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Abstract: 
The regional distribution of digestion, metabolic, osmoregulatory and detoxification 

function along the GIT of fish are poorly understood. Several studies have shown evidence for 
zonation in the enzyme activity and zonation in the microbiome of the fish GIT; however, few 
studies have provided a more comprehensive survey of the interplay between the microbiome 
and enzyme activity with respect to zonation. The objective of this study was to explore 
functional zonation by manipulating two external environmental factors, specifically temperature 
and salinity, to observe zonation patterns in the bacterial communities, and corresponding 
digestive, metabolic, osmoregulatory and detoxification enzyme alterations along the GIT. It was 
found that zonation was more indicative of bacterial species communities and enzyme activity 
than temperature and salinity. The findings in this research will contribute to our understanding 
of the functionality of each region and the complexity of fish GIT physiology. 
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Chapter 1: General Background 

The gastrointestinal tract (GIT) has many critical functions. Its primary purpose is to 

extract essential nutrients from the animal’s environment including water, macronutrients 

(protein, carbohydrates, and fats), micronutrients (minerals and vitamins) and phytochemicals 

(biologically activity plant compounds which serve as antioxidants) which aid in growth, 

development, and reproduction in addition to homeostatic balance (Stevens and Hume 2004; 

Sekirov 2010). The GIT also plays a role in osmoregulation, detoxification, and immunity 

(Meister et al. 1983; Abbaurrea-Equisoain and Ostos-Garrido 1996; Mommsen et al. 2003a; 

Scott et al. 2006; Buddington et al. 1997; Shin et al. 2005; Sekirov et al. 2010) which further aid 

in animal health and survival. To perform these functions, numerous biochemical reactions occur 

within the GIT aided by a variety of enzymes, many of which are endogenous to the enterocyte, 

the intestine cell, and produced by the organism itself (Lesel and Fromageot 1986; Saha and Ray 

1998; Bairagi et al. 2002). These enzymes contribute to vital processes such as cellular 

respiration and energy metabolism, ion-balance, ammonia detoxification, and other aspects of 

digestion (Farell 2011; McCormick 1993; Rubino et al. 2014; Ray et al. 2012). Many studies 

have examined these biochemical pathways in response environmental manipulation, such as 

increasing temperature and altering water salinity. However, these past studies overlook two 

important factors. Firstly, mutualistic bacteria have been identified in the gut and the limited 

evidence that is currently available suggests the microbiome can contribute to enzymatic 

pathways in fish. However, the interplay between resident bacteria and the host in regards to 

enzymatic pathways is currently unclear. If bacteria are contributing to the various roles of the 

GIT, manipulating the microbiome could be an avenue for optimizing the functions of the GIT, 

such as nutrient assimilation. This would be beneficial for industries, such as aquaculture, as 

growth could be increased through increased nutrient assimilation. Secondly, anatomical 
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differences along the GIT exist, and functional differences are often reflected by these structural 

changes. For example, the trout has several specific organs within the GIT, all with specific 

functions. However, often studies combine these zones into one homogenous GIT, despite the 

possibility for functional differences. This approach may obscure alterations in the GIT in 

response to specific treatments. Identifying which zones are responding to environmental 

manipulation can aid in predicting functions that would be altered.    

1.1 Enzymes in the GIT 

1.1.1 Cellular respiration and energy metabolism 

Cellular respiration is a process in which ATP (adenosine triphosphate), the main energy 

carrying molecule of the cell, is produced via the catabolism of biomolecules such as sugars, fats, 

and proteins (Farrell 2011). ATP fuels many of biological processes and is an essential 

component of cellular homeostasis and cell function (Farrell 2011). Cellular respiration consists 

of three major steps including glycolysis which occurs in the cytosol, and the citric acid or 

tricarboxylic acid (TCA) cycle and oxidative phosphorylation or the electron transport chain, 

both of which occur in the mitochondria. In glycolysis, glucose is catabolized into pyruvate and 

energy in the form of NADH (nicotinamide adenine dinucleotide, a proton carrier) is produced 

(Farrell 2011). Pyruvate is then shuttled into the TCA cycle where energy molecules including 

NADH, FADH2 (flavin adenine dinucleotide) and GTP (guanosine triphosphate) are produced 

(Farrell 2011). In aerobic respiration, oxidative phosphorylation stage is the final step; here ATP 

is produced by the oxidation of the NADH and FADH2
 and water is produced from the reduction 

of oxygen (Farrell 2011). In anaerobic respiration, when oxygen concentrations are low or when 

no oxygen is present to accept protons in oxidative phosphorylation, pyruvate is shuttled away 

from the TCA cycle and stored in the form of lactic acid (Farrell 2011). 
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Lactate dehydrogenase (LDH), pyruvate kinase (PK) and citrate synthase (CS) are 

examples of key metabolic enzymes involved in cellular respiration. 

LDH is a cytosolic enzyme that converts lactate to pyruvic acid in a reversible reaction 

and can provide either energy for the TCA cycle or glycolysis; this enzyme is associated with 

anaerobic respiration (Yancey and Somero 1978; Feron 2009). PK also contributes to the TCA 

cycle is a cytosolic enzyme that catalyzes the final step of glycolysis, converting 

phosphoenolpyruvate to pyruvate and producing ATP for use in the TCA cycle; it is involved in 

aerobic and anaerobic respiration (Locasale et al. 2011). Finally, CS is a mitochondrial enzyme 

which catalyses the conversion of oxaloacetate and Acetyl-CoA to citrate for the TCA cycle and 

is involved in aerobic respiration (Kelly et al. 2015). 

1.1.1.1 Sodium-potassium ATPase 

Sodium-potassium ATPase (NKA) is a plasma membrane antiporter protein that pumps 3 

Na+ extracellularly and 2 K+ intracellularly and hydrolyses ATP (McCormick 1993). It is 

involved in sodium excretion in the epithelia of tissues such as in the intestine, kidney and gills, 

ion-balance, and cell volume regulation as well as action resting potential in nerve cells and the 

transport of substances across the epithelial membrane such as glucose through secondary active 

transport (Jampol 1970; McCormick 1993; Randall et al. 2002). Evidence suggests that NKA can 

influence the activity of enzymes involved in cellular respiration (Langdon and Thorpe 1985; 

McCormick et al. 1989; Soengas et al. 1995; Le Francois and Blier 2003; Le Francois et al. 

2004). For example, during seawater exposure increased NKA activity was correlated with 

increased energy metabolism in the activities of LDH, PK and CS in both brook charr (Le 

Francois and Blier 2003) and wolfish (Le Francois et al. 2004). A functional relationship 

between osmoregulation (NKA) which requires high levels of energy and lactate oxidation 



4 
 

(LDH) has been proposed as glucose and lactose are the main fuel sources in the performance of 

osmoregulatory processes (Le Francois et al. 2004; Perry and Walsh 1989; Soengas et al. 1995). 

In contrast, CS did not show any adjustments with increased salinity and increases in NKA 

activity (Le Francois and Blier 2003; Le Francois et al. 2004) suggesting differences in the 

regulatory pathways of these enzymes (Thibault et al. 1997; Belanger et al. 2002; McCormick et 

al. 1989; Blier and Lemieux 2001).  

1.1.2 Local ammonia detoxification in the gut 

Carnivorous fish such as rainbow trout have high-protein diets; a by-product of protein 

digestion is the toxin ammonia (Murai et al. 1987; Bucking and Wood 2012; Wright and Wood 

2009; Bucking et al. 2013; Karlsson et al. 2006; Rubino et al. 2014). Following feeding, 

ammonia levels in the chyme of rainbow trout increase six times higher than in the blood plasma 

of the intestine which was proposed to be a result of dietary protein catabolism into excess 

ammonia and amino acids (Bucking and Wood 2012), the latter being used for energy production 

in other processes (Ballantyne 2001; Stone et al. 2003; Bucking and Wood 2012). Since 

ammonia is toxic, mechanisms must exist to detoxify the body of ammonia; one such way is 

through the synthesis of amino acids (Rubino et al. 2014).  

Two major enzymes, glutamate dehydrogenase (GDH) and glutamine synthetase (GS), 

have been implicated in ammonia detoxification processes (Wicks and Randall 2002; Wright et 

al. 2007; Rubino et al. 2014). GDH catalyzes the reaction of α-ketoglutarate and free ammonia to 

glutamate (Chew et al. 2010; Ip et al. 2010; Tok et al. 2009; Bunik et al. 2016). The GS enzyme 

is also involved in ammonia detoxification and protein metabolism through the conversion of 

free ammonia and glutamate to glutamine. 
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Though much ammonia detoxification occurs via excretion through the gills and kidneys, 

localized enzymatic detoxification of excess ammonia in the intestine of fish is also possible. 

GDH and GS activity, and mRNA expression of these proteins, have been identified in the guts 

of salmonids and midshipman (Wood 1995; Wright 1995; McDonald et al. 2012; Bucking et al. 

2012; Chamberlin et al. 1991; Mommsen et al. 2003b; Murray et al. 2003; Bucking et al. 2013b). 

This local ammonia detoxification process in the gut may be an essential function of the gut as it 

serves to reduce uptake of toxic ammonia into the blood and surrounding tissues.  

1.1.3 Digestive enzymes 

 The lumen of the GIT contains a suite of enzymes responsible for the catabolism of 

complex dietary molecules into smaller subunits that are readily absorbed in the GIT (Furne and 

Sanz 2005). Cellulase, trypsin and lipase are enzymes of interest as they are associated with 

carbohydrate, protein, and fat digestive processes; key functions of the GIT.  

Cellulase is a digestive enzyme that breaks down cellulose, an important component of 

the cell wall of plant cells, into glucose monomers to be used in downstream metabolic processes 

such as glycolysis (Stickney and Shumway 1974; Bairagi et al. 2002; Saha and Ray 1998; Ray et 

al. 2012). Carnivorous fish are thought to lack the ability to produce significant levels of 

cellulase activity endogenously. Observed cellulase activity in the gut of carnivorous fish is 

present but negligible (Bairagi et al. 2002; Liu et al. 2016). Bairagi et al. (2002) proposed that 

this may be because carnivorous fish do not produce a significant amount of cellulase enzyme; 

ingestion of very small quantities of plant material may induce small levels of cellulase activity.  

Trypsin is an enzyme that is involved in the catabolism of the peptide bond in 

polypeptides producing amino acid monomers (Lauff and Hofer 1984; Liu et al. 2016). Rainbow 
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trout are carnivorous fish that require a high protein diet for growth and survival; proteases such 

as trypsin are essential for extracting protein from their diet (Torrissen 1984). Trypsin is 

produced endogenously by the pancreas and secreted into the intestinal lumen in an inactive form 

before being activated by brush border enzymes in the intestine (Stevens 1982).  

The lipase enzyme functions to break down fatty acid chains into lipid monomers that are 

more easily absorbed into the body (Nayak 2010). Lipase is endogenously secreted in the 

stomach, pancreas, and intestine (De Silva and Anderson 1994; Ray et al. 2012). Carnivorous 

fish like the rainbow trout have lipid-rich diets requiring lipase activity to aid in the extraction of 

these high energy molecules (Furne and Sanz 2005). Furne and Sanz (2005) observed that 

rainbow trout had higher lipase activity than the omnivorous Adriatic sturgeon indicating the 

importance of this enzyme to nutrient extraction in the carnivorous diet.  

1.2 The contribution of GIT bacteria to digestion and metabolism 

The microbiome of the GIT consists of a variety of bacteria, archaea, and fungi; these 

communities are termed the “gut microbiome” because they live commensally within the host 

(Sekirov 2010; Sommer and Backhed 2013; Liu 2016). The bacterial communities within the 

GIT can impact the host’s physiology in a variety of ways including aiding with host digestion 

and absorption of nutrients, breakdown of otherwise indigestible materials, contribution of 

essential vitamins, and influencing host epithelial permeability and transport (Turnbaugh et al. 

2006; Backhed et al. 2004; Sullam et al. 2012; Sommer and Backhed 2013). In return, the 

microbiome is provided a habitat to grow and reproduce as well as nutrients from their host’s 

ingested meals and secretions by the GIT (Lesel 1991; Bairagi et al. 2002).   
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There are three major evolutionarily conserved bacterial phyla amongst eukaryotes which 

consistently populate the gastrointestinal tract (commonly referred to as “core gut bacteria”): 

Firmicutes, Bacteroidetes and Proteobacteria (Sullam et al. 2012; Xia et al. 2014; Lowrey 2014; 

Ratten et al. 2017). Species of bacteria in these groups have been shown to have an impact on 

digestion and absorption of nutrients and can serve as an indicator for changes in host physiology 

(Xia et al. 2014, Shin et al. 2015, Ley et al. 2006). Firmicutes (often grouped with the 

Tenericutes bacterial phyla due to phylogenetic similarity) have been associated with high 

protein and calorie diets as well as with processes related to lipid uptake (Semova et al. 2012; 

Carmody and Turnbaugh 2012); Li et al. (2015) has also suggested Firmicutes utilizes complex 

polysaccharides including cellulose, xylan and hemicelluloses. Bacteroidetes is associated with 

low calorie diets and the fermentation of plant material and protein in fish (Xia et al. 2014; Ruth 

et al. 2006; Ley et al. 2006; Shin et al. 2015; van Kessel et al. 2011; Ratten et al. 2017).  Finally, 

Proteobacteria has been associated with protein-rich diets and processes related to the 

modulation of the microbiome; for instance, starved Asian seabass were shown to have 

decreased Proteobacteria and an increase in Bacteroidetes compared to the control fed fish 

(Bairagi et al. 2002; Ray et al. 2012; Xia et al. 2014; Shin et al. 2015).  

The gut microbiome and its relationship to host metabolism has been previously studied 

in mammals particularly in relation to the role of bacteria in nutrient extraction and obesity. For 

example, there is evidence suggesting that a difference exists in the microbiome of obese and 

lean individuals and this variation can influence the ability of the host to extract and process 

dietary nutrients; the microbiome of obese individuals enhances energy harvest and is associated 

with increased Firmicutes while leaner individual’s microbiome is dominated by Bacteroidetes 

(Backhed et al. 2004; Turnbaugh et al. 2006). Piscine studies are lacking however there is 
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anecdotal evidence for fish. For example, Stickney and Shumway (1974) detected low levels of 

cellulase activity in omnivorous and carnivorous fish and postulated that this was perhaps a 

result of the ingestion of invertebrates containing cellulase-producing microflora.  

1.3 Evidence for zonation along the GIT 

Morphological zonation has been identified in the rainbow trout gut. Their GIT is divided 

into four anatomically distinct regions: the stomach, anterior intestine (AI) – which includes 

small, numerous, finger-like projections known as pyloric ceca, the mid-intestine (MI) and 

posterior intestine (PI) (Figure 1). Each of these zones can contribute specific functions to the 

GIT. For example, the stomach aids in acid digestion while the AI aids in lipid digestion (Bik et 

al. 2006; Semova et al. 2012; Carmody and Turnbaugh 2012). These specific functions are often 

overlooked, and the GIT is treated as a uniform organ. However, with anatomical zonation along 

with functional zonation, this approach may obscure specific responses of each section to 

treatments such as environmental manipulation. 

Different enzymes show patterns of activity zonation along the GIT of fish as was 

explored by Mommsen et al. (2003a) who investigated metabolic zonation in the gut of fish. 

They reported the activities of the mitochondrial enzymes, GDH and CS, as well as cytosolic 

LDH decreased along the GIT of the rainbow trout where the stomach followed by the pyloric 

ceca had the highest activities (Mommsen et al. 2003a). This corroborated the findings of a study 

by Walsh et al. (1991) where it was observed there was increased mitochondrial density in the 

anterior portion of the GIT suggesting a specialization of this region for energy metabolism. 

Mommsen et al. (2003a) also identified zonation patterns in other enzymes, including malic 

enzyme, 6-phoshogluconate dehydrogenase, isocitrate DH, glucose-6 phosphate DH as well as 
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alanine and aspartate aminotransferases. In addition to rainbow trout, they also examined Nile 

tilapia and copper rockfish which also exhibited regional enzyme differences along the gut. 

There is also evidence to support zonation of digestive enzyme activity, particularly with 

regards to trypsin. Stevens (1982) investigated trypsin activity in the pyloric ceca of rainbow 

trout and found that the anterior ceca had higher trypsin activity compared to the posterior ceca. 

He proposed that this increase in activity in the anterior portion of the ceca was due to the closer 

association between the ceca and the pancreas which secretes this digestive enzyme (Stevens 

1982). Conversely, Torrissen (1984) reported rainbow trout had the highest level of trypsin 

activity in the mid-intestine followed by pyloric ceca, the stomach, posterior intestine, and the 

anterior intestine. Finally, Uematsu et al. (1992) state that lipase activity occurs primarily in the 

pyloric ceca and the proximal intestine in the red sea bream (Olsen and Ringo 1997). 

Zonation of the GIT microbiome has been examined, however most of these studies have 

focused on mammals. In mammals, the density of bacterial populations increases along the 

anterioposterior axis of the gut (Sekirov et al. 2010; Sommer and Backhed 2013). Additionally, 

in the stomach and small intestine, bacteria of Enterococci and Lactobacilli (of phyla Firmicutes) 

and Enterobacillae (of phyla Proteobacteria) predominate (Sarma-Rapuvtarm et al. 2004; 

Macpherson and Harris 2004; Corbitt 2011). In contrast, in the large intestine, Bacteroides (of 

phyla Bacteroidetes), Bifidobacteria (of phyla Actinobacteria), Clostridium, Fusobacteria and 

Peptostreptococci, all strict anaerobes, predominate in mice (Sarma-Rapuvtarm et al. 2004; 

Macpherson and Harris 2004; Corbitt 2011). Zonation of bacteria within fish GITs has only been 

examined in the brown trout (Al-Hisnawi et al. 2015), and the pyloric ceca appeared to have the 

highest bacterial diversity of all sections. However, this study did not explore the effects of these 

bacterial populations on host physiology. 
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Interaction between region-specific intestinal function and bacteria has been postulated. 

Rubino et al. (2014) hypothesized zonation in ammonia handling and the activity of GDH, GS 

and GLN (glutaminase; converting glutamate to glutamine) along the GIT of rainbow trout in 

response to feeding. GS and GDH but not GLN activity showed evidence of zonation where GS 

showed increased activity along the anterioposterior axis in the unfed condition where the PI had 

10-fold higher activity than the AI; conversely, GDH activity decreased over the anterioposterior 

axis in the fed condition where the AI had 3-fold higher activity than the PI which corresponds to 

the findings of Mommsen et al. (2003b). This increased GS activity in the PI was postulated to 

be a result of the localization of ammonia-fixing bacterial flora via GS (ammonia is their 

preferred nitrogen source) or glutamine synthesis for processes related to energy production in 

intestinal cells (Magasanik 1977; Taylor et al. 2011; Rubino et al. 2014). Thus, enzymes with 

similar processes do not necessarily correlate in their patterns of zonation but may instead be 

influenced by exogenous factors such as the microbiome or other complex regulatory processes. 

Bacteria have a multitude of functions within the gut and contribute in various ways to 

host physiology. The region-specific localization of certain bacterial communities and the ways 

in which they contribute to gut function and health can provide insights into functional zonation 

along the gut. Additionally, morphological and histochemical zonation has also been established 

in the GIT of rainbow trout and there is a great deal of evidence for enzymatic zonation (Harder 

1975; Stevens 1982; Torrisen 1984; Wilson and Castro 2010; Mommsen et al. 2003a; Mommsen 

et al 2003b; Bucking and Wood 2007; Bucking and Wood 2012; Rubino et al. 2014). However, 

the relationship between the microbiome and enzyme activities in the context of functional 

zonation have not been well established in fish. Understanding patterns of zonation in the GIT 
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can contribute to our understanding of the multifunctionality of the gut and its importance to fish 

physiology. 

1.4 Study objectives 

Previous studies have examined zonation in the microbiome and the activity of GIT 

associated enzymes separately. The objective of this novel study was to investigate the 

interactive effect of the gut microbiome on functional zonation in the rainbow trout, assayed 

through genetic identification of GIT bacteria and the measurement of enzyme activities. It was 

hypothesized that patterns of zonation along the GIT would be detected in the composition of the 

bacterial communities and the activities of important metabolic and digestive enzymes and that 

these patterns may indicate a synergistic relationship between the gut bacteria and enzyme 

activity in each region thus elucidating functional zonation in rainbow trout gut physiology 

(Figure 1). Two external environmental stressors, temperature and salinity, have been previously 

been shown to affect both the microbiome and enzyme activity separately in fish (Lesel and 

Peringer 1981; Al-Hisnawi et al. 2015). The effects of these stressors on functional zonation and 

the microbiome was explored to determine the possible role of zonation modalities on fish 

physiology. In Chapter 2, I will discuss the effect of temperature on the microbiome and enzyme 

activity zonation relationship. Chapter 3 will focus on the effect of salinity on these factors. 

Finally, in Chapter 4, I will compare my findings from these experiments and draw conclusions 

about functional zonation in the rainbow trout GIT. 

This work will contribute to our understanding of regionalized function in the gut and the 

contribution of the GIT bacteria. Characterization of the gut microbiome and relation to gut 

functions, such as nutrient assimilation and metabolism would be of great use to aquaculture, an 

industry worth an estimated $99.2 billion USD worldwide (FAO 2016), where microbiome 
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alterations through environmental manipulations such as diet or in husbandry conditions can be 

controlled to optimize growth and health. Additionally, considering the GIT as a regionalized 

organ system in future studies will expand on our knowledge of the function and complex 

relationship of this system and its contribution to overall fish physiology. 
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Figure 1. Exploring bacterial and enzyme activity zonation in the GIT of the rainbow trout. 
The GIT consists of four major anatomically distinct regions which include the stomach, 
anterior intestine (AI), middle intestine (MI), and posterior intestine (PI). The relationship 
between bacterial composition in each region of the GIT and enzyme activity will be 
investigated to establish patterns of functional zonation. 
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Chapter 2: The effect of temperature on the microbiome, and metabolic and digestive enzyme 
activities along the GIT of the rainbow trout  

Introduction: 

2.1 Overview 

 Most fish are poikilotherms meaning that they lack mechanisms which would enable 

them to regulate their body temperature; as a result, any endogenous heat that they manage to 

produce is lost to their external environment via the gills and body surface (Hazel and Prosser 

1974; Stevens and Sutterlin 1976; Currie and Schulte 2014). The microbiome of the gut can be 

influenced by temperature which may allow for the proliferation of bacteria that can influence 

fish physiology in a variety of ways (Lozupone and Knight 2007; Nayak 2010; Givens 2014; 

Zarkasi et al. 2016). Therefore, temperature has a tremendous impact on the physiological 

processes regulating homeostatic balance such as the microbiome as well as the rate of chemical 

reactions via the alteration of thermal energy, changes to the structure and functioning of 

proteins, and membranes properties such as permeability (Schulte et al. 2011; Currie and Schulte 

2014).  

2.2 The effects of temperature on the GIT microbiome 

Temperature can affect the bacterial populations of the microbiome in fish (Lesel and 

Peringer 1981; Lozupone and Knight 2007; Nayak 2010; Givens 2014; Zarkasi et al. 2016). 

Lesel and Peringer (1981) performed a bacterial count in the major regions of the whole GIT in 

rainbow trout and observed that temperature increase had positive effect on the counts of bacteria 

in each region; however, the implications of these changes were not investigated. Furthermore, 

Al-Hisnawi et al. (2015) examined the resident bacterial populations along the anterior, 

posterior, and pyloric ceca regions of the intestine in brown trout; the pyloric ceca had the 

highest bacterial diversity followed by the anterior region, but this group did not explore the 
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physiological aspects of the microbiome on the host or temperature responses. Studies suggest 

that sporadic proliferation of some bacterial taxa may be due to host physiological responses to 

temperature stress (Zarkasi et al. 2014). In addition, Proteobacteria abundance increases at higher 

temperatures in the gut of fish indicating that this phylum may have a physiological significance 

(Givens 2014; Al-Hisnawi et al. 2015). 

2.3 The effects of temperature on enzyme activity and compensatory responses 

 Temperature impacts the kinetic activity of biological and physiological processes 

(Currie and Schulte 2014). Factors such as enzymatic maximum velocity and enzyme-substrate 

affinity influence the activity levels of enzymes and transporters, the former of which has been 

well-studied in poikilotherms (Licht 1967; Mutchmor 1967; Rasmussen and Rasmussen 1967; 

Read 1967; Somero and Hochachka 1968). 

Animals can have different types of compensatory metabolic responses to stressors such 

as temperature. Precht (1958) proposed five patterns of metabolic compensation including ideal 

compensation, partial compensation, supraoptimal compensation, inverse compensation, and no 

compensation. In ideal compensation, the original metabolic activity level is restored following 

stressor exposure. In partial compensation, the original activity level is not fully restored while in 

supraoptimal compensation the original activity is overshot. If the activity level follows the 

direction of the stressor, that is, an increase or decrease with increasing or decreasing 

temperature, this is considered no compensation. In inverse compensation, the activity level 

response is greater than in no compensation such that it is the inverse of the supraoptimal 

compensation response (Precht 1958; Prosser 1969). In this work, the compensatory patterns in 

metabolic activity along the GIT in response to increasing temperature will also be explored to 

detect zonation patterns. 
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Enzymes involved in energy metabolism such as LDH and PK are stable within a limited 

range of their thermal tolerance range displaying perfect compensation; similar behaviour is 

expected with CS activity as this enzyme is also involved in cellular respiration like LDH and 

PK (Smith and Ellory 1971; Yancey and Somero 1978; Coppes and Somero 1990; Low and 

Somero 1976; Prosser 1991; Ozernyuk et al. 1994; Eddy 2005). It is important for organisms to 

regulate the activity of certain enzymes such as LDH, PK and CS to maintain stable levels of 

function under environmental stress as this aids in ensuring homeostatic balance (Low and 

Somero 1976). Overcompensation in the activities of NKA and lipase have been reported in the 

intestinal tissues of some fish species (Smith and Ellory 1971; Borlongan 1990). Other enzymes, 

such as cellulase and trypsin have shown metabolic adaptation or an inverse compensatory 

response to decreased temperature where their activities are elevated to maintain metabolic rates 

against decreased thermal kinetic energy (Kristjbnsson 1991). GDH and GS, involved in 

ammonia detoxification, are likely to increase in warmer water as higher temperatures are 

correlated with increased permeability of epithelial surfaces in fish to ammonia from the water; 

an increased requirement for local ammonia detoxification in the GIT epithelia is required to 

mitigate this effect (Prosser 1991; Eddy 2005).  

2.4 Hypotheses 

The effect of seasonal temperature changes and lab-simulated alterations of water 

temperature on fish physiology and the gut microbiome have been explored in previous studies, 

however, functional patterns along the GIT of fish in response to temperature have not been well 

documented. Understanding the way in which temperature changes the microbiome and 

enzymatic activity will aid in elucidated functional zonation in the fish gut.  



17 
 

The eurythermal rainbow trout has a thermal tolerance range of 0°C – 25°C where their 

optimal performance temperature is 11°C making it an excellent model for temperature stress 

studies (Threader and Houston 1983; Taylor et al. 1996; Aho and Vornanen 2001). 

In this study, long-term exposure (6 weeks) to elevated temperature (17ºC) was used to 

investigate the acclimation capacity in enzyme activity and perturbations to the bacterial 

populations along the GIT of the rainbow trout to explore functional zonation. An analysis of 

metabolic and digestive enzymes as well as bacterial populations along the GIT were also used 

to performed to determine the interrelationship between temperature, the microbiome, and the 

host physiology in zone-specific regions.  

Firstly, it was hypothesized that increasing temperature will lead to the proliferation of 

Proteobacteria over the other core gut bacteria phyla. This is because in previous studies the 

proportion of Proteobacteria has been found to increase in the gut of fish when tank water 

temperature was increased (Givens 2014; Al-Hisnawi et al. 2015).  

Furthermore, it was hypothesized that some enzymes would not be as affected by 

temperature as other enzymes due to compensatory mechanisms which aid in the regulation and 

stabilization of their activities.  

Enzymes including sodium-potassium ATPase (NKA), cellulase, trypsin, lipase, 

glutamate dehydrogenase (GDH), glutamine synthetase (GS) have been shown to be affected by 

changes to ambient temperature while lactate dehydrogenase (LDH) and pyruvate kinase (PK) 

have demonstrated relatively stable activities with increased temperature in fish; citrate synthase 

(CS) activity is also expected to exhibit similar behaviour to LDH and PK as they belong to a 

class of enzymes involved in cellular respiration. GDH and GS activity might become more 
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important at higher temperatures due to increased dietary protein catabolism for energy 

production. The interrelationship between enzyme activity and the microbiome was explored to 

understand how these factors together may contribute to functional zonation in the stomach, AI, 

MI and PI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



19 
 

Materials and Methods 

3.1 Fish care: 

Rainbow trout (Humber Springs Trout Farm, Orangeville, Ontario) were kept in three 

200L aerated, flow-through tanks at 6°C (~25 individuals per tank) with dechlorinated 

freshwater supplied through the City of Toronto. Fish were fed UV-sterilized 3-point pelleted 

fish food (Tropica Aquaria Limited, Brampton, Ontario; see composition in Appendix D) every 

48 hours during acclimation and for the duration of the experiment. Fish health and water 

temperature were monitored each day; the water quality was monitored on a weekly basis to 

ensure the levels of ammonia, nitrate and chlorine were within a safe limit.  

3.2 Initial dissections, sampling, and tissue storage 

To prepare for aseptic dissection, forceps, scissors, and 2 ml microcentrifuge tubes for 

sample collection were UV-sterilized for 15 minutes and the bench surface was sprayed and 

wiped with 70% ethanol to reduce foreign bacterial contamination during dissection. At t=0, five 

fish euthanized with an overdose of tricaine methane sulfonate (MS-222; Sigma Aldrich, 

Oakville, Ontario) in a bucket of water (pH 7.4), their length and mass were recorded, and the 

exterior surfaces of the animal were sprayed with 70% ethanol. Fish were dissected by lateral 

incision starting posterior to the operculum along the ventral surface and ending at the anus to 

expose internal organs. Samples of tissue and stool from the stomach, AI, MI, and PI were 

aseptically collected, ensuring rotation of dissection tools into the 70% ethanol tube after each 

major incision. Samples were stored in 2 ml microcentrifuge tubes and snap-frozen and kept on 

dry ice until freezer storage at -80°C.  

3.3 Temperature experiment and sampling periods 
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The water temperature of three tanks holding the experimental fish were adjusted to 6°C, 

12°C and 17°C over a period of 24 hours and the water temperatures were monitored daily. At 6 

weeks exposure, four fish were sampled from the 6°C, 12°C and 17°C tanks. Samples were 

collected to be used in the microbiome analysis as well as in the enzyme activity analysis.  

3.4 Stool and tissue bacterial sample gDNA extraction 

 Bacterial gDNA extraction was performed by combining two commercial extraction kits. 

First, the QIAGEN QIAamp DNA Stool Mini Kit (QIAGEN; Toronto, Ontario) was used as per 

manufacturer instructions to isolate DNA from each of the stool samples collected from each fish 

GIT zone. Prior to extraction, kit contents, pipettes and tips, and microcentrifuge tubes were UV-

sterilized for 20 minutes. Samples were homogenized using a hand-held power homogenizer to 

aid in the lysis of cells. A blank (a 2-ml microcentrifuge tube with no stool or tissue sample) was 

prepared using the kit reagents alongside the gDNA extraction of the samples to ensure that the 

extraction process was sterile (Appendix C, Table 3). The isolated DNA from each sample were 

then stored at -20°C until further analysis. 

Then, the QIAGEN DNeasy Blood and Tissue kit was used as per manufacturer 

instructions to isolate DNA from each intestinal content, stool and tissue sample collected from 

each fish GIT zone. Buffer ATL and Proteinase K were added to each sample and incubated on a 

56°C rocking heater block overnight to facilitate lysis of cells in the sample. A blank (a 2-ml 

microcentrifuge tube with no stool or tissue sample) was prepared alongside the extraction of the 

samples to ensure that the extraction process was sterile (Appendix C). The isolated DNA from 

each sample were then stored at -20°C until further analysis.  

3.5 Bacterial gDNA quantification, pooling, and packaging: 
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The isolated DNA from each sample was quantified using the BIOTEK Synergy HT 

spectrophotometer using the Take3 plate and Gen 5 v3.02 software (BIOTEK Instruments Inc.; 

Winooski, Vermont) and each extraction kit sample was pooled before being stored at -20°C 

until further analysis. For the microbiome analysis, samples from each fish in each treatment 

were pooled into a single stomach, AI, MI, and PI sample containing a minimum of 

concentration of 80 ng/uL isolated gDNA with a quality ratio (260 nm to 280 nm) ~2. The AI 

and MI were combined because I had not been able to detect distinguishable bacterial 

compositions in my initial method validation study; AI+MI are considered one sample in this 

analysis. Pooled stomach, AI and MI combined, and PI gDNA samples from each treatment 

group were placed into appropriately labelled individual zip-locked bags, placed in one package, 

and sent to Mr. DNA (Shallowater, Texas) in for bTEFAP ® Illumina sequencing of 16S RNA. 

Briefly, universal 16S RNA primers were used in PCR to amplify a short region of 16sRNA (~ 

300 bp) that contained species-specific nucleotide sequences bracketed between the universal 

regions.  Hence, the primers amplified all bacterial sequences present in the extracted gDNA 

during PCR, which were then individually sequenced using Illumina sequencing. These 

individual sequence files were then analyzed as outlined below.  

3.6 Bacterial DNA sequence analysis 

DNA sequence data sets including a fasta sequence file, a qual quality file and a mapping 

file in addition to analysis pipeline files containing the counts of bacteria in each sample were 

obtained from Mr. DNA following Illumina sequencing. Since the temperature experiment was 

repeated twice and the 6°C and 12°C results were the same, the fasta, qual and mapping files 

from each Illumina sequencing run were concatenated, resulting in a pooled 6-12°C cold water 

(CW) and 17°C warm water (WW) samples. Data were analyzed using QIIME ® (Quantitative 
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Insights into Microbial Ecology), R Studio and Microsoft Excel. QIIME was used to filter 

sequences to remove low quality reads (<25 base pairs), short and long sequences (<200 

nucleotides; >1000 nucleotides), gaps, sequences with homopolymer runs exceeding 6 

nucleotides, and zero primer sequence mismatches. Chimeras were identified and removed from 

the filtered sequences using UCHIME in USEARCH v5.2.236 (Edgar et al. 2011). Sequences 

with a minimum of 97% similarity were organized into OTUs (operational taxonomical units), 

essentially similar to biological species, using USEARCH (Edgar 2010); OTUs were then 

compared to the bacterial 16S rRNA Green Gene database using a closed-reference OTU picking 

protocol and assigned taxonomy for downstream analysis (Caporaso et al. 2010; Caporaso et al. 

2011; Kuczynski et al. 2012). Unassigned bacterial species were removed from the data set prior 

to downstream analysis. To remove uneven sampling depth impacts on diversity analyses, the 

sequences from each sample were rarefied to the lowest sequence number detected. 

 For the alpha diversity analysis, which examines diversity (richness and abundance) 

within individual sample’s sequences, the following rarefaction curves were generated with 

QIIME: observed OTUs detected in each sample per sequence subset, phylogenetic diversity 

(PD) whole tree (which depicts the likelihood of a new OTUs being identified in the sample), 

Shannon (showing the abundance of OTUs in each sample) and Chao1 (representing the 

likelihood of finding a rare species).  

 Beta diversity analyses, comparing diversity between samples, were performed by 

generating unweighted (OTU identity-based) and weighted (OTU identity and abundance-based) 

Unifrac metric which was based on the abundance data that had been normalized (Lozupone and 

Knight 2010). Principle coordinate analyses representing the degree of variation in sample 

sequences between samples were generated from these metrics. The metrics were used to create 
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a jackknifed beta diversity analysis (Caporaso et al. 2010; Caporaso et al. 2011) to examine the 

similarity of OTU diversity between samples. Bootstrap consensus trees were generated using 

Unweighted Pair Group Method with Arithmetic mean (UPGMA) clustering based on the 

jackknifed analysis. A bacterial phylum % identity stacked bar graph was generated in Microsoft 

Excel from the OTU sequences assigned taxonomy from Green Genes library in QIIME.    

 Finally, multivariate redundancy analyses (RDA) were generated using the vegan 

package in R Studio from the OTU biome table generated in QIIME (Oksanen et al. 2015). The 

RDA plot is generally used to depict the variation in the response variables (in this case the 

bacterial species abundance) that can be explained by the explanatory variables (the GIT zones 

and treatments).  

The description of the scripts used in QIIME and R Studio for these analyses are in 

Appendix A and B. 

3.7 Enzyme assay analysis tissue preparation: 

 Assays of nine enzymes, NKA, LDH, PK, GDH, CS, GS, cellulase, trypsin, and lipase, 

were used to measure zone-specific changes in activity in response to varying temperature. 

Maximal activities were measured in this experiment which were optimized beforehand. The 

Bio-Rad Bradford Assay was used to measure protein content as per manufacturer protocol using 

5 μl of sample homogenate and 200 μl of Bradford Dye Reagent. Enzyme activities were 

normalized by protein concentrations in the final calculations of specific enzyme activity.  

Each zone of the GIT tissue (stomach, AI, MI, and PI) was homogenized using an ice-

cold glass homogenizer and pestle in the corresponding homogenization buffer. A BIOTEK 
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Synergy HT spectrophotometer with BIOTEK Gen 5 v3.02 software was used to measure 

enzyme activities (BIOTEK Instruments Inc.; Winooski, Vermont). 

3.7.1 Sodium-potassium ATPase 

 The NKA activity assay protocol was adapted from McCormick (1993). Two types of 

homogenization buffer were prepared: one was SEI buffer (150 mM sucrose, 10 mM EDTA, and 

50 mM imidazole in ddH2O at pH 7.5) and the other was SEID buffer (5g/L deoxycholate added 

to an aliquot of SEI buffer), the latter of which was prepared daily. Both homogenization buffers 

were kept chilled on ice. Frozen tissue was homogenized in a 150 μl SEI and 50 μl SEID mixed 

homogenization buffer. Homogenate was transferred to a 1.5 ml microcentrifuge tube and 

centrifuged for at 4°C (1 min. at 10000 RPM) and the resulting supernatant was used in the 

assay. 

 Two primary reactions buffers, prepared fresh daily: Solution A (2.8 mM Na+-PEP, 0.7 

mM ATP, 0.22 mM NADH, 4U/μl LDH, 5U/μl PK and 50 mM imidazole in ddH2O at pH 7.5) 

and Solution B (0.5 mM ouabain in an aliquot of Solution A at pH 7.5). Solution B was covered 

with aluminum foil to prevent photo-degradation of ouabain. A salt solution was prepared from 

50 mM NaCl, 10.5 mM MgCl2, 42 mM KCl and 50 mM imidazole in ddH2O at pH 7.5. The final 

two reaction mixtures containing a 4:1 ratio of Solution A: salt solution and Solution B: salt 

solution was made. A 96-well microplate was pre-chilled on an ice pack prior to sample loading. 

Sample reactions using Solution A: salt mix and Solution B: salt mix were run in duplicates and 

contained 10 μl homogenate and 200 μl reaction buffer each. Immediately following well 

loading, the microplate was placed in the spectrophotometer at 26°C and absorbance was read at 

340 nm for the decrease in NADH (which is coupled with the hydrolysis of ATP) over 12 

minutes. NKA activity was calculated based on the difference between the rate of ouabain-
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insensitive (Solution A: salt mix) and ouabain-sensitive (Solution B: salt mix) ATP hydrolysis 

and was expressed as μmol ADP mg-1 protein h-1.   

3.7.2 Lactate dehydrogenase 

 The LDH assay performed was adapted from McClelland et al. (2008). The 

homogenization buffer was composed of 20mM HEPES, 1mM EDTA and 0.1% Triton X-100 in 

ddH2O pH 7.4. Frozen tissue was homogenized in ice-cold homogenization buffer and samples 

were stored on ice. The reaction buffer, prepared fresh daily, was composed of 0.15 mM NADH, 

0.2 mM pyruvate-Na, 50 mM imidazole in ddH2O at pH 7 was chilled on ice. A 96-well 

microplate was pre-chilled on an ice pack prior to sample loading. Sample reactions were run in 

triplicates and contained 10 μl homogenate and 200 μl reaction buffer each. Immediately 

following well loading, the microplate was placed in the spectrophotometer at 26°C and 

absorbance was read at 340 nm for the decrease in NADH over 6 minutes. LDH activity was 

calculated based on the conversion of pyruvate to lactic acid coupled to the oxidation of NADH 

to NAD+, and was expressed as μmol min-1 g-1 protein.   

3.7.3 Pyruvate Kinase 

 The PK assay performed was adapted from McClelland et al. (2008). The 

homogenization process was the same as was used for LDH and used the same buffer. The 

reaction buffer, prepared fresh daily, was composed of 0.15 mM NADH, 5 mM ADP, 0.01 ml 

LDH and 50 mM imidazole in ddH2O at pH 7.4 and was chilled on ice. For each sample assayed 

two reactions were prepared: one with and one without phosphoenolpyruvate (PEP) to measure 

the net decrease in NADH as PEP was reduced by PK. For the reaction with PEP, 5mM PEP was 

added an aliquot of the stock reaction buffer described above and chilled on ice. A pre-chilled 
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96-well plate was loaded with the reactions where the with and without PEP reactions were each 

run as duplicates consisting of 10 μl homogenate and 200 μl reaction buffer each. The 

absorbance was read at 340 nm for the decrease in NADH in a spectrophotometer at 26°C for 6 

minutes. PK activity was calculated from the difference in the rates of NADH oxidation in the 

with and without PEP reactions and expressed as μmol min-1 g-1 protein.   

3.7.4 Glutamate dehydrogenase 

 The GDH assay performed was adapted from Walsh (1995). The homogenization process 

was the same as was used for LDH. The reaction buffer, prepared daily, was composed of 0.12 

mM NADH, 1 mM ADP, and 50 mM imidazole in ddH2O at pH 7.4 and was kept chilled on ice. 

For each sample assayed there were two reactions prepared: one with and one without α-

ketoglutarate to measure the net decrease in NADH as α-ketoglutarate (αKG) was converted to 

glutamate. For the reaction with αKG, 14 mM α-ketoglutarate was added an aliquot of the stock 

reaction buffer described above and chilled on ice. A pre-chilled 96-well plate was loaded with 

the reactions where the with and without αKG reactions were each run as duplicates consisting of 

10 μl homogenate and 200 μl reaction buffer each. The absorbance was read at 340 nm for the 

decrease in NADH in a spectrophotometer at 26°C for 10 minutes. GDH activity was calculated 

from the difference in the rates of NADH oxidation in the with and without αKG reactions and 

expressed as μmol min-1 g-1 protein.   

3.7.5 Citrate synthase 

 The CS assay performed was adapted from McClelland et al. (2008). The 

homogenization was the same as was used for LDH except 1 mM DTT was added to the buffer 

during daily preparation and kept chilled on ice. The homogenized samples were then frozen at -
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20°C overnight prior to the assay. The reaction buffer, prepared daily, was 50 mM Tris-HCl, 0.1 

mM DNTB, 0.3 mM Acetyl-CoA and 0.5mM oxaloacetate at a pH 8 in ddH2O and was chilled 

on ice; the solution was covered with aluminium foil to protect the DTNB from photo-

degradation. For each sample assayed there were two reactions prepared: one with and one 

without oxaloacetate (OAA) to measure the net decrease in DTNB as OAA was converted to 

citrate. For the reaction with OAA, 0.5 mM OAA was added an aliquot of the stock reaction 

buffer described above and chilled on ice. A pre-chilled 96-well plate was loaded with the 

reactions where the with and without OAA reactions were each run as duplicates consisting of 10 

μl homogenate and 200 μl reaction buffer each. The absorbance was read at 412 nm for the 

increase in DNTB in a spectrophotometer at 26°C for 10 minutes. CS activity was calculated 

from the difference in the rates of Acetyl-CoA reduction to CoA-DTNB in the with and without 

OAA reactions and expressed as μmol min-1 g-1 protein.   

3.7.6 Glutamine synthetase 

 The colorimetric GS activity assay was based on the method of Shankar and Anderson 

(1985). The homogenization buffer was composed of 20 mM K2HPO4, 10 mM HEPES, 0.5 mM 

EDTA and 1 mM DTT in ddH2O at pH 7.5 and kept chilled on ice. Tissue was homogenized in 

an ice-cold homogenizer and homogenate was stored in a 1.5 ml microcentrifuge tube and 

chilled on ice. The reaction cocktail was composed 60 mM glutamine, 15 mM hydroxylamine, 

0.4 mM ADP, 20 mM KH2AsO4, 50 mM HEPES and 3 mM MnCl2
 in ddH2O at pH 6.7 and kept 

chilled on ice. The ferric chloride stopping agent (which halts the reaction) was composed of 

50% HCl, 24% Trichloroacetic acid and 10% FeCl3 in 0.2 N HCl all prepared in ddH2O and 

combined in a 1:1:1 ratio. The ferric chloride stopping agent reacts with the intermediate 

molecule in the reaction mechanism, acyl-phosphate, resulting in a red-brown colour change in 
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the solution; the darker the colour, the more robust the reaction. Two 1.5 ml microcentrifuge 

tubes were prepared for each sample: for the control 200 µl cocktail, 80 µl tissue supernatant and 

60 µl ferric chloride stopping agent was immediately added and vortexed, and for the 

experimental run the reaction was allowed to run for 20 minutes before 60 µl ferric chloride 

stopping agent was added and vortexed. A 96-well plate was loaded 200 µl with the control and 

experimental runs for each sampled and read in the spectrophotometer at 540 nm to measure the 

concentration of acyl-phosphate and expressed as μmol min-1 g-1 protein. 

3.7.7 Cellulase 

 The cellulase assay performed was adapted from Denison and Koehn (1977) and Saha et 

al. (2006). The homogenization buffer was 0.1M PBS buffer in ddH2O at pH 6.8 which was kept 

chilled on ice. The homogenate was centrifuged prior to assay preparation at 12000G for 20 

minutes. The reaction buffer was with or without 1% carboxymethylcellulose (CMC) in 0.1M 

PBS buffer at pH 6.8 which was kept chilled on ice. A dinitro salicylic acid (DNS) stopping 

reagent was prepared from 0.2M DNS and 2M NaOH in ddH2O. 125 µl homogenate was 

combined with 125 µl reaction mixture in a 1.5 ml microcentrifuge tube which was vortexed and 

incubated at 37°C for 1 hour. Immediately following incubation, 750 µl DNS stopping reagent 

was added to each tube, vortexed and incubated at 90°C for 10 minutes. A 96-well plate was 

loaded with 200 µl of the with and without 1% CMC solution reactions, absorbance was 

measured at 574 nm for the appearance of glucose and compared against a glucose standard 

curve. Cellulase activity was measured as the difference in the rate of reaction with and without 

1% CMC expressed as mg glucose min-1 mg-1 protein (Liu et al. 2016).   

3.7.8 Trypsin 
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 The trypsin assay performed was adapted from Stevens (1982). The homogenization 

buffer was prepared with 50 mM Tris-HCl at pH 7.5 in ddH2O chilled on ice. Following 

homogenization, the homogenate was centrifuged at 12000 G for 15 minutes. Two reaction 

buffers were prepared: one with 2 mM Nα-benzoyl-L-arginine-p-nitroanilide hydrochloride 

(BAPNA) and one without BAPNA in aliquots of 50 mM Tris-HCl; solutions were kept chilled 

on ice. A chilled 96-well plate was loaded 10 µl homogenate and 200 µl of reaction buffer either 

with or without BAPNA; reactions were run in duplicates and absorbance was measured at 410 

nm for the appearance of p-nitroaniline from catalysis of BAPNA over a period of 10 minutes at 

37°C. The difference in activity with and without BAPNA in reaction solution was used to 

calculate the activity of trypsin and was expressed in μmol min-1 g-1 protein. 

3.7.9 Lipase 

 The lipase assay was performed on GIT tissue samples with the Sigma Aldrich Lipase 

Activity Assay Kit as per manufacturer instructions (Sigma Aldrich; Toronto, Ontario). Activity 

was expressed as nmol of triglyceride converted to glycerol min-1.  

3.8 Data analysis and statistics 

Data was expressed as mean specific enzyme activity ± standard error of mean (SEM) for 

all enzyme assays. Data for changes in an enzyme activity between GIT sections within each 

temperature were analyzed using analysis of variance (ANOVA) with repeated measures because 

the groups (the GIT sites), while data for changes in enzyme activity within one GIT section 

between temperatures was analyzed with a one-way ANOVA. Variation that was significant 

between means was further analyzed using the Tukey post-hoc test. Only significant data and 

findings are discussed in this section. 
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Results 

4.1 Bacterial identities and abundance 

 Figure 2 visualizes the % of bacterial phylogeny abundance in each sample. Table 1 

presents the % of core bacteria phyla was considered in this analysis.  

 In the stomach, Tenericutes was the most abundant phyla and was impacted by the 

WW treatment; the proportion of Tenericutes decreased from 60.2% to 46.7% (Figure 2, Table 

1). The abundance of Bacteroidetes was also impacted by WW treatment as the proportion 

increased from 7.5% to 18.5%. The proportion of Firmicutes bacteria was relatively unchanged 

with WW treatment (7.3%) when compared to the CW sample (9.9%) (Figure 2, Table 1). The 

proportion of Proteobacteria was similarly unchanged by temperature in the stomach (CW = 

18.3% and WW = 19.4%).  

 In comparison, the AI+MI also had a high abundance of Tenericutes bacteria in the 

CW treatment (96.6%) which similarly decreased with WW treatment to 50.7% (Figure 2, Table 

1). Additionally, Bacteroidetes also increased from 0.1% in the CW treatment to 11.9% in the 

WW treatment. In contrast, Proteobacteria increased in this region with increased temperature 

(CW = 2.8% to WW=29.9%) while Firmicutes also increased 10-fold from 0.3% in the CW 

treatment to 3.1% in the WW treatment (Figure 2, Table 1). 

 Finally, in the PI, Tenericutes was again the most abundant bacterial phyla in the 

CW treatment and similarly fell to 38.2% in the WW treatment from 88.4%. As in the AI+MI 

section, Proteobacteria increased with WW treatment to become the most abundant in this region 

(CW=10.2% to WW=61.5%) (Figure 2, Table 1). Unlike the stomach and AI+MI, Bacteroidetes 

(CW=1.0%, WW=0.2%) were relatively unchanged with temperature increase though there was 
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a small decrease detected (Figure 2, Table 1). The abundances of Firmicutes (CW=0.2%, 

WW=0.0%) decreased as seen in the stomach, but in contrast to the AI+MI. 

4.2 Alpha diversity in the GIT 

 The bacterial species (represented by OTUs) richness and abundance in each sample 

were explored with the rarefaction curves seen in Figure 3. The observed OTU plot (Figure 3A) 

shows the 6-12ºC cold water (CW) stomach has the highest number of detected OTUs (950) 

followed by the 17ºC warm water (WW) stomach (745), the WW AI+MI (604), the CW AI+MI 

(275), the CW PI (238), and the WW PI (226). The PD whole tree (Figure 3B) predicted that the 

WW stomach was the least phylogenetically similar sample based on phylogenetic distance 

followed by the CW stomach, WW AI+MI, CW AI+MI, CW PI and WW PI which was similar 

to the observation of sample order of richness (Figure 3A) except the WW stomach is ranked 

above the CW stomach. The Shannon plot (Figure 3C) showed that the WW stomach, CW 

stomach, WW AI+MI had the highest OTU number and evenness, followed by the WW PI, CW 

PI and CW AI+MI samples. Finally, the Chao1 plot (Figure 3D) predicted that the likelihood of 

detecting a single or rare bacterial species was highest in the CW stomach followed by the WW 

stomach, WW AI+MI, CW AI+MI, CW PI, and WW PI samples.  

4.3 Beta diversity in the GIT 

 The jackknife unweighted bootstrap tree (Figure 4), which is based on the presence 

or absence of OTUs only (identity-driven), shows a strong distinction (>75% support) in the 

presence of OTU communities in the WW PI, CW PI and CW AI+MI (first major cluster) 

compared to the CW stomach, WW AI+MI and WW stomach (second major cluster) meaning 

that the first cluster and second cluster share fewer bacterial species in common than within 
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clusters. In the first major cluster, the CW PI and CW AI+MI show 50-75% support for distinct 

bacterial compositions with this cluster of samples showing higher support for distinction 

(<75%) from the WW PI meaning the CW PI shared more species in common with the CW 

AI+MI than the WW PI (Figure 4). In the second major cluster, the WW stomach, and WW 

AI+MI cluster more closely together sharing more species in common than the CW stomach; all 

relationships in this cluster show >75% support for distinct bacterial communities (Figure 4). 

This suggests that CW PI, CW AI+MI and WW PI share a higher number of species when 

compared to the CW stomach, WW stomach and WW AI+MI, where the WW stomach and WW 

AI+MI share more species in common.   

 Examining the jackknife weighted bootstrap tree (Figure 5), based on both the 

presence and absence as well as the OTU abundance data (abundance-driven), it was observed 

that the CW PI and WW PI samples (first major cluster) showed strong support (>75%) for 

distinct OTU richness and abundance composition when compared to the stomach and AI+MI 

samples indicating that the PI samples shared fewer species in common than the rest of the 

samples. Secondarily, the CW and WW stomach samples, cluster more closely to one another 

compared to the CW AI+MI, and these samples showed >75% support for distinct compositions 

compared to the WW AI+MI sample sharing fewer common species (Figure 5). The evidence 

here suggests the CW PI and WW PI share a higher number of OTUs with similar abundances 

compared to the rest of the samples and are thus more like each other. The CW and WW 

stomach share a higher number of OTUs with a similar abundance profile than the CW AI+MI 

and WW AI+MI, respectively, indicating the stomach samples are more like each other 

compared to the AI+MI samples regardless of treatment.  
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 In both the weighted or unweighted analyses, it appears that zonation along the GIT 

(particularly in the PI versus the stomach and AI+MI) is more predictive of OTU communities 

than temperature.  

4.4 Enzyme zonation along the GIT with increased temperature  

4.4.1 Sodium-potassium ATPase  

 A significant increase in activity in PI (0.5±0.2 μmol ADP mg-1 protein h-1) compared to 

the AI was seen at 6°C (0.1 μmol ADP mg-1 protein h-1) as seen in Figure 6A. At warmer 

temperatures, no significant zonation patterns were detected (Figure 6B), and individual regions 

did not show any evidence of NKA activity perturbation with temperature. 

4.4.2 Lactate dehydrogenase 

 In the whole GIT, no significant zonation patterns were detected along the stomach, AI, 

MI and PI at any temperature and temperature stress did not appear to induce any changes. The 

average activity across the stomach, AI, MI, and PI at 6°C was 161.8±20.2 μmol min-1 g-1 

protein and at 17°C was 170.6±13.6 μmol min-1 g-1 protein. 

4.4.3 Pyruvate kinase 

  In the whole GIT, no zonation patterns were detected along the anteroposterior axis based 

on the statistical analysis; the average activity across the stomach, AI, MI, and PI at 6°C was 

1935.2±789.7 μmol min-1 g-1 protein and at 17°C was 150.5±12.4 μmol min-1 g-1 protein. 

Activity of PK in the MI showed a 4-fold decrease as the temperature went from 6°C 

(396.5±60.0 μmol min-1 g-1 protein) to 12°C (76.6±21.5 μmol min-1 g-1 protein), but began to 
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return to cold water activity levels of activity at 17°C (114.3±39.8 μmol min-1 g-1 protein) as seen 

in Figure 7. No other region exhibited a temperature-induced change in activity. 

4.4.4 Glutamate dehydrogenase 

 In the GIT, activity of GDH across the anteroposterior axis remained the same at CW 

temperatures; the average activity was 7383.8±713.3 μmol min-1 g-1 protein. When the 

temperature was 17°C, it was observed that the stomach (2067.7±425.2 μmol min-1 g-1 protein) 

and MI (1292.4±167.8 μmol min-1 g-1 protein) showed lower GDH activity in comparison to the 

AI (3767.9±278.4 μmol min-1 g-1 protein) and PI (3686.9±636.4 μmol min-1 g-1 protein) regions 

(Figure 8A). When the activity of GDH was compared across temperatures in each region it was 

seen that in the PI (Figure 8B), the activity at 12°C (2929.3±813.6 μmol min-1 g-1 protein) and 

17°C (3686.9±636.4 μmol min-1 g-1 protein) was significantly lower than at 6°C (9256.3±1410.1 

μmol min-1 g-1 protein).  

4.4.5 Citrate synthase 

In the whole GIT, significant CS activity zonation patterns were observed at 17°C where 

the MI (5.9±1.6 μmol min-1 g-1 protein) had significantly lower activity than the stomach 

(16.2±3.4 μmol min-1 g-1 protein) while the AI (8.9±1.3 μmol min-1 g-1 protein) and PI (15.7±2.8 

μmol min-1 g-1 protein) were not significantly different from either the stomach or MI as seen in 

Figure 9A. In addition, it was observed that the stomach and AI showed a significant decrease in 

activity at 12°C (11.4±2.4 and 5.0±0.7 μmol min-1 g-1 protein, respectively) and 17°C (16.8±3.4 

and 8.9±1.3 μmol min-1 g-1 protein, respectively) compared to at 6°C (52.0±5.2 and 39.5±9.4 

μmol min-1 g-1 protein, respectively) (Figure 9B-C).  

4.4.6 Glutamine synthetase 
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Along the GIT at 6°C (Figure 10A), it was observed that GS activity was significantly 

elevated in the PI (131.9±57.6 μmol min-1 g-1 protein) compared to the AI (3.7±1.4 μmol min-1 g-

1 protein) while the stomach (16.7±1.9 μmol min-1 g-1 protein) and MI (13.6±6.2 μmol min-1 g-1 

protein) GS activities were not significantly. Temperature stress did not induce any significant 

changes in activity in any GIT zone but the trend in the data suggests the zonation pattern is 

maintained (Figure 10B). 

4.4.7 Cellulase 

 The GIT did not exhibit any pattern of zonation in cellulase activity at any temperature 

nor did temperature induce any significant changes in the activity of the enzyme in any zone. 

The average activity across the stomach, AI, MI, and PI was 1828.4±244.9 mg glucose min-1 mg-

1 protein at 6°C and 451.9±116.0 at 17°C mg glucose min-1 mg-1 protein. 

4.4.8 Trypsin 

 In the whole GIT at 6°C, it was observed that the AI (150.0±17.3 μmol min-1 g-1 protein) 

and MI (136.3±42.8 μmol min-1 g-1 protein) had significantly higher trypsin activities than the 

stomach (28.6±11.6 μmol min-1 g-1 protein) and PI (6.9±2.7 μmol min-1 g-1 protein) as seen in 

Figure 11A; no significant activity zonation patterns were observed at warmer water 

temperatures. In the AI and MI, elevated trypsin activity was observed at 6°C (150.0±17.3 and 

136.3±42.8 μmol min-1 g-1 protein, respectively) while the activity at 12°C (346.6±93.9 and 

303.1±111.1 μmol min-1 g-1 protein, respectively) and 17°C (39.6±9.1 and 30.3±15.2 μmol min-1 

g-1 protein, respectively) was significantly lower (Figure 11B-C).  

4.4.9 Lipase 
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 There was no evidence of zonation or temperature-induced lipase enzyme activity 

changes in the whole GIT. The average activity across the stomach, AI, MI, and PI was 49.3±9.1 

nmol of glycerol min-1 at 6°C and 109.5±17.4 nmol of glycerol min-1 at 17°C.  

4.5 Correlations between the microbiome and enzyme activity in the GIT 

 Figure 12 shows the relationship between bacterial species in each GIT zone treatment 

and how highly correlated they are with specific zones. It was observed that the abundance of 

bacterial species in the CW stomach and WW stomach sample vectors were within the 90° cut-

off range for sample bacterial compositions to be considered similar. The CW AI+MI was 

distinct from the CW and WW stomach samples, and the WW AI+MI and WW PI samples. The 

WW stomach and AWW AI+MI clustered together in one quadrant. The CW PI and WW PI 

remained within the range of the definition of similar sequence compositions although they 

appear in distinct quadrants.  

Figure 13 represents the relationship between the variation in bacterial abundance and the 

activity of the enzymes of interest and how these are both correlated to the GIT treatment zones. 

In Figure 13, it was observed that the elevated activities of Trypsin, PK, and CS in the CW 

AI+MI are associated with Proteobacteria and Firmicutes. Cellulase and GDH (vectors which 

appear overlapped in the figure) have elevated activity associated with the CW PI and these 

activities in this GIT zone are associated with Proteobacteria and Bacteroidetes. Elevated GS, 

NKA and LDH activities detected in the WW PI are associated with Proteobacteria. The CW 

stomach, WW stomach and WW AI+MI are highly associated with bacterial phyla including 

Cyanobacteria and Proteobacteria and elevated lipase activity is associated with the WW AI+MI 

and stomach. Highly elevated lipase activity is more strongly associated with the WW AI+MI 

which is weakly associated with the any particularly abundant bacterial phyla.   
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Figure 2. Bacterial community phyla abundance (%) assigned to OTUs using the Green Genes 
library in QIIME ® in the 6-12°C cold water (CW) and 17°C warm water (WW) stomach, 
AI+MI (anterior and middle intestine combined) and PI (posterior intestine) samples. The ratio 
of core gut bacteria (Firmicutes/Tenericutes, Bacteroidetes, and Proteobacteria) appeared to be 
affected by increased temperature in all GIT zones.  
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Table 1. Bacterial phylogeny abundance of core gut bacteria (%) detected in the rainbow trout 
GIT samples in CW (cold water) and WW (warm water) conditions 

Bacterial 
phyla 

Stomach AI+MI PI 

Firmicutes 
 

CW – 9.9% 
WW – 7.3% 

CW – 0.3% 
WW – 3.1% 

CW – 0.2% 
WW – 0.0% 

Tenericutes CW – 60.2% 
WW – 46.7% 

CW – 96.6%  
WW – 50.7% 

CW – 88.4% 
WW – 38.2% 

Proteobacteria  CW – 18.3% 
WW – 19.4% 

CW – 2.8% 
WW – 29.9% 

CW – 10.2% 
WW – 61.5% 

Bacteroidetes CW – 7.5% 
WW – 18.5% 

CW – 0.1% 
WW – 11.9% 

CW – 1.0% 
WW – 0.2% 
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Figure 3. OTU alpha diversity in the rainbow trout stomach, AI+MI (anterior and middle 
intestine combined) and PI (posterior intestine) samples in 6-12°C (CW = cold water) and at 
17°C (WW = warm water) conditions at a sampling depth of 20000 sequences per sample for a 
total of 91,787 random sequences in each sample (which was the minimum number of sequences 
detected across samples). A) Observed OTUs curves B) Phylogenetic diversity (PD) whole tree 
plot C) Shannon plot and D) Chao1 plot generated with QIIME ®. N=8 
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Figure 4. Unweighted (identity-based) jackknifed bootstrap tree depicting relationship between 
OTUs across cold water (CW, 6-12°C) and warm water (WW, 17°C) stomach, AI+MI (anterior 
and middle intestine combined) and PI (posterior intestine) samples at 0.1. Red indicates >75% 
and yellow 50-75% support for distinct bacterial compositions between samples. Jackknifed beta 
analysis performed using 90% of the random sequences based on the sample containing the 
smallest number of unique OTUs. Generated with QIIME ®.  
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Figure 5. Weighted (abundance-based) jackknifed bootstrap tree depicting relationship between 
OTUs across cold water (CW, 6-12°C) and warm water (WW, 17°C) stomach, AI+MI (anterior 
and middle intestine combined) and PI (posterior intestine) samples at 0.1. Red indicates >75% 
support for distinct bacterial compositions between samples. Jackknifed beta analysis performed 
using 90% of the random sequences based on the sample containing the smallest number of 
unique OTUs. Generated with QIIME ®. 
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Figure 6. Sodium-potassium ATPase activity in the stomach, AI (anterior intestine), MI (middle 
intestine) and PI (posterior intestine) of rainbow trout exposed to A) 6ºC (one-way repeated 
measures ANOVA, p = 0.023, n=4) and B) 17 ºC (one-way repeated measures ANOVA, p = 

0.448, n=4) water. Bars that share the same letter are not significantly different. 
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Figure 7. Pyruvate kinase activity in the MI (middle intestine) in water temperatures of 6ºC, 
12ºC and 17 ºC. Bars that share the same letter are not significantly different (one-way repeated 
ANOVA, p<0.001, n=3,5,5). 
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Figure 8. Glutamate dehydrogenase activity in the A) stomach, AI (anterior), MI (middle) and 
posterior (PI) intestines at 17°C (one-way repeated measures ANOVA, p=0.002, n=4), and the 
B) PI at 6°C, 12°C and 17°C water temperature conditions (one-way repeated ANOVA, 
p=0.004, n=5,4,4). Bars that share the same letter are not significantly different.  
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Figure 9. Citrate synthase activity in the A) the stomach, AI (anterior), MI (middle), and PI 
(posterior intestine) of rainbow trout exposed to 17ºC water (one-way repeated measures 
ANOVA, p=0.028, n=4), B) stomach (one-way ANOVA, p<0.001, n=4) and the C) the AI at 
6°C, 12°C and 17°C water temperature conditions (one-way ANOVA, p= 0.018, n=5,4,4). Bars 
that share the same letter are not significantly different.  
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Figure 10. Glutamine synthetase activity in the stomach, AI, MI, and PI of rainbow trout 
exposed to A) 6ºC (one-way repeated measures ANOVA, p=0.026, n=3) and B) 17ºC (one-way 
repeated measures ANOVA, p=0.248, n=3) water. Bars that share the same letter are not 
significantly different.  
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Figure 11. Trypsin activity in the A) stomach, AI (anterior), MI (middle) and PI (posterior 
intestine) of rainbow trout exposed to 6ºC water (one-way repeated measures ANOVA, p<0.001, 
n=5), B) the AI at 6°C, 12°C and 17°C water temperature conditions (one-way ANOVA, 
p<0.001, n=5,4,4), and C) the MI at 6°C, 12°C and 17°C water temperature conditions (one-way 
ANOVA, p=0.020, n=5,4,4). Bars that share the same letter are not significantly different. 
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Figure 12. Multivariate redundancy analysis (RDA) depicting the variation of bacterial species 
abundance (represented by the red cross) in the 6-12°C cold water (CW) and 17°C warm water 
(WW) stomach, AI (anterior), MI (middle) and PI (posterior intestine) zone samples (shown in 
dark blue). Bacterial taxa identities labelled near closest red cross: genus Lactobacillus (of 
phylum Firmicutes shown in orange); order Streptophyta (of phylum Cyanobacteria shown in 
light blue); family Enterobacteriaceae, genus Burkholderia, genus Bdellovibrio, genus Deefgea 
and family Aeromondaceae (all of phylum Proteobacteria shown in yellow); genus 
Flavobacterium (of phylum Bacteroidetes shown in purple). Generated with R Studio. 
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Figure 13. Multivariate RDA depicting the distinct separation and the correlation between the 
bacterial taxon abundance (represented by open circles) in the 6-12°C cold water (CW) and 17°C 
warm water (WW) stomach, AI (anterior), MI (middle) and PI (posterior intestine) zone samples 
(shown in green) and maximal enzyme activities (shown in dark blue). NKA = sodium-
potassium ATPase; LDH = lactate dehydrogenase; PK = pyruvate kinase; CS = citrate synthase; 
GDH = glutamate dehydrogenase; GS = glutamine synthetase. Bacterial taxa identities labelled 
near closest open circle: genus Lactobacillus (of phylum Firmicutes shown in orange); order 
Streptophyta (of phylum Cyanobacteria shown in light blue); family Enterobacteriaceae, genus 
Burkholderia, genus Bdellovibrio, genus Deefgea and family Aeromondaceae (all of phylum 
Proteobacteria shown in yellow); genus Flavobacterium (of phylum Bacteroidetes shown in 
purple). Generated with R Studio. 
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Discussion 

 Environmental perturbations such as alterations in temperature impact both the 

microbiome and enzyme activity in the gut. In this chapter, zonation in the microbiome was 

more predictive of bacterial communities and seemed to influence the activities of the associated 

enzymes more so than temperature. The evidence here suggests a mutualistic relationship 

between the microbiome and enzyme activity along the zones of the GIT. 

5.1 Analysis of the gut microbiome and temperature  

 Region-specific differences in the microbiome along the GIT of the rainbow trout were 

expected as has been reported in the brown trout (Al-Hisnawi et al. 2015). In the control CW 

fish, regional differences in the microbiome were detected across the stomach, AI+MI and PI 

region. The CW stomach was the most diverse region of the GIT, followed by the AI+MI and PI 

regions (Figure 2, Table 1, Figure 3A). Each region was shown to have distinct species 

composition (>75% support) in CW conditions based on taxa identity and abundance (Figure 4).  

In the Al-Hisnawi et al. (2015) study where brown trout kept at 13°C, Proteobacteria comprised 

most of the bacterial identities in the pyloric ceca region which is associated with the AI 

(84.8%), the MI (88.4%) and PI (93.2%) which is higher than what was detected in the present 

study where Proteobacteria comprised 29.9% of the AI+MI and 61.5% of the PI sample at 12°C 

(Figure 3) in rainbow trout; this indicates a species-specific pattern of zonation. These data 

support our hypothesis that zonation in the microbiome exists in the gut of the rainbow trout.  

Additionally, temperature can influence the gut microbiome of fish (Lozupone and 

Knight 2007; Nayak 2010; Givens 2014; Zarkasi et al. 2016), although zonation has not been 

concurrently examined.  
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The first major trend was in the proliferation of Proteobacteria in the gut. In the control 

CW treatment, Tenericutes/Firmicutes bacteria predominated all sections of the gut, which is 

common in fish with high calorie diets such as the carnivorous rainbow trout (Semova et al. 

2012; Carmody and Turnbaugh 2012; Li et al. 2015), though to different degrees 

(stomach=70.1%; AI+MI=97.0%; PI=88.6%; Figure 2, Table 1). It was expected overall that the 

proportion of Proteobacteria would increase with increasing temperature due to physiological 

mechanisms that favour this bacterial phylum (brown trout: Al-Hisnawi et al. 2015; various 

species: Givens 2014; Atlantic salmon: DePaola et al. 1994; Zarkaski et al. 2016). In the present 

study, Proteobacteria experienced the greatest abundance increase with increased temperature 

(17°C) in the AI+MI and PI regions: a 10x and 6x increase in abundance was observed in the 

AI+MI, and PI regions, respectively (Figure 2; Table 1). A high abundance of Proteobacteria is 

associated with the higher temperatures of the fish’s thermal range as was hypothesized. It has 

been proposed that the gut may serve to support the growth of this psychotolerant (extreme 

temperature-tolerant) bacteria and its survival may thus be affected by other host factors 

associated with homeostasis or that these bacteria have a competitive advantage over more 

temperature-sensitive bacteria (DePaola et al. 1994; Zarkasi et al. 2016). The increase in 

Proteobacteria shows little evidence of strong zone-specific responses to temperature. It appears 

that temperature drives the abundance of these phyla more so that regionalization indicating the 

proliferation of these bacteria are not controlled by the morphological or histochemical 

properties of the gut. 
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5.2 The effect of temperature in the stomach microbiome and the implications on enzyme 

zonation 

The stomach was the most bacterially diverse region of the gut overall compared to the 

intestinal samples (Figure 2, Figure 3A). Despite the acidic conditions of the stomach, an 

environmental which was previously believed to be inhospitable to bacteria, this region can be 

extremely diverse in bacterial communities however the exact reason for this is unknown (Bik et 

al. 2006).  

In the CW stomach, Enterobacteriaceae (of phylum Proteobacteria), Streptophyta (of 

phylum Cyanobacteria) and Lactobacillus (of phylum Firmicutes) were highly correlated (Figure 

11); these bacteria have also been identified in the stomach of humans (Ratten et al. 2011). These 

bacteria were weakly correlated with maximal CS activities in CW stomach which was not as 

hypothesized (Figure 9B-C). It was expected that CS, a metabolic enzyme, would be relatively 

stable within the organism’s thermal range as has been found in other metabolic enzymes 

including LDH and PK (Smith and Ellory 1971; Yancey and Somero 1978; Coppes and Somero 

1990; Low and Somero 1976; Prosser 1991; Ozernyuk et al. 1994; Eddy 2005). Several authors 

have proposed an inverse relationship between temperature and CS activity in cold-acclimated 

fish (Antarctic vs. temperate fish: Crockett and Sidell 1990; thresspine stickleback: Gurdely and 

Leroy 2001; Atlantic cod: Dutil et al. 2008). Is it thought that colder temperatures might induce 

higher oxidative capacity and increased CS activity at lower temperatures aids in the activity 

transport of nutrients as the energy production capacity increases (Crockett and Sidell 1990; 

Dutil et al. 2008). Enterobacteriaceae and Lactobacillus, anaerobic carbon-fixing bacteria 

populations, are associated with sugar fermentation and the production of acids (Rachman et al. 

1997; Ratten et al. 1997). The production of acids such as lactic acid may serve as to supplement 
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lactic acid conversion to pyruvate which is then shuttled into the TCA cycle resulting in the 

observed enhanced CS activity (Kelly et al. 2015). Streptophyta bacteria was highly abundant in 

the CW treatment (Figure 12); these bacteria are nitrogen-fixing bacteria that converts nitrogen 

to ammonia (Falcon et al. 2010) and are likely associated with protein digestion in the stomach 

although trypsin activity is not highly correlated with this region.  

In contrast, the WW stomach was weakly correlated with lipase activity and 

Enterobacteriaceae and Streptophyta continue to be highly associated with this stomach though 

there is no clear relationship between lipase and these bacterial taxa. Elevated temperature 

increased the bacterial evenness in the stomach meaning that bacterial species that had 

previously comprised a relatively low proportion of the sample in CW increased in the WW 

treatment making the bacterial phyla more evenly distributed; this increase in bacterial evenness 

was greater in the stomach than the intestinal samples (Figure 3B, D). Lesel and Peringer (1981) 

noted a similar trend in bacterial count across the anteroposterior axis of the gut in rainbow trout: 

elevated temperature increased the counts in all regions, particularly the stomach. More 

specifically, Firmicutes/Tenericutes bacteria abundance decreased with increased temperature in 

the stomach while Bacteroidetes increased (Figure 2, Table 1). This relative increase in bacterial 

diversity in the WW stomach, most notably in the ratio of bacteria belonging to Bacteroidetes 

(2x increase) at the expense of Tenericutes and Firmicutes (a 25% and 28% decrease in both 

phyla), indicate that temperature may be inducing changes in the environment of the stomach 

lumen which favour certain phyla over others.  

Overall, the general diversity of the stomach samples indicates a more diverse 

metagenome than previously thought which may contribute in various ways to gut physiology 

(Bik et al. 2006). 
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5.3 The effect of temperature in the anterior and middle intestine microbiome and the 

implications on enzyme zonation 

The AI+MI region had the highest proportion of Tenericutes bacteria (96.6%) compared 

to the PI (88.4%) and the stomach (60.2%). Flavobacterium (Bacteroidetes), Bdellovibrio 

(Proteobacteria) and Burkholderia (Proteobacteria) abundance was also highly associated with 

the CW AI+MI region (Figure 12). Species of Flavobacterium, particularly Flavobacterium 

psychrophilum, have been implicated as the causative agent of cold-water disease in salmonid 

species which includes the rainbow trout (Madsen and Dalsgaard 1999; LaFrentz et al. 2003). 

Evidence suggests Bdellovibrio are involved in the control of other bacterial populations 

including Aeromonas pathogens as they can lyse cells (Snyder et al. 2002; Qi et al. 2009; Cao et 

al. 2012). It is possible that Bdellovibrios is controlling the proliferation of the potentially 

pathogenic Flavobacterium in the CW AI+MI sample. No specific function of Burkholderia 

bacteria in the gut has yet been identified to the author’s knowledge, however, the Proteobacteria 

phylum to which these bacteria belong has been associated with protein-rich diets (Bairagi et al. 

2002; Ray et al. 2012). Thus, the AI+MI region may be highly involved in protein digestion as is 

indicated by the maximal activity of trypsin and GDH for local ammonia detoxification 

following protein digestion (Figure 13). GDH is supplied the energy needed to catalyze this 

reaction by NADH; it is possible that the metabolic increase in PK and CS activities is providing 

the energy needed to fuel these processes (Rubino et al. 2014; Locasale et al. 2011; Kelly et al. 

2015). 

The AI and MI regions in the present study exhibited the largest degree of change in the 

bacterial diversity with increased temperature exposure (Figure 3C, D). A 198.3% increase in 

Bacteroidetes, a 10.7% increase in Proteobacteria and 1.9% decrease in Tenericutes bacteria was 
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observed in the WW AI+MI sample treatment compared to the CW control sample (Figure 2; 

Table 1). Although Proteobacteria and Bacteroidetes abundance increased in the intestine with 

temperature in the present study, Firmicutes/Tenericutes still predominated in the AI+MI (Figure 

2; Table 1) which is supported by the findings of a previous study in rainbow trout by Lowrey 

(2014). This increase in Proteobacteria and the significantly high GDH activity in this region 

with WW treatment further (Figure 8A) supports the AI+MI region may be specialized in protein 

degradation processes and this is enhanced by warmer temperatures likely for increased energy 

extraction to fuel increased metabolic demand (Lauff and Hofer 1984; Liu et al. 2016). Although 

maximal cellulase activity was highly correlated with the CW AI+MI (Figure 12), no statistically 

significant difference in cellulase activity was identified across the GIT which was not expected. 

It is possible that basal cellulase activity is occurring in this region providing glucose used by the 

Firmicutes/Tenericutes and Bacteroidetes in this region for energy (Semova et al. 2014; 

Carmody and Turnbaugh 2012; Li et al. 2015; Ratten et al. 2017). With increased temperature, 

bacterial richness and abundance increased in the AI+MI (Figure 3C; Figure 5; Figure 12). This 

was correlated with maximal lipase activity (Figure 13) though lipase activity was not found to 

be significantly different across the GIT which was not hypothesized; the activity here is likely 

related to the Firmicutes/Tenericutes bacterial community presence, which continues to 

predominate the region with increased temperature (Semova et al. 2014; Carmody and 

Turnbaugh 2012; Li et al. 2015). Thus, there appears to be support for a mutualistic relationship 

between the microbiome and enzyme activity in the AI+MI, particularly with regards to protein 

digestion. 

Interestingly, the PI experienced a decrease in GDH activity at 12 and 17°C compared to 

at 6°C which indicates that this may be a host-specific response. 
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5.4 The effect of temperature in the posterior intestine microbiome and the implications on 

enzyme zonation 

The PI was dominated by Tenericutes at cooler temperatures (Figure 2, Table 1, Figure 

12) which was also correlated with significantly increased NKA, GDH and GS (Figure 6A; 

Figure 10A; Figure 11). In the present study, NKA overcompensation to cooler temperatures in 

the posterior regions of the whole GIT were observed where the PI had the highest activity at 

cooler temperatures which was not hypothesized (Figure 6). Environmental temperature affects 

the mechanisms responsible for passive and active ion-transport which in turn influences the ion-

water balance in the body (Metz et al. 2003). Therefore, the enhanced NKA activity in the PI 

may indicate a region-specific requirement for hydromineral balance at cooler temperatures 

which may be related to the transport of other ions, increased epithelial permeability to Na+ 

molecules across the epithelia or NKA may be an indicator for increased energy production for 

other processes in that region (Metz et al. 2003). The Deefgea and Aeromonadaceae (Firmicutes) 

that are highly associated with PI (Figure 12) have been previously identified in the gut of fish 

and are involved in sugar fermentation and the production of acids (Jung and Jung-Schroers 

2011; Esteve 1995; Kim et al. 2007; Li et al. 2015) which may reflect the increased though not 

significant activity of cellulase here (Figure 13). GS activity was elevated in the PI regardless of 

temperature treatment which suggests the region is particularly important for ammonia 

detoxification which supports the findings of Rubino et al. (2014) in rainbow trout.  

The PI experienced the next largest shift in bacterial communities after the AI+MI region 

with WW treatment Figure 3C) but this shift was more so between Tenericutes and 

Proteobacteria abundance. The PI experienced a 2.3% decrease in Tenericutes abundance and a 

6.2% increase in Proteobacteria with increased temperature (Figure 5, Table 1). GDH activity 
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decreased (Figure 8B) with WW treatment which may be correlated with decreased Tenericutes, 

but its activity remained significantly elevated in the PI compared to other regions (Figure 8A). It 

appears that this shift in bacterial communities did not result in any major changes in GS as 

elevated activity persisted in the PI (Figure 10). It may be possible that the increased LDH 

(though not significant) observed in this region (Figure 12) is related to increased energy 

production via lactic acid conversion to pyruvate that is shuttled to the TCA cycle resulting in 

increased ATP production to fuel activities such as local ammonia detoxification in the PI via GS 

(Figure 13; Rubino et al. 2014).  

5.5 Conclusions 

 Zonation in the gut microbiome and enzyme activity were detected as hypothesized. 

Overall, the stomach microbiome and enzyme activity profile reflected a region that was very 

bacterially diverse but not strongly correlated with any specific enzyme activity in this survey. 

The intestinal regions became less diverse over the anteroposterior axis; the data also suggests 

the AI+MI has a more plastic microbiome than the PI which may be reflected in the dynamic 

enzyme activity of this region and is more specialized for processes related to protein and fat 

digestion as is suggested by the trypsin and lipase activity profiles and its association with high 

Firmicutes/Tenericutes abundance which have previously been linked to these processes 

(Semova et al. 2012; Carmody and Turnbaugh 2012). The stomach and PI have lower abundance 

of Firmicutes/Tenericutes compared to the AI+MI and are not associated with maximal trypsin 

and lipase activity which indicates that the high population of these bacteria may affecting 

enzyme activity profiles in this region. The PI showed elevated levels of GS activity consistent 

with ammonia detoxification likely due to bacteria contributing to the activity of the enzyme. 

Temperature was found to impact the bacterial composition of the gut, most notably in the core 
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gut bacteria where Proteobacteria and Bacteroidetes increased at the expense of 

Firmicutes/Tenericutes as was expected. However, strong zone-specific changes to temperature 

were not detected since temperature seemed to amplify major zone trends already observed in the 

CW control. Temperature did not seem to have a direct effect on enzyme activity as 

hypothesized general trends in processes such as digestive enzyme and enzymatic ammonia 

detoxification increase, and LDH, PK and CS perfect compensation did not appear to 

consistently correlate with increased temperature. It is likely a more complex relationship 

between temperature and the microbiome along with other more complex host regulatory 

mechanism which influence the activities of these enzymes. Thus, our initial hypothesis that 

there was a mutualistic relationship between the bacteria in the gut and enzyme activity is 

supported by these findings. These results also highlight the importance of zonation in studying 

the GIT of fish; differences in microbiome and enzyme activity might have been missed had the 

GIT been homogenized and considered as one unit.  
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Chapter 3: The effect of salinity on the microbiome, and metabolic and digestive enzyme 
activities along the GIT of the rainbow trout  

Introduction: 

6.1 Overview 

Rainbow trout are a euryhaline fish meaning they can tolerate a wide range of salinities 

including that of freshwater (FW), brackish and seawater (SW) environments compared to 

stenohaline fish which can only tolerate a small range of salinities (Kultz 2015). Some varieties 

of rainbow trout are anadromous, spending parts of their lifecycle in freshwater and seawater 

(Kultz 2015). It is known that in salmonid varieties, a variety of physiological changes occur in 

the gut to accommodate the changing homeostatic balances that must be established to allow for 

their survival in different salinities such as with transition between freshwater and seawater 

environments over their life cycles, with changing seasons, and with natural variations in ion 

availability in freshwater environments (Flores and Shrimpton 2012). Most notably, fish 

physiology transitions to salt secretion and water retention in SW environments to active salt 

absorption and water excretion in FW environments to maintain ion balance and cell volume 

(Kultz 2015). The microbiome is affected by salinity and alterations in the activities of important 

metabolic, detoxification and digestive enzymes have been previously identified as was 

discussed in Chapter 1.  

6.2 The effects of salinity on the GIT microbiome 

Salinity can impact the bacterial populations and cause physiological changes in the gut 

of the host which in turn can indirectly impact the bacterial composition and alter their influence 

on host physiology (Schmidt et al. 2015). Salinity impacts the gut microbiome assembly of fish. 

The gut bacterial compositions of SW, estuarine and FW fish varieties show that SW fish had gut 



60 
 

microbiomes more like one another than to FW fish (Sullam et al. 2012). Aeromonas and 

Plesiomonas of the phyla Proteobacteria are the most prevalent in freshwater and anadramous 

fish while in marine fish, Vibrio (also of phyla Proteobacteria) was present in majority (Sullam et 

al. 2012). Similarly, Schmidt et al. (2015) reported that within a single fish species, the Mexican 

molly, Aeromonas was more prevalent in the gut of FW acclimated fish compared to increased 

Vibrio in the gut of fish of the same species in SW. In addition, the composition of gut bacteria 

in the Mexican molly was different from that of the surrounding tank water indicating that 

bacterial community composition is not only impacted by the direct effects of salinity but on the 

selective properties of the gut lumen and physiological changes leading to selection of certain 

bacterial species (Schmidt et al. 2015). 

6.3 The effects of saltwater salinity challenge on enzyme activity 

 Much of the literature regarding salinity and enzyme activity has focused on the changes 

in activity with seawater (SW) salinity challenge.  

Metabolic energy requirements increase with increased salinity challenge and metabolic 

enzymes exhibit increased activity consistent with an overcompensation response to SW 

challenge. LDH in the gill, liver, and muscle tissue of the Arctic char (Salvelinus alpus) and the 

gill of Atlantic wolfish (Anarhichas lupus) increase when the fish were moved from FW to SW 

(Bystriansky et al. 2007; Le Francois et al. 2004). Kirchner et al. (2005) identified a similar trend 

in PK with salinity challenge; an increase in intestinal PK activity of the juvenile short nose 

sturgeon (A. brevirostrum) was observed when the fish were moved from 0%o and 20%o water 

salinity. The activity of CS increased in the gills of the stickleback fish (Gasterosteus aculeatus) 

and juvenile coho salmon (Oncorhynchus kisutch) with increasing water salinity (Schaarschmidt 

et al. 1999; Shrimpton and Bernier 1994). Increased CS activity was accompanied by increased 
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NKA activity in the gills at higher salinities as metabolic demand increases (Shrimpton and 

Bernier 1994).  

NKA, which plays a key role in osmoregulatory processes related to salinity challenge, 

increases at higher salinities in the gills of the Atlantic wolfish and the freshwater marble goby 

(Le Francois et al. 2004; Chew et al. 2009). NKA pumps sodium across the epithelia as has been 

identified in the gills and kidney and increasing this active transport at higher salinities to 

maintain cell volume across the body in hyperosmotic environments (Jampol et al. 1970; 

McCormick 1995). The intestine also plays an important role in osmoregulation indicating that 

similar patterns of NKA activity upregulation may occur in the GIT (Shehadeh and Gordon 

1969; Abbaurea-Equisoain and Garrido 1996).  

Cell volume regulation is also mediated through the intracellular concentrations of free 

amino acids (Ballantyne and Chamberlin 1994; Jarvis and Ballantyne 2003). GDH increases with 

increasing salinity while GS decreased in the intestine of the juvenile marble goby (Oxyeleotris 

marmorata) indicating that GS may act independently of GDH in certain situations (Chew et al. 

2010). Other studies have reported an increase in GS activity with salinity challenge (stomach, 

Asian freshwater stingray: Tam et al. 2003; liver and muscle, Amazon stingray: Ip et al. 2009; 

liver, Asian swamp eel: Tok et al. 2009). Thus, changes in the activities of GDH and GS may 

also indicate osmoregulatory regulation activities in the form of increased production of amino 

acids as osmolytes used to maintain cell volume in hyperosmotic environments. Increased 

activity may also indicate increased ammonia detoxification; as the metabolic demand increases, 

energy sources such as protein may become more important and degradation of these molecules 

liberates toxic ammonia which must be removed from the system (Wicks and Randall 2002; 

Wright et al. 2007; Rubino et al. 2014). 
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Salinity alters the activities of the digestive enzymes trypsin and lipase. Trypsin activity 

decreases with increased salinity exhibiting an inverse compensation to salinity challenge 

(golden-line sea bream: Woo and Kelly 1995; gilthead seabream: Moutou et al. 2004; Tsuzuki et 

al. 2007). It is known that drinking rates are altered with changing salinity wherein SW 

acclimated fish increase drinking to increase water retention which could in turn affect enzyme 

activity (Bath and Eddy 1979; Moutou et al. 2004). In the case of trypsin, it is thought that 

salinity can affect the activation of the inactive trypsin zymogen by proteolysis although the 

exact mechanism of deactivation with increased salinity is poorly understood (Moutou et al. 

2004). No studies have investigated cellulase activity and salinity in fish to the author’s 

knowledge; however, in Saprolegnia parasitica, a parasitic cotton mould, low and moderate salt 

concentrations caused cellulase activity to increase while high concentrations resulted in 

decreased activity producing an inhibited inverse compensation effect (Hardin and Hill 1999; 

Mahdy et al. 2004; Ali 2005). Lipase activity increases in coho and chinook salmon following 

SW exposure; it is thought that increased lipolysis contributes increased energy production to 

fuel osmoregulation processes in SW environments reflected by the increase in metabolic 

enzyme activity (Sheridan 1989).  

6.4 Ion-poor water and Sodium-potassium ATPase 

NKA activity is unchanged with decreasing salinity to maintain the level of activity 

required in FW to balance the concentrations of Na+ and K+ cell volume (Flores and Shrimpton 

2012). Flores and Shrimpton (2012) studied the physiological effect of the abrupt exposure of 

freshwater-acclimated rainbow trout to either SW or ion-poor water (IPW) in their gill tissue. 

They reported that in seawater conditions, NKA activity levels increased while in IPW 

conditions, NKA activity remained unchanged although the mRNA transcripts of one NKA 
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isoform (NKA α1b) increased as it had in abrupt seawater exposure conditions (Flores and 

Shrimpton 2012). Similar results were observed by Chasiotis et al. (2009) in the intestine of 

goldfish exposed to IPW for 14 days. This indicates that while IPW does not impact the activity 

of the enzyme, physiological changes occur to ensure that NKA activity remains the same as in 

freshwater conditions. These changes might then alter the physiological conditions and 

functioning of other enzymes and perhaps the microbiome. It also indicates that physiological 

responses with changing ion-levels do not necessarily share salinity-dependent linear correlation 

(i.e. increased activity with seawater exposure does not result in a decrease activity with IPW 

exposure). 

There is evidence that the activity of NKA may influence the activities of other enzymes 

such as LDH and PK as was discussed in section 1.5. The extent to which NKA influences other 

enzymes or vice versa and the reasons for its influence on certain enzymes over others is not well 

established however. The relationship between NKA and the activity of other enzymes will also 

be briefly explored. 

6.5 Objectives and Hypotheses 

IPW was utilized to investigate the effects of decreased salinity on zonation patterns in 

the gut microbiome and physiology of fresh-water acclimated rainbow trout.  

As mentioned in sections 1.2 and 1.3, regionalization of the microbiome and zonation 

patterns in enzyme activity have been previously been investigated; however, the mutualistic 

effect of the microbiome and changes in salinity on the enzyme activity zonation have not been 

explored.  
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Patterns of zonation in bacterial populations and enzyme activities are expected to be 

observed along the gut. It was hypothesized that the stomach would have the highest bacterial 

diversity followed by the anterior intestinal region and posterior region as has been previously 

reported in fish (Lesel and Peringer 1981; Bik et al. 2006; Al-Hisnawi et al. 2015). It was 

predicted that with lower salinity conditions, the bacterial diversity would decrease in the gut of 

the rainbow trout due to reduced ion availability. This decreased competition may lead to a 

change in the percent composition of each region and may influence community reorganization 

and assembly in such a way that certain bacterial phyla become more prevalent (Schmidt et al. 

2015). Regions of the gut with decreased bacterial diversity such as the PI might be more 

impacted by decreased salinity as the populations of bacteria are reduced further; enzyme 

activity in this region is also expected to be most impacted by salinity decrease due to the change 

in the bacterial population composition.  

It has been established that water salinity can also influence the microbial populations of 

the gut of fish though few studies have investigated the effect of ion-poor water salinity on the 

gut microbiome. It is expected that while NKA activity will not be affected by ion-poor water as 

was other physiological responses and perhaps changes in the microbiome in response to 

decreased salinity may induce changes in other enzymes’ activities.  

Many studies have measured enzyme activity in seawater conditions but few 

investigating the effect of ion-poor water exist. Whether the behaviour of the enzyme in ion-poor 

water follows a linear relationship with the previously documented enzyme behaviour in SW or 

exhibits a unique activity profile indicating more complex physiological regulatory mechanisms 

in IPW will be explored. Re-establishment of homeostatic balance in IPW may result in 

increased metabolic demand which might increase the activity of metabolic enzymes such as 
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LDH, PK and CS as well as GDH and GS which aid with cell volume regulation and ammonia 

detoxification. Proteolytic and lipolytic activity through trypsin and lipase is expected to 

decrease as the contribution from the microbiome is reduced. Reduced bacterial diversity may 

also decrease the activity of cellulase which is mostly contributed by the gut microbiome.  
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Materials and Methods 

7.1 Ion-poor water salinity challenge experiment 

Rainbow trout (Humber Springs Trout Farm, Orangeville, Ontario) were kept in two 

200L aerated, flow-through tanks at 6°C (~10 individuals per tank) with dechlorinated 

freshwater (FW) supplied through the City of Toronto (composition was approximately in μM: 

Na+ 590; Cl- 920; Ca2+ 900; K+ 50; pH 7.4). Fish acclimation and basic fish husbandry 

protocols were the same as described in section 3.1. Immediately prior to the experiment, fish 

were net-captured and sampled for the t=0 time-point with the same method as was described in 

section 3.2. For the experimental treatment, the water salinity in one tank was reduced to 75% 

ion-poor water (IPW) supplied through a reverse-osmosis system supplemented daily with Sifto 

Crystal Plus Water Softener Salt (Compass Minerals; Mississauga, Ontario) and 25% FW 

(approximate composition in μM: Na+ 163, Cl− 99, Ca2+ 227, and K+ 13, pH 6.5) flow-through 

over a period of about 30 minutes to allow for gradual exposure for the fish. Experimental fish 

were fed fish feed pellets (Tropica Aquaria, Orangeville, Ontario; composition on Table 4) every 

24 hours for a period of 2 weeks. At 24 hours and 2 weeks of IPW exposure, fish were sacrificed, 

and samples were collected to be used in the microbiome analysis as well as in the enzyme 

activity analysis as described in section 3.2. Data processing and analysis followed the same 

general workflow as was discussed in section 3.4-3.9.  
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Results 

8.1 Bacterial identities and abundance in decreased salinity 

          Figure 14 visualizes the % of bacterial phylogeny abundance in each sample also 

quantified in Table 2; only the % of core bacteria phyla was considered in this analysis.  

 Firmicutes/Tenericutes made up most of the bacterial composition in the stomach 

(70.7%), AI+MI (97.4%) and PI (74.3%) samples (Figure 14, Table 2).  

 The stomach exhibited more bacterial phyla evenness than other samples. In this 

sample, the bacterial composition remained relatively unchanged with IPW treatment. Firmicutes 

and Tenericutes bacteria, which are in majority in this region, make up 65.8% and 5.1% of the 

sample in the FW treatment and 69.0% and 2.8% in the IPW treatment, respectively. 

Proteobacteria comprises 14.2% of the sample in the FW treatment while in the IPW it is 15.7%. 

Bacteroidetes composition remains around 10% in both samples (FW=10.6%; IPW = 9.8%). 

 The AI+MI region had the highest abundance of Tenericutes bacteria regardless of 

salinity (FW=97.0%; IPW=93.8%) while Firmicutes was low (FW=0.4%; IPW=0.1%) in the 

samples. Proteobacteria (FW=2.1%; IPW=6.1%) and Bacteroidetes (FW=0.2%; IPW=0.0%) 

levels remained low in this region with IPW. 

 Finally, the PI had the second highest proportion of Tenericutes (FW=74.2%; 

IPW=86.3%) after the AI+MI region which was slightly increased with IPW treatment. 

Firmicutes bacteria remained low in both treatments (FW=0.1%; IPW=0.1%). Proteobacteria 

slightly decreased from 25.7% in the FW treatment to 13.6% in IPW. Bacteroidetes remained 

low in both treatments (FW=0.0%; IPW=0.0%).  
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8.2 Alpha diversity in the GIT with ion-poor water challenge 

 The bacterial species (represented by OTUs) abundance and diversity was explored 

using the observed OTU, phylogenetic diversity (PD) whole tree, Shannon and Chao1 plots 

(Figure 15). The highest number of unique OTUs observed in a sample (richness) was detected 

in the 2-week 75% ion-poor water exposed (IPW) stomach sample (652), followed by the 

freshwater (FW) stomach (622), the FW AI+MI (134) and the IPW AI+MI (91) while the IPW 

and FW PI samples both appeared to have the lowest number of observed unique OTUs (63 and 

58, respectively) over the sequence subset sampled (Figure 15A). The phylogenetic diversity 

whole tree (PD) in Figure 15B shows that the ranking of samples with a high number of OTUs 

with a large phylogenetic distance between sequences is similar to the ranking seen in the 

observed OTUs plot (Figure 15A) which shows that the observed OTUs in the stomach samples 

have a higher degree of distinctness than the AI+MI and PI samples. In the Shannon plot shown 

in Figure 15C it is observed that the IPW stomach has the highest evenness and richness index 

followed by the FW stomach, FW PI, IPW PI, FW AI+MI and the IPW AI+MI. In the Chao 1 

plot (Figure 15D) it was observed that the IPW stomach had the highest likelihood of containing 

a rare OTU, followed by the FW stomach, FW AI+MI, IPW AI+MI, IPW PI and FW PI.  

8.3 Beta diversity in the GIT with ion-poor water challenge 

 The jackknife unweighted bootstrap tree (Figure 16) showed strong support (>75%) 

for distinct sequence compositions between the stomach samples and the intestinal samples 

where the stomach samples clustered more closely together and thus were more like one another 

than the intestinal samples; this means that the stomach samples contain more similar bacterial 

species compared to the intestinal samples. Among the intestinal samples, the FW AI+MI sample 

was strongly distinct from the IPW AI+MI, FW PI and IPW PI; the FW AI+MI shared fewer 
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species in common with these samples. The IPW AI+MI and the IPW PI showed moderate 

support (50-75%) for distinct sequences compared to the FW PI which showed stronger support 

for distinct sequences indicating that the IPW AI+MI and IPW PI shared more species in 

common.  

 The jackknife weighted bootstrap tree (Figure 17) showed clustering similar to the 

unweighted bootstrap tree (Figure 4), except that there is now stronger support (>75%) for 

distinct OTU composition in the AI+MI samples (both the FW and IPW exposure) and the PI 

samples meaning they share fewer species; this indicates that these differences are abundance-

driven: the amount of bacterial species in each sample is different between each region. The 

lengthening of the red lines between samples also indicates that abundance is driving the 

differences between sections indicating greater support. 

8.4 Enzyme zonation in the GIT with ion-poor water challenge 

8.4.1 Sodium-potassium ATPase  

In the GIT (Figure 18), it was observed that significant differences in NKA activity 

between zones existed in the FW treatment but not the 24h IPW or 2-week IPW treatments. In 

the FW treatment (Figure 18A), the stomach (0.36 μmol ADP mg-1 protein h-1) had the lowest 

activity while the AI (2.46±0.6 μmol ADP mg-1 protein h-1) had the highest; the NKA activities 

of the MI (1.27±0.2 μmol ADP mg-1 protein h-1) and PI (1.12±0.5 μmol ADP mg-1 protein h-1) 

were indistinguishable from the activities in the stomach and AI. In the MI, the FW and 24h IPW 

treatment tissue had significantly higher activity than the 2-week IPW treated tissue (Figure 

18B). 

8.4.2 Lactate dehydrogenase  
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The stomach (FW: 509.6±167.7 μmol min-1 g-1 protein, IPW:468.1±114.9 μmol min-1 g-1 

protein) had a significantly lowered LDH activity compared to the intestinal segments in the FW 

and 24h IPW treatments (Figure 19B). These differences were diminished after 2-week IPW 

exposure and there were no significant differences in LDH activity between GIT zones. 

8.4.3 Pyruvate kinase 

Significant changes in PK activity were not detected in the freshwater (FW) or 75% ion-

poor water (IPW) treated whole GIT tissue sampled. The average activity in 1159.4±595.1 μmol 

min-1 g-1 protein in FW, 755.1±295.8 μmol min-1 g-1 protein at 24-hour IPW exposure and 

1921.2±502.8 μmol min-1 g-1 protein at 2-week IPW exposure. 

8.4.4 Glutamate dehydrogenase 

 The stomach (FW: 7507.5±2546.6 μmol min-1 g-1 protein, 24-hour IPW: 8071.0±2076.5 

μmol min-1 g-1 protein, 2-week IPW: 9243.5±65.9 μmol min-1 g-1 protein) showed the highest 

activity when compared to the AI, MI and PI at all salinities and time points sampled (Figure 

20A-C). In both the FW and 24h IPW treated fish, the stomach activity was 4x higher while at 2-

week IPW exposure, the stomach had 9x higher activity than the AI, MI, and PI. 

8.4.5 Citrate synthase 

A zonation pattern along the whole GIT was detected in the freshwater (FW) and 24-hour 

exposure to 75% IPW (24h IPW) tissues tested (Figure 21); these changes between GIT zones 

disappeared at 2 weeks of exposure to 75% ion-poor water (2-week IPW). The activities of CS in 

the freshwater (FW) tissues at time=0 in the stomach, anterior intestine (AI), middle intestine 

(MI), and posterior intestine (PI) was 51.6±6.6, 18.8±5.7, 15.8±3.9 and 29.7±7.3 μmol min-1 g-1 

protein, respectively, following a U-shaped activity pattern along the GIT wherein the stomach 



71 
 

had the highest activity (Figure 21A). A similar pattern was detected at 24 hours exposure to 

75% ion-poor water (24h IPW) where the activities in the stomach, AI, MI and PI were 

54.9±14.5, 44.1±14.9, 9.9±3.0 and 91.3±20.8 μmol min-1 g-1 protein (Figure 21B). There was a 

correlation between decreased salinity and CS activity in the PI only where the 24-hour IPW PI 

had CS activity three-fold higher than the FW (Figure 21C). At 2-week IPW, this elevated 

activity in 75% IPW decreased by 17% to 15.7±4.5 μmol min-1 g-1 protein (Figure 21C); no 

changes were detected over salinity and time in the stomach, AI, or MI. 

8.4.6 Glutamine synthase 

 The stomach (75.7±13.6 μmol min-1 g-1 protein) showed the highest activity compared to 

the intestinal segments in FW conditions as seen in Figure 22A (AI: 20.1, MI: 31.4±10.3, and PI: 

31.4±12.5 μmol min-1 g-1 protein, respectively), while in the 24h IPW treatment (Figure 22B), 

this pattern was reversed: the PI (50.9±7.7) had the highest activity and the activities in the 

stomach (14.44±4.0 μmol min-1 g-1 protein), AI (25.4±3.5 μmol min-1 g-1 protein), and MI 

(16.6±3.5 μmol min-1 g-1 protein) were depressed. At 2-week IPW, the differences in activities 

between zones was significantly diminished.   

8.4.7 Cellulase 

 Cellulase activity changes were not detected in the freshwater (FW) or 75% ion-poor 

water (IPW) treated whole GIT tissue sampled. The average activity was 1803.7±717.2 mg 

glucose min-1 mg-1 protein in the FW treatment, 303.5±157.6 mg glucose min-1 mg-1 protein at 

24-hour IPW exposure and 447.8±189.6 mg glucose min-1 mg-1 protein at 2-week IPW exposure. 

8.4.8 Trypsin 
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The AI (149.2±17.3 μmol min-1 g-1 protein) had higher trypsin activity than the PI 

(6.6±2.4 μmol min-1 g-1 protein) while the activity in the stomach (28.6±11.6 μmol min-1 g-1 

protein) and MI (106.6±55.0 μmol min-1 g-1 protein) were not significantly different to either the 

AI or PI in the FW treatment (Figure 23A). The same pattern was observed in the GIT tissues in 

the 24h IPW treatment (Figure 23B) where the stomach, AI, MI and PI had activities of 

30.1±9.8, 124.8±32.4, 123.7±49.9 and 5.3±1.5 μmol min-1 g-1 protein, respectively. No 

significant differences in trypsin activity between the zones of the whole GIT were detected at 2-

week IPW. 

8.4.9 Lipase 

Lipase activity changes were not detected in the freshwater (FW) or 75% ion-poor water 

(IPW) treated whole GIT tissue sampled. The average activity was 49.3±9.5 nmol of triglyceride 

converted to glycerol min-1 in FW, 90.8±38.7 nmol of triglyceride converted to glycerol min-1 at 

24-hour IPW exposure and 99.6±28.2 nmol of triglyceride converted to glycerol min-1 at 2-week 

IPW exposure. 

8.5 Correlations between the microbiome and enzyme activity in the GIT 

The RDA (Figure 24) shows that bacterial species abundance in the stomach, AI+MI and 

PI sample vectors appear in distinct quadrants of the plot indicating their bacterial abundances 

are divergent from one another regardless of treatment. At each GIT zone, the FW and IPW 

samples had similar bacterial abundances such that the vectors appear close to each other in their 

respective quadrants.  

In the multivariate RDA in Figure 25, it was observed that elevated lipase activity in the 

PI (both FW and IPW) is associated with an increased abundance in Tenericutes. Elevated 
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cellulase and LDH activity, associated with both PI samples, is closely associated with 

Proteobacteria. Elevated trypsin found in the FW and IPW AI+MI samples is highly associated 

with Tenericutes while elevated activities of GDH, CS and PK, which occurs in both stomach 

samples, are strongly associated with Cyanobacteria and Firmicutes, respectively. 
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Figure 14. Bacterial community phyla abundance (%) assigned to OTUs using the Green Genes 
library in QIIME ® in the freshwater (FW) and 2 week exposure to 75% ion-poor water (IPW) 
stomach, AI+MI (anterior and middle intestine combined) and PI (posterior intestine) samples. 
The ratio of core gut bacteria (Firmicutes/Tenericutes, Bacteroidetes, and Proteobacteria) 
appeared to be affected by increased temperature in all GIT zones. 
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Table 2. Bacterial phylogeny abundance of core gut bacteria (%) detected in the rainbow trout 
GIT samples in freshwater (FW) and ion-poor water (IPW) conditions 

Bacterial 
phyla 

Stomach AI+MI PI 

Firmicutes 
 

FW – 65.8% 
IPW – 69.0% 

FW – 0.4% 
IPW – 0.1% 

FW – 0.1% 
IPW – 0.1% 

Tenericutes FW – 5.1% 
IPW – 2.8% 

FW – 97.0% 
IPW – 93.8% 

FW – 74.2% 
IPW – 86.3% 

Proteobacteria  FW – 14.2% 
IPW – 15.7% 

FW – 2.1% 
IPW – 6.1% 

FW – 25.7% 
IPW – 13.6% 

Bacteroidetes FW – 10.6% 
IPW – 9.8% 

FW – 0.2% 
IPW – 0.0% 

FW – 0.0% 
IPW – 0.0% 
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Figure 15. OTU alpha diversity in the rainbow trout stomach, AI+MI (anterior and middle 
intestine combined) and PI (posterior intestine) samples in freshwater (FW) and after 2 weeks 
exposure to 75% ion-poor water (IPW) conditions at a sampling depth of 10000 sequences per 
sample for a total of 45,321 random sequences in each sample (which was the minimum number 
of sequences detected across samples). A) Observed OTUs curves B) Phylogenetic diversity 
(PD) whole tree plot C) Shannon plot and D) Chao1 plot generated with QIIME ®. N=8 
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Figure 16. Unweighted (identity-based) jackknifed bootstrap tree depicting relationship 
between OTUs across freshwater (FW) and 75% ion-poor water (IPW) stomach, AI+MI 
(anterior and middle intestine combined) and PI (posterior intestine) samples at a distance of 
0.1. Red indicates >75%, and blue <25% support for distinct bacterial compositions between 
samples. Jackknifed beta analysis performed using 90% of the random sequences based on the 
sample containing the smallest number of unique OTUs. Generated with QIIME ®. 
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Figure 17. Weighted (abundance-based) jackknifed bootstrap tree depicting relationship 
between OTUs across freshwater (FW) and 75% ion-poor water (IPW) stomach, AI+MI 
(anterior and middle intestine combined) and PI (posterior intestine) samples at a distance of 
0.1. Red indicates >75% support for distinct bacterial compositions between samples. 
Jackknifed beta analysis performed using 90% of the random sequences based on the sample 
containing the smallest number of unique OTUs. Generated with QIIME ®. 
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Figure 18. Sodium-potassium ATPase activity in the A) stomach, AI (anterior intestine), MI 
(middle intestine) and PI (posterior intestine) in FW (one-way repeated measures ANOVA, 
p=0.029, n=4) and B) in the MI with IPW exposure (one-way ANOVA, p=0.002, n=5,5,6). Bars 
that share the same letter are not significantly different. 
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Figure 19. Lactate dehydrogenase activity in the stomach, AI (anterior), MI (middle) and PI 
(posterior intestine) of rainbow trout exposed to A) FW (one-way repeated measures ANOVA, 
p=0.0021, n=5,6,5,7) and B) 24-hour IPW (one-way repeated measures ANOVA, p<0.001, 
n=5,6,8,6). Bars that share the same letter are not significantly different. 
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Figure 20. Glutamate dehydrogenase activity in the stomach, AI, MI and PI after A) FW (one-
way repeated measures ANOVA, p= 0.009, n=5,6,5,6), B) 24 hour (one-way repeated measures 
ANOVA, p<0.001, n=5,6,6,5), and C) 2-week IPW exposure (one-way repeated measures 
ANOVA, p=0.002, n=5,7,5,7). Bars that share the same letter are not significantly different. 
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Figure 21. Citrate synthase activity in the stomach, AI, MI and PI of rainbow trout exposed A) 
FW (one-way repeated measures ANOVA, p=0.013, n=4,7,5,8), B) 24-hour IPW (one-way 
repeated measures ANOVA, p=0.011, n=5,5, 6,6) and C) in the PI with FW and IPW exposure 
(one-way ANOVA, p=0.001, n=8,6,5). Bars that share the same letter are not significantly 
different. 
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Figure 22. Glutamine synthetase activity in the stomach, AI (anterior), MI (middle) and PI 
(posterior intestine) after A) FW (one-way repeated measures ANOVA, p=0.011, n=5) and B) 
24-IPW (one-way repeated measures ANOVA, p=0.002, n=5) exposure. Bars that share the same 
letter are not significantly different. 
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Figure 23. Trypsin activity in the stomach, AI (anterior), MI (middle) and PI (posterior intestine) 
of rainbow trout exposed to A) FW (one-way repeated measures ANOVA, p=0.011, n=5) and B) 
24-hour IPW (one-way repeated measures ANOVA, p<0.001, n=5). Bars that share the same 
letter are not significantly different. 
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Figure 24. Multivariate redundancy analysis (RDA) depicting the variation of bacterial species 
abundance (represented by the red cross) in the freshwater (FW) and 75% ion-poor water (IPW) 
exposed stomach, AI (anterior), MI (middle) and PI (posterior intestine) zone samples (shown in 
dark blue). Bacterial taxa identities labelled near closest red cross: genus Lactobacillus and genus 
Mycoplasma (both of phylum Firmicutes shown in orange); order Streptophyta (of phylum 
Cyanobacteria shown in light blue); order Rickettsiales, genus family Neisseriaceae, order 
Desulfovibrionaceae and genus Deefgea (all of phylum Proteobacteria shown in yellow); genus 
Flavobacterium (of phylum Bacteroidetes shown in purple). Generated with R Studio. 
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Figure 25. Multivariate RDA depicting the distinct separation and the correlation between the 
bacterial species abundance (represented by open circles) in the freshwater (FW) and 75% ion-
poor water (IPW) stomach, AI (anterior), MI (middle) and PI (posterior intestine) zone samples 
(shown in green) and enzyme activities (shown in dark blue). NKA = sodium-potassium 
ATPase; LDH = lactate dehydrogenase; PK = pyruvate kinase; CS = citrate synthase; GDH = 
glutamate dehydrogenase; GS = glutamine synthetase. Bacterial taxa identities labelled near 
closest open circle: genus Lactobacillus and genus Mycoplasma (both of phylum Firmicutes 
shown in orange); order Streptophyta (of phylum Cyanobacteria shown in light blue); order 
Rickettsiales, genus family Neisseriaceae, order Desulfovibrionaceae and genus Deefgea (all of 
phylum Proteobacteria shown in yellow); genus Flavobacterium (of phylum Bacteroidetes shown 
in purple). Generated with R Studio. 
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Discussion 

 Using an ion-poor water experiment with rainbow trout, the effects of low salinity on the 

gut microbiome and zonation were explored to determine how metabolic and digestive processes 

respond to salinity challenge and how these differences indicate specialization to certain regions 

along the GIT. Freshwater and saltwater salinities have been reported to affect the bacterial 

populations (Luzopone and Knight 2007; Sullam et al. 2012), however it is not known if ion-

poor water would impact the microbiome in a predictable manner.  Additionally, the effect of 

ion-poor water on the diversity (richness and abundance) of bacterial communities along the GIT 

lumen was examined to see whether zonation patterns existed in the microbiome for the first 

time. It was expected that reducing the salinity of the surrounding water would greatly impact 

regions of the gut with low bacterial diversity, namely the posterior regions of the intestine 

because fewer taxa exist and thus changes to major taxa would be more evident in sections with 

less bacteria overall (Luzopone and Knight 2007). Furthermore, correlations with enzymatic 

activities were examined due to the newly established connection between the microbiome and 

enzymatic activities (Bairaigi et al. 2002; Turnbaugh et al. 2006; Francois et al. 2011; Liu et al. 

2016; Nieuwdorp et al. 2016). I predicted to see corresponding alterations in enzyme activity as 

bacterial community structures were altered with ion-poor water.  

9.1 Salinity and the gut microbiome 

 The bacterial diversity was highest in the stomach, followed by the PI and AI+MI 

samples, respectively as was hypothesized (Figure 3C, D; Figure 5). In the present study, 

decreased water salinity (IPW) conditions did not have a marked effect on the richness or 

abundance of the stomach, AI+MI and PI samples over the 2-week period. In the stomach, 

AI+MI and PI, the relative proportions of core gut bacteria remained mostly unchanged (Figure 
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3, Table 1). However, it appears decreased salinity slightly reduced the diversity of bacteria in 

the AI+MI and PI but not in the stomach in the Shannon plot (Figure 3C). Luzopone and Knight 

(2007) found that bacterial diversity decreased in non-saline environments when compared to 

saline environments which supports the results in the AI+MI and PI samples. The relative 

abundance of Tenericutes and Proteobacteria changed slightly with ion-poor water exposure in 

the AI+MI and PI samples. In the AI+MI samples the abundance increased from 2.11% to 6.09% 

and in the PI, it decreased from 25.7% to 13.7%. Tenericutes proportion in the AI+MI decreased 

from 97.0% to 93.8% and in the PI increased slightly from 74.2% to 86.3% (Figure 3, Table 1). 

Thus, the PI and to a lesser extent the AI+MI regions appeared to be more impacted by salinity 

challenge compared to the stomach as was hypothesized.  

The ability of the gut to control the microbiome populations with salinity challenge has 

previously been explored. Schmidt et al. (2015) examined the gut microbiome of a euryhaline 

fish species with increased water salinity and monitored bacterial diversity in their water tanks. 

Fish core bacterial taxa are rare in the surrounding water environment and vice versa; in addition, 

gut bacterial abundance did not show any correlation in the abundance of corresponding bacteria 

in the water although the gut bacteria diversity was affected by changing salinity (Schmidt et al. 

2015). They proposed that the bacterial community assembly in the gut was deterministic and 

not stochastic meaning that the host fish physiology affected the way bacterial taxa colonized 

and responding to external salinity changes more so than the direct effect of salinity on the gut. 

Unlike at higher water salinities, the physiological changes such as decreased drinking, reduced 

gill epithelial permeability to conserve ions in the fish host associated with lower salinities where 

ion availability is low internal hyperosmotic pressure is higher, may not produce a significant 

change in bacterial diversity in the GIT lumen (Chasiotis et al. 2011).  
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9.2 The effect of ion-poor water exposure on the stomach microbiome and enzyme activities 

 In the present study, the bacterial composition was more distinct in the stomach 

compared the intestinal samples as expected (Figure 5; Lesel and Peringer 1981; Bik et al. 2006). 

The IPW stomach had higher richness than the FW stomach (Figure 3A, C, D). The relative 

abundances of the core gut bacteria were not greatly impact with IPW treatment (Figure 3, Table 

1). This was not expected as it has been previously shown that diversity decreases with reduced 

salinity likely due to reduced ion availability (Luzopone and Knight 2007). Regulatory 

mechanisms within the gut may maintain core gut bacteria abundances even when the fish is 

undergoing other physiological changes to reduced salinity challenge such as decreased 

epithelial permeability (Chasiotis et al. 2011). The stable core gut microbiome may serve to 

increase host survival when environmental water salinity is reduced, and the availability of 

dietary ions alone supplements the host’s daily requirements for optimal function; dietary 

nutrient extraction by the microbiome and its contribution to host physiology can be maintained.   

 The stomach samples were highly and significantly correlated with CS, PK, GDH 

(significantly) and GS (significantly) activities; in addition, a variety of bacteria including 

Streptophyta of phylum Cyanobacteria, Lactobacillus of phylum Firmicutes, Flavobacterium of 

phylum Bacteroidetes and Rickettsiales of phylum Proteobacteria were all in high abundance 

(Figure 9A, B; Figure 8D, E, F; Figure 13). PK activity has previously been found to increase in 

the intestine with increased salinity. Jarvis and Ballantyne (2003) exposed junvenile shortnose 

sturgeon (A. brevirostrum) to 0%0 and 20%0 salinity and observed an increase in PK from 

15.6±1.2 to 17.3±1.2 µmol min-1g-1 tissue in the intestine. The increased activity in PK may be 

associated with an increase in the activity of NKA at higher salinity as excess ions are pumped 

out of the organism (Bath and Eddy 1979; Flores and Shrimpton 2012). In addition, CS activity 
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increased by 1.1% in the gills of juvenile coho salmon (Oncorhynchus kisutch) over a one-day 

period and then remained consistent over a 13-day period; increased CS activity was also 

accompanied by increased NKA activity in the gills at higher salinities as metabolic demand 

increases (Shrimpton et al. 1994). High NKA activity requires high levels of ATP; increased 

cellular respiration through an increase in the activities PK and CS would serve to increase ATP 

production. However, maximal NKA activity was not associated with these regions indicating 

that there are other processes likely influencing the increased activities of these enzymes. 

Lactobacillus is involved in sugar fermentation and lactic acid production, a process which 

requires ATP, and decreases the permeability of the gut epithelia by inducing increased rigidity 

in tight junction proteins (Ratten et al. 1997; Lutgendorff et al. 2008; Sommer and Backhed 

2013). This reduced permeability might serve to reduce the passive transport loss of ions from 

the body in IPW (Bath and Eddy 1979). GDH and GS activity might be significantly elevated in 

this region to facilitate cell volume regulation by the production of free amino acids as osmolytes 

and local detoxification of toxic ammonia, a by-product of protein digestion, in the stomach 

lumen (Figure 10D, E, F; Wicks and Randall 2002; Wright et al. 2007; Rubino et al. 2014).  

 As was mentioned in section 5.3, Flavobacterium have been associated with cold-water 

disease in rainbow trout (Madsen and Dalsgaard 1999; LaFrentz et al. 2003). Evidence suggests 

Proteobacteria such as Rickettsiales modulates the populations of other bacteria including 

pathogens (Snyder et al. 2002; Qi et al. 2009; Cao et al. 2012). It is possible that Rickettsiales 

may prevent Flavobacterium from proliferating in the gut and causing disease. 

 Streptophyta bacteria, associated with plant material, may have been ingested with the 

fish feed as was previously discussed in section 5.3. It may be possible that plant fermentation by 
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Bacteroidetes, which is in high abundance, may be occurring at a high rate in this region (Figure 

3). However maximal cellulase activity was not associated with the stomach (Figure 13). 

9.3 The effect of ion-poor water exposure on the anterior and middle intestine microbiome and 

enzyme activities 

 As mentioned earlier, the IPW treatment had a negligible effect on the bacterial diversity 

of the AI+MI region as the bacterial composition remained relatively unchanged. The intestinal 

samples were the least diverse in terms of bacterial compositions (Figure 3; Table 1; Figure 4; 

Figure 5). The AI+MI samples were composed primarily of Tenericutes bacteria (FW=97.01%; 

IPW=93.78%) with Proteobacteria being the second most abundance phyla (Table 1). Elevated 

Trypsin (significantly), GS (elevated, though not significant) and NKA (significantly) activity 

were highly associated with this region as was Mycoplasma (Firmicutes) and 

Desulfovibrionaeceae (Proteobacteria) to a lesser extent (Figure 11; Figure 10C; Figure 6D; 

Figure 13). Firmicutes/Tenericutes bacteria, which appear in high abundance in this region, are 

highly associated with protein digestion such as is facilitated through trypsin; increased GS 

activity may then be employed to detoxify ammonia produced through protein degradation 

(Semova et al. 2014; Carmody and Turnbaugh 2012; Wicks and Randall 2002; Wright et al. 

2007; Rubino et al. 2014). NKA activity was not previously observed to be affected by IPW 

treatment which indicates that the observed increase is due to other factors; increased activity of 

NKA indicates either an increased transport of substances across the epithelia or ion-balance 

possibly linked to other physiological processes related to IPW adaptation (Flores and Shrimpton 

2012; Jampol 1970; McCormick 1993).  

9.4 The effect of ion-poor water exposure on the posterior intestine microbiome and enzyme 

activities 
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 The PI region had the second most diverse region of the gut after the stomach but was 

more similar to the AI+MI region than the stomach (Figure 2; Table 1; Figure 3C; Figure 5). 

This region was slightly affected by the IPW treatment where the proportion of Tenericutes 

bacteria slightly increased and Proteobacteria decreased as was discussed in section 9.1 (Figure 

2; Table 1). The PI region was highly associated with lipase and cellulase (although no 

significant differences were detected in the enzyme assays) as well as LDH activity as well as 

with Mycoplasma (Firmicutes), Deefgea (Proteobacteria) and Neisseriaceae (Proteobacteria). 

The high proportion of Firmicutes may be related to the increase in lipase and cellulase activity, 

enzymes which have previously been associated with this bacterial phylum (Semova et al. 2014; 

Carmody and Turnbaugh 2012; Li et al. 2015). Mycoplasma produce lactic and acetic acid; these 

bacteria have previously been associated with the microbiome of salmonids (Freundt and Razin 

1958; Holben et al. 2002). Deefgea are closely related to Neisseriaceae and are known to oxidize 

and ferment glucose in the gut of fish (Jung and Jung-Schroers 2011). This carbohydrate 

degradation and production of lactic acid through anaerobic respiration may be related to the 

increased LDH activity observed in this region. The hypothesis that the PI region of the gut 

would be the most affected by salinity was incorrect as enzyme activity changed in different 

regions of the gut with IPW treatment. 

9.5 Conclusions 

Regionalized microbiome and enzyme activity were identified in the gut where the 

stomach had the most diverse bacterial composition followed by the PI and AI+MI. Although no 

changes were observed in the regional bacterial populations, changes in enzyme activity were 

identified along the GIT with the results of the enzyme assays indicating that IPW or natural 

fluctuations in GIT physiology affected the endogenous enzyme activity more so than that of the 
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bacteria. Most notably, NKA activity was found to be depressed after 2 weeks IPW water 

exposure in the MI (Figure 6E) which did not correspond to our hypothesis as NKA activity has 

previously been found to be unaffected by IPW treatment in the gills of rainbow trout (Flores and 

Shrimpton 2012). This perhaps host-driven change in activity and its region-specific change 

indicate that the bacteria are less important for function than zonation. In comparing the results 

of the gill in the Flores and Shrimpton (2012) study to the present findings, changes in enzyme 

activity and responses are also tissue specific. This region-specific activity was also not highly 

correlated with LDH and PK activity as previously found (Le Francois and Blier 2003; Le 

Francois et al. 2004). Overall, these enzyme data indicate that complex mechanisms along the 

GIT may be influenced by changes in gut physiology with IPW salinity challenge and that the 

microbiome can be controlled by the intestinal environment even when there are changes in the 

external environment (Schmidt et al. 2015). These findings also further emphasize the 

importance of considering zonation in the study of the GIT, as the zone-specific responses would 

otherwise be obscured if the GIT was considered as a whole.  
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Chapter 4: Comparison of gut microbiome and enzyme activity zonation responses to 
alterations in temperature and ion-poor water salinity challenge 

10.1 Overview 

Temperature and salinity have previously been found to separately affect both the 

microbiome and enzyme activity in the gut. Additionally, several studies have shown evidence 

for zonation regarding the microbiome as well as enzyme activity; however, few studies have 

provided a more comprehensive survey of the interplay between the microbiome and enzyme 

activity with respect to zonation. The objective of this thesis was to explore functional zonation 

by manipulating two external environmental factors, temperature and salinity, to observe 

zonation patterns in the bacterial communities, and corresponding digestive and metabolic 

enzyme activities in the GIT. Since temperature and salinity have been shown to affect the 

microbiome and enzyme activity, and morphological zonation has been established, it was 

hypothesized that there would be a region-specific response along the GIT zones with respect to 

temperature and salinity manipulation. The zonation patterns and responses to environmental 

manipulation investigated in the present study will contribute to our understanding of the 

complex role of the gut in fish physiology. Additionally, this research is beneficial to the 

aquaculture industry; knowledge of GIT microbiome and enzyme regional profiles can be used 

to formulate fish feed and optimize fish husbandry for increased growth and improved health. 

Finally, with climate change mean temperatures around the world are expected to increase by 1.8 

in 4.0°C over the next 100 years (Solomon et al. 2007). Rising water temperatures will cause fish 

populations to migrate to habitats that are more conducive to their optimal thermal ranges which 

will also expose them to different habitats, diets and water salinities. Understanding the 

relationship between GIT bacteria, enzyme function and the potential impacts on fish physiology 



95 
 

can allow scientists and conservationists to create plans to mitigate the negative effects of these 

changes on fish populations worldwide.  

For the first time, I have shown that zonation is more indicative of bacterial communities 

along the gut than environmental stressors such as temperature and salinity. I have also shown 

that temperature impacts the microbiome of all section of the gut more so than reduced salinity. 

My results also confirm previous observations of zonation in the microbiome and enzyme 

activity and provides specific correlations between bacteria species and enzyme activities. The 

evidence from my experiments suggest a synergistic relationship between the microbiome and 

enzyme activity. 

10.2 Zonation patterns 

Zonation of the bacterial communities along the gut is more supported than differences 

with temperature or salinity challenge. This was evident in the weighted bootstrap trees (which 

compared bacterial identity and abundances between samples) where the stomach, AI+MI and PI 

samples cluster more closely to one another regardless of environmental stressor (Figure 4 and 

Figure 16). Bacterial zonation patterns were evident in the control samples from both 

experiments indicating that the rainbow trout core gut microbiome is consistent. The core gut 

microbiome retained similar ratios in the control CW (6°-12°C), FW GIT zone samples from 

both the temperature and salinity experiments (Table 1, Figure 2 vs. Table 2, Figure 14). It can 

be postulated that morphological and/or histochemical differences in co-ordinance with other 

complex physiological mechanisms may control bacterial community assembly at each region. 

The stomach was the most diverse region of the gut followed by the AI+MI and PI in the 

CW controls (Figure 3 vs. Figure 15). Firmicutes/Tenericutes comprised majority of the bacterial 
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community in the control stomachs followed by Proteobacteria and Bacteroidetes as this phylum 

was in the AI+MI and PI. CS and PK activity were weakly correlated with the control stomach in 

the temperature experiment but strongly correlated with the control stomach in the IPW 

experiment. These consistent correlations indicate the stomach likely has a significant number of 

aerobic bacteria utilizing these pathways for energy production (Lesel and Peringer 1981). 

Further study of other types of metabolic and digestive enzymes may elucidate specific 

connections between this metagenome and function (Bik et al. 2006).   

Though the core bacterial phyla composition in the AI+MI regions were similar in both 

controls, different bacteria species were associated with the AI+MI samples in the two 

experiments (Figure 13 vs. Figure 25). Differences in the GIT bacterial communities of between 

individuals has previously been documented in fish and mammals (e.g. Ratten et al. 2017; Ley et 

al. 2006; Walker et al. 2011; Yan et al. 2012). These variations are thought to be due to host- 

specific gut conditions and health, random colonization in bacterial community assembly and 

competition between bacterial species (Schmidt et al. 2015). To further explore this 

phenomenon, an experiment in which the GIT bacterial communities of individuals in each 

treatment are explored would allow for the measurement of the degree of variation between 

individuals to determine whether differences in bacterial species impact enzyme activity and 

whether bacterial communities are significantly different between individuals and treatments. 

Maximal trypsin activity was highly correlated with the control AI+MI sample in both 

experiments while PK, CS and GDH activity were closely correlated with the AI+MI in the 

temperature experiment and NKA and GS were more closely related to the AI+MI the IPW 

experiment (Figure 13 vs. Figure 25). The bacterial community and activity profile here suggests 

protein digestion becomes more important in this region; high levels of Firmicutes, associated 
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with carnivorous diets, and trypsin activity as well as evidence of ammonia detoxification 

indicate this function. 

Bacterial compositions were slightly different in the PI controls where the temperature 

control contained 88% Firmicutes/Tenericutes compared to 75% in the IPW control, 

Proteobacteria comprised 10% of the temperature control and 25% of the IPW control; 

Bacteroidetes comprised <1% of both samples (Table 1, Figure 2 vs. Table 2, Figure 14). Thus, 

between the AI+MI and PI regions, Firmicutes/Tenericutes populations are reduced and 

Proteobacteria elevated marking a distinct zonation in the intestinal microbiome. Cellulase 

activity was also correlated with this region in both experiments though more strongly in the 

IPW experiment indicating the PI’s importance in cellulose degradation (Figure 13 vs. Figure 

25). Elevated LDH and lipase activity were identified in the IPW control PI (Figure 25). 

Firmicutes/Tenericutes bacteria is likely contributing to this cellulase and lipase activity in this 

region and may be enhanced by Proteobacteria through some process of modulation. In contrast, 

the temperature control PI was also associated with maximal GDH activity indicating local 

ammonia detoxification in this region likely a by-product of protein digestion in the more 

anterior regions of the gut (Figure 25). 

Overall, the stomach, AI+MI and PI regions in the controls exhibited distinct bacterial 

compositions and each section was associated with enzyme activity profile that was associated 

with certain types of digestive processes but not necessarily with any particular metabolic 

enzyme activity. Nutrient assimilation may be manipulated by altering the bacteria but altering 

the cellular responses and optimizing cellular metabolism (and by extension whole animal 

metabolism) may be targeted through host manipulation not bacterial influence. 

10.3 Environmental stressors: Temperature and ion-poor water 
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 Temperature had a more profound effect on the gut microbiome than IPW salinity 

challenge (Table 1, Figure 2 vs. Table 2, Figure 14). Fish exposed to environmental temperature 

fluctuations or seasonal temperature changes would have microbiomes and enzymatic activity 

that was more impacted than fish in freshwater environments experiencing transient changes in 

salinity. Based on the results of the temperature experiment, it seems that increased temperature 

increases digestive and metabolic processes in some regions of the gut such as trypsin, lipase, 

PK, and CS in the AI+MI and GDH in the PI. Although the bacterial composition was not 

greatly affected by IPW salinity challenge, a significant spike in the activity of enzymes such as 

NKA and CS were observed at 24-hour IPW exposure, however, these activities returned to FW 

treatment levels by 2-week IPW exposure (Figure 18B, Figure 21C). This suggests a perfect 

compensation response to IPW challenge in which acclimation occurs following metabolic 

adjustments to decreased water ion availability.  

10.4 Exploring zonation and the effect of environmental stressors 

Temperature most impacted the ratio of the core gut bacteria - particularly in the AI+MI 

but also in the PI. The increased bacterial evenness in the AI+MI with WW treatment was 

correlated with increased lipase activity (Figure 14, Figure 25). It appears that the AI+MI region 

may become specialized for increase lipase activity in WW fish potentially associated with the 

production of short-chain fatty acids (SCFA) used as an energy source for enterocytes (Lencki et 

al. 1998); this increased energy production is likely a result of increased metabolic processes 

associated with higher temperatures in organisms  (Horn 1997; Clements and Raubenheimer 

2005; Wilson and Castro 2010; Carrie and Schulte 2014). With climate change, elevated 

environmental temperature will increase the metabolic demand of individuals; lipase activity in 

the AI+MI region of the gut will become more important in order to provide the fish with energy 
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to maintain homeostasis. Increased Proteobacteria may also facilitate trypsin activity required for 

increased protein digestion in the AI+MI although trypsin activity was only associated with CW 

AI+MI in this experiment (Figure 25).  

The PI became highly associated with NKA and LDH activity with WW treatment, while 

in the control FW PI of the IPW experiment, NKA and LDH association with this region 

persisted (Figure 13 vs. Figure 25). GS activity in the PI appears to become more important in 

the PI and is likely associated with increased local ammonia detoxification in the intestinal 

lumen following increased protein digestion in the more anterior portion of the intestinal region. 

It is noted that the activity of GDH, another enzyme highly associated with local ammonia 

detoxification in the gut lumen, is variably associated with the stomach and AI+MI regions in the 

controls from the temperature and IPW experiments (Figure 13 vs. Figure 25). This is perhaps 

due to a more complex mechanism of ammonia detoxification along the gut or perhaps the 

participation of GDH and GS in more complex processes related to the microbiome and native 

physiology of the gut. Nonetheless, the PI appears to be associated with increased cellulase 

activity regardless of treatment indicating its importance in plant digestion. Rainbow trout are 

carnivores and thus would not normally feed on plant material, the origin of this activity is likely 

due to enzymes in the commercial fish feed they were fed during the experiment. Thus, our 

hypothesis that temperature and salinity would affect the gut bacteria composition and enzyme 

activity along the GIT was partially supported; temperature seemed to be more impactful than 

decreased salinity. 

 Overall, the results of this study indicate the microbial zonation is present in along the 

GIT of the rainbow trout and that it is more affected by temperature than decreased salinity. 

Clear demarcations of digestive processes were observed in the AI+MI, which was associated 
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with protein and lipid digestion, and the PI, which appeared to be more associated with plant 

material digestion. The diversity of the stomach was correlated with varying activities of 

metabolic enzymes between the two experiments indicating the stomachs complex role in gut 

physiology. Metabolic physiology was variable across the gut regardless of treatment for the 

most part except with regards to the activities of CS, which shows maximal enzyme activity in 

the stomach, and GS, which was highly associated with PI. Thus, our hypothesis that functional 

zonation is present along the GIT of the rainbow trout is supported by the evidence of this 

investigation. Our research shows that there is incredible diversity along the GIT which may be 

missed if the GIT is considered as one whole organ. It is important to consider these differences 

in the study of the GIT, it’s function and contribution to overall physiology. 

Perspective and future directions 

Fish are currently used in research of the microbiome because it is easy to manipulate and 

sample their external and internal microflora (Rawls et al. 2006; Lowrey 2014; Schmidt et al. 

2015). The rainbow trout make an excellent model for studying the effects of environmental 

stressors like temperature and salinity due to their eurythermal and euryhaline nature. In other 

studies, comparisons of species adapted to more stable environments (i.e. stenothermal temperate 

vs. Antarctic fish or stenohaline marine versus freshwater fish) often results in comparisons of 

species across diets and taxonomies (Schmidt et al. 2015; e.g. Givens 2014, Sullam et al. 2012). 

These types of studies often neglect to consider species-specific differences in native bacterial 

community assembly and physiological adaptations of endogenous enzymes to the host in their 

comparisons of the effects of environmental stressors. Using a fish like the rainbow trout as a 

model organism allows for researchers to focus on examining the mechanisms underlying 

observed changes which would then serve to aid in understanding differences between species.  
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This novel study shows evidence for the contribution of the microbiome to functional 

zonation in the gut of the rainbow trout. Bacterial communities were identified to exhibit distinct 

compositions along the gut. Firmicutes, bacteria that are highly associated with carnivorous fish 

microbiomes, made up most of the bacterial composition in all sections studied though were 

found in slightly differing abundances in the stomach, AI+MI and PI. Accompanying these 

differences were varying levels of other types of core (Proteobacteria and Bacteroidetes) and 

non-core gut bacteria. Enzyme activity appeared to be influenced by the presence of certain 

bacterial taxa as bacterial phyla were indicative of the activity digestive enzymes in many cases 

though clear relationships between the bacteria and metabolic enzyme activity were not as 

distinguishable. Future studies could include a larger survey of enzyme activity profiles and 

other biochemical assays to identify the effects of bacterial populations on the gut lumen. 

Some fish, such as Cyprinids which include goldfish, lack a morphological stomach 

(Junger et al. 1989). Microbiome characterization of their gut might reveal patterns which 

indicate stomach-like activity in digestion and absorption of dietary materials along the GIT. 

Thus, the microbiome can be used as a valuable tool for understanding functional zonation. 

The stomach and intestine samples were analyzed in the enzyme assays and bacterial 

analysis as whole homogenates and the contributions of different cell types were not considered. 

Subsequent research should examine the individual contribution of cell types such as 

enterocytes, smooth muscle, and bacteria to regional function to determine which cell types are 

more influential and characterize GIT zones as well as the effect of environmental stress on 

different cell types. A future experiment could separate these cell types and assay their enzyme 

activity separately to see how each cell type responds to environmental stress and how these cell 

types might work cohesively to contribute to function. 
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This study focused primarily on determining key correlations between major bacterial 

taxa and enzyme activity. The next step would be determining causative relationships between 

bacteria and functional zonation in the GIT. One of the major challenges in the study of the 

mechanistic properties underlying the host and microbiome relationship is the fact that their 

interactions are incredibly complex and dynamic (Sun et al. 2014). Measuring enzyme activities 

and then inferring a contribution by the bacteria to the enzyme function based on previous data 

was a limitation to this study. Other studies have narrowed the scope of their study to one or few 

functions and designed their experiments to measure changes in host properties thought to be 

affected by certain bacteria. For example, Fei and Zhao (2013) explored causal relationships 

between bacteria which produced endotoxins and obesity and insulin resistance in mice by 

monitoring changes in the parameters such as permeability of the gut, serum endotoxin and 

inflammatory biomarkers with subcutaneous infusion of endotoxins previously purified from E. 

coli. In studies by Koeth et al. (2013) and Hartiala et al. (2014), Bacteroidetes in the GIT have 

been linked to atherosclerosis through the promotion of trimethylamine oxide, a proinflammatory 

agent, produced it its metabolism of dietary carnithine and phosphatidylcholine. Future studies 

can use the approaches in these studies and focus on the effects of bacteria on specific pathways 

that influence host physiology and health to develop a better understanding of causative 

relationships with the host. 

Study of the gut microbiome is an exciting field of research and understanding how 

zonation in the microbiome influences host health is creating a change in thinking about gut 

physiology. In human health, the gut microbiome has been implicated in nutrition, neurobiology, 

cancer, immunology, and a variety of diseases (Shin et al. 2015; Distefano et al. 2015). 

Knowledge of the chemical associations between the microbiome and the gut in health and 
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disease have aided with our understanding of how drug therapies might exert clinical effects 

(Distefano et al. 2015). Further investigation of regional differences in these associations along 

the gut would benefit the development of targeted drug therapies for treatment of diseases and 

disorders.  
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Appendix A: Command Scripts for QIIME 

1. Validate_mapping_file.py: The validity of the barcode, linker-primer, and reverse-primer 

fields were checked to ensure correct IUPAC DNA characters and non-degenerate barcode 

sequence characters. Invalid alphanumeric characters, duplicate barcodes, valid header characters 

were flagged, and barcodes were checked for similar length for use in downstream processing. 

2.  Split_libraries.py: Barcode and linker-primer sequences were removed, and quality filtering 

was performed for the total sequences. Sequences with incorrect primer sequence or no 

corresponding barcode were removed. New barcodes were assigned to the filtered reads from 

each sample. 

3. Pick_otus.py: A closed-reference Operational taxonomic units (OTUs) picking protocol was 

used to pick OTUs based on a 97% sequence similarity threshold and Green Genes reference 

library was used to assign taxonomy with USEARCH (Edgar 2010). Removal of chimeras were 

also completed in this step as part of the UCHIME v 5.2.236 USEARCH algorithm.  

4. Pick_rep_set.py: One representative sequence was picked for each OTU; this file was used in 

downstream analysis. 

5. Align_seqs.py: Alignment of the representative sequences generated in the previous step was 

performed using the PyNAST method of alignment (Caporaso et al. 2009).  

6. Assign_taxonomy.py: Taxonomy was assigned to each aligned representative sequence with 

BLAST. 
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7. Filter_alignement.py: Low quality reads, long sequences, zero ambiguous base calls, zero 

primer sequence mismatch and OTU representative sequences with no BLAST hits were filtered 

and removed. 

8. Make_phylogeny.py: A phylogenetic tree comprised of the OTUs was created based on a 

multiple sequence alignment with FastTree (Price et al. 2009). 

9. Make_otu_table.py: An OTU dataset which predicted the frequency of OTUs in each sample 

was generated as a biom table file for use in downstream analysis. 

10. Alpha_rarefaction.py: Alpha-rarefied tables based on the OTU biom data set were generated 

and collated to create observed species, Chao1, phylogenetic diversity, and Shannon Index plots. 

These plots were used to compare bacterial composition (abundance, richness and evenness) 

across samples. 

11. Jaccknifed_beta_diversity.py: A beta diversity analysis to compare bacterial composition 

between samples. The sample containing the smallest number of OTUs was used as the baseline 

number for selecting random sequences from each sample to be compared. UPGMA 

(unweighted pair group method with arithmetic mean) distance matrices were used to generate 

consensus trees. The make_bootstrapped_trees.py command was used to create both un-weighted 

and weighted jackknifed bootstrapped trees. 
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Appendix B: Command Scripts for R Studio 

1. Read.table: To specify the data files used for downstream processing (the bacterial abundance 

and enzyme activity response files, and presence/absence data predictor file) 

2. Library(vegan): To call the installed vegan package used for the diversity analysis, ordination 

methods, and analysis of dissimilarities 

3. Decostand (method=”Hellinger”): To perform a Hellinger transformation on the bacterial 

abundance data file to remove species with low or zero counts 

4. Rda(response, predictor): An RDA multivariate analysis was performed on the bacterial 

abundance and presence/absence data files 

5. Plot:  To generate a figure based on the output of the RDA command script. Bacterial species, 

GIT sites and enzymes were plotted on this ordination to view the degrees of dissimilarity 

between these parameters 
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Appendix C: Blank PCR Validation Test  

The blank sample collected during extractions with the Stool and DNEasy kits were tested for 

contamination using PCR with the universal bacterial primers (Sigma-Aldrich Co., Woodlands, 

Texas) 338/341F-785R (V3 hypervariable region of the bacterial 16S rRNA) and 967F-1177R 

(V6 hypervariable region) that had been resuspended to a concentration of 100 µM in RNAse 

and DNAse free molecular water and stored at - 20°C. Primer design was based on those by 

Baker et al. (2003) and Watanbe et al. (2001) for the V3 and V6 region primers, respectively 

(Table 3). PCR was used to amplify the V3 and V6 regions of bacteria to test for their presence 

in the blank, positive control which was a gDNA sample, and negative control containing only 

the PCR master mix. The master mix contained 6.25 µl Dreamtaq PCR master mix (Thermo-

Fisher Scientific; Waltham, Massachusetts), 1.25 µl forward primer, 1.25 µl reverse primer, 1.75 

µl molecular water, and 2 µl blank sample, gDNA or molecular water for the blank, positive, and 

negative control PCR tests, respectively. PCR was performed using the Bio-Rad MyCycler (Bio-

Rad Laboratories Limited, Mississauga, Ontario) using the following PCR protocol: a 3-minute 

initial denaturation at 95°C, a 30 second repeated 95°C denaturation cycle, 45 second annealing 

step at 57-58°C, a 1-minute elongation step at 72°C, a final elongation 72°C for 5 minutes, and 

finally holding at 4°C until sample retrieval. PCR productions for the blank, positive, and 

negative control were examined by running samples on a 1.5% agarose gel in a Tris-HCl-acetic 

acid-EDTA buffer including 0.5μg/ml of ethidium bromide and imaging the resulting gel run 

using a MiniBis Pro Imager (FroggaBio Scientific Solutions, Toronto, Ontario). Presence of 

bands indicating bacterial presence in the blank or negative control resulted in re-extraction of 

the gDNA from experimental sample set using a brand-new kit and a new PCR master mix was 

used to re-test samples 
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Table 3. Bacterial primer sequences for the V3 and V6 hypervariable regions 

Hypervariable 
region 

Primer sequence for region Source 

V3 Forward:  

338 = ACTCCTACGGGAGGCAGC 

341= CCTACGGGAGGCAGCAGTG 

Reverse: 

785 = CTACCAGGGTATCTAATCC 

Baker et al. 2003 

V6 Forward:  

967 = CAACGCGAAGAACCTTACCT 

Reverse:  

1177 = GACGTCATCCCCACCTTCCT 

Watanabe et al. 
2001 
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Appendix D: Fish Feed Composition  

Table 4. Tropic Aquaria Ltd. Fish Feed “Tropical Energy Pelleted Tropical Fish Food” 
composition 

Nutrient Percentage of feed 
Min. Crude Protein 37.5% 
Min. Crude Fat 8% 
Min. Crude Fibre 5% 
Added Minerals  1.5% 
Min. I.U. Vitamin A 180000/K 

 

 

 

 

 


