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Abstract 

 

Fluorescence spectroscopy is commonly used in modern biological and chemical studies, 

especially for cellular and molecular analysis. Since the measured fluorescence spectrum is the sum 

of the spectrum of each fluorophore in a sample, a reliable separation of fluorescent labels is the key 

to the successful analysis of the sample. A technique known as linear spectral unmixing is often used 

to linearly decompose the measured fluorescence spectrum into a set of constituent fluorescence 

spectra with abundance fractions. 

Various algorithms have been developed for linear spectral unmixing. In this work, we 

implement the existing linear unmixing algorithms and compare their results to discuss their strengths 

and drawbacks. Furthermore, we apply optimization methods to the linear unmixing problem and 

evaluate their performance to demonstrate their capabilities of solving the linear unmixing problem. 

Finally, we denoise noisy fluorescence emission spectra and examine how noise may affect the 

performance of the algorithms. 
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Chapter 1 

 

In this chapter, we present a general description of the theoretical background on linear 

spectral mixture analysis and a mathematical problem known as the linear unmixing problem. 

Furthermore, we provide a brief introduction about existing linear unmixing methods and 

optimization techniques applicable to the linear unmixing problem. 

 

1.1 Motivation 

 

Fluorescence spectroscopy is commonly used in modern biological and chemical studies, 

especially for cellular and molecular analysis [1]–[6]. Spectroscopy is primarily concerned with how 

matter interacts with electromagnetic radiation. A molecule undergoes transitions between discrete 

(or quantized) energy states by absorbing or emitting a photon, a packet of light. Fluorescence occurs 

when a molecule absorbs a photon at one wavelength and reemits a photon at a longer wavelength 

Figure 1.1. Jablonski diagram 

representing vibrational levels for 

absorbance, non-radiative decay, 

and fluorescence 
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(i.e., the energy or frequency of the incident light is different from that of the emitted light). The 

mechanism of fluorescence is described in the Jablonski diagram (Figure 1.1). In this process, a 

fluorophore (or a fluorescent molecule) is first excited from its ground electronic state to one of the 

many vibrational states in an excited electronic state. As it collides with other molecules, the molecule 

undergoes non-radiative vibrational relaxation until it reaches the lowest vibrational state in the 

excited electronic state. When it returns to any of several vibrational states in the ground electronic 

state, it fluoresces or emits a photon that has a lower energy (and thus frequency) than the incident 

photon. Afterwards, the photons are directed towards a filter and onto a detector for measurement and 

identification of the molecules; the detection and analysis of the intensities and frequencies of the 

photons yields fluorescence spectra which contain useful information to determine the structure of 

the vibrational energy levels of the molecules. Using the information, one can depict what the 

molecules are, how much of them are present, how they are interacting with other molecules within 

the sample, and so forth [7]. 

Many practical applications of fluorescence spectroscopy have been made in science and 

industry. In chemical industries, for instance, it has been used to detect polycyclic aromatic 

hydrocarbons and analyze dissolved organic carbon in water [1], [2]. It has been also used to 

characterize the emission of new synthesized materials to examine their electronic properties for 

optoelectronic applications [3]. Fluorescence spectroscopy also plays a vital role in biological studies 

since it enables one to analyze changes in the tertiary structure of proteins, detect specific bacterial 

strains using fluorescent assays, and determine the melting temperature of deoxyribonucleic acid 

(DNA) and ribonucleic acid (RNA) samples [4]–[6]. The application is still growing remarkably as a 

powerful and effective tool to study the physical and chemical behaviour of molecules. 
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In fluorescence spectroscopy, multiple fluorophores are generally used as markers for 

labeling [8]. Therefore, a reliable separation of fluorescent labels is the key to the successful 

characterization, identification, and analysis of a sample; the decomposition of the measured 

fluorescence spectrum is essential since it is the sum of the spectrum of each fluorophore in the sample. 

There is, however, an inherent problem with multiple fluorescent labeling due to the severe overlap 

of different fluorophore spectra [9]. This is caused by their wide emission ranges which results in the 

measured fluorescence spectrum possibly not being completely decomposed into the representations 

of the fluorophores in the sample. Therefore, an unambiguous identification may be impossible. To 

circumvent such a technical issue, a technique known as linear spectral unmixing is often used to 

decompose a fluorescence spectrum. It is known that nonlinear approaches can generate more 

accurate, robust abundance fractions than the linear approach [10]. Nevertheless, the linear unmixing 

technique is often used for solving spectral unmixing problem because of its simplicity and efficiency 

[11]. The obtained results are promising, despite the simplicity of the technique [12]. 

Spectral unmixing problem aims to decompose the measured fluorescence spectrum into a 

set of constituent fluorescence spectra and abundance fractions that indicate the contribution of each 

constituent fluorescence spectrum [13]. For this reason, the measured fluorescence spectrum is called 

a mixture fluorescence spectrum, and the constituent fluorescence spectra are called reference 

fluorescence spectra. Linear spectral unmixing is built on the assumption that a mixture fluorescence 

spectrum can be decomposed linearly into reference fluorescence spectra. Consequently, assuming 

that reference fluorescence spectra are linearly combined via a linear mixture model, a mixture 

fluorescence spectrum can be unmixed in terms of abundance fractions of the reference fluorescence 

spectra. 
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Fluorescence is a highly sensitive analytical technique [14] and hence a fluorescent signal 

may contain noise, an unintended fluctuation in a signal, due to the sensitivity of the 

spectrofluorometer. Even though some level of noise can never be removed on account of the 

particulate nature of light, excess noise arising from imperfections in equipment and conditions can 

be theoretically minimized or eliminated [15]. Denoising is a signal processing method that 

minimizes the effect of noise in a noisy signal (i.e., a mixture of signal and noise) to preserve useful 

information [16]. Since a fluorescence spectrum is a fluorescent signal, denoising may lead to better 

estimations of abundance fractions by linear unmixing if the spectrum incorporates unwanted noise. 

 

1.2 Mathematical Formulation of the Problem 

 

 Linear spectral mixture analysis is widely used in fluorescence spectroscopy to estimate the 

abundance fractions for the decomposition of a mixture spectrum into a set of given reference spectra 

on the assumption that the mixture spectrum is the linear combination of the reference spectra [8]. 

Fluorescence emission follows the principle of linear superposition which states that a system can be 

decomposed into its constituent components and the behaviour of each component is independent of 

the other components [17], [18]. This fact enables the emission spectrum of a mixture of fluorophores 

to be expressed as the sum of its components, that is, the reference emission spectra of the 

fluorophores. Suppose that the 𝑝 × 1 column vector 𝑟 represents the mixture emission spectrum 

and the 𝑝 × 1 column vector �⃑⃑⃑�𝑖 represents the 𝑖𝑡ℎ reference emission spectrum of the mixture 

emission spectrum 𝑟 with 𝑝 emission wavelength detection channels. Then the mixture emission 

spectrum can be described as 
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 𝛼1�⃑⃑⃑�1 + 𝛼2�⃑⃑⃑�2 + ⋯ + 𝛼𝑙 �⃑⃑⃑�𝑙 = 𝑟 (1.1) 

or simply 

 ∑𝛼𝑖 �⃑⃑⃑�𝑖

𝑙

𝑖=1

= 𝑟 (1.2) 

where 𝑙  is the number of fluorophores in the sample and 𝛼𝑖  is the abundance fraction of the 

corresponding reference emission spectrum �⃑⃑⃑�𝑖. Eq. (1.2) can be shown in matrix-vector form as 

 𝑀�⃑� = 𝑟 (1.3) 

where 𝑀 is the 𝑝 × 𝑙 matrix of reference emission spectra for the 𝑙 individual reference emission 

spectra arranged in columns and �⃑� is the 𝑙 × 1 column vector containing the abundance fractions 

of the 𝑙 individual reference emission spectra. Considering additive noise in the emission spectra, 

the linear spectral mixture model is generalized as 

 𝑀�⃑� + �⃑⃑� = 𝑟 (1.4) 

with the 𝑝 × 1  noise vector �⃑⃑� . The matrix 𝑀  is called the mixing matrix of the linear spectral 

mixture model. The linear unmixing is a mathematical technique to solve the model for the abundance 

vector �⃑� to estimate the abundance fractions of the 𝑙 individual reference emission spectra [17]. 

For the uniqueness of the solution to the linear spectral mixture model, the number of 

emission wavelength detection channels in a spectrofluorometer must be greater than or equal to the 

number of fluorophores in the sample. Without this condition, multiple solutions are possible and 

hence no unique solution can be obtained for the linear unmixing. This condition thus implies that the 

linear spectral mixture model must be a determined or overdetermined system [8]. 

 On the assumption that the linear spectral mixture model cannot be reduced to an 

underdetermined system, it is necessary to find an approximate solution to the model for abundance 
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fraction estimation. By interpreting the noise vector �⃑⃑� of the model (1.4) as the least squares error, 

the linear unmixing problem can be cast as an optimization problem 

 argmin
�⃑⃑⃑�

𝐽(�⃑�) (1.5) 

where 

 𝐽(�⃑�) =
1

2
‖�⃑⃑�‖2 =

1

2
‖𝑟 − 𝑀�⃑�‖2 (1.6) 

Therefore, linear unmixing is now to find the abundance vector �⃑� which minimizes the least squares 

error function (1.6). 

 

1.3 Algorithms 

 

Scharf and Friedlander [19] developed a simple algorithm to tackle the linear unmixing 

problem as an unconstrained least squares (ULS) problem. This algorithm may produce negative 

abundance values which are physically infeasible. By equating such negative fractions to zero, this 

method inevitably produces a suboptimal solution. To resolve this issue, Chang et al. [20] suggested 

an improved algorithm, sum-to-one constrained least squares (SCLS) method, and Chang and Heinz 

[21] proposed a method called the nonnegativity constrained least squares (NCLS) method. Each 

method generally yields better abundance estimations than the ULS method by imposing the 

abundance sum-to-one constraint (ASC) and the abundance nonnegativity constraint (ANC) on the 

linear mixture model, respectively, but they may produce suboptimal results when they contain 

negative abundance fractions in their procedures. By combining those two methods, Heinz et al. [22] 

devised the so-called fully constrained least squares (FCLS) method to find better estimated 

abundance fractions for the linear unmixing problem. Wong and Chang [23] found that the FCLS 
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algorithm can estimate the abundance fractions more accurately if they replace the ANC with an 

absolute abundance sum-to-one constraint (AASC), and their algorithm is called the modified fully 

constrained least squares (MFCLS) method. 

Chen et al. and Theys et al. [24], [25] employed the gradient descent (GD) method, which 

is a local optimization technique, to solve the linear unmixing problem. They incorporated the ANC 

and the ASC into the gradient descent algorithm by using Karush-Kuhn-Tucker (KKT) conditions 

and Lagrange multipliers. This algorithm is called the fully constrained gradient descent (FC-GD) 

method. We, however, demonstrate that the original gradient descent scheme can be used without 

considering any constraints into the updating scheme if the linear unmixing problem satisfies two 

conditions: (𝑖) the linear mixture model is an overdetermined system and (𝑖𝑖) the columns of the 

mixing matrix for the model are linearly independent. This is connected to the fact that the linear 

unmixing problem has a unique local solution and thus the original gradient descent method performs 

well on the linear unmixing problem if the abundance fractions are bounded between 0 and 1 while 

iterating over the problem. 

Rather than local optimization methods, a global optimization algorithm can be considered 

to solve the linear unmixing problem, which guarantees robust convergence to an optimal solution to 

the linear unmixing problem. The standard Nelder-Mead (NM) method [26] locates an optimal 

solution by iteratively creating a simplex and moving it towards the optimum via four operations: 

reflection, expansion, contraction, and shrinkage. This technique is however very sensitive to 

dimensionality [27]; it performs very poorly in high dimensions. Gao and Han [28] improved its 

performance in high dimensions with adaptive parameters for the four operations. Their method is 

called the adaptive NM method. 
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 Strictly speaking, the NM method is not a strong global optimization technique since it may 

fail to find the global optimum of a function with strong multimodality [29]. In this case, we should 

consider a strong global optimization technique. For instance, a metaheuristic technique has been 

designed to find a good approximate solution to the global optimization problem which is complex 

and difficult to solve computationally [30]. Rao et al. [31] developed the teaching-learning-based 

optimization (TLBO) method, which is a nature-inspired metaheuristic optimization algorithm 

motivated by teaching and learning processes in a classroom. The TLBO method consists of two 

stages, namely, teacher phase and learner phase. In the teacher phase, learners gain knowledge directly 

from a teacher and the quality of knowledge is dependent on the teaching skill of the teacher; the 

teacher phase performs a global search for optimization. In the learner phase, a learner can improve 

the gained knowledge with the help of other learners, which indicates that the learner phase conducts 

a local search for optimization. Repeating these two phases, the algorithm can finally locate the global 

optimum. 

 However, if the teacher is trapped in one of the local optima and thus cannot escape from it 

in the following iterations, TLBO requires too many iterations for global convergence or sometimes 

fails to locate the global optimum since all learners gradually moves towards the teacher. To avoid 

this issue, Akbari et al. [32] introduced a new phase called studying phase into TLBO; each member 

attempts to change and improve its position by properly changing each dimension of its position. The 

author named this algorithm teaching-learning-studying-based optimization (TLSBO). 

Since a fluorescence spectrum is a fluorescent signal [14], the spectrum contains unintended 

noise as the spectrofluorometer captures it. It follows that denoising may help one obtain better 

estimations of abundance fractions via linear unmixing. Using the Fourier transform and the wavelet 
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transform [33], one can remove insignificant information (which is generally noise) from the noisy 

signal. These methods are known as the Fourier-based denoising method and the wavelet-based 

denoising method, respectively. 

 

1.4 Contribution and Novelty of the Research 

 

This work is the first comparative study on various linear unmixing algorithms used in 

fluorescence spectroscopy, and it will thus provide a useful insight into how to choose an optimal 

algorithm based on the given problem. In addition, we demonstrate that the typical GD scheme can 

be used without considering any constraints into the scheme if the linear unmixing problem satisfies 

two conditions: (𝑖) the linear mixture model is an overdetermined system and (𝑖𝑖) the columns of the 

mixing matrix for the model are linearly independent. This is attributed to the fact that the linear 

unmixing problem has a unique local solution and thus the GD method performs well on the linear 

unmixing problem if the abundance fractions are bounded between 0 and 1, while iterating over the 

problem. The GD method is very simple to implement and finds the solution more rapidly than the 

FC-GD method. This study also shows how the NM method, TLBO, and TLSBO can be applied to 

the linear unmixing problem, since, to the best of our knowledge, these methods have not been 

employed for the problem despite their practical uses in the field of science and engineering. 

Furthermore, motivated by machine learning, we apply early stopping to TLBO and TLSBO as a 

termination condition so that it is no longer required to set the number of iterations for those 

algorithms. We also develop a metric to quantify the numbers of correct and incorrect probes detected 

by a linear unmixing algorithm. Lastly, we demonstrate how the Fourier-based and wavelet-based 

denoising methods can be used to handle the linear mixture model with random noise. 
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1.5 Outline of the Thesis 

 

In this thesis, we will implement the existing linear unmixing algorithms and compare their 

results to discuss their strengths and drawbacks. Furthermore, we will apply optimization methods to 

the linear unmixing problem and evaluate their performance on the problem to demonstrate their 

capabilities of solving the linear unmixing problem. Finally, we will denoise noisy fluorescence 

emission spectra and examine how noise may affect the performance of the algorithms. 

In Chapter 2, we establish the linear mixture model for linear spectral mixture analysis and 

present the existing linear unmixing methods with their derivations and algorithms. Chapter 3 

presents an introduction to the gradient descent optimization technique, its variants, and their 

applications to linear spectral mixture analysis. Chapter 4 introduces global optimization techniques 

applicable to linear spectral mixture analysis and Chapter 5 discusses about how the Fourier-based 

and wavelet-based denoising methods can be used to handle noisy mixture emission spectra. In 

Chapter 6, we perform the comparative studies of the algorithms based on the resulting abundance 

estimations obtained from the algorithms. This thesis is closed in Chapter 7 with discussions on the 

implication of the results and on the extension of the work in future directions. 
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Chapter 2 

 

Linear unmixing is a method to estimate the abundance fractions by solving the linear 

mixture model 𝑀�⃑� + �⃑⃑� = 𝑟 as seen in Eq. (1.4). It can be solved with no constraints imposed on the 

abundance vector or with constraints on the abundance vector such as the abundance sum-to-one 

constraint (ASC), the abundance nonnegativity constraint (ANC), and the abundance absolute sum-

to-one constraint (AASC). In this chapter, various algorithms which solve unconstrained and 

constrained least squares unmixing problems for the abundance estimation are presented. 

 

2.1 Unconstrained Least Squares (ULS) Linear Unmixing Method 

 

Scharf and Friedlander [19] proposed the ULS method to solve an unconstrained least 

squares problem for linear unmixing in Eq. (1.5). The least squares error function (1.6) can be 

expressed as 

 𝐽(�⃑�) =
1

2
(𝑟 − 𝑀�⃑�)𝑇(𝑟 − 𝑀�⃑�). (2.1) 

For the minimization of the objective function (2.1), differentiating 𝐽(�⃑�)  with respect to �⃑�  and 

equating it to zero produces 

 
𝜕𝐽(�⃑�)

𝜕�⃑�
= 𝑀𝑇𝑟 − 𝑀𝑇𝑀�⃑� = 0⃑⃑. (2.2) 

Multiplying Eq. (2.2) by (𝑀𝑇𝑀)−1, the optimal least-squares estimate of �⃑� is derived as 

 �⃑�𝑈𝐿𝑆 = (𝑀𝑇𝑀)−1𝑀𝑇𝑟. (2.3) 

However, abundances are required to be nonnegative numbers and, since it assumes no constraints 

imposed on the abundance vector �⃑� , the estimated abundance vector �⃑�𝑈𝐿𝑆  in (2.3) may contain 
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negative values which are meaningless in terms of abundance and may fail the sum to one. It is 

therefore necessary to remove the negative values in �⃑�𝑈𝐿𝑆 by setting them to zero and thus this 

method generally produces a suboptimal solution for the model (1.4). The algorithm to solve the ULS 

problem is presented in Algorithm 2.1. 

 

2.2 Sum-to-one Constrained Least Squares (SCLS) Linear Unmixing Method 

 

Chang et al. [20] suggested an improved algorithm, SCLS method, for linear unmixing. To 

obtain more accurate abundance fractions, the ASC, also known as the full additivity constraint, 

 ∑𝛼𝑖

𝑙

𝑖=1

= 1 (2.4) 

must be applied to the abundance vector �⃑�. The linear unmixing problem with ASC can be defined 

as 

 argmin
�⃑⃑⃑�

𝐽(�⃑�)  subject to ∑𝛼𝑖

𝑙

𝑖=1

= 1 (2.5) 

 

2.2.1 Direct Method 

 

 By introducing a Lagrange multiplier, 𝜆 , the least squares error function (2.1) can be 

modified to account for the ASC, yielding 

 𝐽(�⃑�) =
1

2
(𝑟 − 𝑀�⃑�)𝑇(𝑟 − 𝑀�⃑�) + 𝜆(1⃑⃑𝑇�⃑� − 1) (2.6) 

where 1⃑⃑ denotes an 𝑙 × 1 column vector of ones. 
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Differentiating in Eq. (2.6) with respect to �⃑� and setting it to zero leads to 

 
𝜕𝐽(�⃑�)

𝜕�⃑�
= 𝑀𝑇𝑟 − 𝑀𝑇𝑀�⃑� + 𝜆1⃑⃑ = 0⃑⃑, (2.7) 

and once again multiplying by (𝑀𝑇𝑀)−1 yields, 

 (𝑀𝑇𝑀)−1𝑀𝑇𝑟 − (𝑀𝑇𝑀)−1𝑀𝑇𝑀�⃑� + 𝜆(𝑀𝑇𝑀)−11⃑⃑ = 0⃑⃑ (2.8) 

which simplifies to 

 �⃑�𝑆𝐶𝐿𝑆𝑑 = �⃑�𝑈𝐿𝑆 + 𝜆(𝑀𝑇𝑀)−11⃑⃑ (2.9) 

where �⃑�𝑈𝐿𝑆 = (𝑀𝑇𝑀)−1𝑀𝑇𝑟 is the solution to the unconstrained problem (2.3). 

To find the value of the Lagrange multiplier 𝜆 analytically, multiplying Eq. (2.9) by 1⃑⃑𝑇  yields 

 1⃑⃑𝑇�⃑�𝑆𝐶𝐿𝑆𝑑 = 1⃑⃑𝑇�⃑�𝑈𝐿𝑆 + 𝜆1⃑⃑𝑇(𝑀𝑇𝑀)−11⃑⃑, (2.10) 

and due to the ASC, we know that 

 1⃑⃑𝑇�⃑�𝑆𝐶𝐿𝑆𝑑 = 1, (2.11) 

thus Eq. (2.10) becomes 

 1 = 1⃑⃑𝑇�⃑�𝑈𝐿𝑆 + 𝜆1⃑⃑𝑇(𝑀𝑇𝑀)−11⃑⃑. (2.12) 

The Lagrange multiplier 𝜆 is therefore given by 

 𝜆 =
1 − 1⃑⃑𝑇�⃑�𝑈𝐿𝑆

1⃑⃑𝑇(𝑀𝑇𝑀)−11⃑⃑
. (2.13) 

Solving the SCLS may still produce an estimated abundance vector �⃑�𝑆𝐶𝐿𝑆𝑑  with negative entries 

because the positivity constraint is not enforced. It is thus essential to eliminate the negative values 

in �⃑�𝑆𝐶𝐿𝑆𝑑   by setting them to zero as in the ULS method, yielding a suboptimal solution. The 

algorithm for the direct SCLS method is summarized in Algorithm 2.1. 

 

2.2.2 Iterative Method 
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We can incorporate the Lagrange multiplier slightly differently by rewriting the linear 

mixture model with the ASC, 

 𝑟 = 𝑀�⃑� + �⃑⃑�  subject to  1 = 1⃑⃑𝑇�⃑� (2.14) 

as 

 [𝑟
𝜆
] = [

𝑀

𝜆1⃑⃑𝑇] �⃑� + [�⃑⃑�
0
] (2.15) 

where 𝜆 is a scale variable. We define 

 𝑟′ = [𝑟
𝜆
] , 𝑀′ = [

𝑀

𝜆1⃑⃑𝑇] , �⃑⃑�′ = [�⃑⃑�
0
] (2.16) 

so that Eq. (2.15) becomes 

 𝑟′ = 𝑀′�⃑� + �⃑⃑�′. (2.17) 

We can solve the new linear mixture model (2.17) using the ULS method with the new least squares 

error function, 

 𝐽(�⃑�) =
1

2
(𝑟′ − 𝑀′�⃑�)𝑇(𝑟′ − 𝑀′�⃑�) (2.18) 

and the estimated abundance vector 

 �⃑�𝑆𝐶𝐿𝑆𝑖 = (𝑀′𝑇𝑀′)
−1

𝑀′𝑇𝑟′. (2.19) 

By increasing the value of 𝜆 in Eq. (2.15) iteratively, we can obtain the estimated abundance vector 

�⃑�𝑆𝐶𝐿𝑆𝑖. An initial parameter 𝜆 = 10000 is suggested in [34], [35]. However, they have not shown 

how to select a step size, ℎ, to increase the value of 𝜆. We found experimentally that ℎ = 1 works 

well for this algorithm. The details about this will be discussed in Chapter 6. 

Again, the estimated abundance vector �⃑�𝑆𝐶𝐿𝑆𝑖 may contain negative abundance fractions. 

Hence, by setting them to zero, the negative values in �⃑�𝑆𝐶𝐿𝑆𝑖 are removed. Due to this process, the 

method produces a suboptimal result. The algorithm for the iterative SCLS method is shown in 
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Algorithm 2.2 

 

2.3 Nonnegativity Constrained Least Squares (NCLS) Linear Unmixing 

 

Both the ULS and SCLS methods produce suboptimal solutions to the linear spectral 

mixture model (1.4) owing to the forced nonnegativity of the abundance fractions by equating 

negative values in the abundance vector to zero. Chang and Heinz [21] proposed a method called 

NCLS method to solve such this issue. In the nonnegativity constrained least squares problem, the 

ANC, 

 𝑎𝑖 ≥ 0  (𝑖 = 1, 2,… , 𝑙) (2.20) 

is imposed on the abundance vector �⃑�. The ULS problem (1.5) with the nonnegativity constraint is 

expressed as 

 argmin
�⃑⃑⃑�

𝐽(�⃑�)  subject to 𝑎𝑖 ≥ 0  (𝑖 = 1, 2, … , 𝑙) (2.21) 

Unlike the direct SCLS method, the NCLS method does not have an analytical solution 

since the ANC is formed by a set of 𝑙 linear inequalities rather than equalities, implying that the 

Lagrange multiplier method is not applicable to solving optimal solutions [36]. In this case, the 

Karush-Kuhn-Tucker conditions must be used instead to develop a numerical algorithm for 

abundance estimation [37]. Instead, however, Chang and Heinz devised an efficient algorithm to 

generate NCLS linear unmixing solutions without considering the KKT conditions. To take care of 

the ANC, their algorithm performs dimensionality reduction on the mixing matrix of the linear 

mixture model. First, the NCLS algorithm uses the ULS method to estimate an abundance vector 

�⃑�𝑈𝐿𝑆. If the vector has negative fractions, the algorithm finds the negative value with the largest 
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magnitude, say 𝛼𝑗  , and eliminates its corresponding column �⃑⃑⃑�𝑗   in the mixing matrix 𝑀 . The 

algorithm estimates a new abundance vector �⃑�𝑈𝐿𝑆𝑟  with the reduced mixing matrix 𝑀𝑟 , and 

conducts the dimensionality reduction process on 𝑀𝑟 . Repeating this procedure, the algorithm 

terminates when no negative fractions are available in the abundance vector and therefore requires a 

maximum of 𝑙 − 1 iterations. However, since 𝑀 becomes smaller and smaller due to the iterative 

removal of columns, so does the abundance vector �⃑�𝑈𝐿𝑆. Therefore, to obtain �⃑�𝑁𝐶𝐿𝑆, it is necessary 

to record the position 𝑗 of 𝛼𝑗  in each iteration and place zeros in those positions of the final �⃑�𝑈𝐿𝑆. 

After this, we can finally obtain the estimated abundance vector �⃑�𝑁𝐶𝐿𝑆 . The NCLS algorithm is 

described in Algorithm 2.1. 

 

2.4 Fully Constrained Least Squares (FCLS) Linear Unmixing 

 

Heinz et al. [22] found that we can obtain more accurate solutions by simultaneously 

applying both constraints to the linear unmixing problem. We can express the fully constrained 

problem 

 argmin
�⃑⃑⃑�

𝐽(�⃑�)  subject to 𝑎𝑖 ≥ 0  (𝑖 = 1, 2,… , 𝑙)  and ∑𝛼𝑖

𝑙

𝑖=1

= 1. (2.22) 

They developed the FCLS method which performs both the SCLS and NCLS algorithms to solve the 

fully constrained problem above. 

 

2.4.1 Direct Method 

 

The direct FCLS method is performed by implementing the direct SCLS method in conjunction with 
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the dimensionality reduction process in the NCLS method. The algorithm for the direct FCLS 

algorithm can be found in Algorithm 2.1. 

 

2.4.2 Iterative Method 

 

As with the direct FCLS method, the iterative method consists of the iterative SCLS method 

and the dimensionality reduction procedure of the NCLS method. The iterative FCLS algorithm is 

summarized in Algorithm 2.2. 

 

2.5 Modified Fully Constrained Least Squares (MFCLS) Linear Unmixing 

 

As mentioned previously, the main difficulty with solving constrained linear unmixing 

problems is the ANC prevents us from using the Lagrange multiplier method to find solutions 

analytically. Wong and Chang [23] proposed an alternative, MFCLS method, by modifying the ANC. 

Rather than directly handling the inequality-constraints 𝑎𝑖 ≥ 0 for 1 ≤ 𝑖 ≤ 𝑙, they are substituted 

with the AASC which is formulated as 

 ∑|𝛼𝑖|

𝑙

𝑖=1

= 1. (2.23) 

The advantage of AASC is that the Lagrange multiplier method is applicable, enabling one to derive 

an algorithm to yield an optimal solution. Moreover, the AASC also allows us to preclude negative 

abundance fractions from the solution since all the abundance fractions become nonnegative if both 

the ASC and AASC are satisfied. The modified fully constrained least squares problem is then given 

by 
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 argmin
�⃑⃑⃑�

𝐽(�⃑�)  subject to ∑𝛼𝑖

𝑙

𝑖=1

= 1  and  ∑|𝛼𝑖|

𝑙

𝑖=1

= 1 (2.24) 

 

2.5.1 Direct Method 

 

 Using two Lagrange multipliers, 𝜆1 and 𝜆2, we can obtain the least squares error function 

for the fully constrained ASC and AASC problem 

 𝐽(�⃑�) =
1

2
‖𝑟 − 𝑀�⃑�‖2 + 𝜆1 (∑𝛼𝑖

𝑙

𝑖=1

− 1) + 𝜆2 (∑|𝛼𝑖|

𝑙

𝑖=1

− 1), (2.25) 

which we can write as 

 𝐽(�⃑�) =
1

2
(𝑟 − 𝑀�⃑�)𝑇(𝑟 − 𝑀�⃑�) + 𝜆1(1⃑⃑

𝑇�⃑� − 1) + 𝜆2(sign(�⃑�)𝑇 �⃑� − 1) (2.26) 

where 

 sign(�⃑�) = [𝛽1 𝛽2 … 𝛽𝑙]
𝑇 = {

𝛽𝑖

|𝛽𝑖|
𝛽𝑖 ≠ 0

0 𝛽𝑖 = 0

. (2.27) 

Differentiating 𝐽(�⃑�) in Eq. (2.26) with respect to �⃑� and setting it to zero results in 

 
𝜕𝐽(�⃑�)

𝜕�⃑�
= 𝑀𝑇𝑟 − 𝑀𝑇𝑀�⃑� + 𝜆11⃑⃑ + 𝜆2 sign(�⃑�) = 0⃑⃑ (2.28) 

and multiplying by (𝑀𝑇𝑀)−1 yields 

 (𝑀𝑇𝑀)−1𝑀𝑇𝑟 − (𝑀𝑇𝑀)−1𝑀𝑇𝑀�⃑� + 𝜆1(𝑀
𝑇𝑀)−11⃑⃑ + 𝜆2(𝑀

𝑇𝑀)−1 sign(�⃑�) = 0⃑⃑. (2.29) 

Rearranging terms in Eq. (2.29) produces an analytical solution 

 �⃑�𝑀𝐹𝐶𝐿𝑆𝑑 = �⃑�𝑈𝐿𝑆 + 𝜆1(𝑀
𝑇𝑀)−11⃑⃑ + 𝜆2(𝑀

𝑇𝑀)−1 sign(�⃑�𝑀𝐹𝐶𝐿𝑆𝑑). (2.30) 

Multiplying Eq. (2.30) by 1⃑⃑𝑇, 

 1⃑⃑𝑇�⃑�𝑀𝐹𝐶𝐿𝑆𝑑 = 1⃑⃑𝑇�⃑�𝑈𝐿𝑆 + 𝜆11⃑⃑
𝑇(𝑀𝑇𝑀)−11⃑⃑ + 𝜆21⃑⃑

𝑇(𝑀𝑇𝑀)−1 sign(�⃑�𝑀𝐹𝐶𝐿𝑆𝑑). (2.31) 
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Since 1⃑⃑𝑇�⃑�𝑀𝐹𝐶𝐿𝑆𝑑 = 1 from the ASC, it can be seen that 

 1 − 1⃑⃑𝑇�⃑�𝑈𝐿𝑆 = 𝜆11⃑⃑
𝑇(𝑀𝑇𝑀)−11⃑⃑ + 𝜆21⃑⃑

𝑇(𝑀𝑇𝑀)−1 sign(�⃑�𝑀𝐹𝐶𝐿𝑆𝑑) (2.32) 

Now multiplying Eq. (2.30) by sign(�⃑�𝑀𝐹𝐶𝐿𝑆𝑑)𝑇, 

sign(�⃑�𝑀𝐹𝐶𝐿𝑆𝑑)𝑇 �⃑�𝑀𝐹𝐶𝐿𝑆𝑑  

= sign(�⃑�𝑀𝐹𝐶𝐿𝑆𝑑)𝑇 �⃑�𝑈𝐿𝑆 + 𝜆1 sign(�⃑�𝑀𝐹𝐶𝐿𝑆𝑑)𝑇 (𝑀𝑇𝑀)−11⃑⃑ 

+𝜆2 sign(�⃑�𝑀𝐹𝐶𝐿𝑆𝑑)𝑇 (𝑀𝑇𝑀)−1 sign(�⃑�𝑀𝐹𝐶𝐿𝑆𝑑) 

(2.33) 

By the AASC, sign(�⃑�𝑀𝐹𝐶𝐿𝑆𝑑)𝑇 �⃑�𝑀𝐹𝐶𝐿𝑆𝑑 = 1 and thus Eq. (2.33) becomes 

 
1 − sign(�⃑�𝑀𝐹𝐶𝐿𝑆𝑑)𝑇 �⃑�𝑈𝐿𝑆 = 𝜆1 sign(�⃑�𝑀𝐹𝐶𝐿𝑆𝑑)𝑇 (𝑀𝑇𝑀)−11⃑⃑ 

1 − sign(�⃑�𝑀𝐹𝐶𝐿𝑆𝑑)𝑇 �⃑�𝑈𝐿𝑆 + 𝜆2 sign(�⃑�𝑀𝐹𝐶𝐿𝑆𝑑)𝑇 1⃑⃑𝑇(𝑀𝑇𝑀)−1 sign(�⃑�𝑀𝐹𝐶𝐿𝑆𝑑) 

(2.34) 

Using Cramer’s rule with Eq. (2.32) and Eq. (2.34), 

 𝜆1 =

|
1 − 1⃑⃑𝑇�⃑�𝑈𝐿𝑆 1⃑⃑𝑇(𝑀𝑇𝑀)−1 sign(�⃑�𝑀𝐹𝐶𝐿𝑆𝑑)

1 − sign(�⃑�𝑀𝐹𝐶𝐿𝑆𝑑)𝑇 �⃑�𝑈𝐿𝑆 sign(�⃑�𝑀𝐹𝐶𝐿𝑆𝑑)𝑇 (𝑀𝑇𝑀)−1 sign(�⃑�𝑀𝐹𝐶𝐿𝑆𝑑)
|

|
1⃑⃑𝑇(𝑀𝑇𝑀)−11⃑⃑ 1⃑⃑𝑇(𝑀𝑇𝑀)−1 sign(�⃑�𝑀𝐹𝐶𝐿𝑆𝑑)

sign(�⃑�𝑀𝐹𝐶𝐿𝑆𝑑)𝑇 (𝑀𝑇𝑀)−11⃑⃑ sign(�⃑�𝑀𝐹𝐶𝐿𝑆𝑑)𝑇 (𝑀𝑇𝑀)−1 sign(�⃑�𝑀𝐹𝐶𝐿𝑆𝑑)
|

 (2.35) 

and 

 𝜆2 =

|
1⃑⃑𝑇(𝑀𝑇𝑀)−11⃑⃑ 1 − 1⃑⃑𝑇�⃑�𝑈𝐿𝑆

sign(�⃑�𝑀𝐹𝐶𝐿𝑆𝑑)𝑇 (𝑀𝑇𝑀)−11⃑⃑ 1 − sign(�⃑�𝑀𝐹𝐶𝐿𝑆𝑑)𝑇 �⃑�𝑈𝐿𝑆

|

|
1⃑⃑𝑇(𝑀𝑇𝑀)−11⃑⃑ 1⃑⃑𝑇(𝑀𝑇𝑀)−1 sign(�⃑�𝑀𝐹𝐶𝐿𝑆𝑑)

sign(�⃑�𝑀𝐹𝐶𝐿𝑆𝑑)𝑇 (𝑀𝑇𝑀)−11⃑⃑ sign(�⃑�𝑀𝐹𝐶𝐿𝑆𝑑)𝑇 (𝑀𝑇𝑀)−1 sign(�⃑�𝑀𝐹𝐶𝐿𝑆𝑑)
|

 (2.36) 

However, the analytical solution is not obtainable as given above since it requires the sign of an 

unknown solution as in Eq. (2.30), Eq. (2.35), and Eq. (2.36). Instead, for simplicity, we introduce an 

approximate solution by replacing it with �⃑�𝑆𝐶𝐿𝑆𝑑 , but it may violate the ANC [23]. The direct MFCLS 

algorithm is described in Algorithm 2.1. 
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2.5.2 Iterative Method 

 

 As in the iterative SCLS method, we solve Eq. (2.17) with the ULS method by setting 

 𝑟′ = [
𝑟
𝜆1

𝜆2

] , 𝑀′ = [

𝑀

𝜆11⃑⃑
𝑇

𝜆2 sign(�⃑�)𝑇
] , �⃑⃑�′ = [

�⃑⃑�
0
0

] (2.37) 

where 𝜆1  and 𝜆2  are the scale variables for the ASC and the AASC, respectively. Chang et al. 

propose 𝜆1 = 𝜆2 = 10000 for initial values in their experiments [20]. We observed that ℎ1 = ℎ2 =

1 were an available selection. The detailed discusses about the selection will be presented in Chapter 

6. The iterative MFCLS algorithm can be found in Algorithm 2.2. 

 

2.6 Algorithms 

 

By specifying the parameter 𝑎𝑙𝑔 in Algorithm 2.1, we can estimate the abundance vector 

�⃑�  using the specified direct method. The parameter is chosen among “ULS”, “NCLS”, “SCLS”, 

“FCLS”, and “MFCLS”. 

 

Algorithm 2.1. Direct Least Squares Method 

Input: Mixing matrix 𝑀, mixture emission spectrum 𝑟 and algorithm 𝑎𝑙𝑔 

1 Initialize termination = false; 

2 while not termination do 

3 Calculate �⃑�𝑈𝐿𝑆 using Eq. (2.3); 

4 if 𝑎𝑙𝑔 = 𝑈𝐿𝑆 or 𝑎𝑙𝑔 = 𝑁𝐶𝐿𝑆 then 

5 Set 𝜆 = 0; 

6 else 

7 Calculate 𝜆 using Eq. (2.13); 

8 end if 
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9 Calculate �⃑� = �⃑�𝑆𝐶𝐿𝑆𝑑  using Eq. (2.10); 

10 if all 𝛼𝑖 in �⃑� ≥ 0 then 

11 Set termination = true; 

12 else 

13 if 𝑎𝑙𝑔 = 𝑁𝐶𝐿𝑆 or 𝑎𝑙𝑔 = 𝐹𝐶𝐿𝑆 then 

14 Find the negative 𝛼𝑗  with the largest |𝛼𝑗| in �⃑�; 

15 Store the position 𝑗 of 𝛼𝑗; 

16 Set 𝛼𝑗 = 0; 

17 Remove �⃑⃑⃑�𝑗  in 𝑀; 

18 else 

19 Set negative 𝛼𝑖 in �⃑� to zero; 

20 Set termination = true; 

21 end if 

22 end if 

23 end while 

24 if 𝑎𝑙𝑔 = 𝑁𝐶𝐿𝑆 or 𝑎𝑙𝑔 = 𝐹𝐶𝐿𝑆 then 

25 Restore �⃑�; 

26 else if 𝑎𝑙𝑔 = 𝑀𝐹𝐶𝐿𝑆 then 

27 Calculate 𝜆1 and 𝜆2 using Eq. (2.35) and Eq. (2.36); 

28 Calculate �⃑� = �⃑�𝑀𝐹𝐶𝐿𝑆𝑑  using Eq. (2.30); 

29 Set negative 𝛼𝑖 in �⃑� to zero; 

30 end if 

Output: Abundance vector �⃑� 

 

We can obtain the estimated abundance vector using a desired iterative method by setting 

the parameter 𝑎𝑙𝑔 in Algorithm 2.2. The parameter can be “SCLS”, “FCLS”, or “MFCLS”. 

 

Algorithm 2.2. Iterative Least Squares Method 

Input: Mixing matrix 𝑀, mixture emission spectrum 𝑟, scale variables 𝜆1 and 𝜆2, step sizes 

ℎ1 and ℎ2, error tolerance 휀 and algorithm 𝑎𝑙𝑔 

1 Initialize termination = false; 



22 

 

2 while not termination do 

3 if 𝑎𝑙𝑔 = 𝑆𝐶𝐿𝑆 or 𝑎𝑙𝑔 = 𝐹𝐶𝐿𝑆 then 

4 Set 𝜆 = 𝜆1, ℎ = ℎ1; 

5 Define 𝑀′ and 𝑟′ using Eq. (2.16); 

6 Calculate �⃑� = �⃑�𝑆𝐶𝐿𝑆𝑖  using Eq. (2.19); 

7 else 

8 Calculate �⃑�𝑈𝐿𝑆 using Eq. (2.3); 

9 Define 𝑀′ and 𝑟′ using Eq. (2.37); 

10 Calculate �⃑� = �⃑�𝑀𝐹𝐶𝐿𝑆𝑖 using Eq. (2.19); 

11 end if 

12 if all 𝛼𝑖 in �⃑� ≥ 0 then 

13 if 𝑎𝑙𝑔 = 𝑆𝐶𝐿𝑆 or 𝑎𝑙𝑔 = 𝐹𝐶𝐿𝑆 then 

14 if |1⃑⃑𝑇�⃑� − 1| < 휀 then 

15 Set termination = true; 

16 else 

17 Set 𝜆 = 𝜆 + ℎ; 

18 end if 

19 else 

20 if |1⃑⃑𝑇�⃑� − 1| < 휀 and sign(�⃑�)𝑇 �⃑� − 1 < 휀 then 

21 Set termination = true; 

22 else 

23 if |�⃑� − 1| ≥ 휀 then 

24 Set 𝜆1 = 𝜆1 + ℎ1; 

25 end if 

26 if sign(�⃑�)𝑇 �⃑� − 1 ≥ 휀 then 

27 Set 𝜆2 = 𝜆2 + ℎ2; 

28 end if 

29 end if 

30 end if 

31 else 

32 Find the negative 𝛼𝑗  with the largest |𝛼𝑗| in �⃑�; 

33 Store the position 𝑗 of 𝛼𝑗; 

34 Set 𝛼𝑗 = 0; 
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35 Remove �⃑⃑⃑�𝑗  in 𝑀; 

36 end if 

37 end while 

38 if 𝑎𝑙𝑔 = 𝑆𝐶𝐿𝑆 then 

39 Set negative 𝛼𝑖 in �⃑� to zero; 

40 Else 

41 Restore �⃑�; 

42 end if 

Output: Abundance vector �⃑� 

 

2.7 Conclusion 

 

 In this chapter, we have studied various linear unmixing algorithms. The ULS method solves 

an unconstrained least square linear unmixing problem to estimate abundance fractions, which results 

in a suboptimal solution since it may contain negative values which are meaningless in terms of 

abundance and may fail to sum to one. To produce more meaningful abundance fractions, modified 

ULS methods, the SCLS method and the NCLS method, have been developed by applying the ASC 

and the ANC to the unconstrained linear unmixing problem, respectively. It has been observed that 

the SCLS and NCLS methods may yield suboptimal solutions since the ASC and the ANC are not 

implemented simultaneously. By applying both constraints, the FCLS method can produce a more 

optimal solution. Thus far, the ANC has been implemented by performing dimensionality reduction 

on the mixing matrix, which prevents us from using the Lagrange multiplier method to obtain 

analytical solutions. Replacing the ANC with the AASC enables the Lagrange multiplier method and 

hence we can derive an algorithm, the MFCLS method, to produce an optimal solution. However, the 

method may result in a suboptimal solution because the SCLS solution is employed rather than the 

MFCLS solution to compute the analytical solution. 
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 The iterative linear unmixing methods and the methods equipped with the dimensionality 

reduction process must generate matrices repeatedly in their procedures to estimate abundance 

fractions, increasing the computational complexity of the algorithms. To resolve this issue, numerous 

optimization techniques can be candidates for linear unmixing; particularly, the gradient descent 

method is applicable to solve the fully constrained linear unmixing problem. We will discuss this 

method in the next chapter. 
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Chapter 3 

 

This chapter describes the gradient descent methods used to estimate abundance fractions 

for the linear mixture model (1.4). We will first show that applying the ASC and ANC to the gradient 

descent algorithm leads to the so-called FC-GD method. Also, we will demonstrate that, when the 

linear mixture model has a unique local solution, the original gradient descent algorithm can be 

employed by implementing a bounding process into the algorithm for optimal abundance fraction 

estimation. 

 

3.1 Gradient Descent (GD) Method 

 

 The GD method is a local optimization method, which finds a local solution of an objective 

function using the gradient [38]. Even though it is not a global optimization method, it is employed 

in many situations due to its simplicity in implementation and robustness to converge to a local 

optimum. When the objective function is a convex function defined on a convex set, any local 

optimum automatically becomes the global optimum [39] and thereby, in this case, the GD method 

works as a global optimization method. 

 If an initial point �⃑�(0) is selected in the neighbourhood of a local minimum, the method 

moves in consecutive points from 𝑥(𝑘) to �⃑�(𝑘+1) in the direction of the downhill gradient. Thus, it 

moves along the line extended from �⃑�(𝑘) in the direction opposite to the gradient −∇𝑓(�⃑�(𝑘)). Since 

the search commences at a point �⃑�(0) and then slides down the gradient, the iterative scheme of the 

GD method is described as 
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 �⃑�(𝑘+1) = �⃑�(𝑘) − 𝑠(𝑘)∇𝑓(𝑥(𝑘)) (3.1) 

where 𝑠(𝑘) is a (positive) step size for the 𝑘𝑡ℎ iteration [40]. 

Now the step size 𝑠 ≥ 0 should be found such that �⃑�(𝑘) − 𝑠∇𝑓(�⃑�(𝑘)) improves �⃑�(𝑘). Then, if we 

define a function 

 𝜙(𝑠) = 𝑓 (�⃑�(𝑘) − 𝑠∇𝑓(�⃑�(𝑘))), (3.2) 

it can be expanded at 𝑠 = 0 using the Taylor expansion as 

 𝜙(𝑠) = 𝜙(0) + 𝜙′(0)𝑠 + 𝑂(𝑠2). (3.3) 

Since 

 𝜙′(𝑠) = −∇𝑓 (𝑥(𝑘) − 𝑠∇𝑓(�⃑�(𝑘))) ∙ ∇𝑓(�⃑�(𝑘)), (3.4) 

Eq. (3.3) becomes 

 𝑓 (�⃑�(𝑘) − 𝑠∇𝑓(�⃑�(𝑘))) = 𝑓(�⃑�(𝑘)) − 𝑠‖∇𝑓(�⃑�(𝑘))‖
2
+ 𝑂(𝑠2). (3.5) 

If the value of 𝑠 is sufficiently small, then it satisfies the following inequality, 

 𝑓 (�⃑�(𝑘) − 𝑠∇𝑓(�⃑�(𝑘))) ≤ 𝑓(�⃑�(𝑘)) (3.6) 

which leads to 

 𝑓(�⃑�(𝑘+1)) ≤ 𝑓(�⃑�(𝑘)). (3.7) 

The GD method is therefore locally convergent, which generates a sequence of �⃑�(𝑘)  towards a 

minimum �⃑�∗ if a starting point �⃑�(0) is sufficiently close to 𝑥∗. The appropriate selection of the 

initial point is significant to locate a desired minimum. The scheme terminates if there is no longer 

improvement in �⃑�(𝑘); that is, it stops when �⃑�(𝑘) becomes a stationary point of 𝑓 with ∇𝑓(�⃑�(𝑘)) =

0⃑⃑. 
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3.2 Fully Constrained Gradient Descent (FC-GD) Method 

 

 We can solve the linear unmixing problem by locating a minimizer of the least squares error 

function 𝐽(𝛼)  in Eq. (2.1). However, the gradient descent algorithm may find multiple local 

solutions according to its initial point since it is a local optimization method, and, because no 

constraints are considered, they may be suboptimal solutions. Chen et al. and Theys et al. [24], [25] 

suggested a gradient descent algorithm considering the ASC and ANC, which is called the FC-GD 

method; it still may locate multiple local solutions, but the solutions must satisfy the ASC and ANC 

and hence they are more accurate than those obtained from the original GD method. 

 To implement the ANC for the GD method [25], we need to minimize 𝐽(�⃑�)  under 

inequality constraints. Introducing a Lagrange function 𝐿 associated with the error function under 

nonnegativity constraints, 

 𝐿(�⃑�, 𝜆) = 𝐽(�⃑�) − 𝜆𝑇�⃑�(�⃑�) (3.8) 

where 𝜆 = [𝜆1, 𝜆2, … , 𝜆𝑙]
𝑇  contains the Lagrange multiplies as elements and �⃑�(�⃑�) =

[𝑔(𝛼1), 𝑔(𝛼2), … , 𝑔(𝛼𝑙)]
𝑇 with the function 𝑔 to express the nonnegativity constraints for 

abundance fractions such that 𝑔  is an increasing function that must be positive for inactive 

constraints 𝛼𝑖 > 0 and zero for active constraints 𝛼𝑖 = 0 [25]. The KKT conditions at the optimum 

�⃑�∗ and 𝜆∗ are described as 

 ∇𝐿(�⃑�∗, 𝜆∗) = 0⃑⃑; (3.9) 

 𝑔(𝛼𝑖
∗) ≥ 0 ∀𝑖; (3.10) 

 𝜆𝑖
∗ ≥ 0 ∀𝑖; (3.11) 

 𝜆𝑖
∗𝑔(𝛼𝑖

∗) = 0 ∀𝑖. (3.12) 

Eq. (3.9) becomes 
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 ∇𝐿(�⃑�∗, 𝜆∗) = ∇[𝐽(�⃑�∗) − 𝜆∗𝑇�⃑�(�⃑�∗)] = ∇𝐽(�⃑�∗) − 𝜆∗𝑇∇�⃑�(�⃑�∗) = 0 (3.13) 

where ∇�⃑�(�⃑�) = [∇𝑔(𝛼1), ∇𝑔(𝛼2), … , ∇𝑔(𝛼𝑙)]
𝑇  . Since ∇𝐽(�⃑�∗) = 𝜆∗𝑇∇�⃑�(�⃑�∗) , we take the 

𝑖𝑡ℎ element of each vector. This gives 

 𝜆𝑖
∗ =

[∇𝐽(�⃑�∗)]𝑖

∇𝑔(𝛼𝑖
∗)

. (3.14) 

Multiplying Eq. (3.14) by 𝑔(𝛼𝑖
∗) and using Eq. (3.12) results in 

 𝜆𝑖
∗𝑔(𝛼𝑖

∗) =
[∇𝐽(�⃑�∗)]𝑖𝑔(𝛼𝑖

∗)

∇𝑔(𝛼𝑖
∗)

= 0 (3.15) 

or equivalently, 

 −[∇𝐽(�⃑�∗)]𝑖𝑔(𝛼𝑖
∗) = 0. (3.16) 

By taking 𝑔(𝛼) = 𝛼 for the nonnegativity constraints, 

 −[∇𝐽(�⃑�∗)]𝑖𝛼𝑖
∗ = 0. (3.17) 

Considering an equation of the form 𝑓(𝑥) = 0  as 𝑥 = 𝑥 + 𝑓(𝑥) , we can apply the fixed-point 

iteration method [25] to find 𝑥  iteratively, which gives 𝑥(𝑛+1) = 𝑥(𝑛) + 𝑓(𝑥(𝑛)) . Hence, taking 

𝑓(𝛼𝑖
∗) = −𝑠[∇𝐽(�⃑�∗)]𝑖𝛼𝑖

∗ = 0 for some real number 𝑠 yields the following component-wise scheme 

for the GD method considering the ANC 

 𝛼𝑖
(𝑘+1)

= 𝛼𝑖
(𝑘)

− 𝑠(𝑘)[∇𝐽(�⃑�(𝑘))]
𝑖
𝛼𝑖

(𝑘)
 (3.18) 

where 𝑠(𝑘) is a step size that must be adjusted for convergence of the algorithm. (Refer to Section 

3.4.) 

 In order to impose the ASC on the GD method [24], the following variable change is 

performed to ensure that the ASC is satisfied. Thus, set 𝑤𝑖 ≥ 0 for all 𝑖, and define �⃑� as 

 𝛼𝑖 =
𝑤𝑖

∑ 𝑤𝑚
𝑙
𝑚=1

. (3.19) 

Indeed, 
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 ∑𝛼𝑖

𝑙

𝑖=1

= ∑
𝑤𝑖

∑ 𝑤𝑚
𝑙
𝑚=1

𝑙

𝑖=1

=
∑ 𝑤𝑖

𝑙
𝑖=1

∑ 𝑤𝑚
𝑙
𝑚=1

= 1. (3.20) 

The partial derivative of the error function 𝐽 with respect to the new variables 𝑤𝑖 becomes 

 
𝜕𝐽

𝜕𝑤𝑖
= ∑

𝜕𝐽

𝜕𝛼𝑗
(
𝜕𝛼𝑗

𝜕𝑤𝑖
)

𝑙

𝑗=1

 (3.21) 

which, by the quotient rule yields, 

 𝜕𝛼𝑗

𝜕𝑤𝑖
=

𝜕𝑤𝑗

𝜕𝑤𝑖
∑ 𝑤𝑚

𝑙
𝑚=1 −

𝜕(∑ 𝑤𝑚
𝑙
𝑚=1 )
𝜕𝑤𝑖

𝑤𝑗

(∑ 𝑤𝑚
𝑙
𝑚=1 )

2 . (3.22) 

Therefore, 

 

𝜕𝐽

𝜕𝑤𝑖
= ∑

𝜕𝐽

𝜕𝛼𝑗

[
 
 
 
 

(

𝜕𝑤𝑗

𝜕𝑤𝑖
∑ 𝑤𝑚

𝑙
𝑚=1

(∑ 𝑤𝑚
𝑙
𝑚=1 )

2 ) −

(

 
 

𝜕(∑ 𝑤𝑚
𝑙
𝑚=1 )
𝜕𝑤𝑖

𝑤𝑗

(∑ 𝑤𝑚
𝑙
𝑚=1 )

2

)

 
 

]
 
 
 
 𝑙

𝑗=1

 

𝜕𝐽

𝜕𝑤𝑖
= ∑

𝜕𝐽

𝜕𝛼𝑗
[(

𝜕𝑤𝑗

𝜕𝑤𝑖

∑ 𝑤𝑚
𝑙
𝑚=1

) − (
𝑤𝑗

(∑ 𝑤𝑚
𝑙
𝑚=1 )

2)]

𝑙

𝑗=1

 

𝜕𝐽

𝜕𝑤𝑖
=

1

∑ 𝑤𝑚
𝑙
𝑚=1

[
𝜕𝐽

𝜕𝛼𝑖
− ∑𝛼𝑗 (

𝜕𝐽

𝜕𝛼𝑗
)

𝑙

𝑗=1

]. 

(3.23) 

Eq. (3.18) formulates the component-wise update equation as 

 𝑤𝑖
(𝑘+1)

= 𝑤𝑖
(𝑘)

− 𝑠(𝑘)
𝑤𝑖

(𝑘)

∑ 𝑤𝑚
(𝑘)𝑙

𝑚=1

[
𝜕𝐽

𝜕𝛼𝑖
(𝑘)

− ∑𝛼𝑗
(𝑘)

(
𝜕𝐽

𝜕𝛼𝑗
(𝑘)

)

𝑙

𝑗=1

]. (3.24) 

Since ∑ 𝑤𝑚
(𝑘+1)𝑙

𝑚=1 = ∑ 𝑤𝑚
(𝑘)𝑙

𝑚=1  for all 𝑘, ∑ 𝑤𝑚
(𝑘)𝑙

𝑚=1  is constant and thus it can be absorbed into 

the step size 𝑠(𝑘), which gives 
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 𝑤𝑖
(𝑘+1)

= 𝑤𝑖
(𝑘)

+ 𝑠(𝑘)𝑤𝑖
(𝑘)

[
𝜕𝐽

𝜕𝛼𝑖
(𝑘)

− ∑ 𝛼𝑗
(𝑘)

(
𝜕𝐽

𝜕𝛼𝑗
(𝑘)

)

𝑙

𝑗=1

]. (3.25) 

Notice that it solves the unconstrained problem with respect to the ASC [24]. To impose the ASC on 

Eq. (3.25), we necessarily divide it by ∑ 𝑤𝑚
(𝑘+1)𝑙

𝑚=1 = ∑ 𝑤𝑚
(𝑘)𝑙

𝑚=1 . Thus, 

 
𝑤𝑖

(𝑘+1)

∑ 𝑤𝑚
(𝑘+1)𝑙

𝑚=1

=
𝑤𝑖

(𝑘)

∑ 𝑤𝑚
(𝑘)𝑙

𝑚=1

+ 𝑠(𝑘)
𝑤𝑖

(𝑘)

∑ 𝑤𝑚
(𝑘)𝑙

𝑚=1

[
𝜕𝐽

𝜕𝛼𝑖
(𝑘)

− ∑𝛼𝑗
(𝑘)

(
𝜕𝐽

𝜕𝛼𝑗
(𝑘)

)

𝑙

𝑗=1

] (3.26) 

and then using Eq. (3.19) produces 

 𝛼𝑖
(𝑘+1)

= 𝛼𝑖
(𝑘)

+ 𝑠(𝑘)𝛼𝑖
(𝑘)

[
𝜕𝐽

𝜕𝛼𝑖
(𝑘)

− ∑𝛼𝑗
(𝑘)

(
𝜕𝐽

𝜕𝛼𝑗
(𝑘)

)

𝑙

𝑗=1

]. (3.27) 

Since ∑ 𝛼𝑚
(𝑘+1)𝑙

𝑚=1 = ∑ 𝛼𝑚
(𝑘)𝑙

𝑚=1   for all 𝑘 , the initial point �⃑�  must be selected such that 

∑ 𝛼𝑚
(0)𝑙

𝑚=1 = 1  so that the algorithm satisfies the ASC. Considering the component-wise update 

equation (3.27) results in the following scheme of the FC-GD method 

 �⃑�(𝑘+1) = �⃑�(𝑘) + 𝑠(𝑘)diag(�⃑�(𝑘)) [∇𝐽(�⃑�(𝑘)) − 1⃑⃑∇𝐽(�⃑�(𝑘))
𝑇
�⃑�(𝑘)] (3.28) 

where 1⃑⃑ is the all-one vector and diag(∙) is a diagonal matrix. A proper choice of the step size is 

required for convergence. This will be discussed in Section 3.4. The algorithm of the FC-GD method 

is explained in Algorithm 3.1. 

 

3.3 Special Case for Application of GD method 

 

 The FC-GD method minimizes the least squares error function 𝐽(�⃑�) to find an optimal 

solution satisfying both the ASC and the ANC simultaneously using the KKT conditions, which 

increases the complexity of the GD algorithm [23]. However, if there exists a unique local minimum 
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in 𝐽(�⃑�) on the domain [0, 1]𝑛, we can use the original GD scheme instead of the FC-GD method 

because it must locate the same solution as the FC-GD method.  

 In fact, the linear unmixing problem has a unique local solution if (𝑖) the linear mixture 

model is an overdetermined system and (𝑖𝑖 ) the columns of the mixing matrix for the model are 

linearly independent. Considering 𝐽: ℝ𝑛 → ℝ where 𝐽(�⃑�) =
1

2
(𝑟 − 𝑀�⃑�)𝑇(𝑟 − 𝑀�⃑�), we first show 

that 𝐽(�⃑�) is a quadratic function using Definition 3.1. 

 

Definition 3.1. A quadratic function is a function 𝑓:ℝ𝑛 → ℝ of form 

 𝑓(�⃑�) =
1

2
�⃑�𝑇𝑄�⃑� + �⃑⃑�𝑇�⃑� + 𝑐,  

where 𝑄 is an 𝑛 × 𝑛 square matrix, �⃑⃑� is 𝑛 × 1 column vector and 𝑐 is a real number [41]. 

 

Proposition 3.1. The least squares error function 𝐽(�⃑�) is quadratic. 

Proof. The least squares error function is 

𝐽(�⃑�) =
1

2
(𝑟 − 𝑀�⃑�)𝑇(𝑟 − 𝑀�⃑�) 

which results in 

𝐽(�⃑�) =
1

2
[𝑟𝑇𝑟 − 𝑟𝑇𝑀�⃑� − (𝑀�⃑�)𝑇𝑟 + (𝑀�⃑�)𝑇(𝑀�⃑�)]. 

Since (𝑀�⃑�)𝑇𝑟 = [(𝑀�⃑�)𝑇𝑟]𝑇 = 𝑟𝑇𝑀�⃑� and (𝑀�⃑�)𝑇(𝑀�⃑�) = �⃑�𝑇𝑀𝑇𝑀�⃑�, it follows that 

𝐽(�⃑�) =
1

2
(𝑟𝑇𝑟 − 2𝑟𝑇𝑀�⃑� + �⃑�𝑇𝑀𝑇𝑀�⃑�) 

𝐽(�⃑�) =
1

2
�⃑�𝑇𝑀𝑇𝑀�⃑� − 𝑟𝑇𝑀�⃑� +

1

2
𝑟𝑇𝑟. 

By taking 𝑄 = 𝑀𝑇𝑀, �⃑⃑�𝑇 = −𝑟𝑇𝑀, and 𝑐 =
1

2
𝑟𝑇𝑟, 𝐽(�⃑�) becomes 
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𝐽(�⃑�) =
1

2
�⃑�𝑇𝑄�⃑� + �⃑⃑�𝑇�⃑� + 𝑐. 

Hence, 𝐽(�⃑�) is a quadratic function. Notice that 

𝑄𝑇 = (𝑀𝑇𝑀)𝑇 = 𝑀𝑇𝑀 = 𝑄, 

which implies that 𝑄 is a symmetric matrix. ∎ 

 

Proposition 3.1 implies that 𝐽(�⃑�) is a twice-differentiable function, and its respective gradient and 

Hessian matrix are obtained by 

 ∇𝐽(�⃑�) = 𝑄�⃑� + �⃑⃑� (3.29) 

and 

 

 ∇2𝐽(�⃑�) = 𝑄. (3.30) 

Now, we assume that the mixing matrix 𝑀 forms an overdetermined system and the columns of 𝑀 

are linearly independent, enabling us to prove that the Hessian matrix must be positive definite using 

Definition 3.2. 

 

Definition 3.2. An 𝑛 × 𝑛 real symmetric matrix 𝐴 is said to be positive semi-definite if and only 

if �⃑�𝑇𝐴�⃑� ≥ 0 for all �⃑� ∈ ℝ𝑛. It is said to be positive definite if and only if �⃑�𝑇𝐴�⃑� > 0 for all 𝑥 ∈

ℝ𝑛 ∖ {0⃑⃑} [42]. 

 

Proposition 3.2. Suppose 𝐴 ∈ 𝑀𝑚𝑛(ℝ)  where 𝑚 > 𝑛 . Then 𝐴𝑇𝐴  is positive definite if the 

columns of 𝐴 are linearly independent. 

Proof. Let 𝐴 ∈ 𝑀𝑚𝑛(ℝ) with 𝑚 > 𝑛. Suppose that the columns of 𝐴 are linearly independent. 
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Then rank(𝐴) = 𝑛  and thus, by the rank-nullity theorem, nullity(𝐴) = 0 . This implies 

null(𝐴) = {0⃑⃑}. Note that 

�⃑�𝑇𝐴𝑇𝐴�⃑� = (𝐴�⃑�)𝑇(𝐴�⃑�) = (𝐴�⃑�) ∙ (𝐴�⃑�) = ‖𝐴�⃑�‖2 ≥ 0 

for all �⃑� ∈ ℝ𝑛. Namely, 𝐴𝑇𝐴 is positive semi-definite. Since 𝐴𝑇𝐴 is positive definite if and only 

if �⃑�𝑇𝐴𝑇𝐴�⃑� > 0 for all �⃑� ∈ ℝ𝑛\{0⃑⃑}, it suffices to show that �⃑� = 0⃑⃑ if and only if �⃑�𝑇𝐴𝑇𝐴�⃑� = 0. 

Suppose that �⃑� = 0⃑⃑. Then it is obvious that �⃑�𝑇𝐴𝑇𝐴�⃑� = 0. Conversely, suppose that �⃑�𝑇𝐴𝑇𝐴�⃑� =

0. Then ‖𝐴�⃑�‖2 = 0 and thus 𝐴�⃑� = 0⃑⃑. But 𝐴�⃑� = 0⃑⃑ implies �⃑� = 0⃑⃑  by the rank-nullity theorem 

as shown above. Therefore, 𝐴𝑇𝐴 is positive definite if the columns of 𝐴 are linearly independent. 

∎ 

 

From the following theorem [43], we can see that the least squares error function 𝐽: ℝ𝑛 → ℝ  is 

strictly convex (where ℝ𝑛 is a convex set) because the Hessian matrix of 𝐽(�⃑�) is positive definite. 

 

Theorem 3.1. Let Ω be a convex set. A twice-differentiable function 𝑓: Ω → ℝ is strictly convex 

if and only if for every 𝑥 ∈ Ω, the Hessian matrix ∇2𝑓(𝑥) is positive definite. 

 

We can see that 𝐽:ℝ𝑛 → ℝ is strictly convex on ℝ𝑛. Now we want to show that 𝐽: [0, 1]𝑛 → ℝ is 

also strictly convex on the convex subset [0, 1]𝑛 of ℝ𝑛. Before we proceed, we need to define a 

convex set as in [39] and verify that [0, 1]𝑛 is such a set. 

 

Definition 3.2. Let 𝑉 be a vector space. A subset Ω ⊆ 𝑉 is said to be convex if for every 𝑎, 𝑏 ∈

Ω and 𝑡 ∈ [0, 1], the convex combination 𝑡𝑎 + (1 − 𝑡)𝑏 ∈ Ω. 
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Proposition 3.3. [0, 1]𝑛 is a convex set. 

Proof. Note that [0, 1]𝑛 ⊆ ℝ𝑛 and ℝ𝑛 is a vector space. Suppose that �⃑�, �⃑⃑� ∈ [0, 1]𝑛. Then we 

can express them as �⃑� = (𝑎1, 𝑎2, … , 𝑎𝑛)  and �⃑⃑� = (𝑏1, 𝑏2, … , 𝑏𝑛)  where max{𝑎𝑖, 𝑏𝑖} ≤ 1  and 

min{𝑎𝑖, 𝑏𝑖} ≥ 0 with 1 ≤ 𝑖 ≤ 𝑛. Without loss of generality, let 𝑎𝑖 ≥ 𝑏𝑖. Then 0 ≤ 𝑏𝑖 ≤ 𝑎𝑖 ≤ 1, 

we have 

0 ≤ 𝑡𝑎𝑖 + (1 − 𝑡)𝑏𝑖 ≤ 𝑎𝑖 ≤ 1 

and thus 

�⃑� + (1 − 𝑡)�⃑⃑� ∈ [0, 1]𝑛 

for all 𝑡 ∈ [0, 1]. Therefore, [0, 1]𝑛 is a convex set. ∎ 

 

Definition 3.3. Let Ω be a convex set. A function 𝑓: Ω → ℝ is convex on Ω if 

𝑓(𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑡𝑓(𝑥) + (1 − 𝑡)𝑓(𝑦) 

for every 𝑥, 𝑦 ∈ Ω and 𝑡 ∈ (0, 1). If the inequality holds strictly, then the function 𝑓 is called 

strictly convex. 

 

With the definition of convexity of a function [39], we can see that 𝐽: [0, 1]𝑛 → ℝ is strictly convex 

on [0, 1]𝑛  as 𝐽: ℝ𝑛 → ℝ  is strictly convex on ℝ𝑛  and [0, 1]𝑛  is a convex subset of ℝ𝑛 . 

Therefore, the following proposition illustrates that it must contain at most one local minimizer on 

the given domain. 

 

Proposition 3.5. If a function 𝑓: Ω → ℝ is strictly convex where Ω is a convex set, then it has at 
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most one local minimizer on Ω. 

Proof. Suppose that 𝑓 is strictly convex but assume by contraction that it has at least two distinct 

local minimizers on Ω, say 𝑥1 and 𝑥2 with 𝑓(𝑥1) ≤ 𝑓(𝑥2) where 𝑥1 ≠ 𝑥2. By the definition 

of strict convexity, 

𝑓(𝑡𝑥1 + (1 − 𝑡)𝑥2) < 𝑡𝑓(𝑥1) + (1 − 𝑡)𝑓(𝑥2) 

for all 𝑡 ∈ (0, 1). Since 𝑡 > 0, we have 𝑡𝑓(𝑥1) ≤ 𝑡𝑓(𝑥2) and thus 

𝑡𝑓(𝑥1) + (1 − 𝑡)𝑓(𝑥2) ≤ 𝑡𝑓(𝑥2) + (1 − 𝑡)𝑓(𝑥2) 

which becomes 

𝑡𝑓(𝑥1) + (1 − 𝑡)𝑓(𝑥2) ≤  𝑓(𝑥2). 

Applying this to the definition of strict convexity, 

𝑓(𝑡𝑥1 + (1 − 𝑡)𝑥2) < 𝑓(𝑥2). 

If 𝑡 is selected to be sufficiently close to 0, say 𝑡 < 휀, then 𝑡𝑥1 + (1 − 𝑡)𝑥2 ∈ 𝐵(𝑥2, 휀), which 

contradicts the definition of the local minimizer 𝑥2. Therefore, the assumption is false and thus 

the function must have at most one local minimizer. ∎ 

 

However, according to the extreme value theorem [44], there must exist at least one local minimizer 

on the domain as well; [0, 1]𝑛 is a closed and bounded subset of an open set ℝ𝑛 and, by Theorem 

3.3, the strictly convex function 𝐽 is continuous everywhere [45]. 

 

Theorem 3.2. (Extreme Value Theorem) Suppose that 𝑓:ℝ𝑛 → ℝ is continuous on an open set 

𝑈. If 𝑆 is a closed and bounded subset of 𝑈, then 𝑓 has a global minimum and global maximum 

on 𝑆. 
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Theorem 3.3. If 𝑓:ℝ𝑛 → ℝ is a convex function, then 𝑓 is continuous on ℝ𝑛. 

 

We finally demonstrated that the least squares error function 𝐽(�⃑�) contains a unique local solution 

on [0, 1]𝑛, which becomes a unique global solution of the function on the specified domain under 

the two conditions: (𝑖) the linear mixture model is an overdetermined system and (𝑖𝑖) the columns of 

the mixing matrix are linearly independent. The original GD method therefore can be applied as a 

global optimization method to minimize 𝐽(�⃑�) defined on the domain. 

To minimize 𝐽(�⃑�) on [0, 1]𝑛 with the GD method, it is required to bound the abundance 

vector �⃑� to the domain in each iteration so that it remains and finds a solution there; otherwise, the 

GD method solves unconstrained optimization problems. Thus, we need to implement a process 

pushing a point back iteratively to the domain whenever the point escapes from the domain. This 

process is called a bounding process and it indeed enables us to take any initial point on [0, 1]𝑛. The 

algorithm of the original GD method for linear unmixing is shown in Algorithm 3.1. 

 

3.4 Selection of Step Size 

 

As seen in Eq. (3.1) and Eq. (3.28), the iterative scheme requires a step size. In fact, there 

are several options to choose a step size for the GDM. The simplest option is merely to take a fixed 

step size 𝑠(𝑘) = 𝑠 for all 𝑘. The proper selection of the fixed step size is however not simple; if 𝑠 

is too large, the method may overshoot the minima and diverge and, if 𝑠 is too small, the method 

may converge very slowly. 

 If an objective function is a quadratic function, we can easily find an appropriate fixed step 
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size for the GD method [43]. Given a fixed step size 𝑠 > 0, the gradient method is guaranteed to 

converge if and only if 

 0 < 𝑠 <
2

𝜆𝑚𝑎𝑥(𝑄)
 (3.31) 

where  𝜆𝑚𝑎𝑥(𝑄) is the largest eigenvalue of the matrix 𝑄.  Since the least squares error function 

𝐽(𝛼) is quadratic, we can find a proper step size by computing the largest eigenvalue of 𝑀𝑇𝑀 where 

𝑀 is the mixing matrix. 

 

3.5 Algorithms 

 

We can use either the FC-GD method or the typical GD method to estimate the abundance 

vector �⃑�  by specifying the parameter 𝑎𝑙𝑔  in Algorithm 3.1. The parameter is selected between 

“FCGDM” and “GDM”. 

 

Algorithm 3.1. Gradient Descent Method for Linear Unmixing 

Input: Mixing matrix 𝑀 , mixture emission spectrum 𝑟 , initial point �⃑�(0) , step size 𝑠 , 

maximum number of iterations 𝑚𝑎𝑥𝐼𝑡𝑒𝑟, convergence tolerance 휀 and algorithm 𝑎𝑙𝑔 

1 Initialize 𝑘 = 0 and 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 = 𝑓𝑎𝑙𝑠𝑒; 

2 Calculate 𝑄 = 𝑀𝑇𝑀 and �⃑⃑� = −𝑀𝑇𝑟; 

3 while not convergence do 

4 Calculate ∇𝐽(�⃑�(𝑘)) using Eq. (3.29); 

5 if ‖∇𝐽(�⃑�(𝑘))‖ < 휀 or 𝑘 = 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 then 

6 Set 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 = 𝑡𝑟𝑢𝑒; 

7 Else 

8 if 𝑎𝑙𝑔 = 𝐺𝐷𝑀 then 

9 Calculate �⃑�(𝑘+1) using Eq. (3.1); 

10 Bound �⃑�(𝑘+1) with lower bound 0 and upper bound 1; 

11 Else 
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12 Calculate �⃑�(𝑘+1) using Eq. (3.28); 

13 end if 

14 Set 𝑘 = 𝑘 + 1; 

15 end if 

16 end while 

Output: Abundance vector �⃑� 

 

3.6 Conclusion 

 

 In general, a GD algorithm finds multiple local optima, which may produce suboptimal 

solutions for linear unmixing. By applying the ASC and ANC to the updated scheme of the GD 

method, the FC-GD method can locate an optimal solution. However, if the linear mixture model is 

an overdetermined system and the columns of the mixing matrix of the model are linearly independent, 

it is guaranteed that there exists only one local solution on the domain [0, 1]𝑛 and therefore the 

original GD method with the bounding process finds the same optimal solution as the FD-GD method. 

Due to the bounding process, we can select any initial point on the domain for the original GD method, 

whereas we should choose an initial point meeting the ASC for the FC-GD method. Furthermore, the 

simplicity of the original GD method leads to less computational cost, compared to the FC-GD 

method. 

 Considering the ASC and ANC, we know that an optimal solution for a linear unmixing 

problem must exist on the domain [0, 1]𝑛 . Then a natural question arises: is a global solution on the 

domain an optimal solution for the linear unmixing problem? It is undoubtedly true. We will discuss 

about two global optimization methods applicable to linear unmixing in the next chapter. 
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Chapter 4 

 

 The purpose of this chapter is to represent global optimization methods to estimate 

abundance fractions for the linear spectral mixture model. To obtain an optimal solution with the GD 

method, we necessarily modify the updating equation in Eq. (3.1) by applying the ASC and ANC. In 

this chapter, two global optimization methods are introduced to locate an optimal solution without 

considering such constraints. 

 

4.1 Standard Nelder-Mead (NM) Method 

 

The NM method has been developed by Nelder and Mead to solve unconstrained 

optimization problems without any derivative information, which makes it suitable for optimization 

of non-smooth and even discontinuous functions [46]. Strictly speaking, the NM method is not a 

strong global optimization method; however, in practice it performs reasonably well for objective 

functions with weak multimodality [29], [47]. 

This method is characterized by the use of a simplex which is a geometric figure in 𝑛 

dimensions. A simplex is defined as the convex hull of 𝑛 + 1 vertices. The NM method iteratively 

produces a sequence of simplices to approximate an optimum; it improves a simplex by comparing 

the objective function values at the 𝑛 + 1 vertices and moves the simplex towards an optimum. 

In each iteration, the vertex with the worst function value is eliminated and then replaced 

with another point with a better value. The new point is found by reflecting, expanding, or contracting 

the simplex along the line joining the worst vertex with the centroid of the other vertices. In the case 
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when the algorithm fails to find a better point, it maintains only the vertex with the best function value 

and shrinks the simplex by moving the remaining vertices towards this vertex. In this manner, a new 

simplex is iteratively formed, and the search is continued. As the iterations proceed, the function 

values at the vertices of the simplex get smaller and smaller, and hence its size diminishes and the 

optimum point is obtained at the end [48]. 

As stated above, reflection, expansion, contraction, and shrinkage are four possible 

operations in the algorithm. Each operation is associated with a parameter: 𝛼  (reflection), 𝛽 

(expansion), 𝛾 (contraction), and 𝛿 (shrinking) where 𝛼 > 0, 𝛽 > 1, 0 < 𝛾 < 1, and 0 < 𝛿 < 1. 

For the standard NM method, the parameters are selected to be 

 {𝛼, 𝛽, 𝛾, 𝛿} = {1, 2,
1

2
,
1

2
}. (4.1) 

The operations of the algorithm for minimization are described as below [48]. 

 Ordering. At each iteration, the vertices {�⃑�𝑖}𝑖=0
𝑛   of the simplex are ordered based on the 

objective function values 

 𝑓(�⃑�0) ≤ 𝑓(�⃑�1) ≤ ⋯ ≤ 𝑓(�⃑�𝑛) (4.2) 

where �⃑�0 is the best vertex (where the function value is the smallest) and �⃑�𝑛 is the worst vertex 

(where the function value is the largest). 

 Centroid. The procedure uses the centroid �⃑�𝑚 of the simplex. It is obtained as 

 �⃑�𝑚 =
1

𝑛
∑ �⃑�𝑖

𝑛−1

𝑖=0

 (4.3) 

 Reflection. This operation reflects the highest-valued point over the centroid. This typically 

moves the simplex from high regions toward lower regions. The reflection point �⃑�𝑟 is given by 

 �⃑�𝑟 = �⃑�𝑚 + 𝛼(�⃑�𝑚 − �⃑�𝑛). (4.4) 
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 Expansion. When the reflected point has a function value less than all points in the simplex, the 

reflected point is sent even further by this operation. The expansion point �⃑�𝑒  is defined as 

 𝑥𝑒 = �⃑�𝑟 + 𝛽(�⃑�𝑟 − �⃑�𝑚). (4.5) 

 Contraction. The simplex is shrunk down by moving away from the worst point. The contraction 

point �⃑�𝑐 is thus given by 

 �⃑�𝑐 = �⃑�𝑚 + 𝛾(�⃑�𝑛 − �⃑�𝑚). (4.6) 

 Shrinkage. All points are moved toward the best point, typically halving the separation distance. 

For 1 ≤ 𝑖 ≤ 𝑛, �⃑�𝑖 is given by 

 �⃑�𝑖 = �⃑�0 + 𝛿(�⃑�𝑖 − �⃑�0). (4.7) 

The algorithm terminates when the simplex becomes sufficiently small, and the vertices are 

within a specific tolerance [28]. Namely, 

 max
1≤𝑖≤𝑛

|𝑓(�⃑�𝑖) − 𝑓(�⃑�0)| < 휀 and max
1≤𝑖≤𝑛

‖�⃑�𝑖 − �⃑�0‖∞ < 휀 (4.8) 

In practice, the standard deviation of the function values at the vertices is often employed as a 

termination condition for the algorithm [48]. 

 Δ = √
1

𝑛 + 1
∑[𝑓(�⃑�𝑖)  − 𝑓𝑚]2
𝑛

𝑖=0

  (4.9) 

where 

Figure 4.1. The Nelder-Mead simplex operations visualized in two-dimensions. 
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 𝑓𝑚 =
1

𝑛 + 1
∑𝑓(�⃑�𝑖) 

𝑛

𝑖=0

 (4.10) 

The final optimizer �⃑�𝑏𝑒𝑠𝑡  is the point whose function value is the smallest among the vertices of the 

simplex. The algorithm of the standard NM method is summarized in Algorithm 4.1. 

 

4.2 Adaptive Nelder-Mead (NM) Method 

 

 It is well-known that the standard NM algorithm is very sensitive to dimensionality of an 

objective function; in fact, it has been observed by researchers that the standard NM can become very 

inefficient for large dimensional problems, which is called the effect of dimensionality [27], [29]. 

Although the standard NM method generally performs well for low-dimensional problems and 

continuously remains as one of the most popular optimization techniques, it may show poor 

performance in high dimensions. Unfortunately, it is still an open question whether the simplices 

converge to a minimizer due to the lack of a satisfactory theoretical analysis for explaining the effect 

of dimensionality on the NM method [49]. 

 It is however found that reducing the chances of using reflection steps and avoiding the 

rapid reduction in the simplex diameter should help improve the performance of the standard NM for 

large dimensional problems. Based on these observations, it is proposed to adaptively select the 

parameters for expansion, contraction, and shrinkage according to dimensionality of an objective 

function [28]. Specifically, for the dimension 𝑛, 

 {𝛼, 𝛽, 𝛾, 𝛿} = {1, 1 +
2

𝑛
, 0.75 −

1

2𝑛
, 1 −

1

𝑛
}. (4.11) 

When 𝑛 = 2, the adaptive NM method becomes the standard NM method discussed in the previous 
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section. 

 In high dimensions, expansion operations may distort the simplex badly, but the choice of 

𝛽 in (4.11) is helpful to prevent it from the bad distortion caused by expansion. The use of 𝛾 in 

(4.11) can avoid its diameter reduction when 𝑛 is large. Similarly, taking 𝛿 in (4.11) can prevent 

the simplex diameter from drastic reduction, which enables the following expansion or contraction 

operations to contribute to minimize the objective function more rapidly. It is also observed that the 

use of the adaptive parameters (4.11) rather than (4.1) can help reduce the number of reflection 

operations for optimization. 

 

4.3 Selection of Initial Simplex 

 

 The proper choice of an initial simplex influences the performance of the NM method 

significantly [50]. Gao and Han [28] suggested how to choose the initial simplex vertices for better 

convergence. For a search in 𝑛 dimensions, by selecting a starting point �⃑�0 as one of the vertices, 

the remaining 𝑛 vertices are obtained by the following rule 

 𝑥𝑖 = �⃑�0 + 𝜏𝑖𝑒𝑖 (4.12) 

where 1 ≤ 𝑖 ≤ 𝑛, and 𝑒𝑖 denotes the 𝑖𝑡ℎ standard basis vector with a 1 in the 𝑖𝑡ℎ coordinate and 

0 elsewhere. The value 𝜏𝑖 is chosen as 

 𝜏𝑖 = {
0.05 if (�⃑�1)𝑖 ≠ 0

0.00025 if (�⃑�1)𝑖 = 0
. (4.13) 

 

4.4 Teaching-Learning-Based Optimization 
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 For a large-scale problem, difficulties such as multimodality and dimensionality lie in 

conducting optimization to find an optimal solution. While solving such a problem, finding a feasible 

solution, and improving it to the global solution are often required in practice. However, the NM 

method may fail to locate the global solution since it is vulnerable at strong multimodality and high 

dimensionality [27], [29]. Sustainable development to overcome the disadvantages has resulted in 

metaheuristic optimization techniques, which are being employed extensively in academia and 

industry due to their strength in solving such difficulties [31]. 

A metaheuristic optimization is a search procedure designed to find a good approximate 

solution to an optimization problem which is complex and difficult to solve computationally [51]. 

Modern metaheuristic optimization algorithms tend to be suitable in most cases for global 

optimization, implementing stochastic search processes in their algorithms. Particularly, teaching-

learning-based optimization is a nature-inspired metaheuristic optimization algorithm motivated by 

the teaching and learning process in a classroom and it has been designed to obtain a global solution 

with less computational cost and high consistency [31]. 

The main idea behind the TLBO algorithm is the simulation of a teaching-learning process 

of the classroom. It is built on the influence of a teacher on the outcome of learners in a class. The 

teacher is selected among learners as a highly educated person who help learners gain knowledge. 

The quality of a teacher is certainly a variable of the output of learners and hence it is evident that a 

good teacher can educate learners so well that they can achieve better outcomes. Also, learners 

interact with one another to further modify and improve their gained knowledge.  

The TLBO algorithm is a stochastic population-based algorithm with a prescribed 

population size (𝑁𝑃) and hence an initial population is randomly generated. An individual (𝑋𝑖) in the 
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population denotes a single possible solution to a specified optimization problem. Here, 𝑋𝑖 is a real 

𝐷 dimensional vector symbolizing the number of design variables associated with an individual. The 

algorithm attempts to improve each individual during the teacher phase and learner phase by replacing 

an individual with a better one; each individual accepts his new solution only when it is better than 

his previous one. This process is called greedy selection. The algorithm continues until it reaches the 

maximum number (𝑇) of generations. 

In the teacher phase, the individual with the best solution takes a role of a teacher (𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟). 

The algorithm pushes other individuals (𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡) towards the teacher using the current average of 

the individuals (𝑋𝑎𝑣𝑒𝑟𝑎𝑔𝑒) which measures the qualities of all learners from the current generation. 

Eq. (4.14) shows how learning improvement of learners can be influenced by the difference between 

the knowledge of the teacher and the qualities of all learners in the algorithm. For stochastic purpose, 

randomness is applied to two parameters within the equation: 𝑟  ranges from 0  and 1 ; and 𝑇𝐹 , 

defined as a teaching factor, is either 1 or 2, highlighting the significance of the qualities of the 

learners. 

 𝑋𝑛𝑒𝑤 = 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑟(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 − 𝑇𝐹𝑋𝑎𝑣𝑒𝑟𝑎𝑔𝑒) (4.14) 

 During the learner phase, a learner (𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡) strives to enhance his knowledge through peer 

learning from an arbitrary learner ( 𝑋𝑝𝑎𝑟𝑡𝑛𝑒𝑟 ). If 𝑋𝑝𝑎𝑟𝑡𝑛𝑒𝑟  is better than 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡  (that is, 

𝑓𝑝𝑎𝑟𝑡𝑛𝑒𝑟 < 𝑓𝑐𝑢𝑟𝑟𝑒𝑛𝑡), then 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 moves towards 𝑋𝑝𝑎𝑟𝑡𝑛𝑒𝑟 as described in Eq. (4.15); otherwise, 

it moves away from 𝑋𝑝𝑎𝑟𝑡𝑛𝑒𝑟 as shown in Eq. (4.16). In the case that a learner (𝑋𝑛𝑒𝑤) shows a 

better performance by evaluating Eq. (4.15) and Eq. (4.16), he is welcome to be accepted into the 

population. 

 𝑋𝑛𝑒𝑤 = 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑟(𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑋𝑝𝑎𝑟𝑡𝑛𝑒𝑟) if 𝑓𝑝𝑎𝑟𝑡𝑛𝑒𝑟 < 𝑓𝑐𝑢𝑟𝑟𝑒𝑛𝑡  (4.15) 
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 𝑋𝑛𝑒𝑤 = 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑟(𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑋𝑝𝑎𝑟𝑡𝑛𝑒𝑟) if 𝑓𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ≤ 𝑓𝑝𝑎𝑟𝑡𝑛𝑒𝑟  (4.16) 

The algorithm repeats its iterations until it reaches the maximum number (𝑇) of generations. The 

individual (𝑋𝑏𝑒𝑠𝑡)  whose function value is the smallest in the population becomes the global 

minimum of the function. The algorithm of the TLBO method is illustrated in Algorithm 4.2. 

 

4.5 Teaching-Learning-Studying-Based Optimization 

 

 There are a variety of complicated real-world problems having many local optimal solutions. 

In optimizing such problems using the TLBO algorithm, it may require too many iterations to find 

the global solution or sometimes fail it if the teacher is trapped in one of the local optima and cannot 

escape from there in the following iterations. In such cases, according to Eq. (4.14), all of the 

population gradually moves towards the teacher and their positions would be equal to the teacher. 

This implies that the learning and teaching phases gradually lose their effectiveness in the 

optimization process and hence the algorithm requires too many iterations for global convergence. 

Since the position of the teacher affects the overall performance of the algorithm, a new appropriate 

strategy known as studying phase is proposed by Akbari et al. [32] for the TLBO algorithm to enhance 

the power of the algorithm. During this phase, each individual attempts to improve its position by 

appropriately changing each dimension of its position. 

 𝑋𝑠𝑡𝑢𝑑𝑦𝑖𝑛𝑔,𝑑 = 𝑟𝑑(𝑋𝑝𝑎𝑟𝑡𝑛𝑒𝑟,𝑑 − 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑑) if 𝑓𝑝𝑎𝑟𝑡𝑛𝑒𝑟 < 𝑓𝑐𝑢𝑟𝑟𝑒𝑛𝑡  (4.17) 

 𝑋𝑠𝑡𝑢𝑑𝑦𝑖𝑛𝑔,𝑑 = 𝑟𝑑(𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑑 − 𝑋𝑝𝑎𝑟𝑡𝑛𝑒𝑟,𝑑) if 𝑓𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ≤ 𝑓𝑝𝑎𝑟𝑡𝑛𝑒𝑟 (4.18) 

In the studying phase, a new partner 𝑋𝑝𝑎𝑟𝑡𝑛𝑒𝑟  is randomly chosen and, again, randomness 𝑟𝑑 ∈

[0, 1] is applied to the parameter within the equation for each dimension 𝑑. This strategy merges 

into the global and local search equations (that is, the teaching and learning phases) so that it can 
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considerably increase the power of the algorithm by extricating the population from their bad 

positions; it helps effectively to add variety to the population and thus escape from local optima. Good 

exploration for the global solution can be achieved in this manner. 

 The modified global and local search equations can be expressed as 

 𝑋𝑛𝑒𝑤 = 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑟(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 − 𝑇𝐹𝑋𝑎𝑣𝑒𝑟𝑎𝑔𝑒) + 𝑟𝑛𝑋𝑠𝑡𝑢𝑑𝑦𝑖𝑛𝑔 (4.19) 

 𝑋𝑛𝑒𝑤 = 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑟(𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑋𝑝𝑎𝑟𝑡𝑛𝑒𝑟) + 𝑟𝑛𝑋𝑠𝑡𝑢𝑑𝑦𝑖𝑛𝑔 if 𝑓𝑝𝑎𝑟𝑡𝑛𝑒𝑟 < 𝑓𝑐𝑢𝑟𝑟𝑒𝑛𝑡  (4.20) 

 𝑋𝑛𝑒𝑤 = 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑟(𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑋𝑝𝑎𝑟𝑡𝑛𝑒𝑟) + 𝑟𝑛𝑋𝑠𝑡𝑢𝑑𝑦𝑖𝑛𝑔 if 𝑓𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ≤ 𝑓𝑝𝑎𝑟𝑡𝑛𝑒𝑟 (4.21) 

where 𝑟𝑛 is a normally distributed random number. The algorithm of the TLSBO method is shown 

in Algorithm 4.2. 

 

4.6 Termination Condition for TLBO and TLSBO 

 

 The major disadvantage of the TLBO and TLSBO methods is that different control 

parameters are required for proper working of these algorithms [52]. A proper selection of the 

parameters is essential for these algorithms to search the global solution since convergence of the 

solution is highly dependent of the initial parameters. Especially, an inappropriate selection may 

affect the convergence rate, and it is hence necessary to tune the parameters by trial and error for fast, 

robust convergence to the solution, which is a very tedious process [53], [54]. To reduce such 

tediousness, we have developed a strategy to avoid tuning the maximum number of generations (𝑇), 

which motivated by the so-called early stopping method in machine learning. 

 In machine learning, overfitting refers to a modelling error that occurs when a statistical 

model fits exactly against its training data [55]. Early stopping is a regularization technique used to 

prevent overfitting while training a model with an iterative optimization method such as the gradient 
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descent method. Such a method updates the model to make it fit the training data better with each 

iteration. Up to a certain point, this enhances the performance of the model on the validation data 

which is outside of the training data. However, after that point, improving the model on the training 

data leads to an increase in generalization error, which reduces the ability of the model to generate 

accurate predictions for previously unseen data [56]. To circumvent this issue, early stopping 

terminates training when the model updates do not yield improvements anymore on the validation 

data.  

 By implementing a similar technique into TLBO and TLSBO, we can impose a termination 

condition on them. Storing the best minimum solution at each generation, if the norm of the difference 

of the best minimum solutions between two consecutive generations is less than a prescribed error 

tolerance, then one point is given to the algorithm as a reward; otherwise, the accumulated points are 

reset to zero. When the score reaches a desired number (for example, 100 in this study), then the 

solution is considered as a convergent solution and the algorithm is terminated. 

 

4.7 Algorithms 

 

We can solve the linear unmixing problem (1.12) using the NM method in order to estimate 

the abundance fractions. As seen in Chapter 3, however, it is necessary to implement the bounding 

process to the algorithm so that the NM method does not solve the unconstrained linear unmixing 

problem. We can choose either the standard NM method or the adaptive NM method by specifying 

the parameter 𝑎𝑙𝑔 between “SNM” and “ANM” in Algorithm 4.1. 

 

Algorithm 4.1. Nelder-Mead Method for Linear Unmixing 
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Input: Mixing matrix 𝑀, mixture emission spectrum 𝑟, initial vertex �⃑�0
(0)

, maximum number 

of iterations 𝑚𝑎𝑥𝐼𝑡𝑒𝑟, convergence tolerance 휀 and algorithm 𝑎𝑙𝑔 

1 Initialize 𝑘 = 0 and 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 = 𝑓𝑎𝑙𝑠𝑒; 

2 Generate remaining 𝑛 initial vertices using Eq. (4.12) and Eq. (4.13); 

3 if 𝑎𝑙𝑔 = 𝑆𝑁𝑀 then 

4 Set 𝛼, 𝛽, 𝛾, 𝛿 using Eq. (4.1); 

5 Else 

6 Set 𝛼, 𝛽, 𝛾, 𝛿 using Eq. (4.11); 

7 end if 

8 while not convergence do 

9 Sort {�⃑�𝑖
(𝑘)

}
𝑖=0

𝑛
 using Eq. (4.2); 

10 Calculate �⃑�𝑚
(𝑘)

 using Eq. (4.3); 

11 Calculate �⃑�𝑟
(𝑘)

 using Eq. (4.4); 

12 Calculate 𝐽 (�⃑�𝑟
(𝑘)

), 𝐽 (�⃑�0
(𝑘)

), 𝐽 (�⃑�𝑛−1
(𝑘)

) and 𝐽 (�⃑�𝑛
(𝑘)

) using Eq. (2.1); 

13 if 𝐽 (�⃑�𝑟
(𝑘)

) < 𝐽 (�⃑�0
(𝑘)

) then 

14 Calculate �⃑�𝑒
(𝑘)

 using Eq. (4.5); 

15 Calculate 𝐽 (�⃑�𝑒
(𝑘)

) using Eq. (2.1); 

16 if 𝐽 (�⃑�𝑒
(𝑘)

) < 𝐽 (�⃑�𝑟
(𝑘)

) then 

17 Set �⃑�𝑛
(𝑘)

= �⃑�𝑒
(𝑘)

; 

18 Else 

19 Set �⃑�𝑛
(𝑘)

= �⃑�𝑟
(𝑘)

; 

20 end if 

21 elseif 𝐽 (�⃑�𝑟
(𝑘)

) > 𝐽 (�⃑�𝑛−1
(𝑘)

) then 

22 if 𝐽 (�⃑�𝑟
(𝑘)

) ≤ 𝐽 (�⃑�𝑛
(𝑘)

) then 

23 Set �⃑�𝑛
(𝑘)

= �⃑�𝑟
(𝑘)

; 

24 end if 
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25 Calculate �⃑�𝑐
(𝑘)

 using Eq. (4.6); 

26 Calculate 𝐽 (�⃑�𝑐
(𝑘)

), 𝐽 (�⃑�𝑛
(𝑘)

) using Eq. (2.1); 

27 if 𝐽 (�⃑�𝑐
(𝑘)

) > 𝐽 (�⃑�𝑛
(𝑘)

) then 

28 Perform shrinkage using Eq. (4.7); 

29 Else 

30 Set �⃑�𝑛
(𝑘)

= �⃑�𝑐
(𝑘)

; 

31 end if 

32 Else 

33 Set �⃑�𝑛
(𝑘)

= �⃑�𝑟
(𝑘)

; 

34 end if 

35 Bound {�⃑�𝑖
(𝑘)

}
𝑖=0

𝑛
 with lower bound 0 and upper bound 1; 

36 Calculate Δ(𝑘) using Eq. (4.9); 

37 if Δ(𝑘) < 휀 or 𝑘 = 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 then 

38 Set 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 = 𝑡𝑟𝑢𝑒; 

39 end if 

40 end while 

41 Select �⃑�𝑏𝑒𝑠𝑡; 

Output: Abundance vector �⃑� 

 

Similar to the NM method, the bounding process is required for the TLBO method and the 

TLSBO method so that they do not find an unconstrained solution to the problem. By specifying the 

parameter 𝑎𝑙𝑔 in Algorithm 4.2, one can select either the TLBO method or the TLSBO method to 

obtain optimal abundance fractions. 

 

Algorithm 4.2. Teaching-Learning-Based-Optimization Method with Termination Condition for 

Linear Unmixing 

Input: Mixing matrix 𝑀 , mixture emission spectrum 𝑟 , number of abundance fractions 𝐷 , 
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population size 𝑁𝑝 , maximum number of iterations 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 , convergence tolerance 휀  and 

algorithm 𝑎𝑙𝑔 

1 Initialize 𝑝𝑜𝑖𝑛𝑡 = 0, 𝑘 = 0 and 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 = 𝑓𝑎𝑙𝑠𝑒; 

2 Generate a random population; 

3 Calculate the function values of the population using Eq. (2.1); 

4 Choose �⃑�𝑏𝑒𝑠𝑡; 

5 Set �⃑�𝑜𝑙𝑑 = �⃑�𝑏𝑒𝑠𝑡; 

6 while not convergence do 

7 for 𝑛 = 1 to 𝑁𝑝 do 

8 if 𝑎𝑙𝑔 = 𝑇𝐿𝑆𝐵𝑂 then 

9 {Studying Phase} 

10 for 𝑑 = 1 to 𝐷 do 

11 Choose �⃑�𝑝𝑎𝑟𝑡𝑛𝑒𝑟 randomly; 

12 Calculate 𝐽(�⃑�𝑐𝑢𝑟𝑟𝑒𝑛𝑡) and 𝐽(�⃑�𝑝𝑎𝑟𝑡𝑛𝑒𝑟) using Eq. (2.1); 

13 if 𝐽(�⃑�𝑝𝑎𝑟𝑡𝑛𝑒𝑟) < 𝐽(�⃑�𝑐𝑢𝑟𝑟𝑒𝑛𝑡) then 

14 Set �⃑�𝑠𝑡𝑢𝑑𝑦𝑖𝑛𝑔,𝑑 using Eq. (4.17); 

15 Else 

16 Set �⃑�𝑠𝑡𝑢𝑑𝑦𝑖𝑛𝑔,𝑑 using Eq. (4.18); 

17 end if 

18 end for 

19 end if 

20 {Teacher Phase} 

21 Choose �⃑�𝑡𝑒𝑎𝑐ℎ𝑒𝑟; 

22 Calculate �⃑�𝑎𝑣𝑒𝑟𝑎𝑔𝑒; 

23 if 𝑎𝑙𝑔 = 𝑇𝐿𝑆𝐵𝑂 then 

24 Generate �⃑�𝑛𝑒𝑤 using Eq. (4.19); 

25 Else 

26 Generate �⃑�𝑛𝑒𝑤 using Eq. (4.14); 

27 end if 

28 Bound �⃑� with lower bound 0 and upper bound 1; 

29 Calculate 𝐽(�⃑�𝑐𝑢𝑟𝑟𝑒𝑛𝑡) and 𝐽(�⃑�𝑛𝑒𝑤) using Eq. (2.1); 

30 if 𝐽(�⃑�𝑛𝑒𝑤) < 𝐽(�⃑�𝑐𝑢𝑟𝑟𝑒𝑛𝑡) then 

31 Set �⃑�𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = �⃑�𝑛𝑒𝑤; 
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32 end if 

33 {Learner Phase} 

34 Choose �⃑�𝑝𝑎𝑟𝑡𝑛𝑒𝑟 randomly; 

35 Calculate 𝐽(�⃑�𝑐𝑢𝑟𝑟𝑒𝑛𝑡) and 𝐽(�⃑�𝑝𝑎𝑟𝑡𝑛𝑒𝑟) using Eq. (2.1); 

36 if 𝐽(�⃑�𝑝𝑎𝑟𝑡𝑛𝑒𝑟) < 𝐽(�⃑�𝑐𝑢𝑟𝑟𝑒𝑛𝑡) then 

37 if 𝑎𝑙𝑔 = 𝑇𝐿𝑆𝐵𝑂 then 

38 Generate �⃑�𝑛𝑒𝑤 using Eq. (4.20); 

39 Else 

40 Generate �⃑�𝑛𝑒𝑤 using Eq. (4.15); 

41 end if 

42 Else 

43 if 𝑎𝑙𝑔 = 𝑇𝐿𝑆𝐵𝑂 then 

44 Generate �⃑�𝑛𝑒𝑤 using Eq. (4.21); 

45 Else 

46 Generate �⃑�𝑛𝑒𝑤 using Eq. (4.16); 

47 end if 

48 end if 

49 Bound �⃑� with lower bound 0 and upper bound 1; 

50 Calculate 𝐽(�⃑�𝑐𝑢𝑟𝑟𝑒𝑛𝑡) and 𝐽(�⃑�𝑛𝑒𝑤) using Eq. (2.1); 

51 if 𝐽(�⃑�𝑛𝑒𝑤) < 𝐽(�⃑�𝑐𝑢𝑟𝑟𝑒𝑛𝑡) then 

52 Set �⃑�𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = �⃑�𝑛𝑒𝑤; 

53 end if 

54 Set 𝑘 = 𝑘 + 1; 

55 end for 

56 Choose �⃑�𝑏𝑒𝑠𝑡; 

57 if ‖�⃑�𝑏𝑒𝑠𝑡 − �⃑�𝑜𝑙𝑑‖ < 휀 then 

58 Set 𝑝𝑜𝑖𝑛𝑡 = 𝑝𝑜𝑖𝑛𝑡 + 1; 

59 Else 

60 Set 𝑝𝑜𝑖𝑛𝑡 = 0; 

61 end if 

62 Set �⃑�𝑜𝑙𝑑 = �⃑�𝑏𝑒𝑠𝑡; 

63 if 𝑝𝑜𝑖𝑛𝑡 = 100 or 𝑘 = 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 then 

64 Set 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 = 𝑡𝑟𝑢𝑒; 
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65 end if 

66 end while 

67 Choose �⃑�𝑏𝑒𝑠𝑡; 

Output: Abundance vector �⃑� 

 

4.8 Conclusion 

 

We have seen that global optimization algorithms, the NM method and the TLBO method, 

are applicable to the linear unmixing problem. The NM method is a global optimization technique, 

which generates and improves iteratively simplices to locate an optimum. It is, however, known as a 

weak global optimization method because it is vulnerable at strong multimodality. Furthermore, the 

inherent problem of the NM method is the effect of dimensionality; indeed, it may find a suboptimal 

solution to a high-dimensional problem if we choose the standard parameters in Eq. (4.1). To 

overcome this issue, the adaptive parameters in Eq. (4.11) are suggested, enabling the algorithm to 

approximate an optimal solution even in high dimensions. 

The TLBO method is a nature-inspired metaheuristic optimization algorithm motivated by 

the teaching and learning process in a classroom. As a strong global optimization technique, it has 

been developed to obtain a global solution regardless of dimensionality and multimodality. In this 

algorithm, the role of the teacher is very significant since all learners constantly move their positions 

towards the teacher. If the teacher is confined in the local optimum, the algorithm may take too many 

iterations for global convergence. The TLSBO method solves this issue. Applying some changes to 

the positions of all population helps them to flee from their bad positions, which results in faster 

convergence. However, finding the parameters, the population size, and the number of generations, 

by trial and error is a tedious, time-consuming task. By implementing the early stopping technique 
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into the TLBO and TLSBO algorithms, we can reduce effort on finding the proper number of 

generations. 

A fluorescence spectrum is a fluorescent signal. This fact implies that it may contain 

unintended noise while the spectrofluorometer captures it. We then may want to ask if the linear 

unmixing algorithms work properly on noisy spectra. If it is not true, can they then unmix filtered 

spectra when we denoise such noisy spectra? In the next chapter, we will investigate denoising 

algorithms to filter noisy spectra and their applications to the linear unmixing algorithms. 
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Chapter 5 

 

Since fluorescence is a highly sensitive analytical technique, emission spectra, which are 

fundamentally fluorescent signals, may contain unintended noise due to the sensitivity of the 

spectrofluorometer. This chapter discusses denoising techniques that rely on Fourier transform and 

wavelet transform to filter noise from the signals and presents their algorithms. 

 

5.1 Fourier Transform (FT) 

 

 Wave functions consist of energy at a fundamental frequency and at harmonic frequencies. 

The shape of the wave function is determined by the proportions of energy at the fundamental and 

the harmonic frequencies, implying that the wave function can be represented as a sum of sine and 

cosine functions with unique constants. The summation and the constants are called a Fourier series 

and Fourier coefficients, respectively [57]. 

 The FT is a mathematical method of transforming a function of time (or space) to a function 

of frequency. Thus, it decomposes a waveform in a time domain into a combination of sinusoidal 

terms, each with a unique magnitude, frequency, and phase [58]. The FT process converts the time-

based waveform expressed in complex functions into sinusoidal functions, which when combined, 

can exactly replicate the original waveform. In particular, the relationship between the FT of a 

continuous function 𝑓 at frequency 𝜉 and its inverse FT is described as 

 𝑓(𝜉) = ∫ 𝑓(𝑡)𝑒−2𝜋𝑖𝜉𝑡𝑑𝑡
∞

−∞

 (5.1) 
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 𝑓(𝑡) = ∫ 𝐹(𝜉)𝑒2𝜋𝑖𝜉𝑡𝑑𝜉
∞

−∞

 (5.2) 

where 𝑒𝑖𝜃 can be expressed as a sum of sines and cosines according to Euler’s formula 

 𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃. (5.3) 

The FT and its inverse are thus said to be in a one-to-one mapping between the time and frequency 

domains. 

However, a computer cannot work with a continuous-time signal, and it is hence necessary 

to take some samples of the signal and analyze these samples instead of the original signal. Moreover, 

since the computer can process only a finite number of samples, it is also necessary to make an 

approximation and use a limited number of samples. Therefore, a finite-duration sequence is generally 

used to represent a continuous-time signal which may extend to positive infinity on the time axis [33]. 

Considering a continuous-time signal as such a discrete-time signal, the discrete Fourier transform 

(DFT) becomes a powerful tool used to convert a finite sequence of waveform data in the time domain 

into equally spaced data in the frequency domain. The original data are restored through an additional 

Fourier analysis, known as the inverse DFT, using FT samples as the coefficients of complex 

sinusoids at the corresponding FT frequencies [59]. 

 The DFT is the most common technique of Fourier analysis applied to a discrete complex-

valued series [60]. The DFT to transform a sequence of 𝑁 complex-valued samples {𝑥𝑛} into {𝑋𝑘} 

is defined as 

 𝑋𝑘 = ∑ 𝑥𝑛𝑒−2𝜋𝑖𝑘𝑛/𝑁

𝑁−1

𝑛=0

 (5.4) 

and its inverse is given by 
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 𝑥𝑛 =
1

𝑁
∑ 𝑋𝑘𝑒2𝜋𝑖𝑘𝑛/𝑁

𝑁−1

𝑘=0

. (5.5) 

Thus, the DFT is a linear operator that maps the data points in the time domain {𝑥𝑛} to the frequency 

domain {𝑋𝑘}. Letting 𝜔𝑁 = 𝑒−2𝜋𝑖/𝑁, the DFT may be computed by matrix multiplication as follows 

[33]. 

 

[
 
 
 
 

𝑋0

𝑋1

𝑋2

⋮
𝑋𝑁−1]

 
 
 
 

=

[
 
 
 
 
 
𝜔𝑁

0 𝜔𝑁
0 𝜔𝑁

0 ⋯ 𝜔𝑁
0

𝜔𝑁
0 𝜔𝑁

1 𝜔𝑁
2 ⋯ 𝜔𝑁

𝑁−1

𝜔𝑁
0 𝜔𝑁

2 𝜔𝑁
4 ⋯ 𝜔𝑁

2(𝑁−1)

⋮ ⋮ ⋮ ⋱ ⋮

𝜔𝑁
0 𝜔𝑁

𝑁−1 𝜔𝑁
2(𝑁−1)

⋯ 𝜔𝑁
(𝑁−1)2

]
 
 
 
 
 

[
 
 
 
 

𝑥0

𝑥1

𝑥2

⋮
𝑥𝑁−1]

 
 
 
 

 (5.6) 

where 𝜔𝑁
𝑘  for 𝑘 = 0, 1, … , 𝑁 − 1 are the 𝑁𝑡ℎ roots of unity with the property 𝜔𝑁

𝑘 = 𝜔𝑁
𝑘+𝑙𝑁 for 

all integers 𝑙. The output column vector �⃑� contains the Fourier coefficients for the input vector 𝑥, 

and the 𝑁-point DFT matrix is a complex valued matrix, thus one can obtain both magnitude and 

phase information from the output �⃑�. 

Even though the DFT is tremendously useful for numerical approximation and computation, 

the simple formulation in Eq. (5.6) involves multiplication requiring 𝑂(𝑁2) operations, which is 

often computationally too expensive to be practical especially when the value of 𝑁 is very large. 

Fortunately, the fast Fourier transform (FFT) algorithm, an optimized approach for implementing 

DFT, was developed to solve the problem of high computational cost. By using FFT, the 

computational complexity of DFT can be reduced from 𝑂(𝑁2) to 𝑂(𝑁 log2 𝑁) [61]. Thus, as 𝑁 

becomes very large, the term log2 𝑁 grows slowly and the algorithm approaches a linear scaling. 

Although the different computational complexity between the DFT and FFT algorithms may seem 

like a small difference, FFT is widely used in many practical applications due to the relatively 

inexpensive cost of 𝑂(𝑁 log2 𝑁). 
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 The FFT algorithm is built on a symmetry in the Fourier transform that allows an 𝑁 

dimensional DFT to be solved with a number of smaller dimensional DFT computations [33]. 

Splitting the terms in Eq. (5.4) into even terms and odd terms, the following equation is obtained. 

 𝑋𝑘 = ∑ 𝑥2𝑚𝑒−2𝜋𝑖𝑘(2𝑚)/𝑁

𝑁/2−1

𝑚=0

+ ∑ 𝑥2𝑚+1𝑒
−2𝜋𝑖𝑘(2𝑚+1)/𝑁

𝑁/2−1

𝑚=0

 (5.7) 

It follows that 

 𝑋𝑘 = ∑ 𝑥2𝑚𝑒
−

2𝜋𝑖𝑘𝑚
𝑁/2

𝑁/2−1

𝑚=0

+ ∑ 𝑥2𝑚+1𝑒
−

2𝜋𝑖𝑘(𝑚+1/2)
𝑁/2

𝑁/2−1

𝑚=0

 (5.8) 

and so 

 𝑋𝑘 = ∑ 𝑥2𝑚𝑒
−

2𝜋𝑖𝑘𝑚
𝑁/2

𝑁/2−1

𝑚=0

+ ∑ 𝑥2𝑚+1𝑒
−

2𝜋𝑖𝑘𝑚
𝑁/2

−
𝜋𝑖𝑘
𝑁/2

𝑁/2−1

𝑚=0

, (5.9) 

which results in 

 𝑋𝑘 = ∑ 𝑥2𝑚𝑒
−

2𝜋𝑖𝑘𝑚
𝑁/2

𝑁/2−1

𝑚=0

+ 𝑒−
2𝜋𝑖𝑘

𝑁 ∑ 𝑥2𝑚+1𝑒
−

2𝜋𝑖𝑘𝑚
𝑁/2

𝑁/2−1

𝑚=0

. (5.10) 

Now consider 𝑋𝑘+𝑁/2 by substituting 𝑘 + 𝑁/2 into 𝑘. Then 

 𝑋𝑘+𝑁/2 = ∑ 𝑥2𝑚𝑒
−

2𝜋𝑖(𝑘+𝑁/2)𝑚
𝑁/2

𝑁/2−1

𝑚=0

+ 𝑒−
2𝜋𝑖(𝑘+𝑁/2)

𝑁 ∑ 𝑥2𝑚+1𝑒
−

2𝜋𝑖(𝑘+𝑁/2)𝑚
𝑁/2

𝑁/2−1

𝑚=0

 (5.11) 

leading to 

 𝑋𝑘+𝑁/2 = ∑ 𝑥2𝑚𝑒
−2𝜋𝑖−

2𝜋𝑖𝑘𝑚
𝑁/2

𝑁/2−1

𝑚=0

+ 𝑒−𝜋𝑖−
2𝜋𝑖𝑘

𝑁 ∑ 𝑥2𝑚+1𝑒
−2𝜋𝑖−

2𝜋𝑖𝑘𝑚
𝑁/2

𝑁/2−1

𝑚=0

. (5.12) 

Since 𝑒−𝜋𝑖 = −1, it follows that 



59 

 

 𝑋𝑘+𝑁/2 = ∑ 𝑥2𝑚𝑒
−

2𝜋𝑖𝑘𝑚
𝑁/2

𝑁/2−1

𝑚=0

− 𝑒−
2𝜋𝑖𝑘

𝑁 ∑ 𝑥2𝑚+1𝑒
−

2𝜋𝑖𝑘𝑚
𝑁/2

𝑁/2−1

𝑚=0

. (5.13) 

It is remarkable that Eq. (5.10) and Eq. (5.13) have a very similar structure except the sign between 

two summations. Due to the similarity, it is possible to compute 𝑋𝑘 and 𝑋𝑘+𝑁/2 symmetrically for 

DFT and hence numerous computations can be avoided. The FFT algorithm uses this useful fact to 

reduce the complexity of the DFT. The detailed explanation can be found in [62]. 

 

5.2 Denoising with FFT 

 

Analyzing measured data has its own challenges involving unpredictable conditions and 

systematic measurement errors. These factors introduce noise into the data, thereby complicating 

analysis and possibly causing biased or incorrect conclusions. 

 One of the most useful Fourier analysis applications is determining the noise frequencies 

and ascertaining noise sources in experimental data [60]. Since this can be achieved using FT, the 

FFT is often used for noise filtering in digital signal processing, offering a computationally rapid and 

efficient method for DFT computation. 

Given a noisy signal, assuming that the signal and the noise are non-correlated and that the 

noise is not dominant in the signal, the main idea is to find the real signal frequencies and to obtain a 

reconstructed signal by using only the significant frequencies of the signal. The non-relevant 

frequencies are set to zero. 

When computing the FFT of the noisy signal, the power spectral density (PSD), which is 

the normalized squared magnitude of �⃑� in Eq. (5.6), can be obtained [33]. 
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 𝑃𝑆𝐷(𝑋𝑘) =
|𝑋𝑘|2

𝑁
=

𝑋𝑘�̅�𝑘

𝑁
 (5.14) 

where 𝑁 is the number of samples and 0 ≤ 𝑘 ≤ 𝑁 − 1. The PSD indicates how much power (i.e., 

significant information) the signal contains in each frequency. By wiping out all the components that 

have power below a certain threshold, one can remove noise from the signal. After inverse 

transforming the filtered signal, we can obtain the denoised signal. 

The threshold value is determined experimentally by computing the correlation value 

between the original signal and the denoised signal [63]. The correlation value 𝛾 is defined as 

 
𝛾 =

∑ (𝑋𝑖 − �̅�)(𝑌𝑖 − �̅�)𝑁−1
𝑖=0

√∑ (𝑋𝑖 − �̅�)2(𝑌𝑖 − �̅�)2𝑁−1
𝑖=0

 
(5.26) 

where 𝑋𝑖 are the samples of the original signal 𝑋, 𝑌𝑖 are the samples of the denoised signal 𝑌, and 

�̅� and �̅� are the mean values of the samples 𝑋𝑖 and 𝑌𝑖, respectively. As the value of 𝛾 approaches 

1, the selection becomes more appropriate. The algorithm of noise reduction in a noisy signal using 

the FFT is presented in Algorithm 5.1. 

 

5.3 Wavelet Transform (WT) 

 

 Although the FT provides detailed information about the frequency of a given signal, it does 

not give any information about when those frequencies occur in time. In fact, in Fourier analysis, 

there is a fundamental uncertainty principle that temporal information is not obtainable as the 

frequency content is specified, and vice versa [64]. The more concentrated a signal is in the time 

domain, the more spread out it is in the frequency domain. Measuring the uncertainty of a function in 

terms of its variance, the Fourier uncertainty principle indicates that there exists a lower bound on the 



61 

 

product of the variances of a function and its Fourier transform [65]. 

 If a function 𝑓 is a complex-valued function, then its Fourier variance is defined as 

 𝑉𝑎𝑟(𝑓) = ∫ 𝑡2|𝑓(𝑡)|2
∞

−∞

𝑑𝑡 (5.15) 

where the function 𝑡2|𝑓(𝑡)|2 is the dispersion about 𝑡 = 0. Eq. (5.15) can be viewed as the variance 

of a random variable with mean 0 and probability density function |𝑓(𝑡)|2. Unlike the conventional 

probability theorem, the Fourier variance can be applied to any functions for which the integral 

converges; it is not restricted to the case when |𝑓(𝑡)|2 integrates to 1. 

 The Fourier uncertainty principle states that 

 𝑉𝑎𝑟(𝑓)𝑉𝑎𝑟(𝑓) ≥ 𝐶‖𝑓‖2
2‖𝑓‖

2

2
 (5.16) 

where 𝑓 is the FT of 𝑓 and 𝐶 is a constant. The inequality in Eq. (5.16) gives a lower bound on 

how spread out the two quantities 𝑉𝑎𝑟(𝑓) and 𝑉𝑎𝑟(𝑓) must be; if the width of 𝑓 is very narrow, 

then 𝑓 becomes a very broad function, and vice versa. As an extreme example, when 𝑓 is the Dirac 

delta function 𝛿, 𝑓 becomes a constant function since 𝑓(0) = 1 by Eq. (5.1). If 𝑓 is confined in 

a small region in time domain so that it is highly localized, then the spread of 𝑓 in frequency domain 

becomes very large, and vice versa. In this extreme limit, a time series is perfectly resolved in time, 

but provides no information about frequency content, and the FT perfectly resolves frequency content, 

but provides no information about when in time these frequencies occur [33]. 

 In Fourier analysis, the uncertainty principle indicates that we lose information about time 

as the frequency content is specified, and vice versa. One comes at the expense of the other between 

the time and frequency domains. To solve such an issue, an alternative approach known as a multi-

resolution analysis was introduced. Wavelet analysis extends the concepts in Fourier analysis and 

partially overcome the uncertainty principle by using a multi-resolution decomposition [64]. The 
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fundamental idea in wavelet analysis is the use of the mother wavelet and generate a family of scaled 

and translated versions of the wavelet. The mother wavelet 𝜓 is given by 

 𝜓𝑎,𝑏(𝑡) =
1

√𝑎
𝜓(

𝑡 − 𝑏

𝑎
) (5.17) 

where 𝑎 is a scale parameter and 𝑏 is a translation parameter. The continuous wavelet transform 

(CWT) is defined as 

 𝑊𝜓𝑎,𝑏
(𝑓) = ∫ 𝑓(𝑡)�̅�𝑎,𝑏(𝑡)𝑑𝑡

∞

−∞

 (5.18) 

with its inverse 

 𝑓(𝑡) =
1

𝐶𝜓
∫ ∫

1

𝑎2
𝑊𝜓𝑎,𝑏

(𝑓)𝜓𝑎,𝑏(𝑡)𝑑𝑎
∞

−∞

𝑑𝑏
∞

−∞

 (5.19) 

where 

 𝐶𝜓 = ∫
|�̂�(𝜉)|

2

|𝜉|

∞

−∞

𝑑𝜉 < ∞. (5.20) 

Eq. (5.20) is called the boundedness property and the mother wavelet must satisfy this property [33]. 

Since the results of CWT are wavelet coefficients which are a function of 𝑎 and 𝑏, the 

signal can be expressed as the combination of wavelets of different scales and positions; that is, the 

wavelet transform decomposes the signal into different scales with different levels of resolution by 

scaling the mother wavelet. The compressed scaled wavelet captures all the high frequency 

components available in the signal since it has a high frequency, and the stretched wavelet captures 

the low frequency contents in the signal because it has a low frequency. At high frequencies, it 

provides good time resolution and poor frequency resolution. Eq. (5.18) can be viewed as the 

correlation between a signal and the scaled and translated mother wavelets, which enables the multi-

resolution analysis (MRA) since it analyzes a signal into scales with different time and frequency 

resolution. 
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In CWT, however, calculating wavelet coefficients at every possible scale is often redundant, 

generating too much data. By selecting scales and positions to be discrete, the original signal can be 

completely reconstructed by a sample version of WT and analysis also becomes much easier. For a 

time series 𝑓(𝑡), the discrete wavelet transform (DWT) is given by 

 𝑊𝜓𝑗,𝑘
(𝑓) = ∫ 𝑓(𝑡)�̅�𝑗,𝑘(𝑡)𝑑𝑡

∞

−∞

 (5.21) 

with a discrete family of wavelets 𝜓𝑗,𝑘: 

 𝜓𝑗,𝑘(𝑡) = 𝑎0
−𝑗/2

𝜓(𝑎0
−𝑗

𝑡 − 𝑏0𝑘) (5.22) 

where 𝑗  is the decomposition level and 𝑘  is the time translation factor, and 𝑎0  and 𝑏0  are 

constants. In practice, 𝑊𝜓𝑗,𝑘
(𝑓) is typically sampled in a dyadic grid, that is, 𝑎0 = 2 and 𝑏0 = 1. 

It is known that this sampling method provides good time-frequency localization [66]. Thus, Eq. (5.22) 

becomes 

 𝜓𝑗,𝑘(𝑡) = 2−𝑗/2𝜓(2−𝑗𝑡 − 𝑘). (5.23) 

The sub-signals 𝑓𝑗  of the original signal under the level 𝑗 can be reconstructed by 

 𝑓𝑗(𝑡) = ∑ 𝑊𝜓𝑗,𝑘
(𝑓)𝜓𝑗,𝑘(𝑡)

∞

𝑘=−∞

 (5.24) 

and the sum of the sub-signals becomes the original signal as below. 

 𝑓(𝑡) = ∑ ∑ 𝑊𝜓𝑗,𝑘
(𝑓)𝜓𝑗,𝑘(𝑡)

∞

𝑘=−∞

∞

𝑗=−∞

 (5.25) 

The maximum possible decomposition level 𝐿 can be computed as 𝐿 = ⌊𝑙𝑜𝑔2𝑁⌋ where 𝑁 is the 

number of samples. As the decomposition level increases, more sub-signals and detailed information 

of the original signal are attainable, but more computational cost is required. 

 There are several methods to implement the DWT algorithm. The commonly used method 

is the dyadic algorithm. In this algorithm, two filters which are high-pass filter and low-pass filter are 
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constructed from the wavelet coefficients and those filters are recurrently used to obtain data for all 

the scales. If the total number of data 𝑁 = 2𝑚 is used and the signal length is 𝐿, 𝑁/2 data at scale 

𝐿/2𝑚−1 are computed in the first level, and then (𝑁/2)/2 data at scale 𝐿/2𝑚−2 in the second 

level, and so forth. This procedure continues up to finally obtaining 2 data at scale 𝐿/2. Therefore, 

the dyadic DWT algorithm performs a multi-level decomposition, resulting in approximation and 

detail coefficients according to the decomposition level. The result of this algorithm is an array of the 

same length as the input signal, where the data are usually sorted from the largest scales to the smallest 

ones. The details of the dyadic DWT algorithm can be found in [67]. 

 

5.4 Denoising with WT 

 

 By decomposing a noisy signal down to a specific level, we can obtain its wavelet 

coefficients. We can reconstruct the denoised signal by transforming back a limited number of highest 

magnitude wavelet coefficients with the wavelet basis into time domain. This method is known as 

wavelet-based denoising technique, and it has demonstrated its efficiency in noise removal in a noisy 

signal [68]. 

To filter a noisy signal using the wavelet-based technique, we should determine the mother 

wavelet and decomposition level to be used for noise reduction [66]. Theoretically, we can select any 

mother wavelet if its family meets both the orthogonality property and the boundedness property in 

Eq. (5.20). There are several methods to choose a proper mother wavelet, but the choice is generally 

based on the visual resemblance between a noisy signal and a mother wavelet [69], [70]. For a proper 

decomposition level, level 4, 5, 6, or 7 is typically preferrable in signal processing experiments [68], 

[70]. 
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Similar to the Fourier-based denoising algorithm, we can eliminate noise from the noisy 

signal by erasing all the wavelet coefficients that have power below a specific threshold, and the 

threshold value is based on the correlation value the original signal and the denoised signal. The 

denoising algorithm using the wavelet-based technique is summarized in Algorithm 5.2. 

 

5.5 Algorithms 

 

 It is not an easy task to find a proper threshold value for denoising algorithms. Alternatively, 

we will determine the percentage of high-power coefficients to keep rather than the exact threshold 

value, as in [33]. 

 

Algorithm 5.1. Noise Reduction using Fast Fourier Transform 

Input: Noisy signal samples {�̃�𝑛}𝑛=0
𝑁−1 and coefficient percentage 𝑃 

1 Calculate the number of samples 𝑁; 

2 Calculate {𝑋𝑘}𝑘=0
𝑁−1 using Eq. (5.4) with FFT; 

3 Calculate {𝑃𝑆𝐷(𝑋𝑘)}𝑘=0
𝑁−1 using Eq. (5.14); 

4 Sort {𝑃𝑆𝐷(𝑋𝑘)} by magnitude and store it as {𝑃𝑆�̃�(𝑋𝑘)}; 

5 Calculate 𝐼 = ⌊0.01 ∗ 𝑃 ∗ 𝑁⌋; 

6 Set the 𝐼𝑡ℎ component of {𝑃𝑆�̃�(𝑋𝑘)} as threshold 𝑇; 

7 for 𝑖 = 0 to 𝑁 − 1 do 

8 if 𝑃𝑆𝐷(𝑋𝑖) < 𝑇 then 

9 Set 𝑋𝑖 = 0; 

10 end if 

11 end for 

12 Calculate {𝑥𝑛}𝑛=0
𝑁−1 using Eq. (5.5) with FFT; 

Output: Filtered signal samples {𝑥𝑛}𝑛=0
𝑁−1 
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The wavelet-based method requires two additional parameters, mother wavelet and decomposition 

level. 

 

Algorithm 5.2. Noise Reduction using Wavelet-based Method 

Input: Noisy signal samples {𝑓(𝑡𝑛)}
𝑛=0

𝑁−1
 , mother wavelet 𝜓,  decomposition level 𝐿  and 

coefficient percentage 𝑃 

1 Calculate {𝑊𝜓𝐿,𝑘
} using Eq. (5.21) and Eq. (5.23) with the dyadic DWT algorithm; 

2 Calculate the number 𝑆 of {𝑊𝜓𝐿,𝑘
}; 

3 Sort {|𝑊𝜓𝐿,𝑘
|} by magnitude and store it as {|�̃�𝜓𝐿,𝑘

|}; 

4 Calculate 𝐼 = ⌊0.01 ∗ 𝑃 ∗ 𝑁⌋; 

5 Set the 𝐼𝑡ℎ component of {|�̃�𝜓𝐿,𝑘
|} as threshold 𝑇; 

6 for 𝑖 = 1 to 𝑆 do 

7 if |𝑊𝜓𝐿,𝑘
|
𝑖
< 𝑇 then 

8 Set {𝑊𝜓𝐿,𝑘
}
𝑖
= 0; 

9 end if 

10 end for 

11 Compute {𝑓(𝑡𝑛)}𝑛=0 
𝑁−1  using Eq. (5.25); 

Output: Filtered signal samples {𝑓(𝑡𝑛)}𝑛=0 
𝑁−1  

 

5.6 Conclusion 

 

 The Fourier-based method and the wavelet-based method share one common fact: after 

transforming a noisy signal, denoising is accomplished by maintaining significant coefficients, 

erasing insignificant coefficients, and then inverse transforming the filtered coefficients to obtain the 

denoised signal. However, the wavelet-based method allows more flexibility and thus better denoising 

performance due to more options on the choice of the mother wavelet and decomposition level, 

whereas the Fourier-based method is restricted to cosine and sine functions without any coefficient 
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decomposition. The proper selection of the mother wavelet is therefore necessary for the wavelet-

based method, which is achieved based on visual similarity between the original signal and the 

denoised signal. 

 We have investigated various linear unmixing algorithms to estimate abundance fractions 

for the linear spectral mixture model, and denoising algorithms to filter noisy spectra. In the next 

chapter, we will analyze the performance of each linear unmixing method by performing it on the real 

dataset and observe how much denoising methods can improve the estimates obtained from noisy 

spectra. 
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Chapter 6 

 

 In this chapter, we will implement linear unmixing algorithms to estimate the abundance 

fractions of a linear spectral mixture model and evaluate their performance using the resultant 

abundance fractions. By adding uniformly random noise to the mixture emission spectra, we will also 

probe how noise affects their performance and then examine whether denoising may lead to a better 

estimation of abundance fractions. 

 

6.1 Data Set 

 

The laboratory data set considered in [17] will be used as an input to the 14 different 

algorithms described in the previous chapters: namely, ULS, SCLS (direct and iterative), NCLS, 

FCLS (direct and iterative), MFCLS (direct and iterative), FC-GDM, GDM, NMM (standard and 

adaptive), TLBO, and TLSBO methods. 

The data set contains 9 reference emission spectra and 48 mixture emission spectra. The 

reference emission spectra were measured from individual or combined probes (EBFP2, EBFP2-

ECFP, EBFP2-mTFP1, EBFP2-LSSmOrange, ECFP, mTFP1, mTFP1-mVenus, mVenus, and 

LSSmOrange) which are constructed with 5 fluorescent proteins (EBFP2, ECFP, mTFP1, mVenus, 

and LSSmOrange). The 48 different mixture emission spectra were created from those 9 individual 

probes spanning two-way probe combinations to all probes present. The pure probes were combined 

into mixtures with known amounts (1/𝑛  where 𝑛  is the number of probes combined). Mixture 

samples 1 to 14 are a set of two-way probe combinations, 15 to 23 are three-way, 24 to 28 are four-
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way, 29 to 31 are five-way, 32 to 34 are six-way, 35 to 38 are seven-way, 39 to 46 are eight-way, and 

47 and 48 are nine-way. The detailed explanation about the experimental method can be found in [17]. 

The graphs of the emission spectra are presented in Appendix A. From these spectral emission 

scanning data (See Appendix B for the description about data preprocessing), we solve the linear 

unmixing problem (1.12) to estimate the abundance fractions in each mixture. These estimated 

fractions are then compared to the actual fractions in the mixture for performance analysis. 

A mixing matrix 𝑀  is formed from the 9 reference emission spectra detected by 2761 

emission wavelength channels with their associated abundance fractions expressed by a vector �⃑�. 

Since each reference emission spectrum �⃑⃑⃑� is a 2761 × 1 real column vector, the mixing matrix 

𝑀 becomes a 2761 × 9 real matrix and the abundance vector �⃑� is a 9 × 1 real column vector. It 

is known that fluorescence emission follows the principle of linear superposition and thus the columns 

of the mixing matrix 𝑀  are linearly independent to one another. In fact, rank(𝑀) = 9  and 

therefore our linear mixture model is an overdetermined system whose mixing matrix has linearly 

independent columns. 

 

6.2 Performance Measurements 

 

To characterize the performance of different linear unmixing algorithms, some performance 

metrics must be employed to compare the actual and estimated counterpart. These metrics include: 

(1) The numbers of correct probes identified by the algorithm; (2) The number of incorrect probes 

detected by the algorithm; (3) Least square error using L2 norm of the linear mixture model with 

estimated abundance fractions; (4) The processing time averaged over 10 simulation runs. 

We have developed a metric to quantify the numbers of correct and incorrect probes found 
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by a linear unmixing algorithm. Given an abundance vector �⃑�, an indicator vector �⃑⃑� is defined as 

follows: 

𝑇𝑖 = {
1 if 𝑎𝑖 > 휀
0 otherwise

 

where 휀 is a prescribed error tolerance (we will set 휀 = 10−3 in this work). Now assume that �⃑⃑�act 

and �⃑⃑�est are the indicator vectors corresponding to the actual and the estimated abundance vectors, 

respectively. Then, we define an error vector �⃑⃑� satisfying 

𝐸𝑖 = {

1 if 𝑇act,𝑖 > 𝑇est,𝑖

0 if 𝑇act,𝑖 = 𝑇est,𝑖

−10−𝑚 otherwise

 

where 𝑚  is the number of digits of the maximum value of 𝑛  among 𝑛 -way mixture emission 

spectra. Lastly, we define a score 𝑆 such that 

𝑆 = 𝑛 − ∑𝐸𝑖

𝑖

. 

Here, it follows that the floor value ⌊𝑆⌋ of 𝑆 is the number of correct probes found by a specific 

linear unmixing algorithm, and 𝑆 − ⌊𝑆⌋ is the number of additional probes located by the algorithm. 

Therefore, if we have 𝑆 = ⌊𝑆⌋, then the algorithm perfectly finds the correct probes to be used for a 

certain mixture emission spectrum. If 𝑆 > ⌊𝑆⌋, then it finds additional unused probes as well as the 

correct probes. 

 

6.3 Experiment 1 

 

In this study, experiments are designed to demonstrate the performance of all the linear 

unmixing methods mentioned in Chapter 2. For iterative methods, we will take 1 and 10−6 for step 

size and error tolerance, respectively. We will also investigate proper step sizes for the iterative 
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methods. 

 

6.3.1 ULS Linear Unmixing Method 

 

The first and second plots in Figure 6.1 show the actual abundance fractions (AAFs) and 

the estimated abundance fractions (EAFs) of the probes in the mixture samples, respectively, in the 

dataset using colour intensities. The comparison of these plots reveals how properly the linear 

unmixing method (the ULS method in this case) unmixes each given 𝑛-way mixture sample into 𝑛 

probes, and how accurately the method estimates the abundance fractions. Thus, the similarity of the 

colour intensities between these two plots indicates the performance of the method for abundance 

fraction estimation. 

The two plots in Figure 6.1 show different colour intensities; the colour pattern in the first 

plot is monotone, whereas that in the second plot is more polychrome, which occurs when 𝑆 ≠ ⌊𝑆⌋, 

or it estimates wrong abundance fractions although it unmixes a sample into 𝑛 probes correctly. 

These plots provide insight into the overall performance of the linear unmixing algorithm, but we still  
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Figure 6.1. Colour maps of actual abundance fractions (upper panel) and estimated abundance 

fractions by ULS (lower panel) on mixture samples 

 

 

Figure 6.2. Colour maps of actual abundance fractions (upper panel) and estimated abundance 

fractions by ULS (lower panel) on mixture samples 
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need detailed information about these plots to quantify it. 

Figure 6.2 depicts the scores defined in Eq. (6.3) for all the mixture samples. It shows that 

the ULS method generally finds the minimum probes for each mixture sample except mixture samples 

3 and 47; it fails to locate one of the necessary probes for those samples. Also, it can find the probes 

correctly only on mixture samples 40, 42, 44, and 45, but it locates additional unnecessary probes on 

the other mixture samples. In fact, the success ratio of correct probes (rCP) to be found by the ULS 

method is 0.99083, and the average numbers of additional probes (mAP) is 1.9375, indicating that 

the method can at least locate the necessary probes very well, but approximately two more 

unnecessary probes. 

Figure 6.3 shows the least square errors of the linear mixture model calculated with the 

estimated abundance fractions obtained by the ULS method. The LSE of mixture sample 14 is much 

larger than those of mixture samples 3 and 47 even though the method finds the correct number of 

 

Figure 6.3. Bar graph of least square errors by ULS on mixture samples 
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probes for mixture sample 14 and does not for mixture samples 3 and 47. For the ULS method, the 

average LSE is 0.0063062 with unmixing time 0.004325s. 

 

6.3.2. Direct SCLS Linear Unmixing Method 

 

The EAF plot in Figure 6.4 still shows a polychromatic pattern as in Figure 6.1. Figure 6.5 

tells that it has the same rCP value 0.99083 and a slightly greater mAP value 1.9792. Thus, the method 

finds the necessary probes properly with approximately two more unnecessary probes. According to 

Figure 6.6, the direct SCLS method yields, on average, the LSE of 0.0062933, which is somewhat 

smaller than the ULS method. The direct SCLS method also requires more computing time, 

0.0056273s, for unmixing than the ULS method. 

 

Figure 6.4. Colour maps of actual abundance fractions (upper panel) and estimated abundance 

fractions by direct SCLS (lower panel) on mixture samples 
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Figure 6.5. Bar graph of the numbers of estimated probes by direct SCLS on mixture samples 

 

 

Figure 6.6. Bar graph of least square errors by direct SCLS on mixture samples 
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6.3.3 Iterative SCLS Linear Unmixing Method 

 

No significant difference is observed in the EAF plot in Figure 6.7 compared to the previous 

EAF plots. In Figure 6.8, the rCP value, 0.99083, of the SCLSi method is the same as the previous 

methods, but the mAP value, 2.0625, is larger than those methods. The method tends to find the 

correct probes, but also locate two more incorrect probes. Figure 6.9 shows that the indirect SCLS 

method produces the average LSE of 0.0063233, which is greater than both the ULS method and the 

direct SCLS method. The iterative SCLS method takes even more time, 0.0080092s, compared to 

those methods. 

 

 

 

Figure 6.7. Colour maps of actual abundance fractions (upper panel) and estimated abundance 

fractions by iterative SCLS (lower panel) on mixture samples 
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Figure 6.8. Bar graph of the numbers of estimated probes by iterative SCLS on mixture samples 

 

 

Figure 6.9. Bar graph of least square errors by iterative SCLS on mixture samples 

 



78 

 

6.3.4 NCLS Linear Unmixing Method 

 

 In Figure 6.10, the EAF plot for the NCLS method shows a relatively less chaotic pattern 

(and thus more similarity to the AAF plot) than the previous methods. In Figure 6.11, the rCP value 

is still the same, but the mAP value, 0.85417, becomes much smaller. This illustrates that the 

method generally finds the necessary probes with less than one unnecessary probe. We can find 

many integer-valued scores in the figure. Figure 6.12 shows that the NCLS method produces the 

average LSE of 0.0060268 with time 0.018064s. We can thus observe an improvement in the LSE 

with a longer unmixing time for the NCLS method. 

 

 

 

Figure 6.10. Colour maps of actual abundance fractions (upper panel) and estimated abundance 

fractions by NCLS (lower panel) on mixture samples 
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Figure 6.11. Bar graph of the numbers of estimated probes by NCLS on mixture samples 

 

 

Figure 6.12. Bar graph of least square errors by NCLS on mixture samples 
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6.3.5 Direct FCLS Linear Unmixing Method 

 

In Figure 6.13, the EAF plot for the direct FCLS method a similar pattern to the NCLS 

method. According to Figure 6.14, it still has the same rCP value 0.99083, but the mAP value 

1.0625 is somewhat larger than the NCLS method. Thus, the method locates the necessary probes 

with approximately one unnecessary probe. Figure 6.15 shows that the direct FCLS method 

produces the average LSE of 0.0060189 which is slightly smaller than the NCLS method, but the 

unmixing time, 0.029525s, is fairly longer. 

 

 

 

 

Figure 6.13. Colour maps of actual abundance fractions (upper panel) and estimated abundance 

fractions by direct FCLS (lower panel) on mixture samples 
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Figure 6.14. Bar graph of the numbers of estimated probes by direct FCLS on mixture samples 

 

 

Figure 6.15. Bar graph of least square errors by direct FCLS on mixture samples 
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6.3.6 Iterative FCLS Linear Unmixing Method 

 

 The similar pattern in the EAF plot in Figure 6.16 is observed as in the direct FCLS 

method. In Figure 6.17, it yields the same rCP value 0.99083 with the smaller mAP value 0.875. 

Hence, the method finds the correct probes very well with less than one incorrect probe. There are 

indeed many integer-values scores in the figure. Figure 6.18 shows the average of LSE 0.0060422 

and the processing time 0.035986s when we use the iterative FCLS method for unmixing. The 

average LSE of the iterative method is somewhat greater than the direct method. The unmixing 

process is however slower than the direct method. 

 

 

 

Figure 6.16. Colour maps of actual abundance fractions (upper panel) and estimated abundance 

fractions by iterative FCLS (lower panel) on mixture samples 



83 

 

 

 

 

 

Figure 6.17. Bar graph of the numbers of estimated probes by iterative FCLS on mixture samples 

 

 

Figure 6.18. Bar graph of least square errors by iterative FCLS on mixture samples 
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6.3.7 Direct MFCLS Linear Unmixing Method 

 

Compared to the FCLS methods, the EAF plot in Figure 6.19 contains more colourful 

squares. Indeed, we can see in Figure 6.20 that it has the same rCP value 0.99083 and a considerably 

large mAP value 2.1667, which implies that the method locates the necessary probes properly with 

two more unnecessary probes. As expected, there are only few integer-values scores in the figure. 

According to Figure 6.21, the direct SCLS method produces, on average, the LSE of 0.0060847, 

which is somewhat larger than the FCLS methods with the reduced unmixing time 0.007856s. 

 

 

 

 

Figure 6.19. Colour maps of actual abundance fractions (upper panel) and estimated abundance 

fractions by direct MFCLS (lower panel) on mixture samples 
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Figure 6.20. Bar graph of the numbers of estimated probes by direct MFCLS on mixture samples 

 

 

Figure 6.21. Bar graph of least square errors by direct MFCLS on mixture samples 
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6.3.8 Iterative MFCLS Linear Unmixing Method 

 

In Figure 6.22, the squares in the EAF plot for the iterative MFCLS method are less 

colourful than the direct MFCLS method. The pattern is more similar to the FCLS methods. In Figure 

6.23, we can observe that the rCP value, 0.99083, is still the same as the previous methods, but the 

mAP value, 0.875, is smaller. The method thus finds the correct probes with less than one incorrect 

probe, generating integer-valued scores in the figure. Figure 6.24 illustrates that the indirect MFCLS 

method yields the average LSE of 0.0060329, which is smaller than the direct MFCLS method with 

the longer processing time 0.041165s. 

 

 

 

Figure 6.22. Colour maps of actual abundance fractions (upper panel) and estimated abundance 

fractions by iterative MFCLS (lower panel) on mixture samples 
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Figure 6.23. Bar graph of the numbers of estimated probes by iterative MFCLS on mixture samples 

 

 

Figure 6.24. Bar graph of least square errors by direct MFCLS on mixture samples 
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6.3.9 Step Sizes for Iterative Methods 

 

 Tables 6.1 and 6.2 show the average LSE and unmixing time of the iterative SCLS and 

FCLS methods, respectively, when specific values are given for step size ℎ. The average LSE and 

unmixing time are independent of the value of the step size in our data set. This is because the value 

of the scale variable 𝜆 = 10000 for the ASC is already very close to its appropriate value, 

demonstrating that it is a proper selection as proposed in [34], [35]. Thus, the choice of step size is 

not significant here, enabling us to select ℎ = 1. 

 

Step Size ℎ Average LSE Time (s) 

0.01 

0.0063233 

0.0080092 

0.1 0.0081056 

1 0.0080669 

10 0.0079025 

100 0.0079197 

Table 6.1. Average LSE and unmixing time of iterative SCLS with step sizes 

 

Step Size ℎ Average LSE Time (s) 

0.01 

0.0060422 

0.035986 

0.1 0.034389 

1 0.034612 

10 0.036464 

100 0.034581 

Table 6.2. Average LSE and unmixing time of iterative FCLS with step sizes 

 

 In Table 6.3, the average LSE and unmixing time of the iterative MFCLS method are 

dependent of the selection of step size ℎ2 which is a parameter for the AASC, but they are 
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independent of step size ℎ1 for the ASC as shown above. Moreover, the elapsed time generally 

decreases as the average LSE increases, but there are no significant differences among the times. 

Therefore, we can choose ℎ1 = ℎ2 = 1 as proper step sizes for the iterative MFCLS method. 

 

Step Size ℎ2 Average LSE Time (s) 

0.01 0.0060352 0.039613 

0.1 0.0060329 0.041477 

1 0.0060329 0.041165 

10 0.0060328 0.041848 

100 0.0060399 0.038819 

Table 6.3. Average LSE and unmixing time of iterative MFCLS with step sizes 

 

 Overall, considering both average LSE and processing time, we conclude that 1 is an 

appropriate selection as a step size for iterative methods from the experiments. 

 

6.3.10 Conclusion 

 

 Figure 6.25 summarizes the rCP and mAP values of the LS methods described in Chapters 

2. As the rCP value is close to 1, the linear unmixing algorithm finds correct probes well (with high 

reliability) for a mixture sample. In this work, the value can be interpreted as a probability of 

locating correct probes. Thus, if it has a low rCP value, it shows poor performance of unmixing. 

Interestingly, all of the methods have the rCP value close to 0.99; they can locate correct probes 

with probability of 99%. The mAP denotes the average number of unnecessary probes located by 

the method. As the mAP increases, the method finds more unnecessary probes reducing its 

performance level. We observe that the mAP values of the ULS method, the SCLS methods, and the 
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direct MFCLS method are approximately 2, whereas those of the other methods are nearly 1. 

Hence, we expect that the former will show relatively worse performance than the latter. 

 Figure 6.26 agrees that the NCLS method, FCLS methods, and the indirect MFCLS 

method are the four highest-LSE methods. Also, we notice the outstanding difference in the average 

LSE between the SCLS methods and the NCLS method. Therefore, the ANC is more significant 

than the ASC in obtaining optimal solutions in our system. The direct FCLS method yields a 

slightly smaller LSE on average than the NCLS method since both ANC and ASC are imposed on 

the FCLS method. Thus, we can obtain more accurate solutions if more constraints are imposed. 

Although the direct MFCLS method is theoretically supposed to locate a more accurate solution 

than the direct FCLS method as its solution is obtained analytically from the ASC and AASC (and 

thus ANC), its average LSE is greater than that of the direct FCLS method because its algorithm 

produces suboptimal solutions by taking advantage of the solution obtained from the SCLS method 

alternatively. For iterative methods, however, the average LSE decreases as the algorithm becomes 

more constrained as we expected. Also, except the MFCLS methods, each direct method produces a 

smaller LSE than its corresponding indirect method. 

 We observe that, for the direct methods, the NCLS method and the FCLS method require 

more time for unmixing than the ULS method and the SCLS method since they perform 

dimensionality reduction on the mixing matrix for the ANC, which is computationally expensive. 

However, the MFCLS method is faster since it uses the AASC for the ANC to obtain the analytical 

solution using the Lagrange multiplier. Also, in general, the more constraints the LS algorithm 

handles, the slower the unmixing process is. The direct MFCLS method however shows an 

exceptional result due to its analytical approach. Furthermore, each direct method is faster than its 
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indirect analogue. This is attributed to the fact that the indirect methods create new matrices 

iteratively during the unmixing procedures, significantly increasing a computational cost. For the 

FCLS methods, both methods conduct matrix manipulations (that is, dimensionality reduction for 

the direct method and iterative matrix generation for the indirect method), but generating matrices is 

generally more computationally expensive since it is repeated until the loop terminates, while the 

maximum number of repetitions of dimensionality reduction is based on the total number of probes 

(in this work, less than or equal to 9 times). 

 In summary, the direct FCLS method is the best unmixing algorithm with respect to LSE. 

However, considering its processing time, we conclude that the direct MFCLS method shows the 

best performance among the LS methods. 

There are two results contrary to our expectations: step sizes for the iterative methods and 

the processing time of the indirect methods; indeed, the smallest step size yields more average LSE, 

and the indirect methods are slower than the direct methods. We believe that these unexpected 

results may be attributed to our unoptimized algorithms and therefore optimization for the indirect 

unmixing algorithms should be performed sufficiently to improve those results. 

 For the direct MFCLS method, we used the solution of the direct SCLS method 

alternatively, which leads to more average LSE. To our best knowledge, such an alternative is often 

employed for simplicity [23] and we cannot find a method to solve such an issue. 
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Figure 6.25. Bar graphs of ratios of detected correct probes (upper panel) and average detected 

incorrect probes (lower panel) by LS methods 

 

 

Figure 6.26. Bar graphs of average least square errors (upper panel) and processing time (lower 

panel) by LS methods 
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6.4 Experiment 2 

 

 In this experiment, we will perform the performance analysis of the optimization techniques 

for linear unmixing discussed in Chapters 3 and 4. For all of the optimization methods, we will use 

105 and 10−6 as the maximum number of iterations and error tolerance, respectively. We will set 

the step size for the GD methods to 200. For the GD and NM methods, the starting point is set to 1/9⃑⃑⃑⃑⃑⃑ ⃑⃑  

whose entries are all 1/9. On the other hand, random initial points are generated for the TLBO and 

TLSBO methods because they are a stochastic population-based algorithms. Also, the respective 

values 10 and 100 are given to them for the size of population and maximum point. 

 

6.4.1 FC-GD Method 

 

There is no noticeable difference in the EAF plot in Figure 6.27 than the previous EAF plot 

for the iterative MFCLS method. In Figure 6.28, however, the rCP value has been increased to 1 and 

the mAP value to 1.25. The method finds the necessary probes and may locate one or more 

unnecessary probes; indeed, it successfully finds all the correct probes even on mixture samples 3 

and 47, while the other methods cannot. Figure 6.29 shows that the FC-GD method produces the 

average LSE of 0.0060104, which is smaller than all the linear unmixing methods in Chapter 2. The 

method however requires much more unmixing time, 2.5822s. 

 

 

 

 



94 

 

 

 

 

Figure 6.27. Colour maps of actual abundance fractions (upper panel) and estimated abundance 

fractions by FC-GD (lower panel) on mixture samples 

 

 

Figure 6.28. Bar graph of the numbers of estimated probes by FC-GD on mixture samples 
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6.4.2 GD Method with Bounding Process 

 

 The EAF plot in Figure 6.30 shows a similar pattern to the FC-GD method. In Figure 6.31, 

we can see that the rCP is 0.99083 and the mAP is 0.85417, which are smaller than the FC-GD 

method, implying that it locates the correct probes very well with less than one incorrect probe. 

Figure 6.32 dictates that the GD method yields, on average, the LSE of 0.0060244, which is slightly 

larger than the FC-GD method. The GD method takes 0.27807s and thus it is much faster than the 

FC-GD method. 

 

 

 

 

 

Figure 6.29. Bar graph of least square errors by FC-GD on mixture samples 
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Figure 6.30. Colour maps of actual abundance fractions (upper panel) and estimated abundance 

fractions by GD (lower panel) on mixture samples 

 

 

Figure 6.31. Bar graph of the numbers of estimated probes by GD on mixture samples 
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6.4.3 Standard NM Method 

 

 In Figure 6.33, the colour pattern in the EAF plot is very similar to the GD methods. 

Figure 6.34 illustrates that the rCP is 0.99083 and the mAP is 0.91667, indicating that it finds the 

necessary probes very well with approximately one unnecessary probe. According to Figure 6.35, 

the average LSE, 0.0059838, becomes somewhat smaller and the unmixing time, 31.8805s, 

becomes much longer, compared to the GD methods. 

 

 

 

 

 

 

Figure 6.32. Bar graph of least square errors by GD on mixture samples 
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Figure 6.33. Colour maps of actual abundance fractions (upper panel) and estimated abundance 

fractions by standard NM (lower panel) on mixture samples 

 

 

Figure 6.34. Bar graph of the numbers of estimated probes by standard NM on mixture samples 

 



99 

 

 

6.4.4 Adaptive NM Method 

 

 Figure 6.36 illustrates high similarity of the colour pattern between the standard NM 

method and the adaptive NM method in the EAF plot. We can see that the rCP is 0.9633 and the 

mAP is 1.0417 in Figure 6.37; the method can locate the correct probes fairly well with 

approximately one additional incorrect probe. Indeed, it cannot find correct probes for mixture 

samples 3, 16, 36, 38, 40, and 48. Figure 6.38 shows that the average LSE is 0.0059733 with 

unmixing time 43.2687s. Compared to the standard method, the LSE becomes slightly smaller, but 

the processing time becomes longer. 

 

 

 

Figure 6.35. Bar graph of least square errors by standard NM on mixture samples 
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Figure 6.36. Colour maps of actual abundance fractions (upper panel) and estimated abundance 

fractions by adaptive NM (lower panel) on mixture samples 

 

 

Figure 6.37. Bar graph of the numbers of estimated probes by adaptive NM on mixture samples 
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6.4.5 TLBO Method 

 

 The EAF plot of the TLBO method in Figure 6.39 shows no remarkable difference from 

those of the NM methods. Indeed, the rCP and the mAP are 0.9633 and 0.85417 in Figure 6.40, 

which implies that the method can find the necessary probes properly with less than one 

unnecessary probe. We can observe that it fails to find all the correct probes for mixture samples 3, 

9, 36, 38, 40, 42, 44, and 47. According to Figure 6.41, the average LSE and the unmixing time are 

0.005989 and 51.4505s. Both values become larger than the adaptive NM method. 

 

 

 

 

 

Figure 6.38. Bar graph of least square errors by adaptive NM on mixture samples 
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Figure 6.39. Colour maps of actual abundance fractions (upper panel) and estimated abundance 

fractions by TLBO (lower panel) on mixture samples 

 

 

Figure 6.40. Bar graph of the numbers of estimated probes by TLBO on mixture samples 
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6.4.6 TLSBO Method 

 

 In Figure 6.42, there is high similarity of the colour pattern in the EAF plot between the 

TLBO method and the TLSBO method. Figure 6.43 shows that the rCP is 0.97248 and the mAP is 

0.83333, indicating that the method locates the correct probes quite well with less than one incorrect 

probe. As observed in the figure, it does not find the correct probes on mixture samples 3, 32, 39, 

and 47. Figure 6.44 illustrates that the method produces the average LSE of 0.0059749 and requires 

32.0968s for unmixing. We can see that these values have been decreased, compared to the TLBO 

method. 

 

 

 

Figure 6.41. Bar graph of least square errors by TLBO on mixture samples 
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Figure 6.42. Colour maps of actual abundance fractions (upper panel) and estimated abundance 

fractions by TLSBO (lower panel) on mixture samples 

 

 

Figure 6.43. Bar graph of the numbers of estimated probes by TLSBO on mixture samples 
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6.4.7 Conclusion 

 

Figure 6.45 summarizes the rCP and mAP values of the optimization methods described in 

Chapters 3 and 4. In the case of the FC-GD method, it finds all the correct probes for each mixture 

sample. The adaptive NM method, the TLBO method, and the TLSBO method produce relatively 

lower rCP values (0.9633, 0.9633, and 0.9724, respectively). They can find correct probes with 

probability of more than 96%. Also, all of the methods have the mAP values close to 1. From these 

results, we expect that the optimization methods will show relatively better performance than the 

LS methods with respect to LSE. Indeed, the optimization techniques generally yield less average 

LSE than the LS methods. We believe that such better performance is attributed to the fact that our 

linear unmixing problem is a strictly convex problem which has a unique local optimum. As 

aforementioned, the FC-GD method can find an optimal solution since the ASC and ANC are 

 

Figure 6.44. Bar graph of least square errors by TLSBO on mixture samples 
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imposed on the GD algorithm. However, we can use the GD method with the bounding process due 

to strict convexity. In this case, both GD methods converge to the same solution and hence they 

produce the approximately same LSE. For the NM methods, the adaptive method decreases the 

chances of using reflection steps and circumventing the rapid reduction in the simplex diameter by 

choosing adaptively the parameters for expansion, contraction, and shrinkage. Therefore, it 

generally finds a more optimal solution than the standard NM method. Since our dataset is not 

considered as high dimensions (that is, 9 dimensions), no significant improvement was found in 

terms of accuracy. The TLBO performs global and local searches using repetitive stochastic 

procedures in its algorithm, which makes it computationally expensive. To maximize the power of 

the global and local searches, the TLSBO gives some random changes to the coordinates of each 

member. Thus, the TLBO and TLSBO find the same solution (they yield the approximately same 

LSE), but TLSBO shows a better convergence rate to the solution. 

 Figure 6.46 illustrates the unmixing times of the optimization methods. The GD method 

with the bounding process is faster than the FC-GD method due to the simplicity of its algorithm; 

the FC-GD algorithm is more complicated since the ASC and the ANC are applied to the update 

equation. However, the use of the GD method is more restricted because it requires two conditions 

(that is, an overdetermined linear system model with mixing matrix consisting of linearly 

independent columns), whereas the FC-GD method can be employed in any situations if its initial 

point satisfies the sum-to-one property. We observe that the adaptive NM method is much slower 

than the standard NM method, because the adaptive method relieves the effect of dimensionality 

and thus requires more iterations for convergence. The TLBO method is typically a slow global 

optimization algorithm due to its stochastic procedures. Thus, the TLSBO algorithm improves the 
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speed of convergence by adding the studying phase into the TLBO algorithm. During the phase, it 

gives changes to the positions of each member, resulting in faster convergence to the global 

solution. It is notable that the NM methods and TLBO methods require much more time than the 

GD methods as they are global optimization algorithms that have higher computational complexity, 

while the GD methods are local optimization algorithms with less computational complexity. 

 Even though the global optimization methods (that is, the NM, TLBO and TLSBO 

methods) can locate as optimal solutions as the local optimization methods (that is, the FC-GD and 

GD methods), they require more processing time due to their algorithmic complexity. Also, the GD 

method is faster than the FC-GD method, but in order to use it, the linear unmixing problem 

necessarily satisfies two conditions: the mixing matrix forms an overdetermined system, and its 

columns are linearly independent. Therefore, we conclude that the FC-GD method is the best linear 

unmixing algorithm among the optimization methods. 

 

Figure 6.45. Bar graphs of ratios of detected correct probes (upper panel) and average detected 

incorrect probes (lower panel) by optimization methods 
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6.5 Experiment 3 

 

 In this experiment, we investigate the influence of additive uniformly random noise on 

abundance recovery. We will examine how significantly the noise can affect the performance of the 

linear unmixing methods. For this purpose, we will generate three random noises with different 

ratios, add them to each mixture emission spectrum (See Figure 6.47), and attempt to unmix the 

noisy spectra with the direct FCLS method. We will then denoise the noisy spectra using the 

Fourier-based and wavelet-based algorithms discussed in Chapter 5 to compare the performance 

measurements on the filtered spectra and on the real spectra. To compare the level of each spectrum 

to the level of background noise, we compute signal-to-noise ratio (SNR), defined as the ratio of 

 

Figure 6.46. Bar graphs of average least square errors (upper panel) and processing time (lower 

panel) by optimization methods 
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signal power to the noise power (See Appendix C). 

 

6.5.1 Selection of Parameters for Denoising Algorithms 

 

 By visual inspection, we will choose the Fejér-Korovkin wavelet of order 6 (fk6) as a 

mother wavelet for the wavelet-based denoising method (See Figure 6.48), which is defined as 

𝐹𝑛(𝑥) =
1

𝑛 + 1

sin2 (𝑛 + 1)𝑥
2

sin2 𝑥
2

 

for order 𝑛 [71]. For a decomposition level, we will select level 5 as in [70]. 

 

 

 

 

Figure 6.47. Plots of additive random noises with ratio 0.001, 0.0005, and 0.0001, respectively, 

and their corresponding noisy mixture samples 
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6.5.2 Linear Unmixing on Noisy Mixture Samples with Ratio 0.001 

 

We observe a polychrome pattern with many dark blue squares in the EAF plot in Figure 

6.49. Specifically, the method does not find EBFP2 and mTFP1 for mixture samples 29 to 48.  

In Figure 6.50, its rCP and mAP values are 0.80734 and 0.8125, respectively. Compared to 

the original mixture samples, their values have been decreased. In Figure 6.51, the average LSE is 

0.056128 and the processing time is 0.037315s. The noisy mixture samples yield more average LSE 

than the original mixture samples with more unmixing time. 

 

 

 

 

 

 

Figure 6.48. Plots of mother wavelet FK6 and mixture sample 10 
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Figure 6.49. Colour maps of actual abundance fractions (upper panel) and estimated abundance 

fractions by direct FCLS (lower panel) on noisy mixture samples with ratio 0.001 

 

 

Figure 6.50. Bar graph of the numbers of estimated probes by direct FCLS on noisy mixture 

samples with ratio 0.001 
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6.5.3 Linear Unmixing on Denoised Mixture Samples with Noise Ratio 0.001 by Fourier-

based Denoising 

 

 The pattern in the EAF plot in Figure 6.52 is still polychrome. We can observe many dark 

blue squares on mixture samples 29 to 48. Figure 6.53 tells that the rCP is 0.62844 and the mAP is 

1.5417. We notice that the rCP has been decreased and the mAP has been increased. Nevertheless, 

according to Figure 6.54, the average LSE has been reduced to 0.03137 with unmixing time 

0.056534s. 

 

 

 

 

 

Figure 6.51. Bar graph of least square errors by direct FCLS on noisy mixture samples with ratio 

0.001 
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Figure 6.52. Colour maps of actual abundance fractions (upper panel) and estimated abundance 

fractions by direct FCLS (lower panel) on denoised mixture samples with noise ratio 0.001 by 

Fourier-based denoising 

 

 

Figure 6.53. Bar graph of the numbers of estimated probes by direct FCLS on denoised mixture 

samples with noise ratio 0.001 by Fourier-based denoising 
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6.5.4 Linear Unmixing on Denoised Mixture Samples with Noise Ratio 0.001 by 

Wavelet-based Denoising 

 

 In Figure 6.55, a polychrome pattern, especially on the top of mixture samples 29 to 48, is 

observed with many dark blue squares on the bottom side. Figure 6.56 illustrates that the rCP value 

is 0.70642 and mAP 0.83333. The rCP value has been increased and the mAP value has been 

decreased. In Figure 6.57, the method yields the average LSE of 0.014348 and the unmixing time of 

0.15655s. The LSE has been slightly reduced, but the unmixing time has been significantly 

increased. 

 

 

 

Figure 6.54. Bar graph of least square errors by direct FCLS on denoised mixture samples with 

noise ratio 0.001 by Fourier-based denoising 
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Figure 6.55. Colour maps of actual abundance fractions (upper panel) and estimated abundance 

fractions by direct FCLS (lower panel) on denoised mixture samples with noise ratio 0.001 by 

wavelet-based denoising 

 

 

Figure 6.56. Bar graph of the numbers of estimated probes by direct FCLS on denoised mixture 

samples with noise ratio 0.001 by wavelet-based denoising 

 



116 

 

 

6.5.5 Linear Unmixing on Noisy Mixture Samples with Ratio 0.0005 

 

 In Figure 6.58, we observe a less polychrome pattern compared to that with ratio 0.001. 

However, the method still does not locate EBFP2 and mTFP1 properly for mixture samples 29 to 

48. Figure 6.59 shows that the rCP value 0.8578 and the mAP value 0.66667. The values have been 

reduced, compared to the original mixture samples. In Figure 6.60, the method produces, on 

average, the LSE of 0.031613 with unmixing time 0.038857s. These values are larger than those of 

the original mixture samples, but smaller than those with ratio 0.001. 

 

 

 

 

Figure 6.57. Bar graph of least square errors by direct FCLS on denoised mixture samples with 

noise ratio 0.001 by wavelet-based denoising 
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Figure 6.58. Colour maps of actual abundance fractions (upper panel) and estimated abundance 

fractions by direct FCLS (lower panel) on noisy mixture samples with ratio 0.0005 

 

 

Figure 6.59. Bar graph of the numbers of estimated probes by direct FCLS on noisy mixture 

samples with ratio 0.0005 
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6.5.6 Linear Unmixing on Denoised Mixture Samples with Noise Ratio 0.0005 by 

Fourier-based Denoising 

 

 The pattern in the EAF plot in Figure 6.61 is polychrome with many dark blue squares on 

mixture samples 29 to 48. In Figure 6.62, compared to the noisy mixture samples, the rCP has been 

slightly reduced to 0.85321 and the mAP has been increased to 0.875. However, Figure 6.63 

illustrates that the average LSE has been reduced to 0.020138 and the processing time has been 

increased to 0.048555s. 

 

 

 

 

 

Figure 6.60. Bar graph of least square errors by direct FCLS on noisy mixture samples with ratio 

0.0005 
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Figure 6.61. Colour maps of actual abundance fractions (upper panel) and estimated abundance 

fractions by direct FCLS (lower panel) on denoised mixture samples with noise ratio 0.0005 by 

Fourier-based denoising 

 

 

Figure 6.62. Bar graph of the numbers of estimated probes by direct FCLS on denoised mixture 

samples with noise ratio 0.0005 by Fourier-based denoising 
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6.5.7 Linear Unmixing on Denoised Mixture Samples with Noise Ratio 0.0005 by 

Wavelet-based Denoising 

 

 In comparison with the colour pattern in the EAF plot of the Fourier-based denoising 

method, we can observe fewer dark blue squares on mixture samples 29 to 48 in the EAF plot in 

Figure 6.64. Figure 6.65 depicts that the rCP and mAP values have been increased to 0.86697 and 

0.95833, respectively, compared to those by Fourier-based denoising. In Figure 6.66, the method 

produces the average LSE of 0.011872 and the unmixing time 0.15511s. The average LSE has been 

decreased, but the processing time has been increased. 

 

 

 

Figure 6.63. Bar graph of least square errors by direct FCLS on denoised mixture samples with 

noise ratio 0.0005 by Fourier-based denoising 
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Figure 6.64. Colour maps of actual abundance fractions (upper panel) and estimated abundance 

fractions by direct FCLS (lower panel) on denoised mixture samples with noise ratio 0.0005 by 

wavelet-based denoising 

 

 

Figure 6.65. Bar graph of the numbers of estimated probes by direct FCLS on denoised mixture 

samples with noise ratio 0.0005 by wavelet-based denoising 
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6.5.8 Linear Unmixing on Noisy Mixture Samples with Ratio 0.0001 

 

Figure 6.67 illustrates a less polychrome pattern compared to that with ratio 0.0005. 

Indeed, there are few dark blue squares on mixture samples 29 to 48. Figure 6.68 shows that the rCP 

value 0.96789 and the mAP value 0.72917. These values have been decreased, compared to the 

original mixture samples. In Figure 6.69, the average LSE is 0.016588 with unmixing time 

0.028276s. The LSE is greater than that of the original mixture samples, but the unmixing is as fast 

as that is. 

 

 

 

 

 

Figure 6.66. Bar graph of least square errors by direct FCLS on denoised mixture samples with 

noise ratio 0.0005 by wavelet-based denoising 
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Figure 6.67. Colour maps of actual abundance fractions (upper panel) and estimated abundance 

fractions by direct FCLS (lower panel) on noisy mixture samples with ratio 0.0001 

 

 

Figure 6.68. Bar graph of the numbers of estimated probes by direct FCLS on noisy mixture 

samples with ratio 0.0001 
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6.5.9 Linear Unmixing on Denoised Mixture Samples with Noise Ratio 0.0001 by 

Fourier-based Denoising 

 

In Figure 6.70, the pattern in the EAF plot is similar to that for the original mixture 

samples. In Figure 6.71, compared to the noisy mixture samples, the rCP and mAP values have been 

increased to 0.99083 and 1.0208, respectively; these values are also similar to those for the original 

mixture samples. Figure 6.72 illustrates that the average LSE has been reduced to 0.0061004, which 

is close to that of the original mixture samples. The processing time however has been increased to 

0.044528s. 

 

 

 

Figure 6.69. Bar graph of least square errors by direct FCLS on noisy mixture samples with ratio 

0.0001 
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Figure 6.70. Colour maps of actual abundance fractions (upper panel) and estimated abundance 

fractions by direct FCLS (lower panel) on denoised mixture samples with noise ratio 0.0001 by 

Fourier-based denoising 

 

 

Figure 6.71. Bar graph of the numbers of estimated probes by direct FCLS on denoised mixture 

samples with noise ratio 0.0001 by Fourier-based denoising 
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6.5.10 Linear Unmixing on Denoised Mixture Samples with Noise Ratio 0.0001 by 

Wavelet-based Denoising 

 

In Figure 6.73, the colour pattern in the EAF plot of the wavelet-based denoising method 

is very similar to that of the Fourier-based denoising method. Figure 6.74 illustrates that the rCP and 

mAP values, 0.99083 and 1.0417, respectively, are also similar to those with Fourier-based 

denoising. In Figure 6.75, the average LSE has been slightly reduced to 0.0060256 whereas the 

unmixing time has been increased to 0.14625s. 

 

 

 

 

 

Figure 6.72. Bar graph of least square errors by direct FCLS on denoised mixture samples with 

noise ratio 0.0001 by Fourier-based denoising 
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Figure 6.73. Colour maps of actual abundance fractions (upper panel) and estimated abundance 

fractions by direct FCLS (lower panel) on denoised mixture samples with noise ratio 0.0001 by 

wavelet-based denoising 

 

 

Figure 6.74. Bar graph of the numbers of estimated probes by direct FCLS on denoised mixture 

samples with noise ratio 0.0001 by wavelet-based denoising 
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6.5.11 Conclusion 

 

 Figure 6.76 summarizes the values of rCP, mAP, average LSE, and unmixing time of the 

direct FCLS method on the original mixture samples, noisy mixture samples with ratio 0.001, and 

denoised mixture samples with the Fourier-based method and the wavelet-based method. As noise is 

present, the rCP value decreases to 0.80734 on the noisy mixture samples. The mAP value also 

decreases, but it is still close to 1. Therefore, the average LSE increases as our expectations. The 

processing time on the noisy mixture samples also increases since there are less zeros in the noisy 

emission spectra due to random noise and thus the algorithm requires more computations for 

unmixing. However, it is unexpected that the denoised mixture samples produce smaller rCP values 

and larger mAP values than the noisy mixture samples even though they yield smaller average LSE 

 

Figure 6.75. Bar graph of least square errors by direct FCLS on denoised mixture samples with 

noise ratio 0.0001 by wavelet-based denoising 
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values. This is because the unmixing algorithm finds more correct probes on the noisy mixture 

samples with worse abundance fraction estimates. Furthermore, the wavelet-based denoising shows 

better performance than the Fourier-based denoising with respect to accuracy. This is a predictable 

result; the wavelet-based method is more flexible since there are more options on the choice of the 

mother wavelet and decomposition level, resulting in better denoising performance, while the 

Fourier-based method is limited to cosine and sine functions without coefficient decomposition. The 

algorithm also requires more processing time for the denoised mixture samples than for the noisy 

mixture samples due to the denoising procedures. Specifically, the wavelet-denoising method takes 

more time than the Fourier-based denoising method because it is more computationally expensive in 

compensation for flexibility. 

 Figure 6.77 describes the values of rCP, mAP, average LSE, and unmixing time of the 

direct FCLS method on the original mixture samples, noisy mixture samples with ratio 0.0005, and 

denoised mixture samples with the Fourier-based method and the wavelet-based method. The rCP 

and mAP values decrease to 0.8578 and 0.66667, respectively, on the noisy mixture samples. The 

rCP values are not changed much on denoised mixture samples, but the mAP values increased to 

0.875 and 0.95833 for the respective Fourier-based denoising and wavelet-based denoising. The 

average LSE on the noisy mixture samples is larger than that on the denoised mixture samples 

since, as mentioned before, the unmixing algorithm locates more inaccurate solutions for the noisy 

mixture samples. As expected, the wavelet-based denoising produces less average LSE and requires 

more processing time than the Fourier-based denoising. 

 Figure 6.78 illustrates the values of rCP, mAP, average LSE, and unmixing time of the 

direct FCLS method on the original mixture samples, noisy mixture samples with ratio 0.0001, and 
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denoised mixture samples with the Fourier-based method and the wavelet-based method. The rCP 

value decreases slightly to 0.96789 for the noisy mixture samples. After denoising, however, the 

rCP values become 0.99083 which is the same value as the original mixture samples. The mAP 

value reduces to 0.72917 on the noisy mixture samples and they become close to 1.0625 on the 

denoised mixture samples. Even the average LSE values are very close to 0.0060189 after 

denoising. Therefore, both the denoising methods eliminate noise properly in this case (that is, ratio 

0.0001). The unmixing algorithm requires approximately 0.3s for both the original and noisy 

mixture samples, leading to the fact that the noise ratio 0.0001 is so small that it does not affect the 

unmixing time. As our expectations, the wavelet-based denoising takes more processing time than 

the Fourier-based denoising. 

 We conclude that the wavelet-based denoising method is better than the Fourier-based 

denoising method with respect to accuracy, especially for noise ratio 0.0005 or more. However, the 

Fourier-based denoising method can be considered for rapid denoising at the expense of accuracy. 

In the case of noise ratio 0.0001 or less, the Fourier-based denoising method is a better choice 

because both the denoising methods produce small LSE values, but the wavelet-denoising method 

requires more processing time than the Fourier-denoising method. 
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Figure 6.76. Bar graphs of ratios of detected correct probes (upper left panel), average detected 

incorrect probes (upper right panel), average least square errors (lower left panel), and processing 

times (lower right panel) by direct FCLS method on original, noisy, Fourier-denoised, and 

wavelet-denoised mixture samples with noise ratio 0.001 
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Figure 6.77. Bar graphs of ratios of detected correct probes (upper left panel), average detected 

incorrect probes (upper right panel), average least square errors (lower left panel), and processing 

times (lower right panel) by direct FCLS method on original, noisy, Fourier-denoised, and 

wavelet-denoised mixture samples with noise ratio 0.0005 
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Figure 6.78. Bar graphs of ratios of detected correct probes (upper left panel), average detected 

incorrect probes (upper right panel), average least square errors (lower left panel), and processing 

times (lower right panel) by direct FCLS method on original, noisy, Fourier-denoised, and 

wavelet-denoised mixture samples with noise ratio 0.0001 
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Chapter 7 

 

 We have analyzed linear unmixing algorithms using the results obtained from experiments 

on the real dataset. In this chapter, we will conclude our work and discuss future works. 

 

7.1 Conclusions 

 

Linear unmixing is significant in fluorescence spectroscopy to estimate the abundance 

fractions for the decomposition of a mixture spectrum into a set of given reference spectra under the 

assumption that the mixture spectrum is the linear combination of the reference spectra. The linear 

unmixing problem is thus to find an optimal solution to the linear mixture model and the problem can 

be recast as an optimization problem to find an abundance vector which minimizes the least squares 

error. This work has presented the comparative studies to examine the behaviour of linear unmixing 

algorithms using the real dataset. To this end, we first provided theoretical backgrounds of the LS 

methods (ULS, SCLS, FCLS, and MFCLS) and the optimization techniques (GD, FC-GD, NM, 

TLBO, and TLSBO) and then implemented their algorithms to solve the linear unmixing problem 

and compared their performance. 

Based on the results obtained from the experiments, we have seen that all the linear 

unmixing methods located correct probes with probability of 96% or more. However, the ULS, SCLS, 

and direct MFCLS methods located approximately two incorrect probes, while the other methods 

found nearly one incorrect probe. 

For the LS methods, we have found that, as more constraints such as ASC and ANC were 
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imposed on the method, it yielded a more accurate solution, and ANC was more significant than ASC 

for accuracy. Also, we have observed that the direct methods found more optimal solutions than the 

iterative methods. However, the MFCLS methods were exceptional since the direct MFCLS method 

employed the SCLS solution for unmixing, which resulted in a suboptimal solution. It was remarkable 

that all the optimization techniques produced optimal solutions. 

The LS methods required more unmixing time as more constraints were applied to their 

algorithms. Especially, the NCLS and direct FCLS methods used dimensionality reduction on the 

mixing matrix for ANC, which was computationally expensive. To avoid this, the direct MFCLS 

method employed AASC instead of ANC to obtain an analytical solution and thus it was much faster 

than them. Furthermore, the iterative methods should generate new matrices at every iteration, 

requiring more processing time than the direct methods. 

Even though the direct FCLS method is the best unmixing algorithm for accuracy, the direct 

MFCLS method is regarded as the best choice among the LS methods if we consider its processing 

time. 

The FC-GD method located an optimal solution by imposing ASC and ANC on the update 

equation of the GD method. However, we could use the GD method with the bounding process for 

the linear mixture model whose mixing matrix formed an overdetermined system with linearly 

independent columns. Due to the simplicity of the GD algorithm, it was much faster than the FC-GD 

method. Also, we have seen that, compared to the standard NM method, the adaptive method required 

more iterations for convergence, resulting in slow convergence. There was however no significant 

improvement in accuracy for the adaptive NM method. The TLBO method is a strong global 

optimization technique using stochastic procedures for global and local searches, which requires 
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much time for convergence. For better, faster convergence, the TLSBO method has been introduced; 

the studying phase has been added to the TLBO algorithm to give random changes to the positions of 

the members, enabling the TLSBO method to converge faster to the solution than the TLBO method. 

Still, it takes long unmixing time, compared with other optimization methods. 

Overall, the FC-GD method is the best linear unmixing algorithm among the optimization 

methods due to its flexibility to use and rapid convergence. If the system, however, satisfies two 

conditions (that is, overdetermined system and linearly independent columns in the mixing matrix), 

then the GD method with the bounding process is the algorithm of choice. 

We have observed that the wavelet-based denoising method was slower but yielded more 

accurate estimates than the Fourier-based denoising method; the wavelet-based denoising method has 

more options to choose parameters for denoising, whereas the Fourier-based denoising method is 

restrictive, leading to the fact that the wavelet denoising algorithm has higher complexity than the 

Fourier-based denoising algorithm. 

In general, the wavelet-based denoising method shows better performance in terms of 

accuracy, and the Fourier-based denoising method in terms of speed. However, if noise is sufficiently 

small, the Fourier-denoising method is a better choice because both denoising methods remove the 

noise very well but the wavelet-denoising method requires much processing time. 

 

7.2 Future Works 

 

We have made many assumptions in this research such as the linearity of the mixture model, 

the overdetermined system formed by the mixture model, strict convexity for the GD method, etc. 

Future works will therefore include the following topics. 
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7.2.1 Nonlinear Unmixing Method 

 

The linear unmixing method is preferred to solve spectral unmixing problems due to its 

simplicity and efficiency [11]. Even though nonlinear spectral unmixing is a challenging problem, 

nonlinear approaches can estimate more accurate, robust abundance fractions than the linear approach 

[10]. Therefore, we believe that nonlinear unmixing methods, for example, the nonnegative matrix 

factorization (NMF) method [72], will be an interesting research topic. 

 

7.2.2 Linear Unmixing Method for Underdetermined System 

 

 In spectroscopy, the linear spectral mixture model is often an overdetermined system [8]. 

However, the model can be an underdetermined system (especially, when the number of detection 

channels to capture emission spectra is less than the number of fluorophores in the sample [73]) and 

the widely used linear unmixing generally fails in underdetermined cases. In this case, we should 

consider another approach, for instance, the similarity-unmixing algorithm SIMI [74]. This method 

will be another interesting research topic. 

 

7.2.3 Nonconvex Linear Unmixing Problem 

 

 We have seen that, when the linear unmixing problem is a strictly convex problem, then we 

could use the GD method (with the bounding process); otherwise, we should use the FC-GD method. 

For nonconvex linear unmixing problems, there are other approaches to find an optimal solution. For 
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example, the NMF method with a generalized minimax concave regularization [75] can be considered. 

This method will be also an interesting research topic. 

 

7.2.4 Application of Deep Learning 

 

 Advances in computing technology have fostered the development of new and powerful 

deep learning techniques, which have demonstrated promising results in a wide range of applications. 

Particularly, deep learning methods have been successfully used to abundance estimations [76]. As 

an example, deep generative endmember modelling has been developed to estimate abundance 

fractions for spectral mixture models [77]. We believe that deep learning methods will be another 

interesting research topic. 
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Appendix A 

 

 

Figure A.1. Plots of mixture emission spectra 1 to 12 

 

 

 

Figure A.2. Plots of mixture emission spectra 13 to 24 
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Figure A.3. Plots of mixture emission spectra 25 to 36 

 

 

Figure A.4. Plots of mixture emission spectra 37 to 48 
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Figure A.5. Plots of reference emission spectra 
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Appendix B 

 

Since the given raw data contain all detailed information about fluorescent proteins, it is 

necessary to extract significant information (i.e., fluorescence emission spectra) from the data. By 

specifying the wavelength to 400nm – 700nm, emission spectra data from the raw data are obtainable. 

Since each sample was generated in triplicate, the averages across triplicates are taken and then both 

the reference and mixture data are blank and background subtracted. Lastly, emission intensity for 

each data is normalized such that the area under the curve is 1. The procedure is described in Figure 

B.1. 

 

 

 

 

 

 

 

 

 

 

Figure B.1. Description of key steps for data preprocessing 
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Appendix C 

 

Mixture Sample SNR (dB) Mixture Sample SNR (dB) Mixture Sample SNR (dB) 

1 1.4249 17 1.5214 33 1.3291 

2 1.6456 18 2.2022 34 0.9389 

3 1.3533 19 1.3162 35 1.2896 

4 2.4121 20 1.3402 36 0.9879 

5 2.1299 21 1.0641 37 1.1529 

6 1.4989 22 1.0664 38 0.9777 

7 1.4291 23 1.3248 39 0.9499 

8 1.3450 24 1.4661 40 0.9250 

9 1.0356 25 1.2420 41 1.0404 

10 1.0679 26 1.2246 42 0.9231 

11 1.8909 27 1.9380 43 0.9207 

12 2.0555 28 1.3818 44 0.9607 

13 1.3095 29 1.0187 45 1.1309 

14 1.7373 30 0.9286 46 0.9651 

15 1.4168 31 1.5109 47 0.9751 

16 1.3785 32 1.1920 48 0.9615 

Table C.1. SNR values of mixture emission spectra and random noise with ratio 0.001 
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Mixture Sample SNR (dB) Mixture Sample SNR (dB) Mixture Sample SNR (dB) 

1 4.1096 17 4.3631 33 3.9213 

2 4.6398 18 5.6997 34 3.0003 

3 3.9506 19 3.8675 35 3.8413 

4 6.0866 20 3.9423 36 3.1172 

5 5.5592 21 3.3265 37 3.5203 

6 4.3016 22 3.3168 38 3.1067 

7 4.1131 23 3.9248 39 3.0431 

8 3.9536 24 4.2229 40 2.9682 

9 3.2516 25 3.7405 41 3.2614 

10 3.2815 26 3.6721 42 2.9756 

11 5.0776 27 5.2072 43 2.9543 

12 5.4172 28 4.0317 44 3.0561 

13 3.8817 29 3.2028 45 3.4753 

14 4.7778 30 2.9786 46 3.0680 

15 4.1117 31 4.3524 47 3.0975 

16 4.0020 32 3.6042 48 3.0632 

Table C.2. SNR values of mixture emission spectra and random noise with ratio 0.0005 
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Mixture Sample SNR (dB) Mixture Sample SNR (dB) Mixture Sample SNR (dB) 

1 16.1127 17 16.5641 33 15.8393 

2 17.0002 18 18.4724 34 14.2302 

3 15.8553 19 15.7192 35 15.7192 

4 18.9952 20 15.8682 36 14.4417 

5 18.2747 21 14.8552 37 15.1708 

6 16.4532 22 14.8166 38 14.4436 

7 16.1113 23 15.8614 39 14.3334 

8 15.8874 24 16.3208 40 14.1735 

9 14.7126 25 15.5622 41 14.7279 

10 14.6979 26 15.4101 42 14.2058 

11 17.5756 27 17.8003 43 14.1424 

12 18.0772 28 16.0093 44 14.3374 

13 15.7800 29 14.6135 45 15.1023 

14 17.1479 30 14.1952 46 14.3608 

15 16.1407 31 16.5610 47 14.4225 

16 15.9332 32 15.3048 48 14.3582 

Table C.3. SNR values of mixture emission spectra and random noise with ratio 0.0001 




