δTµν . Under the assumption

that all constituents in the universe can be modeled as perfect fluids (see eq (1.26)), and

that these fluids do not contain any anisotropic stress (valid for non-relativistic species), the

perturbed energy-momentum tensor associated with these sources is,

δT 0
0 = δρ, δT 0

i = (ρ(0) + p(0))vi, δT ij = −δpδij , (1.72)

where δρ and δp are the perturbations in energy density and pressure respectively, and

vi = dxi/dτ is the coordinate velocity defined as the spatial perturbation of the four-velocity

δui ≡ vi/a. The background quantities, represented with superscripts (0), are assumed to

be smooth and time-dependent. Keep in mind that there are several contributions to the

energy-momentum tensor such as photons, baryons, neutrinos, and dark matter which we have

not distinguished yet.

Let’s now consider the dominant contributions to relativistic and non-relativistic matter.

For the latter, this is dark matter (see section 1.4.1). It is common to introduce the dark

matter density contrast δ(x, τ) as

δ(x, τ) ≡ δρdm(x, τ)/ρ
(0)
dm(τ), (1.73)

which is the quantity that cosmologists are typically interested in. Linear perturbation theory

is valid when δ(x, τ)� 1, and a perturbation is termed non-linear when δ(x, τ) ∼ O(1). When

deriving the equations, this is employed by neglecting all higher powers of δ.

The time evolution of the density fluctuations are completely decoupled on different scales

in linear perturbation theory. This useful property means that each Fourier mode, δ(k, t),

defined by

δ(x, τ) =

∫
d3k

(2π)3
δ(k, τ)eik·x, (1.74)

evolves independently. Assuming statistical homogeneity and Gaussianity of the density field,

the density field is described entirely by the matter power spectrum Pδ(k, τ),

〈δ(k, τ)δ(k, τ)〉 = δ(k− k′)Pδ(k, τ). (1.75)

This quantity will be especially useful in chapter 5.

For relativistic matter, it is sufficient for our purposes to consider only the photon distribu-

tion, f , and its perturbation Θ defined by,

f(p̂, p,x, τ) =
1

exp
[

p
T (τ)[1+Θ(p̂,x,τ)]

]
− 1

, (1.76)
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where T is the time-dependent background temperature. Note that the perturbation Θ allows

for both inhomogeneities and anisotropies as it depends on both x and p̂ where p is the

momentum.

With an understanding of the matter perturbations, let’s now turn to perturbations of

the metric which is more technically involved. One complexity is the gauge (coordinate)

dependence. Even though GR is covariant (independent of coordinate choice), splitting the

metric into a background piece and a perturbation piece, gµν = g
(0)
µν + δgµν , is not a covariant

process. There is no uniquely preferred frame of reference in the presence of perturbations.

Infinitely many coordinate choices exist for which the metric and the coordinates reduce to

their standard FRW form as the perturbations go to zero.

With the issue of covariance in mind, one can either work with gauge invariant quantities

that define the perturbations, or simply choose a particular gauge and work in these specific

coordinates throughout. In this work, we adopt a specific gauge: the conformal Newtonian

gauge (also called the longitudinal gauge). As introduced in equation (1.24), this gauge consists

of just one independent function Ψ(x, t) that represents the perturbation of the gravitational

potential.2 As for the density contrast, perturbation theory is valid as long as Ψ� 1.

In an effort to be brief, we will skip the derivation of the perturbation equations, referring

to the reader to textbooks such as [7, 23]. Rather than give the most general equations, we

provide a simple set that is useful for our universe in terms of only dark matter and photons.

We are assuming no anisotropic stress and neglecting baryons. Not all components of the

Einstein equations are needed to form an independent set of perturbation equations. In Fourier

space, the time-time component is sufficient and is given by

k2Ψ + 3H(Ψ̇ +HΨ) = −4πGN

(
Ωm,0

a
δ + 4

Ωr,0

a2
Θ0

)
, (1.77)

where Θ0 is the monopole perturbation of the photon distribution, Θ0(x, τ) = 1
4π

∫
d2p̂ Θ(p̂,x, τ).

Further, from the conservation of the energy-momentum tensor (1.14), the relativistic general-

izations of the continuity and Euler equations can be derived,

δ̇ + ikv − 3Ψ̇ =0, (1.78)

v̇ +Hv + ikΨ =0. (1.79)

where v is defined by ∂iv = vi and is the spatial perturbation of the dark matter velocity

(recall eq. (1.72)). Lastly, there is the Boltzmann equation for photons,

Θ̇ + ikµΘ− Ψ̇ + ikµΨ = 0. (1.80)

2This gauge actually contains two independent functions, Ψ and Φ, but under the assumption of zero

anisotropic stress, we have Ψ = Φ.
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where µ = p̂ · k̂ is the angle between k and the direction of the photon momentum. By

setting appropriate initial conditions (inflation provides these), equations (1.77)-(1.80) can be

numerically solved for the metric, dark matter, and photon perturbations, captured by the

variables Ψ, δ, vi, and Θ.

1.4 The dark side of the universe

1.4.1 Dark matter

We have seen that all of the constituents in the universe are modeled in cosmology as perfect

fluids (see eq. (1.26)) with different equations of states, focusing so far on matter and radiation

(see eq. (1.38)). Let’s solely consider the matter sector. All of the non-relativistic particles in

stars, planets, and gas can be modeled in this sector. Nearly all matter that is encountered in

everyday life is ordinary baryonic matter (made from elements in the period table). A major

mystery of modern physics is that the amount of baryonic matter in the universe is not nearly

enough to account for our observations. All of the matter that we can see or detect with or

telescopes is not enough to explain the formation and dynamics of structure in galaxies and

galaxy clusters. There is a mismatch between the matter that we can see and the matter

inferred from gravity. Astronomers hypothesized that this mismatch is due to dark matter.

Dark matter gets its name because it does not emit or interact with electromagnetic

radiation, and thus we can only observe it indirectly through its gravitational effects. From

the first proposal for dark matter by Fritz Zwicky in the 1930’s based on cluster observations,

there is now overwhelming evidence for its existence. This evidence exists at all gravitationally

relevant scales, from galaxies to our full horizon. Notable examples are galaxy rotation

speeds, velocities of galaxies in clusters, merging galaxy clusters, large scale structure, and the

CMB [24].

Given that dark matter seems to be required by a highly interconnected web of observations,

it is a crucial component of the current standard cosmological model. The standard model

employs cold dark matter (CDM) for which the particle speed is non-relativistic. Remarkably,

cold dark matter contributes to the universe’s energy density budget about 5 times more than

baryonic matter. By comparing the relative heights of observed peaks in the CMB temperature

power spectrum (see figure 1.3 in section 1.6), the baryon and CDM density parameters,

Ωb, Ωc, can be obtained. The current results from Planck [8] suggest values of

Ωbh
2 = 0.02222± 0.00023, Ωch

2 = 0.1197± 0.0022, → Ωc

Ωb
∼ 5.4, (1.81)

where h is a dimensionless constant related to the Hubble constant H0 = 100h km/s/Mpc.
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Although it is well established that dark matter exists, there is no consensus on what

exactly dark matter is, despite decades worth of effort by theorists and experimentalists. A

slew of potential candidates for CDM have been proposed. Particularly appealing categories

are axions [25, 26] and WIMPS [27] (Weakly Interactive Massive Particles), although no

particles of either type have been detected. However, current direct and indirect detection

methods are now entering a sensitivity regime in which some theoretical candidates could be

detected [28, 29]. Scientists are optimistic that the next generation of dark matter detectors

will yield the next great discovery in modern physics.

Dark matter is a puzzling part of the cosmological model, but it will not be the focus of

this work. Instead, we turn to an even bigger source of mystery affecting the largest scales of

our universe: dark energy.

1.4.2 Dark energy

The end of section 1.3 motivated the need for a mysterious energy density component. Since

CMB obsevations strongly suggest ΩK ∼ 0 [8], dark energy is needed to balance the Friedmann

equation (1.49). Different sources of evidence are all consistent. To fit the data, this dark

energy must have a negative pressure w < −1/3, and it must account for a huge chunk of

the universe’s energy density ΩDE ∼ 0.7. GR allows us to link the geometry and dynamics of

spacetime to the matter and energy density of the universe. Here, the link implies that dark

energy is responsible for the recent accelerated expansion of the universe a′′ > 0. So, what is

this dark energy?

The simplest model of dark energy is a cosmological constant, denoted by Λ.3 Dark energy

in the form of a cosmological constant Λ, together with cold dark matter (CDM), comprise the

basis of the standard cosmological model, “ΛCDM.” A cosmological constant means that the

dark energy has a constant energy density that fills space homogeneously and does not dilute

with the expansion of the universe. It is synonymous with vacuum energy. As a practical

explanation, this works quite well, and is consistent with many of the latest observational

results. Let’s explore how this fits in with the cosmological model described in the previous

section.

A cosmological constant is constant in the sense that it does not dilute with expansion like

matter and radiation do. The energy density relation analogous to eq. (1.38) is simply

ρΛ = ρΛ,0 =
Λ

8πGN
. (1.82)

3Λ is a dimensionful parameter with units of [mass]2 = [energy]2 = [length]−2.
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Figure 1.1: The evolution of the density parameter for matter, radiation, and a cosmological constant as a

function of scale factor, a, on the lower axis and time, t, since the big bang on the upper axis. The early

universe was radiation dominated until a = Ωr,0/Ωm,0 ∼ 3× 10−4, t ∼ 5× 104 years. Matter has dominated for

a large portion of cosmic time, until recently, a = (Ωm,0/ΩΛ,0)1/3 ∼ 0.76, t ∼ 1010 years. Our universe is now

dark energy dominated, and has thus begun an epoch of accelerated expansion.

From the general expression in equation (1.36) one can see that the equation of state parameter

for the cosmological constant is w = −1. The corresponding behaviour of the scale factor with

time in a cosmological constant dominated universe is then given in equations (1.45), (1.46).

Figure 1.1 shows the evolution of the various density components with scale factor, illustrating

the cosmic epochs of radiation, matter, and dark energy domination. The epoch of dark energy

domination began “recently” in cosmic history, about 3.6 billion years ago.

Implementing the cosmological constant is a simple fix in Einstein’s theory. One interpre-

tation is that the cosmological constant is an additional form of energy which is added to the

right hand side of Einstein’s equation (1.9),

Rµν −
1

2
Rgµν = 8πGNTµν − Λgµν . (1.83)

Here, the cosmological constant acts as a homogenous perfect fluid with equation of state

w = −1 and corresponding energy momentum tensor,

TΛ
µν =(ρΛ + pΛ)uµuν + pΛgµν (1.84)

=− ρΛgµν (1.85)

A different interpretation comes from putting Λ on the left hand side of Einstein’s equation,

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν (1.86)
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where Λ is a new free parameter of GR. Λ is neither forbidden nor specified by Einstein’s

original theory, so there is nothing that prevents one from including it in the field equations.

As written, (1.86) is considered a modification of gravity since we are directly changing the

form of the geometry of spacetime. In the Einstein-Hilbert action (1.16), Λ appears as,

SGR+Λ =

∫
d4x
√
−g
(
M2
P

2
R−M2

PΛ + Lmatter

)
. (1.87)

It is interesting to note that the first use of the cosmological constant term was by Einstein

himself. Considering the astronomical data at the time, Einstein hoped his theory would

describe a static universe (neither expanding or collapsing). Since a universe filled with only

normal matter and described by (1.50) would collapse under gravity, he needed a cosmological

constant term to act as a repulsive force to balance it out. When Hubble discovered that

the universe is indeed expanding, the desire for a static universe was eliminated. Einstein is

famously known for calling this his biggest blunder. Nonetheless, the cosmological constant

term remains a legitimate addition to Einstein’s original equations. Whether perceived as

a modification of spacetime curvature (1.86), or an addition to the matter content of the

universe (1.84), the effects of the cosmological constant are the same, and we can simply think

of it as a free parameter whose value needs to be constrained by observations.

To describe dark energy and be consistent with all of our observations of the universe (such

as the luminosity of supernovae, the observed spatial flatness and structure formation history),

we need to set the density parameter of the cosmological constant to be [8],

ΩΛ = 0.6911± 0.0062, (1.88)

which gives a cosmological constant value of,

Λobserved

M2
P

=
ρΛ

M4
P

=
ρcritΩΛ

M4
P

' 7× 10−121, (1.89)

where we recalled the definition of ρcrit from eq. (1.48) and used the standard conversions in

the conventional units (g/cm3 = 8.3× 1090M4
P ).

A cosmological constant is the simplest way to explain dark energy. No introduction of

complicated dynamics or severe modifications to general relativity are in use. A constant

energy density that homogeneously fills empty space is the least invasive way to explain

the accelerated expansion of the universe. This abides by a basic tenet of science: adopt

the simplest interpretation of the data, and add complications only if forced to by further

observation. Further, the predictions made by GR when a tuned cosmological constant is

added actually fit most of our observational data extremely well. From the observational point

of view, there is no need to consider more complicated forms of dark energy.
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Nonetheless, it is natural for cosmologists to consider extensions to the cosmological

constant, at least for the sake of having alternatives to test the theory against. The most basic

extensions can be considered in terms of the equation of state parameter, w, alone. Although the

latest measurements from Planck indicate that w is consistent with a cosmological constant [8],

w = −1.019+0.075
−0.080, we can further allow w to vary with scale factor, and parameterize its Taylor

expansion as

w(a) = w0 + (1− a)wa. (1.90)

The recent estimates for the parameters w0 and wa are again consistent with a cosmological

constant: w0 ∼ −1, wa ∼ 0 (see figure 4 in ref [30]). Experimental efforts continue to try and

nail this measurement, as even a slight deviation from Λ would be interesting. Notably, the

Dark Energy Survey (DES) [31], is currently operating with the main goal of characterizing

dark energy by determining the equation of state with more precision. As it currently stands,

the cosmological constant appears to be a sensible description of dark energy.

The cosmological constant problem

Despite its practical success, there is a logical inconsistency from the theoretical standpoint:

the cosmological constant problem (see [32, 33] for reviews). As discussed above, the value of Λ

is not specified by GR. From the field theory point of view, however, we have no choice in

what the value of the cosmological constant should be. In quantum field theory, the vacuum,

like any physical object, has an energy density. The vacuum is maximally symmetric, implying

that its energy-momentum tensor is proportional to the metric,

T (vac)
µν = −ρ(vac)gµν . (1.91)

Comparing this to (1.84), the vacuum energy has the same form as a cosmological constant.

It is therefore common to use the terms “cosmological constant” and “vacuum energy” inter-

changeably. Using quantum field theory, we can calculate contributions to Λ(vac) = ρ(vac)/M2
P

and compare to the observed value.

Like a harmonic oscillator in the ground state, every mode of every free field contributes a

zero-point energy to the vacuum’s energy density. This energy arises from virtual particle-

antiparticle pairs described by loop diagrams. The contributions from each field depend on

the cutoff of the effective field theory that is being used. If we are confident that we can trust

both theories (standard model of particle physics + gravity) all the way up to the Planck scale,

we would receive a contribution on the order of unity,

ΛQFT =
M4

cutoff

M2
P

→
ΛQFT

M2
P

∼ 1 (1.92)
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This “predicted” value of the vacuum energy density based on quantum field theory is about

120 orders of magnitude larger than the observed value ΛQFT ∼ 10120Λobserved! In addition

to this known contribution, there could also be an unspecified bare cosmological constant.

The above result requires a bare cosmological constant to be finely tuned to over 120 decimal

places so that it cancels this large contribution, leaving us with the tiny observed value needed

for cosmology. It is not logically impossible, but this fine tuning is certainly not theoretically

pleasing. Note that field theory may fail earlier, implying a lower cutoff scale in (1.92).

Regardless of how much we trust the estimated prediction for ΛQFT, and the validity of the

calculation, it is clear that there is a tremendous discrepancy.

This enormous fine tuning is termed the cosmological constant problem. Essentially, we

lack a fundamental understanding of where the observed value of the cosmological constant

comes from. Is the cosmological constant just an unpleasant fact of our universe, or is there

some underlying physics that we do not yet fully comprehend?

There are really two issues at hand:

• Naturalness: In physics, the dimensionless physical constants appearing in the theory

should take values relatively close to unity. This is more of an aesthetic criteria than

a physical one. The idea of naturalness comes from the effective field theory notion

that all conceivable terms in the effective action that preserve the symmetries of the

theory should appear in the action with natural coefficients [34]. Since the observed

cosmological constant is many orders of magnitude smaller than one (in planck units), it

violates this notion of naturalness.

• Technical naturalness: If a small number does exist, physicists prefer that it be

technically natural. This means that the small parameter is stable to quantum corrections.

Additionally, when a parameter is technically natural, the theory gains an additional

symmetry as the parameter is set to zero. This is the case for the small fermion masses:

they do not receive large quantum corrections, so their small values are at least stable,

and chiral symmetry appears as they are set to zero. For the cosmological constant,

however, no known symmetry appears by setting it to zero. It is expected to receive

large quantum corrections as in eq. (1.92). The cosmological constant is both unnatural

and technically unnatural.

So far we have been discussing what is known as the “old” cosmological constant problem,

simply stated as: why is the cosmological constant not large? There’s a prediction, and it’s

big. There are currently no accepted solutions to this problem, and it remains an open area

of research in theoretical physics. There is also the slightly less severe “new” cosmological
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constant problem: why is the cosmological constant the value we observe it to be, and not

zero? There is also the related but separate coincidence problem. Referring to figure 1.1, we

happen to live in a brief cosmological era in which both matter and vacuum are of comparable

magnitudes. This is another unnatural fact about the cosmological constant for which we

would like some deeper explanation: why now?

Often, the anthropic principle is employed to explain the cosmological constant problem

[35]. The idea is essentially that observers like us will only experience conditions which allow

for observers to exist. This assumes that some parameters are not determined by the theory

but can actually take on a range of values. We live in a universe in which the particular

values are compatible with forming life as we know it. Well before the discovery of accelerated

expansion, Weinberg argued in [35] that the cosmological constant should be small based

on the anthropic principle. If it were any bigger or smaller, we would not even exist! If its

magnitude was too small, the universe would have collapsed under its own gravity before life

could form. If its magnitude was too big, the matter in the universe would be ripped apart

too fast to form galaxies, stars and planets. Whether or not this explanation is satisfactory is

hotly debated in the field.

It is not surprising that the cosmological constant problem has led physicists to pursue

alternative explanations for cosmic acceleration. More complicated models for dark energy

have been proposed, many of which simply add a dynamic component to the cosmological

constant [36], upgrading it to a scalar quintessence field. The fine tuning problem remains

unavoidable in any such model.

An alternative approach is to consider more fundamental modifications to the gravitational

sector. GR has been successful in explaining and predicting observations on solar system scales,

such as orbital precession, gravitational lensing, gravitational redshift, and most recently with

LIGO [37], gravitational waves. However, we have seen that employing GR on cosmological

scales requires dark matter and dark energy to preserve its success. This may be a signal that

we need to go beyond Einstein’s theory. An interesting possibility is that all of the evidence

for dark energy is actually evidence for a breakdown of GR on cosmological scales.

1.5 Modified Gravity

The unpleasant issues arising within GR on cosmological scales are cause for speculation

that GR needs some fundamental modification. Perhaps something is missing in the infrared

picture of GR. The idea of modifying gravity on cosmological scales has been an active area of

research over the past decade. A vast range of infrared modified theories exist in the current
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literature, often termed the modified gravity “zoo” (see [38, 39] for reviews). Some of these

include extra scalar, vector, or tensor fields in the gravitational sector, some include higher

spacetime dimensions, and some alter the simple Einstein-Hilbert action (1.15) by considering

more general actions R→ f(R). There are other classes of alternatives arising from different

motivations, such as attempting to quantize gravity, unify gravity with the other fundamental

forces, or explain dark matter through modified Newtonian dynamics.

In addition to these motivations for modifying gravity, is the simple desire to learn more

about the intricacies of GR. Deforming GR is a great way to discover new structures which

could have unexpected applications. Attempts to modify GR so far have uncovered that it

is an incredibly simple, rigid, and robust theory. Modifications introduce complications, and

while these complications may be able to fix one problem, they do not go without penalty.

With even the slightest tweak, it is hard to avoid the appearance of unwanted pathologies.

There are numerous tests that the modified theory must pass to be deemed a viable

candidate. From a theoretical standpoint, it should be mathematically consistent and possess

well posed equations of motion. It should also be continuous in its parameters: if a theory

deforms GR by a small parameter, it should match GR in the limit that the parameter

goes to zero. Once this is established, its predictions must match all astrophysical and

cosmological data. Ideally, the theory should also be observationally testable against GR and

other candidates. Lastly, the theory should be well-motivated. An uninspired fudge factor,

such as the cosmological constant, is not as convincing as a modification based on fundamental

principles.

One of the most well motivated modifications comes from stripping GR down to its

underlying principles from a field theory perspective. Forgetting about the spacetime geometry

picture envisioned by Einstein, at its core, GR is the unique theory of a non-trivially interacting

massless spin-2 particle, the graviton. The graviton is the particle carrier for the gravitational

force, analogous to the spin-0 photon for the electromagnetic force. One of the simplest

modifications to consider from here is a theory that propagates a massive spin-2 particle. Can

the graviton have a non-zero mass? This seems like a natural extension given that we already

know the particle carriers of the electroweak forces acquire a mass via the Higgs mechanism.

Massive gravity is a modified gravity theory in which a small non-zero mass, m, is given

to the graviton. Like any other modification to GR, massive gravity changes the degrees of

freedom. The massless spin-2 graviton of GR propagates 2 degrees of freedom. Turning on the

graviton mass means that massive gravity propagates 2s+ 1 = 5 degrees of freedom. With

extra degrees of freedom, massive gravity can produce new and exciting features, which have

sparked renewed interest in this theory over the past 5 years (for reviews, see [40, 41]).
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The main motivation for studying massive gravity is the possibility to explain cosmic

acceleration: the extra degrees of freedom can play the role of dark energy. Choosing the

graviton mass to be on the order of the Hubble scale, m ∼ H0 ∼ 1.4× 10−33 eV, the theory

admits “self-accelerating” solutions without ever explicitly adding a cosmological constant,

Λ = 0. In this case, the acceleration is a fundamental built-in feature of the theory, not

an additional factor. It is also interesting to study purely from the theoretical field theory

perspective: is it possible to construct a consistent theory of an interacting massive spin 2

particle?

Many attempts to explain cosmic acceleration with modified gravity simply shift the fine

tuning problem of the cosmological constant to other parameters of the theory. For massive

gravity, the small parameter is the graviton mass, m, itself. However, massive gravity theories

have the advantage of possessing a technically natural explanation. The graviton mass, unlike

Λ, is a stable parameter that does not receive large quantum corrections. This is consistent with

the fact that a symmetry is recovered as m→ 0: in the massless limit, the gauge-invariance of

GR is restored.

The intuition that a graviton with a Hubble scale mass can modify gravity in the infrared

comes from the simple Newtonian gravitational potential, U , describing the gravitational

interaction between massive bodies M1 and M2. When the force mediating particle is massive,

there is an extra Yukawa suppression:

U = −GNM1M2

r
e−mr. (1.93)

One can see that for m ∼ H0, the suppression would cause a weakening of the gravitational

force on cosmological scales H−1
0 . Meanwhile, on small scales for r � m−1, we have agreement

with the standard potential.

The following chapter 2 will outline the development of massive gravity, from the first

attempts by Fierz and Pauli in 1939 [42], to the construction of a fully consistent theory by

de Rham, Gabadadze, and Tolley in 2010 [43, 44]. The development was plagued by several

peculiarities and obstacles, which will be highlighted. Before delving into the theoretical details

which will be presented in chapter 2, we mention that there are experimental limits on the

mass of the graviton from the effects of the Yukawa potential, modified dispersion relation,

and fifth force, reviewed in [45]:

m . 7.2× 10−23 eV, precession of Mercury [46, 47] (1.94)

m . 1.2× 10−22 eV, BH-BH merger GW150916 [48] (1.95)

m . 10−32 eV, precession in galileon and DGP theories [49, 50, 51] (1.96)
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The lowest bound, although model dependent, is only about one order of magnitude above the

present Hubble scale (1.41), which is the value needed to explain accelerated expansion.

1.6 Cosmic Microwave Background

In our efforts to reveal the mysteries of the universe on the largest scales, we must look out

as far as we can see, to the edges of our horizon. From here on Earth, the observable edge

of the universe is at the surface of last scattering. This “surface” is a prediction of big bang

cosmology, and is well understood from basic physics. The very early universe was a hot,

dense, fully ionized, uniform plasma. Upon expansion, the universe cooled, and eventually

reached the critical recombination epoch in which protons and electrons combined to form

neutral hydrogen. Photon decoupling occurred shortly after, in which photons could freely

stream through space rather than be constantly scattered by ions in the plasma. During this

era, the universe went from an opaque plasma fog to transparent.

At the time of decoupling, the universe was about 379000 years old, about 3000 K hot,

and about one thousandth of its current size (adec ∼ 10−3), corresponding to a redshift of

zdec = 1090 (see eq (1.34)). After decoupling, the photons have been propagating freely

through space ever since. These photons are the source of the relic radiation from the early

universe, conventionally termed the cosmic microwave background (CMB) radiation. This

radiation is observed by us to come from a spherical shell called the last scattering surface.

As the universe continually expanded, the photons redshifted and cooled, decreasing in

energy and increasing in wavelength as in equation (1.31). The CMB radiation is detected

by us on Earth with a uniform temperature T0 = 2.72548 ± 0.00057 K [52]. The measured

frequency profile indicates thermal equilibrium and it is the best example of a perfect blackbody

in the universe. The first discovery of the CMB radiation by radio astronomers Arno Penzias

and Robert Wilson in the 1960’s was awarded the Nobel Prize [53].

The CMB is the oldest light in the universe, and so it carries a wealth of information about

the primordial universe. The radiation we observe today is a snapshot of the local properties

of the gas of CMB photons at the time of decoupling, such as density, peculiar velocity and

the total gravitational potential. These quantities are related to the primordial perturbations

by the simple acoustic physics describing the pre-recombination plasma. As observers, we can

measure the radiation’s frequency spectrum, temperature, and polarization. Each of these

observables are fully packed with cosmological information. By mapping the CMB across the

sky, cosmologists thus hope to answer some of the biggest questions in physics.
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Figure 1.2: Full sky map of the fluctuations in the CMB temperature, determined by the Planck satellite [56].

The temperature is fairly uniform, averaging T0 ∼ 2.73, with tiny fluctuations on the order of 10−4 K. The hot

and cold spots trace the over and under densities generated by primordial quantum perturbations. The over

densities have evolved and collapsed under gravity to form the dense structure in the universe that we see today.

Temperature Anisotropies

The vast majority of information lies in the CMB temperature field. The average temperature

is amazingly uniform across the sky, however, sensitive probes have revealed small fluctuations

on the order of 10−4. These hot and cold spots signify the over and under densities produced

by quantum fluctuations in the early universe. The over densities are the seeds that evolved

under the gravitational instability of cold dark matter to form the large-scale structure in the

universe.

Large-angle temperature anisotropies were detected first by COBE [54] in 1992, followed

by an impressive leap in precision by WMAP [55] in the next decade. The current state

of the art dataset is provided by the Planck satellite [4], and contains a high resolution

full-sky map of these temperature fluctuations. We generally define a dimensionless quantity

Θ(n̂) = (T (n̂)− 〈T 〉)/〈T 〉 to capture deviations from the average temperature 〈T 〉 in a given

direction on the sky, n̂ = (θ, φ).

As illustrated in figure 1.2, we observe these temperature fluctuations projected on a 2D

spherical sky surface, and so it is convenient to expand the temperature field in spherical

harmonics defined by,

Y`m =

√
2`+ 1

4π

(`−m)!

(`+m)!
Pm` (cos θ)eimφ, (1.97)

where the ` runs from 0 to infinity, −` ≤ m ≤ `, and Pm` are the associated Legendre functions.

The multipole ` represents a given angular scale on the sky of π/` degrees. Expanding the
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temperature anisotropy using these functions gives,

Θ(n̂) =
∞∑
`=0

∑̀
m=−`

a`mY`m(n̂), where a`m =

∫ π

θ=−π

∫ 2π

φ=0
d2n̂ Θ(n̂)Y ∗`m(n̂) (1.98)

Note that the monopole (` = 0) which is the average temperature over the whole sky, and dipole

(` = 1) which depends linearly on the velocity of the observer, are typically removed from the

sum when analyzing data. The upper bound of the sum is dictated by the resolution of the

experiment. The expansion coefficients a`m are called the multipole or harmonic coefficients.

Theory, which stems from quantum mechanics in the early universe, only allows us to

predict the statistical properties of cosmological fields, not their exact form. Our observations

represent just one particular realization of a random process. The statistical properties of

the temperature fluctuations should respect the symmetries of the background model. In the

case of the FRW model introduced in section 1.3.1, this means the statistics should respect

homogeneity and isotropy. Demanding invariance under rotations fixes the second-order

statistics to be of the form

〈a`ma∗`′m′〉 = δ``′δmm′C
TT
` , (1.99)

which defines the power spectrum, CTT` , of the temperature fluctuations. The above average

is taken over an ensemble of realizations of the fluctuations. The simplest models of inflation

predict that the fluctuations should also be Gaussian at early times, which means that the

multipole coefficients have Gaussian distributions with zero mean and variance equal to CTT` .

In this case, all we need to characterize the statistics of the temperature anisotropies is the

power spectrum (higher point statistics will be zero). Efforts to date have revealed no evidence

for primordial non-Gaussianity [57]. Therefore, measuring the anisotropy power spectrum has

been a main goal of CMB research.

Figure 1.3 displays the latest power spectrum measurements from Planck. It is convention-

ally plotted as `(`+ 1)CTT` /(2π) so that there is equal power per log interval in `. The peak

structure is generated from physical laws that govern the oscillations in the pre-recombination

photon-baryon plamsa. In this plasma, gravity tries to compress the fluid in potential wells,

while photon pressure resists compression. The resulting oscillations are called sound waves or

acoustic oscillations. They cause a spatial variation in the temperature that is imprinted on

the CMB.

The position, shape, and height of the peaks in the power spectrum tell us an extraordinary

amount about our universe, allowing us to measure the density parameters Ωi defined in

equation (1.47). For instance, the position of the peaks is mainly sensitive to curvature. Based

on the position of the first peak, we know that our universe is consistent with being flat

(zero curvature). Since the Friedmann equation (1.49) with ΩK = 0 implies that the total
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Figure 1.3: Adapted from Planck [8]: The power spectrum DTT` ≡ `(`+ 1)CTT` /(2π) is plotted as a function

of multipole moment, related to the angular scale as θ ∼ π/`. The dots are measurements made by Planck,

with error bars representing ±1σ uncertainties. The curve in the upper panel is the best fit of the standard

cosmological model ΛCDM, fit with six parameters. The lower panel shows the residuals with respect to this

model. Notice the remarkable fit of the theory to the data points.

energy density is close to critical, and many observations indicate that the matter energy

density is sub-critical, we see that dark energy is needed to make these statements consistent.

Furthermore, the baryon and dark matter densities affect the oscillatory behaviour of the

plasma. Raising the baryon density enhances every other peak in the power spectrum, while

raising the dark matter density reduces the overall amplitude of the peaks. The shapes and

heights of the second and third peak tell us that the density of baryons and dark matter in our

universe are the values given in equation (1.81). For more details on the relationships between

the power spectrum peaks and cosmological parameters, see references [58, 59, 60].

Cosmic Variance

With noise-free full-sky measurements of the temperature field, the CMB power spectrum can

be estimated by,

ĈTT` =
1

2`+ 1

∑
m

|a`m|2. (1.100)

This is an unbiased estimator, 〈ĈTT` 〉 = CTT` , but there is an unavoidable error in the estimation

of any given CTT` of ∆CTT` =
√

2/(2`+ 1). This limit on precision is called cosmic variance.

This is essentially a sampling variance stemming from the fact that we only have one universe
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and one location to make measurements from. As mentioned above, our theory does not

predict the exact form of any cosmological field. It only makes predictions for the probability

distribution from which the one realization that we actually can observe is drawn. Any estimate

of properties of the underlying probability distribution will inevitably have some random

error, due to our attempt to estimate ensemble-averaged quantities from a single realization.

In the above estimate of the power spectrum, we are intrinsically limited on the number of

independent m-modes we can measure as there are only 2`+ 1 of these for each multipole.

The Planck satellite is mostly limited by cosmic variance out to ` ∼ 2000. Its resolution is

sufficiently high and the noise is sufficiently low to make the error bars in figure 1.3 dominated

by cosmic variance. However, cosmic variance especially hinders our ability to learn about

large scale (low multipole `) properties of universe. This is evident looking at the size of the

error bars in figure 1.3 for ` < 30.

Polarization

Photons in the pre-recombination plasma were constantly being scattered by ions. This

scattering produces polarization of CMB photons, much like how incoming light from the sky

is polarized due to scattering in our atmosphere. Polarization is an important observable of

the CMB, providing complementary information to the temperature fluctuations. Polarization

also helps us disentangle the various mechanisms that produce temperature anisotropies, as

different sources produce different specific patterns in polarization. Therefore, although the

polarization signal is smaller (about 10 times smaller than temperature), it contains directional

information, which provides a way of isolating a possible primordial gravitational wave signal.

See [61] for an introduction on CMB polarization. Certainly, the next frontier of CMB research

involves precise polarization measurements.

Linear polarization of the CMB is generated by Thomson scattering of the quadrupole of the

temperature anisotropy at the surface of last scattering. The quadrupole moments are given

by a2m. There is another contribution to polarization coming from Thomson scattering during

the epoch or reionization, z ∼ 6− 10, in which the first stars and galaxies formed. Polarization

peaks at angular scales that correspond to the angle subtended by the mean free path at last

scattering, since these modes have the largest quadrupole anisotropy at last scattering. The

quadrupole could arise from three types of perturbations. Scalar perturbations, due to energy

density fluctuations, vector perturbations, due to vorticity, and tensor perturbations, due to

gravitational waves, all generate quadrupole anisotropies. As mentioned above, these different

sources produce different polarization patterns. The different patterns are separated into
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“electric” (E), or gradient, and “magnetic” (B), or curl, components. Scalar perturbations

produce E-mode polarization, vector perturbations produce mainly B-modes, and tensor

perturbations produce both. Importantly, B-modes cannot be produced solely from scalar

perturbations, but are expected to arise from inflation (see section 1.3.2).

The E and B nomenclature reflects the global parity: E-modes have electric parity,

E`m → (−1)`E`m, while B-modes have magnetic parity, B`m → (−1)`+1B`m. E-mode

polarization is directed along or perpendicular to the direction in which its magnitude varies,

whereas for B-modes, it is rotated by 45 degrees. We can analyze the E and B maps by

decomposing them in terms of spherical harmonics as we did for the temperature anisotropies

in equation (1.98), and define power spectra as in equation (1.101),

〈E`mE∗`′m′〉 =δ``′δmm′C
EE
` ,

〈B`mB∗`′m′〉 =δ``′δmm′C
BB
` ,

〈a`mE∗`′m′〉 =δ``′δmm′C
TE
` . (1.101)

E-modes are correlated with temperature, whereas statistical isotropy and parity invariance

imply that there are no expected correlations between B and either Θ or E. The current best

measurements of the EE and TE power spectra from Planck [8] show remarkable agreement

between the polarization measurements and the predicted theory spectra based on the best-

fitting ΛCDM model to the temperature anisotropies. Currently, there are only upper limits

on the B-mode power spectrum.

A significant detection of B-mode polarization would have profound implications for

cosmology. Since B-modes are not produced by density perturbations, a detection of B-

mode polarization would give direct information about primordial gravitational waves, which

were presumably produced during an inflationary epoch in the early universe as described

in section 1.3.2. As of now, we can put a bound on the ratio of the amplitude of tensor

perturbations to scalar perturbations (see eq. (1.69)): AT /AS < 0.11 [8]. Characterizing the

B-mode polarization is a primary goal of many current ground-based, balloon, and satellite

experiments.

Importance for dark energy and modified gravity

The CMB anisotropies open a window to the primordial universe. In addition to unveiling

mysteries of the early universe (such as properties of inflation), it should be stressed that the

CMB encodes crucial information about the matter composition and geometry of the universe

on the largest scales. Thus, it is certainly relevant for our endeavour of learning about dark
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energy and modified gravity. There are a number of important effects that dark energy and

infrared modified gravity can have on the CMB.

Firstly, alternative dark energy models will change the expansion history of the universe,

and hence, change the distance to the surface of last scattering. This would manifest as a

shift in the peaks of the power spectrum. The integrated Sachs-Wolfe effect [62], the decay

of gravitational potentials at late times, would also alter the power spectrum at low `. Non

constant dark energy or modifications of GR would affect the lensing potential [63], as well as

the growth rate of structure, potentially leading to a discrepancy between CMB measurements

and late-time large scale structure measurements [64, 65]. Additionally, there could be an

influence on CMB polarization, for instance if modified gravity models change the sound speed

of gravitational waves [66]. See [30] for details on many possible CMB signals that can allow

us to constrain dark energy and modified gravity models.

An abundance of different theoretical models for dark energy and modified gravity have

been proposed in the literature. The effort of comparing these models and their vast parameter

spaces with data is still in its early stages. Given that the CMB is currently our cleanest

probe of large scales, it is helpful in its ability to place tight constraints on alternative models,

especially when used in combination with other cosmological probes. Next, we discuss how

secondary CMB effects can provide additional information about cosmology in the infrared.

Secondary effects

The anisotropies in temperature and other fields that were generated at the surface of last

scattering are called primary effects. In addition to these primordial anisotropies arising from

quantum fluctuations in the early universe, there are several additional processes that add

structure to the CMB after recombination (see [67] for a review). On their journey from the

surface of last scattering to Earth, CMB photons interact with cosmic structures, causing

their frequency, energy or direction of propagation to be affected. These post-decoupling

interactions generate secondary anisotropies.

As we’ve seen above, the primary CMB is cosmic variance limited on large scales. This

means that we can not learn any more about very large-scale inhomogeneities from the primary

CMB alone. Given that nearly all of the hints we have of departures from ΛCDM are on

the very largest scales (for a recent summary of CMB anomalies see [68]), there is strong

motivation to go beyond the primary CMB to learn more. Additionally, as introduced in the

previous sections, more information on large scales is essential to distinguish between various

infrared modifications of GR and models for dark energy. Since we have extracted all possible
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large-scale information from the primary CMB, careful modeling of secondary effects is now

required for constraining cosmology on large scales. The valuable information contained in

these secondary signals has prompted a number of advanced surveys [69, 70, 71, 72, 73, 74, 75].

Secondary effects fall under two main categories: gravitational effects from the interactions

of photons with gravitational potential wells, and scattering between photons and free electrons.

Referring the reader to [67] and [76] for detailed descriptions of the physics of each effect and

their corresponding signatures, we simply list the main contributions here. The integrated

Sachs-Wolfe effect [62], the Rees-Sciama effect [77], and gravitational lensing of the CMB [78]

fall under the first category. Within the scattering category are variations of the Sunyaev-

Zeldovich (SZ) effect [79]. The thermal SZ effect due to scattering from hot gas in clusters

causes a spectral distortion in the blackbody spectrum. The kinetic SZ effect due to scattering

from ionized gas that is moving with respect to the CMB rest frame produces secondary

temperature anisotropies [80]. Additionally, scattering induces secondary polarization as well.

In chapter 5, we focus on the kinetic Sunyaev-Zeldovich (kSZ) effect, and how it can be a

potentially powerful probe of large scales. Excitingly, we have recently entered an era in which

this effect is detectable with current experiments, and measurements will continue to improve

with future probes. The kSZ effect was first detected in 2012 by looking for the contribution

to CMB temperature anisotropies induced by the pairwise motion of clusters [81, 82, 83, 84].

Next-generation “Stage 3” and “Stage 4” CMB experiments [85, 86] will have the ability

to make high-significance measurements of the kSZ effect. Realizing the full potential of

kSZ measurements will rely heavily on cross correlations with probes of large scale structure,

making the dramatic improvements to come with the next generation of redshift surveys and

21cm measurements equally important. Such cross correlations open the door to determining

the contribution to the global kSZ signal from different redshifts, a technique known as kSZ

tomography [87, 88, 89, 90, 91, 92, 93, 94].

The science case for precision measurements of the kSZ effect is quite broad. In addition to

revolutionizing our understanding of reionization, it has the power to probe missing baryons

e.g. [87, 95, 96], make precision tests of gravity [97, 98, 99], probe anomalous bulk flows [100,

101, 102, 103, 104, 105, 106], constrain the properties of dark energy and dark matter [107, 108],

constrain the masses of neutrinos [109], test the Copernican principle [110, 89, 111], constrain

the present day vacuum decay rate [112], and test the hypothesis that we inhabit an eternally

inflating multiverse [113].

Chapter 5 explores a novel large-scale regime of the kSZ effect. We highlight the ability of

kSZ tomography to overcome cosmic variance, allowing us to probe the large scale homogeneity

of the universe and test deviations from ΛCDM.
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Chapter 2

Massive gravity history and

formalism

Theoretical advancements have led to a recent resurgence of interest in massive

gravity, an infrared modification to GR in which the graviton has a non-zero

mass m. Following the introduction of massive gravity in section 1.5, this

chapter describes the historical development of the theory, noting how several

setbacks along the way were overcome. We highlight many important features

of massive gravity. For instance, section 2.2.2 focuses on the decoupling limit

of massive gravity, which allows us to decouple the 5 degrees of freedom of the

massive graviton and make a more direct comparison to GR. In this limit, the

theory resembles GR modified by an additional scalar galileon field. General

properties of galileons will be discussed in section 2.2.3. This chapter also

describes notable theories with close ties to massive gravity, the DGP Model

in 2.3, as well as bigravity 2.4. These theories, and other aspects discussed

in this foundational chapter, will be important for the work that follows in

chapters 3 and 4 respectively. For recent detailed reviews on massive gravity,

see Refs. [40, 41].
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2.1 From linear to non-linear massive gravity

Linear Fierz-Pauli gravity

The story of massive gravity begins with Fierz and Pauli, who constructed a linear theory for

a massive spin-2 particle in 1939. The Fierz-Pauli action [42] for a single massive spin-2 field

in flat-space is given by:

SFP =M2
P

∫
d4x

[
−∂λhµν∂λhµν + ∂µhνλ∂

νhµλ − ∂µhµν∂νh+
1

2
∂λh∂

λh

−1

2
m2
(
hµνh

µν − h2
)

+
hµνTµν
M2
P

]
, (2.1)

where hµν is a rank-2 covariant tensor representing the graviton particle, m is the graviton

mass, and Tµν is some energy momentum tensor. The indices of hµν are moved up and down

with ηµν so that the trace is h = hµνη
µν . The first four terms above are simply obtained by

expanding the Einstein-Hilbert action (1.15) to quadratic order in hµν around flat spacetime,

ie. taking gµν = ηµν + hµν . These terms describe a massless helicity-2 graviton and have the

gauge symmetry δhµν = ∂µξν(x) + ∂νξµ(x). Look explicitly now at the Fierz-Pauli mass term

which breaks gauge invariance,

SFP,m = −1

2

∫
d4x m2M2

P

(
hµνh

µν − h2
)
. (2.2)

These are the only two possible covariant quadratic terms in hµν . The relative minus sign

between the two mass terms is called the Fierz-Pauli tuning. It serves as an additional

constraint in order to attain the correct number of degrees of freedom for a massive graviton,

5. Violating this tuning results in an extra unstable degree of freedom [114]. The action

then would describe a scalar ghost (with negative kinetic energy) in addition to the massive

graviton.

It can be shown [40] that the Fierz-Pauli action indeed propagates 5 degrees of freedom,

and thus correctly describes a massive spin-2 graviton. In the massless limit, these 5 degrees

of freedom break down into the 2 helicity states of a massless graviton, the 2 helicity states

of a massless vector, and 1 single massless scalar. The scalar, which is recognized as the

longitudinal mode of the graviton, is still coupled to the trace of the energy-momentum tensor

in the massless limit. So taking m→ 0 in the Fierz-Pauli action does not quite recover GR, but

rather describes a massless graviton plus a coupled scalar. This coupled scalar is responsible

for an unacceptable discontinuity in the theory, known as the vDVZ discontinuity [115].

There are various ways to see the vDVZ discontinuity explicitly. For instance, Fierz-

Pauli gravity predicts a 25% smaller angle at which light is bent around an object compared
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to the GR prediction [40], a deviation much too large to be compatible with current light

bending measurements by the sun [116]. The discontinuity appears in the post-Newtonian

parameter γ = Ψ/Φ where Ψ and Φ are the metric perturbations away from flat space:

ds2 = −(1 + Φ)dt2 + (1 + Ψ)dr2 + · · · . In GR γ = 1, but in linear Fierz-Pauli γ = 1/2,

and since γ goes into the equations for the physical predictions of light bending and other

phenomena such as the emission of gravitational radiation, this discontinuity in γ is physically

unacceptable.

Although Fierz-Pauli has an incurable discontinuity, it is only a linear theory (the resulting

equations of motion are linear). We should expect that a theory of gravity that is able to

approach GR in high curvature regimes will be non-linear. Perhaps adding non-linear terms

can provide a solution.

Non-linear extensions

A natural starting point for constructing a non-linear massive gravity theory is to use the usual

Einstein-Hilbert action (eq. (1.15)) involving the dynamical metric gµν , for the kinetic term

and then simply add an appropriate mass term. So what would an appropriate mass term be?

One would first imagine that the mass term for gµν should only depend on gµν itself in a non

derivative way ∼ m(gµν)2. However, the only such non trivial term is simply proportional to

the volume element
√
−g, and is therefore a cosmological constant. This clearly does not give

any mass to the graviton since it does not break gauge invariance. Further, expanding this

term to quadratic order around an arbitrary background does not have the Fierz-Pauli form.

The desired mass term requires the introduction of some extra field besides the metric

gµν [117]. One possibility is to add another spin-2 field, fµν , that can be either dynamical or

non-dynamical. These two metrics interact through an interaction term in the action, denoted

Sint[f, g]. This interaction term will be the desired mass term for the graviton. For now, we

just consider the case where fµν is a non-dynamical fixed field. In section 2.4, the possibility

of adding dynamics to fµν is explored. All together, following [117] the total action of the

theory that is usually considered is:

Snonlin =

∫
d4x
√
−g
(
M2
P

2
R(g) + Lmatter(g)

)
+ Sint[f, g]. (2.3)

The first term is the usual Einstein-Hilbert action (1.15). The term denoted Lmatter(g) is a

generic matter Lagrangian assumed to have minimal coupling to gµν (but not to fµν). The

last term is the interaction term which is chosen such that:

1. The theory is generally covariant under diffeomorphisms (common to the two metrics),
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2. It has flat space-time as a solution of the field equations for gµν , and

3. It reduces to the Fierz-Pauli form when we take fµν = ηµν and gµν = ηµν + hµν , and

expand to quadratic order in hµν

In [118] it is shown that simply requiring that f and g interact in a non derivative way and

that the theory is diffeomorphism invariant, the necessary form of Sint[f, g] is

Sint[f, g] = m2M2
P

∫
d4xV(g, f) ≡ m2M2

P

∫
d4x
√
−gV (g−1f), (2.4)

for some suitable “potential” V . We will see more specific forms for Sint[f, g] in the DGP

model and dRGT model in the following sections.

2.2 Development of dRGT Massive Gravity

In attempting to resolve the vDVZ discontinuity with a non-linear extension of Fierz-Pauli

massive gravity, new problems arise. Boulware and Deser [119] discovered that a broad range

of fully non-linear massive gravity theories possess ghost-like instabilities. Fierz-Pauli’s linear

theory had 5 degrees of freedom (the correct number for a massive spin-2 field), but the

non-linear theories under study happened to have 6 degrees of freedom.

Boulware and Deser showed this explicitly through a Hamiltonian analysis in the ADM

language [120]. Here we will just highlight the main points. In the ADM language, the lapse

and shift are defined respectively as N ≡ 1/
√
−g00 and Ni ≡ g0i in terms of the metric gµν .

In GR, the lapse and the shift are the Lagrange multipliers associated with diffeomorphism

invariance, and they generate first class constraints which eliminate 4 out of the 6 possible

dynamical degrees of freedom of gµν . Thus, just the 2 usual polarizations of the massless

graviton remain. However, in non-linear massive gravity, the addition of a mass term breaks

diffeomorphism invariance and modifies the nature of the lapse and shift in the Lagrangian. As

Boulware and Deser first pointed out in [119] neither Ni nor N appear as Lagrange multipliers

in a general non-linear theory, but rather as auxiliary fields. Using their equations of motion,

their values can be solved algebraically and plugged back into the action, resulting in an action

with no constraints or gauge symmetries at all. So all 6 degrees of freedom are active. The

extra mode is the “Boulware-Deser ghost”, which manifests as a scalar field with the wrong

sign kinetic term.

It was once thought that this ghost is unavoidable in non-linear massive gravity theories

[121], but this conclusion was too quick. The fact that generic interactions give rise to an extra

degree of freedom does not imply that all interactions have this issue. It has been recently
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shown that it is in fact possible to add appropriate interactions that completely eliminate

the ghost [44, 43, 122]. This is the case for dRGT gravity, which was built specifically to be

ghost-free by de Rham, Gabadadze, and Tolley. The theory was found using modern effective

field theory techniques to find appropriate interactions order by order, and then re-summing

the result.

2.2.1 The dRGT Action

We have seen that the massive gravity theories so far have some unattractive features, such

as discontinuities and ghost instabilities. The question is whether these problems can be

eliminated by choosing a specific form of V (g−1f) from equation (2.4). de Rham, Gabadadze

and Tolley examined this [44], and constructed a potential in which the Boulware-Deser ghost

disappears. As an important bonus of this potential, the cutoff of the theory is raised to

Λ3 = (m2MP )1/3. This is an improvement from what was previously believed to be the cutoff:

Λ5 = (m4MP )1/5 [123]. Raising the cutoff means increasing the size of the regime in which we

can trust the effective field theory.

To describe the special form of the potential in the dRGT theory, we start by introducing

the functions ek whose argument is an arbitrary n× n matrix XI
J , I, J ∈ {1, . . . , n}:

e0(X) = 1,

e1(X) = [X],

e2(X) =
1

2
([X]2 − [X2]),

e3(X) =
1

6
([X]3 − 3[X][X2] + 2[X3]),

e4(X) =
1

24
([X]4 − 6[X]2[X2] + 3[X2]2 + 8[X][X3]− 6[X4]),

...

ek(X) =
1

k!
XI1

[I1···X
Ik
Ik] (2.5)

where [X] is the trace of the matrix XI
I , and the brackets around the indices in the last

expression indicate the unnormalized antisymmetric sum over permutations. Note that, by

the Cayley-Hamilton theorem, en(X) = det(X) for an n× n matrix.

dRGT theories are defined by an action of the form [122]:

SdRGT = −
M2
P

2

∫
d4x
√
−gR(g) +M2

Pm
2

∫
d4x
√
−g

4∑
n=0

β̃nen

(√
g−1f

)
(2.6)

where β̃n are arbitrary parameters of the theory, and the above square root is a matrix square

root of the tensor g−1f . Although it may appear that in 4D, there are 5 parameters β̃0, . . . , β̃4
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in the theory, there are actually just 2. This is because β̃0 describes a cosmological constant

(which does not give any mass to the graviton since it does not break general covariance). In

addition, the term proportional to β̃4 does not give any contribution to the field equations

for gµν since
√
−ge4(

√
g−1f) =

√
−g det(

√
g−1f) =

√
−f . So there are three free parameters

β̃1, β̃2, β̃3, which become just a two parameter family once the mass of the graviton is fixed.

This is easier to see using an alternative but equivalent form of the above action. Following

[117], the two parameters become manifest by defining the matrix K = 1−
√
g−1f , and setting

the beta parameters to be β̃0 = −6 − 4α3 − α4, β̃1 = 3 + 3α3 + α4, β̃2 = −1 − 2α3 − α4,

β̃3 = α3 + α4, β̃4 = −α4. The dRGT action now reads

SdRGT = −
M2
P

2

∫
d4x
√
−gR(g)−M2

Pm
2

∫
d4x
√
−g [e2(K) + α3e3(K) + α4e4(K)], (2.7)

which has two parameters α3 and α4.

2.2.2 The Decoupling Limit

The decoupling limit is a limit in which we take m → 0 and decouple the extra degrees of

freedom from gravity as much as possible. Care needs to be taken to properly define this limit

so that the resulting theory is not trivial; it still should retain the scalar’s self-interactions

and couplings to matter (we’ll soon see where this scalar mode comes from). This section will

outline the derivation of the decoupling limit for the dRGT theory, and discuss its significance.

Starting with the action in the form of (2.7), we perform what is known as a ‘Goldstone

boson expansion, as introduced in [123]. This is the same as the so-called Stueckelberg trick

[40]. Since the action being considered has gauge invariance, we can write the flat background

metric fµν in various coordinate systems. For instance, one can use the following expression

for f :

fµν(x) = ∂µX
A(x)∂νX

B(x)fAB(X(x)) (2.8)

so that the quantities XA can be considered a set of 4 new dynamical scalar fields which will

appear in the action. Considering some background solution for XA, XA
0 (x) ≡ δAµ xµ we then

introduce the “pion” fields πA as

XA(x) = XA
0 (x) + πA(x) (2.9)

We then further decompose the pion fields into scalar and vector Stueckelberg fields” Âµ(x)

and φ̂(x):

πA(x) = δAµ (Âµ + ηµν∂ν φ̂) (2.10)
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If we further expand around flat spacetime, writing gµν = ηµν + ĥµν , we’ll obtain an action in

terms of three dynamical fields:

ĥµν(x), Âµ(x), φ̂(x) (2.11)

Note that in the massless limit (to be defined below), all 5 degrees of freedom of the massive

graviton will be captured in these fields: 2 degrees of freedom in the massless tensor ĥµν , 2

degrees of freedom in the massless vector Âµ, and 1 degree of freedom in a massless scalar φ̂.

A few more technical steps allow us to write the dRGT action in terms of ĥµν , Âµ, and φ̂.

The quantity defined by Hµν ≡ gµν − fµν can be written in terms of the Stueckelberg fields as

Hµν = ĥµν − ∂µÂν − ∂νÂµ− 2∂µ∂ν φ̂− ∂µÂσ∂νÂσ − ∂µ∂σφ̂∂ν∂σφ̂− ∂νÂσ∂µ∂σφ̂− ∂µÂσ∂ν∂σφ̂.

Before proceeding, the fields should be canonically normalized as in [123]:

hµν = MP ĥµν , Aµ = MPmÂ
µ, φ = MPm

2φ̂. (2.12)

Further, writing K as Kµν = δµν −
√
δµν − gµαHαν , one can then expand out the action (2.7) in

terms of hµν , A
µ(x), and φ(x), producing a slew of interaction terms.

In a generic non-linear massive gravity model, the leading interaction terms are of the form

∼ (∂φ)3/(MPm
4) [123]. The way that the dRGT theory is constructed is special in that these

interactions ∼ (∂φ)3/(MPm
4) cancel, so that the new leading interaction term is suppressed

by a higher scale:

Λ3 = (m2MP )1/3. (2.13)

This is accomplished by tuning the coefficients in the generic potential in a specific way. Thus,

for the dRGT model, the decoupling limit is defined as:

MP →∞, m→ 0, Λ3 ∼ const,
Tµν
MP

∼ const. (2.14)

In this decoupling limit, using the above definitions and a bit of algebra, the action obtained

is:

Sdecoup
dRGT =

∫
d4x

[
−1

2
hµνEαβµν hαβ +

1

2
hµνX(1)

µν −
α

2Λ3
3

hµνX(2)
µν +

β

2Λ6
3

hµνX(3)
µν + Tµνh

µν

]
(2.15)

where Eµν = Eαβµν hαβ is the linearization around ηµν of the Einstein tensor Gµν and we’ve

simplified by combining coefficients: α ≡ −(1 + α3), β ≡ (α3 + α4)/3. The tensors X
(n)
µν are

special conserved combinations of Φ ≡ ∂µ∂νφ such that ∂µX
(n)
µν = 0. They are defined as

X(1)
µν = 2(Φµν − [Φ]ηµν) (2.16)

X(2)
µν = [Φ]2 − [Φ2])ηµν − 2([Φ]Φµν + Φ2

µν) (2.17)

X(3)
µν = ([Φ]3 − 3[Φ][Φ2] + 2[Φ3])ηµν − 3([Φ]2 − [Φ2])Φµν + 6[Φ]Φ2

µν − 6Φ3
µν , (2.18)
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which can also be written using the Levi-Civita tensors,

X(1)
µν = εµ

αρσεν
β
ρσΦαβ,

X(2)
µν = εµ

αργεν
βσ
γΦαβΦρσ,

X(3)
µν = εµ

αργεν
βσδΦαβΦρσΦγδ. (2.19)

Square brackets are still used to denote the trace, [Φ] = Φµνη
µν . Notice that Aµ does not

appear in the decoupling limit because it does not couple to a source, so it can be consistently

set to zero. Due to the specific nature of this lagrangian, the coefficients α and β do not

get renormalized by quantum loops, and thus their values are technically natural [124]. For

generic values of these coefficients, the helicity-0 (φ) and helicity-2 (hµν) modes still mix and

cannot be completely decoupled. However, the mixing can be undone by choosing β = 0 [44],

in which case there exists an invertible field redefinition,

hµν → hµν + ηµνφ+
α

Λ3
3

∂µφ∂νφ, (2.20)

that decouples the scalar and tensor modes completely so that the Lagrangian can be written

as L = Lφ + Lh [44]. The remarkable property of the action (2.15) is that it represents the

exact form of the action in the decoupling limit, meaning that all terms above quartic order

vanish. Equation (2.15) represents the unique theory that any nonlinear, ghostless extension

of massive gravity should reduce to in the decoupling limit [44].

It is important to emphasize the significance of the decoupling limit. First of all, the main

purpose of the decoupling limit is to decouple the scalar degree of freedom from gravity as

much as possible. In the DGP case that will be introduced in section 2.3, the resulting action

(2.33) has π and hµν completely decoupled. In dRGT, the action (2.15) has φ and hµν mixed

at all orders unless β = 0, but this is as decoupled as the action can get. In the decoupling

limit, in both cases, the study of solutions is greatly simplified, thus, it is an obvious place to

start.

An interesting feature of this limit is that it allows to decouple the scalar mode from

gravity, while retaining the number of degrees of freedom of the theory, and keeping the full

non-linear dynamics of the scalar field and its coupling to matter. Thus, within its range of

validity, it describes important non-linear phenomena of the theory, such as the Vainshtein

mechanism (see chapter 3). Another reason for working in this limit is due to the fact that we

take the graviton mass to zero (2.14). Recall that a viable theory of massive gravity should

agree with GR in the m→ 0 limit, at least within the solar system. Thus, in the decoupling

limit, we can make a direct comparison of the massive gravity theory to GR.

It should also be noted that, in this limit, we are perturbing around flat space gµν = ηµν+hµν

with |hµν | � 1 so the solutions are only valid in the weak field regime: for matter sources much
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bigger than their Schwarzschild radius. Of course, the solutions found in the decoupling limit

do not necessarily imply that solutions of the full theory exist with the same properties. There

is the possibility that important properties of the full nonlinear system could be overlooked,

and perhaps the decoupling limit cannot capture all of the interesting physics. As argued in

[125], let us stress that the decoupling limit solutions give the local dynamics at scales within

the present Hubble volume. Thus, solutions found in the decoupling limit should still appear

as transients lasting for long cosmological times in the full theory [126].

2.2.3 Galileons

The above action (2.15) enjoys linear diffeomorphism invariance δhµν = ∂µξν + ∂νξµ (up to

a total derivative). It is exactly invariant under the field space of galileon transformations

δφ = c + bµx
µ. In fact, the φ field is referred to as a galileon field [125]. With β = 0, and

under the field redefinition (2.20), the decoupling limit lagrangian can be fully decoupled

L = Lφ + Lh. Lh describes a typical GR massless graviton, and in the scalar sector, Lφ, we

see the appearance of the galileon terms,

Lφ = −3

2
L2(φ) +

3

2

α

Λ3
3

L3(φ)− 1

2

α2

Λ6
3

L4(φ) +
φT

M4
+

α

M4Λ3
3

∂µφ∂νφT
µν , (2.21)

where the galileon terms are given by

L2(φ) = (∂φ)2 (2.22)

L3(φ) = (∂φ)2[Φ] (2.23)

L4(φ) = (∂φ)2([Φ]2 − [Φ2]) (2.24)

L5(φ) = (∂φ)2([Φ]3 − 3[Φ][Φ2] + 2[Φ3]) , (2.25)

where (∂φ)2 = ηµν∂µφ∂νφ and Φ ≡ ∂µ∂νφ. These terms have two special properties:

1. Their equations of motion are always second order, despite the appearance of higher

order derivatives in the lagrangian.

2. They are invariant up to a total derivative under the galileon symmetry φ(x)→ φ(x) +

c+ bµx
µ.

As shown in [125], these are the only polynomial terms in 4 dimensions with these properties.

The fact that the equations of motion are always second order in derivatives is of key importance.

If this were not the case, then by Ostrogradsky’s theorem (see e.g. [127] for a clear exposition)

the Hamiltonian would necessarily be unbounded from below, and stable solutions would not
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exist. Essentially, this galileon symmetry ensures that the decoupling limit theory is ghost

free. With some extra effort in [122], it was shown that the full theory beyond the decoupling

limit, including all fields to all orders, carries just 5 degrees of freedom. Hence, remarkably,

this Λ3 theory is completely free of the Boulware-Deser ghost.

For the subspace of parameters defined by β = 0, the dRGT theory reduces to galileon-

modified gravity with a quartic galileon. However, the decoupling limit of the dRGT theory

does have some differences to simple galileon-modified gravity theories. First of all, when

β 6= 0 there is an undiagonalizable interaction term, β
Λ6

3
hµνX

(3)
µν and a non traditional coupling

∇µφ∇νφTµν , the effects of which will be studied in section 3.7.

Galileons were first discovered in the DGP model, introduced in the next section, in

which the cubic galileon L3 describes the leading interactions of the scalar mode [128, 129].

The properties of galileons have since been abstracted away from DGP. They have taken on

a life of their own as they’ve been shown to have several interesting properties, such as a

non-renormalization theorem [130], superluminal propagation [131, 132], galileon dualities

[133, 134], and extended symmetries [135, 136].

2.3 The DGP Model

Massive gravity has also been studied in the context of extra-dimensions in the Dvali-Gabadadze-

Porrati model (DGP) [137]. The connection between the DGP model and massive gravity

can be related to the fact that in the DGP model, gravity is mediated by a continuum of

massive Kaluza-Klein gravitons due to the higher dimensional nature of the bulk spacetime.

The DGP model is also a subset of the galileon theories. Historically, the DGP model played

the most important role for the recent developments of massive gravity. The starting point for

the analyses in chapter 3 is in fact the decoupling limit of the DGP model in flat space.

The DGP model [137] has surely been one of the most historically important models for

developing massive gravity theories. It is a 5-dimensional brane-world model, and it describes

our 4-dimensional universe as a surface embedded into a 5D bulk space-time. One can integrate

out the bulk degrees of freedom and find an “effective” action for the 4D fields. In [128] it was

shown that from the 4D point of view, besides the ordinary graviton, an extra scalar degree

of freedom plays a crucial role. This extra scalar field will be denoted as π. It represents a

brane-bending mode, meaning that it contributes to the extrinsic curvature of the boundary

as Kµν ∝ ∂µ∂νπ. All interesting physics, good or bad, of the DGP model can be traced to the

dynamics of the π scalar.1 So for our purposes, we’ll forget about the 5D geometric setup of

1In the decoupling limit of dRGT massive gravity, we denote the scalar field as φ. In the decoupling limit
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the model and simply study the scalar 4D theory. This is justified since all physics at distances

less than H−1 is correctly reproduced by the π scalar coupled to 4D gravity, without any

reference to the theory’s 5D origin.

This model is interesting for several reasons. It has been shown that it provides an

alternative explanation for the observed recent accelerated expansion of the universe [138]

through solutions that are self-accelerating. Another key interest in the DGP model lies in its

successful implementation of the Vainshtein mechanism [139] which is able to decouple the

additional modes from gravitational dynamics at shorter distances. The Vainshtein mechanism,

which will be thoroughly introduced in chapter 3, screens the contribution of π below the

experimentally acceptable level [140] without introducing extra ghost degrees of freedom. We’ll

also see that the π field in the DGP model is in fact a simple galileon field with leading

interaction L3, and so enjoys all of the properties shared by galileons (most importantly that

the equations of motion are second order in the derivatives).

The DGP model describes gravity in a 5D spacetime M with 4D boundary ∂M and is

postulated to have the following action:

SDGP = 2M3
5

∫
M
d5x
√
−GR(5)(G) + 2M2

4

∫
∂M

d4x
√
−gR(4)(g)− 4M3

5

∫
∂M

d4x
√
−gK(g),

where GMN is the 5D metric, gµν is the 4D metric induced on ∂M, and K(g) is the Gibbons-

Hawking term on ∂M which is added so that the 5D Einstein equations are obtained upon

variation of the bulk action [141]. There is a special length scale

LDGP =
1

m
≡ M2

4

M3
5

, (2.26)

where M4,M5 are the 4 and 5 dimensional Planck masses. We often denote M4 ≡MP when it

is understood that we are working in 4D. Below LDGP the theory looks 4 dimensional, while

above it, the theory enters the 5D regime. To make the analogy to massive gravity clear, m is

considered as the graviton mass.

This will be an overview of the results obtained in [128], where the 4D boundary effective

action is obtained by integrating out the bulk degrees of freedom. Using spacetime coordinates

xM = (xµ, y) with the boundary at y = 0, the bulk part of the action can be written in the

ADM language [120] as,

Sbulk = 2M3
5

∫
d4x

∫ ∞
0

dy
√
−gN [R(g)−KµνK

µν +K2], (2.27)

where N ≡ 1/
√
Gyy is the lapse, Nµ ≡ Gyµ is the shift, and the extrinsic curvature tensor is

Kµν = 1
2N (∂ygµν −∇µNν −∇νNµ). The next step is to expand this around a flat background,

of DGP, the scalar field is traditionally denoted as π. They play the same role as the helicity-0 mode of the

graviton, and essentially a galileon modification to GR in the decoupling limit.
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GMN = ηMN + hMN , and integrate out the bulk to obtain an effective action for the 4D fields

on the boundary. The result at quadratic level is

Sbdy = M2
4

∫
d4x

[
1

2
h′µνh′µν −

1

4
h′�h′ −mN ′µ∆N ′µ + 3m2π̂�π̂

]
, (2.28)

where ∆ =
√
−� =

√
−ηµν∂µ∂ν , and the following definitions have been made to diagonalize

the kinetic terms:

hyy = −2∆π̂, N ′µ = Nµ − ∂µπ̂, h′µν = hµν −mπ̂ηµν . (2.29)

Going past the quadratic, level, taking into account higher powers of hMN , one finds that

the leading boundary interaction term is cubic in π̂ and has the form −M3
5

∫
d4x(∂π̂)2�π̂ .

Now compare the coefficient of this interaction term with the kinetic term in Sbdy, and one

immediately sees that the theory becomes strongly interacting at the energy scale

ΛDGP = (m2M4)1/3 =
M2

5

M4
, (2.30)

which is equivalent to the Λ3 scale in the dRGT theory, and corresponds to a length scale of

about 1000 km. From now on we’ll just denote this scale as Λ3. It is the lowest scale of all

strong interaction scales associated to further interaction terms. It is verified in [129] that

all other interaction terms are subdominant as long as a flat-space approximation is taken:

|h′µν | � 1.

Let’s consider this flat-space approximation in more detail. The region where space is

nearly flat outside of a compact source is well outside its Schwarzschild radius RS , so we can

pretend we are in this region by sending RS → 0 which would decouple 4D gravity from the

source. Care needs to be taken so that the resulting configuration is not simply trivial h′µν = 0

and the self-couplings of the π field are preserved along with its coupling to the source T . If

there is the usual coupling of hµν and the energy-momentum tensor Tµν given by
hµνTµν

2 , then

one can see from the definition of h′µν in (2.29) that a coupling 1
2M4

πT is induced, where we

have canonically normalized the scalar field:

π = M4mπ̂ (2.31)

Since we want to keep the π self-couplings (with coefficient ∼ Λ3) and the coupling of π to T

(with coefficient ∼ T
M4

) in the flat-space/Minkowski approximation, the decoupling limit in the

DGP theory is given by:

M4,M5, Tµν →∞, Λ3 ∼ const,
Tµν
M4
∼ const. (2.32)

This limit is analogous to the decoupling limit in the dRGT theory (2.14). In this limit, the

4D graviton is decoupled while the full lagrangian for π (kinetic, cubic and source terms) is
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kept fixed. The full action for the π field in flat space in this decoupling limit is given by:

Sπ =

∫
d4x

[
−3(∂π)2 − 1

Λ3
3

(∂π)2�π +
1

2M4
πT

]
. (2.33)

One can recognize appearance of the quadratic (2.22) and cubic (2.23) galileon terms above.

Explicitly,

Lφ = −3L2(π)− 1

Λ3
3

L3(π) +
πT

2M4
. (2.34)

The galileon symmetry ensures that the equations of motion for π are second order in derivatives,

and therefore no Boulware-Deser ghost propagates at the background level. However, ghost

instabilities can appear at the nonlinear level if the kinetic term for perturbations on top of

a background acquire the wrong sign with reference to other fluctuating degrees of freedom.

This was the main obstruction to obtaining a viable explanation for the observed cosmological

accelerated expansion in the context of DGP [128, 129, 142, 143, 144].

2.4 Bigravity

Part of the motivation for going beyond massive gravity is discovered when one attempts to

find cosmological solutions within the dRGT theory (see [145] for a review). Under a standard

FRW ansatz for the metric gµν , the equations of motion that result from the action (2.6) are

immediately problematic, implying that the only solution for the scale factor is a constant

[146]. Therefore, no flat homogeneous and isotropic cosmological solutions exist within dRGT

massive gravity. The only FRW solutions that do exist are open. There are two such branches:

a normal branch which is just Minkowski in a different slicing, and a self-accelerating branch,

which describes an accelerating cosmology (without a cosmological constant) with scale H ∼ m

set by the graviton mass [146, 126, 147, 148]. However, when perturbations around the

self-accelerating branch are analyzed, it was revealed that the scalar and vector modes have

vanishing kinetic terms [149, 150], implying that the solutions are infinitely strongly coupled,

and beyond the analysis of perturbative techniques. This occurs for both flat and FRW

reference metrics.

If one hopes to examine cosmology in the context of dRGT theories, the assumptions of

homogeneity and isotropy must be abandoned. Although some anisotropic solutions with well

behaved perturbations have been found [151, 152], analyzing the cosmological implications of

these models is challenging since most of our standard cosmological tools rely on homogeneity

and isotropy. Therefore, most work in massive gravity cosmology has stuck with the attempt

to find exact FRW solutions, requiring instead a generalization of the original dRGT theory.

A particularly popular and natural generalization is found in bigravity, which will now be

demonstrated.
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As noted in equation (2.3), in trying to non-linearly extend the Fierz-Pauli theory, the

necessary mass term in the action requires the introduction of a fixed non-dynamical tensor

field, fµν , in addition to the metric gµν describing spacetime [117]. The dependence of the

theory on an arbitrary background metric is not theoretically desirable. Promoting the fixed

tensor fµν to a dynamical field, a ghost-free theory of massive bigravity [153, 154] has recently

been introduced. With two dynamical metrics, the choice of matter coupling is a non-trivial

issue [155, 156]. The only consistent choice that does not introduce a ghost is to have couplings

of matter to one metric only. In this scenario, one metric gµν describes our spacetime, and

another one, fµν , is part of a “dark” gravitational sector.

Starting from the dRGT action in equation (2.6), we will consider the natural extension to

massive bigravity proposed by Hassan and Rosen [157]:

Sbi =−
M2
g

2

∫
d4x
√
−gR(g)−

M2
f

2

∫
d4x

√
−f̃R(f̃)

+m2M2
g

∫
d4x
√
−g

4∑
n=0

β̃nen(

√
g−1f̃) + Smatter , (2.35)

where the two dynamical metrics are gµν and f̃µν and their respective Planck masses are Mg

and Mf , while m is the mass scale associated with the graviton mass matrix. The interaction

term between g and f̃ contains a linear combination of the symmetric polynomials en(X) given

in equation (2.5). The dimensionless coefficients β̃n are free parameters of the theory. Further,

we will consider a singly-coupled theory in which Smatter contains only couplings of matter to

gµν . In this case, gµν is considered the standard physical metric while f̃µν is a new dynamical

tensor field. This singly-coupled theory was shown to be free of the Boulware-Deser ghost

[155]. The resulting quantum corrections (at one loop) are nothing other than the standard

cosmological constant which does not detune the special structure of the graviton potential

and is thus harmless [155]. By rescaling the dark metric and the free parameters as follows,

fµν = (Mf/Mg)
2f̃µν β∗n = (Mg/Mf )nβ̃n , (2.36)

we can rewrite the action so that the redundant scale Mf is absent:

Sbi =M2
g

[
−1

2

∫
d4x
√
−gR(g)− 1

2

∫
d4x
√
−fR(f)

+ m2

∫
d4x
√
−g

4∑
n=0

β∗nen(
√
g−1f) +

Smatter

M2
g

]
. (2.37)

It has been shown that the cosmological expansion and spherically-symmetric solutions to this

theory give viable alternatives to general relativity [158, 159, 160, 161, 162], at the background

level. Let us briefly examine the background equations of motion and solutions.
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2.4.1 Bigravity cosmology

We start by making an FRW ansatz for the metrics gµν and fµν :

ds2
g =a2(τ)(−dτ2 + dxidx

i), (2.38)

ds2
f =b2(τ)[−c2(τ)dτ2 + dxidx

i], (2.39)

where τ represents conformal time, a and b are the scale factors corresponding to the g and f

metric respectively, and c is the lapse function for the f metric. Note that the assumption that

fµν is FRW is not the most general choice for the metric, and it could have more complicated

dynamics.

The Bianchi identities imply the following relation:

c =
Ĥf
Ĥ

=
ḃa

ȧb
= 1 +

ṙ

rĤ
. (2.40)

where Ĥ = ȧ/a is the conformal Hubble function for the g metric, Ĥf = ḃ/b is the conformal

Hubble function for the f metric, and r = b/a the ratio of scale factors. For simplicity we

perform the following rescaling

βn =
m2

H2
0

β∗n, ρ̄ =
ρ

M2
gH

2
0

, H =
Ĥ
H0

(2.41)

where ρ̄ = ρ̄m + ρ̄r is the dimensionless energy density of all matter and radiation components,

and we measure all times and lengths in terms of H0. With these definitions in hand, variation

of the action with respect to gµν , and inserting (2.38) and (2.39), gives the Friedmann equations

3H2 = a2 (ρ̄+ ρ̄mg) , (2.42)

2Ḣ+H2 = a2ρ̄+
a3

3

dρ̄

da
+ a2

(
β0 + β1r(2 + c) + β2r

2(1 + 2c) + β3r
3c)
)
, (2.43)

where ρ̄mg ≡
(
β0 + 3β1r + 3β2r

2 + β3r
3
)
, (2.44)

where ρ̄mg is an effective massive-gravity energy density. We also have the background equations

for the f metric:

3H2 =
a2

r

(
β1 + 3β2r + 3β3r

2 + β4r
3
)
, (2.45)

2Ḣ+H2c =
a2

r

(
β1 + β2r(2 + c) + β3r

2(1 + 2c) + β4r
3c
)
, (2.46)

The energy densities follow the usual conservation laws

˙̄ρm + 3Hρ̄m = 0 and ˙̄ρr + 4Hρ̄r = 0 , (2.47)

giving rise to their solutions in terms of a and the present day density parameters Ωi,0 =

ρi,0/(3H
2
0M

2
g ) = ρ̄i,0/3,

ρ̄m =
Ωm,0

3a3
and ρ̄r =

Ωr,0

3a4
. (2.48)
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The above equations can be combined to form convenient equations for the dynamic

variables r and a:

0 = ρ̄m + ρ̄r −
1

r

(
β1 + 3β2r + 3β3r

2 + β4r
3
)

+ β0 + 3β1r + 3β2r
2 + β3r

3, (2.49)

1

r

dr

da
= −3

a

β3r
4 + (3β2 − β4)r3 + 3(β1 − β3)r2 + (β0 − 3β2)r − β1 − Ωr,0a

−4r

3β3r4 + 2(3β2 − β4)r3 + 3(β1 − β3)r2 + β1
. (2.50)

The procedure now is as follows:

1. Fix the free parameters: Ωm,0, Ωr,0, β0, β1, β2, β3, β4.

2. Use (2.49) evaluated today to find r0, the present value of r.

3. Starting with initial condition r0, evolve (2.50) to find r(a) for all time.

4. Using r(a), solve for the Hubble parameter H(a) using (2.45).

5. It is now possible to find a(τ) using H = ȧ/a, and thus can also find r(τ) and H(τ) and

c(τ)

In this work we will focus on two distinct types of background solutions, following the

notation in [163]. A plot of r(a) in each branch is shown in figure 2.1.

1. The Expanding Branch: In this branch of solution, both metrics g and f expand with

time. This is also known as the finite branch since the ratio r = b/a evolves from zero

at early times to a finite value. Within this branch, there is a proposed minimal model

[164, 159] in which only β1 6= 0. At the background level, it was shown that this theory

can be compatible with expansion histories, but remains distinct from GR with testably

different observables [164, 159]. The issue with this branch is an exponential perturbative

instability in the scalar sector, previously noted in the literature [165, 166, 167, 163].

We therefore focus on this branch as an example of how phenomenologically different the

results for tensors can be under different assumptions about the background solution.

We will work within the minimal model, fixing β1 = 1.38, which was found from a best

fit analysis at the background level in [159]. In this case, an analytic solution exists for

r(a) and is given by

r(a) =
−3aΩm,0 − 3Ωr,0 +

√
3(4a8β2

1 + 3aΩm,0
2 + 6aΩm,0Ωr,0 + 3Ωr,0

2)

6a4β1
. (2.51)
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Figure 2.1: The evolution of the ratio of scale factors r = b/a for the both background branches described in

the text.

2. The Bouncing Branch: This is a more exotic option in which the physical metric g

expands in time while the dark sector metric f experiences a bounce. At the bounce

point, f00 = 0, thus, f−1
µν diverges, but there is no divergence in the physical sector

[163, 168, 169]. In addition, well-defined and stable solutions for the background and

linear perturbations exist through this point [163] indicating that this divergence is

likely of a mathematical rather than physical nature. The perturbative instability of the

expanding branch is absent in this sector. This branch is also called the infinite branch

since r evolves from infinity at early times to a finite value at late times. Here we are

required to set β0 = β2 = β3 = 0, and for the remaining parameters, we use the best-fit

values β1 = 0.48 and β4 = 0.94 found by fitting growth histories and type Ia supernovae

[167].
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Chapter 3

Vainshtein screening in massive

gravity

This chapter explores the dynamics of the Vainshtein screening mechanism in

the decoupling limit of the DGP braneworld scenario and dRGT massive gravity.

This mechanism must work effectively to shield the extra degrees of freedom,

providing agreement with GR on small scales. Otherwise, traditional tests of

gravity, such as solar system tests, would be enough to rule out the theory, similar

to the vDVZ discontinuity that plagued Fierz-Pauli massive gravity. Our work

here builds upon the known static screening solutions in the decoupling limit of

massive gravity, and addresses their dynamical evolution and stability. We show

that there is a vast set of initial conditions whose evolution is well defined and

which are driven to the static screening solutions. Screening solutions are stable

and behave coherently under small fluctuations: they oscillate and eventually

settle to an equilibrium configuration, the timescale for the oscillations and

damping being dictated by the Vainshtein radius of the screening solutions. At

very late times, a power-law decay ensues, in agreement with known analytical

results. However, we also conjecture that physically interesting processes such as

gravitational collapse of compact stars may not possess a well-posed initial value

problem. Finally, we construct solutions with nontrivial multipolar structure

describing the screening field of deformed, asymmetric bodies and show that

higher multipoles are screened more efficiently than the monopole component.
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3.1 Introduction

The strongest motivation for studying massive gravity is the possibility of an alternative

explanation to cosmic acceleration. In the standard cosmological model, the accelerated

expansion is assumed to be due to a cosmological constant. However, the extreme fine tuning

of the cosmological constant has led physicists to pursue alternatives. If the mass of the

graviton is on the order of the Hubble constant, m ∼ H0 ∼ 10−33 eV, massive gravity admits

self-accelerating solutions which produce a universe undergoing accelerated expansion without

explicitly using a cosmological constant. It is through the new dynamics of the theory, rather

than through a cosmological constant, that we are able to achieve cosmic acceleration in

massive gravity. In this case, the tuning of the mass m is technically natural, meaning that

it is stable to quantum corrections. This coincides with the fact that the theory gains an

additional symmetry in the m→ 0 limit (the gauge symmetry of GR). This is therefore an

improvement over the fine tuning of the cosmological constant which is not technically natural,

and is unstable to quantum corrections.

To provide an explanation for accelerated expansion, massive gravity should be an infrared

modification to GR, but the theories should agree on solar system scales where we know that

GR is successful. It is required that the extra degrees of freedom in massive gravity shield

themselves on these short distance scales. This is achieved in massive gravity via the Vainshtein

screening mechanism [139], a mechanism that relies on non-linear derivative couplings in the

theory to screen the extra degrees of freedom at short distances, and thus plays a crucial role

for phenomenological applications of massive gravity.

The Vainshtein mechanism was first studied for its role in establishing the consistency

between the massless limit of the Fierz-Pauli massive graviton [42] and GR [115, 170]. This

mechanism is also exhibited in theories with galileon symmetry [125] as first discovered in the

Dvali-Gabadadze-Porrati (DGP) braneworld model [137]. Within the context of DGP and

dRGT massive gravity, extensive work has been done identifying static spherically symmetric

solutions which manifest the Vainshtein mechanism [129, 171, 172, 173, 174, 175, 176, 177, 178].

This is an important verification on the compatibility of these models with solar system tests,

and provides insight into how the evolution of the universe is affected on large scales.

Due to the complex structure of the non-linear equations of motion in these theories, there

has been little exploration of fully dynamical phenomena. There has also been no study

of solutions without spherical symmetry. Some notable exceptions are the study of scalar

gravitational radiation emitted by a binary pulsar system [179, 180], computations of the

Green’s function [181], plane wave solutions [182], studies of the characteristic matrix of the
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full dRGT theory [183, 184, 185, 186], and some results on stationary solutions [187]. In this

chapter [1], we fill some of the existing gaps in the knowledge of fully dynamical and aspherical

solutions in theories displaying the Vainshtein mechanism. We study two theories in the

decoupling limit: DGP and dRGT gravity. In the decoupling limit, a non-gravitating scalar

degree of freedom is introduced that couples to the matter sector. We consider non-relativistic

sources and neglect the internal dynamics of the matter sector. Under these approximations,

we consistently solve for the full dynamical evolution of the scalar on a fixed background

Minkowski space with fixed sources. The two theories differ primarily in their derivative

self-couplings and couplings to matter, but qualitatively the dynamical behaviour is similar.

Our results represent a first step towards establishing the nonlinear dynamical stability of

infrared modifications of gravity.

Following an overview of the Vainshtein mechanism in section 3.2, we begin by characterizing

the linear and non-linear stability of the screening solutions in the DGP model in section 3.3.

Using numerical simulations, we find that in the fully non-linear regime a large space of

initial conditions evolve to the screening solution around a fixed time-independent source

at sufficiently late times. We study the linear response properties of the screening profiles,

showing that the screening solutions behave much as a black hole when perturbed: there is a

prompt response, followed by a universal ring-down and power-law decay of the wave form.

We also examine the screening properties of static non-spherically symmetric scalar profiles

and sources.

However, we also find that for initial data sufficiently far from the screening solution, the

evolution becomes ill-posed: regions form where the constant time surfaces fail to be Cauchy

surfaces of the scalar equation of motion. Following Ref. [188], we term this Cauchy breakdown.

We study the situations in which Cauchy breakdown occurs in section 3.4, and show that no

foliation of flat spacetime exists in which the evolution can be continued.

In addition to static sources, in section 3.5, we consider two models of a dynamical source

corresponding to spherically symmetric collapse and explosion. However, in both cases, for

sufficiently dense sources or sufficiently short timescales of collapse, we find that Cauchy

breakdown occurs. These examples suggest that a fully dynamical study of astrophysical

phenomena for infrared modifications of gravity will require a prescription for evolving past

Cauchy breakdown, or an ultraviolet completion of the theory. This work motivates a more

complete treatment which will require stepping away from the decoupling limit, and considering

realistic dynamical sources.

In section 3.6 we generalize our analysis to asymmetric screening solutions. In section 3.7,

we repeat the full dynamical stability analysis for the dRGT model. A summary of results is
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presented in section 3.8.

3.2 Vainshtein mechanism

The Vainshtein mechanism relies on derivative self-interactions to screen long-range fifth forces

mediated by a scalar degree of freedom. There are a variety of theories that manifest the

Vainshtein mechanism including the DGP braneworld scenario, dRGT massive gravity, massive

bi-metric gravity, and scalar field theories with Galileon invariance. In each case, the action

contains higher-derivative interaction terms for the fluctuating degrees of freedom, but the

equations of motion remain second order.

In this work, we restrict our focus to DGP and dRGT massive gravity. The DGP model [137]

physically describes our universe as a 3-brane embedded in a 5D bulk, introducing a brane-

bending mode that from the 4D point of view corresponds to an additional scalar degree of

freedom. dRGT massive gravity [43, 44] is the non-linear generalization of the Fierz-Pauli

massive graviton. The theory propagates 5 degrees of freedom, two tensor, two vector, and one

scalar; we focus on the physics of the scalar sector. Attempts have been made to explain the

observed accelerated expansion of the universe in the context of both models (or close cousins),

and one might expect that many of the features present in these models will be shared by

other infrared modifications of gravity relying on similar non-linear derivative interactions.

Both DGP and a sector of dRGT massive gravity are special cases of a general effective

theory with action:

S =

∫
d4x Lπ , (3.1)

where

Lπ = c2L2 +
c3

Λ3
3

L3 +
c4

Λ6
3

L4 +
c5

Λ9
3

L5 +
ξπT

M4
+

α

M4Λ3
3

∂µπ∂νπT
µν , (3.2)

Πµν ≡ ∇µ∂νπ; c2, c3, c4, c5, α, ξ are dimensionless parameters; Λ3 is the strong coupling

scale of the theory; Ln are the galileon lagrangians given in (2.22)-(2.25); Tµν is the energy

momentum tensor of the source, and T = ηµνT
µν is the trace.

Throughout this chapter, we restrict our focus to the decoupling limit, in which there is no

direct coupling between the scalar and gravitational sectors (note the lack of minimal coupling

to gravity in eq. 3.1). See section 2.2.2 to review the key features of the decoupling limit. The

Lagrangian eq. 3.2 is the most general effective theory displaying the Vainshtein mechanism

with no couplings between the scalar and gravitational sectors that can be obtained from

the Horndeski action [189] in the decoupling limit. A restricted sector (with β = 0) of the

decoupling limit of dRGT massive gravity [44] is recovered by setting c2 = −3/2, c3 = 3α/2,
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c4 = −α2/2, c5 = 0, ξ = 1 in the Lagrangian (3.2), as shown in eq. (2.34). The decoupling limit

of the DGP model [129] can be obtained by setting c2 = −3, c3 = −1, ξ = 1/2, c4 = c5 = α = 0,

as shown in eq. (2.21).

An important length scale in these theories is the Vainshtein radius RV , below which the

non-linearities in the equation of motion become important. These non-linearities are crucial

for the Vainshtein mechanism. Continuity with GR is recovered on length scales less than RV

by screening the scalar degree of freedom. This is crucial for phenomenological applications of

modified gravity models. The Vainshtein radius is given by

RV ≡
1

Λ3

(
M(r →∞)

M4

)1/3

, (3.3)

and retains its form in the decoupling limit as can be seen from (2.32). Here, M is the mass

of the source defined by

M(r) ≡ −4π

∫ r

0
dr′r′2T (r′) . (3.4)

It will be convenient to measure all dimensionful quantities in terms of Λ3 and M4. Explicitly,

we will use the following rescaled quantities

xµΛ3 → xµ,
π

Λ3
→ π,

T

M4Λ3
3

→ T, (3.5)

in which case,

RV = (M(r →∞))1/3 . (3.6)

It can be checked from the equation of motion (3.8) that this is equivalent to working

with the dimensionless density ρ = ρd/(M4Λ3
3) where ρd is the dimensionful density. For

a sun-like star, ρd ∼ 1.4 × 103kg/m3 ∼ 5.9 × 10−18GeV4 and the strong coupling scale is

Λ3 ∼ M2
5 /M4 ∼ (1000km)−1 ∼ 1.8 × 10−21GeV. Using M4 = 2.4 × 1018GeV we get the

dimensionless density, to be used in our adopted units, of ρ ∼ 4.2× 1026.

For much of this work, we consider a simple spherically symmetric non-relativistic source

with central density ρ and radius R0 described by

Tµν = diag

(
ρ exp

(
− r

2

R2
0

)
, 0, 0, 0

)
, (3.7)

Note that the source is exponentially close to zero for r & R0. The Vainshtein radius for this

source is given by RV = (M(r → ∞))1/3 =
√
πρ1/3R0. For simplicity we do not treat the

internal dynamics of the source, nor are we allowing it to evolve in the presence of the scalar

field. This is a convenience, and not a physical choice. Nevertheless, we expect our results

to be very weakly dependent on the precise radial distribution of T (r) and future work will

incorporate the full dynamics of a realistic source.
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One can also consider a source with non-zero pressure, which would have important effects

on the solution and its stability. For an increasingly relativistic source, the trace of the energy

momentum tensor shrinks, weakening the coupling between the source and the scalar (this has

been shown to have important implications for the Chameleon screening mechanism [190]).

As another example, in dRGT massive gravity the disformal coupling ∇µφ∇νφTµν can give

rise to instabilities whenever p ∼ ρ [191].

3.3 Screening in the Decoupling Limit of DGP

3.3.1 DGP equations of motion

We will first consider the DGP model, which is the simplest setting in which the Vainshtein

mechanism arises. The full action for the scalar field in the DGP decoupling limit has already

been expressed in equations (2.33). Varying this action gives rise to the following equation of

motion (in our rescaled variables (3.5)),

6�π + 2 (�π)2 − 2 (∇µ∇νπ) (∇µ∇νπ) +
T

2
= 0 , (3.8)

where the metric is included to allow for easy conversion between alternative foliations of

Minkowski space. Under the assumption of spherical symmetry, and applying the rescaling

given in (3.5), the equation of motion (3.8) for π(r, t) can be written as

π̈

(
6 + 8

π′

r
+ 4π′′

)
=
T

2
+ 12

π′

r
+ 6π′′ + 4(π̇′)2 + 8

π′π′′

r
+ 4

(π′)2

r2
, (3.9)

where π̇ = ∂π/∂t and π′ = ∂π/∂r. General solutions to this non-linear partial differential

equation are not available, and a numerical analysis is required (see Section 3.3.2 below).

Nevertheless, static solutions – which establish the viability of the Vainshtein mechanism –

can be obtained analytically. Dropping the time-dependence in eq. (3.9) allows us to integrate

it to obtain a simple algebraic relation for Π ≡ π′

4πr2

(
6Π(r) + 4

Π(r)2

r

)
=
M(r)

2
. (3.10)

This quadratic equation has two solutions given by

Π±(r) = −3r

4
±

√
M(r)

32π
+

(
3r

4

)2

(3.11)

which can be integrated once more to obtain the field π±(r). The scalar fifth force is

proportional to Π±(r)r̂, and comparing with the Newtonian gravitational force on different
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scales one obtains: ∣∣∣∣FΠ+

Fg

∣∣∣∣∼ Π+/M4

M/(M2
4 r

2)
∼


(

r
RV

)3/2
if r � RV

1 if r � RV

(3.12)

∣∣∣∣FΠ−

Fg

∣∣∣∣∼ Π−/M4

M/(M2
4 r

2)
∼


(

r
RV

)3/2
if r � RV(

r
RV

)3
if r � RV .

(3.13)

These are both screening solutions, since the fifth force is suppressed on scales much smaller

than RV , but comparable to gravity at large scales. This is the simplest manifestation of

the Vainshtein mechanism. For 0� r � RV , both solutions Π± decay as ∼ 1/
√
r, while for

r � RV , Π+ ∼ 1/r2 and Π− ∼ r as shown in figure 3.1. Note that in theories for which the

quartic galileon is present, such as in the decoupling limit of massive gravity studied in the

next section, the suppression is even stronger: Fπ/Fg ∼ (r/RV )2 for r � RV [41].

0.01 0.1 1 10 100 1000 104

0.1

1

10

100

1000

104

r

ÈP
±

HrL
È

Figure 3.1: The two static screening solutions Π+ (solid) and Π− (dashed) of equation (3.10). These solutions

correspond to a source radius of R0 = 1 and a Vainshtein radius RV = 1000, corresponding to a source density

of ρ ' 1.8× 108. Both solutions grow as ∼ r inside of the source and decay as as ∼ 1/
√
r outside the source for

0� r � RV . For very large distances r � RV , Π− diverges as ∼ r, whereas Π+ ∼ 1/r2.

The asymptotically decaying solution Π+ gives rise to an asymptotically flat spacetime

gµν ∝ ηµν , whereas Π− sources a spacetime with cosmological asymptotics gµν = (1−3
4

Λ3
3

M4
r2)ηµν .

Note that this solution is distinct from the self-accelerating solution in DGP which gives rise

to a maximally symmetric de Sitter spacetime. The self-accelerating solution has no sources

and a scalar field configuration of π = −(1/2)Λ3
3xµx

µ, leading to a spacetime of the form

gµν = (1 − 1
2

Λ3
3

M4
xµx

µ)ηµν which is locally de Sitter (for times and physical distances much

smaller than LDGP ≡M2
4 /M

3
5 ) [129].

These static solutions of the DGP theory are well known, but very little is known about

how equations of the type (3.9) behave in the fully dynamical regime. We attempt to address
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this here by considering the linear and non-linear stability of the screening solutions, solving

the full time-dependent equation of motion for the DGP scalar field numerically.

3.3.2 Dynamical stability analysis

Stability of the screening solutions to small perturbations is a fundamental condition for their

physical relevance. The analysis of fluctuations around the static screening solutions reveals

that Π+ is stable to small high-frequency fluctuations, but Π− is not (see also Appendix B).

To see this, consider small perturbations δπ(r, t) about the screening solution, which have the

action:

Sδπ =

∫
d4x

[
1

2
Zµν∂µδπ∂νδπ +

1

2M4
δπT

]
, (3.14)

where the kinetic coefficients are given by the effective metric components

Ztt = −
(

6 + 8
π′

r
+ 4π′′

)
, Zrr = 6 + 8

π′

r
,

r2Zθθ = r2 sin2 θZφφ = 6 + 4
π′

r
+ 4π′′. (3.15)

Therefore, although the field lives in flat space, it propagates in the effective metric Zµν . For

the asymptotically flat solution, the matrix Zµν has the signature of Minkowski spacetime.

For the asymptotically non-flat solution, the kinetic terms switch sign in relation to other

fluctuating degrees of freedom in Minkowski space. This “wrong” sign in the kinetic term

indicates a ghost, first discussed in Ref. [128]. Dynamically, ghosts cause problems when

there is an interaction with another field whose kinetic term takes the opposite sign. In the

decoupling limit with fixed sources, the scalar field evolves independently, and we therefore do

not expect to see any instabilities in either branch of solutions in what follows.

Fluctuations about the screening solutions can travel superluminally. Figure 3.2 shows the

sound speed profiles, calculated as cs =
√
−Zrr/Ztt, for both branches of screening solution.

In both cases, there is superluminal propagation inside and outside of the source. Note that for

large r, fluctuations around Π+ travel luminally, while fluctuations around Π− are subluminal

and approach 1/
√

2.

Although DGP has fallen out of favour due to the presence of ghost instabilities and

superluminal propagation speeds [192, 193], both the ghostly and asymptotically flat branches

give us insight into how solutions of more complicated, and theoretically consistent, cases of

the general theory eq. (3.2) behave.

We have seen that physically appealing static profiles do exist as simple solutions to the

equations of motion. Do these equilibrium configurations actually form from generic initial
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Figure 3.2: The sound speed profiles corresponding to fluctuations on top of the screening solutions, shown here

for R0 = 1 and ρ = 105, giving RV ∼ 80. Superluminal propagation cs > 1 can occur in both branches inside

and outside of the source. For large r, cs → 1 for the positive branch, while cs → 1/
√

2 for the negative branch.

data, or is there an unstable or ill-defined evolution? In other words, what possible initial

configurations of π(r, t = 0) – if any – would dynamically evolve to the screening solutions?

Although a complete classification of the possible initial data is not possible, we focus on two

representative cases: a spherical shell collapsing on the screening solution, and evolution from

vacuum.

Code description

The Vainshtein screening solutions arise from the non-linear self-interactions of the π field.

The solutions of interest are therefore fully in the non-linear regime of the equation of motion,

eq. (3.9), where analytic solutions beyond the perturbative regime are difficult to obtain.

Therefore, in order to fully explore the stability of screening solutions and investigate the

general properties of time evolution, a numerical treatment is necessary.

We evolve eq. (3.9) numerically using the method of lines. Spatial derivatives were

discretized on a fixed grid size with typical resolutions dr = 1/25, dr = 1/50 and dr = 1/100

using a second order differencing scheme. We explicitly checked that our results do not depend

on the resolution. The resulting system of ordinary differential equations were then integrated

using a fourth order explicit Runge-Kutta method. The stability of the evolution scheme relied

on using stencils for both first and second derivatives; a fully first-order formulation of eq. (3.9)

(in both spatial and time derivatives) did not yield stable numerical evolution. The spatial

grid was constructed on the finite interval [rmin, rmax]. Our results are independent of the

interval chosen as long as rmin is sufficiently small and rmax sufficiently large such that the
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outer boundary remains causally disconnected from the region under study. When dealing

with the positive branch of solutions, we imposed Neumann boundary conditions at both ends

π′(r = rmin) = π′(r = rmax) = 0, where this boundary condition at the origin is required for

the field to remain regular. However, for solutions with cosmological asymptotics, the outer

boundary condition was adjusted to π′(r) = Π−(r) at r = rmax, where Π−(r) is from equation

(3.11). The convergence of the code with increasing resolution is as expected for a second

order scheme, see Appendix A. As an additional test of the code, many of our results were

reproduced using the Mathematica software.

Incoming spherical wave packet
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Figure 3.3: The evolution of π(r, t) (solid) for an initial condition of the type (3.16) with A = 0.25, σ =

0.5, rw = 12. The screening solution Π+ is characterized by ρ = 100, R0 = 0.5, RV ' 4. From left to right, top

to bottom are snapshots taken at t = 0, 10, 15, 23. The initial gaussian fluctuation is seen to propagate away

from the domain at close to the speed of light, leaving behind the static screening solution at very late times.

The first family of initial data we consider are spherical shells collapsing on the static

screening solutions (3.11). The source in the equation of motion is given by eq. (3.7), with

variable ρ and R0. To obtain a screening solution we must ensure that there is a significant

hierarchy between R0 and RV . For an object like the sun, with ρ ' 1026, we have RV ∼ 109R0.

Resolving such a hierarchy of scales would be computationally intractable with our fixed grid
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code; we must consider sources with a much more modest hierarchy. We use R0 = .5 and

ρ = 100, which gives a Vainshtein radius of RV =
√
πρ1/3R0 ∼ 8R0.

The initial data is given by:

π(r, 0) = π±(r) +
Ar2

(r2 + ε2)3/2
exp

(
−(r − rw)2

2σ2

)
,

π̇(r, 0) = − Ar2(r − rw)

σ2(r2 + ε2)3/2
exp

(
−(r − rw)2

2σ2

)
. (3.16)

where A and σ parametrize the amplitude and width of the shell, localized at rw. The regulator

ε� 1 is to ensure that the field is well defined at r = 0. Note that this wave packet is purely

in-going.

An example of the evolution is shown in figure 3.3, where the wavepacket is characterized

by A = 0.25, σ = 0.5, rw = 12. The incoming wavepacket perturbs the screening solution π+,

and then dissipates out of the computational domain leaving behind the original screening

solution. Similar behavior was observed when perturbing the negative branch π−. Exploring

a wide range of A, σ, we find that the screening solution is stable to a range of nonlinear

perturbations, although as we explain in more detail in section 3.4, large perturbations are

problematic.

From vacuum to screening solutions

t = 0

t = 0.75

t = 4

t = 9

Π+HrL
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Figure 3.4: Left panel: The evolution of π(r, t) with π(r, 0) = 0 and ρ = 100, R0 = 0.5, resulting in a Vainshtein

radius RV ' 4. At late times the solution approaches the static, asymptotically flat screening solution π+(r)

corresponding to the same parameters.

Right: The evolution of π(r, 0) = − 3
4
(r2 − r2

0) for ρ = 100, R0 = 0.5, r0 = 50, RV ' 4. The evolution drives

the system towards the screening solution π− at late times.

The second class of initial conditions we consider are the two vacuum solutions to eq. (3.9):

π(r, 0) = 0, π(r, 0) = −3

4
(r2 − r2

0) , (3.17)
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Figure 3.5: Left panel: Linearized time-evolution of a Gaussian wavepacket in the background of Π+ with

amplitude A = 3, width σ = 1 and localized at rw = 10. The radius of the source is at R0 = 1. The waves

are extracted at r = 2. The intermediate-time behavior consists on an exponentially damped sinusoid –called

quasinormal mode – and the late-time behavior is described by a power-law falloff of the field δπ ∼ t−8. The

observed behavior is in agreement with a frequency-domain numerical and analytical calculation; see text for

further details.

Right panel: Same in the background of Π−. The time-domain profile suggests that in this case the quality

factor of the fundamental quasinormal mode ωR/ωI is smaller than in the background of Π+, i.e. ωR/ωI < 1.

where r0 is a normalization parameter. In the presence of a source, the vacuum initial conditions

will necessarily evolve. A priori there are a number of possible endpoints to this evolution,

but the expectation is that the static screening solutions π± are reached at late times. In

order to determine the endpoint of evolution from both vacuum initial conditions, we perform

numerical evolution in the presence of sources with varying RV and R0.

Examples of time evolution from vacuum initial conditions in the presence of a source

with ρ = 100, R0 = 0.5 are shown in figure 3.4. In these examples, the π+ screening solution

is reached from π(r, 0) = 0 and the π− solution is reached from π(r, 0) = −3
4(r2 − r2

0). The

initial condition was set to match the screening solution at r = r0 = 50, so the evolution is

most visible for small r which is why we only plot up to r = 2. The fact that the expected

screening solutions are reached as the endpoint of evolution from vacuum initial conditions

displays that the screening solutions are quite robust to large perturbations.

3.3.3 Quasinormal modes and tails of screening solutions

The previous subsections focused on completely nonlinear evolution, and suggest that when

perturbed, a static screening solution behaves as a coherent object: it vibrates and eventually

settles down to the original static solution. To understand this behavior more thoroughly, and

to understand generic small fluctuations of the screening solutions (3.11), we focus now on
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linearized fluctuations, considering generic perturbations of the form

π(t, r, ϑ, ϕ) = π±(r) + ε δπ(t, r)Ylm(ϑ, ϕ) , (3.18)

where π± is the static solution given by (3.11), Ylm(ϑ, ϕ) are the usual spherical harmonics

and ε is a small bookkeeping parameter. Inserting (3.18) in equation (3.8) and linearizing in ε

we find the equation for δπ,

Zttδ̈π + Zrrδπ′′ + 2rZθθδπ′ − l(l + 1)Zθθδπ = 0 , (3.19)

where the coefficients Ztt, Zrr and Zθθ are those in equation (3.15).

We evolved eq. (3.19) in time considering an initial Gaussian wave-packet ˙δπ = A
r e

(r−rw)2/2σ2
.

A typical waveform is shown in figure 3.5 for R0 = 1 and ρ = 500. This plot shows the value of

the field as a function of time at a specific position r, and has the same form regardless of the

position. The waveform consists of three stages, familiar in the context of wave propagation in

curved spacetimes [194, 195]: a prompt response at very early times, which depends on the

details of the initial data and is the analogue of on-light-cone propagation in flat spacetime; at

intermediate times the signal consists of a series of exponentially damped sinusoids, termed

quasinormal modes [194] which correspond to the “characteristic modes” of the vibrating

object. In this case the vibrating object is the static screening solution, and the fluctuations are

damped because the system is intrinsically dissipative: energy flows to infinity. This stage is

universal and independent of the details of the initial conditions. Finally, a power-law tail sets

in at very late times caused by backscattering off the scalar profile (in complete analogy with

backscattering due to spacetime curvature [196, 197]). Comparison against the full nonlinear

evolution confirmed this typical behavior.

Quasinormal modes

To quantify the three stages of evolution, it is useful to recast the evolution equation as a

Schrodinger-type equation in the frequency domain. Defining

ψ(t, r) = δπ(t, r)
r√
2

(
−ZttZrr

)1/4
, (3.20)

and a new coordinate r∗ by

dr

dr∗
= f(r) ≡

√
−Z

rr

Ztt
=

√
6 + 8Π/r

6 + 8Π/r + 4Π′
. (3.21)

we can rewrite eq. (3.19) as a wave equation of the form

[
∂2
r∗ − ∂

2
t − V (r)

]
ψ(t, r∗) = 0 , (3.22)
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Figure 3.6: Effective potential in the background of Π+ for R0 = 1, RV = 10 and different multipoles l. In the

background of Π− the potential is qualitatively similar.

where the effective potential V is given by

V =− r2Zθθ

Ztt
l(l + 1)

r2
+

4Z2 + 3f4(Zrr − 2)(Zrr + 6)

4r2f2Z2

+
f2Z2(r2(f ′)2 − 8)− 8rff ′Z2 − 2r2f3Z2f

′′

4r2f2Z2
. (3.23)

Here, primes stand for radial derivatives and we defined Z2 ≡ (Zrr)2. The effective potential

V (r) in the background of Π+ is plotted in figure 3.6 for the monopole, dipole and quadrupole

components (l = 0, 1, 2). The shape is familiar from studies of wave quasinormal modes and

tails around black holes and neutron stars [198, 194, 199]. The local maximum indicates

that the effective metric Zµν allows for unstable null circular geodesics, with the instability

timescale dictating the lifetime of fluctuations. In analogy with the gravitational cases, we

expect the screening solutions to support quasinormal modes. These modes can be understood

as the scalar modes of vibration of a coherent object. Unlike normal modes, they decay in

time due to dissipation, where in this case dissipation occurs due to the leakage of energy to

infinity (see Refs. [198, 194, 200] for reviews).

To perform a quantitative analysis, it is convenient to go to fourier space:

(δπ(r, t), ψ(t, r)) = (∆π(r, ω),Ψ(r, ω)) e−iωt . (3.24)

The equation of motion (3.19) and (3.22) are written as

Zrr∆π′′ + 2rZθθ∆π′ −
(
ω2Ztt + l(l + 1)Zθθ

)
∆π = 0 , (3.25)[

∂2
r∗ + ω2 − V (r)

]
Ψ(r∗, ω) = 0 . (3.26)

At the origin the equation of motion admits the behavior

∆π(r, ω),Ψ(r, ω)/r ∼ A1r
l +A2r

−(l+1) . (3.27)

72



0.2

0.3

0.4

0.5

0.6

ω
R
 R

0

10 15 20 25 30
RV / R0

0.1

0.2

0.3

0.4

0.5

-ω
I R

0

ωR ~ 4.8/RV

|ωI| ~ 4.8/RV

Figure 3.7: Fundamental quasinormal modes of the scalar field in the background Π+. The full lines correspond

to the numerical results, whereas the dashed lines show the analytic approximation at low frequencies. The top

and bottom panels show the real part, ωRR0, and the imaginary part, ωIR0, of the mode as a function of the

Vainshtein radius RV /R0.

Regularity of the field and its derivatives requires that A2 = 0. At infinity one has

r∆π(r, ω),Ψ(r, ω) ∼ B1e
ik∞r +B2e

−ik∞r , (3.28)

where k∞ = ω in the background of Π+ and k∞ =
√

2ω in the background of Π−. Requiring

that the system is otherwise isolated is tantamount to demanding Sommerfeld outgoing

boundary conditions, B2 = 0.

With the above two boundary conditions, Eqs. (3.25) or (3.26) define an eigenvalue

problem for the (generically complex) quasinormal frequency ω = ωR + iωI . To compute the

eigenfrequencies we use a direct integration approach described in Refs. [201, 202]. Notebooks

are available online.1 We integrate from each of the boundaries towards a matching point

where the wavefunction and its radial derivative are required to be continuous. For generic ω

the continuity conditions are not satisfied, unless ω is an eigenfrequency. One can then find the

eigenfrequencies using a standard shooting method. The eigenfrequencies are typically ordered

by increasing (absolute value of) imaginary part, the fundamental mode being the largest

and longest-lived. The fundamental overtone for l = 0 is shown in figure 3.7 as a function of

RV /R0, and is well approximated by

ωR ∼ 4.8

RV
, (3.29)

ωI ∼ − 4.8

RV
. (3.30)

1https://blackholes.tecnico.ulisboa.pt/?page=Files
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This scaling is generic and does not depend on the details of the source. The frequency domain

and time domain analysis agree extremely well with each other and with the non-linear results,

as summarized in figure 3.5. In the background of Π− the time-domain profile suggests that

the quality factor ωR/ωI is smaller than in the background of Π+, that is ωR/ωI < 1. The

method used in the frequency-domain works well when ωR & ωI , thus in the background of

Π− we have not been able to compute the quasinormal frequencies accurately. Nevertheless

we expect the scaling to follow closely Eqs. (3.29) and (3.30).

These results are very general; perturbed screening solutions will ring, and the response will

be dominated by its lowest quasinormal modes. In the present setting, gravitational degrees of

freedom of the source are frozen. Once they are allowed dynamics, a second quasinormal mode

stage will appear, corresponding to the oscillation of the source itself [195]. Source dynamics

are presumably already well understood in GR, the ringdown stage we described is new and

can be assigned entirely to the large-scale scalar field screening solution. The time scale of

the ring-down is proportional to the Vainshtein radius and we explicitly checked that this

scaling is independent on the source functional form, showing that the static solutions behave

as large-scale objects localized at RV .

Late-time power-law tails

A thorough study of the late-time behavior of equations of the form (3.26) was performed in

Ref. [196, 197]. A late-time power-law tail of the form ψ ∼ t−β is caused by back-scattering off

the (effective) spacetime curvature at large distances (mathematically this is due to a branch

cut in the Green’s function) and has the form

lim
t→∞

ψ(r∗, t) = t−2l−α , for lim
r∗→∞

V =
l(l + 1)

r2
∗

+
K

rα∗
, (3.31)

with l an integer and K is a constant that depends on l and M(r →∞). In the background

of Π± the effective potential (3.23) has the large distance asymptotic behavior

V ∼ l(l + 1)

r2
∗

+
K

r8
∗
. (3.32)

Thus, spherically symmetric fluctuations (l = 0) are expected to decay as t−8 at very late times

for both the Π+ and Π− background solutions.2 Such decay is consistent with our findings in

figure 3.5. For higher multipoles, the above analysis predicts a decay ψ(r∗, t) ∼ t−2l−8 at late

times.

Note that the features we described are generic to any kind of scalar field with non-linear

2For the special case of static initial data the power changes to t−9.
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kinetic terms. In particular, our analysis imply that perturbations of galileons [125] will display

similar late-time behavior.

3.4 Cauchy Breakdown

We have shown in the previous sections that the static screening solutions are stable against a

variety of fluctuations. In this section we want to give a quantitative measure of how robust

the solutions are against large perturbations.

In theories described by eq. (3.2), scalar fluctuations propagate in an effective metric Zµν .

As shown in Appendix B, for the evolution problem to be well posed (i.e., that the solution is

unique and depends continuously on the initial data), the initial data must be such that the

effective metric Zµν has a Lorentzian signature, e.g., det(Zµν) < 0 everywhere in space, and

surfaces of constant time are required to be spacelike, Ztt < 0.

However, even within this restricted class of initial conditions, problems can still arise

because of the non-linearity of the equations. Since the spacetime metric is in general different

from the effective metric Zµν , and it is possible that Ztt → 0 in the absence of any other

pathologies like singularities or horizon formation (in fact we will mostly deal with a flat

spacetime metric). For DGP the relevant components of the effective metric for a time-

dependent background are given by

Ztt = −
(

6 + 8
π′

r
+ 4π′′

)
, Zrr = 6 + 8

π′

r
− 4π̈ ,

Ztr = 4π̇′ , r2Zθθ = 6 + 4
π′

r
+ 4π′′ − 4π̈ . (3.33)

If at any point in spacetime Ztt → 0, the Cauchy problem breaks down because the surfaces

of constant time become null with respect to the effective metric, i.e., Zµν∂µt∂νt→ 0. When

this happens, the numerical evolution ceases to be possible past this point, and it is possible

that the theory itself ceases to be well defined. Similar issues have been reported recently in

the context of k-essence models [203, 204, 188]. We refer to this issue (Ztt = 0) as Cauchy

breakdown, following earlier nomenclature [188]. Substituting the static screening solutions

into Ztt gives that Ztt < −6 for Π− and Ztt > 12 for Π+, so Cauchy breakdown is not an issue

initially. However, if we perturb the static screening solution, Ztt could pass through zero at a

finite r and t.

Besides the issue of Cauchy breakdown, we might also expect that in some situations,

regions can form where Zrr → 0, Zθθ → 0 or any of the eigenvalues of the matrix Zµν given

by eq. (B.10) cross zero. For time-dependent backgrounds we have Ztr 6= 0, so regions where
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Zrr → 0 are not physical singularities but are rather regions where a sound horizon forms. This

is a typical feature of non-linear fields with non-linear kinetic terms [205, 206, 203, 204, 188]

and it is to be expected in regions where the propagation speed of the fluctuations is much

smaller than the propagation speed of the background. However, as discussed in Appendix B,

regions where Zθθ (or any other eigenvalue of Zµν) switch sign, are prone to instabilities.

The timescale of these instabilities generically scales with τ ∼ Λ−1
3 . In a dynamical setup

local instabilities can arise for a small amount of time, tdin, and in small regions in space.

These instabilities are not necessarily catastrophic as long as the instability timescale τ & tdin.

Furthermore, looking at (3.33) we expect that if any unstable region forms for long times,

the development of this instability will make derivatives of the fields grow and will likely be

followed by Cauchy breakdown.

Cauchy breakdown occurs in a wide variety of scenarios, which we can study using the

numerical methods described in section 3.3.2. For the class of initial data described in eq. (3.16),

Cauchy breakdown occurs at fixed σ for a sufficiently large amplitude A. Using this set of

initial data for the Π+ branch, neither sound horizon regions nor unstable regions form. On

the other hand for Π−, sound horizons and unstable regions can form for a finite time before

Cauchy breakdown. If the fluctuations are sufficiently small these regions eventually disappear

when the wave dissipates to infinity with a timescale smaller than the instability timescale.

But if the fluctuations are sufficiently large, following the onset of these instabilities, Cauchy

breakdown will always occur.

In figure 3.8, we show the evolution of Ztt for a wave packet with A = 1, σ = 0.5, rw = 12;

evolution cannot proceed past t ∼ 9.8, where Ztt ∼ 0.
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Figure 3.8: The evolution of Ztt given in (3.15) to Cauchy breakdown, with the initial condition (3.16) with

A = 1, σ = 0.5, rw = 12. The source is characterized by ρ = 100, R0 = 0.5, RV ≈ 4.
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To understand the set of initial conditions described by eq. (3.16) that lead to well-defined

time-evolution, we have performed an extensive search for Cauchy-breakdown in the Π+

branch (results are qualitatively similar for the Π− branch). Our results are summarized in

figure 3.9. In the left panel, we fix the source properties to be R0 = 1 and ρ = 50, 200 and

study wavepackets with varying width. We also compare the results to the case where there is

no source. The algorithm we used to find the critical amplitudes at which Cauchy-breakdown

occurs is the following: starting from σ0 = 0.3 and Ainit = 0.01, we increase A by steps of

δA = 0.01 until we locate the critical amplitude Acrit at which Ztt → 0 is reached somewhere

during the evolution (the time evolution terminates when this occurs). For amplitudes above

this critical threshold, Cauchy breakdown occurs. When this happens we break the loop,

starting a new loop for σ1 = σ0 + δσ (we used δσ = 0.05), and using Acrit as the new Ainit for

this loop. We implemented this algorithm in the range 0.3 ≤ σ ≤ 1.5. In the right panel, the

width of the wave packet is fixed at σ = 0.5 and the size of the source fixed to be R0 = 1. We

then locate the critical amplitude at which Cauchy breakdown occurs for varying Vainshtein

radius, or equivalently, varying central source densities ρ. We have explicitly checked that

results for all simulations are independent of rw, the initial pulse location, when rw & RV .
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Figure 3.9: Log-Log plots of the region in parameter space of initial conditions for which Cauchy breakdown

occurs. Breakdown occurs above each of the lines shown, which correspond to the critical amplitude Acrit.

Recall that the Vainshtein radius is defined by RV =
√
πρ1/3R0.

Examining the left panel of figure 3.9, there are several clear trends. In vacuum the critical

amplitude is fairly well fit by a power law with Acrit ∝ σ3. On the other hand, for both source

densities, the critical amplitude is fitted by a broken power law with Acrit ∝ σ3 at small widths

and Acrit ∝ σ2 at widths O(1) and larger. Comparing the two densities we have sampled, we

can also conclude that higher density sources are more robust to Cauchy breakdown for a fixed

perturbation amplitude. Since the perturbation is riding on a larger background screening

solution, larger amplitudes are necessary to drive Ztt → 0. From the right panel of figure 3.9,
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this increase in Acrit appears to scale roughly with R
3/2
V (in terms of density, Acrit therefore

scales like ρ1/2).

For vacuum initial conditions eq. (3.17), we also find Cauchy breakdown, which is normally

preceded by the formation of a sound horizon and an unstable region for both branches. To

investigate the types of sources for which this occurs, we have simulated evolution in the

presence of sources with radii between 0.1 ≤ R0 ≤ 3 and Vainshtein radii between 1 ≤ RV ≤ 50.

For sufficiently small central densities, a wavepacket forms, taking the initial conditions to

the final screening solution. Additional fluctuations are dissipated out of the computational

domain, leaving the screening solution. For RV , or equivalently ρ, larger than a critical

threshold, the wavepacket overshoots the screening solution and the Ztt factor to pass through

zero causing Cauchy breakdown. We characterize the parameter space leading to Cauchy

breakdown in figure 3.10. For π(r, 0) = 0 we find that for values above RV /R0 ∼ 15.7 there

is Cauchy breakdown. We obtain a qualitatively similar result for quadratic vacuum initial

conditions.
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Figure 3.10: For the initial condition π(r, 0) = 0, Cauchy breakdown occurs in the region above the curve. The

trend shows that above RV /R0 ∼ 15.7 there is Cauchy breakdown.

Based on these results, we see that the Vainshtein screening solutions in DGP are dynami-

cally stable to a wide variety of perturbations. In all cases, as long as Cauchy breakdown is

avoided, the screening solution is approached at late times. Sources with large central densities

(and correspondingly large hierarchies between the source size and Vainshtein radius) are more

robust to perturbations. A screened object is therefore most vulnerable when it is in a low

density state – first starting to collapse. In general, the presence of sources makes the theory

less susceptible to Cauchy breakdown, but there is nevertheless a restriction on initial data
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that leads to well-posed evolution.

3.4.1 Coordinate invariance of Cauchy breakdown

Cauchy breakdown could be either a point where the theory breaks down [207] or an artificial

problem due to the way we choose to slice the spacetime. In fact, locally, Zµν can always

be brought to the Minkowski form by the appropriate coordinate transformation, as long as

the hyperbolicity condition, det(Zµν) < 0, is met. However, since the matter fields evolve in

the spacetime metric, we have to consider also the dynamics in the metric ηµν . To have a

well-posed Cauchy problem we must have a common family of Cauchy surfaces with respect

to ηµν and the effective spacetime metric Z−1
µν [208], where Z−1

µν is the inverse of Zµν , i.e.,

Z−1
µν Z

µν = δνµ. If det (Zµν) 6= 0, for spherically symmetric spacetimes we have

Z−1
tt = Zrr

ZttZrr−(Ztr)2 , Z−1
rr =

Ztt

ZttZrr − (Ztr)2
,

Z−1
tr = Ztr

(Ztr)2−ZttZrr , Z−1
θθ =

1

Zθθ
. (3.34)

Consider a general spacelike hypersurface, with respect to Minkowski spacetime, with unit

normal nµ such that ηµνn
µnν = −1. Working in spherical symmetry, and only considering

general coordinate transformations of r and t, the most general unit normal is:

nµ = (A(r, t),
√
A(r, t)2 − 1, 0, 0) , (3.35)

for an arbitrary spacetime function |A| > 1. We want to know if there is any choice of A which

keeps the unit normal timelike with respect to the effective spacetime Z−1
µν :

Z−1
µν n

µnν < 0 . (3.36)

Expanding out we obtain,

Z−1
tt A

2 + 2Z−1
tr A

√
A2 − 1 + Z−1

rr (A2 − 1) < 0 . (3.37)

In particular, when Cauchy breakdown occurs, we have Z−1
rr = Ztt

ZttZrr−(Ztr)2 = 0, so the above

inequality simplifies to:

Z−1
tt < −2Z−1

tr

√
1−A−2 . (3.38)

In the limit of large A, we have:

Z−1
tt < −2Z−1

tr . (3.39)

In the limit of A = 1 + ε with ε� 1, we have:

Z−1
tt < −

√
2εZ−1

tr (3.40)
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The stronger condition is the first one. Using eq. (3.34) we conclude that it is possible to find

a common spacelike surface in both the flat and effective spacetimes only when:

Zrr < 2Ztr . (3.41)

For all cases we studied we found that this is never satisfied when Cauchy breakdown occurs.

To understand this consider the DGP model with the effective metric given by (3.33). Using

Ztt = 0 and (3.33), the condition (3.41) reads

− 4(π′′ + 2π̇′ + π̈) < 0 . (3.42)

Cauchy breakdown generically occurs inside regions where gradients become large and do not

have a definite sign. For example, for large fluctuations of the background static solutions,

they occur at the peak of the traveling wave packet (see figure 3.8). Approximating the wave

packet by a Gaussian of the form (3.16), we see that second derivatives are all negative at

the peak of the Gaussian. Thus eq. (3.42) is not satisfied there. This means that, for the

cases we considered, Cauchy breakdown is a real physical problem and not simply an artificial

coordinate singularity.

As a final remark, notice that Ztt changes sign between Π+ and Π−, which is a result of

the fact that Π+ > 0 and Π− < 0. This means that there is no way for time evolution to

connect one branch of solutions to the other without going through a region where Cauchy

breakdown occurs. In addition, it is impossible to construct a spacetime containing local

regions of each branch. For example, one cannot match the negative branch on r < r∗ onto

the asymptotically flat solution for r > r∗ since Ztt would have to cross zero. An indication

that such solutions do not exist (beyond the decoupling limit) has been presented in Ref. [209]

(for similar considerations in dRGT massive gravity see Ref. [210]).

3.5 Collapsing and Exploding Sources

In this section we consider a dynamical source T (r, t) in order to model astrophysical phenomena

where the source undergoes gravitational collapse into a relativistic object (e.g. a neutron star)

or explodes (e.g. as in a supernova). Our models for the source are not physical in the sense

that there is no underlying model, but rather are intended to give qualitative information on

the possible evolution of π.

The first example we consider is a collapsing source. For simplicity, we assume that the

relative contribution from pressure and density change in time, but the source radius does not.
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Our model for the energy momentum tensor is:

T00 = ρ exp

(
− r

2

R2
0

)
, Txx = Tyy = Tzz =

ρ

3
exp

(
− r

2

R2
0

)[
1− e−t/τ

]
. (3.43)

Thus, the source becomes relativistic, with an equation of state p = ρ/3 on a timescale τ .

We begin with the field at rest in one of the screening solutions Π±. For adiabatic collapse

τ →∞, the field evolves as the source collapses to reach the vacuum solutions described above

(either π = 0 or π ∼ r2). However, a source which collapses instantaneously corresponds to a

large perturbation around the vacuum solutions, which from the results of section 3.4, can

be vulnerable to Cauchy breakdown. This suggests a critical collapse time constant, τ = τc,

below which Cauchy breakdown occurs.

In figure 3.11, a sample evolution is plotted for a collapsing source defined by parameters

ρ = 2000, R0 = 1, τ = 1. In this example, the perturbation created by the collapse causes

Cauchy breakdown at t = 5. Increasing the value of τ allows for a well-defined evolution. By

fixing R0 = 1 and varying ρ, we found that as the density increased, the corresponding time

constant increased as well, in a linear fashion. Specifically, for both branches of solution, we

found that τc ∼ 0.0005ρ.

Before Cauchy breakdown, the collapse seems to be generically preceded by the formation

of an unstable region near the origin, where Zθθ changes sign. Nevertheless, we always observe

that the dynamical evolution is eventually stopped by Ztt → 0 before eventual unstable modes

have time to grow.

Now let’s consider the opposite effect: an exploding source. We once again begin with an

initially screened source, and then model the “explosion” as an outgoing spherical shell of dust

travelling at the speed of light:

Tµν = diag

(
ρ

f(t)
exp

(
−(r − t)2

R2
0

)
, 0, 0, 0

)
. (3.44)

where f(t) is defined so that the mass at infinity has the same constant value as previously,

specifically, M(r →∞) = π3/2ρR3
0 for all t. This implies that

f(t) = (1 + 2t2/R2
0)(1 + Erf(t/R0)) + (2t/(

√
πR0))e−t

2/R2
0 . (3.45)

We stress that this is not a physical model for an exploding source, but rather a simple test of

the response to dynamical sources.

Starting with a screening configuration, as the source explodes, the scalar field relaxes to

its vacuum state, while emitting a wave packet that travels with the source as it moves off to

infinity. To illustrate this phenomenon, we show the evolution of the field in figure 3.12 for the

case of a source with ρ = 1500 and R0 = 1. Once again, one can imagine that for a source
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that is sufficiently dense, a sound horizon and an unstable region can form when the source

explodes due to regions where fluctuations propagate subluminally. These will generically

happen before Ztt → 0 and can eventually disappear if the source is not too dense. However if

the source is too dense, the induced perturbation in the scalar field will be enough to drive Ztt

to zero, causing Cauchy breakdown. The right panel of figure 3.12 shows the evolution of the

Cauchy breakdown factor corresponding to the scalar field shown in the right panel. For this

example, Ztt safely avoids crossing zero, so the evolution remains well-defined.

To analyze the possibility of Cauchy breakdown in more detail we calculated the critical

density ρc for various source sizes R0, so that Cauchy breakdown is inevitable for ρ > ρc. As

the source size increases, the corresponding critical density increases as ρc ∼ 2000R0 (consistent

with both branches). Once again, very dense compact objects can cause problems for the

evolution.
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Figure 3.11: An example of evolving towards Cauchy breakdown for a collapsing source of the form (3.43) with

ρ = 2000, R0 = 1 and τ = 1. Left panel: the evolution of π(r, t) starting from π+(r). It is driven towards the

vacuum π(r, t)→ 0 as the source collapses (until Cauchy breakdown is reached).

Right: The corresponding factor Ztt (3.33) that crosses zero at t = 5 resulting in Cauchy breakdown.

There are two relevant timescales for explosion or collapse: the crossing time of the source

R0 and the crossing time for the screening solution RV . The longer timescale, RV , sets the

response time for the screening profile to changes in the source. In realistic scenarios, R0 � RV ,

and collapse or explosion will occur effectively instantaneously on timescales over which the

screening solution can adjust. Therefore, we conjecture that Cauchy breakdown will be a

problem for any realistic violent astrophysical process. However, to study breakdown in more

detail, it is necessary to go beyond the decoupling limit and consider realistic dynamical

sources.
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Figure 3.12: A sample evolution for an exploding source that evades Cauchy breakdown. The source has the

form (3.44) with ρ = 1500 and R0 = 1. Left panel: the evolution of π(r, t) starting from π+(r). It is driven

towards the vacuum π(r, t)→ 0 as the source explodes, while a localized packet follows the travelling source off

to infinity.

Right: The corresponding factor Ztt (3.15). A perturbation is created that safely travels off to infinity without

crossing zero, thus avoiding Cauchy breakdown.

3.6 Asymmetric screening solutions

In the previous sections we have been concerned about the linear and non-linear stability of

the spherically symmetric screening solutions. We now wish to understand if these screening

solutions can be generalized when we give up spherical symmetry.

Our numerical search for quasinormal modes in section 3.3.3 did not yield any zero-frequency

mode. In other words, we were not able to find any regular, asymptotically flat static solution

to the linearized equation of motion (3.19) (apart from the trivial solution for l = 0). This

can be considered a simple version of a “no-hair” result for screening solutions: no static

multipoles – other than the spherically symmetric monopole – are allowed to anchor onto

spherically symmetric sources.

Does this result generalize for non-spherically-symmetric sources? Do the scalar multipoles

anchor on higher source-multipoles? One possibility to study this issue is to look for nonlinear,

asymmetric solutions. Given the structure of the equations of motion, such solutions are not

trivial to find, although particular solutions can be built. Take for instance

π = π1 cos2 ϑ . (3.46)

The field equations yield powers of cosϑ which can be matched to T order by order in powers

of cosϑ. Given a zeroth-order source function, the zeroth-order equation can be solved for π1,

and the remaining equations will then determine the source multipoles. For example, with

the ansatz eq. 3.46 we find the following solution for the equations of motion (3.8), yielding a
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Figure 3.13: Contour plot of the y = 0 slice of density profile (3.51) describing two lumps of matter, here for

ρ = 1, z0 = 0.9, R0 = 1.

quadrupolar static solution

π = − r
2

24
T0 cos2 ϑ , (3.47)

T = T0(r) +
r

36

(
T ′0(108− T0 + 2rT ′0)

)
cos2 ϑ− r

36

(
rT ′′0 (T0 − 18)

)
cos2 ϑ

+
r

72

(
−T ′0(2T0 + 13rT ′0) + 2rT ′′0 (T0 − rT ′0)

)
cos4 ϑ . (3.48)

This nonlinear solution represents a field strongly localized close to the source. However, for

most quadrupolar source distributions T (r, θ), −T is not positive definite implying that there

are regions where ρ < 3p. Nonlinear solutions for higher multipoles can be found with the

same scheme; they share similar properties.

A more robust method to look for asymmetric solutions builds on the nonlinear spherically

symmetric solution for spherical sources (3.11). Realistic stellar – and other – sources are

approximately spherically symmetric, and it is therefore appropriate to search for small

deviations from spherical symmetry in both the source and the field. Specifically, we expand

T = T0(r) + ε
∑
l=1

tlm(r)Ylm(ϑ, ϕ) , (3.49)

π(r) =

∫ r

Π±(u)du+ ε
∑
l=1

δπ(r)Ylm(ϑ, ϕ) . (3.50)

We defined T0 ≡ 2
√
πT00 and take this to be the dominant contribution. The components tlm

can be directly related to the more standard density moments vlm ∝ tlm(r)rl+2dV where dV
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is the volume element, in terms of which the gravitational potential multipole moments are

usually expressed. Note that the dipole component vanishes for sources which are symmetric

around the equator, while the quadrupole component is directly tied to the inertia tensor. For

example, let’s take two clumps of matter of the form (3.7), describing a deformed body,

T (r) = −ρ
2

(
e−(x2+y2+(z−z0)2)/R2

0 + e−(x2+y2+(z+z0)2)/R2
0

)
. (3.51)

This distribution represents two bodies localized at ±z0 on the z-axis, and is axially symmetric

as shown in figure 3.13. For z0 = 0 we recover the density distribution (3.7), so z0 can be

treated as an expansion parameter. All multipoles moments tlm vanish for m 6= 0 (because the

distribution is axially symmetric) and for odd l (because it has equatorial symmetry). For

small z0, the lowest multipoles are

T0 =2
√
πt00 = −ρ e−r2/R2

0 , (3.52)

t20 =
8

3

√
π

5

r2z2
0

R4
0

T0 , (3.53)

t40 =
32
√
π

315

r4z4
0

R8
0

T0 . (3.54)

For a general source with multipoles tlm(r), the equation of motion for δπ is given by:

4r2(3r+4Π±)2δπ′′+2
(
−12rΠ± − 8Π2

± + r2(−18 + T0)
)

(l(l+1)δπ−2rδπ′) = −r3(3r+4Π±)tlm

This inhomogeneous ordinary differential equation can easily be integrated to yield solutions

for δπ. Solutions exist for any source and decay at large distances as r−l−1.

Computing the components tlm(r) of the source eq. (3.51) around the Π+ background, we

integrate the equation above requiring regularity at the origin and vanishing field at infinity.

This can be done using a standard shooting method using the constant A1 of the expansion at

the origin (3.27) as a shooting parameter. Some solutions are shown in figure 3.14 (results for

Π− are qualitatively similar). For very large densities the screening behavior of the different

multipoles is apparent. For R0 � r � RV the field decays as r−l/2 indicating that in the

Vainshtein regime higher multipoles have a stronger suppression than the monopole. The

suppression of their contribution to the fifth force compared to the multipoles of the Newtonian

gravitational force Fg ∼ r−(2+l) are given by∣∣∣∣Fl>0

Fg

∣∣∣∣ ∼ ( r

RV

)1+l/2

if R0 � r � RV . (3.55)

Finally, our results show that for R0 � r � RV the field is proportional to
√
ρzl0, whereas for

very large distances it is proportional to ρzl0, for any multipole l. We conclude that tidal forces

due to the scalar are subdominant to gravitational tidal forces inside the Vainshtein radius,

and so the spherically symmetric approximation is, in general, a very good approximation to

compute the fifth force around non-spherical stars.
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Figure 3.14: Hairy solutions for different multipoles l, here shown for RV = 100, z0 = 0.9, and compared to Π+.

For R0 � r � RV the field decays as
√
ρzl0r

−l/2 while for r � RV they decay as ρzl0r
−(l+1).

3.7 Screening in the Decoupling Limit of dRGT

3.7.1 dRGT equations of motion

Let us now make a comparison with ghost-free dRGT massive gravity which shares many

features of the DGP model described above in the decoupling limit. Here, we consider a specific

class of massive gravity in which one of its two free parameters is set to zero, making it possible

to completely decouple the scalar and tensor modes. We’ll see that a few features of massive

gravity make the analysis different than DGP: a quartic galileon term, an extra free parameter

α in the theory, and an extra non-minimal coupling to matter in the equations of motion of

the form ∇µ∇νφTµν . Strong constraints on this coupling can be found in Refs. [211, 212].

Also note that for a time-dependent field this coupling will change the Vainshtein radius [211].

However for small fluctuations around the screening solutions, this change is in general highly

suppressed so we will keep working with the static quantity RV .

The scalar mode that arises in massive gravity is essentially the longitudinal mode of the

graviton, and in the decoupling limit (described in section 2.2.2) its dynamics can be solved

for, independently of the other degrees of freedom.

Varying the decoupling limit dRGT Lagrangian (2.21) with respect to φ can be done using

δLn/δφ = −2Ln+1/(∂φ)2, so that the resulting scalar equation of motion is

0 =
T

M4
− 2

α

M4Λ3
3

∇µ∇νφTµν + 3�φ− 3
α

Λ3
3

[
(�φ)2 − (∇µ∇νφ) (∇µ∇νφ)

]
(3.56)

+
α2

Λ6
3

[
(�φ)3 − 3�φ (∇µ∇νφ) (∇µ∇νφ) + 2 (∇µ∇νφ) (∇ν∇γφ) (∇γ∇µφ)

]
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Small perturbations around a time-dependent background propagate on the effective metric

Zµν , which can be computed perturbing eq. (3.56). For a spherically symmetric background

the components of this metric are given by:

ZttMG =− 3− α
(

2T 00 − 6φ′′ − 12
φ′

r

)
− α2

(
6(φ′)2

r2
+

12φ′′φ′

r

)
, (3.57)

ZrrMG =3 + α

(
−2T 11 + 6φ̈− 12

φ′

r

)
+ α2

(
6(φ′)2

r2
− 12φ̈φ′

r

)
,

ZtrMG =− 6αφ̇′ + 12α2 φ̇
′φ′

r
,

r2ZθθMG =3 + α

(
−T̃ 22 − T̃ 33 + 6φ̈− 6φ′′ − 6

φ′

r

)
+ 6α2

(
φ′′φ′

r
− φ̈φ′

r
− φ′′φ̈+ (φ̇′)2

)
,

where we defined T̃ 22 ≡ T 22r2 and T̃ 33 ≡ T 33r2 sin2 θ such that T̃ ii are functions of r and t

only.

Under the assumption of spherical symmetry φ = φ(t, r), the equation of motion (3.56) for

the longitudinal mode of the massive graviton in the decoupling limit for a non-relativistic

source (T0i = Tij = 0) is

0 =T − 2αT 00φ̈− 3φ̈+ 3φ′′ +
6

r
φ′ + 6α

(
2

r
φ̈φ′ − 1

r2
(φ′)2 − (φ̇′)2 + φ̈φ′′ − 2

r
φ′φ′′

)
+ 6α2

(
2

r
φ′(φ̇′)2 − 1

r2
φ̈(φ′)2 − 2

r
φ̈φ′φ′′ +

1

r2
φ′′(φ′)2

)
. (3.58)

Recall that we are imposing our choice of units: M4 = Λ3 = 1. Further, we assume the

same static source of density ρ, radius R0 and mass M as given in (3.7). For the metric, the

spherically symmetric ansatz is h00 = a(r, t) and hij = f(r, t)δij . Once a solution for φ(r, t) is

found, one can then find the metric functions using equations that result from variation of

(2.21) with respect to hµν :

f ′ = −M
r2

+ φ′(1− αφ
′

r
), (3.59)

a′ = −M
r2

+ rφ̈− rf̈ − φ′ − 2αφ̈φ′ . (3.60)

Analysis of static screening solutions can be found in Refs.[174, 191]. Let us highlight some

of their results. In this case, we can write (3.58) as a cubic (rather than quadratic as in DGP)

polynomial in λ = φ′/r:

3λ− 6αλ2 + 2α2λ3 =
M(r)

4πr3
. (3.61)

There are three solutions to (3.61), that we denote as λ1, λ2, λ3. When the solutions are

evaluated for small values of r outside of the source (R0 < r � RV ), it is clear that only λ1

is real, and λ2, λ3 are imaginary in this regime. Therefore, we can take λ1 to be our static
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solution and disregard λ2,3. The expression for λ1 in this limit is valid for positive or negative

values of α and can be written

λ1(R0 < r � RV ) ∼ 1

α
+

RV
|α|2/3r

+
r

2|α|4/3RV
. (3.62)

For the sake of completeness, we give the full expression here

λ1 =
1

α
+

(2π)1/3r

α
(

4πr3 + αM(r) +
√
−16π2r6 + αM(r) (8πr3 + αM(r))

)1/3
+

(
4πr3 + αM(r) +

√
−16π2r6 + αM(r) (8πr3 + αM(r))

)1/3
2α(2π)1/3r

. (3.63)

The interesting fact is that the asymptotic behavior of λ1 is very different depending on the

sign of α:

λ1(r →∞) =


3+
√

3
2α if α > 0

0 if α < 0 .
(3.64)

Plugging the asymptotics (3.64) into (3.59), (3.60), we see that when α < 0 it is possible to have

an asymptotically flat spacetime: a ' f 'M/r. However, when α > 0, we obtain a non-trivial

background with cosmological asymptotic behaviour: a ' −r2λ1/2, f ' r2λ1(1−αλ1)/2. This

begs the question: what value can this free parameter α take? It was shown in [191] that

α > 0 is required to avoid a ghost instability, so let us examine this in more detail.

As introduced in section 3.4 and further discussed in Appendix B the stability of the

solution can be inferred from the term multiplying φ̈ in eq. (3.58). For this theory, the factor

we are concerned with is

ZttMG = −3− α
(

2T 00 − 6φ′′ − 12
φ′

r

)
− α2

(
6(φ′)2

r2
+

12φ′′φ′

r

)
. (3.65)

The requirement for the stability of the static solution (3.63) against high-frequency modes

can be shown to be equivalent to require ZttMG < 0 at all points in spacetime, which can be

used to put constraints on the theory’s free parameter α. Analyzing the ZttMG factor leads to

the realization that it is possible to have ZttMG > 0 inside the source for negative values of α.

The novel coupling of φ to the energy-momentum tensor plays a key role for this to happen.

Note that in the background of a static solution, ZtrMG = 0, so the condition for the Cauchy

breakdown ZttMG = 0 is also the condition for the solution to be marginally stable. In general

ZttMG < 0 for all positive α and the spatial components of the effective metric ZrrMG and ZθθMG

are positive for all values of α (as long as we neglect pressure), so our only concern is that

ZttMG becomes positive when α is negative. Setting R0 = 1 in eq. (3.7) and using the relation

φ′ = λ1r, the term ZttMG can be written in terms of a single parameter κ ≡ αρ. One finds that
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Figure 3.15: The factor ZttMG for various values of κ ≡ αρ. The solution is unstable for κ < −6.

ZttMG > 0 inside the source for κ < −6. Therefore, as long as α > −6/ρ, the solution is stable,

as shown in figure 3.15.

For physically realistic values (ρ ∼ 1026 for a sun-like source), the window of stability

−6/ρ < α < 0 is quite small so we conclude that the only valid static screening solution in

the massive gravity decoupling limit is the one with cosmological asymptotics. As shown in

[191], this solution is stable against linear perturbations. In addition, fluctuations remarkably

propagate with sub-luminal speeds.

We have thus seen how the extra free parameter α and the new coupling ∇µ∇νφTµν give

some qualitative differences to the static spherically symmetric solutions in massive gravity as

compared to DGP. But at this point, the study of dynamical solutions is quite similar to the

DGP case, except we only have one branch of static solution to analyze. We can use the same

numerical method to solve the time-dependent equation (3.58) and perform the same tests as

we did in the DGP model.

3.7.2 Dynamical stability analysis

An analysis of the non-linear stability of the static screening solution (3.63) revealed what

we expected from our detailed study of the DGP model: the static solution is reached as the

endpoint of the evolution for the gaussian wavepacket considered in Section (3.3.2), as long as

the fluctuation is small enough compared to the background solution; the static solution is

also reached considering the quadratic vacuum initial conditions described in Section (3.3.2),

as long as RV /R0 is sufficiently small.

However, for large perturbations we found some different qualitative features which are due
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mainly to two reasons: the additional coupling to matter ∇µ∇νφTµν ; and the big hierarchy

between Zθθ and Ztt of the effective metric, Ztt � Zθθ [125]. The components of the effective

metric can be found in eq. (3.57).

Due to the extra coupling to matter the theory is less prone to suffer Cauchy breakdown near

the source than in DGP. This can be traced back to the fact that inside the source, fluctuations

are highly suppressed due to this term [191]. In fact, when pressure is neglected, ZrrMG, ZθθMG

will always change sign before Cauchy breakdown occurs due to the big hierarchy between

the different components of the metric Zµν . The conditions for this to occur are qualitatively

similar to the ones we found in Section 3.4. For very large fluctuations, we were not always able

to evolve past these points, most likely due to the excitation of high-frequency unstable modes.

However, we expect that the formation of these unstable regions causes an enhancement of

gradients of the field, making Cauchy breakdown inevitable. Cauchy breakdown was more

easily observed outside the source where we checked that the condition (3.41) was satisfied,

showing once again that Cauchy breakdown is a coordinate independent phenomenon.

In conclusion, even though the extra coupling to matter renders the theory less prone to

Cauchy breakdown inside the source, problems can arise for sufficiently large perturbations

of the screening solutions (3.63). On the other hand, for the class of well-behaved initial

conditions the screening solution is stable and behaves as a coherent object with radius RV ,

as we discuss below.

Quasinormal modes and tails

As discussed before in the DGP case, when perturbed, the static solutions (3.63) vibrate and

eventually relax to an equilibrium state again. Performing the same analysis as in Section 3.3.3,

we find that the waveform consists of the expected three stages, a prompt response at very

early times, quasinormal modes at intermediate times and a power-law tail at very late times.

We saw in the previous section that the new coupling ∇µ∇νφTµν is important for the

stability of the solutions. If this coupling is absent the behavior of perturbations on top of the

static solution (3.63), for α < 0 and α > 0 is very similar to the DGP case (see figure 3.5).

The introduction of this new coupling makes the solution for α < 0 unstable, which can be

clearly seen in a time-domain analysis of the linear equation around this background. On the

other hand perturbations on top of the asymptotically growing solution with α > 0, are stable

and have a clear quasinormal ringdown similar to the one shown in the top panel of figure 3.5.

A frequency domain analysis also shows that for RV � R0 the quasinormal frequencies
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Figure 3.16: Fundamental quasinormal modes of the scalar field in the decoupling limit of massive gravity. The

full lines correspond to the numerical results, whereas the dashed lines show the analytic approximation at low

frequencies. The top and bottom panels show the real part, ωRR0, and the imaginary part, ωIR0, of the mode

as a function of α1/3RV /R0.

follow the same trend as in DGP and are given by

ωR ∼ 1

α1/3RV
, (3.66)

ωI ∼ − 1

α1/3RV
. (3.67)

This is shown in figure (3.16), where we plot the fundamental quasinormal modes. One can

understand this scaling from the fact that the coupling constant α can be reabsorbed into Λ3

and so the effective Vainshtein radius is given by R̃V ≡ α1/3RV .

In the background of (3.63), we can compute a wave equation of the form (3.26), where

the effective potential has the large distance asymptotic behavior

V ∼ l(l + 1)

r2
∗

+
K

r8
∗
, (3.68)

where K is once more a constant that depends on l and M(r → ∞). This behaviour is

independent of α and does not depend on the new coupling ∇µ∇νφTµν or the specific form

of Tµν . Thus, the above analysis suggests that scalar perturbations of the static solution

generically decay as ψ(r∗, t) ∼ t−2l−8 at late times, just as in DGP.

3.7.3 Collapsing and Exploding Sources

Compared to DGP, the extra coupling to matter in massive gravity makes the scalar evolution

less prone to Cauchy breakdown, although it can not be avoided for sufficiently large fluctuations.
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Does this hold for the dynamical sources that we considered in Section 3.5? In general yes,

although some additional subtle issues are worth pointing out.

For the case of the collapsing source (3.43), when pressure becomes important, unstable

regions near the source are inevitable, as was pointed out in [177]. Instabilities as well as

sound horizons form during collapse as the pressure becomes significant p ∼ ρ, as can be

inferred by looking at eq. (3.57). The spatial components, and in particular Zθθ, will change

sign at some point in space, in a finite time. Although this behavior was also found in DGP,

due to the extra coupling to matter, this effect is enhanced here. However, this is in general

followed by Cauchy breakdown which makes it impossible to follow the development of the

instability. This is not only dependent on the density of the source but also on the decay

time–scale, with a relation similar to the one found in DGP. For large time–scales (or very

small densities) the field will evolve without instability or breakdown to a different solution

with the same asymptotics (not to the vacuum solution, due to the extra coupling to matter).

But for realistic source densities, Cauchy breakdown seems to be inevitable.

Surprisingly, the exploding source (3.44) seems to avoid Cauchy breakdown for moderately

high densities ρ ∼ 106 (and α ∼ 1, recall that α can be reabsorbed). Once more, this is mainly

due to the hierarchy Ztt � Zii in this background. However, for sufficiently large α and ρ,

regions where the eigenvalues of Zrr and Zθθ change sign can form. In these regions, the field

fluctuations propagate at extreme subluminal velocities, thus leaving time for instabilities to

grow. Similar to the above cases, these instabilities can eventually cause Cauchy breakdown.

3.7.4 Asymmetric screening solutions

Let us close our discussion on massive gravity by following Section (3.6) to compute asymmetric

screening solutions for the source (3.51). These turn out to be very similar to the ones found

in the DGP model. The asymptotic form of the scalar multipole components are the same as

in DGP, namely δφ ∼ A1r
l at the origin and δφ ∼ rl+1 at infinity. Some solutions are shown

in figure 3.17. For R0 � r � RV the field decays as r−l/4 indicating that in the Vainshtein

regime higher multipoles have a stronger suppression. The suppression of their contribution to

the fifth force compared to the multipoles of the Newtonian gravitational force Fg ∼ r−(2+l) is

given by ∣∣∣∣Fl>0

Fg

∣∣∣∣ ∼ ( r

RV

)1+3l/4

if R0 � r � RV . (3.69)

This shows that in this case, in the Vainshtein regime solutions are generically more suppressed

in massive gravity than in DGP.
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Figure 3.17: Hairy solutions for different multipoles l, here shown for RV = 100, z0 = 0.9, α = 1/3, and

compared to Φ ≡ φ′. For R0 � r � RV the field decays as ρ1/3zl0r
−l/4 while for r � RV they decay as

ρzl0r
−(l+1)

3.8 Conclusions

The theoretical challenge posed by explaining the observed accelerated expansion of the

Universe has put theoretical physics at a crossroads. One can postulate dark energy as the

cause, possibly in the form of a cosmological constant, and be content with an anthropic

explanation for the accelerated expansion. On the other hand, one can question the validity of

GR on large distance scales, and be left with the need to explain why local departures have

not been observed. In this chapter, we have explored the latter possibility, studying the linear

and non-linear stability of the screening solutions that restore the predictions of GR on short

distance scales.

The two theories we have studied, the DGP braneworld scenario and dRGT massive gravity,

are examples where non-linear derivative interactions give rise to modifications of gravity

only in the infrared through the Vainshtein screening mechanism. We have focused on the

decoupling limit of these theories, in which a non-gravitating scalar degree of freedom is

introduced that couples to the matter sector. Using analytic and numerical methods, we

have taken the first steps towards establishing the fully non-linear dynamical stability of the

Vainshtein screening solutions in spherical symmetry. We have also derived some properties of

screening solutions beyond spherical symmetry. Our main results are as follows:

• Using numerical simulations we have shown for the first time that in the decoupling

limit of both DGP and dRGT massive gravity, the Vainshtein screening solutions are

dynamically accessed from a wide variety of initial conditions beyond the linear regime.
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• We have shown that the screening solutions behave as a coherent object much like a

star or black hole under linear perturbations: a prompt response due to the primary

scattering is followed by a universal series of damped oscillations known as quasinormal

modes, which is then followed by a universal power-law decay. This analysis also shows

that spherical sources can only support a monopole configuration of the scalar π; any

multipolar “hair” on spherically symmetric screening solutions is radiated away.

• However, for sufficiently large perturbations, regions of spacetime form in which there

is no longer a well-defined Cauchy problem, a phenomenon which (following previous

nomenclature) we term Cauchy breakdown. We have shown that in general this is not a

coordinate singularity, but a real physical problem. In the absence of a new physical

principle for what occurs in such regions, the future evolution is undetermined. This

phenomenon is a general feature of theories with derivative self-interactions.

• For sources which undergo collapse into a relativistic object or explode, we have shown

that Cauchy breakdown generically occurs when there is a large hierarchy between the

radius of the source and the Vainshtein radius. This is the case for realistic astrophysical

objects, and hence there is the danger that Cauchy breakdown will occur in a complete

description of violent astrophysical phenomena such as supernovae or the formation of

neutron stars and black holes.

• Finally, by considering non-spherically symmetric sources, we have shown that for both

DGP and dRGT massive gravity the tidal components of the scalar fifth force are

subdominant to the gravitational tidal field, and that tidal forces are screened more

effectively than the monopole.

Our results represent a first step towards establishing the nonlinear dynamical stability of

infrared modifications of gravity. However, Cauchy breakdown is likely to be an important

obstruction to determining the stability of a variety of cases of potential physical interest.

What might be necessary to determine evolution past these points? In this work, we have

neglected quantum corrections, which by a naive analysis become relevant whenever derivatives

of the π field become sufficiently large compared to the scale Λ3.

However, the Vainshtein mechanism itself changes the scale at which fluctuations become

strongly coupled. On top of a background configuration, the strong coupling scale gets

“redressed” by the effective metric and is given by Λ̃3 ≡ Λ3Z
1/2 [41], where Z schematically

represents the relative strength of the eigenvalues of a slowly varying effective background

Zµν . For DGP and dRGT massive gravity, Z can symbolically be written as Z ∼ 1 + ∂2π0/Λ
3
3.

In the non-linear regime r � RV , small fluctuations around the static screening solutions see
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an effective metric with Z � 1, implying that Λ̃3 � Λ3. Thus, for the static backgrounds

that we considered, quantum corrections are suppressed. However, for big fluctuations around

the static solutions the condition Z � 1 does not hold in general, leaving the possibility for

Cauchy breakdown to occur, in which case Λ̃3 → 0. This means that at this point fluctuations

become infinitely strongly coupled [207], signaling that the classical theory can no longer be

trusted. The scale Λ3 (and the redressed scale Λ̃3) is the strong coupling scale of the theory,

but not necessarily the theory’s cutoff. Hitting the scale Λ3 or Λ̃3 does not automatically imply

a breakdown of the physical theory, but rather a breakdown of perturbativity. This means

that quantum loops should be taken into account, but it does not necessarily mean that new

physics is required. On the other hand, understanding how to evolve past Cauchy breakdown

may require an understanding of how infrared modifications of gravity can be UV completed 3.

Outside the regime of Cauchy breakdown, it is possible to study a variety of situations

of physical interest. In particular, the formation of cosmological large scale structure, and

perhaps some solutions in the strong field regime. In future work, we will tackle these problems,

extending our analysis beyond the decoupling limit, and considering evolution that includes

the internal dynamics of realistic sources. We hope that this work will produce new predictions

for observables, aiding in the search for the cause of the observed accelerated expansion of the

Universe.

3It is curious to note that our results clearly show that the screening solutions behave as coherent objects

extended up to RV , which could be closely related to some proposals for the UV completion of these theories [213,

214, 215].
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Chapter 4

Gravitational waves in massive

bigravity

In this chapter we study a primordial stochastic gravitational wave background in

massive bigravity. The phenomenology can differ from standard General Relativ-

ity due to non-trivial mixing between the two linearized tensor fluctuations in the

theory, only one of which couples to matter. We study perturbations about two

classes of cosmological solutions in bigravity, computing the tensor contribution

to the temperature anisotropies in the Cosmic Microwave Background radiation

and the present stochastic gravitational wave background. The result is strongly

dependent on the choice of cosmological background and initial conditions. One

class of background solution remains observationally indistinguishable from stan-

dard General Relativity for a wide variety of initial conditions, while the other

generically displays tremendous growth in the amplitude of large-wavelength

gravitational waves. We analyze the initial conditions for tensor modes expected

in an inflationary cosmology. We find that for the branch with growing perturba-

tions, inflation generically yields initial conditions that sufficiently suppress the

growth. When evolved, this gives rise to a stochastic background observationally

indistinguishable from standard General Relativity.
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4.1 Introduction

Massive bigravity, introduced in section 2.4, is a theoretically consistent modification of general

relativity with an additional dynamical rank two tensor. As for any modified gravity theory,

much of the interest in massive bigravity is motivated by the puzzle of cosmic acceleration

and dark energy. Viable homogeneous and isotropic cosmological solutions exist in bigravity

which can describe our universe, including acceleration, without a cosmological constant [158,

159, 161, 162]. These are usually referred to as self-accelerating background solutions. Beyond

the background level, investigations have recently been underway to analyze perturbations in

bigravity[165, 166, 160, 158, 163, 216, 217]. These analyses reveal that there is a particular

class of stable solutions, but all others are plagued by an exponential instability in the scalar

sector in the early universe [167].

The transverse traceless fluctuations of each of the two dynamical metrics in bigravity

interact, altering the propagation of gravitational waves as compared to GR. The most general

set of linearized equations of motion for the visible sector tensor modes hg and the dark sector

tensor modes hf is given by

D2 · h + m2(x, τ) · h = 0 (4.1)

where

h =

 hf

hg

 , D2 ≡

 ∇2
f 0

0 ∇2
g

 , m2(x, τ) ≡

 m2
f (x, τ) m2

fg(x, τ)

m2
gf (x, τ) m2

g(x, τ)

 , (4.2)

where ∇2
f is the covariant derivative defined with respect to fµν and ∇2

g is the covariant

derivative defined with respect to gµν . There is no off-diagonal term in the differential operator

D2 due to the absence of consistent derivative couplings between the two metrics. The

mass matrix m2 is in general not diagonal or symmetric. The differential operator D2 and

mass matrix m2 are generally not simultaneously diagonalizable, leading to mixing between

the visible and dark sector tensors. Because the visible and dark sector tensor fluctuations

evolve in a different background and possess a different mass, their propagation speeds can in

general be different and spacetime dependent. The modifications in the propagation speed

of gravitational waves and mixing between the visible and dark sector tensors generically

present in bigravity can have important implications for both astrophysical [218, 219, 220] and

primordial [221, 222, 66, 223, 224] gravitational waves.

In this chapter, we consider a stochastic background of primordial gravitational waves

in massive bigravity, studying the impact on primordial and present day gravitational wave

observables by computing the tensor contribution to the temperature anisotropies of the

Cosmic Microwave Background radiation (CMB) and the power spectrum of the present day
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stochastic gravitational wave background. We examine whether these observables can be

used to distinguish between bigravity and GR, serving as a possible test for gravity on large

cosmological scales. We consider two classes of cosmological background solutions for the dark

sector metric fµν . For one class, the tensor perturbations match those of GR very closely.

However, for the second class of background solution, a power-law instability in the tensor

sector leads to a strong growth in the amplitude of gravitational waves at late times.

In this work we discovered that the power-law instability in the dark gravitational wave

sector of the bouncing branch leads to physical gravitational waves that grow in amplitude with

time, consistent with the findings in refs. [216, 217]. Since gravitational waves are supposed

to decay, this growth would be enough to rule out this branch of models. However, the

amount of growth is extremely sensitive to the initial conditions, so without a proper analysis

of initial conditions, the fate of the theory remains unknown. Our analysis addresses this

outstanding question regarding the viability of massive bigravity by explicitly exploring the

initial conditions of bigravity in the context of inflation. We show that inflationary initial

conditions do not excite the growing mode significantly. In fact, our analysis proves that in the

context of inflation, the growing mode is so severely suppressed that there will be no observable

deviation from GR in the CMB or stochastic gravitational wave background. These results

motivate a more in depth consideration of inflationary model building in massive bigravity.

The chapter is organized as follows: following our description of bigravity cosmology

from section 2.4 we formalize the analysis of the gravitational waves in each background

configuration in section 4.2. We then compute gravitational wave observables: section 4.3 gives

the CMB Tensor Power Spectrum in bigravity, and section 4.4 gives the present day stochastic

gravitational wave background. Section 4.5 explores the initial conditions as predicted by

inflation, followed by a discussion in 4.6.

4.2 Bigravity Tensor Perturbations

Here we give the equations of motion for the transverse traceless tensor modes hTT
g,ij and hTT

f,ij

corresponding to the metrics gµν and fµν respectively. To compute observables, we will be

most interested in the perturbations corresponding to the physical metric, hTT
g,ij , since these

are the ones that couple to matter. The tensor equations of motion were first analyzed in

[165]. A thorough analysis of scalar, vector, and tensor perturbations was performed in [163].

In addition, further analysis of tensor perturbations appeared in Refs. [216] and [217]. The
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tensor perturbation equations of motion in momentum space are

ḧg + 2Hḣg + k2hg + a2λ(hg − hf ) = 0 (4.3)

ḧf +

[
2

(
H+

ṙ

r

)
− ċ

c

]
ḣf + c2k2hf −

a2λc

r2
(hg − hf ) = 0 (4.4)

where superscripts and subscript indices have been dropped for simplicity. In addition, the

time-dependent function λ is defined as

λ = β3cr
3 + β2(c+ 1)r2 + β1r (4.5)

which simplifies to λ = β1r in either branch under consideration. These equations are satisfied

separately for each polarization; the polarizations do not mix.

Initial conditions for hg and hf at some initial time τi are required to obtain solutions. In

the absence of a theory of initial conditions, we should consider general initial data h(g,f)(τi)

and ḣ(g,f)(τi). However, for standard inflationary cosmology in GR, tensor modes freeze in

once their physical wavelength becomes comparable to the primordial horizon size, motivating

ḣg(τi) = 0. In section 4.5, we compute the initial conditions expected for inflationary cosmology

in the context of bigravity, finding that ḣ(g,f)(τi) = 0 is an appropriate choice. Note that this

assumption differs from Cusin et. al., who consider initial data with ḣf (τi) 6= 0. This was

motivated by the presence of a growing mode for hf , which if excited, would dominate the

evolution. Our choice of initial data initially sets this growing mode to zero, and as shown

below, this leads to a different growth history for hf at late times.

Expanding Branch

In the expanding branch, the factor
[
2
(
H+ ṙ

r

)
− ċ

c

]
is always positive, and causes significant

damping of the dark sector tensor perturbation hf . In addition, the factor a2λ is small in

this branch, a2λ < 0.3 for all time. Therefore, unless the initial amplitude of hf is very large

compared with hg, the mixing term a2λ(hg − hf ) does not significantly alter the behaviour of

the physical tensor perturbation hg. For equal initial amplitude, our numerical solutions for

the tensor modes in this branch match closely with those of pure GR. This was confirmed for

modes ranging from k = 0.1H0 to k = 105H0. Refer to figure 4.1 for the numerical solutions

of this branch as compared to the standard GR gravitational waves with τi = 10−6H−1
0 . 1

1Although this is choice for τi, corresponding to reheat temperature Ti = Teq[aeq/a(τi)] =

T0(a0/aeq)2[aeq/a(τi)] = 0.07 GeV, is not entirely plausible, it is still deep within the radiation era and

is a practical choice for our numerical analysis. We will be able to extrapolate to earlier τi when necessary

using scaling properties of the solutions defined in (4.7).
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Figure 4.1: Top left: the solution for hg(τ) at k = 100H0 for the expanding branch (green) versus GR (blue).

The two solutions are essentially indistinguishable. Top right: the solution for hf (τ) at k = 100H0 for the

expanding branch. Bottom left: The difference between the expanding branch solution and the standard GR

solution, shown to be less than 5× 10−5 for k = 100H0. Bottom right: the solution for hf (τ) at k = 100H0 for

the expanding branch, with hf (τi)/hg(τi) = 106. Even in this case of hf (τi)� hg(τi), the decay of hf is so fast

that it does not cause any alteration to the physical tensor perturbations.

If the relative amplitude of the dark sector tensor mode was decreased, hf (τi) < hg(τi),

this would only drive the physical tensor modes closer to those of GR. But if hf had a much

higher initial amplitude relative to hg, the mixing term a2λhf in (4.4) can become dominant

for some time. However, even if we set hf (τi)� hg(τi), hf decays so dramatically that there

is very little effect on hg. The bottom right plot in figure 4.1 shows how the dark sector

perturbation decays very quickly, even when starting with a much larger amplitude.

Bouncing Branch

In the bouncing branch, the oscillations of hf are anti-damped for τ < τb and damped for

τ > τb where τb is the bounce time corresponding to when c(τ) = 0. This happens at relatively

late times, around zb ∼ 0.6. Until the bounce occurs, while c < 0, hf experiences enormous

growth, then starts to decay after τb. Through the mixing term in (4.3), this growth in hf
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Figure 4.2: Left: the solution for hg(τ) at k = 100H0 for the bouncing branch (red) versus GR (blue). Right:

the solution for hf (τ) at k = 100H0 for the bouncing branch.

translates into growth in the physical mode hg, leading to oscillations that grow at late times.

In figure 4.2, we show the evolution of the physical and dark sector tensors for equal amplitude

initial conditions with τi = 10−6H−1
0 ; the large deviation from GR at late times is clear.

The growth in hg(τ) at late times is k-dependent. Empirically, we find a falloff proportional

to 1/k2. This amplification is also dependent on the initial time τi, which physically relates to

the reheating temperature Treheat = Ti. This can be understood by examining the solution

for hf within the radiation dominated era. On super-horizon scales there is an exact solution

[163] given by

hf = c1 + c2τ
3 (4.6)

so there is both a constant mode and a growing mode. Our choice of initial condition ḣf = 0

selects the constant mode (ie. c2 = 0), so naively one might think that hf should not grow

at all in the radiation dominated era, regardless of the initial time τi. However, the above

solution (4.6) is only an approximate solution on super-horizon scales, not valid for k 6= 0. For

k 6= 0 we expect to depart from the the constant mode solution on a timescale of τ ∼ 1/ck, at

which point the growing mode will completely dominate. The earlier the initial time is set,

the more time hf has to grow, ultimately driving more growth in hg. We find that the growth

is inversely proportional to the initial time: hg(τ0) ∝ 1/τi ∝ Ti, valid for all initial times in

the radiation dominated era.

In addition to this, the growth is also proportional to the initial condition for hf . However,

for a small enough value of hf (τi), the solution for hg(τ) does not scale. For our choice of

initial time τi = 10−6H−1
0 (corresponding to a reheat temperature of Ti = 0.07 GeV) we

find that for hf (τi)/hg(τi) < 10−9, the solution for hg is indistinguishable from its solution

with hf (τi) = 0 which agrees very closely with the pure GR solution. To extrapolate this
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Figure 4.3: The growth in the physical sector is dependent on k, τi, hf (τi) and m (4.7). We vary one parameter

individually per plot to show how the solutions change, fixing all but one of τi = 10−6H−1
0 (Ti ∼ 0.07 GeV),

k = 100H0, m = H0, and h(g,f)(τi) = 1. Top left: The gravitational waves in the bouncing branch grow like

1/k2. Here we plot k = 10p/2H0 with p ranging from 2 to 10 from top to bottom. Top right: The tensor modes

grow like 1/τi. Here we plot τi = 10−8+p/2H−1
0 with p ranging from 0 to 8 from top to bottom. Bottom left:

The gravitational waves grow proportional to hf (τi). Here we plot hf (τi) = 10−p/2 with p ranging from 2 to

11 from top to bottom. Bottom right: The growth in the bouncing branch grow proportional to m (requires

re-inserting Λ into the theory). Here we plot m = 10−p/2H0 with p ranging from 2 to 11 from top to bottom.

result to a more reasonable reheat temperature, say Ti = 1010 GeV, we must consider that

hf grows proportionally to Ti. We conclude that for Ti = 1010 GeV, we need a suppression

of hf (τi)/hg(τi) < 10−20 to obtain solutions that agree with those of GR. At this threshold,

scaling down hf (τi) further will not result in any significant change. It is evident that to

control the large growth in the bouncing branch, seeking gravitational waves that do not

substantially deviate from those of GR, we require detailed knowledge about the mechanism

by which they were produced. This will be explored further in section 4.5.

From a purely phenomenological standpoint, one might also be interested in varying

the graviton mass. This reduces the strength of the mixing term, which has the form

∝ m2β∗1a
2r(hg − hf )/H2

0 (reinserting factors of m and H0 from (2.41)). However, lowering

m means weakening the influence of the bigravity interaction term in (3.1) to the point at
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which it can no longer yield a viable background cosmology, so a cosmological constant must

be reintroduced. This undercuts the strongest theoretical motivation for bigravity, but mild

variations could be of interest in constraining the parameters of the theory. We find that

hg(τ0)/hg(τi) ∝ m. Just like for hf (τi), there is also a critical value of m for which this scaling

relation no longer holds. Putting this all together, we find the following general relationship

for the growth:

hg(τ0)

hg(τi)
∝
mhf (τi)

τik2
∝
mhf (τi)H(τi)

k2
∝
mhf (τi)Ti

k2
, for

hf (τi)

hg(τi)
, m/H0 > Acrit (4.7)

where Acrit is the critical value at which the solution no longer scales (Acrit = 10−20 for

Ti = 1010 GeV). Note that this scaling is different than that found in Cusin et. al., which is

due to the difference in choices for initial data. These growth dependencies are displayed in

figure 4.3 which shows the solutions for various k, τi, hf (τi), and m. Notice that the variations

in growth of hg are similar for hf (τi) and m, which comes from the fact that both of these

effects act to alter the coupling term in (4.3). Although the effect on growth in the physical

sector appears the same, altering m introduces no change in growth in the dark sector.

4.3 CMB Tensor Power Spectrum

In this section we use the solutions of (4.3) and (4.4) to compute the predicted bigravity CMB

temperature tensor power spectrum. We begin by using the physical tensor mode hg(k, τ)

to compute the lth photon moment due to tensor perturbations (assuming instantaneous

recombination) using

ΘT
l = −1

2

∫ τ0

τ∗

dτ ḣg(k, τ)jl[k(τ0 − τ)]] (4.8)

where τ0 is the conformal time today, τ∗ is the conformal time at the time of last scattering,

and jl is the spherical Bessel function. The tensor contribution to the temperature anisotropies

is entirely due to the Integrated Sachs Wolfe effect. The evolution of the visible sector tensors

can be substantially different than GR, leading to potentially visible differences in the spectrum

of temperature anisotropies. For example, in the bouncing branch, from figure 4.3 it can be

seen that there is additional time dependence on super horizon scales, and late-time growth of

tensor modes; both of these effects will alter the temperature anisotropies.

Once the photon moments are found, the angular power spectrum can be found from:

CTl =
(l − 1)(l + 1)(l + 2)

π

∫ ∞
0

dk
1

k

∣∣∣∣ ΘT
(l−2)

(2l − 1)(2l + 1)
+ 2

ΘT
l

(2l − 1)(2l + 3)
+

ΘT
(l+2)

(2l + 1)(2l + 3)

∣∣∣∣2
We solve for the photon moments and angular power spectra numerically.
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For the expanding branch, the CTl ’s are approximately the same as in GR, which is expected

given the agreement of hg(τ) with hGR(τ). However, in the bouncing branch, there is a drastic

difference in the power spectrum.

In (4.8) the integral runs from the time of last scattering to today, so the growth in hg(τ)

in the bouncing branch at late times causes a large increase in ΘT
l and therefore in CTl . We

find that if we set hg(τi) = hf (τi) = 1 at τi = 10−6H−1
0 and m = H0, then the value of CT2 for

the bouncing branch is 1011 times larger than for pure GR: CT2 BB ∼ 1011CT2 GR, demonstrating

that the growth at late times dominates the signal. However, our initial time τi = 10−6H−1
0

corresponds to a reheat temperature of only Ti = 0.07 GeV. Extrapolating to a more reasonable

reheat temperature, say Ti = 1010 GeV, requires looking to equation (4.7) which shows that

hg grows with Ti, and so we expect an even bigger enhancement of the quadrupole.

This discrepancy can be relieved by adjusting τi (or Ti = Treheat), hf (τi) or m, since these

parameters directly impact the growth in hg as in (4.7). For example, see figure 4.4 which

shows how the bouncing branch power spectrum converges to the standard one as hf (τi)/hg(τi)

is decreased. Note that these plots would look the same if instead m or Ti was decreased by

the same amount. In summary, to achieve a CMB Tensor Power Spectrum that resembles the

result from GR, we require very tuned initial conditions, or tuned graviton mass.

4.4 Present Day Stochastic Gravitational Wave Background

We now use the results from the previous section to see how the bigravity primordial gravita-

tional waves contribute to the present day stochastic gravitational wave energy density . The

observable quantity of interest is the gravitational wave energy density, defined as a function

of frequency:

Ω0
GW(f) =

1

ρcrit

dρGW

d ln f
(4.9)

where the critical density is ρcrit = 3M2
gH

2(τ) (recall eq. (1.48)).

Direct detection of relic gravitational waves is of considerable interest given the improving

technology of ground and space based laser interferometers. Various experiments have already

placed upper bounds on Ω0
GW, and proposed experiments will be able to reach much higher

sensitivities. Therefore, one might ask if gravitational waves in bigravity would be more or

less likely to detect, and if the current sensitives of LIGO or Pulsar Timing Arrays could

constrain bigravity. LIGO has already made measurements between 51 < f < 150 Hz to

constrain Ω0
GW < 6.5× 10−5 at these frequencies and advanced LIGO is predicted to reach

down to sensitivities of Ω0
GW ∼ 6.5 × 10−9 in the coming years [225]. In addition, Pulsar-
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Figure 4.4: The CMB Tensor Power Spectrum in the bouncing branch (red, dashed) approaches the GR result

(blue, solid) as the initial value of hf (orm or Ti) is decreased from left to right: hf (τi)/hg(τi) = 10−3, 10−5, 10−7

with τi = 10−6H−1
0 . In each cases we have scaled the power spectrum in the bouncing branch down so that

CT2 BB = CT2 GR ∼ 200µK2, which required dividing the spectrum by ∼ 106, 5.3, 1.1 from left to right.

timing experiments have placed an upper bound of Ω0
GW < 1.6 × 10−9 at low frequencies

10−9 < f < 10−8 Hz [226] and will improve in the future. The first-generation space based laser

interferometer, LISA, is expected to operate at sensitivities of Ω0
GW ∼ 10−11 at frequencies

f ∼ 10−3 Hz [227], while the second-generation space based interferometer, BBO, may be able

to reach all the way down to Ω0
GW ∼ 10−17 near frequencies f ∼ 0.3 Hz [228].

In terms of the tensor modes (corresponding to the physical metric) the predicted stochastic

background can be computed at any conformal time τ via the formula [229]

ΩGW(k, τ) =
k2|hg(k, τ)|2 + |ḣg(k, τ)|2

12π2H2(τ)
(4.10)

given as a function of k = 2πf . When written with superscript 0, it is understood to

be evaluated today τ = τ0. More generally however, Ω0
GW(k) represents the present-day

gravitational wave energy density on scales that re-entered the Hubble horizon during the

radiation dominated era.

Over the range of frequencies of interest for the experiments above, the stochastic back-

ground due to primordial tensor modes in GR is essentially flat Ω0
GW(k) ∼ 10−15 [230]. The
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precise profile depends on the assumed model of inflation that produced the modes, which for

us is unimportant as we are just looking for a rough comparison to bigravity.

Let us compare Ω0
GW(k) in bigravity and GR. In the bouncing branch, we have observed

that the late time growth of tensor modes falls off with the square of the frequency, and

therefore, using (4.10), so will Ω0
GW(k). This makes Ω0

GW(k) harder to detect in the bouncing

branch compared to GR over the range of frequencies of interest for the experiments listed

above, 10−9 < f < 103 Hz (or 109 < k/H0 < 1021). In the expanding branch, the decay of

the tensor modes closely matches with GR, so in this case we expect a result similar to the

standard picture. See figure 4.5 for a plot of the results for Ω0
GW over a range of frequencies

from k = 10H0 to k = 104H0.
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Figure 4.5: The present day stochastic gravitational wave background, given by (4.10) for bigravity as compared

to GR. The expanding branch (green) agrees closely with GR (blue), while the bouncing branch (red) shows

drastic differences. Note that we have scaled Ω0
GW down by an appropriate factor so as to fix CT2 BB ∼ 200µK2

(see figure 4.4).

As in the previous section, we see that an adjustment of the initial condition for hf causes

the result for the bouncing branch to converge to the solution in GR, as displayed in figure

4.6. This is equivalent to varying m or Ti by the same amount, as discussed previously.

4.5 Initial Conditions

We have seen that in the bouncing branch, the extreme growth in the dark sector causes

amplification of the physical tensor mode, leading to large discrepancies with GR. This

amplification causes alterations in physical observables, such as the CMB Power Spectrum

and the present day stochastic gravitational wave background. However, if the tensor modes

in the dark sector are sufficiently suppressed, then the physical tensor modes and their

associated observables closely resemble those of GR. If some mechanism were to exist so that
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Figure 4.6: The present day stochastic gravitational wave background in the bouncing branch (red) approaches

the GR result (blue) as the initial value of hf (or m or Ti) is decreased from left to right: hf (τi)/hg(τi) =

10−3, 10−5, 10−7 with τi = 10−6H−1
0

hf (τi)� hg(τi) then this branch would have essentially the same gravitational wave spectrum

as GR, and would be indistinguishable on an observational level. It is therefore necessary to

explore the initial conditions for the primordial tensor modes, assuming they were produced

by inflation.

During inflation, the universe undergoes accelerated expansion in a quasi-de Sitter phase.

For pure de Sitter, the bigravity background equations simplify as follows:

ρ = constant = 3(HI
gMg)

2 ⇒ ρ̄ = 3(HI
g /H0)2 (4.11)

r = constant (4.12)

c = 1 ⇒ H = Hg = Hf (4.13)

where HI
g is the Hubble parameter during inflation. The second line follows from equation

(2.49) and the third line follows from (2.40). Therefore, the dark universe is also undergoing

de Sitter expansion. Restoring m and H0 in (2.49) using (2.41), specializing to the bouncing

branch parameters in which only β∗1 and β∗4 are nonzero, we get a polynomial equation for the

value of the ratio of the scale factors during inflation, rI :

− 3(HI
g )2rI +m2

[
β∗1 + β∗4(rI)3 − 3β∗1(rI)2

]
= 0. (4.14)
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Since one typically takes the mass term m in bigravity to be on the order of the Hubble

constant H0 which is much smaller than the Hubble parameter during inflation HI
g , we can

expand the solution for rI in powers of HI
g /m� 1, yielding

rI =

√
3

β∗4

HI
g

m
+

3β∗1
2β∗4

+O
(
m

HI
g

)2

(4.15)

∼
HI
g

H0
(4.16)

where we have used m = H0 ⇒ β∗4 = β4 = 0.94. Assuming high scale inflation, the maximum

allowed Hubble during inflation is HI
g ∼ 1015 GeV, and H0 ∼ 10−33 eV, from which we

can estimate rI ∼ 1057. For very low scale inflation, say at the TeV scale, we can estimate

rI ∼ 1029.

After inflation, there must be a transition to a radiation dominated phase. During the

inflationary de Sitter phase, the scale factor for the dark sector metric is increasing, ḃ > 0, but

in the radiation dominated era in the bouncing branch, the scale factor is decreasing, ḃ < 0. It

is evident that the dark sector must undergo another “bounce” transition after inflation from

expansion to contraction in order to achieve the necessary behaviour in the early radiation era.

In the next section we see that this bounce is indeed achieved in a simple inflationary model.

A note on inflation in the expanding branch is now in order. In this branch, we set β∗4 = 0.

Solving for rI in (4.14) with only β∗1 6= 0, we obtain

rI =
−3HI

g
2

+
√

9HI
g

2 + 12m4β∗1
2

6m2β∗1
(4.17)

=
β∗1m

2

3HI
g

2 +O
(
m

HI
g

)3

(4.18)

∼
(
H0

HI
g

)2

(4.19)

Therefore, in the expanding branch we obtain a very small value of rI .

To find the power spectrum of primordial tensors, we expand the action eq. 2.37 to

quadratic order in transverse traceless perturbations of the f and g metrics. During inflation,

the interaction terms are unimportant due to the large hierarchy between m and HI
g . Defining

the canonically normalized fields:

vg =
Mga

2
hg, vf =

Mgb

2
hf , (4.20)

and using the fact that
ä

a
=
b̈

b
=

2

τ2
(4.21)
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in de Sitter, the quadratic action for tensors during an inflationary epoch in bigravity is given

by:

S =
∑
+,×

1

2

∫
dτ d3k

[
v̇2
g,f −

(
k2 − 2

τ2

)
v2
g,f

]
(4.22)

Imposing Bunch Davies initial conditions [231], the mode functions each obey:

vg,f =
1

k3/2τ
(1− ikτ) eikτ (4.23)

Summing over the two polarization states, the power spectrum for hf and hg are given by:

∆
(g)
T

2
=

2k3

π2M2
g

|vg|2

a2

∣∣∣∣
k=Ĥ

, ∆
(f)
T

2
=

2k3

π2M2
g

|vf |2

b2

∣∣∣∣
k=Ĥ

(4.24)

Substituting with Eqn. 4.23 and using HI
g = (aτ)−1 for a de Sitter phase, we obtain:

∆
(g)
T

2
=

2HI
g

2

π2M2
g

∣∣∣∣∣
k=Ĥ

, ∆
(f)
T

2
=

∆
(g)
T

2

rI2 (4.25)

Modes are populated for both the visible and dark sector tensors on all super horizon scales.

The appearance of rI is a consequence of the fact that the relative size of a and b is physical,

and cannot be removed by a change of coordinates or field redefinition.

In the bouncing branch rI � 1, leading to a drastic suppression in the initial amplitude

for hf roughly given by hf/hg = 1/rI ∼ H0/H
I
g . This suppression is more than sufficient to

bring the amplitude of dark sector tensor fluctuations below the threshold where they alter

the propagation of visible sector tensors. With inflationary initial conditions, we therefore

conclude that there would be no visible deviation from GR in the tensor contribution to the

CMB temperature anisotropies or the late time stochastic distribution of gravitational waves.

This is true for both high scale and low scale inflation.

In contrast, the expanding branch gives hf/hg ∼ (HI
g /H0)2, which for any reasonable

choice of the inflationary scale is far beyond the perturbative regime. Therefore, we cannot

make sense of inflation in the expanding branch with β4 = 0. If instead we considered a

non-minimal expanding branch with β4 6= 0, then the result would be the same as the bouncing

branch.

Finally, let us comment on the time dependence of the dark sector tensor modes. This

is of interest because as illustrated in Cusin et. al. [216], the dark sector tensor mode has a

growing mode on super horizon scales proportional to τ3 during radiation domination. We

can estimate the relative amplitude of the growing and constant modes at the beginning of

radiation domination as
τiḣf (τi)

hf (τi)
=

k2τi
a(τi)HI

g

(4.26)
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Using a ∝ τ during radiation domination, for horizon-scale wave numbers, in the bouncing

branch we can estimate this ratio as ∼ H0/H
I
g ∼ 10−57. For any reasonable choice of reheat

temperature, this will be smaller than the growth factor for the growing mode during radiation

domination, ∼ (τeq/τi)
3 = (Treh/Teq)3 ∼ 1030, where the subscript “eq” refers to matter

radiation equality. We therefore conclude that the appropriate initial conditions are ḣg,f = 0.

4.5.1 An inflationary model in bigravity

In this section, we examine bigravity for the m2ϕ2 inflationary model originally presented in

section 1.3.2. We want to determine the behaviour of r (and thus b) during inflation in the

bouncing branch with only β1,4 6= 0. The inflaton field has potential energy V (ϕ) = 1
2m

2
ϕϕ

2

and energy density ρϕ = 1
2(∂tϕ)2 + V (ϕ). For this calculation we find it convenient to use the

following set of dimensionless variables:

H̃ =
H

HI
g

t̃ = tHI
g Γ̃ϕ =

Γϕ
HI
g

Ṽ =
V

M2
g (HI

g )2
(4.27)

ϕ̃ =
ϕ

Mg
β̃n =

m2

(HI
g )2

β∗n =
H2

0

(HI
g )2

βn ρ̃r =
ρr

M2
g (HI

g )2
(4.28)

where Γϕ is the decay rate of the inflaton, t is proper time, and we take (HI
g )2 = V (ϕ0)/3M2

g

in terms of the value of ϕ at the start of inflation, implying that Ṽ = 3ϕ̃2/ϕ̃2
0.

Recalling equation (1.67), and including an explicit decay of the inflaton into radiation,

the equation of motion is

ϕ̃′′ + 3H̃ϕ̃′ + Γ̃ϕϕ̃
′ + 6

ϕ̃

ϕ̃0
2 = 0 (4.29)

where a prime denotes a derivative with respect to dimensionless proper time t̃. The Friedmann

equation (2.42) for a(t̃) becomes

3H̃2 = ρ̃ϕ + ρ̃r =
1

2
(ϕ̃′)2 + 3

ϕ̃2

ϕ̃2
0

+ ρ̃r. (4.30)

Notice that we have neglected the contribution of ρ̃m and ρ̃mg in the early universe since these

will be highly suppressed compared to the inflaton or radiation energy density. The radiation

energy density ρ̃r satisfies a modified conservation equation

ρ̃′r + 4H̃ρ̃r = Γ̃ϕρ̃ϕ (4.31)

We can now solve (4.29), (4.30), and (4.31) for the functions ϕ̃(t̃), a(t̃), ρ̃r(t̃). The last

ingredient will be to solve for r(t̃), for which we use (2.49), which simplifies in the bouncing

branch with β1,4 6= 0 to

0 = rρ̃− β̃1 − β̃4r
3 + 3β̃1r

2 (4.32)

r =
HI
g

H0

√
ρ̃

β4
for large r (4.33)
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The results of the calculation are shown in figure 4.7. We can see the transition from

b′ > 0 during inflation to b′ < 0 after inflation is achieved in the bottom right plot. Notice

that after b hits its first peak, it oscillates as it decreases, indicating brief periods of expansion

and contraction of fµν . This behaviour is caused by the oscillation of the inflaton around

its minimum, and implies that the dark sector metric undergoes multiple bounces during

reheating.

ϕ
˜

ρ
˜
ϕ

ρ
˜
r

0.001 0.100 10 1000
10-14

10-10

10-6

10-2

102

t
˜

ϕ˜
,ρ
˜


0.001 0.100 10 1000
10-98

10-78

10-58

10-38

10-18

t
˜

a

0.01 0.10 1 10 100 1000 104
1053

1054

1055

1056

1057

t
˜

r

0 500 1000 1500 2000
0

5.0×1030

1.0×1031

1.5×1031

t
˜

b

Figure 4.7: Top left: The solutions of (4.29), (4.30), and (4.31) for ϕ̃, ρ̃ϕ, and ρ̃r vs. t̃ for the m2ϕ2 model of

inflation. We set Γϕ = 10−3, ϕ̃(0) = ϕ̃0 = 24, ϕ̃′(0) = 0, and ρ̃r(0) = 0. Top right: The scale factor for gµν .

Bottom left: The ratio r found via (4.33). Bottom right: The scale factor for fµν , b = ra.

4.6 Conclusion

We have studied the properties of gravitational waves in massive bigravity, and their impact

on cosmological observables compared to the standard predictions of General Relativity. The

two background solutions we have studied display dramatically different phenomenology,

illustrating the enormous size of the parameter space for observables.

In the “expanding branch” in which both metrics expand in time, we found that for a

wide range of initial conditions, the physical tensor perturbation hg matches closely with the

pure GR solution. Due to a dramatic decay of hf , the impact of the dark sector on hg is not
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important and causes no significant deviation from GR.

The “bouncing branch”, in which the dark metric fµν undergoes a bounce from contraction

to expansion, has potentially dramatic differences from GR in the tensor sector. When the f

metric is undergoing contraction, the lapse c is negative, which causes hf to grow. This growth

in hf can translate into growth in hg through the mixing term in the equations of motion, in

some cases leading to physical gravitational waves with growing amplitudes at late times. This

contrasts significantly with gravitational waves in GR which decay with time. The growth can

potentially impact the CMB tensor power spectrum by dramatically amplifying large scale

temperature anisotropies. The present day stochastic gravitational wave background, Ω0
GW

can be impacted as well, inheriting a very red spectrum that decays with the square of the

wave number. The degree of growth depends on the scale of reheating, amplitude of the dark

sector tensor modes, wave number, and graviton mass, and obeys the scaling relation Eq. 4.7

for initial amplitudes above a critical value. On the largest scales, we find that the dark sector

tensor modes can have a significant influence on the physical tensor for hf (τi)/hg(τi) > 10−20

for a reheat temperature of Ti = 1010 GeV. In the absence of a theory of initial conditions, it

is not clear that this holds.

To address the question of initial conditions, we computed the primordial power spectrum

for dark and visible sector tensors in an inflationary cosmology. We found that the expanding

branch is far beyond the perturbative regime, and therefore inaccessible to a semi-classical

treatment. However, the primordial power spectra in the bouncing branch show that hf/hg ∼

H0/H
I
g ∼ 10−57 for high scale inflation, and hf/hg ∼ 10−29 for low scale inflation. With this

level of suppression, there will be no observable deviation from GR in the CMB or stochastic

gravitational wave background. We presented an inflationary model that exhibits this explicitly.

Let us now briefly discuss our results in the context of previous work in Refs. [216, 217].

These authors considered the bouncing branch chosen in this work with identical parameters,

but with an initial condition that was entirely composed of a growing mode of the dark sector

tensor. However, as shown in section 4.5 it appears that inflationary initial conditions do not

excite the growing mode as significantly. Of course, another theory of initial conditions may

prevail, and a proper treatment of higher-order couplings between the scalar and tensor sectors

may reveal a significant enhancement. In this sense, our investigation is largely complementary

to previous work; taken together, the range of possibilities is covered. However, in the context

of inflationary cosmology, it appears that the growing mode is not excited at the end of

inflation.

It is clear that tensors can be a sensitive probe of massive bigravity. Looking to the future,

the parameter space of nearly homogeneous solutions will soon be completely explored both
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at the level of the background and first order perturbations. In light of this, it is equally

important to consider the theory for initial conditions in a broader sense, as illustrated by the

strong dependence on initial conditions found in this and other papers. To this end, we plan

to return to the question of inflationary model building in massive bigravity in future work.

Scenarios with small but observable deviations from GR could serve as an important alternative

hypothesis necessary for testing GR on cosmological scales and in future gravitational wave

observatories.
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Chapter 5

Reducing cosmic variance with the

large-scale kSZ effect

Due to cosmic variance we cannot learn any more about large-scale inhomo-

geneities from the primary cosmic microwave background (CMB) alone. More

information on large scales is essential for resolving large angular scale anomalies

in the CMB. Here we consider cross correlating the large-scale kinetic Sunyaev

Zel’dovich (kSZ) effect and probes of large-scale structure, a technique known as

kSZ tomography. The statistically anisotropic component of the cross correlation

encodes the CMB dipole as seen by free electrons throughout the observable

universe, providing information about long wavelength inhomogeneities. We

compute the large angular scale power asymmetry, constructing the appropriate

transfer functions, and estimate the cosmic variance limited signal to noise for a

variety of redshift bin configurations. The signal to noise is significant over a

large range of power multipoles and numbers of bins. We present a simple mode

counting argument indicating that kSZ tomography can be used to estimate more

modes than the primary CMB on comparable scales. A basic forecast indicates

that a first detection could be made with next-generation CMB experiments

and galaxy surveys. This chapter motivates a more systematic investigation

of how close to the cosmic variance limit it will be possible to get with future

observations.
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5.1 Introduction

The CMB has been an extraordinarily powerful tool for precision cosmology, establishing the

standard model, ΛCDM, at high confidence. However, on very large-scales, CMB measurements

are limited by cosmic variance, implying that we can not hope to learn any more about large

scale inhomogeneities from the primary CMB alone. As introduced in section 1.6, cosmic

variance is an inherent sample variance that arises because we only have one observable universe

to measure. This limiting precision restricts our ability to discriminate different models. For

instance, more information on large scales is essential to distinguish between various infrared

modifications of GR.

How can we overcome cosmic variance and unlock the secrets of our universe on large scales?

In attempting to address this and other issues, the field of cosmology is now transitioning away

from the primary CMB and towards understanding large scale structure (LSS). The three

dimensional nature of LSS means that it contains more information than the two dimensional

last scattering surface of the CMB. Constraints from probes of LSS, such as next-generation

galaxy surveys (e.g [232, 233]) and 21cm measurements (e.g. [234, 235]), are poised to become

increasingly important for many cosmological parameters. Even still, when it comes to

measuring inhomogeneities on scales & Gpc, there will be limited additional constraining

power in all but the most ambitious scenarios (e.g. 21cm dark ages cosmology [236]).

In this project [3], we investigate the viability of an additional probe of large scale

inhomogeneities: large scale kinetic Sunyaev Zel’dovich (kSZ) tomography (introduced at the

end of section 1.6). The kSZ effect is a CMB temperature anisotropy arising from the Compton

scattering of CMB photons by the bulk motion of free electrons with respect to the CMB rest

frame [80]. The contribution to the kSZ effect from each free electron is proportional to the

locally observed CMB dipole, and because each free electron probes a different portion of the

surface of last scattering, measurements of the kSZ effect can in principle yield information

about the homogeneity of the universe. This is why measurements of the kSZ effect can be

so constraining for scenarios that predict a deviation from large-scale homogeneity. Note

that this is a dramatically different regime than the one typically explored, for example in

the pairwise motion of clusters that yielded the first detection. This large-scale kSZ effect is

sensitive to the Sachs Wolfe and integrated Sachs Wolfe components of the dipole, in addition

to the Doppler component from peculiar velocities, and can therefore in principle yield more

large-scale information than peculiar velocity surveys or direct measurements of the density

field through various tracers of LSS.

Cross correlation of the kSZ effect with tracers of LSS, known as kSZ tomography, is key
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to extracting the most information possible. In this project we will show that information

about large scale homogeneity is encoded in a statistical anisotropy of the direct correlation

of tracers of large scale structure and the small angular scale CMB, e.g. a power asymmetry.

Importantly, the contribution to this signal from small-scale peculiar velocities vanishes [88].

The power of kSZ tomography to probe the large scale homogeneity of the universe has

been highlighted previously, notably in refs. [101, 89, 112, 113]. These papers considered

theoretical extensions to ΛCDM where a signal could hopefully be detected with current and

near-future experiments. However, as the sensitivity and resolution of CMB experiments

continues to develop and as our ability to probe LSS improves, we might hope to enter an era

where large scale kSZ tomography becomes a tool not just for constraining exotic scenarios,

but for measuring the inhomogeneities we know to exist: those responsible for the large scale

temperature anisotropies in the primary CMB.

The aim of this project is to explore this eventuality in the most optimistic, cosmic variance

limited, scenario. More specifically, we compute the angular spectrum of the asymmetry in

the kSZ-LSS cross power expected in ΛCDM as a function of redshift. Comparing this signal

to the accidental power asymmetry expected from the statistically isotropic components of the

kSZ effect (the dominant source of CMB temperature anisotropies on small angular scales),

we find that the signal-to-noise can be significant (S/N ∼ O(102 − 103)) over a wide range of

angular scales (`max ∼ O(100)) and in a large number (Nbin ∼ O(10− 100)) of redshift bins.

A simple mode counting argument indicates that there is in principle more information in the

power asymmetry than in the primary CMB on the relevant scales, for a sufficient number of

redshift bins (Nbin & 30). We present a basic forecast, indicating that a first detection could

be made with next-generation CMB experiments and galaxy surveys.

The plan of the chapter is as follows. In section 5.2, the large-scale late-time kSZ effect is

summarized along with a derivation of the large-scale effective velocity. Section 5.3 describes

simulations of the large-scale effective velocity field. Section 5.4 outlines how kSZ tomography

can be used to extract the large-scale effective velocity. Then, we derive the cosmic variance

limited noise in section 5.5 and estimate the signal using both an RMS estimate and simulations

in section 5.6. In section 5.7 we provide an estimate for the number of modes that can be

obtained using cosmic variance limited kSZ tomography, showing that in principle more

information can be extracted than is contained in the primary CMB on comparable scales.

Finally, we assess the detectability of the signal with next-generation CMB experiments and

galaxy surveys in section 5.8; we conclude in section 5.9. A number of results are collected in

the Appendices.
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5.2 The large-scale kSZ effect

The kinetic Sunyaev Zel’dolvich effect arises from Compton scattering of CMB photons by free

electrons moving with respect to the CMB rest frame. This produces temperature anisotropies

given by an integral along the line of sight:

∆T

T

∣∣∣∣
kSZ

(n̂e) = −σT
∫ χre

0
dχe ae(χe) ne(n̂e, χe) veff(n̂e, χe) · n̂e (5.1)

= −σT
∫ χre

0
dχe ae(χe) n̄e(χe) (1 + δ(n̂e, χe)) veff(n̂e, χe). (5.2)

The geometry is depicted in figure 5.1. In eq. (5.1), σT is the Thomson cross-section, ne(n̂e, χe)

is the electron number density, n̂e is the angular direction on the sky to the scatterer, and χe

is the comoving radial coordinate to the scatterer along our past light cone (recall eq. (1.53)),

χe =

∫ ze

0

dz

H(z)
= −

∫ ae

1

da

H(a)a2
, (5.3)

where ze and ae are the scatterer’s redshift and scale factor respectively. Below, we will use

χe and ze interchangeably. In the second line of (5.2), we have written the electron number

density as ne(n̂e, χe) = n̄e(χe)(1 + δ(n̂e, χe)) in terms of the average electron number density

n̄e(χe), and the density perturbation δ (recall eq. (1.73)), and replaced veff(n̂e, χe) · n̂e with

the projection along the line of sight veff(n̂e, χe).

e-­‐‑

𝐯

𝐯

e-­‐‑

𝐧%𝒆

𝐧%
𝐫𝒆 = 𝜒*𝐧%𝒆

Δ𝜒,-.

Figure 5.1: Scattering of CMB photons off free electrons on our past light cone. The position of an electron is

described in terms of its direction n̂e and comoving distance χe. The direction from the electron to a point on

the surface of last scattering is denoted by n̂ and the distance to last scattering by ∆χdec.

117



The quantity denoted by veff(n̂e, χe) is the CMB dipole observed by each electron, projected

along the line of sight:

veff(n̂e, χe) =
3

4π

∫
d2n̂ Θ(n̂e, χe, n̂) (n̂ · n̂e), (5.4)

where, for a freely falling electron at position re ≡ χen̂e, the CMB temperature it sees along

the direction n̂ is given by

Θ(n̂e, χe, n̂) = ΘSW(n̂e, χe, n̂) + ΘDoppler(n̂e, χe, n̂) + ΘISW(n̂e, χe, n̂). (5.5)

The three contributions come from the Sachs-Wolfe (SW) effect generated by the gravitational

potential on the LSS, the Doppler effect due to peculiar motion of photons on the LSS and

peculiar motion of electrons at redshift ze, and the integrated Sachs-Wolfe (ISW) effect.

Working in Newtonian gauge

ds2 = −(1 + 2Ψ)dt2 + a2(t)(1− 2Ψ)dx2, (5.6)

the Sachs-Wolfe contribution is given by

ΘSW(n̂e, χe, n̂) =

(
2DΨ(χdec)−

3

2

)
Ψi(rdec), (5.7)

where rdec ≡ χen̂e + ∆χdecn̂ with ∆χdec = ∆χ(adec) = −
∫ adec

ae
da
(
H(a)a2

)−1
the distance

along the electron’s past light cone to decoupling. More generally, we will define

∆χ(a) = −
∫ a

ae

da

H(a)a2
. (5.8)

In eq. (5.7) we have used the growth function, DΨ(a), which relates the potential to its

primordial value at a→ 0 through the definition Ψ(r, a) = DΨ(a)Ψi(r). The growth function

is well approximated on superhorizon scales by

DΨ(a) ≡ ΨSH(a)

ΨSH,i
=

16
√

1 + y + 9y3 + 2y2 − 8y − 16

10y3

[
5

2
Ωm

E(a)

a

∫ a

0

da

E3(a) a3

]
, (5.9)

where y ≡ a/aeq and E(a) =
√

Ωma−3 + ΩΛ is the normalized Hubble parameter.

The Doppler component is given by

ΘDoppler(n̂e, χe, n̂) = n̂ · [v(re, χe)− v(rdec, χdec)]. (5.10)

The velocities can be related to the potential through

v = −2a2c2H(a)

H2
0 Ωm

y

4 + 3y

[
∇Ψ +

d∇Ψ

d ln a

]
, (5.11)

which is valid on all scales. On large scales, we can use this expression to define a velocity

growth function Dv(a):

v = −2a2c2H(a)

H2
0 Ωm

y

4 + 3y

[
DΨ +

dDΨ

d ln a

]
∇Ψi, (5.12)
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where

Dv(a) ≡ 2a2H(a)

H2
0 Ωm

y

4 + 3y

[
DΨ +

dDΨ

d ln a

]
. (5.13)

Finally, the ISW term is given by

ΘISW(n̂e, χe, n̂) = 2

∫ ae

adec

dΨ

da
(r(a), a)da = 2

∫ ae

adec

dDΨ

da
Ψi(r(a))da. (5.14)

Here, r(a) = re + ∆χ(a) n̂.

5.2.1 Fourier kernel for the effective velocity

Relating each contribution to the effective velocity to the primordial potential Ψi allows us to

define a kernel in Fourier space relating Ψi to the effective velocity. The details can be found

in Appendix C, which results in the expression

veff(n̂e, χe) = i

∫
d3k

(2π)3
T (k)Ψ̃i(k) Kv(k, χe) P1(k̂ · n̂e) eiχek·n̂e , (5.15)

where we have incorporated the transfer function T (k) for the potential to account for sub-

horizon evolution on small scales and the kernel Kv(k, χe) receives contributions from the SW,

ISW, and Doppler terms

Kv(k, χe) ≡ [KD(k, χe) +KSW(k, χe) +KISW(k, χe)] , (5.16)

given by

KD(k, χe) ≡ kDv(χdec)j0(k∆χdec)− 2kDv(χdec)j2(k∆χdec)− kDv(χe), (5.17)

KSW(k, χe) ≡ 3

(
2DΨ(χdec)−

3

2

)
j1(k∆χdec), (5.18)

KISW(k, χe) ≡ 6

∫ ae

adec

da
dDΨ

da
j1(k∆χ(a)). (5.19)

The SW and ISW kernels have support predominantly on large scales, while the Doppler

kernel has support on all scales. The last term in the Doppler kernel, kDv(χe), yields the

“conventional” kSZ effect, and represents the dominant contribution to the kSZ effect on scales

that have currently been measured (e.g. using pairwise cluster velocities). Using the fact that

j1(k∆χ(a)) and j2(k∆χ(a)) have support predominantly on scales k ∼ 1/∆χ, we can estimate

the order of magnitude of scales that contribute to these terms. In the range of redshift

between 6 > ze > 0, we have 1.25 < H0∆χdec < 3.18. Using k = 1/∆χdec, this translates into

the range (14.3 Gpc)−1 < k < (5.6 Gpc)−1.

There is one important physical condition that must hold: a pure potential gradient should

not contribute to an observable like the kSZ effect [237]. A pure gradient can be removed in
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linear perturbation theory by performing a special conformal transformation on the spatial

metric. More generally, it is always possible to remove the gradient at a point by the same

special conformal transformation. We include a proof of these statements in Appendix D.

This absence of a gradient contribution to the kSZ effect has important implications for the

behavior of the effective velocity Fourier kernel Kv at small k.

To see this, consider a Newtonian potential that is a pure gradient

Ψi(x) = Ajx
j . (5.20)

Using the properties of the derivative of the Dirac delta function, we can write this in Fourier

space as

Ψi(k) = i(2π)3Aj ∂jδ
3(k). (5.21)

Evaluating eq. (5.15), we obtain

veff(n̂e, χe) = −Aj∂jKv(k = 0, χe), (5.22)

where we have used the fact that Kv(k = 0, χe) = 0, T (k = 0) = 1, and ∂jT (k = 0) = 0. Unless

∂jKv(k = 0, χe) = 0, there will be an observable kSZ effect from a pure gradient, which would

be unphysical. This, together with the fact that each of the three contributions to Kv(k, χe)

are odd functions of k, implies that we must have

Kv(k → 0, χe) = O(k3) + . . . (5.23)

Expanding KSW, KISW, and KD separately, the leading order term in the Taylor series

expansion is linear in k. Therefore, a cancellation between these terms must occur in the limit

k → 0. This is the same type of cancellation demonstrated for the primary CMB dipole due

to a pure gradient in Ref. [237]. We demonstrate this cancellation analytically in a Universe

with matter and a cosmological constant in Appendix E. The cancellation, and the behavior

of the full kernel Kv(k, χe) at z = 1 for small k is shown in figure 5.2.

Looking at the inset of the right panel in figure 5.2, we see that the contributions from

the spherical Bessel functions in the SW, ISW, and Doppler kernels are evident as oscillations

on the linear Doppler contribution. These effects are significant on scales up to of order

k ∼ 10 H0 ∼ 2× 10−3 Mpc−1.
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Figure 5.2: The cancellation at linear order of the three pieces of Kv as k → 0 in ΛCDM. This cancellation can

be shown analytically in a universe without radiation (see Appendix E). The leading order behavior is cubic as

k → 0 as shown in the right panel.

5.2.2 Angular decomposition of the effective velocity

The multipole moments of the effective velocity are given by integrating over n̂e

av`m(χe) =

∫
d2n̂e veff(n̂e, χe) Y

∗
`m(n̂e) (5.24)

= i

∫
d3k

(2π)3
T (k) Ψ̃i(k) Kv(k, χe)

∫
d2n̂e Y

∗
`m(n̂e) P1(k̂ · n̂e) eiχek·n̂e . (5.25)

The second integral can be written as a triple product of spherical harmonics by expanding the

exponential using (C.3) and writing the Legendre polynomials in terms of spherical harmonics

using

P`(x̂ · x̂′) =
4π

2`+ 1

∑̀
m=−`

Y ∗`m(x̂) Y`m(x̂′). (5.26)

The integral over n̂e then becomes∫
d2n̂eY

∗
`m(n̂e)

[
4π

3

1∑
m′′=−1

Y ∗1m′′(k̂)Y1m′′(n̂e)

][
4πi`

′
j`′(kχe)

`′∑
m′=−`′

Y`′m′(k̂)Y ∗`′m′(n̂e)

]

=
(4π)2

3

∑
`′,m′,m′′

i`
′
j`′(kχe)Y

∗
1m′′(k̂)Y`′m′(k̂)

∫
d2n̂eY

∗
`m(n̂e)Y

∗
`′m′(n̂e)Y1m′′(n̂e). (5.27)

The triple product integral can be expressed in terms of the Clebsch-Gordan coefficients

C`1`2`3
m1m2m3

:∫
d2n̂e Y

∗
`m(n̂e) Y

∗
`′m′(n̂e) Y1m′′(n̂e) =

√
(2`+ 1)(2`′ + 1)

12π
C``′1

000 C``′1
mm′m′′ . (5.28)

These first coefficients C``′1
000 are only nonzero for `′ = `± 1. The second coefficients C` `±1 1

mm′m′′

then require that m′ = m′′−m for m′′ = −1, 0, 1. Therefore, the sums over `′ and m′ in (5.27)

will select six non-zero terms in which (`′,m′) take the values (`+ 1, 1−m), (`+ 1,−m), (`+
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1,−1−m), (`− 1, 1−m), (`− 1,−m), (`− 1,−1−m). Further, spherical harmonic identities

and spherical Bessel recursion relations can then be used to simplify these six terms into just

two terms proportional to Y ∗`m(k̂). Equation (5.27) reduces to

4π

2`+ 1
Y ∗`m(k̂)

[
i`−1 ` j`−1(kχe) + i`+1(`+ 1)j`+1(kχe)

]
. (5.29)

Plugging this in for the second integral in equation (5.25) leads to the expression

av`m(χe) =

∫
d3k

(2π)3
∆v
` (k, χe)Ψ̃i(k)Y ∗`m(k̂), (5.30)

where we have defined the transfer function ∆v
` (k, χe) as

∆v
` (k, χe) ≡

4π i`

2`+ 1
Kv(k, χe) [` j`−1(kχe)− (`+ 1)j`+1(kχe)]T (k). (5.31)

The asymptotic behavior of the transfer function as k →∞ and k → 0 is given by:

lim
k→∞

∆v
` (k, χe) =− 4πi`

Dv(χe)

χe
T (k) cos [kχe − `π/2] , (5.32)

lim
k→0

∆v
` (k, χe) =

4π i`

2`+ 1

[
`
√
π(kχe)

`−1

2`Γ[1
2 + `]

]
c3(χe)k

3, (5.33)

where in the small-k limit we have used the fact that T (0) = 1 and written the coefficient of

the leading order (cubic) term in the Taylor series expansion of Kv(k, χe) as c3(χe); in the

large-k limit, T (k) ∝ k−2.

5.3 Simulations

In this section we describe a suite of simulations used to explore the large-scale kSZ effect and

provide a concrete example of the relation between the primordial gravitational potential and

the effective velocity. This will be used to compute the kSZ signal-to-noise in section 5.6.2. We

create three dimensional realizations of the primordial gravitational potential Ψ(x) consistent

with ΛCDM (eq. (1.71)) using the method described in Ref. [238] and reviewed in Appendix F.

The box size used in each case was L = 7H−1
0 ' 31.3 Gpc. One hundred realizations were

created at a resolution of 1283, covering scales down to kmax ' 57.4 H0 (λmin ' 484 Mpc). An

example realization is shown in figure 5.3.

With a set of realizations in hand, we then place a hypothetical observer at the center of

the box and generate veff(n̂e, χe) at 50 equally spaced values of χe at a Healpix resolution [239]

of Nside = 32 (12, 288 equal area pixels of approximately 3.36 square degrees each). This is

done as follows. First, we write the effective velocity as

veff(n̂e, χe) = in̂e ·V(n̂e, χe), (5.34)
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where

V(n̂e, χe) ≡
∫

d3k

(2π)3

[
T (k)Ψ̃i(k) Kv(k, χe)

k

k

]
eiχek·n̂e . (5.35)

The three components of V(n̂e, χe) can be straightforwardly evaluated for each realization, at

each redshift, using a fast Fourier transform (FFT) algorithm. Plugging back into eq. (5.34)

and choosing n̂e · ẑ = cos θ, n̂e · x̂ = sin θ cosφ, and n̂e · ŷ = sin θ sinφ, we interpolate the

resulting veff(n̂e, χe) at each χe onto the Healpix grid. We then take advantage of the Healpix

fast spherical harmonic transform functionality to obtain av`m(χe) at each redshift in each

realization.

In the right panel of figure 5.3, we show veff(n̂e, χe) at a variety of redshifts in a single

realization. In the top row, we choose two nearby redshifts, where it can be seen by eye that

there is a good deal of correlation between the two maps. This is because the same large-scale

potential field is responsible for the effective velocities at nearby redshifts. In the bottom

row, we choose fairly distant redshifts, where the correlation between the two maps is largely

absent. Note also the increasing structure with redshift. This is partially due to the limited

resolution of the simulation in this figure, but more physically, there is a real effect due to the

redshift transfer function. Based on the smallest structures in the resolution probed in our

simulation, 64 radial samples would capture all radial structures. Empirically, for all but the

smallest angular scale structures, the coherence length between redshift slices is sufficiently

long to justify our choice of 50 values of χe.

Figure 5.3: By generating random realizations of Ψ̃i(k), drawn from a Gaussian distribution with power

PΨ(k) (parameters given in eq. (1.71)), we can construct realizations for veff. The left panel shows an example

realization for Ψi(r), and the resulting maps of veff at various redshifts, using a resolution of kmax ∼ 57 H0

(λmin ∼ 484 Mpc). Notice that correlations are evident between the top two veff maps at close redshift, but not

apparent for widely separated redshifts. Also note the increase in structure at higher redshift.
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5.4 kSZ Tomography

There is a large amount of information lost in performing the line-of-sight integral in eq. (5.1)

for the global kSZ signal. One can in principle do far better by cross correlating the kSZ

temperature anisotropies with tracers of the electron density field of known redshift. This is

evident in the first detections of the kSZ effect, which were made by isolating the component

of the temperature anisotropies associated with the pairwise motion of clusters, whose hot

interiors harbor a large density of free electrons. In what follows, we assume the most optimistic

scenario possible, in which we have perfect knowledge of the electron density field obtained

through the measurement of a completely unbiased tracer. We further assume a purely

Gaussian primordial power spectrum, consistent with the current constraints from Planck [8].

To tease out the redshift dependence of the large scale kSZ effect, we introduce a window

function W (χe, χ̄e) that gives the electron density in a set of redshift bins centered on χe = χ̄e

δ(n̂e, χ̄e) =

∫
dχeW (χe, χ̄e)δ(n̂e, χe). (5.36)

In the following, we use a top-hat window function normalized to unity:
∫ χ∞

0 dχW (χ, χ̄) = 1.

We will consider scenarios with 6, 12, and 24 redshift bins of equal width, covering the range

0 < z < 6. The redshift coverage for each bin configuration is shown in Figure 5.4.

Forming the cross correlation between the kSZ contribution to the CMB temperature

anisotropies and the windowed electron density field, we obtain〈∆T

T

∣∣∣∣
kSZ

(n̂e) δ(n̂
′
e, χ̄e)

〉
=σT

∫
dχ′e W (χ′e, χ̄e)

∫
dχe a(χe) n̄e(χe)

×
〈

(1 + δ(n̂e, χe))veff(n̂e, χe)δ(n̂
′
e, χ
′
e)
〉
. (5.37)

Now comes a very important step. The correlation function above is defined as an ensemble

average. Typically, one is interested in using the measured correlation functions to constrain

a statistical model of the ensemble. Here, this is not the case. Instead, we strive to learn

information about our particular realization using the cross correlation, which is information that

in the former scenario would have been an obstruction to learning about the theoretical model

of the ensemble (e.g. cosmic variance). As we wish to learn about large-scale inhomogeneities,

the ensemble average in eq.(5.37) should only be taken over small scales, leaving large scales

as a fixed deterministic field.

To formulate this idea more precisely, we decompose the primordial potential into long

and short wavelength fields, which can be defined in Fourier space as:

ΨLi (x) =

∫
d3k

(2π)3
L(k)Ψi(k)eik·x, ΨSi (x) =

∫
d3k

(2π)3
S(k)Ψi(k)eik·x, (5.38)
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Figure 5.4: Redshift is displayed as a function of comoving distance to illustrate the redshift bin configurations.

The solid grid lines show the boundaries that define the redshift bins for Nbin = 6. The 12 bin configuration is

represented by including the dashed grid lines. It is easy to infer the boundary values for Nbin = 24.

such that L(k) + S(k) = 1. A suitable choice could be L(k) = e−k
2/2k2

∗ , S(k) = 1− e−k2/2k2
∗ ,

although we will implicitly be choosing a step function for L(k) in what follows. Below, we

imagine that scales larger than k∗ & 10−2 Mpc−1 form the deterministic long field while smaller

scales form the stochastic short field. The precise choice of k∗ does not affect our results

because as we show in section 5.5 and 5.6 small scales (k � 10−2 Mpc−1) do not contribute to

the signal and large scales (k � 10−2 Mpc−1) do not contribute to the noise.

Because we are working in the linear regime, a long-short split in Ψi translates into a

long-short split in the effective velocity veff and the electron density field δ, which we therefore

decompose as:

veff(n̂e, χe) = vLeff(n̂e, χe) + vSeff(n̂e, χe), δ(n̂e, χe) = δL(n̂e, χe) + δS(n̂e, χe). (5.39)

Substituting these expansions into the ensemble average in eq. (5.37) and extracting the long

wavelength fields in the sense described above, we obtain:

〈(1 + δ) veff δ
′〉 = 〈(1 + δL + δS) (vLeff + vSeff) (δ′

L
+ δ′

S
)〉

= vLeffδ
′L + vLeffδ

Lδ′
L

+ vLeff〈δ′
S〉+ δ′

L〈vSeff〉+ δLδ′
L〈vSeff〉+ vLeffδ

L〈δ′S〉+ vLeffδ
′L〈δS〉

+ 〈vSeffδ
Sδ′
S〉

+ vLeff〈δSδ′
S〉+ δL〈vSeffδ

′S〉+ δ′
L〈vSeffδ

S〉+ 〈vSeffδ
′S〉, (5.40)

where δ′ represents δ(n̂′e, χ
′
e). From our assumption that the short wavelength components are
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approximately Gaussian, we set the one-point and three-point correlation functions of short

wavelength fields to zero, resulting in the final expression:1

〈(1 + δ) veff δ
′〉 = vLeffδ

′L + vLeffδ
Lδ′
L

+ 〈vSeffδ
′S〉

+ vLeff〈δSδ′
S〉+ δL〈vSeffδ

′S〉+ δ′
L〈vSeffδ

S〉. (5.41)

The terms on the first line give rise to fluctuations on large angular scales, where the primary

CMB dominates. We can therefore eliminate this hopelessly unmeasurable term by filtering

the CMB on large angular scales ` . 3000.2 The term on the second line gives rise to a

statistically isotropic cross power. The terms on the third line give rise to a long wavelength

modulation of small-scale power, and will be the focus of what follows. The first of these

sources of power asymmetry, vLeff〈δSδ′
S〉, is far larger than the other two. If we consider a

single long (kL) and a single short (kS) wavelength mode, then noting that the Doppler term

dominates vSeff and using v ∝ δ/k, we have δL〈vSeffδ
′S〉 ∼ (kL/kS)vLeff〈δSδ′

S〉 � vLeff〈δSδ′
S〉. We

can therefore approximate

〈(1 + δ) veff δ
′〉 ' 〈vSeffδ

′S〉+ vLeff〈δSδ′
S〉, (5.42)

illustrating that there is a statistically isotropic contribution in the first term that depends

only on small scales, and an anisotropic contribution in the second term that depends on

large scales. The desired signal is captured in the anisotropic power asymmetry, whereas the

small scale isotropic component contributes to the noise which is computed next in section 5.5.

Focusing here on the signal, substituting eq. (5.42) into eq. (5.37), and suppressing the S and

L superscripts, we obtain〈∆T

T

∣∣∣∣
kSZ

(n̂e)δ(n̂
′
e, χ̄e)

〉
=σT

∫
dχe a(χe) n̄e(χe) veff(n̂e, χe)

∫
dχ′e W (χ′e, χ̄e)

× 〈δ(n̂e, χe)) δ(n̂′e, χ′e)〉+ isotropic. (5.43)

Assuming the electron distribution traces the dark matter, the electron density correlation

function is given by

〈δ(n̂e, χe)) δ(n̂′e, χ′e)〉 =
∑
`

2`+ 1

4π
Cδδ` (χe, χ

′
e)P`(n̂e · n̂′e), (5.44)

with Cδδ` (χe, χ
′
e) =

∫
dk k2

(2π)3
4π j`(kχe)

√
Pδ(k, χe) 4π j`(kχ

′
e)
√
Pδ(k, χ′e), (5.45)

where Pδ(k, χe) is the non-linear matter power spectrum [240], defined in equation (1.75), and

computed using the Cosmicpy package.

1In any case, significant non-Gaussianity on small scales will not directly mimic the signal we are ultimately

after, which is a long wavelength modulation of short wavelength power.
2The kSZ effect dominates the CMB temperature anisotropies on scales ` & 3000, as shown in figure 5.6.
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We now arrive at the main conclusion of this section. By isolating the statistically

anisotropic term in eq. (5.43), it is possible to measure veff. Because veff is related to the

primordial potential Ψi in linear theory by eq. (5.15), this potentially opens a new observational

window on large scale inhomogeneities in our Universe. Given a specific model for Ψi, it is

possible to design an optimal filter to extract the power asymmetry described above [101,

103, 113]. However, in the present context of random Gaussian fields, we quantify the power

asymmetry by decomposing into power multipoles [241] that capture the anisotropic term in

(5.42),

bLM (χ̄e) =

∫
d2n̂e Y

∗
LM (n̂e)

〈∆T

T

∣∣∣∣
kSZ

(n̂e) δ(n̂e, χ̄e)
〉
. (5.46)

Let us note that (5.46) is a complete characterization of the signal, as there is no extra

information contained in the correlation with n̂e 6= n̂′e. This is clear from (5.43) in the limit of

gaussian fields. The next step is to expand the long-wavelength effective velocity into multipoles

(see section 5.2.2) using veff(n̂e, χe) =
∑

`,m a
v
`m(χe)Y`m(n̂e) where av`m is given by (5.30). This

makes the angular integral in (5.46) easy to compute as
∫
d2n̂eY

∗
LM (n̂e)Y`m(n̂e) = δ`LδmM ,

resulting in the expression,

bLM (χ̄e) =

`max∑
`=`min

2`+ 1

4π

∫
dk

2k2

π

∫
dχe σT a(χe) n̄e(χe) a

v
LM (χe)

√
Pδ(k, χe) j`(kχe)

×
∫
dχ′e W (χ′e, χ̄e)

√
Pδ(k, χ′e) j`(kχ

′
e). (5.47)

We therefore see that the power multipoles in each bin are proportional to a weighted integral

of the corresponding multipole of the projected effective velocity field. The lower and upper

bounds on the summation, (`min, `max), reflect the filtering and resolution scales that might

be achievable. By default, we will use (`min = 3000, `max =∞) unless otherwise stated. The

effects of varying these bounds will be discussed in section 5.8.

5.5 Cosmic Variance Limited Noise

In this section we estimate the cosmic variance limited noise that we expect for the power

multipoles computed in the previous section. However, above, our focus was the statistically

anisotropic contribution to the cross correlation, but here we are interested in the statistically

isotropic contribution to temperature anisotropies, which depends predominantly on small

scales.

On small angular scales, the late-time kSZ effect is the dominant source of temperature

anisotropies in the CMB (see the right panel of figure 5.6 below). Under the assumption of

approximate Gaussianity, and assuming a perfectly unbiased measurement of the electron
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density field, the primary source of noise is therefore an “accidental” power asymmetry in the

cross correlation. We can estimate this through the variance in the power multipoles, which is

computed as the coincident limit of the four point function between two powers of ∆T
T and

two powers of δ. Specifically, we must compute:

〈b̃∗LM (χ̄e)b̃LM (χ̄e)〉 =

∫
d2n̂ed

2n̂′e Y
∗
LM (n̂e) YLM (n̂′e)

×
〈∆T

T
(n̂e) δ(n̂e, χ̄e)

∆T

T
(n̂′e) δ(n̂

′
e, χ̄e)

〉
, (5.48)

where we are using tildes on the bLM ’s to indicate that these are not simply the same power

multipoles as in (5.47). Instead, the variance here captures the chance power asymmetry that

is present in the statistically isotropic contribution to ∆T
T , which is sensitive only to small

scales where the “conventional” kSZ effect dominates. Since the primary CMB also causes

statistical fluctuations in the anisotropic kSZ measurement, we consider both kSZ and primary

CMB contributions to ∆T
T :

∆T

T
=

∆T

T

∣∣∣∣
kSZ

+
∆T

T

∣∣∣∣
p

(5.49)

The 4-point function has contributions from all possible 2-point functions and an irre-

ducible/connected piece (which we assume to be negligibly small). Noting that the cross

correlation of the primary CMB and the density field is zero, we obtain,〈∆T

T
(n̂e) δ(n̂e, χ̄e)

∆T

T
(n̂′e) δ(n̂

′
e, χ̄e)

〉
=
〈∆T

T
(n̂e)

∆T

T
(n̂′e)

〉〈
δ(n̂e, χ̄e) δ(n̂

′
e, χ̄e)

〉
+
〈∆T

T

∣∣∣∣
kSZ

(n̂e) δ(n̂
′
e, χ̄e)

〉〈∆T

T

∣∣∣∣
kSZ

(n̂′e) δ(n̂e, χ̄e)
〉
. (5.50)

Assuming the electron density field traces dark matter, the electron density autocorrelation

function is given by〈
δ(n̂e, χ̄e) δ(n̂

′
e, χ̄e)

〉
=
∑
`

2`+ 1

4π
Cδδ` P`(n̂e · n̂′e), (5.51)

with Cδδ` =

∫
dχe W (χe, χ̄e)

∫
dχ′e W (χ′e, χ̄e) C

δδ
` (χe, χ

′
e)

=

∫
dk

2k2

π

∫
dχe
√
Pδ(k, χe)W (χe, χ̄e)j`(kχe)

×
∫
dχ′e
√
Pδ(k, χ′e)W (χ′e, χ̄e)j`(kχ

′
e)

'
∫

dk

`+ 1/2
W 2

(
`+ 1/2

k
, χ̄e

)
Pδ

(
k,
`+ 1/2

k

)
, (5.52)

where we used the expression for Cδδ` (χe, χ
′
e) from (5.45), and the Limber approximation [242]

in the last line. The quantity Cδδ` is shown in figure 5.5.
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Figure 5.5: The non-linear angular matter power spectrum computed in six different redshift bins described by

the solid lines in figure 5.4 from today (top) to z = 6 (bottom).

The temperature autocorrelation function has contributions from the primary CMB and

the conventional kSZ effect. The latter dominates past ` ∼ 3000 and has the following form:〈∆T

T

∣∣∣∣
kSZ

(n̂e)
∆T

T

∣∣∣∣
kSZ

(n̂′e)
〉

=

∫
dχeσTa(χe)n̄e(χe)

∫
dχ′eσTa(χ′e)n̄e(χ

′
e)

× 〈q(χe, n̂e)q(χ′e, n̂′e)〉 (5.53)

=
∑
`

2`+ 1

4π
CTT,kSZ
` P`(n̂e · n̂′e), (5.54)

where q ≡ q · n̂e ≡ veff(1 + δ) is the momentum field of free electrons. To obtain an

expression for the temperature power spectrum, CTT,kSZ
` , the key quantity to compute is

〈q(χe, n̂e)q(χ′e, n̂′e)〉, which is the fourth moment of two δ’s and two v’s. Schematically,

〈qq〉 = 〈vv〉〈δδ〉+ 2〈vδ〉2 + 〈vδvδ〉c, where the subscript c denotes the irreducible connected

term. The momentum power spectrum, denoted by Pq, is typically computed by decomposing

the Fourier transform, q̃(k), into components parallel to k̂, q̃‖ = k̂(q̃ · k̂), and perpendicular

to k̂, q̃⊥ = q̃− k̂(q̃ · k̂) [243]. The longitudinal momentum component does not contribute

significantly to CTT,kSZ
` due to cancellations of positive and negative contributions in the line-of-

sight integration. For instance, as shown by Park et al. [244], the longitudinal contribution to

CTT,kSZ
` is more than four orders of magnitude below the transverse contribution for ` > 3000,

so it suffices to only consider Pq⊥ in this calculation.

To compute Pq⊥ , we use the “standard kSZ model” [244, 245], which incorporates the fully

non-linear power spectrum for the density field, P nl
δ , but approximates the velocity power

spectrum by linear theory Pv = ȧ2f2

k2 P lin
δ where f =

(
1 + a

DΨ

dDΨ
da

)2
. The resulting expression
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is

Pq⊥(k, χ) =ȧ2f2

∫ 1

−1
dµ

∫
dk′

(2π)2
P lin
δ (k′, χ) P nl

δ (
√
k2 − 2kk′µ+ k′2, χ)

× (k2 − 2kk′µ)(1− µ2)

k2 − 2kk′µ+ k′2
. (5.55)

This model neglects the velocity-density cross correlation because the geometrical factor

attached to this term decreases rapidly at large k. Since the kSZ contribution to CTT` that we

are interested in is sensitive only to high k scales, this approximation is valid. Note that this also

implies our precise choice of k∗ in section 5.4 is irrelevant for the noise calculation. We are also

neglecting the non-Gaussian contribution from the connected 4-point function (unimportant on

all scales according to [243], but could account for up to 10% of the power spectrum according

to [244]). In terms of Pq⊥ the temperature power spectrum can be expressed as

CTT,kSZ
` =

∫
dk

2k2

π

∫
dχeσTa(χe)n̄e(χe)

√
Pq⊥(k, χe)j`(kχe)

×
∫
dχ′eσTa(χ′e)n̄e(χ

′
e)
√
Pq⊥(k, χ′e)j`(kχ

′
e)

'
∫

dk

`+ 1/2
[σTa(χ)n̄e(χ)]2 Pq⊥(k, χ)

∣∣∣
χ→(`+1/2)/k

, (5.56)

using the Limber approximation [242] again. The functions Pq⊥(k, χ) and CTT,kSZ
` are shown

in figure 5.6. The total temperature power spectrum is a sum of the primary and kSZ

contributions, denoted from now on by

CTT` = CTT,p` + CTT,kSZ
` . (5.57)
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Figure 5.6: Left: the power spectrum of the transverse momentum field (5.55). Right: the contributions to the

temperature-temperature power spectrum from the primary CMB and the non-linear kSZ effect (5.56).

The second term in eq. (5.50) requires us to compute the cross correlation of the temperature
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with density. This can be done as follows〈∆T

T

∣∣∣∣
kSZ

(n̂e)δ(n̂
′
e, χ̄e)

〉
=−

∫
dχeσTa(χe)n̄e(χe)〈veff(n̂e, χe)(1 + δ(n̂e, χe))δ(n̂

′
e, χ̄e)〉

=−
∫
dχeσTa(χe)n̄e(χe)

∫
dχ′eW (χ′e, χ̄e) 〈veff(n̂e, χe)δ(n̂

′
e, χ
′
e)〉

=
∑
`

2`+ 1

4π
CTδ` P`(n̂e · n̂′e). (5.58)

Assuming approximate Gaussianity, we neglect the three point function 〈vδδ〉, so only the

correlation between veff and δ remains. Recall that we are computing the contribution from

the small scales, whereas the signal calculation above (see eqs. (5.42),(5.43)) is only sensitive

to large scales. The power spectrum CTδ` takes the form

CTδ` =−
∫
dk k2

(2π)3

∫
dχeσTa(χe)n̄e(χe)∆

v
` (k, χe)

√
PΨ(k)

×
∫
dχ′e4π

√
Pδ(k, χ′e)W (χ′e, χ̄e)j`(kχ

′
e)

=−
∫
dk k2

(2π)3

∫
dχeσTa(χe)n̄e(χe)4πKv(k, χe)

T (k)

k

dj`(kχe)

dχe

√
PΨ(k)

×
∫
dχ′e4π

√
Pδ(k, χ′e)W (χ′e, χ̄e)j`(kχ

′
e), (5.59)

where we’ve recalled the expression for ∆v
` (k, χe) from eq. (5.31), and used the identity,

` j`−1(kχ)− (`+ 1)j`+1(kχ)

2`+ 1
=

1

k

dj`(kχ)

dχ
. (5.60)

Integrating by parts and using the Limber approximation [242] results in the expression

CTδ` =

∫
dk

2k2

π

∫
dχeσT

d

dχe
[a(χe)n̄e(χe)Kv(k, χe)]

T (k)

k

√
PΨ(k)j`(kχe)

×
∫
dχ′e
√
Pδ(k, χ′e)W (χ′e, χ̄e)j`(kχ

′
e) (5.61)

'
∫

dk

`+ 1/2
σT

d

dχ
[a(χ)n̄e(χ)Kv(k, χ)]

T (k)

k

√
PΨ(k)Pδ(k, χ) W (χ, χ̄e)

∣∣∣
χ→(`+1/2)/k

.

Combining all of these pieces, expanding P`(n̂e · n̂′e) in terms of spherical harmonics using

the identity (5.26), the variance in the power multipoles can then be written

〈b̃2L〉 =
∑
M

〈b̃∗LM b̃LM 〉
2L+ 1

=
∑

`,`′,m,m′,M

CTT` Cδδ`′ + CTδ` CTδ`′

2L+ 1

∣∣∣ ∫ d2n̂eYLM (n̂e)Y
∗
`m(n̂e)Y

∗
`′m′(n̂e)

∣∣∣2
=
∑
`,`′

[CTT` Cδδ`′ + CTδ` CTδ`′ ]
(2`+ 1)(2`′ + 1)

4π(2L+ 1)2

∣∣∣C``′L
000

∣∣∣2 ∑
m,m′,M

∣∣∣C``′L
mm′M

∣∣∣2
=
∑
`,`′

[CTT` Cδδ`′ + CTδ` CTδ`′ ]
(2`+ 1)(2`′ + 1)

4π(2L+ 1)

∣∣∣C``′L
000

∣∣∣2, (5.62)
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where C``′L
mm′M are the Clebsch-Gordan coefficients, and we used the triple product integral

identity (see eq. (5.28)) and
∑

m,m′,M

∣∣∣C``′L
mm′M

∣∣∣2 = 2L + 1. Note that the coefficients C``′L
000

are only nonzero for |` − `′| ≤ L ≤ ` + `′ and ` + `′ + L even. Figure 5.7 shows (CTδ` )2

plotted in three different redshift bins, and compares this to CTT` Cδδ` . It is clear that the cross

term is subdominant by several orders of magnitude for all `, and therefore it is sufficient to

approximate CTT` Cδδ`′ + CTδ` CTδ`′ ∼ CTT` Cδδ`′ .
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Figure 5.7: The solid curves are CTT` Cδδ` and the dashed curves are CTδ` CTδ` , which represent the two terms in

square brackets in eq. (5.62) evaluated at the same `. The redshift ranges indicate sample redshift bins (see

figure 5.4).

The final result for the cosmic variance limited noise estimate is

√
〈b̃L(χ̄e)2〉 =

√√√√ `max∑
`,`′=`min

[CTT` Cδδ`′ (χ̄e)]
(2`+ 1)(2`′ + 1)

4π(2L+ 1)

∣∣∣C``′L
000

∣∣∣2. (5.63)

where we have restored an explicit dependence on the redshift bin χ̄e. Notice that the result is

given by a sum over `, `′, and recall that the noise captures the accidental power asymmetry

which is sensitive only to high `. In the spirit of our cosmic variance limited estimate, we can

imagine that we have sufficiently filtered out the primary CMB and cleaned the foregrounds.

We capture this in the calculation by starting the sum in (5.63) at `min = 3000. As previously

mentioned, we will employ the default values (`min = 3000, `max = ∞) unless otherwise

stated. Results for varying `min and `max will be presented in section 5.8, allowing us to make

statements about the detectability with next generation CMB experiments and galaxy surveys.

5.6 Cosmic Variance Limited Signal to Noise

In this section, we assess the signal to noise for the power multipoles eq. (5.47) in the cosmic

variance limit using both a theoretical estimate and the simulations described in section 5.3.
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In each case, the signal to noise in each bin χ̄e is calculated as

S

N
(χ̄e) =

bLM (χ̄e)√
〈b̃L(χ̄e)2〉

(5.64)

where bLM (χ̄e) is found using eq. (5.47) and
√
〈b̃L(χ̄e)2〉 is given by eq. (5.63).

5.6.1 RMS Estimate

A simple estimate of the signal is obtained by approximating avLM (χe) ∼
√
CvL(χe) in eq. (5.47),

where CvL(χe) is the power spectrum associated with the large-scale velocity, given by

CvL(χe) =

∫ kmax

0

k2dk

(2π)3
PΨ(k)|∆v

L(k, χe)|2 (5.65)

with ∆v
L(k, χe) given by eq. (5.31). This necessarily yields an overestimate of the signal, since

in reality avL0(χe) will vary over the window functions leading to partial cancellation, while

here we are assuming that it always takes its (positive definite) RMS value. By comparing

with simulations in the following subsection, we show that this approximation gives a good

estimate in the limit of thin window functions W (χe, χ̄e) (in the context of this work, this is

equivalent to the limit of many redshift bins).

Before proceeding, we can assess which scales form the dominant contribution to eq. (5.65).

The upper limit of integration in eq. (5.65), kmax, corresponds to the smallest scale, λmin =

2π/kmax, that contributes to the signal. Formally, kmax →∞, but we can adjust the cutoff to

include only the long modes discussed above. In figure 5.8 we show CvL at z = 1 as a function

of kmax. Vertical lines indicate λmin = 10, 102, 103 Mpc. Here, we see that for a number of

power multipoles, the relevant signal is obtained almost entirely from scales ∼ 102 − 103 Mpc.

Putting everything together, applying the Limber approximation [242], and choosing M = 0

under the assumption that all other M will statistically be the same, the final expression for

the signal becomes

bL0(χ̄e) '
`max∑
`=`min

2`+ 1

4π

∫
dχ

χ2
σT a(χ) n̄e(χ)

√
CvL(χ) W (χ, χ̄e) Pδ

(
`+ 1/2

χ
, χ

)
. (5.66)

We compute the signal eq. (5.66) and noise eq. (5.63) for the Nbin = 6, 12, and 24 top-hat

bin configurations with redshift ranges summarized in figure 5.4. We show the results for

the 6-bin configuration in figure 5.9. Each plot has four curves. The solid red curve is the

RMS signal with kmax →∞, the dotted orange line is the cosmic variance limited noise, the

short dashed blue line is the RMS signal computed for kmax = 278 H0 (λmin = 100 Mpc), and

the long dashed green curve is the signal computed for kmax = 2780 H0 (λmin = 10 Mpc).
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Figure 5.8: The effective velocity contribution to the signal described in eq. (5.65) versus kmax in units of H0,

which refers to the upper bound on the integral. Notice that the contribution mainly comes from large scales

(small k) for low L. The vertical lines indicate scales equal to 1 Gpc, 100 Mpc, and 10 Mpc from left to right.

Comparing the three signal curves we see that except in the lowest redshift bin at high L,

the signal is composed primarily of long wavelength modes (λ > 100 Mpc), as expected. The

amplitude of the signal varies by roughly an order of magnitude between the lowest and

highest redshift bin, and is strongest at low L and low redshift. Both the signal and noise are

relatively flat over the plotted range in L. Most importantly though, the signal is 2-3 orders of

magnitude larger than the noise!

To compare the result for the 12 and 24 bin configurations, in figure 5.10 we show the

signal to noise eq. (5.64) at L = 1 and L = 50 as a function of comoving distance. Increasing

the number of bins by a factor of 2 results in a decrease in the signal-to-noise by a factor of

∼
√

2. This is true for all L. We therefore conclude that a signal can in principle be measured

in the cosmic variance limit at high signal to noise for a large number of redshift bins Nbins at

a variety of scales L.

5.6.2 Comparing with the signal from simulations

The above calculation is an over-estimate of the signal, as it assumes the velocity field is

positive definite and given by its RMS value. In particular, it does not account for partial

cancellations along the line of sight. To take this into account, we can compute the signal

from eq. (5.47) using the effective velocity field computed from the simulations described in

section 5.3. Using an interpolating function for av`m(χe) constructed from the veff map in each

of the 50 redshift bins, we compute eq. (5.47) directly for 100 realizations at a resolution of

kmax ∼ 57.4 H0 for the 6 and 12 bin configurations. Below we only present results for bL0;

other values of M have identical statistical properties.
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Figure 5.9: The signal (5.66) is shown in six redshift bins, calculated for three different scales: kmax = 278 H0

(λmin = 100 Mpc) [orange, short dash], kmax = 2780 H0 (λmin = 10 Mpc) [blue, long dash], and kmax = ∞

(λmin = 0) [red, solid]. The solid black line is the noise estimate
√
〈b̃2L〉 (eq. (5.63)), which falls well below the

estimated signal for this configuration. The summation bounds employed for the signal and noise calculations

are (`min = 3000, `max =∞).
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Figure 5.10: The bullet points (square, circle, triangle) represent the signal-to-noise (eq. (5.64)) in each bin

for Nbin = (6, 12, 24), plotted against χ at the midpoint of the bin. The solid top curves are for L = 1 and

the bottom dashed curves are for L = 50. The signal and noise were computed using eq. (5.66) and (5.63),

employing summation bounds (`min = 3000, `max =∞), and with kmax →∞ in eq. (5.65).

Figures 5.11 and 5.12 show the signal to noise computed using simulations, in comparison

to the one estimated from theory with eq. (5.65) computed using the integration limit kmax ∼

57.4 H0 corresponding to the simulation resolution. We plot L < 10, which is accurately

captured for the resolution we consider (see figure 5.8). Notice that the solid curves, showing

the predicted signal based on our theory calculation, are always higher than the average

signal from the realizations. This is due to a difference in the order of operations. In our

estimation in (5.66) we have averaged over aL0(χe) prior to integrating over χe, whereas the

signal computed from the realizations integrates over χe first and then averages. Since aL0(χe)

is an oscillating function that takes positive and negative values, there can be cancellation

upon integration over χe. This cancellation can be minimized by using smaller redshift bins,

which results in a smaller range of integration and a lesser chance for cancellation. This can

be noticed empirically as the agreement between realizations and theory is better for the 12

bin configuration than the 6 bin. In summary, the realizations approach the theory estimation

for more bins as a result of having less variation in aLM over the bin.

5.7 Mode counting

With an understanding of this signal in hand, we now want to estimate how many modes one

could conceivably measure in the cosmic variance limit. Let’s consider scales λ > 100 Mpc, of

order the BAO scale. This corresponds to kmax = 278 H0 and Lmax ∼ π/θ ∼ πχdec/λmin =

kmaxχdec/2 ∼ 437. On this scale and larger, the primary CMB contains
∑437

L (2L+ 1) = 191843
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Figure 5.11: The signal-to-noise (eq. (5.64)) computed using simulations, in comparison to the RMS estimate

(solid curves), in 6 redshift bins (see figure 5.4). The points represent the standard deviation of the 100

realizations, and the error bars denote the standard error of the standard deviation. These simulations have

a resolution of λmin ∼ 484 Mpc and utilized the default summation bounds (`min = 3000, `max =∞) for the

signal and noise calculations.

137



�/� ���� ����������� ���� �� ���� ��� ���������� λ��� ~ ��� ���

■

■

■
■

■ ■ ■ ■ ■ ■ ■

■

■

■
■

■ ■ ■ ■ ■ ■ ■

� � � � � ��
�

���

���

���

���

�

�
/�

�� ≤ � ≤ ����

■

■

■ ■
■

■ ■ ■ ■ ■ ■

■

■

■ ■
■

■ ■ ■ ■ ■ ■

� � � � � ��
�

���

���

���

���

�

�
/�

���� ≤ � ≤ ����

■

■

■

■ ■
■ ■

■ ■ ■ ■

■

■

■

■ ■
■ ■

■ ■ ■ ■

� � � � � ��
�

���

���

���

���

�

�
/�

���� ≤ � ≤ ����

■

■
■

■
■ ■ ■ ■ ■ ■ ■

■

■
■

■
■ ■ ■ ■ ■ ■ ■

� � � � � ��
�

���

���

���

���

�

�
/�

���� ≤ � ≤ ����

■ ■

■
■

■ ■ ■ ■ ■
■ ■

■ ■

■
■

■ ■ ■ ■ ■
■ ■

� � � � � ��
�

���

���

���

���

�

�
/�

���� ≤ � ≤ ����

■

■

■ ■
■ ■

■ ■
■ ■ ■

■

■

■ ■
■ ■

■ ■
■ ■ ■

� � � � � ��
�

���

���

���

���

�

�
/�

���� ≤ � ≤ ����

■

■ ■ ■ ■ ■
■ ■

■ ■ ■

■

■ ■ ■ ■ ■
■ ■

■ ■ ■

� � � � � ��
�

���

���

���

���

�

�
/�

���� ≤ � ≤ ����

■ ■
■

■
■

■ ■
■ ■

■ ■

■ ■
■

■
■

■ ■
■ ■

■ ■

� � � � � ��
�

���

���

���

���

�

�
/�

���� ≤ � ≤ ����

■
■ ■

■ ■
■

■ ■
■

■ ■

■
■ ■

■ ■
■

■ ■
■

■ ■

� � � � � ��
�

���

���

���

���

�

�
/�

���� ≤ � ≤ ����

■
■ ■

■ ■ ■ ■
■

■ ■ ■

■
■ ■

■ ■ ■ ■
■

■ ■ ■

� � � � � ��
�

���

���

���

���

�

�
/�

���� ≤ � ≤ ����

■ ■ ■ ■
■ ■

■
■ ■

■ ■

■ ■ ■ ■
■ ■

■
■ ■

■ ■

� � � � � ��
�

���

���

���

���

�

�
/�

���� ≤ � ≤ ����

■
■ ■ ■ ■ ■ ■

■ ■ ■ ■

■
■ ■ ■ ■ ■ ■

■ ■ ■ ■

� � � � � ��
�

���

���

���

���

�

�
/�

���� ≤ � ≤ ��

■ ������� ���� ��� ������������ ��� ��������

Figure 5.12: [The same as Figure 5.11 but for 12 redshift bins]. The signal-to-noise (eq. (5.64)) computed using

simulations, in comparison to the RMS estimate (solid curves), in 12 redshift bins (see figure 5.4). The points

represent the standard deviation of the 100 realizations, and the error bars denote the standard error of the

standard deviation. These simulations have a resolution of λmin ∼ 484 Mpc and utilized the default summation

bounds (`min = 3000, `max =∞) for the signal and noise calculations.
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Nbin Lmax
∑
bin

Lmax∑
L

(2L+ 1)

6 6, 32, 55, 78, 100, 123 36086

12 4, 16, 28, 39, 51, 62, 73, 85, 96, 107, 118, 131 74946

24 3, 8, 14, 20, 25, 31, 37, 42, 48, 54, 59, 65, 71, 76,

82, 88, 93, 99, 105, 110, 116, 121, 130, 132

150853

Table 5.1: Number of modes

modes.

For the kSZ effect considered here, the sum over 2L+ 1 is performed in each bin, therefore

one might naively guess that it is possible to get Nbin times more modes than the primary

CMB. However, a more careful estimate needs to be done because the value of Lmax varies in

each bin depending on the size of the signal. Consider the signal-to-noise, described by the

ratio of (5.66) and (5.63), for the scales considered here (see eq. (5.65) and use kmax = 278 H0).

For Nbin bins, in each bin, the value of Lmax up to which modes can be measured is found by

ensuring that

1. For L < Lmax, the signal-to-noise is bigger than 1.

2. For L < Lmax, the signal is dominated by modes larger than 100 Mpc. More precisely,

bkmax
L0 > 0.95b∞L0 for kmax = 278 H0.3

Table 5.1 shows the values of Lmax computed in each bin for the 6, 12 and 24 bin configurations.

In every case, it was a failure of criterion (2.) that determined Lmax, as the signal-to-noise

is always much bigger than 1 for this range in L. Notice that by doubling the bin size, we

approximately double the number of modes. This allows us to extrapolate our results from

the three bin configurations.

Figure 5.13 shows how the number of modes increases with Nbin based on our estimates

using 6, 12 and 24 bins. Extrapolating the data points to higher values of Nbin shows that

at least 30 bins are needed to match the number of modes in the primary CMB. The same

increasing trend should continue until Nbin ∼ 50 (producing 309656 modes), at which point

we estimate that the signal-to-noise will drop below 1 in the high redshift bins, thus failing to

satisfy criterion (1.), and causing a less rapid increase in the number of modes as a function

of Nbin. Therefore, this method can theoretically achieve more modes than the primary

CMB. However, note that within the observable Universe, on scales λ > 100 Mpc, there are

approximately (χdeckmax/(2π))3 ∼ 2.7× 106 total modes. Thus, while remaining competitive

3The 95% threshold is arbitrary.

139



with the primary CMB, the proposed method still falls about an order of magnitude short of the

total number of possible modes. In addition, because they provide at least partially independent

constraints, combining the information from the primary CMB and the information from kSZ

tomography can in principle constrain a larger number of modes than either individually.
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Figure 5.13: The bullet points show the number of modes that can possibly be measured using Nbin = 6, 12,

and 24. Extrapolating these data points (dashed line) indicates that we need at least 30 bins to match the

number of modes in the primary CMB at ` ≤ 437 (solid line). These calculations were performed with the

default summation bounds (`min = 3000, `max =∞).

5.8 Detectability

How close can we get to the cosmic variance limited result with the next generation of CMB

experiments and galaxy surveys? Although a complete treatment is beyond the scope of this

work, we can give a rough estimate here. The two parameters affecting detectability in the

analysis above are the filtering scale `min and resolution `max. The filtering scale is a parameter

which can be optimized in any hypothetical analysis. By varying `max, we can define a rough

target for the instrumental noise, resolution, and foreground residuals necessary for a detection

to be made.

Previously, we had made the fiducial choice `min = 3000, which is roughly the angular

scale on which the kSZ power surpasses that in the primary CMB. Here, we will explore the

filtering scales `min = 2, 1000, 3000. In addition, we chose `max → ∞, corresponding to

the cosmic variance limit. Here, we consider a low-resolution scenario with `max = 3000 and

high-resolution scenario with `max = 5000.

Starting with the high resolution scenario, in figure 5.14, we show the signal and noise for

six redshift bins, choosing `min = 2, 1000, 3000 and `max = 5000. The choice `min = 2, where
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the noise includes the primary CMB, is clearly not optimal as the signal to noise is at most

close to one. Raising the filtering scale to `min = 1000, the signal drops slightly (an effect that

is more pronounced at low redshift), but the noise drops by an order of magnitude, raising

the signal to noise accordingly. Raising the filtering scale further to `min = 3000 again further

increases the signal to noise. Clearly, removing as much of the primary CMB as possible

through filtering is the choice that will optimize signal to noise. Comparing the dotted curves

(`min = 3000) with figure 5.9, reducing `max =∞ to `max = 5000 degrades the signal to noise

by about a factor of 10− 100, with the degredation more pronounced in the large-redshift bins.

Nevertheless, the signal to noise is still S/N ∼ 10− 100 over a significant range in L.
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Figure 5.14: The signal (5.66) (coloured lines) and noise (5.63) (black lines) are shown in six redshift bins,

computed with kmax =∞ and `max = 5000. We consider different filter scales: `min = 2 (solid), `min = 1000

(long dash), `min = 3000 (short dash).
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Figure 5.15: The signal (5.66) (dashed) and noise (5.63) (solid) are shown in six redshift bins, computed with

kmax =∞, `min = 1000, and `max = 3000.
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Moving on to the low resolution scenario, in figure 5.15 we show the signal and noise

for six redshift bins, choosing `min = 1000 and `max = 3000. Here, it can be seen that the

signal-to-noise is significant only for the low redshift bins, and reaches at most S/N ∼ 10.

With these results, we can map the low and high resolution scenarios to a rough set of

experimental requirements. In particular, we consider CMB instrumental noise, foreground

residuals, finite resolution, and galaxy shot noise. The treatment of a number of important

systematics is beyond our scope. We assume that the instrumental noise contribution to the

CMB temperature is gaussian and uniform on the sky,3 gaussian beams, and that foreground

residuals in the cleaned data product used for the analysis can be modelled as a uniform

gaussian random field. Under these assumptions, the measured CMB temperature power

spectrum is modelled as:

CTT` =
(
CTT,kSZ
` + CTT,p` +NCMB

` + FCMB
`

)
exp

[
`(`+ 1)θ2

FWHM

8 ln 2

]
, (5.67)

where θFWHM is the full-width at half-maximum of the Gaussian beam in radians. The noise

and foreground contributions are

NCMB
` = (σN θFWHM)2, (5.68)

where σN is the noise per variance in each beam-sized patch, and

FCMB
` = (σF θFWHM)2, (5.69)

where σF is the variance in foreground residuals in each beam-sized patch.

Assuming that galaxy number density is an unbiased tracer of free electrons,4 and assuming

that redshift bins are far larger than redshift errors, the measurement of the density angular

power spectrum is limited by shot noise, yielding:

Cδδ`′ (χ̄e) = Cgg
` (χ̄e) +Ngg

` (χ̄e), (5.70)

with

Ngg
` (χ̄e) =

1

Ng(χ̄e)
, (5.71)

where Ng is the number of galaxies per square radian in a redshift bin centred on χ̄e.

We collect the experimental requirements in table 5.2 for the case of 6 redshift bins.

We set the resolution by requiring that the effect of the beam is not dominant, yielding

θFWHM = (8 ln 2/`max(`max + 1))1/2. The requirements on the CMB instrumental noise and

foregrounds are then set by the condition that one measures the CMB power spectrum at

3This is clearly incorrect, and spatially varying noise will be an important systematic to assess in the future.
4We reserve a more complete treatment for future work.
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`max θFWHM (arcmin) σN , σF (µK θ−1
FWHM) Ng(χ̄e) (arcmin−2)

3000 2.7 3.7 14, 26, 82, 255, 697, 1661

5000 1.6 3.0 45, 62, 155, 500, 1700, 5000

Table 5.2: The experimental characteristics required to access the low-resolution (`max = 3000) and high

resolution (`max = 5000) scenarios.

a signal to noise of one at `max, e.g. NCMB
`max

, FCMB
`max

= CTT,kSZ
`max

+ CTT,p`max
. Finally, we solve for

Ng(χ̄e) from the condition that one measures the galaxy-galaxy power spectrum with signal

to noise of one, e.g. Cgg
`max

(χ̄e) = Ngg
`max

(χ̄e).

Our choices for resolution correspond roughly to the range of resolutions considered for

Stage 4 CMB experiments [246] of θFWHM ' 1− 3 arcmin. The requirement on instrumental

noise for the two resolution scenarios we consider falls within the target of σNθFWHM ∼

1µK arcmin−1 [246]. It is expected that foreground residuals will not dominate the signal until

` & 3000 [246], making it unlikely that the high resolution scenario could be achieved without

better frequency coverage, as could be attained from space. The forecasted galaxy number

density is Ng ∼ 30 for Euclid [247], and about Ng ∼ 130 for LSST [233]. This will be sufficient

to recover information from the first 2-3 redshift bins (which covers most of the reach of such

surveys) in either resolution scenario; a more optimal binning strategy can be constructed for

a specific survey. It is unlikely that the higher redshift bins could be accessed with a galaxy

survey. For comparison, the galaxy density in the Hubble Deep Field [248] is Ng ∼ 500, and

Ng ∼ 1700 in the Hubble Ultra Deep Field [249] (which is close to the cosmic variance limit).

Since these surveys are fairly complete to high redshift, it is likely that bins 5 and 6 in the

high resolution case require more galaxies than there are in the observable Universe. It may be

possible to access the high resolution example with new techniques such as intensity mapping.

In conclusion, it seems that a first detection could in principle be made with the next

generation of CMB experiments and galaxy surveys. Based on the rough analysis above, future

progress can be made with increases in resolution of CMB experiments, better foreground

subtraction using multifrequency information, and new techniques for measuring the angular

matter spectrum to high resolution, such as high resolution intensity mapping. A more detailed

forecast will be presented in future work.
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5.9 Discussion and Conclusions

In this chapter, we have assessed the ability of kSZ tomography to yield information about

the long-wavelength Universe in the cosmic variance limit. The signal of interest is a power

asymmetry in the direct cross correlation of the kSZ contribution to the CMB temperature

and the electron density binned at various redshifts. We quantify this signal in terms of power

multipoles, and compared it with the amplitude of “accidental” power asymmetry due to the

statistically homogeneous component of the kSZ contribution to the CMB temperature (the

primary source of cosmic variance in this context). The results are promising in this highly

optimistic scenario, yielding a signal to noise greater than unity over a large range of power

multiples in a large number of redshift bins. A first forecast indicates that next-generation

CMB experiments and galaxy surveys should be able to make a detection at low redshift and

large angular scale.

Although we have established that there is in principle a signal to detect, there is a

significant amount of work that must be done to assess what can be done in practice. First, a

more detailed forecast should be done to determine what is required to reach the necessary

threshold in sensitivity, accuracy, and resolution. Next, there are important systematic errors

and other potential sources of power asymmetry that should be investigated including, but

not limited to: relativistic aberration of the CMB [250] and large scale structure [251, 252],

clustering [253], electron bias in the nonlinear regime (e.g. [254]), non-Gaussian aspects of

CMB lensing [255], redshift space distortions [256], asymmetric scan strategies (e.g. [257])

and incomplete sky coverage, incomplete LSS surveys, asymmetric beams and point spread

functions, and more realistic window functions. Furthermore, the signal may be boosted in

the presence of some types of primordial non-Gaussianity [258]. We leave a more careful

investigation of these and other important aspects to future work.

If it is indeed possible to approach the cosmic variance limited scenario we have described

in this chapter, what would we stand to learn? Because kSZ tomography is probing different

portions of the surface of last scattering than the primary CMB, the constraining power for

various early Universe scenarios involving extra sources of inhomogeneity can be extraordinary.

For example, in Ref. [113] it was shown that the constraints on parameters in a theory that

predicts cosmic bubble collisions could improve by several orders of magnitude comparing

kSZ tomography to existing and forecasted constraints from the primary CMB. One might

expect constraints on theories of the large-scale CMB anomalies to be similarly impressive.

Given a high enough fidelity measurement, it should also be possible to reconstruct the 3D

large-scale gravitational potential throughout much of the observable Universe (in analogy with
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Ref. [259]). Such a reconstruction could be an important tool, for example in future studies of

primordial non-Gaussianity. Performing this exercise would also significantly clarify precisely

what new information, beyond that encoded in the primary CMB and CMB polarization, there

is to gain from kSZ tomography. In any case, we stand to learn a great deal about cosmology

in the coming era of precision measurements of CMB secondaries, with the kSZ effect playing

a leading role. In this new era, it is important to understand the nuances of the kSZ effect,

and to target new observables.
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Chapter 6

Conclusions

It may seem unfathomable to attempt constructing a physical model of the entire large scale

universe. Remarkably, decades of theoretical and observational advances have converged on a

simple standard cosmological model, ΛCDM. The current state of the model is outlined in

chapter 1. Despite its many successes, there are several aspects of the theory that we fail to

understand. The focus for this dissertation is infrared cosmology, the regime in which the

mystery of dark energy is at the top of list.

In attempting to understand dark energy and accelerated expansion, we are led to question

the regime of validity of GR. The successes of general relativity on solar system scales do

not necessarily imply that the theory should be valid on the enormous scales we consider in

cosmology. All evidence for dark energy may instead be evidence that GR is breaking down

on cosmological scales. Infrared modifications to GR can potentially offer a better explanation

for cosmic expansion. This dissertation has focused on massive gravity, a subset of modified

gravity theories in which the graviton has a tiny non-zero mass. Important theoretical aspects

of the theory are described in chapter 2.

Massive gravity is referred to as an infrared modification to GR, so it’s important that

it is exactly that: there should only be modification on large scales. On smaller scales, we

are very happy with the predictions of GR, so we don’t want the model’s new features to

spoil that. In massive gravity, the mechanism that restores predictions of GR on small scales

is the Vainshtein screening mechanism. The contributions presented in chapter 3 analyzed

the fully non-linear dynamical behaviour of the screening mechanism in two related infrared

modifications: the DGP model and dRGT massive gravity. Our work is within the decoupling

limit of these models, in which a scalar galileon field contains all relevant information about the

modification and screening mechanism. By numerically solving the equation of motion for this
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scalar field we showed that for a wide range of generic initial conditions, the screening solutions

around a static source are accessed as the end state of the evolution. We also incorporated toy

models for collapsing and exploding sources, showing that the screening mechanism adapts as

expected throughout the evolution.

However, the evolution is only well posed for sufficiently low density sources, and sufficiently

long collapse/explosion time scales. We discovered that for real astrophysical parameters, the

evolution would enter the strong coupling regime of the theory. At this point, the classical

effective field theory can not be trusted because perturbativity breaks down, meaning that

quantum corrections are required to determine the future evolution. Here, we see that the lack

of a UV completion hinders our ability to make useful predictions within this model. Whether

or not there exists a standard (or even non-standard) UV completion for a massive graviton

is unknown. Since the strong coupling scale Λ3 is still rather low, one might just hope for a

partial UV completion that could raise the cutoff to the Planck scale.

Extending massive gravity to bigravity leads to a theory with two dynamical spin-2

fields that interact through the dRGT mass term. In this model, two viable classes of FRW

background solutions exist, allowing us to compare bigravity’s predictions for cosmology to the

standard ΛCDM model. To further test these candidate background solutions, we must fully

analyze the perturbations around them. In chapter 4, the focus was on the tensor sector of

perturbations. Gravitational waves are quite interesting in bigravity since there are physical

and dark perturbations that interact in a non-trivial manner.

In one class of background solutions, the “expanding branch”, there was no significant

deviation in the behaviour of physical gravitational waves compared to standard ΛCDM. In the

“bouncing branch” background, we found that gravitational waves exhibit power-law growth

with time. Since generically, amplification of perturbations could be enough to rule out this

branch of the model, understanding this growth was our goal. We carefully analyzed how the

growth of gravitational waves was sensitive to parameters of the theory, specifically, the initial

conditions of the physical and dark gravitational waves.

It was therefore necessary to address the issue of initial conditions by computing the

inflationary power spectra for both sets of tensor perturbations. We found that inflation sets

an enormous suppression of the dark gravitational waves, resulting in physical gravitational

waves that are not observably distinct from that of GR. Although we did not find evidence for

any compelling deviation from standard cosmology in this analysis, fully understanding the

predictions of these models is imperative, as small but observable differences can hold the key

to testing GR on cosmological scales.
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Together, chapters 3 and 4 considered two central aspects of modified gravity theories:

agreement with GR on small scales and deviation from GR on cosmological scales. There

seems to be a general trend that if a model does not posses a screening mechanism to

match GR on small scales, it is ruled out; if the model does have a limit that looks like

GR, it gets pushed into this limit, becoming observationally identical to GR. Tracking down

potential ways to test these models is challenging, and cosmologists are actively pursuing this

challenge [232, 31, 30, 260, 261, 262, 263, 233].

Even if they lack a testable distinction with present technology, these models offer an

explanation for cosmic acceleration without a cosmological constant, providing a different

interpretation of dark energy and the cosmological constant problem. With that being said,

many would say that massive gravity and its extensions still fail to solve the “old” cosmological

constant problem of why the cosmological constant from the vacuum does not gravitate.

These models have to assume that some unknown mechanism exists to set the expected large

cosmological constant to zero, but perhaps this is still an improvement over setting it to a

specific unnatural finely tuned value. Furthermore, massive gravity offers a technically natural

explanation for the small parameter of the theory that drives accelerated expansion.

Efforts in constructing viable models and understanding their predictions should be matched

by efforts in examining observational probes that will allow us to constrain, validate, or rule

out these models. Searching for deviations of GR and ΛCDM on very large scales leads us to

look out to the edge of our observable horizon captured in the CMB. The CMB’s ability to

constrain cosmology cannot be overstated, and yet, there is an inherent limit on the precision

with which we can probe scales on the order of our horizon: cosmic variance. In fact, we

cannot learn anything further about these large scales from the primary CMB alone. How can

we do better?

With so many experiments being proposed, it is necessary to compare the constraining

power of different probes of large scales. The ultimate goal is to unlock the most information

possible. Chapter 5 makes contributions on this front by considering a novel probe of large

scales, the kSZ effect, which arises from Compton scattering of CMB photons with moving free

electrons. The intriguing aspect of this effect lies in its ability to mitigate cosmic variance: the

signal is proportional to the observed CMB dipole at the location of each electron. Since each

electron in the universe probes a different portion of the surface of last scattering, detection of

the kSZ effect can yield more information than the cosmic variance limited measurements we

can make from one position here on Earth.

This work lays the theoretical foundation for the large-scale kSZ effect, computing the

signal-to-noise in the cosmic variance limited (noise-free) scenario. In this limit, we found that
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the signal-to-noise is huge, establishing that there is indeed a real effect that can in principle

be detected. We also presented a forecast to indicate that putting together next-generation

CMB experiments and galaxy surveys we may be able to detect the large-scale kSZ signal at

low redshift. These first steps of analysis pave the way for future work in more thoroughly

assessing the realistic detectability of the effect, including systematic errors. Also important is

understanding the usefulness of a detection in terms of constraining power for various models

with large-scale inhomogeneities, in comparison to the information already provided in the

CMB.

Solidifying our knowledge of theoretical aspects and predictions of modified gravity theories

is essential to illuminate the best basis for models of our universe. Even just within the class

of massive gravity, we have learned so much about what is required for an acceptable viable

theory of gravity. Beyond theoretical consistency, any model must be consistent with the

plethora of current cosmological and astrophysical data. This dataset will certainly grow

considering the numerous exciting avenues of future observational endeavours. It is crucial

to understand what novel observational probes, like the kSZ effect, can tell us about the

remaining mysteries of the universe.
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Appendix A

Convergence properties

The convergence properties of our numerical results can be understood by varying the grid

size. For a pth order scheme, the convergence ratio defined by

Q =
||π4h − π2h||2
||π2h − πh||2

(A.1)

yields Q = 2p in the continuum limit, h→ 0. Here, the superscript on the numerical solution π

refers to the size of the spacing of the grid used, and || · ||2 is the `2-norm. For example, for the

second order scheme we use, Q ' 4. We have evolved both sets of initial conditions introduced

in Sections 3.3.2–3.3.2, in particular eq. (3.16) with ρ = 200, R0 = 1, A = 0.002, σ = 1, rw =

10, ε = 0.001 and π(r, 0) = 0, respectively. The results are summarized in figure A.1, and are

compatible with second-order convergence.
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Figure A.1: The convergence factor Q(t) defined by eq. (A.1) as a function of time. Left panel refers to initial

data of the form π(r, 0) = 0, ρ = 50, R0 = 1, while the right panel refers to eq. (3.16) for ρ = 200, R0 = 1, A =

0.002, σ = 1, rw = 10, ε = 0.001.
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Appendix B

Cauchy problem and stability

Let us first consider the Lagrangian (3.2) for a spherically symmetric field π(t, r). The equations

of motion coming from this Lagrangian have the form of a Monge-Ampére equation

Aπ̈ +Bπ̇′ + Cπ′′ +D + E
[
π̈π′′ − (π̇′)2

]
, (B.1)

where A, B, C and D are at most functions of π and its first derivatives, and we assume

(A+ Eπ′′) 6= 0. We wish to understand when this type of equation plus its initial conditions

describe a well-posed initial value problem, commonly known as Cauchy problem (see e.g.

Chapter V of [264] and Appendix 1 where the Cauchy problem for the Monge-Ampére equation

is considered). A family of curves ϕ(t, r) = 0 are characteristics of this equation if

(A+ Eπ′′)ϕ2
t + (B − 2Eπ̇′)ϕtϕr + (C + Eπ̈)ϕ2

r = 0 , (B.2)

where ϕr ≡ ∂rϕ and ϕt ≡ ∂tϕ. Along a characteristic curve solutions are constant, so we can

write
dϕ

dλ
= ϕr

dr

dλ
+ ϕt

dt

dλ
= 0 , (B.3)

where λ denotes the parameter along which the characteristic curve is constant. Substituting

in eq. (B.2), we have

(A+ Eπ′′)

(
dr/dλ

dt/dλ

)2

− (B − 2Eπ̇′)
dr/dλ

dt/dλ
+ (C + Eπ̈) = 0 . (B.4)

Solving with respect to dr/dλ
dt/dλ ≡ dr/dt we find two roots

u1 ≡ dr

dt
=
B − 2Es̃+ ∆

2(A+ Er̃)
, (B.5)

u2 ≡ dr

dt
=
B − 2Es̃−∆

2(A+ Er̃)
, (B.6)

where ∆2 = B2 − 4AC + 4DE and we used eq. (B.1) in the form

(A+ Eπ′′)(C + Eπ̈)− 1

4
(B − 2Eπ̇′)2 +

1

4
∆2 = 0 . (B.7)
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The type of this equation is determined by the discriminant ∆2:

• If ∆2 > 0, the equation is hyperbolic (two roots);

• If ∆2 = 0, the equation is parabolic (one root);

• If ∆2 < 0, the equation is elliptic (imaginary roots).

For galileon-like models, the discriminant ∆ depends on the first derivatives of π. A well-posed

initial value problem is equivalent to requiring that the equation be hyperbolic, i.e. ∆2 > 0.

Note that we also must require the initial conditions to satisfy A+Eπ′′ < 0, which is equivalent

to requiring the constant time t = t0 hypersurface to be spacelike everywhere.

Let us see how this can be understood in terms of scalar perturbations δπ about a

background π0. The action for δπ is given by

Sδπ =

∫
d4x

[
1

2
Zµν∂µδπ∂νδπ

]
, (B.8)

where Zµν is the effective metric, dependent on π0 and its derivatives, on which δπ propagates.

Requiring the equations of motion for δπ to be hyperbolic is equivalent to requiring the effective

metric Zµν to have a Lorentzian signature, i.e., det(Zµν) < 0, which in a spherically symmetric

spacetime can be written as

det(Zµν) = [ZttZrr − (Ztr)2](Zθθ)2 sin2 θ < 0 . (B.9)

From eq. (B.7) this can be shown to be equivalent to the condition ∆2 > 0 for the background

π0.

Furthermore, the initial value problem is well posed only if the initial data are set up on

a hypersurface Σ which is spacelike with respect to the effective metric Z−1
µν , where Z−1

µν is

defined such that ZµλZ−1
λν = δµν , i.e., we require the 1-form ∂µt to be timelike with respect

to Zµν , Zµν∂µt∂µt < 0. Thus the initial data must be such that Ztt < 0, which is equivalent

to requiring A+ Eπ′′ < 0 for the background π0. However, note that in general even for an

initially well-posed Cauchy problem, due to the non-linearity of the field equations, the global

existence and uniqueness of solutions cannot be guaranteed.

As a final remark let us consider the stability under high-frequency perturbations of

the background π0. Local stability at a given point in spacetime p0 requires the metric to

have a Lorentzian signature at p0 which may appear either in the form of ghost or gradient

instabilities 1. Through this work we have not considered coupling to other dynamical fields,

but if this is taken into account we must also require the matrix Zµν to have the same

1Ghost instabilities are characterized either by a wrong-sign of the time-component of the field equations,
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signature of the gravitational metric. This requirement is met as long as the matrix Zµν is

non-singular and when diagonalized has the signature (−,+,+,+). In spherical coordinates

this is equivalent to requiring

Ztt + Zrr −
√

4(Zrt)2 + (Ztt − Zrr)2

2
< 0 , (B.10)

Ztt + Zrr +
√

4(Zrt)2 + (Ztt − Zrr)2

2
> 0 , (B.11)

Zθθ > 0 . (B.12)

Note that this requirement is not met in the background of the Π− branch (see Section 3.4), so

this solution would be unstable if it were coupled to another field or if the dynamical degrees

of freedom of the source were taken into account, as discussed in the main text.

which is characterized by det(Zµν) > 0 when all the other components have the “correct” signature, or by a

relative overall difference of sign of the effective metric with respect to the gravitational metric, when coupling

to other fields is considered. On the other hand gradient instabilities arise when det(Zij) < 0, where the indices

i, j take values on the 3-dimensional spacelike hypersurfaces t = const.
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Appendix C

The effective velocity in Fourier

space

In this appendix, we derive an expression for the effective line of sight velocity veff in Fourier

space. The Fourier transform of the primordial potential is defined as

Ψi(r) =

∫
d3k

(2π)3
Ψ̃i(k)eiχek·n̂eei∆χk·n̂, (C.1)

where we have explicitly expanded the position r = χen̂e + ∆χn̂.

C.1 Sachs-Wolfe

Using eq. (5.7), the SW contribution to the effective velocity is related to the Fourier components

of Ψi through

veff,SW(n̂e, χe) =
3

4π

(
2DΨ(χdec)−

3

2

)∫
d2n̂ Ψi(r) P1(n̂ · n̂e)

=
3

4π

(
2DΨ(χdec)−

3

2

)∫
d3k

(2π)3
Ψ̃i(k)eiχek·n̂e

×
∫
d2n̂ ei∆χk·n̂ P1(n̂ · n̂e). (C.2)

We can work on the second integral by expanding the exponential in terms of Legendre

polynomials and spherical Bessel functions:

ei∆χk·n̂ =
∑
`′

i`
′
(2`′ + 1) j`′(k∆χ) P`(k̂ · n̂). (C.3)

Substituting and applying the identity,∫
d2b̂ P`′(â · b̂) P`(b̂ · ĉ) =

4π

2`+ 1
P`(â · ĉ)δ``′ , (C.4)
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results in ∫
d2n̂ ei∆χk·n̂ P1(n̂ · n̂e) = 4πi j1(k∆χ) P1(k̂ · n̂e). (C.5)

Putting this result back into eq. (C.2) gives

veff,SW(n̂e, χe) = 3i

(
2DΨ(χdec)−

3

2

)∫
d3k

(2π)3
Ψ̃i(k)j1(k∆χdec)P1(k̂ · n̂e)eiχek·n̂e . (C.6)

We therefore see that veff,SW is simply a convolution of the potential field evaluated on the

intersection of the electron’s past light cone and the time of decoupling.

C.2 Doppler

Using eq. (5.10), the Doppler contribution to veff is

veff,Doppler(n̂e, χe) =
3

4π
Dv(χdec)

∫
d2n̂ (n̂ · ∇Ψi(rdec)) P1(n̂ · n̂e)

− 3

4π
Dv(ze)

∫
d2n̂ (n̂ · ∇Ψi(re)) P1(n̂ · n̂e). (C.7)

We’ll start with the first integral, then do the second. Going to Fourier space and expanding

the exponent in Legendre polynomials gives

3

4π
Dv(χdec)

∫
d3k

(2π)3
ikΨ̃i(k) eiχek·n̂e

∫
d2n̂ P1(n̂ · k̂) ei∆χdeck·n̂ P1(n̂ · n̂e)

=
3

4π
Dv(χdec)

∫
d3k

(2π)3
ikΨ̃i(k) eiχek·n̂e

∑
`′

i`
′
(2`′ + 1)j`′(k∆χdec)

×
∫
d2n̂ P1(n̂ · k̂) P`′(n̂ · k̂) P1(n̂ · n̂e). (C.8)

The integral over three Legendre polynomials can be evaluated by expanding in spherical

harmonics and using the Wigner 3j symbols. The result is∫
d2n̂ P1(n̂ · k̂) P`′(n̂ · k̂) P1(n̂ · n̂e) =

4π

3
P1(k̂ · n̂e)δ`′0 +

8π

15
P1(k̂ · n̂e)δ`′2, (C.9)

and upon substitution, we obtain for the first integral:

iDv(χdec)

∫
d3k

(2π)3
k Ψ̃i(k) [(j0(k∆χdec)− 2j2(k∆χdec)] P1(k̂ · n̂e) eiχek·n̂e . (C.10)

Moving to the second integral in eq. (C.7), we have

− 3

4π
Dv(χe)

∫
d3k

(2π)3
ikΨ̃i(k)eiχek·n̂e

∫
d2n̂ P1(n̂ · k̂) P1(n̂ · n̂e). (C.11)

The integral over angles can be evaluated using the identity eq. (C.4) to obtain

− iDv(χe)

∫
d3k

(2π)3
k Ψ̃i(k) P1(k̂ · n̂e) eiχek·n̂e . (C.12)
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Assembling the various pieces, the Doppler contribution becomes:

veff,Doppler(n̂e, χe) =i

∫
d3k

(2π)3
kΨ̃i(k)P1(k̂ · n̂e) eiχek·n̂e

× [Dv(χdec)j0(k∆χdec)− 2Dv(χdec)j2(k∆χdec)−Dv(χe)] . (C.13)

Note that the last term in square brackets contains no spherical Bessel function. Therefore,

the Doppler component receives contributions from all scales, unlike the Sachs-Wolfe term.

C.3 Integrated Sachs-Wolfe

Using eq. (5.14), the ISW contribution to the effective velocity is

veff,ISW(n̂e, χe) =
3

4π

∫
d2n̂

(
2

∫ ae

adec

dDΨ

da
Ψi(r(a))da

)
P1(n̂ · n̂e). (C.14)

Going to Fourier space,

veff,ISW(n̂e, χe) =
3

2π

∫ ae

adec

da
dDΨ

da

∫
d3k

(2π)3
Ψ̃i(k)eiχek·n̂e

∫
d2n̂ ei∆χ(a)k·n̂P1(n̂ · n̂e), (C.15)

and applying the identity eq. (C.5), we obtain

veff,ISW(n̂e, χe) = 6i

∫
d3k

(2π)3
Ψ̃i(k)

[∫ ae

adec

da
dDΨ

da
j1(k∆χ(a))

]
P1(k̂ · n̂e)eiχek·n̂e . (C.16)

Just as for the SW contribution, the ISW contribution is mainly sensitive to potential

fluctuations on large scales.

C.4 Effective velocity

We can now assemble eqs. (C.6), (C.13), (C.16) into an expression for the total effective

velocity. Before doing so, it must be noted that the expression eq. (C.13) for the Doppler

kernel is only valid in the small-k limit, so the linear growth with k eventually gets cut off. To

fix this, we can incorporate the transfer function T (k) by simply replacing Ψ̃i(k)→ T (k)Ψ̃i(k).

We will employ the BBKS fitting function:

T (k) =
ln [1 + 0.171x]

0.171x

[
1 + 0.284x+ (1.18x)2 + (0.399x)3 + (0.49x)4

]−0.25
, (C.17)

where x = k/keq with keq = aeqH(aeq) =
√

2/aeqH0 ' 82.5H0. Putting together all three

components, (C.6), (C.13), (C.16), gives the expression for the effective velocity:

veff(n̂e, χe) = i

∫
d3k

(2π)3
T (k)Ψ̃i(k) Kv(k, χe) P1(k̂ · n̂e) eiχek·n̂e , (C.18)
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where Kv = KD +KSW +KISW is the full Fourier kernel with each component given by,

KD(k, χe) ≡ kDv(χdec)j0(k∆χdec)− 2kDv(χdec)j2(k∆χdec)− kDv(χe), (C.19)

KSW(k, χe) ≡ 3

(
2DΨ(χdec)−

3

2

)
j1(k∆χdec), (C.20)

KISW(k, χe) ≡ 6

∫ ae

adec

da
dDΨ

da
j1(k∆χ(a)). (C.21)
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Appendix D

A pure gradient is pure gauge

In this appendix we explicitly demonstrate that a pure gradient in the Newtonian potential

Ψ (or more generally, the curvature perturbation in an arbitrary gauge) can be removed

through a special conformal transformation. More generally, we can remove the gradient of

the Newtonian potential at a point, which we take to be the origin of Cartesian coordinates.

The Newtonian potential appears in a conformal factor in front of the spatial metric:

ds2
3 = (1− 2Ψ(x))δijdx

idxj . (D.1)

Performing a special conformal transformation

xi =
x′i − bix′ix′i

1− 2bix′
i + (bibi)

(
x′ix′

i
) , (D.2)

takes the spatial metric to

δijdx
idxj =

δij[
1− 2bix′

i + (bibi)
(
x′ix′

i
)]2dx′idx′j , (D.3)

where bi are free constants.

If we imagine there was a pure gradient in the Newtonian potential,

Ψ(x) = Aix
i, (D.4)

we can write

(1− 2Ψ(x))δijdx
idxj =

(
1− 2Ai

x′i − bix′ix′i

1− 2bix′
i + (bibi)

(
x′ix′

i
))

× δijdx
′idx′j[

1− 2bix′
i + (bibi)

(
x′ix′

i
)]2 . (D.5)

For bi � 1, expanding to first order, we have:

(1− 2Ψ(x))δijdx
idxj '

(
1− 2(Ai − 2bi)x

′i +O(b2)
)
δijdx

′idx′j . (D.6)
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Therefore, with the choice,

bi = Ai/2, (D.7)

we have Ψ(x′) = 0, and therefore no gradient in the primed coordinate system. Note also

that the choice for bi justifies neglecting the terms of higher order in b, at least in linear

perturbation theory.

More generally, we could imagine performing a Taylor series expansion of Ψ(x) about a

point, taken here to be x = 0:

Ψ(x) ' Ψ(0) + ∂iΨ(0)xi + . . . (D.8)

If we perform a special conformal transformation with

bi = ∂iΨ(0)/2, (D.9)

then in the primed coordinates we have

∂iΨ(0)xi =
1

2
−

1− 3∂iΨ(0) x′i +
(
∂iΨ(0) ∂iΨ(0)

) (
x′ix

′i
)
/4 + (∂iΨ(0) x′i)2

2
[
1− ∂iΨ(0) x′i + (∂iΨ(0) ∂iΨ(0))

(
x′ix′

i
)
/4
]3 . (D.10)

To lowest order in ∂iΨ(0), this is

∂iΨ(0)xi ' (∂iΨ(0) x′
i
)2 +

(
∂iΨ(0) ∂iΨ(0)

) (
x′ix

′i
)
/4. (D.11)

Therefore, in the primed coordinate system, the Taylor series expansion of Ψ(x′) is

Ψ(x′) ' Ψ(0) +O(x′2) + . . . (D.12)

with no linear term as advertised. Therefore, the special conformal transformation can be used

to eliminate the derivative of Ψ at a point. This comes at the price of altering the higher-order

terms in the Taylor series expansion.
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Appendix E

Cancellation of the kernel

contributions as k → 0 for ΛCDM

without radiation

In this Appendix we show the exact cancellation of the three contributions to the kernel of the

effective velocity given in (5.17)-(5.19) for the largest scales in a universe with only matter

and Λ. In this case, y = a/aeq →∞, so we can approximate DΨ(a) using

DΨ(a) ≡ ΨSH(a)

ΨSH,i
=

9

10

[
5

2
Ωm

E(a)

a
G(a)

]
, (E.1)

where G(a) ≡
∫ a

0 da
′
[
E(a

′
)a
′
]−3

and E(a) =
√

Ωma−3 + ΩΛ. Further, the distance along the

electron’s past light cone to redshift z = 1/a− 1, normalized by H0 is given by

∆χ(a) = −
∫ a

ae

da
′ 1

E(a′)a′
2 . (E.2)

Let’s begin with the simple Sachs-Wolfe term. Expanding to linear order in k, we obtain

KSW =3

(
2DΨ(χdec)−

3

2

)
j1(k∆χdec)

=3

(
2DΨ(χdec)−

3

2

)
k∆χdec

3
+O(k3)

=

(
2DΨ(χdec)−

3

2

)
k∆χdec +O(k3). (E.3)

Expanding the Bessel functions, the Doppler piece will only have two terms at linear order:

KD = −kDv(ae) + kDv(adec) +O(k3) (E.4)

182



We can simplify Dv as follows

Dv(a) =
2a2H(a)

Ωm

y

4 + 3y

[
DΨ(a) +

dDΨ(a)

d ln a

]
=

2a2E(a)

Ωm

1

3

[
DΨ(a) + a

dDΨ(a)

da

]
=

2a2E(a)

3Ωm

[
− 3Ωm

2E2(a)a3

(
DΨ(a)− 3

2

)]
=− 1

aE(a)

(
DΨ(a)− 3

2

)
. (E.5)

This allows us to write the Doppler piece of the kernel as

KD =
k

aeE(ae)

(
DΨ(ae)−

3

2

)
− k

adecE(adec)

(
DΨ(adec)−

3

2

)
+O(k3)

=
3k

2

(
1

adecE(adec)
− 1

aeE(ae)

)
+

9k

4
Ωm

(
G(ae)

a2
e

− G(adec)

a2
dec

)
+O(k3). (E.6)

The ISW term can be shown to exactly cancel the above two contributions. We start by

expanding j1(k∆χ(a)) ∼ (k∆χ(a))/3 and integrating by parts:

KISW =6

∫ ae

adec

da
dDΨ(a)

da
j1(k∆χ(a))

=

[
6DΨ(a)

k∆χ(a)

3

]a=ae

a=adec

− 6

∫ ae

adec

da
kDΨ(a)

3

d∆χ(a)

da
+O(k3)

=− 2DΨ(adec)k∆χdec + 2k

∫ ae

adec

da
DΨ(a)

a2E(a)
+O(k3)

=− 2DΨ(adec)k∆χdec +
9k

2
Ωm

∫ ae

adec

da
G(a)

a3
+O(k3). (E.7)

The integral in the second term becomes∫ ae

adec

da
G(a)

a3
=

[
−G(a)

2a2

]a=ae

a=adec

+

∫ ae

adec

da

2a5E3(a)

=− 1

2

(
G(ae)

a2
e

− G(adec)

a2
dec

)
+

1

3Ωm

∫ ae

adec

da

a

d

da

[
1

E(a)

]
(E.8)

=− 1

2

(
G(ae)

a2
e

− G(adec)

a2
dec

)
+

1

3Ωm

([
1

aE(a)

]a=ae

a=adec

+

∫ ae

adec

da

a2E(a)

)

=− 1

2

(
G(ae)

a2
e

− G(adec)

a2
dec

)
− 1

3Ωm

(
1

adecE(adec)
− 1

aeE(ae)
+ ∆χdec

)
.

Inserting this into (E.7) gives the final result for the ISW contribution

KISW =− 2DΨ(adec)k∆χdec −
9k

4
Ωm

(
G(ae)

a2
e

− G(adec)

a2
dec

)
− 3k

2

(
1

adecE(adec)
− 1

aeE(ae)
+ ∆χdec

)
+O(k3) (E.9)

It is now clear that adding equations (E.3), (E.6) and (E.9) gives

KSW +KD +KISW = 0 +O(k3). (E.10)

When radiation is included, this cancellation still holds as shown numerically in figure 5.2.
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Appendix F

Random Gaussian fields

Following Ref. [238], we generate realizations of the primordial potential Ψ(x) in a four-step

process. Given a spatial grid of size L3 with N3 positions x(m) = Lm/N , labeled by the

integer triplet m with components mi ∈ [0, N):

1. Define a field ξ(m) that lives on the grid. Draw ξ(m) at each m from an independent

Gaussian probability distribution function with variance N3.

2. Fourier transform to get

ξ(κ) = N−3
∑
m

exp

[
−2πi

N
κ ·m

]
, (F.1)

where κ ≡ kL/(2π) is the dimensionless wavenumber.

3. Multiply ξ(κ) by

F (k) ≡

[(
2π

L

)3

PΨ(k)

]1/2

, (F.2)

where PΨ(k) is the Gaussian primordial power spectrum of ΛCDM. Here, we use param-

eters for the amplitude and spectral index consistent with Planck [8] (As = 2.2× 10−9,

ns = 0.96).

4. Inverse Fourier transform to obtain a random field with the correct correlation properties

in real and Fourier space:

Ψi(m) =
∑
κ

F (k)ξ(κ) exp

[
2πi

N
κ ·m

]
. (F.3)
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