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Abstract—This paper investigates the close formation control 
problem of multiple unmanned aerial vehicles (UAVs). A 
robust cooperative control algorithm is proposed in light of the 
uncertainty and disturbance estimation technique. In the 
proposed design, each UAV is assigned a virtual leader which 
defines the desired position for the corresponding UAV in 
close formation. Bidirectional communication topology is 
assumed for UAVs in close formation, based on which a 
cooperative control law is thereafter established on each UAV. 
Model uncertainties and formation aerodynamic disturbances 
are efficiently estimated and compensated using a uncertainty 
and disturbance estimator. Eventually, the efficacy of the 
proposed design will be validated via the close formation 
simulation of five aircraft. 
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I.  INTRODUCTION  
Close formation flight stems from the formation flight of 

migrating birds [1]. It has received extensive research attention 
in past decades [2, 3]. The research interest in close formation 
flight is motivated by its potential in drag reductions and fuel 
savings. When an aircraft is flying in air, trailing vortices-
circular patterns of rotating airs-will be left behind it. The 
trailing vortices are divided into downwash wake and upwash 
wake. If a follower aircraft is managed to fly at certain proper 
relative position to a leader aircraft, the upwash wake could be 
used to reduce the drag of the follower aircraft, thereby 
decreasing energy expenditure. According to flight tests by 
NASA, close formation flight can generate 13%-20% drag 
reductions and 14%-18% fuel savings on a follower aircraft [4]. 
Wind-tunnel experimental studies by Cho et al indicate 12% 
increase in the lift-to-drag ratio of a follower aircraft in close 
formation against solo flight [5]. 

However, close formation flight is always a challenging 
problem for unmanned aerial vehicles. Highly efficient and 
accurate formation control algorithms are indispensable, as 
close formation flight only makes sense when a follower is 
keeping a certain optimal position to its leader. The theoretical 

analysis by the authors shows more 30% drag reduction by 
close formation flight could be lost, if a follower fails to track 
the optimal relative position by 10% wing span [6]. In addition, 
the trailing vortices, working like wind gusts, will induce other 
adverse aerodynamic disturbances on the follower aircraft, 
which increases the difficulty of the control design [6]. 

So far, the close formation control problem has been 
studied using different methods, such as PI controller [7], 
sliding mode control [8], LQR control [9], MPC control [10], 
adaptive control [11], and robust control [12]. However, all of 
them were developed under the leader-follower architecture, 
and there was no cooperation between two UAVs. The efficacy 
of the existing methods can only be guaranteed for close 
formation flight of two or three aircraft. Increase of formation 
size (number of UAVs) will result in dramatic loss of 
efficiency and accuracy for the existing methods. To deal with 
the deficiency of the existing methods in close formation flight 
of more than three UAVs, a cooperative control method is 
proposed in this paper. A bidirectional communication 
topology is employed. UAVs in close formation are required to 
communicate with some of their neighbors. To enhance the 
robustness against model uncertainties and formation 
aerodynamic disturbances, the uncertainty and disturbance 
estimation technique is employed and combined with the 
proposed cooperative formation controller. The efficiency of 
the proposed control algorithm is verified via the close 
formation simulation of five aircraft.  

The paper is organized as follows. In section II, a nonlinear 
UAV model is introduced together with the close formation 
aerodynamics. Section III presents the robust cooperative 
control methods. The numerical simulations are given in 
Section IV. Eventually, some conclusion remarks are provided 
in Section V. 

II. PRELIMINARIES 

A. Aircraft model 
The proposed cooperative control law will perform as an 

outer-loop formation tracking controller. Hence, a 6-state 
nonlinear UAV model is presented for the control design. 
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                   ( 1 ) 
where , , and denote the position of the i-th UAV in the 

inertial frame, is the ground speed projection on a horizontal 

plane, is the climbing rate, is the heading angle,  is the 

bank angle, is the lift, is the drag, is the thrust, is 

the gravity acceleration, and aerodynamic forces 
induced by the trailing vortices of leader aircraft. The control 
inputs are chosen to be , , and . The vortex-induced 

forces  and  are given by  

 
where  is the vortex-induced change of the angle of attack 
along the wing span as shown in Figure 1, while  is the 
effective average change of the angle of attack. Notice that 

and are actually functions of the relative positions 
between a follower aircraft and its leader. Shown in Figure 2 
and 3 are the relationships between non-dimensional lift and 
drag coefficients with respect to the lateral and vertical 
separations. More detailed results can be found at [6].  

 
Figure 1: Lift rotation due to the upwash wake 

 

 
Figure 2: Vortex-induced lift coefficient variation 

  

 
Figure 3: Vortex-induced drag coefficient variation 

B. Control conversion 

In the control design,  is taken as part of the model 
uncertainties. Differentiating the kinematic equations of Model 
(1) will yield 

                      ( 2 ) 

Define 

 

       

 

 

 

 

 

Eventually, the nonlinear model is transformed into a standard 
2nd-oder integrator model as shown in (2). 

                 ( 3 ) 

 

III. ROBUST COOPERATIVE CONTROL 
The entire control law is  

            ( 4 ) 
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where  is the baseline cooperative control,  is the 
estimation of the uncertainties and disturbances.  

A. Baseline cooperative control 
In this subsection, a cooperative baseline control law is 

proposed for close formation flight of N UAVs where N>2. 
The major expectation is to increase the scalability, efficiency, 
and robustness of close formation flight by introducing certain 
cooperative mechanism. In the cooperative control method, a 
virtual leader together is introduced to generate the reference 
signals for each vehicle. All the virtual leaders together defines 
the optimal formation shape (usually, "V-shape") for a group of 
N UAVs, as shown in Figure 4. A bidirectional communication 
topology is employed.  

 

 
Figure 4 : Close formation organization 

 

Define the position of each virtual leader as 

. Assume the 1st and 2nd of , , 

and  are available. Define the position tracking error as 

 . The baseline cooperative control law for i-th 
UAV is  

 

where ,  , , , , 

 denotes the set of neighbors of i-th aircraft.  

B. Uncertainty and disturbance estimator 

The uncertainty and disturbance estimation term   is 

designed by applying (4) to (3). 

  ( 5 ) 

In terms of results in [],  is estimated using a stable low-

pass first-order filter , where  

   

Hence,  is given by  

          ( 6 ) 

where  is the time constant,  is usually unavailable. 

However, is equal to according to Eq. 

(5). Replace by  in (6). Via basic 

mathematical derivations, we can get  

          ( 7 ) 

Specifying (7) in the time-domain will yield 
 

    ( 8 ) 

where  is a measurable speed signal which makes (8) 
always practically applicable.  

IV. NUMERICAL SIMULATIONS 
In the numerical simulations, close formation flight of 5 

UAVs is considered. Among the 5 UAVs, one UAV performs 
as the very leader for the entire formation. This formation 
leader will be in charge of tracking the trajectory defined for 
the entire formation. The virtual leaders are defined according 
to the optimal relative position requirements to the formation 
leader. In the simulation results, the leader UAV for the entire 
formation is labelled to be “Leader”, while the other UAVs are 
labelled to be “Follower 1”,   “Follower 2”,   “Follower 3”, and  
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The communication topology of the five UAVs are shown in 
Figure 5. The formation trajectory tracking performance is 
shown in Figure 6 in which the 3-D trajectory is projected on a 
horizontal plane. Detailed tracking error responses are shown 
in Figure 7.  

 
Figure 5 : Communication Topology 

 
 

 
Figure 6: Formation trajectory projection on a 2-D 

horizontal plane 

 
Figure 7: Formation tracking error responses 

V. CONCLUSION 
This paper presents an efficient robust cooperative close 
formation control algorithms. Based on the proposed design, 
close formation flight can be easily extended to the case of 
more than three UAVs. The efficacy of the proposed design 
is verified via a close formation simulation of five UAVs. 
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