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Abstract

The purpose of the dissertation is to specify the meaning and

consequences of the following proposition:
A great work of art is an inductive gane.

I consider three axioms: the first states what an accurate induction
is; the second asserts that the essential activity of a human organism
is making accurate inductions; and the third asserts that a work of art
is an inductive game which exercises the deépest habitual responses of
the organgsm. Since the meaning of the latter two axioms depends upon
the meaning of the first, I begin by constructing a formal logic of in-
duction and illustrating its application to an inductive situation. I
then specify the meaning of the latter two axioms. Lastly, I discuss
and illustrate the structural consequences of the axioms with respect
to the traditional formal canons of the arts, distinguishing betweeﬁ
narrative and non-narrative arts.,

The formal logic of induction firstly specifies the meaning of
'accurate induction! with respect to a set of precisely defined mach-
ines, Suéh machines are objects each of which is programmed to act as

if each of a given set of propositions were true. Fach machine is said
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to believe each proposition of its program; and, if a believed proposi-
tion is indeed true, then the machine is said to know the proposition,
Probabilities are then specified to be rational mumbers which are as-

signed'with respect to a given machine to propositions asserting that

a proposition p implies a proposition g. The procedure involves as-
signing a code number to each element of an exclusive and exhaustive
set P of propositions, each element of which the machine knows to imply
p. The ratio of the sum of the code numbers of that subset Q of P,
each element of which is knovm by the machine to imply q, to the sum

of the code numbers of P is the probability with respect to the machine
that p implies q. (A noteworthy feature of the logic is that Goodman's
grue-paradox cannof be constructed within it, as detailed in an appen;
dix to the dissertation.) - .

Aftef proving the fundamental theorems of the probability calcu-
lus, and deriving a restricted version of Laplace's Law of Succession,
I then specify the sense in which human organisms can be considered to
be machines as discussed in the formélism.

The second and third axioms are then informally specified. A hu-
man ofganism at each moment of its existence encounters complex temp-
oral events, only some of which are conducive to its well-being. To
insure its self—p;eservation, the organism must seek the latter and
avoid the others with maximum efficiency. To do so, it develops un-
conscious habits of inductive expectation, the thwarting of Which‘gives
rise to emotional reactions. Vorks of art are tools whereby a human

organism is able to make habitual inductions as if its well-being de-
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pended upon their accuracy, without an actual, but rather an imaginary,
threat being present. |

By a detailed examinatidn of the structural feature of a golf
course (a less-detailed kind of inductive game), three structural con-
ditions are derived whicﬁ are necessary to a work of art being great.
I argue lastly (a) that works of art constructed in accordance with the
three conditions would in general conform to the traditional descrip-
tive canons of the arts, including the tri-partite canons (Exposition =
Developmenﬁ ~ Recapitulation or Climax) of the narrative and musical
arts, (b) that the narrative genres of Tragedy and Comedy are thereby
explicable, and finally (c) that paintinés can be viewed as inductive
games even though no traditional structural canons (eg. akin to the

sonata form in music) exist against which to test the argument.



Preface

' The purpose of this dissertation is to clarify the meaning and

conseéuences of the following proposition:

\ A great work of art is an inductive game.

I do not offer an argument for the truth of the proposition, but rather,
as a mathematician who specifies an axiom system and develops its con-
sequences without arguing for the truth or falsity of his axioms, I
specify its meaning, so that, if true, its structural consequences-will
be apparent to the working artist. It is not verities, hence, but util-

ities I seek, propositions useful to the working artist engaged in solv-
ing his daily compositional problems. For I consider it a scandal of
aesthetics that, of the thousands of admittedly true propositions which
have been uttered about works of art, the mumber which have proven use-
ful to the working artist is negligible.

When the formal sections ahead get murky (and they will), may I
suggest to the reader that he keep steadfastly before him the image of
a dramatist who, having attempted to fit a few sketchy scenes for an
unfinished play into rough structural order, senses that one of the
scenes in that context 'doesn't work!' (as the usual phrase niceiy puts
it). What ought he to do then? My task in this essay, simply put, is
to.place in focus a general coﬁception of art which has structural im-
plications for that dramatist in his situation, and for other artists
in theirts. - (All references in the text of the dissertation ére to

the Bibliography.)
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Introduction

At the beginning of Chapter II, I state three axioms upon the
assumed truth of which is based my'subsequent discussion of the mean-

ing and consequences of the proposition
A great work of art is an inductive game:

the first'stétes what an accurate induction is; the second asserts
that the essential activity of a human organism is making accurate
inductions; and the third asserts that a work of art is an inductive
game which exercises the deepest habitual responses of the organism,
Since the meaning of the latter two axioms depends upon the meaning
of the first, I begin in Chapter I by constructing a formal logic of
induction and illustrating its application to an inductive situation.
In the early part of Cﬁapter II, I then specify the meaning of the lat-
ter two axioms. lastly, I discuss and illustrate the structural conse-
quences of thé axioms with respect to the traditional formal canons of
the arts, distinguishing betwreen narrative and non-narrative arts.

The task of specifying the meaning of the first axiom involves
a complex formalization which specifies firstly the meaning of 'accu-
rate induction' with respect to a set of precisely defined machines,
~ and then secondly specifies the sense in which human organisms can be
considered to be such machines,

A proposition is defined to te anything which asserts that the
mumber of elements in the intersection of two sets, a subject set and

~a predicate set, lies within an upper and lower mumerical bound. If
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the cardinality of the intersection of the two sets indeed lies within
the asserted limits, then the proposition is taken to be true (with
suitable restrictions to avoid £he Paradox of the Liar). Given the
above, the truth-functions of the propositional calculus are defined
in the customary way, with the assertion that p implies q being taken
to be simply the assertion that the conditional of q given p is true.
A set of objects, called e -machines, is then introduced. Such
machines are objepts each of which is programmed to act as if each of
a given set of propositions were true. Each machine is saidlto believe
each proposition of its program; and, if a believed proposition is in-
deed true, then the machine is said to know the proposition.
Probabilities are then specified to be rational numbers which are

assigned unambiguously with respect to a given © -machine to propo-

sitions asserting that a proposition p implies a proposition q. (T
abbreviate 'the O -probability of the truth of the conditional of q

given p equals k' by the symbol

The number assigned to a given implication proposition with respect
to a given e -machine depends upon the knowledge of the e -machine; -
it is, therefore, subjective with respect to that machine. Since, how-
ever, the machine's knowledze depends upon the truth of the proposi-
tions it believes, it is objective with respect to the world.

The procedure for assigning the probabilities contains many formal

subtleties designed to elude the various objectionable features of pre-
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vious inductive logics. (Eg. The grue-paradox of Nelson Goodman is
fhereby avoided, as explained in Appendix II.) But, essentially, the
procedure involves assigning a code number to each element of that sét
P of propositions which ©  knows to contain only one true proposi-
tion (but doesn't know which) and which is such that &  knows that
each element imﬁlies proposition p. The ratio of the sum of the code
nunbers of that subset Q of P, each element of which © knows to
imply q, to the sum of the code mumbers of P is the probability with

respect to © that p implies q; i.e.

The fundamental theorems of the probability caleulus are then derived
within the system at the end of Section I.
Applying the theorems.of the probability calculns as specified in
the formalism to an illustrative inductive situation in which I, as a
© -machine, know that each element of a set E is either white or
black, and that some particular subset S of E having s elemnents con-
tains exactly t black elements, I prove in Section II that the probab-
ility with respect to myself as &  that any particular other element
of E is black is
++ 1
S + 2

This is formally similar to Laplace's Law of Succession (177L); but
whereas laplace's law leads to induétive inconsistencies, the restric-

‘tions imposed by the formalism of my system avoid them. In Section III
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I then remove an ambiguity in the Laplacean notion of 'sampled object!
as applied to ordered sets by givihg a formal specification of what a
theme is.

Having formally specified and iliustrated'the procedure of assign-
ing probabilities to assertions of ﬂnpliéation with respect to 8 -
machines, I immediatély specify in Chapter II the sense iﬁ which human
organisms can be considered to be such machines, and explicitly set
forth the three axioms.

The second and third axioms are then informally specified. A hu~-
man organism at each moment of its existence encounters complex temp-
oral events, only'some of which are conducive.to its well-being. To
insure its self-preservation, the organism must seek the latter and
avoid the others with maximum efficiency. To do so, it develops un-
conscious habits of inductive expectation, the thwarting of which gives
rise to emotional reactions. Vorks of art are tools whereby a human
organism is able to make habitual inductions as if its well-being de-
pended upon their accuracy, without an actual threat to its well-being
being present. The organism consciously or unconsciously imagines
such a threat, and exercises its habitual responses to avoid it.

Tﬁe point of specifying the meaning of the three axioms, however,
is to elicit more clearly the structural features of great works of
art. Since sporting events have been shovn to be inductive games also,
though of a coarser structure and effect, Section IT of Chapter IT is

devoted to a discussion of the basic structural cenditicns for great

works of art as evidenced coarsely in the structural features of a
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well-designed golf course, culminating in the explicit statement of
three structural conditions necessary for a work of art to be great.

I argue lastly, in the remainder of Chapter II, fhat works of art
constructed in accordance with the above three conditiocns would in gen-
eral conform to the traditional descriptive canons of'the various arts
(including, in particular, the tri-partite canon (Exposition - Develop-
ment - Climax) of the narrative arts, and the structurally similar so-
nata form of the musical arts), that the narrative genres'of Tragedy
and Comedy are thereby explicable, and finally that paintings can be
viewed as inductive games even though no traditional structural canons
(eg. akin to the sonata form in music) exist against'which to test the

argument.

So much for the plans. Let us proceed to the foundations!



Chapter I, Section I:

The Logic of Probable Inference

1. Imagine a class A no two members of which are identi-

cal. I shall then say that A is a set,

1.1 Imagine a set A and an object €© ., I shall refer

to the number of elements in A by the symbol
N (A) (read 'the cardinality of A  ');

to the set consisting of all and only those elements each of which

is not an element of A by the symbol

()

A (read 'the complement of A 1);
to the set consisting cnly of the object < by the symbol

{c} (read 'the unit set of < ');

and to the set consisting of no elements by the symbol

N (read 'the null set!'),

1,11 Inagine two sets, At and Az o I shall refer to the
set consisting of all and only those elements each of which is an

element of either A1 or Az or both by the symbol

. Ai'-l'- A, (read 'the sum of A:l and A, ')
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I shall refer to the set consisting of all and only those elements
each of which is an element of both A1 and Az by the symbol
A1 X Ag (read 'the product of A1 and A, e

: W
And I shall refer to the set AIX A, by the symbol

A, — A, (read 'the difference of A, l%gg
Aa ')o
1.12 Imagine a set A  and an object '€ such that < is an

element of A (i.e. such that, by 1.1 and 1.11,
N(f{c<3 XA)= 1 ). I shall then write

ceA .

(If < were not an element of A  (i.e. if, by 1.1 and 1.11,

N ($c? xA) =0 ), Ishould then write

céA.

1.13 Imagine two sets, Ax and A, , such that each element of

A1 is an element of A; . I shall then say that A, is included .

in A, , abbreviated

Aic A, .

(if Ay. were not included in Az s I should then write

A1¢'A2 . )
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Ima‘gine two sets, Al’ and Ag » such that

(a) Alc Az H

;3 and
(b) Ax < A,

I shall then say that Ai and A; are e -identical, abbreviated

(if A, and A, were not € -identical, I should then write

e
Ay 7= Ay - )

1.15 Imagine two objects, a, and a, , and a set A , such

that neither object is an element of A unless the other is also an

element of A . I shall then say that @, is

A _-identical to
Qa

s written

A

ql Qz

(if «, were not A -identical to g

A
Q, %= Qz . )

s I should then write

1.2 Imagine a set A and a set e = {‘31, 8., -- -} such
that

) e
(a) for each B;€B (o0<i), B; # A

(b) for each B;,8;€B (o<i,jandi)),
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Bix B ¥AS 3 a.nd
(c) Bt+ 32 ¥ ... g A .

I shall then say that [ is a partition of A .

1.3 Imagine two objects, @, and @z , and the set A =

{A,_, Aa-}such that A, = {Gfi land Ay = {al,a{} . I shall
refer to set A by the symbol

<a,,azb (read 'the 2-gram of a,, az').

Imagine a third object Q<4 , and the set A’ = <<Q1\Qa>’a3>.

I shall refer to set A’ by the symbol
Lay,a3,a3 > (read 'the 3-gram of @4 , @z, @3z').

By extension, I shall refer to any set <<a,,a,,-.., a,. >y ar>

where X  is finite, by the symbol
Lay,az, .-, any (read 'the K -gram of @, , a, ,

L S ) QR!)Q

1.L Imagine a set A= {Qa.rq?n ---? such that each a;e A

(o041 ) is a 2-gram. I shall then say that A is a relation.

1.5 Imagine a set A= gQ‘L\Q:h """% and a relation W

such that, for each ai,aj,a, . € A (o0xi,j,k ),

(a) if a; = aj, then either {a} q‘Se‘,B or {aj,a:Hy e B ;
\ d J \
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(b) if <aj,a;>€B , then @; % a ; and

(c) if <aj,aj; >, <{ajrad» € B » then <QI7Q;>€ B .

I shall then say that A  is ordered with respect to B .

1.51 \ Imagine a set A such that A is ordered with respect

to some relation [ . I shall then say that A  is ordered.

2. Imagine a 3-gram P= <<A, B> m,,my > such that

(a) A  and B are sets;

(v) m, and W, are integers such that m, <« ™y s and

(c) P&A.

I shall then say that p is a proposition (and that A is the

subject set of P , and that B is the predicate set of P R

2.1 Imagine a proposition P= <A, B>, my, My S such that

m, £ N(AXB) £ m,; .

I shall then say that P is true. (If 2 proposition - P were not

true, I should then say that P s false.)

I shall refer to the set of true propositions by the symbol

T .

(Since condition (c¢) of 2 prohibits propositions from referring to

themselves, the Pérédox of the Liar is not forthcoming. See Appendix

I.)



11,

2.2 Imagine a proposition P and a proposition Q =
<KEP2,T>, 4,1y (i.e. Q= PET ). I shall refer to the
proposition @ , which proposes that the proposition P  is true,

by the symbol

- P .
2.3 Imagine firstly a set A= i Ay, Az;----} such that each
A.e A (o « i ) is itself a set consisting of exactly two pro-

positions, Pio. and P . Imagine secondly the set of proposi-
tions S = S‘-Sl, Sa, ---'} such that each

e

S;es (04.‘) <<A17T>)°»L$’

(i.e. Imagine the set S consisting of all and only those proposi-

tions S; (o ' ) each of which proposes that the product of the

set of true propositions T  with a particular A" contains either
P'a or pib or neither, but not both,) For each S;€ S (o4 ),

I shall say thet S: is a truth-function of pia and pib , abbre-

viated

Pra l Pib (read 'the alternate-denial of Pie and

P‘k s

and shall also say that Pia and pib are the components of Sy .

Furthermore, I shall abbreviate

Pia \ P | by ;':-{—q (or = pPia ).
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(read 'the negation of pla ');

(pale)) (pratpin) by Pia A Pib

(read 'the conjunction of pia and @ib ');

I shall omit the symbol ! ' wherever clarity will not suffer
A

thereby.)
(elal piad | (pinipin) by Pia V Pib
(read 'the disjunction of pPia and
Pib '); and
Pia | Cpib Lpib ) by  pia —> Pib
(read 'the conditjonal of pib given piat).
2.31 Imagine a proposition P such that

P: (Cpa U Cpinipul 1Tpin | (piat piad]) ‘([9‘.;!(9‘.\,\ Pib)] \E Pbl Cplatpia)l).

P  proposes that Pla € T  if and only if P € T .

Hence, by 1.15,

T
P, Pla = Pib -
2.4 Imagine two propositions, pa and pa , such that

N(fpr—pPa3xT)=1 .

I shall then szy that p, implies p, .
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2.5 Imagine a truth-function S and a finite set of propositions

P= %S, pP1sPas---, Pn § such that

(a) P4 is a component of S ;
(b) for each pi,p; € P (aci,jen and i+1=3),
Pi is a component of e¢:i ; and

(c) Pn 1is not a truth-function,

I shall then say that

(1) P isan S -functional chain; and that

(2) Pn is the end of P .

2,51 ~ Imagine a truth-function S and a finite set of prorositions
P= ?S, P1s PRy ---, P“‘S such that

(a) S has both of its components as elements of P 3

>
(b) each pi€P (ocien) isan element of an S -function-

al chain C; included in P such that either

(1) pi is theend of C; ; or

(2) P has both of its components as elements of P .

I shall then say that P is the S -functiocnal net,

2.52 Imagine a truth-function O , the S -functional net P s
and a finite set of provositions Q , such that Q contains all
and only those elements of p each of which is the end of an S -

functional chain included in P o« I shall then say that Q is



the genetic set of S .

2.53 Imagine two sets of propositions, P= st\ st---} and
Q , such that Q  contains all and only those propositions such

that, for each pie P (o0<i) ,

(2) if @i is not a truth-function, then pie @ s and
(b) if p; is a truth-function, then the genetic set of Pi

is included in Q@ .

I shall then say that Q  is the reducticn set of P .

3. Imagine two finite sets, A ana A’ , such that, if A
is taken as the given set, Procedure I specifies that A’ is tthe

stop set of A

Procedure I: (1) Imagine a finite given set B‘-‘-SB;;st---» Qn} H
(2) Imagine some element B;€B (ozien) a5 KEYED;
(3) Imagine the partition of B into two subsets, L

and” IT s such that

(a) I contains all and only those B;e B
(6<3£n)  such that B;C 8] ; and
(b) AT  contains all and only those B,e B

(eew £wn)  such that B; ¢ By
(4) Imagire the set B’ which contains only

(a) B; ;
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(b) for each Bj€ T , B; — 8; 3 and
(c) each B,€1l ,

(5)(a) If B’ contains at least one element which has
not been KEYED, then repeat steps (1) - (L), replacing
B by 8 and B; by some element of B’ which
has not been KZYED;
) (b) 1r B° confains no elements which have not been
KEYED, then say that B’ is tthe stop set of B 1,

and stop.

I shall then say that A’ is the stop set of A .

3.1 Imagine a set of propositions P= {P; y Pay ~-- 3 and a
set A - such that A contains all and only those sets each of which
is either a subject or predicate set of some pi€ P (oci) N

I shall then say that A is the vocabulary set of P .

3.11 Imagine two sets of propositicns, P anda P’ , and two

finite sets, A and A’ s such that

4
(a) P" is the reduction set of P
(v) A .is the vocabulary set of p’ 3 and

(c) A’ is the stop set of A .,

I'd
I shall then say that A’ is the definition set of P .

-

. Imagine a set 8 = {91 ) 62,--.2 such that, for each

6,€ O (o2 -5 there exists a set of propositions P; =
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{Paz y Pl --- } such that Pi contains all and only those

propositions P3¢ ¢ 04«%Y) such that ©O; is programmed to act

upon b Py (i.e. such that ©, is programmed to act as if pix

were true). I shall then say that

(a) ©  is the set of machines;

6, is a machine; and

(b) for each ©;€ 8 (os«i) ’

(¢) for each P; Co:-\) , P. is the program of &, .,

L.l ‘Imagine a machine e s a set of propositions P s and

a proposition @ , such that

(a) P is the program of © ; and

(b) PeP .

I shall then say that p  is believed by 8 .

L.11 Imagine a machine e s & set of propositions P , and

a propositiong p » such that

(a) P is the program of ©
(v) p is believed by © ; and

(c) PET.

(i.e. such that P  is both true and believed by © ). Ishall

they say that © 1is known by © |, abbreviated

e (p) .
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L.2 Imagine a machine © and a set of propositions P=
{Pg, P2y --- } such that, for each p;,p; € P (oz.'u,j and ::f:j )y

~ O (P; —»Pj) . I shall then say that P isa © -free set.

.21 Imagine a machine © and a set of propositions P=
{p“ P2y - — - }such that © (N(PXT) = 1) . I shall then
say that P isa © -live set. Imagine, rather, that

@(N(PXT) £ 1) . Ishall then'say that P isa © -exclu~
sive set. Imagine, rather, that O (N (PXT) =1 . 1shanl

then say that P isa © -live-and-exclusive set.

L.211 Imagine a machine © , a provosition P » and a set of
propositions P , such that © CP — [N(PxT)Y =1 ) .

I shall then say that P is a <O, p> ~live-and-exclusive set,
. {

L.22 Imagine a machine @ s & proposition P s and a set of

9 ~free propositions P:: {PL# Pz> - - - ‘S , such that
(2) for each pi € P (o021 ),

(1) © (neither P nor any element of any P -functional
 chain is an element of any p; -functional chain);
(2) were it the case that ~9(P) and~QC'P') , it would

be the case that Q( . - 3 and
Pi—P

(b) it is not the case, for some Pi€ P (o04) ) and O -free

set Q= {cll?c[l’ ___} » that

(1) Q is <e, PJ> -live-and-exclusive; and
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(2) for each 9w € Q(osXk ),

(at) (8] (neither P mor Pj , nor any element of
any P -functional or Pi —~functional chain, is an
element of any qy -functional chain); and

(b') were it the case that ~ QCP) and ~9(§) , it

would be the case that © (clk—» P) .

I shall then say that P is a <9, p>-—largest set.
' 1

L.23 Imagine a machine O » @ proposition P, and a set of

propositions P , such that P is both <9, P> -live-and-exclu-

sive and <©, p"» -largest. I shall then say that P is <6, p¥-
P’ P

grime .

L.3 " Imagine a machine 6 , a proposition P =

<KA,B>, ™in ma > , and a set C s such that

(2) © ( C is ordered);

(b) for some b;EB and cjeC s G(b;—_-..- c ); and

(c) for some Q € A and hcm, cn e C such that

(1) © (ay= cw); and

() © (Cmz=* cn);

were- it instead the case that

(3) 8 (ay=cn);

it would instead be the case that
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) O (a ¢ A ).

I shall then say that P is a © -non-random proposition. (If

» P were not a o -non-random proposition, I should then say that

P isa © —randoem proposition.)

. »
(The reader will note later that only © -random propositions are
to be included in probability calculations, thereby avoiding Goodman's

grue-paradox (Goodman [1] s> pp. 72-81). See 6. below and Appendix II.)

5. Imagine a set A and a set of propositions >Q:.—_ {\Qo,\'o,.,

---,Y‘;‘-‘,---} (oc?,j and 14} ) such that, for each v € R ,

e N(AY&] .

I shall then say that Q is the field set of A .

S.1 Imagine two propositions, P and 1 , and two sets, A

and R—.: S\",,Tg.,‘-—-} s .such that

(2) R is the field set of A ; and
(b) there is no r; € R (o« ) which P would imply, were
it true, that q" would not'imply, were it true, a;’xd' con-

versely.

I shall then say that p and q are A -similer.
' i L
5.2 Imagine a set of propositions P: {p,_., Pas _--? s a set
- ,
A » and a partition P'= {P,.-. Pg - - ’; of P s such that

. 4 .
each R € P (o041 ) contains all and only those Px € P ' (ock )
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’
which are A -similar to each other. I shall then say that P is

the A -partition of p .

5.21 Imagine a finite set of propositions P , a subset Q =

{q.“ Qar --- q.n_% of P s a set A s and a finite set of sets
P= ’{p“ Pyaeems Vzg , such that P’ is the A —partition of
P . By 5.2, each 9 € Q (o«ien ) is an element of one andA

,
only one PKE.P ; eg. PJ’ . Imagine a number w; such that

1 _
N(P) x N(P;)

m; =

I shall then say that wm; is the <P, A Y -subcode of 9; .
L")

5.22 Imagine two finite sets of propositions, P ang Q=
{11,1?)-.-, 9n ? , a finite set A= {A“ Aa,y -y Az} , and, for

each q; € Q (o4vaen ), a nunmber wmy , such that

z ,
= 2. +he <P, A ¥ - subcede of q7 .
k=1

m

I shall then say that wn; is the <P, A» —code of qi .
L")

5.23 Imagine two finite sets of propositions, P amd Q=

Z'{n%n ——cy CL"} , aset A, and a number W , such that

n
m= Z+\-\e <P,AY — code of cL'. .
' 1= 1

I shall then say that m is the <P, AV —sun of Q , written

A
= [al -
P



2.

6. ' imagine a machine © , two © -random propositions, P
and CL , a set of propositions A s & finite set A' s and two

finite sets of propositions, P= {p“ Pay - --9 pn‘g and Q s
such that

() A= {-Pa 13 ;

(b) A" is the definition set of A
(c) P is (e, P} -prime; and

(@) Q contains all and only those p;e P (o2isn )

such that 8 (p; — %) .

By the o -probability of the truth of the conditional of q given
[

P (i.e. the probability for ©  that p implies q ),

abbreviated

I shall refer to the éuotient of

A/ )

% E\'\G set of P‘ro?os:"l’:av\s of P each of which ““\P“Cs P and i —X
Al

2o [#he set of proposifons of P €ach of which tmplies p 1

P

-®

i.e., A’
Z [Pxel
@) Adek(p—q) = £ ‘ .

Al
= LPl
P
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(The reader ought to note.that; on my account, implications may be
éssigned probabilities only with respect to a given machine e .
For purposes of deciding cornsistent action, therefore, two implications
véssigned probabilities with respect tp different such ﬁachines would be

strictly incomparable.)
\

6.1’ (In the-pursuit of typograﬁhical sanity, I shall assume for
the refnaihder of this Chapter that © and se't ‘A’ remain constant,
and that both summations given in any ratio of two summations are taken'
with respect to the set summed in the denominator (as in (1) above),
and hence whall omit the respective symbols from all succeeding form-

ulae whenever the meaning is clear. But note5.2 and 6.3 .)

Since the numerator of (1) camnnot exceed the denominatof, while

neither can be negative,

(2) og%ké?—*q_) < 1 .

6.11 By (1), as the reader would expect,

ZpxPl ~ Z TPl
=Kl =Pl

I
EN

4 (p— 'P) =

and



= Cexp ) S TA] o)
S el = te1 = el

“Ar (p—~>p)=

n

6.12 By (1),

Z Cexce-ad
= el

<y (P—-» 'i\)

N

= te-a1
= Le]

Bl

I

But = -TPfP-@7 z CP] — 2 LPXa1  ; hence

2 [P — 2 1PXxQ]

1

= tel
— 2 Cexal )
= el
which, by (1), is
(3) Ar Cp—>3g) = L — 4 Cp—q)

6.2 Imagine now a third © -—randem crorosition ¥

- 23,

and a
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finite set of propositions R such that

(a) e A 3 and -
(v) R contains all and only those pie P (occizw )
such that © (pi—» v) |,

(Reflection on the standard Venn diagram
may help to clarify the derivations below.) By (1),

A o qe) = = CPXx CaxR)]

= (el

But > L PXx(axRY1 = Z TexaxkT] ; hence

S_: Cexax )

(L) - (p—>q¥) = :
2 ]
6.2 By 2.3 and 2_.31,
w
= Le— (q—+V1].

Cpq—v)

But, by (1):
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S CePxadY%x R

A (pq—r) = .
Z texel
_ = CexaxRrl
Z texal
Hence,
(5) A (pq—r) = Ar Cp— (q—¥O7)

2 TexexRkR1
2 texal

)

6.22 - By (1),

S ek Coa+rry]

(6) 4ArTp—(qve)] = .
= tel
6.23 Since
2 Cexaxrl
S Cexaxk] _ 2 e
> Texel N 2 exal ’

2. eel



by (1), (b), and (5),

(7) -\\-((bq_——» ) = A Cep—qr) .

-\\-(p-—»1>

6.2 Since

2. fex(e+R)] = 2 TPxal + S LPxRI- B [PXarr],

by division,

ZLPx(arid] _ Z Cexe)  ZLexrl  sCexewr]

26.

S

2 Cel 2 Lel = Cr3] = el
which, by (1), (L), and (6), is

(8) Arfe— (ivvﬁtj= Ar(er) +Ar(p—=>¥) = Ar (p~—rqr).

6.3 Imagine lastly two finite sets of cardinality w

o = {‘"1”“1) = “"m’g 5 and

w: {wi \WZ) =" wm’};
such that

() each @;ew (o0&l & w )is

2



27,

(1) © -random; and

(2) an element of A

e

(v) W is
(1) 6 -free; and
(2) © -live-and-exclusive; and

(c) each Wj e W ( © 43 £ v~ ) contains all and only

those p; € P (0 «1 2w ) such that © Cpi— i) .

Imagine now a particular element of <o , written <q . By (7),

9) Ak Cpq —> wa) = “4r Cp —> qwa) .

4 Cp —= )

Since <« is O -free and © -live-and-exclusive, however, by 2.3,

Llo?, and h.?l,

T L ]
(A') q = R lquyvgualv ... v Cqued 1 3 awnd

(B') 4Arlp— qeaiew;) =0 (Sralt oaljem andizj).
Hence, by (A'),
Ak (p—q) = A+ (P'_’ Clauwy) v (guuad voov (qu, )1 ) )
which, by (8) extended and (B!),
= Ar(pa e )+ ArCp =+ qwad+ ...+ Arlp— qun)

which T shall abbreviate in custcmary fashion as
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’ ™
(10) Ar (p—>q) = > AF(p— qwy) .
<=1

By substitution, (9) then becomes

Ar (p —> @ wa )

- (Pq.--—» we) = —
R v lp—> qes)
t=1

which, by (7) extended, is

A (p—> wa) X 4 (pwa—>q )

(11) A lpr—rea) = 2 ‘
2 [k p— ) X4y (puy—qd 7]
t=1

Equation (11) is the general form of Bayes's Theorem (1763). (Jeffreys,

p. 30; and Skyrms, p. 134)
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Chapter I, Section II:

The Logic Applied

To illustrate the results of Section I in application, I shall
now apply them to a single illustrative inductive situation.l
Imagine a finite set of elements of cardinality w , E:

{e,_,e,., ———, e,.,'g , which I shall call the population. Imagine

secondly two sets, S and S ’ 5 which I shall call respectively

the sample set and the new sample set, and two sets, B and \,\/ s

which I shall call respectively the black set and the white set. Ima-

gine thirdiy that I (as O ) know, for each e;eE( o4t aewm )
that ‘ |

e;€ B = e; e W and €;€B = e;eW

W
and hence that I can substitute B for W in all propositions.

I shall be concerned with the following propositions (or truth-

functions of them):

NCE) = n s

N(EXS) = sy

N (EXSXB) = t3

N (SXS’) =03

N ((E-S)XS’')= 13
N(eE-S)IXS'xB)= 1}

..

.

..

L]

T O « Tw €

(44

l. The general idea of the proof given in this Section is due to

Jeffreys, and, in particular, the derivation from page 39 to page Ll
is his alone., (Jeffreys, in turn, attributes the reduction on page
to a suggestion from Dr. F.J. Whipple.) See Jeffreys, pp. 125-127.
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and a set of propositions, F= g-‘;e_-?; y ===, 9.\? » such that,

for each F, € F (o021 2 n ),

S, ¢ N CEXB)= by .

(For convenience sake, I\shall abbreviate <.u<33'y by Z e)
The set A  of these propositions has set A's gE, S,S'8B }
as its definition set. All probabilities calculated bel-ow will be with
respect to myself as ©

Consider the question: What is the probability, given an s -
membered sample of & of which + are black, that any particular
one of the unsampled elements &  is black? Or, formally, what is

the value of

°‘\\—(Z\-\—~—»\~\'.) ?

By (10), since the set F = S%,’-{-‘l y == &3“2 is both O -free

and © -live-and-exclusive,
2]

(12) AR (Zh —W) = = Ar(Zh > £ W),
[%-¥)

But, by (7),

Ar(Zh > S h’) = 4 (Zh§ —> h’) X 4+ (Zh—=51)

and, by (11),

. F(Z» ) X 4AF (25— K
-\\-(2\-._——-1-?;) e :( > i) ) .

20 LAk (2 F) X Ar (ZFc—v h) ]

k=o
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Hence, by substitution in (12),

n
’ ;‘.‘ :
W (Zh—a W) = S i (znfow)y BE2FI XA R )
=0 = [ (25, X 4 (26, )]

k=0

which reduces to

"
. 4 $. . ) )
(13) -{\-(Zh—»h‘)z ,.io [ - (ZWE S w )x-\‘\-(z-»c,)x(z;‘_.\,')] .

2 [k (2= F) X 4 (25 — W) )
Kz0o

To assist in the calculations, imagine ncw three sets of proposi-

tions of cardinality R

“we

. P= {Pi‘:;;,?a.?‘z\’---, ?v\.an

Q= SQ‘;»-‘igi‘th’n"‘; ‘i“-i“% 3 and
R= 5*11;1)"2;-;3\"‘s"’h,“:h'§ H

such that
each pieP (o4l zm );‘ N(fexB) = 1 ;
each ;;gP (ozv an ) N (§e:3%x8) =0 ;
each q;€Q (os) &n ) N (fe;}xS)=1;
each Q1 eQ (osysmn )i N (§e33xS8Y =0
each v _e R (o ewtm):; N(‘{e{i*s'3=1;and
each v . e€R (o04&4ks4&mn); N Cieu3*3’\’-0.

Imagine secondly the conjunction of the disjunctions of each

. p; € P ( o 2ien ) (and sinilarly for sets @ and R ):
Py P
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(91" -F-’;) A CPa“?z\ Nece N CPuY T’h)
(Qg" q‘) 7)) C‘t,a.\“i:) N« A (Qh"Qhw

)
%, and

("‘1\';:') A (T;V?QXA -ee N (‘l‘h‘l?“’)

|-

By 2.3, each conjunction is respectively = to

A= ?1?1“'P“ v“P‘iPl"--Ph VaeodwV ?1?1-~~_?-n ;

B: 11ﬂa,--.q'h V?t Qz-..%h V av. ¥ :it-%-a"'_éh 3 and

C: MyYae.vu vF¥ va. . o, Vol v e VL ¥,

Imagine thirdly conjoining proposition <> to each of the 2" con-

junctions disjoined in A (and sinilarly for 8 and C ):

w - - - - .
A7 PP Pm V WP Pa - PV -o-V LB Pa - B )

BY: WR1qa - An ¥ WT3qa -V - VW T3Fa --- Ty and

cv; WX Ta - T VT 0l VeV WE T, L F,

I shall refer to the set of conjunctions disjoined in A as 1 ;3 to the

set disjoined in B® as IT ; and to the set disjoined in C%* as III.
Imagine fourthly the conjunctiocn of the disjunction of the elements

of I, the disjunction of the elements of II s and the disjunction of

the elements of ITI . By 2.3, this conjunction (with redundant <o 's

eliminated) is L to

w

D2 PP Prn Uy RanTatar¥n ¥ QB P2 PnQye-Try Vo ¥ 6Py P2 - qyRa = Tn -
3n ')

I shall refer to the set of 2 conjunctions disjoined in D as

Iv .
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Consider firstly, now, the last term of the numerator of (13):

Ar (ZF, — ).

There are (:‘) elements of I which imply co and £, , and
(‘;) elements of II which imply ¢<v and g - Conjoining each
| of the \(2.‘) such elements of I with each of the (g) such ele-
ments of ITI gives (:. \ < 2 ) conjunctions each of which implies ‘
« , 9 ,and ¥; . And since, for each of the (2) ele |
ments of II which imply ¢ and q , there are (“Is) = n-s
elements of III which, when conjoined respecfively with it, imply
wag’y (z Z. ), there are (:‘)(g) (n—s‘) unique
conjunctions of IV each of which imply Z &, . The set of these
(‘c.‘ () (n-s ) conjunctions, which I shall call IVy » is
£ 6,_'2-9-.» -prime.  And since anf two of these propositions have

identical <ISZ1',A)-codes, which I shall call W, , by 5.23

A L)
E): = U, ] = wm, (3 (w-5) .
b4
1
Imagine a particular one of the (2‘5 elements of I which imply co
and ¥; s which I shall call -“_1 . .\Tl asserts that a particular

b; -membered subset of ¥ is black and the remainder white. From

this subset, I can select t elements in (\i) ways, and can then

select S-~t  elements from the remainder of E  in ( Y;—_‘bt"
: n-b% :
ways, To each of these (2‘) S-t selections, there corres-

ponds a unique element} of IT which asserts the fact of that S -?nem—-

bered selection being the sample EXS |, And, as previously noted,
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there are m — § elements of III which, when conjoined respectively

L4

- with this element of II, jointly imply w , 9 5 9 > and § . |
Hence, conjoined with TT, , there are (:‘)('s“_':')(h-s) unique
conjunctions implying Z¥;h . But 'ﬂ'l is only one of (‘Q‘)
elements of I implying §; . Hence, there are (&)(:‘)(2‘_&‘)(“-5)
elements of IV implying Z¥ih , the set of which I shall call Ivy'.
Since each element of IV which implies Z¥;h implies Z¥; ,

IVy! is a subset of vyt Each element of IVy', thus, has <I‘Iv A'>_

code = W, 3 therefore
A’ b o
E,: ZIE/7 = wm, (g;)(t‘)(git\)(“-s) .
™ B
ES
Since IV, is <O, Z¥; > -prime, by (1)

1

AI
ASIE

(13.1) 4+ (ZF—h) a7
2 (X, ]
~ |

1
By El and Eg, then, (13.1) is

(28 =) = e () (F)(ETX) (n-s)
| my g;)(;)<“"‘5)

which reduces to

b,
(31) Ak (26— h) = Gt )(
| (3
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Consider secondly the middle term of the numerator of (13):
A-(Z — §;)

By conjoining respective elements of I, II, and III as in the previous

discussion, there are

( )( )(h s) propositions of IV implying Z'Fa

e

e

r{) (%) (n- s) propositions of IV implying Z .

(h)( ) (n-s) propositions of IV implying Z'Fh .

Calling the set of. these propositions IV,, any two of the above propo-
sitions have identical <N2, {S,S;E}>—-subcodes, the sum of which
I shall c;all k . But the {,, B -subcode of each is dependent
upon the value of 1 of the 'F; it implies, Specifically, for

each proposition implying §; (for some 04 i &n ), its <z, BY -

; hence, its {Tp, A" ~code ::[k P — ].
(n+1)(" )

subcode is

m+1)(5.)

But since it is only one of ( ) such propositions comprising a sub-

2

sitions of IV, implying Z‘F-' (o Lien ) is (‘;)[\(4. ...__1‘__.‘_1__ ];
(n+1) ( b'.)

set of IV,, which I shall call IVQ', the <IS[2-, A’ >—sum of the propo-

hence,

*»

3
w

(n+ 1)

A’ 1
~r, :
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There are m+ 1  such subsets of IV,s however, each implying Z

and a different one of the m+ L values of ¥ . The {X, A')-
1
sum of IV2, .therefore, = (n+1) [k (r\;;) + (n+ 1) ] | 5 hence,
AI
nyy 1
e SO = ey [e(BO > =227 -
- | ‘

IV2 is <G,Z> -prime. Since IVp' € IV, therefore, by (1)

AI
| Ez: Cxz]
(13.2) A (Z—F) = A,‘ .
" = [x,]
X,
By E3 and Eh’ then, (13.2) is
- - b
\ n
A(Z—5) = k(b‘) M CYES .
h 1
<“+1’)[.k<b")+ (n+1)
which recduces to
(13.21) A (Z—£;) = 1 .
, e+ 1

Consider lastly the first term of the numerator of (13):

A (ZhE, — W) .
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As indicated om page 3L above, there are. ( o b; )(, )(“-\a' \(h-S)
propositions in IV implylng Zh$, o I shall here call this set
of propositions IVB., Each of these propositions has (fg;A’}—code =m, ;

hence,

Al _
Br 2 ONGT = wa (BO(ENTH)-s) -
123
Imagine now one of the “b'. Y \i_,' ) :‘_bé propositions formed by
conjoining an element of T and an element of II into a truth-function
which impliés wa\\?; s which I shall call Wg . g asserts
that a particular ,b"-‘t -membered subset of £-S  is black and
the re@ainder white. From this subé.et, I can select a single element
in ( b;;t 3 = b:-% ways. To each of these bi-+  selections,
there corresponds a unique element of IIT which asserts the fact of that
one-membered selection being the sole element of S’ Hence, con-
Joined with Tr3 , there are bi—%t unique conjunctions implying
Znwsh’ . Bt T\‘3 is only one of h “‘\’ )C\;\_-\:)
such propositions implying wa\'; SHE Hence, there are
(\, Y( b‘)(“—b‘ ) Co: —‘E) elements of IV implying ZHF‘.H',
the set of which I shall call IV3'.
Since each element of IV which implies ZW§ih' |, implies
ZnE » IV3' < IV4. Thus, each element of Ivy' has@Ya,A’)-code
— ™4 ; hence

Al
B T CIX3'3 = ™y 3(*’3(““’*'3(5 -+) .
3
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Iy is <8 ,2W§7-prine. By (1), therefore,

Al
% 0m ]

% L™, 1
™

(1.3.3). v (Zw§ N

\
By ES and Eg, then, (13.3) is

ma (% )(“")( 5(3-*:\

‘\\"(Zh‘;n "“*\"'\ = Y
wa (B (%) (% (n-s)

which reduces to”

(13.31) - 4Ax (ZwW5 — \-\'\ = bi- % .
- n-S

By (13.11), (13.21), and (13.31), therefore, (13) beccmes

()]
<:‘:—>_< 5] |
2 Coi-t) CYY (Y

(Lh) 4 (Zh—>h )= s ]
. (\’\-S) 2 ( b\(\) ( - \>K >
. =0

?

A (Zh—> h) =

which reduces to




39.

Consider now the summation in the denominator of (1L):

qé? (b“)(h—‘ow

Iragine a set of v+ A objects arranged in a given order, from
+ A
which one wishes to select S+ L of them. There are ( ;+ 1

unique selections. But one may proceed as follows:

(a) One may select an arbitrary member of the set, Let it be

-H’
the (‘o“-b- 1) in the order.

(b) From the remainder, one may then select £  from those
b, objects before the (bo.+ &\“‘ in (i“) unique
_ways. Similarly, one may then select S-+t from those
n~Yoy objects after the (u _+ 1\ﬂin :_i ) unique
ways. Hence, one may select € from those before, and

. “+\
s—t from those after, the (bwb- 1) object in

(&_“ )( h'\m‘) unique ways.

(¢) But one might have chosen any of v+ 1 values for by
(and hence any one of the b\-\-\— 4 objects for the partiticn
point). And all selections made for different values of bK

‘™
are unicque, since the (b.+1) object of the set of w+ A

.
objects must be the (t+ 1) object of the selection made.

Hence,

= 0T = (310
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Equation (lL), thus, reduces to

: 2 Coi-) (BT
(1h1) 4Av (Zh W) = t)

ne i
(n-s) S+ 1

But consider (-t ) ( 2) . By expansion,

-8 - (bi-t)b; ! w4 g « b '
't! (5'.—t§! (t+ 1) ! (b\—'t-l)!
= (t+ 1) b: !

(t+ 1)1 Thi- eyl

i

(£+ 1) <-E+1

Hence, (1L.l) becomes

(14.2) qr(Zhm—s k) £+ 1 % (*ﬂ\ n-bl

e i
Co-sY (5575

By an argument strictly analogous to that given on page 3L, however,

the summation in (lh.?) reduces to

: | 1
tﬁ-l)(h\a = 212



hl *

The right side of (1L.2), thué, becomes

t+ 1 ( N1

ne 1 S+ 2

(“-S) (S*' 1

]
= (t+1) (s+ D! (n-e) % Cn+ )Y :
(h-sY tm+ ) Cs+2) 8 (n-s-a)d

which yields

(15) A (Zh > W) = t+ 1 ;
S+ 2

Equation (15) is formally similar to Laplace's Law of Succession
(1774) (Jeffreys, p. 127). It asserts, under the restrictions assumed
on page 29, that given a sample of §  objects-of which + are

black, the probability of any particular unsampled object being black
++ 1
S+ 2
of ¢ , one needn't know the cardinality of the population E to

. Notice: since the right side of (15) is independent

is

assess the probability! (If it seems, dear reader, that I've taken a

disproportionate amount of space to derive such an innocuous equation,
may I suggest that you ponder the last remark again and then see Appen-

dix ITI. Innocuity evanesces quickly.)
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Chapter I, Section IITI:

Objects and Samples

Near the end of Section II, ¥ said that equation (15) was fsimilar!

to Laplacets lLaw of Succession. I did not say t'identical', for

(A) the set of conditions placed upon the propositions>involved
in the derivation of (15) severly restrict its range of
application in a manner foreign to the conception of Laplace;

and
(B) Laplace's result can be put thusly:

Given a sample of § objects of which + are
black, the probability that the next object sampled
is black is

+t+ 1

S+ 2

but none of the propositions involved in the derivation of
(15), whether singly or conjoined, contain information suf-
ficient to give meaning to the work 'next' in lLaplace's

result.

I shall say of (4) only that Laplace's result leads to inductive incon-

sistencyl, whereas equation (15) apparently does not. But of (B) I

l. Imagine, for example, a sample of two objects, one btlack and one
white, drawn from a population. By an unrestricted application of Ia-
’ - v . . Fals .
place's Law of Succession, the probability of the next object being not

black is 1/2. But since, by a similar unrestricited application, the

probavility of it being white is 1/2 and of it being red is 1/4, by the

disjunctive rule the probzbility of the next object beins either white
v ~ ———— t—
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must say more, for in it inheres aniambiguity in the meaning of the
words 'object! and 'sample! which must be clarified.

Tc; illusfrate the ambiguity, J‘maging firstly a set A , each
element of which is either black or grey, and which is temporally order-

ed in accordance with the following diagram:

2y 22939, ag a, @, a5 2y

| Bl

bo > o ond
po @ = o

Diagram I: - /1

. o

i.e. the elements di sy Qg and @, , which correspond respective-
ly to temporal intervals ti‘to’ -\-_3..t1, and ‘1'.7-1:‘, are grey; while
elements a4 , Q, thru Q and QAg which correspond respec-
tively to intervals tp-t, , t -t;, ts-t,, t,-tg, and tg-t., ,

are black.,

| Imagine secondly that wé are atrmoment t @ s have experiencad

the previous elements of A ., and wish to determine the probability
that the element Qg which corresponds to temporal interval ‘tq-fa
will be black by equation (15). Of what objectsyought our population,

to

and our sample set,Abe taken to consist? Laplace would have assumed

implicitly that, since we are concerned to establish the probability

or red is 3/L. Hence, the probability of it being not black must be at
least 3/L, which is inconsistent with the original 2ssessment.

Note also a further inconsistency. By Laplacean standards (as by
our orm), the probability of any inference cannot exceed 1. But since,
by an unrestricted application of Laplace's Law of Succession, the pro-
bability of the next object being white is 1/2, being red 'is 1/L, being
blue is léh, and being green is 1/L, the probadbility that the next ob-
Ject is either white or red or blue or green exceeds 1, contrary to
the above standard.
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of the blackness of the next element Qg of set A , our popula-
tion ought to consist of the elements of A and our sample set
ought to consist of elements Q‘L‘ thru @ag of A . But since
set A s temporally ordered, many other kinds of objects (eg.
ordered pairs of elements of A s ordered triads of elements of

A » etc.) have been experienced which could be taken to comprise
a sample set relevant todetermining the probability that element

is black. 1Indeed, our sample set

(a) could consist of eight objects, each of temporal length
th=tu-y (04 n 2«8 ), five of which are black
(Laplace's assumption); or rather '

(b) could consist of seven objects, each of temporal length
t,—tnh.2 (1L« £8 ), three of which have their
first temporal half grey and their second temporal half
black, two of which have their first temporal half black

" and their second temporal half grey, and two of which have
both their temporal halves black; or rather

(c) could consist of six objects, each of temporal length
th—tn-3 (2 «n £ 8 ), one of which has its first
temporal third grey, its second temporal third black, and its
last temporal third grey, two of which have ...

(h) could consist of one object of temporal length th-tn-g
(7 4 n& B ) vhich has its first temporal eighth grey,
its second temporal eight black, its third temporal eighth
EreYs oes o

Our choice is important, because the calculated value of the probabili-
ty that element Q9' is black is a function of our choice. For exan-
ple, wers we to choose (a), the probability would be

t+1 _ S5+41  _ 4-

—tt -

S+ 2 g+2 05
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Were we to choose (b), on the other hand, and hence were we to be cal-
culating fhe probability, in effect, that the second temporal half of
the object which corresponds to interval ‘Eq--{:7 is black (knowing
that its fifst temporal half, i.e, Qg , is black), our relevant
/sample set would consist of those objects of length %, — th_2

(L 4m £ 8 ) vhose first ter:;poral halves were black, of which two
have their second temporal halves grey and two have their second tem-

poral halves black. Hence, the probability would be

ted _ 2+¢% 1
s+ 2 4+ 2 2

Without having spécified firstly how to derive a unique sample set from
an ordered set of elements in hand, therefore, equation (15) cannot be
unambigupusly applied to an ordered set of objects in hand.

I turn, consequently, to the task of specifying a rule by which

to derive a unique sample set from an ordered set of objects in hand.

Firstly: Imagine a set A= {thz,--} ordered with respect

to a rslation gS , and a set A':iq;‘ q; S ___} , such
that

(a) Alc A ;5 and

’ 4

| (b) for each Q;,a. e A’, there does not exist three

irl
elements aj,a.,a € A such that

(1) aj=aj
2 4
(2) a, al, 4

(3) jeket .

e oo

and

H

I shall then say that A’ isa qb -cbject of A .
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Secondly: Imagine a set A ordered with respect to a relation

¢ , and two 4>-objects of A s Ay and A,
such that

b

N(Alsz(Az\zk -

I shall then say that As and Aa have p-length=K .

Thirdly: Imagine a 4> -ordered set A= gahq:,...,qmq“ﬂ,_.,‘g,

two sets ¥4 and F; , and a set A’ , such that, for

each q;e€ A (o0+1 ),

v ¢
a,ef;, = a;€ Fqp ; and
- + o
a, € Fy =

a;, € ¥y 5 and

Tif @, is taken to be the next b -object of A
then A’

]

contains all and only those cﬁ ~themes of A

to @,  with respect to F4 and Fp , as specified by

Procedure R:

Procedure R: Imagine an & - -ordered set B:{h,,b“...,bh_}

and two sets, W, and W,

9
y such that, for each b;e ®

(o2) 2wny1),

bie¥H, = b € Hy 3 and
-+ v

I(1)(A) Ccnsider the ©X -object of B
=2

whose X -length

» whose second X -half is bY,, , and

whose first oL -half is bh—l .
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(c)

(2)(8)

(B)

L7.

Does there exist, for some w» (4L 4w & n-1),
an ©X -object of B  whose second X -half is
b, and whose first o <half is b,._4 s 2nd

which is such that

(a) either b = b, or b = b, ; and
- H M
(b) either b4 2 b, _4 OT Bm_‘_.:"bn_ ?

L’
If the answer to (B) is 'yes', proceed to (2);
if the answer to (B) is 'no', consider each

oK -object of B whose o< -length = 1 to be
an ' e -motif of B to b, with respect to

Wy and H; ', and proceed to IT.

Consider the ™K -object of B8 vwhose x -length
= 3 , whose third & -third is b,, , whose
second X -third is b, _, , and whose first & -

third is b, _2 .

Does there exist, for some wn (2 LW £2w-1 ),
an o4 -object of B  whose third o¢ =-third is
b

- » Whose second & -third is b, _4 , and

whose first o -third is & 2 » and which is

Y-
such that
H H
(a) either v, = b, or by, = 5, H
) H
(b) either bh_tt‘_;\oh_l orb,_ =b_ , 5 end
- . H L PY
(c) either b, g = bo_o OTb. o= b, ?
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(C) If the answer to (B) is 'yes', proceed to (3);
- if the answer to (B) is 'no', consider each of the

X -objects of B whose ©X-length= 2 , and
Wy

whose second ©& <half is either = b, or
Yo
= b, » and whose first o <half is either

=b, 4 or = b _, ,but whose last &% -half
is £ by s tobean ' & -motif of B to
bn with respect to W 1 and H4 ', and pro-

ceed to II.

II(1) Consider any ©X -motif of B to b, with

respect to W, and M, , written g\mb“n--.b\“?’g-

(2) Does there exist, for some v (K £ w < w+q ),

an X -shortest oL -object of B ’

o' = gbm;bm-&l\"'» s"vn-s-;‘_-g )

such that
L% 1P}
either b= b or by = b, 3
. My ", .
either BK* 12 %, OF b\u-i. = % 1’

Hy H,
either b = b or b =% H
! kex = Cwnem k¥x = Swarq )
. W Hy
either 2 v or b = b H
K+X+ A7 Trva WK R4 4 ™



I shall then say thét

b o

either =
Waend 2

11
2%

either W,y
eyl =

E

either b )
k+

" either
K+ A

Hy
either b

wep-1 = b

. H
either b“p = s

objects of B

(2) it has the same &«
(b) its first o -part

its second &4 -part

its last o< -part

oL

to be an ! ~theme of

Wy and Ha 1

b
™

5w

u .
S
2= Svsa

+ 1

meq

rq- 1 or b

or

M+¢L

(3) If the answer to (2) is 'yes', consider each of the

~length a
is either
is either

is either

8 to

der each of the K -rmotifs of @

or b

b

bn-»‘lx«» 1= by,

L9+

3

+

>
oo

bh\fi

Wy

e

wr Ak

e

L,

a -
‘°K+’2x+2 = bmer’

H,

I«-p-1= bma»q.-l and

.o

-

h#i

which is such that

S

i

bh\ft;

b., with respect to

if the answer to (2) is 'no!, consi-

to b, with res-

pect to W, and H; tobean!' & -theme of B

to \'.)h with respect to

AI

Ry

is the 45 -thene set of A

and Hl Te

to An
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with respect to Fa and Fa .

The required rule, then, which I shall call the Thematic Rule, is as

follows:

Thematic Rule: Given a 4: -ordered set A=z {n,,%,.-;, q“,...'g

and two sets, ¥, and Fz , such that, for each a;e&A

(o« ),

|

v T
a,eFy = a;, € Fy
T

= a; € Fy

Q€ Fy s

consider the <f> -theme set of A to Q,, with respect
to F1 and F5  to be the szmple set when applying equa-

_ tion (15) to determine the probability that «_ ,is F, .

To illustrate the Thematic Rule in application, ccnsider again the
temporally-ordered set A ,discussed on page 38 above, a sample of

which conforms to Diagram I:

24 Q2 A3 94 g g ]> % Qg

The set of +t -motifs of A to @ g with respect to the set of

: object
black things and the set of grey things consists of a single minsssmm,

which does not include an object of shorter temporal length satisfy-

ing condition II(2) of Procedure R, Hence, the set of & -themes of
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!\ to Q.8 with respect to the set of black things and the set of
grey things consists of the same single object, which I shall call
[} W I.
TU  is such that
(a) its first femporal third is black;
(b) its seéond temporal third is grey; and

(c) its third temporal third is black.
It is also such that
(d) the following element (i.e. Qg ) is black.

Since it is the sole object in the sample set, the probability by (15)
that the next object satisfying conditions (a) - (c¢) will also satisfy

condition (d) is

t+1L 0 1+ 2 .
S+ 2 1+ 3

But the next object satisfying conditions (a) - (c) is object
2 27 Qg

A

ts t, t, tg .
Hence, the probvability by (15) is 2[3  that this object will be fol-
lowed by a black element (as Qg ) — which solves uniquely the problem
initially set before us, and indicates how the Thematic Rule eliminates
in practice the Laplacean ambiguity of applying equaticn (5) to order-

b PN
ed samples.
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I shall assume the application of the Thematic Rule (or an exten-
sion of it) in all succeeding discussions whenever ordered samples are

to serve as the basis for inductive inferences,
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Appendix I

Imagine that condition (c) of 2 were absent, and that P

were the proposition &< §PE T >,0,0> ; i.e. that P were
(M) P& T

Imagine that P  were false. Then () would be true. But since ()
is identical to [P , then P would be true. Imagine, on the con-
trary, that P vere true. Then PeT . But since () is identi-
cal to P, (i) would then be true. But () says that P& T
Hence, P would be false. -

In either case, therefore, P would be both true and false:
a contraddiction.

Without condition (c), therefore, 2 and 2.1 would imply the above

version of the Paradox of the Liar.
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Appendix II

What if I had not excluded non-random propositions from probabil-

ity calculations in 6.? Consider the consequences as exemplified in

‘the grue-paradox of Goodman (Goodman {l-] s PP. 72-81):

Imagine five sets, Al—- AS ’ defined thusly:

A y = the
A 2 o the
A 3 - the
A o the
M the

A 5 = the
and

set of rubles;
set of observed things;
set of green things;

set of temporal events prior to
advent of the year 2000 A.D.;

set of temporal events including
posterior to the advent of 2000

A.D.;

and a sixth set A(. defined as

Ae= CA3xA )+ (Agznhs)

(i.e. the set of grue things).

Imagine further that it is a few moments befcore New Year's %ve, Decem-

ber 31, 1999, and that proposition P1 is true:

P

11 KLALXAXxAL LAY ,0,0

(i.e. every observed mib:: has been green). Rut then, by the definition

of A(’ s proposition P, is also true:

*2

Py: LKA XAZXAL A >,0,0>

(i.e. every observed ruby has been grue).
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By (15), consequently (with suitabie assumptions), the probabil-
ity of the next examined ruby being green, and the probability of it
being grue, would be equal and greater than %. But by the definition
of A\c , being grue after the advent of 2000 A. D. implies being not
green. Hence, on the saﬁe evidence, the probability of the next exam-
/ined ruby being green , and the probability of it being not green, would
be equal and greater than % — a paradox noticeably fatal to inductive
consistency.

The paradox is avoided, however, by éxcluding non-randem proposi-
tions from probability calculations, for P, is a non-random proposi-

tion:

(L) The set A7 = A4+ AS (i.e. the set of temporal events)

- isbordered, thereby satisfying L.3(a);

(B) any non-green object existing before the advent of 2000 A.D.

is a temporal event, thereby satisfying L.3(b); and

(C) any one of the rubies observed before the advent of 2000 A.D.
satisfies L.3(c)(l) for some temporal event Cw , and thus
is such that, if it were instead identicel to some c;‘ ,
for any ¢, didentical to a temporai event after the advent
of éOOO A.D., it could not be a ruby observed before the ad-

vent of 2000 A.D., hence satisfying L.3(ec)(1l) — (L).

" And thus the paradox, and its fellows, eare avoided.
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Appendix TIT

The reader may have wondered vhy I did not offer

PX @
(1) Avlep—) = N Coxa) ’

N (P)

instead of the more complicated summation formula given as (1). Con-

sider the consequences: ZEquations (13.11) and (13.31) would remain as

derived:
(\:‘.) (h-\a'.
(13.11) A+ (2F 1 —=%) = & A oy
(13.31) A (2ZWFi k') = bi-t
nw—s

Put equation (13.21) would fail. Since the cardiﬁality of the set of
elements of IV which imply Z (i.e. Iv,) is 2™ (3) (w-s)
while the cardinality of the set of elements of IV which imply Z%)
(i.e. IV,') is 'Q.)(’g)(x—- -s) , equation (13.21) would become

instead, by (1'),

)V (e-s) (%)
2" (3) (w-s) an

(13.211) -u-_(z-»%\ =
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Equation (1L), therefore, would become

(W) A4r (Zh—h) = E(b t)o‘)( D(%

(n- S)E <n(‘=“)(“ b

which reduces alaebralcally to

A2
E; 1
~— =0 (bi-t-1)) Ein-bi)-(s-1)7 ¢
[a}
m-s) % =
kzo (be-t) !t Cn-b) - (s-t)] !

Since, for any integer K s ( —}()! = ©O , one may eliminzte the

zero terms of the summations by re:rltlnv them thusly:

n-(5-%)
= 1

i=t+ 4 (oiot-1)0 Cen-bid=(s-¢)T 1 .
n-(s-t) 1

(n-8) 2

ket b=tV Cin-byed=(s-t)1

. - . s 1
This, as Isaac Newton might have put it, "amounts to the same thing" as

n-s-1 .
= U
r=o ( \a

(n-s-1)¢

:E§ V\;_S
(h-—S) Y=o ( )

I

Cwn-s)!

l. See, for example, MNewtcn's "On Fluxions" as translated by Zvelyn
Walker and reprinted in part in Smith, Vol. II, p. élL.
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(which phrase, freely translated, means 'I shall not give a proof I
haven't got, but it's valid anyway, as the reader may attest by work-

ing out a few examples'), which then reduces algebraically to

“'é-l '<h—s—1)
O ()

r=o

" .
But since Pascal proved that = (:‘-) = 2“ s this becmes
‘ ry=0

n-s-1
2.
= )
27°®
and finally
1
(151) 4 (Zh >Nh) = —

Equation (15'), roughly and in general, imoliss that one ought never
to let one's past experiences influence one's expsctations for the
future. The choice of (1') rather than (1), therefore, would lead to
results which, to borrow Carnap's apt phrase, "would ooviously be in
striking contradiction to the basic principle of all inductive reason-

ing" (Carnap [3] s Pe U5 (reprint)).



