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Abstract

The yaw oscillation of a bluff body is a fundamental part of the motion yielding the complex

unsteady flow that occurs past athletes in many examples of competitive sports such as

cycling. While the impact of the motion of limbs of athletes on the drag and large-scale flow

structures over cyclists, as an example, has received recent and increasing attention, little is

known about the underlying flow physics. In this thesis, a canonical case of a circular cylinder

is used as a low-order model of an athlete’s limb to better understand the flow behavior

associated with the yaw oscillation component of motion in a controlled experimental setting.

An experimental study is carried out to characterize the spanwise variation of the near

wake of a cylinder yaw-oscillating about its mid-span between the yaw angles of θ = 0o

(unyawed case) and 30o at two subcritical Reynolds numbers of 5×103 and 1.5×104. For

these tests, cylinders with aspect ratios of 13 and 20 are immersed into a water channel. The

yaw oscillation frequencies (K) have the values of 0.5 (low), 1.3 to 2 (moderate), and 4 (high).

Planar Particle Image Velocimetry measurements are performed in a vertical symmetry plane

and horizontal planes to investigate the flow structure in the near wake. The time-varying flow

behavior such as the vortex shedding is studied using Constant Temperature Anemometry

measurements.

For a cylinder undergoing yaw oscillation, the near wake is found to be highly three-

dimensional. The spanwise variation in the near wake increases substantially as the reduced

frequency is changed from low to moderate values, while at high K, the flow becomes rel-

atively uniform again. The spanwise flow topology is mostly independent of the Reynolds

number in the subcritical range considered. The cylinder’s direction of motion, its accel-
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eration/deceleration, and the axial flow developing as a result of large yaw are identified

as factors impacting the flow behavior. At large yaw angles, high-magnitude axial flow

originating from the bottom free end develops over larger spanwise sections of the cylinder,

turning into the most influential parameter controlling the flow topology in addition to the

cylinder’s direction of motion effect.
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Chapter 1

Introduction

Flow past cylindrical bodies has been given extensive attention in fluid dynamics research due

to its fundamental significance to numerous engineering applications and flow phenomena.

Many studies have focused on the flow past isolated and stationary cylinders over various

flow regimes [1, 2]. One of the main aspects of these studies is related to the periodic vortex

shedding causing fluctuating forces on the cylinder in the streamwise and crossflow directions

known as fluctuating drag and lift force, respectively. These time-varying forces induce

vibrations, which may lead to the failure of the related engineering systems or structures.

Therefore cylinders undergoing free or forced oscillations in crossflow have received significant

attention in the literature, which has improved the understanding of the underlying flow

phenomena from tests performed in controlled laboratory settings. It has been shown that

different types of flow phenomena can be observed based on various ranges of oscillation

frequency to the vortex shedding frequency ratio. In addition to stationary and freely vibrating

cylinders in crossflow [3, 4], flow past cylinders undergoing forced inline [5], rotational [6],

and transversal oscillations [7] have been the subject of numerous studies.

In many applications, such as flow past cables, subsea pipelines, aircraft landing gear

structures, etc., the direction of the flow may not be perpendicular to the cylindrical structure.

When the flow is not perpendicular (crossflow), the orientation of the cylinder is described as

yawed or inclined. The yaw angle (θ) is often defined as the angle between the longitudinal axis

of the cylinder and the direction orthogonal to the freestream. Several studies of stationary
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yawed cylinders have shown that the yaw angle is an important parameter that affects

the characteristics of the flow [8]. Regarding the yawed cylinders undergoing oscillation,

studies are limited to traversal vibrations or oscillatory flows past stationary cylinders [9].

Research directed towards the yaw-oscillating cylinders has received far less attention despite

its relevance to complex flows such as that experienced in many examples of sport where

aerodynamics plays a key role. With respect to yaw-oscillation, herein lies a critical gap in

the literature that will be addressed in the present research.

The flow past a cylinder undergoing yaw-oscillation at moderate Reynolds numbers is the

focus of the present study to provide insight into the flow past the limb of an athlete during

a sports activity, among other possible engineering applications such as the flow variation

in the vicinity of the deploying landing gear of an aircraft. Examples of such limb motions

are the legs of the cyclist while pedaling or the arm motion of the Paralympic wheelchair

racer that involves a dominant yaw oscillation in addition to other simultaneous motions. In

cycling, the aerodynamic drag accounts for around 90% of the resistance experienced by the

cyclist at racing speeds (around 15 m/s) [10] and only a minor reduction in the drag can

have a major impact on the outcomes of competitions. As an example, in the cycling track

women’s team pursuit racing at the 2020 Olympic games, the time difference between the

gold medalist team (Germany) and the team in 4th place (Canada) was only around 3.09

seconds [11]. For team Canada, the average team speed (V ) in the 4 km race is calculated

to be around 16.17 m/s. Considering the drag area (CdA) of 0.25 for the athletes [12], the

power of a rider (P ) is estimated to be around 630 watts (P = 0.5ρCdAV
3, where ρ is the

density of air). Assuming that the athlete’s power is unchanged, a minor 5% reduction in the

drag coefficient could increase the average speed of team Canada to around 16.31 m/s at the

same power. With this average speed, team Canada could have reduced the total race time

by around 4 seconds and won the gold medal by setting a new world record [11].

The impact of leg motion and crank position of the cyclist on the aerodynamic drag was

first investigated by Crouch et al. [13]. Their quasi-steady analysis on different static leg

positions revealed that changing the leg position while pedaling can change the aerodynamic
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drag up to 20% while the frontal area changes only around 2%. However, the focus of their

study was mainly on large-scale wake caused by the torso and hips, which did not resolve

regions near the moving limb. Thus, the flow features near the moving limb of an athlete

remain an open question. While the flow over a real moving limb of an athlete is more

complex than flow past a simple yaw-oscillating cylinder model [14], the near wake of the limb

is shown to have the typical bluff body characteristics such as the reverse flow region bounded

by two shear layers [15]. Therefore, studying the flow past the yaw-oscillating cylinder can

improve our understanding of flow behavior in the vicinity of a moving limb of an athlete.

The present work investigates the unsteady fluid dynamics of a circular cylinder undergoing

yaw oscillation in subcritical Reynolds numbers to build knowledge that can support the

understanding of more complex systems. The focus is primarily on determining the similarities

and or differences between the flow past a yaw-oscillating and a static yawed cylinder. The

analysis is conducted by evaluating the influence of parameters such as yaw angle, frequency

of oscillation, Reynolds number, and cylinder aspect ratio on the near-wake region of the

cylinder. The experimental methods used herein include Particle Image Velocimetry (PIV)

and Constant Temperature Anemometry (CTA). In particular, for the PIV method, the use

of phase averaging is extensively applied to explore and compare the yaw-oscillating cylinder

with its static counterpart in different yaw angles. While the PIV results provide information

about the mean flow topology and parameters such as wake closure length and wake width,

the CTA methodology is applied to enable the analysis of time-varying flow phenomena such

as vortex shedding.

The structure of this thesis is as follows. Chapter 2 of this thesis provides a summary of

related past works. The experimental setup and the different analysis techniques employed

are described in Chapter 3. Chapter 4 is devoted to the results and findings on the static

yawed cylinder. Then, the impact of reduced frequency on the yaw-oscillating cylinder is

evaluated in Chapter 5. The effect of Reynolds number and the aspect ratio of the cylinder is

analyzed in detail in Chapters 6 and 7, respectively. Finally, Chapter 8 concludes the thesis

and presents recommendations for future work on the subject.
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Chapter 2

Background

2.1 Flow Past Circular Cylinders in Crossflow

2.1.1 Overview of Flow Regimes Around Stationary Cylinders

The flow past circular cylinders is a canonical problem in fluid mechanics and has relevance

to many engineering applications. A vast number of studies have been done on the classical

problem of flow past a stationary cylinder (see for example [1, 16]). The characteristics of

the flow past a circular cylinder strongly depend on the oncoming flow Reynolds number,

which is defined as:

Re = ρU∞D

µ
, (2.1)

where ρ is the density of the fluid, U∞ is the freestream velocity, D is the cylinder diameter

and µ is the fluid dynamic viscosity. Flow past a stationary cylinder is categorized into

various regimes based on the Reynolds number (see for example [1, 17]). As shown in Figure

2.1, unseparated or potential flow occurs over the cylinder for very small Reynolds numbers of

Re ⩽ 5. For Reynolds numbers in the range of approximately 5<Re< 40, the flow is laminar

and the wake is considered to be steady with a pair of vortices placed in the near wake of

the cylinder. Figure 2.1 indicates that for 40 ⩽ Re ⩽ 150, as the vortices become unstable,

alternating vortex street forms downstream the cylinder. As the wake instability grows in this
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2.1 FLOW PAST CIRCULAR CYLINDERS IN CROSSFLOW

regime, the Reynolds stresses in the near-wake region increase leading to a decrease in the

formation length and a consistent increase in the base suction. The transition regime occurs

in the range of 150 < Re < 260 with two continuous changes in the wake formation. At

around Re = 180 to 194, in the first discontinuity (known as Mode A), the primary vortices

are deformed and vortex loops and pair of streamwise vortices with a spanwise length scale

of around 3-4 diameters are formed. In the second discontinuity around Re = 230 to 250

(known as Mode B), three-dimensional flow structures occur in the near wake consisting

of fine-scale streamwise vortices with the spanwise length-scale of one diameter. In the

range of 260 ⩽ Re ⩽ 1000, the three-dimensional structure of the fine-scaled streamwise

vortices becomes disordered and results in the reduction in Reynolds stress, base suction,

and an increase in the vortex formation length. For a Reynolds number range of 1000 ⩽

Re ⩽ 3×105, the wake regime is referred to as the shear-layer transition regime. Increasing

Reynolds number in this regime leads to an increase in two-dimensional Reynolds stresses

and reduction in the Strouhal number and the vortex formation length. In this regime,

the transition to turbulence in the wake occurs at upstream locations in the shear layers

where Kelvin-Helmholtz instability (shear-layer instability) increases. The Kelvin-Helmholtz

instability is primarily two-dimensional and leads to an increase in the two-dimensional

Reynolds stress and therefore increase in the base suction. The critical transition occurs at

Reynolds numbers larger than 3 × 105, where the onset of transition to turbulence occurs

at further upstream locations in the separating shear layers and reaches the boundary layer

separation points at either side of the cylinder. The drag and base suction is drastically

reduced. The interesting phenomenon in this regime, which is the separation-reattachment

on only one side of the body, causes a large mean lift force. Beyond this regime, in the

supercritical regime, the boundary layer separation is turbulent on both sides of the cylinder.

However, the boundary layer transition to turbulence has not occurred and the transition to

turbulence is located between the stagnation point and the separation point. The organized

vortex shedding is suppressed and the drag is increased compared to that of the critical regime

(see Figure 2.2). Beyond the Reynolds number of 3.5×106, referred to as the post-critical
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2.1 FLOW PAST CIRCULAR CYLINDERS IN CROSSFLOW

regime, the boundary layer around the cylinder becomes fully turbulent over the surface of

the cylinder itself. The turbulent vortex shedding occurs with the quasi-constant frequency

and the drag is slightly increased.

The focus of the current study is on the subcritical flow regime (260 ⩽ Re ⩽ 3 × 105),

due to the comparable Reynolds numbers achieved in the sports application. In this regime

and beyond, the fluid dynamics are dominated by the process of vortex shedding. Vortex

shedding occurs when the boundary layer detaches from the surface of the cylinder and

causes instability in the shear layer. The detached layers roll up in the wake region of

the cylinder that eventually leading to vortices that are shed from alternating sides of the

cylinder, which is termed vortex shedding or the Karman vortex street. Shedding frequency

is among the prominent characteristics of this phenomenon and is often represented using a

non-dimensional number called the Strouhal number:

St = fsD

U∞
, (2.2)

where fs is the vortex shedding frequency, D is the diameter of the cylinder or characteristic

length of non-cylindrical bodies. In the subcritical regime, large transition waves within the

shear layers roll up first and then turn to small-scale vortices that shed from the cylinder at

certain frequencies with a nearly constant Strouhal number of 0.2. Moreover, the behavior

of the vortices behind the cylinder can highly influence the aerodynamic drag of a cylinder.

The drag coefficient (CD) for a stationary cylinder in this flow regime is around 1.2. As

discussed earlier, past the subcritical flow regime the drag coefficient changes abruptly to

approximately 0.5, owing to the narrowing of the detached wake caused by the transition of

the surface boundary layer from laminar to turbulent.

2.1.2 Flow Past Oscillating Cylinders

The effects of vortex-induced vibrations (VIV) and forced oscillations on the cylinder body are

important in a variety of engineering applications ranging from cables and towers to offshore
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2.1 FLOW PAST CIRCULAR CYLINDERS IN CROSSFLOW

Figure 2.1: Schematics and description of different flow regimes over a two-dimensional
cylinder. Reprinted with permission from Blevins [17].
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2.1 FLOW PAST CIRCULAR CYLINDERS IN CROSSFLOW

Figure 2.2: Variation of the drag coefficient for a two-dimensional cylinder with Reynolds
number. Reprinted with permission from Panton [18].

structures. The alternate vortex shedding from the cylinder causes a large pressure imbalance

and thereby unsteady forces on the body. The vibrations may cause failure. Therefore,

the vibrations need to be comprehensively studied and controlled. The investigations on

the forced oscillations, which occur at velocities and amplitudes that are preset and can be

controlled independently of fluid velocity, are mainly associated with the flow past cylinders

with inline [19, 5], rotational [6, 20] and lateral oscillations [7, 21] or the oscillating flow

over stationary cylinders [22, 23]. Past research has shown that oscillations can alter the

wake structure and vortex shedding phenomenon (amplitude and frequency). It has been

shown that oscillation frequency and vortex shedding can synchronize within and beyond

the natural shedding frequency depending on the frequency ratio of F = fs/fv, where fs

is the fixed cylinder vortex shedding frequency and fv is the oscillation frequency. The

synchronization process is commonly referred to as lock-in, which is the situation where the

cylinder oscillation frequency is synchronized with the vortex shedding frequency (F=1) [21].

Studies have shown that there are significant changes in the forces and the vortex patterns of
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2.2 FLOW OVER STATIC YAWED CYLINDERS

the near-wake around F = 1 based on the type of cylinder oscillation. For example, in the

lock-in condition of the cylinder with lateral oscillation, a sudden increase in the amplitude of

the vortex-induced force, and a phase angle between the cylinder frequency and the lift force

were observed and the extensive mapping of vortex shedding modes also showed a change

in the mode of vortex shedding from 2P to 2S [24]. Changes in the wake of the oscillating

cylinders are often explained based on the timing and the sign of the initially formed vortex

(see for example [25, 19]).

2.2 Flow Over Static Yawed Cylinders

A cylinder is considered to be yawed or inclined when the longitudinal axis of the cylinder is

not normal to the incoming flow. The yaw angle (θ) is often measured as the angle between

the direction orthogonal to the incoming flow and the longitudinal axis of the cylinder, as

shown in Figure 2.3. The flow past the stationary yawed cylinder has been the subject of

numerous studies owing to its broad range of applications from cables and heat exchangers

to aircraft landing gear structures.

2.2.1 Independence Principle

Early studies of yawed cylinders showed that non-dimensionalizing the Strouhal number and

force coefficients by the normal component of the freestream velocity (UN =U∞cosθ, see Figure

2.3) makes them approximately independent of the yaw angle under some conditions. This

concept is commonly referred to as the Independence Principle (IP) [26]. Past experimental

studies have shown that the local flow around a yawed cylinder remains normal to the axis of

the cylinder and that the normal component of the freestream velocity independently controls

the flow physics around the cylinder [27, 28].

The validity of IP for stationary yawed cylinders has received significant attention. In

one of the early studies, Van Atta [29] showed that for high aspect ratios stationary cylinders

(around 600) in the low Reynolds number range of 50 to 150, the Strouhal number based
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2.2 FLOW OVER STATIC YAWED CYLINDERS

Figure 2.3: Cylinder yaw angle (θ) and the normal component (UN ) of the freestream velocity
(U∞).

on the normal component of the freestream velocity (StN = fsD/UN ) was approximately

constant for θ < 35o and that the ratio of St/StN should vary as cosθ as long as the IP is

valid.

Ramberg [8] conducted experiments on finite yawed cylinders with aspect ratios of 20 to

100 for various end conditions (free ended and endplate bounded) in the Reynolds number

range of 160 to 1100 and yaw angle range of −10o to 60o. The behavior of flow over the yawed

cylinder was found to be sensitive to the end conditions. This sensitivity was more pronounced

for low Reynolds numbers. Ramberg demonstrated that the Strouhal number and wake

parameters, such as formation length and wake width, cannot be predicted properly by IP

for free-ended finite cylinders (see Figure 2.4). For a finite cylinder with endplates, Ramberg

showed that inclined endplates approximately simulate an infinitely long cylinder, where the

proper amount of inclination for the endplates would depend on the yaw angle. Although the

predictions of the values of shedding frequency, vortex formation length, wake width, and base

pressure by IP failed for finite yawed cylinders even when appropriate endplates simulating

an infinitely long cylinder were used, the universal Strouhal number [30, 31] computed based

on the projected values by IP for such configurations with appropriate end conditions agreed

well with the previously reported values on non-yawed cylinders. Ramberg concluded that, for
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2.2 FLOW OVER STATIC YAWED CYLINDERS

Figure 2.4: Normalized Strouhal number with yaw angle for various free-ended inclined
cylinders. Reprinted with permission from Ramberg [8].

the universal Strouhal number, which directly depends on the Strouhal number, wake width,

cylinder diameter, and the base pressure coefficient, variations in these parameters offset.

For the flow past a finite-length yawed cylinder near the plane wall with the gap-to-ratio of

0<e/D<1.8, Kozakiewicz et al. [27] showed that IP remained valid up to θ = 45o to predict

the force coefficients in the Reynolds number range of 3×104 to 7×104.

Numerical simulation of Zhao et al. [32] at a Reynolds number of 1000 in the range of

θ = 0o to 60o further showed the valid range of IP for θ ⩽ 30o for prediction of Strouhal

number and drag coefficient values of an infinite cylinder. The discrepancy occurs when

θ > 30o and it increases with the increase of yaw angle. The computed Storuhal number at

θ = 60o is 20% smaller than the measured values by Ramberg [8], as shown in Figure 2.5. In

another numerical study on an infinitely long cylinder, Lucor and Karniadakis [33] reported

that the IP failed for large yaw angles (namely, θ = −60o and−70o).
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2.2 FLOW OVER STATIC YAWED CYLINDERS

Figure 2.5: The variation of Strouhal number with yaw angle. Sto is the Strouhal number at
θ = 0o. Reprinted with permission from Zhao et al. [32].

2.2.2 Structure of the Wake and Vortex Shedding

2.2.2.1 Infinite Yawed Cylinders

Several studies have investigated the structure of flow and vortex shedding process of stationary

yawed cylinders to explain the validity or breakdown of the IP. The validity of IP has generally

been associated with the parallel vortex shedding at a shedding angle approximately the

same as the cylinder yaw angle [8, 32].

For infinitely long yawed cylinders, Zhao et al. [32] showed that at high yaw angles, near

the center of the principal spanwise vortex, the helical shape streamlines are in the spanwise

direction of the cylinder, as shown in Figure 2.6. The flow at the center of the principal

vortex is also in the spanwise direction. Further downstream of the cylinder, however, the

vortices are convected in the direction of the freestream. Lucor and Karniadakis [33] further

proved that the breakdown of IP at high yaw angles is accompanied by a vortex shedding at

angles less than the yaw angle. Wang et al. [34] simulated the flow structure over an infinite

cylinder for θ = 0o to 60o at Re = 1.4×104. They found that for yaw angles above θ = 30o,

the axial flow has a stabilizing effect on the separated shear layer. Figure 2.7 depicts the

thinning of the shear layers and more inward curving that precedes the suppression of vortex
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2.2 FLOW OVER STATIC YAWED CYLINDERS

Figure 2.6: Streamlines for a yawed cylinder with θ = 45o. a) side view and b) top down
view at z = 0. Reprinted with permission from Zhao et al. [32].

Figure 2.7: Time-averaged vertical vorticity ⟨ωz⟩D/U∞ for yaw angles of a) θ = 30o, b)
θ = 45o, and c) θ = 60o. Flow is from left to right. Reprinted with permission from Wang et
al. [34].

shedding for θ = 30o. This effect was likened to that of a wake splitter plate, eventually

leading to the suppression of vortex shedding.

2.2.2.2 Finite Yawed Cylinders

For finite-length yawed cylinders, the flow structure is highly dependent on the end conditions.

When the free end of a finite yawed cylinder is near a wall, Kozakiewicz et al. [27] observed

that in the range of yaw angles where the IP is valid (i.e., θ = 0o to θ = 45o), the streamlines

near the cylinder are deflected roughly perpendicular to the cylinder axis as demonstrated
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2.2 FLOW OVER STATIC YAWED CYLINDERS

in Figure 2.8. The validity of IP for force coefficients was attributed to this observation,

which was aligned with the previously mentioned scaling of the force coefficient by the normal

velocity component of the freestream velocity.

Marshall [36] simulated the flow over a finite yawed cylinder and showed that at yaw

angles near the breakdown of IP, thin sheets of cross-stream vorticity roll up around the

Karman wake vortices and destabilize the wake vortices, inducing an axial flow deficit within

the vortex cores. The resulting induced axial velocity deficit within the Karman vortex cores

is about 20–30% of the spanwise component of the freestream and extends downstream for

about 10 cylinder diameters. Both the cross-stream vortex sheets in the cylinder near-wake

region and the axial flow deficit within the downstream vortex cores may lead to instability

of the vortex street and breakdown of the IP at large yaw angles.

For finite-length yawed cylinders with a free end, Ramberg [8] showed that the vortices

near the upstream free end of the cylinder are shed at an angle different than the cylinder

yaw angle, leading to a deviation of the Strouhal number and wake parameters from the IP

near the upstream end. As shown in Figure 2.9 (a), near the top free end of the cylinder the

wake vortices are approximately parallel to each other, but they occur at an angle that is

greater than the cylinder yaw angle (the region is marked in Figure 2.9 (a)). A transition then

occurs at a specific location along the cylinder, such that beyond this point the wake vortices

Figure 2.8: Depiction of a streamline (left) and visualization of the flow close to the cylinder
(right) at θ = 45o. Reprinted with permission from Kozakiewicz et al. [27].
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2.2 FLOW OVER STATIC YAWED CYLINDERS

Figure 2.9: Orientation of wake vortices behind a static yawed cylinder a) Ramberg [8]
(static cylinder in a wind tunnel with the flow from right to left) b) Thakur et al. at θ = 0o,
30o, 60o (from left to right) [35] (the cylinder was being towed to the left in a towing tank).
Reprinted with permission.

are aligned at approximately the same yaw angle as the cylinder. Contrary to the results

of Ramberg, Thakur et al. [35] observed that the vortices near the upstream end to have a

lesser yaw angle than the cylinder (see Figure 2.9 (b)). They attributed this discrepancy to

the effect of the experimental setup and wall velocity relative to the wake vortices. When

a cylinder is towed relative to a fixed wall, the downstream tank wall velocity relative to
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the cylinder is slightly greater than the mean vortex advection speed within the central part

of the channel. The wake vortices, which end on the side walls, consequently appear to be

dragged forward by the relative wall motion, giving rise to an apparent decreased yaw angle

near the upstream end of the cylinder. Snarski [37] characterized three distinct flow regimes

downstream of free ended yawed cylinders depending on the yaw angle; i) classical vortex

shedding pattern occurs from a non-yawed cylinder at θ = 0o to a cylinder at a yaw angle of

θ = 37o, ii) a system of steady, attached trailing vortices replace the classical vortex shedding

in the range of 37o < θ < 67o in agreement with the flow visualizations of Thomson and

Morrison [38] and Ramberg [8], and iii) an axial boundary layer develops along the length of

the cylinder for yaw angles greater than 68o.

For wall-bounded yawed cylinders, Hogan and Hall [39] performed wall pressure mea-

surements to examine the spanwise characteristics of the vortex shedding for yaw angles

from θ = 0o to 30o and for Reynolds numbers from 2.81 × 104 to 5.61 × 104. They found

that the vortex shedding becomes increasingly disorganized as the yaw angle is increased.

At large yaw angles, spanwise coherent structures originating from the upstream end of

the wall-bounded yawed cylinder disrupt the spanwise coherence of the wake and lead to

disorganized vortex shedding. Najafi et al. [40] also conducted an experimental study on

wall-ended yawed cylinders at a Reynolds number of 5×103 in the range of yaw angles of

θ = 0o to 45o. They identified the presence of two distinct flow patterns and bistable flow

situations where these two patterns transition. They attributed the breakdown of the validity

of IP to this flow transition. They indicated that by increasing yaw angle the counter-rotating

vortices downstream the cylinder detached, moved downstream, and disappeared, respectively,

due to the increase in the streamwise velocity. The increase in the streamwise velocity led to

a decrease in the velocity difference in the regions inside and outside the shear layers. Thus,

the magnitude of the normalized time-averaged spanwise vorticity was reduced as well as the

drag coefficient.

In the case of static yawed cylinders with endplates, experimental study of Shirakashi

et al. [42] for θ = 0o to 45o at Re = 2.5 × 104 revealed that the secondary (axial) flow in
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Figure 2.10: Snapshots of the wake behind the circular cylinder obtained from the flow
visualization using the hydrogen bubble method (Re = 450). The aspect ratio and the yaw
angle are denoted by A and ψ, respectively. Reprinted with permission from Matsuzaki et al.
[41].

the wake immediately behind the cylinder damages the regularity of vortex shedding and

reduces its frequency. Using endplates downstream of the cylinder, they showed that the

vortex shedding becomes further organized and its frequency increases. Shirakashi et al. [42]

indicated that when the distance between the cylinder is less than 0.6D, the regularizing

effect of the plates is remarkable, however, the increase in the frequency of shedding still

occurs when the distance of the endplates is around 1D to 1.6D. Matsuzaki et al. [41]

investigation on an endplate-bounded static cylinder yawed to θ = 0o, 20o, and 30o with

three aspect ratios of L/D = 10, 15, and 30 at Reynolds number of Re = 450, confirmed that

the strong upward flow due to interference of Karman’s vortex with the bottom endplate

influences the spanwise structure and indicated the impact of the aspect ratio of the cylinder.
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They indicated that at θ = 30o for L/D = 15 and 30 the vortex shedding along the span of

the cylinder is not broken down by this interference, however, the significant suppression of

vortex shedding occurs for L/D = 10. They concluded that the breakdown of the spanwise

structure of the regular vortex becomes more remarkable as the aspect ratio is smaller and

the inclined angle is larger. Kawaruma and Hayashi [43], simulated the flow over infinite and

endplate-bounded yawed cylinder at θ = 30o and Reynolds number of Re = 2×103. Their

results supported the existence of a weak axial flow along the span of an infinite cylinder and

a strong axial flow downstream the cylinder bounded with endplates. For the latter case, for

the range of studied aspect ratio (5< L/D < 15), they showed how the interaction of flow on

the endplates and near the upstream end of the cylinder affects the location of the separation

points on the cylinder and the behavior of the axial flow in that region. They also revealed

that increasing the aspect ratio leads to a more uniform spanwise pressure distribution at the

base of the cylinder. In another study, Hayashi and Kawaruma [44] conducted experiments

on stationary cylinder bounded by endplates at θ = 30o, 45o, and 60o at Reynolds number of

Re = 1.5 × 104. The pressure measurement along the span of the cylinder with L/D = 20

showed that the base pressure of the cylinder and the separation points near both ends of the

cylinder, particularly the upstream end, is substantially different from the mid-span region

and cannot be predicted by IP. Moreover, Hayashi and Kawaruma showed that IP is only

valid for a small section near the mid-span of the cylinder.

2.2.3 Oscillating Yawed Cylinders

Studies carried out on yawed cylinders have also included the effects of vortex-induced

vibration (VIV) or forced oscillations. Ramberg [8] showed that for yawed cylinders that

are forced to oscillate transversely, the IP remained valid up to θ = 60o (the highest angle

considered) at the Reynolds number range of Re = 160 to 460, while failing for the comparable

stationary case. He observed that except for regions close to both ends of the cylinder, the

vortex shedding is parallel to the axis of the cylinder. The feature that can be directly

linked to the validity of IP. Numerical simulations of Lucor and Karniadakis [33] for the free
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2.2 FLOW OVER STATIC YAWED CYLINDERS

vibrating yawed cylinder at yaw angles of θ = −60o and −70o, demonstrated the parallel

vortex shedding. It should be noted that similar to the results of Ramberg, the parallel vortex

shedding did not occur for stationary yawed cylinder at the same yaw angles, as depicted

in Figure 2.11. Jain and Modarres-Sadeghi [45] demonstrated that parallel vortex shedding

occurs for cylinder under the effect of VIV at yaw angle range of θ = 0o to −75o for Reynolds

number up to 4×103. Franzini et al. [46] studied the VIV of a yawed cylinder mounted on

a base with one and two degrees of freedom at Reynolds number range of Re = 3×103 to

1.5×104. They indicated that wake characteristics of the oscillating cylinder at yaw angle

of θ = 45o vary from the oscillating non-yawed cylinder due to the presence of axial flow

interfering with the interaction between the free shear layers.

Another group of studies involves harmonically oscillating flow past fixed yawed cylinders

such as those conducted by Cotter and Chakrabarti [9] and Sarpkaya and Isaacson [47].

These investigations were mainly devoted to the variation of the hydrodynamic coefficients

Figure 2.11: a) Stationary yawed cylinder b) Freely vibrating yawed cylinder ( θ = −70o) at
Re = 1000. Pressure iso-contour at the value of -0.025. View almost perpendicular to the
plane of the inflow. The arrows represent the inflow coming from left to right. Reprinted
with permission from Lucor and Karniadakis [33].

.
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Figure 2.12: a) Oblique vortex shedding downstream a cylinder without endplates at Re
= 90 b) Parallel vortex shedding promoted by employing endplates at Re = 110. Reprinted
with permission from Williamson [48].

with Keulegan-Carpenter (KC) number and Reynolds number. In wave flows, the validity of

IP is not observed except for flows with high KC numbers.

2.3 Effect of End Condition

2.3.1 Non-Yawed Cylinders

In an idealized case, the cylindrical bodies are considered infinite cylinders, which means that

they have a large aspect ratio and are free of end effects. For infinite cylinders, the wakes

and vortices are independent of the end boundaries. However, in experiments and various

practical applications, cylinders have a finite length and inevitably experience the effect of

end conditions in some way.

Early studies were mainly devoted to the impact of end conditions on flow past non-yawed

cylinders at low Reynolds numbers. For example, Williamson [49] showed a discontinuity in

the Reynolds number-Strouhal number relation at Re = 64 as the onset of three-dimensionality

in vortex shedding. Williamson proposed the transition to oblique shedding at this critical

Reynolds number, where the vortex filaments start to shed with an angle relative to the axis

20
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of the cylinder. Oblique shedding can be associated with the higher base pressure at the

mid-span of the cylinder compared to both ends. Williamson [48] altered the end conditions

by placing two slanted endplates at both ends of the cylinder to obtain quasi two-dimensional

flow at Re = 90−110, as shown in Figure 2.12.

Eisenlohr and Eckelmann [50] also investigated oblique shedding associated with a jump

in the Strouhal number along the span of the cylinder, which leads to a phenomenon called

vortex dislocation. By putting two co-axial cylinders with different diameters above and

below the test cylinder, they showed that the dislocations occur at a beat frequency between

cylinders with different diameters. Hammache and Gharib [51] proposed a novel method

to obtain parallel shedding by putting two cylinders upstream near the top and bottom

end of the test cylinder that can affect the base pressure at both ends. By placing these

orthogonal cylinders, the base pressure gradient along the span was eliminated in the range

of Re = 72−158. Miller and Williamson [52] applied two suction tubes on top and bottom

end downstream of the cylinder to achieve the two-dimensional flow at Re = 140−190. Using

suction tubes, more transient or impulsive control is obtainable, which is not possible by

putting endplates.

The above literature is predominantly related to low Reynolds numbers while several

investigations have been done on the effect of end conditions at the subcritical Reynolds

number range. These studies can be categorized by the type of end conditions employed on

the cylinder.

One of the most common end conditions used for finite cylinders to promote the two-

dimensional flow in the wake region is using endplates. Stansby [53] laid the groundwork for

the endplate approach in the subcritical regime. Using base pressure measurement, Stansby

determined that the endplates should be mounted outside the tunnel wall boundary layer and

recommended that the cylinder should be placed on the endplate far upstream in order to

reduce the effect of horseshoe vortices. Szepessy [54] indicated that the trailing edge distance

should be longer than the vortex formation region to ensure a uniform base pressure along

the cylinder. Szepessy further indicated that for proper endplate use, there is a minimal
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pressure gradient two diameters downstream of the cylinder in the spanwise direction. Stagger

and Eckelmann [55] also studied the proper size of effective endplates based on the vortex

shedding characteristics along the span. They showed that the cell shedding frequency near

the end sections is lower than the middle part of the span in 300<Re< 8×103. They showed

that by increasing the Reynolds number, the size of the low-frequency cell decreases and it

is approximately negligible around Re = 4.8 × 103. Thus, they proposed that the ratio of

endplate length scale to the cylinder diameter must increase with the increase in the Reynolds

number to reduce the length of the affected region. In contrast, Fox and West [56] pointed

out that even at high Reynolds numbers around 105, the end effect is obvious at the spanwise

distance up to 3.5D from the endplate.

Finding the importance of cylinder aspect ratio, Szepessy and Bearman [57] investigated

the effect of the aspect ratio of the cylinder on the performance of endplates. The results

indicated that at Re = 103, the change in the aspect ratio from 1 to 10 has no influence on

the mid-span flow. In another study, Norberg [58] determined that an infinite cylinder can

be represented at the mid-span when the aspect ratio is at least 60 for 400< Re< 103. He

also found that for 103 < Re< 4×104, the aspect ratio of 25 is required.

A free end is another type of end condition that has been investigated in the literature.

A comprehensive review of flow over the free end of the cylinder and another end bounded

with the tunnel wall can be found in Sumner [59]. Studies indicate that the Karman vortex

shedding is highly impacted by the tip vortices generated near the free end. This impact

leads to a lower vortex shedding frequency and Strouhal number near the free end [60, 61].

It is also shown that the cylinder aspect ratio plays a prominent role while the vertically

mounted cylinder has a free end condition. Kawaruma [62] showed that for a cylinder with

small aspect ratios, an organized vortex shedding does not exist. For the onset of the vortex

shedding process, different values of aspect ratios have been reported in the literature [56,

60]. Moreover, the results showed that the drag coefficient of the cylinder decreases as the

aspect ratio is reduced.

Another type of end condition is the cylinder piercing the free surface. For the cylinder
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2.3 EFFECT OF END CONDITION

Figure 2.13: Instantaneous vortex structure in the near wake for a cylinder with free-surface
piercing end at a) Re = 2.7 × 105 and Fr = 0.8 b) Re = 2.7 × 105 and Fr = 2. The view is
taken on the plane cross the cylinder center in the freestream direction. Reprinted with
permission from Yu et al. [63].

.

mounted on the wall, it is shown that the vortex shedding suppression may occur in the

vicinity of the free surface [64, 63, 62]. Results for drag coefficient variation indicated that

the total drag coefficient is reduced for such cylinder compared to the value of 1.2, which is

suggested for fully submerged cylinders [64, 63, 62, 65]. Moreover, results for the near wake

of free-surface piercing cylinders are shown to depend on the Froude number. Froude number

is defined as the following indicates the ratio of the inertia force on an element of fluid to the

weight of the fluid element:

Fr = U∞√
gD

, (2.3)

where, U∞ is the freestream velocity, D is the cylinder diameter, and g is the gravitational

acceleration. Yu et al. [63] showed that at Reynolds number in the range of Re = 2.7×105

to 1 × 105, for a Froude number of 0.8, the flow in the deep wake has two-dimensional vortex

structures while a strong three-dimensional structure is seen near the free surface. At Fr

= 2.0, the influence of the free surface is felt along the entire span of the cylinder and no

regular vortex shedding is observed (see Figure 2.13). Vortices with less intensity dominate
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Figure 2.14: Vertical slices through the numerical domain illustrating the vorticity fields
around cylinders of aspect ratios AR = 2, 3, 9, and 19 with a top free-surface piercing end
and a free bottom end. Freestream direction is from left to right. Reprtinted with permission
from Benitz et al. [67].

.

the region below the free surface. Yu et al. [63] also showed that increasing Reynolds number

damp the free surface effect on the vortex structures in the near wake. The experiments

of Vlachos and Telionis [66] on cylinders in the crossflow with free surface on one end and

tunnel wall on the other showed the existence of a vortex shedding process that is weakened

near the free surface end of the cylinder for the subcritical Froude numbers that they studied

(namely, Fr = 0.3 and 0.65). They, however, provided evidence that vortex shedding can

cease completely close to the free surface for a higher Froude number (Fr = 1.06).

The combination of the free bottom end and top free surface end conditions show three

different vortex shedding frequency ranges along the span that varies depending on the aspect

ratio and Froude number [67, 68]. Benitz et al. [67] showed, at Re = 2900 for a cylinder

aspect ratio range of L/D = 1 to 19, that vortex shedding is suppressed altogether near the

free-surface-piercing end of the cylinder for all cylinder aspect ratios investigated in their

study. They also revealed that the flow near the bottom free end is influenced by the tip

vortices. This effect is manifested in angled vortex sheets towards the bottom-middle section,

while the top-middle section shows perfectly vertical vortex sheets, as shown in Figure 2.14.
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2.3.2 Yawed Cylinders

For yawed cylinders, Hayashi et al. [69] showed the impact of endplates in decreasing the

base pressure and the pressure gradient along the span of the cylinder by increasing yaw

angle. They also revealed a significant decrease in the pressure behind the cylinder by moving

towards the upstream endplate. In another study on the effect of endplates on the yawed

cylinders, Ramberg [8] indicated that endplates with a certain proper inclination with respect

to the incoming flow can promote vortex shedding parallel to the cylinder axis.

Through a series of experiments spanning a Reynolds number range of Re = 160 to 1100

and aspect ratio range of L/D = 20−100, Ramberg [8] showed that the wake of a free-ended

yawed cylinder divides along the cylinder span into two shedding modes distinguished by

different shedding angles. In the case of a yawed cylinder with one end piercing the free

surface and the other bounded by the tunnel wall, Vlachos and Telionis [66] revealed that the

effect of the free surface on vortex shedding depends on the orientation of the cylinder. When

the free surface piercing end of the yawed cylinder is in the downstream (i.e., positive θ), the

strength of vortex shedding enhances towards the free surface end. On the contrary, when the

free surface piercing end is in the upstream (i.e., negative θ), the strength of vortex shedding

drastically reduces towards the free surface, which may turn into a complete suppression of

vortex shedding near the free surface for higher Froude numbers that involve the formation

of a free surface depression, as depicted in Figure 2.15.
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2.3 EFFECT OF END CONDITION

Figure 2.15: Hydrogen bubbles images for cylinder yawed to θ= 30o with free-surface piercing
end. a to c) Fr = 0.3 d to f) Fr = 0.65 g to i) Fr = 1.06. The freestream direction is from
right to left. Reprinted with permission from Vlachos and Telionis [66]

.

26



Chapter 3

Experimental Methodologies

3.1 Experimental Setup

3.1.1 Water Tunnel Facility and the Yaw Oscillation System

The experiments were carried out in a recirculating water tunnel located at the University of

Toronto Institute for Aerospace Studies (UTIAS), as shown in Figure 3.1. The test section of

the tunnel is 610 mm wide, 700 mm high, and 5 m long.

This water tunnel has freestream turbulence of less than 0.5% and flow uniformity of

approximately 0.3% for the flow velocities considered in this study. The water depth in the

test section was 690 mm for all experiments. Tests were conducted at three Reynolds numbers

of 5×103, 1×104, and 1.5×104, based on the cylinder diameter. The temperature of the

water could not be controlled and varied with the ambient temperature in the laboratory.

In order to maintain the Reynolds number for different tests, the freestream velocity was

adjusted after measuring the fluid temperature, using a thermocouple-based sensor with the

accuracy of ±0.1 oC, and recalculating the kinematic viscosity (ν). The motor running the

propeller of the tunnel was controlled by a frequency inverter with a resolution of 0.1 Hz,

which leads to the freestream velocity adjustment uncertainty of 1.25 mm/s. The values of

Reynolds number (Re), Froude number (Fr), freestream velocity (U∞), water temperature
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Figure 3.1: Image of the water tunnel located at the University of Toronto Institute for
Aerospace Studies, prior to the installation of the cylinder yawing system that was used in
the present research.

(T ), cylinder diameter (D), and submerged length of the non-yawed cylinder (L) for the

experiments considered in the present research are summarized in Table 3.1.

The system used to mount the circular test cylinder in the test section, to vary the static

yaw angle, and to provide the yaw oscillations is shown in Figure 3.2 (a). It is shown that

the system is comprised of five primary parts:

• StepSERVO motor

• Linear belt-driven carriage

• Connecting rod

• Rotating frame

• Circular cylinder

The active yaw system was designed, built, and tested by the author at York University before

being transferred to UTIAS. When the setup was installed on the water tunnel, the frame

assembly was rigidly mounted to the test section and only the test cylinder was located in
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Table 3.1: Details of the flow and geometry related parameters considered in the present
experiments.

Re D (mm) L (mm) L/D T (oC) U∞ (mm/s) Fr

1.5×104 50.8 635 13 25±0.1 300 ±1.25 0.4

1×104 50.8 635 13 25±0.1 182 ±1.25 0.25

1×104 31.75 635 20 25±0.1 292 ±1.25 0.52

5×103 50.8 635 13 25±0.1 98 ±1.25 0.14

5×103 31.75 635 20 25±0.1 147 ±1.25 0.26

the water. The linear motion of the belt-driven traverse was transferred to the rotating frame

by means of a connecting rod. The traverse was driven by an Applied Motion TSM-34Q

StepSERVO motor, which was programmed to prescribe the yaw oscillation parameters, or

was held stationary for the static yawed cases. The cylinder was made out of stainless steel

tube with sealed ends and a 3.175 mm wall thickness.

3.1.2 The Cylinder Model

Schematics of the experimental configuration are shown in Figure 3.3. Cylinders with two

diameters of 50.8 mm and 31.75 mm were used, corresponding to the aspect ratios of L/D= 13

and 20. The length (L) of the cylinder is not the physical length, but it is the portion of the

cylinder that is immersed when θ = 0o. The cylinder was located at an equal distance from

the side walls of the tunnel. The top end of the cylinder (downstream end for yawed cases)

was bounded by the free water surface, while the bottom end (upstream end for yawed cases)

was located above the boundary layer forming over the bottom wall of the water tunnel test

section (at a height of 0.03 m) to eliminate any possible end-effect. The thickness of the

boundary layer at the location of the cylinder was previously measured for the same tunnel to

be around 13 mm [70]. The center of rotation of the cylinder was fixed and located midway

between the free end of the cylinder and the water surface, as depicted in Figure 3.2 (b).
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Figure 3.2: a) The experimental setup installed on top of the water tunnel from two different
views indicating the main components of the system. Yellow arrows show the rotation of the
frame and the linear motion of the carriage. b) CAD drawing depicting the side view of the
experimental setup and the fixed center of rotation when the cylinder is at θ = 0o and 30o.
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3.1 EXPERIMENTAL SETUP

Figure 3.3: Schematic of cylinder yaw motion and PIV measurement planes. a) The side view
of the test model showing the direction of oscillation at each phase and the end conditions of
the cylinder. b) The bottom view of the test model depicting the PIV measurement plane,
which is the plane that passes from the mid-span of the cylinder at θ = 0o and the location of
the CTA probe. c) The schematic depicting the PIV measurement planes for L/D = 13; four
(X,Y ) planes located at Z/D = 3, 0, -3, and -4.5 (Z/D = 4.5, 0, -4.5, -7.5 for L/D = 20) of
the cylinder at θ = 0o. Two symmetry (X,Z) planes are located at Y/D = 0.
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About this location the yaw angle varies between θ = 0o and 30o. The origin of the Cartesian

coordinate system used in the present experiments passes from the center of rotation and the

axis of the cylinder. The X-axis was in the direction of the freestream flow, the Z-axis in the

direction normal to the floor of the test section, and the Y -axis was normal to the span of

the cylinder and was directed in accord with the right-hand rule, as shown in Figures 3.3 (a)

and 3.3 (c).

3.2 Yaw Oscillation Parameters

The yaw oscillation parameters are achieved using a StepSERVO motor that was programmed

to provide sinusoidal yaw oscillations to the cylinder at prescribed frequencies (fc). During a

complete cycle of yaw oscillation, the cylinder was yawed from the cross-flow position (θ = 0o)

to θ = 30o and then returned to θ = 0o. The yaw angle (θ) of the cylinder is plotted in

Figure 3.4 (a) against the phase (ϕ) of one complete yaw oscillation. The rotation system was

programmed to provide a sinusoidal variation in the angular velocity (ω) of the cylinder as

shown in Figure 3.4 (b). In this study, the flow past the static and yaw-oscillating cylinders

Figure 3.4: a) Variation of the cylinder yaw angle over one complete oscillation cycle. Dashed
lines mark the yaw angles and the corresponding phases examined in the present work. b)
Angular velocity (ω) of the cylinder normalized by its peak value with respect to time over
one period (T = 1/fc).
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is compared at eight discrete phases. As marked in Figure 3.4 (a), these eight phases are

given by ϕ= 0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4. These eight phases correspond to the

cylinder yaw angles of θ = 0o, 4o, 15o, 26o, 30o, 26o, 15o, 4o, respectively. The phase pairs

of π/4 and 7π/4, π/2 and 3π/2, 3π/4 and 5π/4 correspond to the same yaw angle. However,

for the first phase in each pair the yaw angle is increasing whereas for the second phase the

yaw angle is decreasing.

The yaw oscillation frequency (fc) was purposely chosen so that the ratio of the tip speed

of the cylinder to the freestream velocity falls between 0 and approximately 2. To relate this

value to a reference parameter, the oscillation frequency is chosen to be an integer fraction of

the vortex shedding frequency (fs) of the non-yawed cylinder at the corresponding Reynolds

number [71]. The oscillation frequency can be expressed non-dimensionally in terms of the

reduced frequency (K) [72]. Using the half-length of the cylinder (L/2) as the characteristic

length, the reduced frequency for the present case can be defined as:

K = πfcL

2U∞
, (3.1)

The reduced frequencies and the corresponding yaw oscillation frequency for all the test

cases in the present study are summarized in Table 3.2. For Re = 1.5×104 and L/D = 13,

achieving higher values of K greater than 1.3 was not possible due to the onset of vibrations.

However, for Re = 5×103, higher reduced frequencies of K = 4 and 2 were studied, given

the lower freestream velocity. For a cylinder with L/D = 20, cases with K = 1.3 and K = 2

at Re = 5×103 were chosen to examine the influence of the aspect ratio on the near wake.

3.3 PIV Measurements

Particle Image Velocimetry (PIV) is a non-intrusive, optical flow diagnosis technique. The

basic principle of Particle Image Velocimetry (PIV) is based on measuring the displacement

of the small tracer particle with the flow over a short time interval. The position of the tracer

particle is determined when they are illuminated by the thin laser sheet generated by the
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double-headed pulsed laser system. The particles are small in size and neutrally buoyant so

that they can move with the local flow velocity. A laser light sheet illuminates the region of

interest in the flow twice and the scattered light is recorded onto two subsequent image frames.

The images are mainly recorded by means of a Charge-Coupled Device (CCD) camera. In the

planar PIV, which is used in the present experiment, a single CCD camera is used that yields

two velocity components within the measurement plane. To process the images, each image is

first divided into smaller regions called interrogation windows. The particle displacements are

obtained by performing cross-correlation analysis for corresponding interrogation windows

between the two subsequent images. The local fluid velocity is calculated by dividing the

particle displacements over the image magnification and the time difference between the laser

pulses. The velocity vectors are a projection of the local flow velocity in the center of the

interrogation windows. Further details on the working principle of the PIV technique can be

found in Westerweel [73].

A TSI planar PIV system was used to measure both the time-averaged and phase-averaged

flow fields in the near wake of the static yawed and yaw-oscillating cylinder. The water was

seeded with neutrally buoyant, hollow glass particles with a nominal diameter of 10 µm. The

flow illumination was provided by a double cavity Nd:YAG laser with a maximum energy

output of 200 mJ/pulse at a wavelength of 532 nm. Particles images were taken using a CCD

camera with a resolution of 1920 × 1080 pixels, which was located beneath the transparent

Table 3.2: Summary of the values of yaw oscillation frequency to for the reduced frequency
for experiments with different Reynolds numbers and aspect ratios.

Re, L/D K = 0.5 K = 1 K = 1.3 K = 2 K = 4

1.5×104, L/D = 13 fs/8 fs/4 fs/3 - -

1×104, L/D = 13 − fs/4 fs/3 - -

1×104, L/D = 20 − fs/7 fs/5 - -

5×103, L/D = 13 - - fs/3 fs/2 fs

5×103, L/D = 20 - - fs/5 fs/3 -
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Figure 3.5: Phase-averaged PIV measurements. Image pairs were taken at eight select phases
corresponding to yaw angles of θ = 0o, 4o, 15o, 26o, and 30o, as marked with different colors.

bottom wall and outside of the side wall of the tunnel for bottom view and side view analysis,

respectively.

PIV measurements were performed in four (X,Y ) planes, namely located at Z/L= 0.23, 0,

-0.23, and -0.34 of the cylinder at θ= 0o (field of view dimensions of 2.5D×3.5D in streamwise

and transverse direction, respectively) and two (X,Z) symmetry planes located at Y/D = 0

(field of view dimensions of 4D×7D in streamwise and spanwise direction, respectively), as

shown in Figure 3.3 (b) and (c). Note that the (X,Y ) planes were located at Z/D = 3,

0, -3, and -4.5 for cylinder with L/D = 13 and Z/D = 4.5, 0, -4.5, and -7.5 for cylinder

with L/D = 20 so that the distance from the center of rotation is maintained. Since the

out-of-plane component of the velocity could be significant, particularly for (X,Z) planes, the

time interval between the two successive images and laser sheet thickness were determined to

be in the acceptable range [73]. The desired thickness of the light sheet was produced using

a combination of a spherical lens (1000 mm focal length) and a cylindrical lens (50 mm focal

length).

Two types of PIV analysis were performed in the current study; time-averaged and phase-

averaged analysis. To construct the time-averaged velocimetry results, a total of 4,000 image

pairs were captured from the flow field for every static and yaw-oscillating case investigated

in this study. This approach was mainly used to obtain the time-averaged results for the
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stationary yawed cylinder and yaw-averaged results for the yaw-oscillating cylinder. The laser

repetition rate for these measurements was 14.5 Hz, which was the maximum repetition rate

obtainable by the laser. A set of 400 image pairs were used to construct the phase-averaged

velocity fields for yaw-oscillating cases. In the phase-averaged analysis of the yaw-oscillating

cylinder cases, the PIV system was synchronized with the cylinder motion to obtain data at

specific phases during the cylinder oscillation, as shown in Figure 3.5.

In PIV processing by MATLAB-based PIVlab program [74], interrogation windows of

32×32 pixels were used with 50% overlap in both directions, producing 92×42 and 95×75

in-plane velocity vectors for the (X,Z) and (X,Y ) planes, respectively. The uncertainty of

the instantaneous velocity vectors is estimated to be approximately 0.021U∞ and 0.033U∞

for the (X,Y ) and (X,Z) planes, respectively. This uncertainty was determined using

standard methods of the PIV measurements [75] and uncertainty propagation [76] for possible

sources of error including the pixel displacements, time duration of a laser pulse, calibration,

magnification, and grid spacing. Details of the uncertainty analysis can be found in Appendix.

3.4 Constant Temperature Anemometery

Constant temperature anemometry is widely used to measure varying velocities with high

spatial and time resolution, little interference with the flow, high-frequency response, and high

sensitivity at low velocities [77]. The sampling rate in CTA measurements is remarkably higher

than the PIV measurements, however, the data is collected at a specific point as opposed to

the global information obtained by PIV. The working principle of CTA is associated with a

transducer that senses the variations in the heat transfer from a small electrically heated

sensor due to the fluid motion. The output signal of the sensor is a voltage signal and needs

to be converted to velocity. The conversion is done by means of a calibration procedure

associated with a relation between the output voltage (E) of the sensor and the flow velocity

(U∞) after exposing the probe to known flow velocities controlled by the frequency inverter

of the impeller of the water tunnel. The power law (King’s law) curve fitting was used in the
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present experiment:

E2 = A+B(U∞)m;m= 0.45 (3.2)

where A to B are the calibration coefficients. In order to avoid calibration drift due to the

temperature effects, the water temperature was monitored using a thermocouple-based sensor

and a temperature correction factor was applied using the recommendation by Jorgensen [78].

The CTA system used in the present project included a probe support, an anemometer,

and a data acquisition system. The hot-film sensor used was a Dantec Dynamics 55R11 type

with an overheat ratio of 1.1, sensor resistance of 7.19 Ω, sensor lead resistance of 0.5 Ω, and

a sensor temperature coefficient of resistance (TCR) of 0.39. The sensor had a length of 1.25

mm and a diameter of 70 µm, and had a sputtered quartz coating of 2 µm. This sensor was

connected to a single channel Dantec mini-CTA anemometer. The data acquisition system

consisted of a NI BNC 2110 terminal and a NI PCI 6251 data acquisition card connected to

a computer.

Details of the CTA data acquisition parameters are summarized in Table 3.3. For static

yawed cylinders, the probe was located at three spanwise locations to evaluate the flow

variation along the span of the cylinder. The streamwise and lateral distance from the

cylinder was chosen so that the probe was located outside the wake and the frequency of the

vortex shedding can be easily captured. The total sampling time for the static yawed cylinder

was chosen to be large enough to span at least 1000 complete cycles of vortex shedding

(assuming St = 0.2). For the yaw-oscillating cylinders, the probe was located at the mid-span

plane in order to have nearly a constant distance from the surface of the cylinder during the

oscillation cycle. To evaluate the sensitivity of the results to the spanwise locations near the

mid-span, the data was also collected at Z/D = ±1 and the similarity of the results with

those obtained at the mid-span location was confirmed. The sampling frequency (fsa) was

1500 Hz with the total sampling time (tsa) of 1.5 hours that covers a range of 400 to 1200

complete cycles of oscillation (nc) depending on the reduced frequency. The uncertainty of

the signal power spectrum estimation was calculated to be less than 6% [79].
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Table 3.3: CTA measurement parameters for the static and yawed cylinders and the location
of the probe downstream the cylinder. X ′ is the streamwise distance from the base of the
cylinder along the wake centerline.

Experiments X ′/D Y/D Z/D fsa(Hz) tsa(s) nc

Static Cylinder 2.0 1.5 −3,0,3 1500 900 -

Yaw-Oscillating Cylinder 2.0 1.5 0 1500 4800 400-1200

3.5 Data Analysis Procedures and Determination of

Flow Quantities

Prior to presenting the results in the following chapters, it is imperative to understand the

approaches taken in the current work to study the flow behavior. Williamson [1] indicated

that in case of the vortex shedding from the circular cylinder, such as the flow behavior in

the subcritical regime, if one averages the flow field for a long time, a region called the mean

recirculation region is obtained in the wake. For a non-yawed two-dimensional cylinder, he

reported that this region is closed and contains symmetric counter-rotating vortices, as shown

in Figure 3.6 (b). The features of the mean recirculation region can be directly related to the

base pressure and therefore, the drag coefficient of the cylinder in different regimes.

In the qualitative analysis of the current work, using the time-averaged or phase-averaged

flow fields obtained by the PIV measurements, the existence or the elimination of the mean

recirculation region was investigated for various cases. This could be done by means of

seeking the presence or the absence of the saddle points on the wake centerline (in the (X,Y )

planes) or backflow (reverse flow) immediately behind the cylinder (in the (X,Z) planes).

The saddle point defines the region between the mean recirculation region and the outer

region on the wake centerline. The backflow occurs in the near wake of the cylinder when the

mean flow, due to the presence of the counter-rotating vortices, possesses negative streamwise

velocity, as depicted in Figure 3.6 (a).
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In the quantitative analysis of the PIV results, three characteristics of the mean recircula-

tion region, namely, the wake closure length (Lc), half wake width (Y1/2/D), and backflow

angle (β) were measured in the present study. The wake closure length is defined as the

distance from the base of the cylinder to the point on the wake centerline where the sign of the

mean streamwise velocity changes from negative to positive. This parameter is often used to

measure the length of the mean recirculation region [80, 81] (see Figure 3.6 (b)). A parameter

that frequently appears in characterizations of the near wake regions is the so-called formation

length. The formation length has different definitions that are all mutually compatible [82].

As Norberg [83] showed, the wake closure length can be used as a measure for the vortex

formation length. Other widely employed definitions of formation length determined it, for

example, as the streamwise distance from the base of the cylinder on the wake centerline to

the point where the level of velocity fluctuation reaches its maximum [1] or as the streamwise

distance from the base of the cylinder to the position of the initial fully formed vortex [8].

As to the second wake parameter characterized in this study, the half wake width (Y1/2), it is

measured outside the recirculation region at X/D = 2 using streamwise velocity deficit values

(⟨Ud⟩ = U∞ − ⟨U(x,y)⟩) and the approach proposed by Wygnanski et al. [84], as shown in

Figure 3.6 (c). The wake width for the static yawed cylinder and yaw-oscillating cases is

only reported at the mid-span plane. Reverse flow angle (β) is defined as the angle between

the freestream direction and the line that coincides with the middle straight part of the

phase-averaged streamlines between the rear surface of the cylinder and the wake closure

point, as marked in Figure 3.6 (d). Notice that for the locations with the suppressed mean

recirculation bubble (i.e., no reverse flow), the angle is measured between the freestream

direction and the direction of the streamline at a distance of 0.5D from the rear surface of

the cylinder.

The time-resolved data obtained in the CTA measurements were predominantly used to

evaluate the variation in the vortex shedding frequency by comparing the streamwise velocity

power spectra for different cases, as depicted in Figure 3.7. The power spectral density (PSD)

from the streamwise velocity signal was calculated using the Welch averaging method (details
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can be found in [85]). Figure 3.7 represents a sample of the streamwise velocity signal and

the corresponding power spectra for a non-yawed static cylinder. The peak frequency in the

velocity spectra is recognized as the vortex shedding frequency.

Figure 3.6: a) Contours of mean normalized streamwise velocity (⟨U⟩/U∞) overlaid by the
mean streamline topology (⟨ψ⟩) indicating the backflow region behind the cylinder in the
(X,Z) plane. b) The (X,Y ) plane view of the marked location in the (X,Z) plane, depicting
the mean recirculation region, the location of the saddle point, and the definition of the wake
closure length. c) The measurement of the wake width on X/D = 2 using the variation of
the velocity deficit ⟨Ud⟩ as proposed by Wygnanski et al. [84]. d) The schematics show how
the reverse flow angle is measured in the presence (right) or the absence (left) of the mean
recirculation region.
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Figure 3.7: Sample of the velocity signal (left) and the power spectra of the streamwise
velocity (right). The highest peak is corresponding to the vortex shedding frequency as
marked in the plot.

41



Chapter 4

Results: Static Yawed Cylinders

The near wake of the static cylinder with L/D = 13 yawed to different angles in the range of

θ = 0o to 30o at Re = 1.5 × 104 is studied to evaluate the influence of cylinder inclination

on the flow behavior. More importantly, the results will create a baseline reference for the

investigation of the impact of the yaw-oscillation on the near wake of the cylinder with a

similar aspect ratio and at the same Reynolds number in Chapter 5. Studies on the effect of

Reynolds number and aspect ratio on the flow past static yawed and yaw-oscillating cylinders

will be conducted in Chapters 6 and 7, respectively.

4.1 Mean Near Wake Flow Topology

4.1.1 Flow Structure in the (X,Z) Symmetry Plane

Measurements of the flow past the static yawed cylinder are a baseline for the yaw-oscillating

counterpart. The ensemble average of velocity components in the X and Y directions (⟨U⟩

and ⟨V ⟩, respectively) are obtained from 4,000 snapshots of velocity fields for each yaw

angle. Figure 4.1 shows the mean streamline topology (⟨ψ⟩) and contours of normalized mean

streamwise velocity (⟨U⟩/U∞) for static yawed cylinder at yaw angles of θ = 0o, 4o, 15o, 26o

and 30o in the symmetry plane. These yaw angles correspond to the eight evenly spaced
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Figure 4.1: a) Mean streamline topology (⟨ψ⟩) b) Contours of mean normalized streamwise
velocity (⟨U⟩/U∞) c) Contours of mean normalized vorticity (⟨ωy⟩D/U∞) for the static
cylinder at yaw angles of θ = 0o, 4o, 15o, 26o, and 30o. Results are shown in the symmetry
plane at Y/D = 0.

phases taken over one complete oscillation, which was previously explained in Section 3.2.

Figure 4.1 (a) shows that the streamline patterns of the static yawed cylinder at yaw

angles of θ = 0o to 26o contain a reverse flow region, indicating the existence of a mean

recirculation region, behind the majority of the cylinder span except for the regions near

the bottom end of the cylinder. It can also be seen that the streamlines within the mean

recirculation region change their orientation as the yaw angle is altered, getting, in general,

progressively closer to a direction parallel to the cylinder span as the yaw angle increases.

43



4.1 MEAN NEAR WAKE FLOW TOPOLOGY

In support of these observations, Figure 4.1 (b) also depicts that the negative direction

streamwise velocity persists in the wake of the cylinder over a large section of the span for

this yaw angle range. However, the spatial extent of the reverse flow velocity is decreased

along with the magnitude of the negative velocity with increasing yaw angle. For θ = 30o, the

⟨ψ⟩ patterns show that the streamlines immediately behind the cylinder are highly directed

in the spanwise direction, and the contours of ⟨U⟩/U∞ reveal that the positive streamwise

velocity occupies the major part of the near wake, indicating a significant suppression in the

mean recirculation region at this high yaw angle. The observed general trend of decreasing

streamwise velocity and eventual replacement of the reverse flow with positive streamwise

velocity along larger sections of the cylinder span as the yaw angle increases is a result of

the development of large magnitude spanwise flow with increasing yaw angle (as apparent

from the general reorientation of the streamlines more and more in the spanwse direction

for larger yaw angles). Notice from Figure 5.2 that for the static yawed cylinder, near its

upstream end (around the location of Z/D = −4 to - 5.5), a reverse flow region is observable

for all yaw angles. The velocity magnitude and streamwise extent of this region decrease

with increasing yaw angle. This flow behavior appears to result from the interaction of the

free end trailing vortices shedding from the free end of the cylinder with the regular Karman

vortices [67, 60]. Near the free-surface piercing end of the static cylinder, the streamlines

are generally oriented perpendicular to the axis of the cylinder, and there is a local region

of increased reverse flow velocity, which is presumably related to the turbulent wake at the

air-water interface. It should be noted that the effect of the free surface on the near wake

becomes less pronounced with increasing yaw angle, as apparent from the reduction in the

extent of the negative velocity near the downstream end of the cylinder (in Figure 4.1 (b)).

Figure 4.1 (c) shows the contours of time-averaged normalized vorticity (⟨ωy⟩D/U∞) for

static yawed cylinder. From Figure 4.1 (c), it is apparent that for the static yawed cylinder,

at all yaw angles considered, negative (counter-clockwise) vorticity is generated near the

bottom free end, and it is associated with the separation of the incoming flow from the free

end of the cylinder, as previously shown in Figures 4.1 (a) and (b). It is apparent that the
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interaction of the free end trailing vortices with the Karman vortices [67] generates a positive

(clockwise) vorticity region above this negative vorticity. As the yaw angle increases, this

positive vorticity region is inclined in the spanwise direction and extends further downstream,

immediately above and parallel to the negative vorticity region. This observation is aligned

with the flow visualization results of Ramberg [8], which showed that, with the increase of

the yaw angle, the vortex filaments near the free end form wavy lines that stream out behind

the cylinder.

It has been previously shown that spanwise or axial flow plays a prominent role in the

near-wake flow characteristics of a static yawed cylinder [44, 34, 42]. In this section, to

investigate the spanwise (axial) flow behavior behind the static and yaw-oscillating cylinders,

the X-direction (streamwise) velocity ⟨U⟩ and the (Z-direction) wall-normal velocity ⟨W ⟩

components are projected on the spanwise direction of the cylinder at each yaw angle to

obtain the axial velocity field (⟨VA⟩ = ⟨W ⟩ cosθ+ ⟨U⟩ sinθ).

Figure 4.2 illustrates the contours of time-averaged normalized axial velocity (⟨VA⟩/U∞)

for the static yawed cylinder. When the cylinder has no yaw (θ = 0o), a concentrated region of

very high-amplitude, positive axial flow (with a direction towards the top end of the cylinder)

is detectable at and in the vicinity of the free end of the cylinder. With increasing yaw,

this high-amplitude axial velocity that originates from the free end of the cylinder gradually

spreads in the wake along the span of the cylinder, approaching the free-surface piercing end

of the cylinder. For instance, for θ = 30o, the magnitude of the axial velocity near the base

of the cylinder ranges between 0.4U∞ to 0.9U∞ over nearly 90% of the span, which can be

noticed immediately from the contour plots of Figure 4.2, where a dotted line highlights the

contour levels of ⟨VA⟩/U∞ = 0.4. Additionally, in this symmetry plane, it can be seen that

also a low-amplitude, opposite-direction axial flow develops behind a small portion of the

cylinder in the vicinity of the free surface as a result of the downward flow that forms behind

the cylinder due to the free surface effects [63]. Previous studies have shown the role of the

axial flow immediately behind the cylinder in the breakdown and suppression of the Karman

vortex shedding for the static yawed cylinders [44, 42, 40]. Comparing Figures 4.2 and 4.1
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Figure 4.2: Contours of mean normalized axial velocity (⟨VA⟩/U∞) for the static cylinder at
yaw angles of θ = 0o, 4o, 15o, 26o, and 30o at Re = 1.5×104 in symmetry plane at Y/D = 0.
The contour levels of ⟨VA⟩/U∞ = 0 and 0.4 are shown by solid white and black dashed line,
respectively.

(b) shows that, for the static cylinder, the gradual increase in the axial flow velocity and its

spatial extent with increasing yaw angle comes together with a weaker and weaker reverse

flow in the streamwise direction immediately behind the cylinder, which eventually leads to

the complete elimination of the mean recirculation region over the majority of the span at

θ = 30o.

4.1.2 Flow Structure in the (X,Y ) Planes

The spanwise variation of the near wake flow topology for the static yawed cylinder can

be examined by comparing the flow topology in different (X,Y ) planes located along the

span of the cylinder. In the present study, results are provided for three planes located at

Z/D = −3,0 (the mid-span plane), and 3 for the same yaw angles and Reynolds number as

previously discussed. First, the flow behavior is shown for the mid-span plane and the results

are then compared to the planes biased towards each end of the cylinder.

4.1.2.1 The Mid-Span Plane

Figure 4.3 shows the mean streamline topology (⟨ψ⟩), normalized mean streamwise velocity

(⟨U⟩/U∞), and the normalized mean vorticity (⟨ωz⟩D/U∞) in the near wake of the static
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Figure 4.3: Mean flow streamline (⟨ψ⟩) topology superimposed over contours of normalized
mean streamwise velocity (⟨U⟩/U∞) and the contours of the mean normalized vorticity
(⟨ωz⟩D/U∞) for static yawed cylinder at different yaw angles at Re = 1.5 × 104. For the
contours of ⟨ωz⟩D/U∞ given in the second column, the contour levels for the solid, dashed,
and dash dot lines are ±0.025, ±0.05, ±0.1, respectively. In the patterns of ⟨ψ⟩, SP1 marks
the saddle point formed at the closure of the mean recirculation region, while SP2 marks the
saddle point formed between the base of the cylinder and the mean recirculation region.
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cylinder. The first column of Figure 4.3 shows the mean streamline patterns superimposed

over the color contours of the normalized mean streamwise velocity for the static cylinder

at each yaw angle considered. The mean streamline topology for θ = 0o depicts a pair

of symmetric counter-rotating swirl patterns and a saddle point (SP1), which bounds the

patterns of swirl streamlines. The observation appears similar to that reported earlier for

the cylinder in cross-flow position [40, 34]. For small yaw angles, such as for θ = 4o, the

streamline topology appears to be similar to that of the non-yawed case albeit the saddle

point (SP1) is positioned nearer to the cylinder. For θ = 15o an additional saddle point

(SP2) is formed between the cylinder and the core of the recirculation region in the wake.

The additional saddle point (SP2) indicates the presence of an axial flow [40] along the

longitudinal axis of the cylinder, which is known to occur from the upstream to downstream

end of yawed cylinders [86, 32, 40, 27], as previously shown in Figure 4.2. For θ = 26o, SP1

occurs further upstream while SP2 moves downstream such that the streamwise extent of the

swirl area is reduced. For θ = 30o, the mean recirculation region appears to be suppressed

significantly, which suggests a weakening of the vortex shedding. Notably, the wake appears

more streamlined at high yaw. Axial flow, as shown in Figure 4.2, is known to decrease

suction at the cylinder base, which leads to reduced drag in yawed cylinders [87, 34].

Variations in the shear layers on each side of the yawed cylinder are shown in the second

column of Figure 4.3, using the normalized mean vorticity color contours overlaid by three

contour lines at ⟨ωz⟩D/U∞ = ±0.025, ±0.05, ±0.1 shown by solid, dash, and dash-dot lines,

respectively. The length of the shear layers can be compared using the contour lines at

±0.025. The length of the shear layers are almost similar for yaw angles from θ = 0o to 26o

and slightly decreased for θ = 30o. However, the tip of the contour lines of ±0.025 are less

curved toward the wake centerline and becomes thinner as the cylinder yaw angle becomes

greater. Comparing contour lines of ±0.1 indicates that as the cylinder is yawed, the region

of high vorticity within the shear layers extends less downstream.
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4.1.2.2 Z/D = ±3 Planes

Figure 4.4, for the non-yawed cylinder and the cylinder yawed to angles of θ = 15o and

30o, illustrates the variation in the mean flow streamlines (⟨ψ⟩) along with the contours of

normalized mean streamwise velocity (⟨U⟩/U∞) on three planes along the span of the cylinder,

namely at Z/D = −3, 0, and 3. These planes are marked in Figure 3.3 (a). It is observed

that the streamwise length of the mean recirculation region decreases as the free surface end

of the cylinder is approached for θ = 0o and 15o. For θ = 15o, the location of the additional

saddle point (SP2) moves further downstream on planes near the upstream end. A similar

discussion can be proposed for θ = 30o, where the suppressed mean recirculation region on

Z/D = −3 and mid-span plane is recovered for Z/D = 3, which is nearer the downstream

end. Najafi et al. [40] attributed such flow behavior to the onset of fluid movement in the

streamwise direction (see Figure 4.2) in the vicinity of cylinder rear surface and the flow

along the span from bottom free end to the top free surface-piercing end of the cylinder.

Figure 4.5 represents an average of the Z/D = 3 and Z/D = −3 planes shown previously

in Figure 4.4. These results are remarkably similar to those obtained for Z/D = 0 (mid-span

plane) in Figure 4.4. The contribution of each end condition on the wake structure of the

mid-span plane is therefore approximately equal. However, at higher yaw angles, the averaged

value of the wake appears to be biased toward the influence of the upstream end, which is

supported by earlier published results [35, 39, 8], however, employing different end conditions.

This result is further discussed in Chapter 5 concerning the effect of yaw oscillation.

4.1.3 Effect of End Conditions

The time-averaged wake closure points along the span of the cylinder yield a line, generally

referred to as the demarcation line [81], which is shown in Figure 4.6 for the static yawed

cylinder in the present study. The demarcation line represents the border of positive and

negative mean streamwise velocity levels downstream of the cylinder. Analysis of the angle

of inclination of the demarcation line is an appropriate technique to assess the uniformity
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Figure 4.4: Mean flow streamline topology (⟨ψ⟩) superimposed over contours of normalized
mean streamwise velocity (⟨U⟩/U∞) for three planes parallel to the bottom wall of the tunnel
along the span of the static cylinder located at Z/D = −3, 0, 3 for yaw angles of θ = 0o, 15o,
and 30o at Re = 1.5×104. The symbols represent saddle points as previously described in
Figure 4.3.

Figure 4.5: Average of streamwise flow for Z/D = 3 and Z/D = −3 planes, shown in Figure
4.4, for the static cylinder at θ = 0o, 15o, and 30o. The symbols represent saddle points as
previously described in Figure 4.3.

of the flow along the span for time-averaged flow field results. Other methods exist for

instantaneous data, such as based on streaklines detected using flow visualization (see for

example Williamson [88]). For a two-dimensional wake, the demarcation line or the vortex

filaments should be parallel to the longitudinal axis of the cylinder [32, 40, 89]. For the
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Figure 4.6: Schematic of the bifurcation line and corresponding measurements of α for the
various yaw angles considered. The mean value of α = 3.8o is shown by the dashed line.

present study, a straight line was fitted to the wake closure points calculated from the planes

at Z/D = 3, 0, and 3, and was used to determine the angle of inclination with respect to

the cylinder. Figure 4.6 shows the calculated values of the demarcation line angle α (as

defined by the schematic given in the same figure) with respect to the yaw angle and the

uncertainty of this measurement (which was primarily related to the small number of points

used for the assumed linear fit). The yaw-averaged value of the demarcation line angle (α) is

approximately 3.2o, as shown by the dashed line in Figure 4.6. For the range of yaw angles

considered, the values of α remain approximately constant, (as seen in Figure 4.6) and the

spanwise variation in the wake structure towards the free-surface piercing end offsets the

variation towards the free immersed end of the cylinder at the mid-span (as seen in Figure

4.5), therefore, the competing influence of the end conditions may be assumed to be constant

at the mid-span of the cylinder as it is yawed within the range considered.

4.2 Mean Wake Parameters

To quantitatively study the spanwise variation of the near wake flow of the static yawed

cylinder, the streamwise velocity profiles on the wake centerline and across the wake are
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compared for the three (X,Y ) planes considered. For the mid-span plane, the wake parameters

including the wake closure length and the wake width and the correlation between the two

are compared in detail for different yaw angles. The variation of the wake closure length

along the whole span of the cylinder is also provided for the static yawed cylinder.

4.2.1 Velocity Profiles

4.2.1.1 The Mid-Span Plane

The normalized mean streamwise velocity along the centerline of the wake for the case with

θ = 0o is plotted in Figure 4.7 in comparison to similar data found in the literature [83, 90].

These velocity profiles are plotted against X ′, which is the streamwise distance measured

from the base of the cylinder along the wake centerline (that is, X ′ =X−a/2, where a is the

semi-major axis of the cylinder cross-section at the visualization plane). While the results

of the present study at Re = 1.5 × 104 are in good agreement with those of McKillop and

Durst [90] obtained at Re = 1.4×104, the current results at Re = 5×103 differ from those

of Norberg [83] at the same Reynolds number. This disparity between the present results

and those reported in Norberg presumably originates due to the differences in the following

experimental parameters: i) length to diameter ratio of the cylinder (Norberg’s cylinder had

a length to diameter ratio of L/D = 65, whereas this ratio in the present study is L/D = 13),

ii) the blockage ratio (Norbeg’s study had a blockage ratio of 1.5%, while this value for the

present study is 8%), and iii) cylinder end condition (Norberg’s study used endplates, while

the cylinder in the present work has free ends). On the other hand, these conditions in

McKillop and Durst’s study with a blockage ratio of 10% and aspect ratio of L/D = 10 are

more similar to the conditions of the present work.

Figure 4.8 shows the evolution of the normalized mean streamwise velocity along the wake

centerline for the static cylinder for the yaw angles of θ = 0o to 30o. The maximum backflow

velocity in the wake of the cylinder decreases with increasing yaw angle. Moreover, at the yaw

angle of θ = 30o, the backflow is eliminated owing to the suppressed mean recirculation region,
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apparent from the corresponding streamline patterns found in Figure 4.3. The wake closure

length (Lc) normalized by the cylinder diameter (D) are Lc/D = 1.18, 1.14, 1.07, 0.98 for

yaw angles of θ = 0o, 4o, 15o, and 26o, respectively. These results show a 20% decrease in the

wake closure length from the non-yawed cylinder to the yaw angle of 26o.

The effect of yaw angle on the wake width can be seen in Figure 4.9, where the cross-stream

profiles of the normalized mean streamwise velocity at two streamwise locations downstream

of the cylinder are depicted for the yaw angles of θ = 0o to 30o. For the top plot in Figure 4.9,

X/D= 1.5 is located near the vicinity of wake closure whereas for the bottom plot X/D= 2 is

downstream of the mean recirculation region. The characteristic features of these profiles are

given in Table 4.1. At X/D = 1.5, the maximum velocity deficit (⟨Ud,max⟩) decreases as the

yaw angle increases. This indicates that the mean streamwise velocity increases in the near

wake of the cylinder with yaw. The trend is consistent with the results shown in Section 4.1,

where the increase in the mean streamwise velocity with increasing yaw angle was attributed

to the increasing contribution of the axial flow to the velocity in the streamwise direction. As

listed in Table 4.1, the minimum value of the mean streamwise velocity (⟨Umin⟩) varies from

0.17U∞ in the backflow direction for the non-yawed cylinder to streamwise velocity 0.08U∞ in

the inflow direction for θ = 30o.The maximum value of the mean streamwise velocity, ⟨Umax⟩

for most cases at X/D = 1.5 are around 1.1U∞. ⟨Umax⟩ occurs at Y/D = 0.65, which is in

Figure 4.7: Comparison of the normalized mean streamwise velocity (⟨U⟩/U∞) along the
wake centerline for a cylinder with its longitudinal axis normal to the freestream (i.e., θ = 0o).

53



4.2 MEAN WAKE PARAMETERS

Figure 4.8: Normalized mean streamwise velocity (⟨U⟩/U∞) along wake centerline for the
static cylinder at yaw angles of θ = 0o, 4o, 15o, 26o, and 30o.

agreement with previously published data [83, 40].

Streamline patterns for all yaw angles (see Figure 4.3) show that X/D = 2 is located

downstream of the wake closure point. Therefore, a local maximum value in the mean

streamwise velocity previously identified in the similar plots at X/D = 1.5 does not occur.

Comparing ⟨Umax⟩ values at X/D = 2 in Table 4.1 indicates that the maximum value of the

mean streamwise velocity is 1% of the freestream velocity for all θ, while values higher than

freestream velocity are shown at X/D = 1.5 at the same lateral position. As reported in Table

4.1, the highest velocity deficit still occurs for the non-yawed cylinder while the minimum

velocity deficit occurs for a yaw angle of 30o. Comparing the half wake width values, the

wake width at X/D = 2 is increasing with the yaw angle. The maximum value of half wake

width occurs for θ = 30o where it is approximately 8% higher than the non-yawed cylinder.

4.2.1.2 Z/D = ±3 Planes

Figure 4.10 shows the profiles of the mean normalized velocity (⟨U⟩/U∞) for the static yawed

cylinder for θ = 0o, 4o, 15o, 26o and 30o at Re =1.5×104 . Results are shown on two spanwise

locations along the span of the cylinder, namely at Z/D = 3 plane (top row) and Z/D = −3

plane (bottom row).

From the top row of Figure 4.10, it is apparent that in the Z/D = 3 plane, by increasing
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Figure 4.9: Normalized mean streamwise
velocity (⟨U⟩/U∞) at X/D = 1.5 (top) and
X/D = 2 (bottom).

Table 4.1: The minimum and maximum values of the normalized mean streamwise velocity,
and the maximum streamwise velocity deficit (⟨Ud,max⟩ = U∞ −⟨U(x,y)⟩) for static yawed
cylinder at two different streamwise locations downstream of the cylinder.

X/D = 1.5 X/D = 2
θo ⟨Umin⟩

U∞
⟨Umax⟩

U∞
⟨Ud,max⟩

U∞
⟨Umin⟩

U∞
⟨Umax⟩

U∞
⟨Ud,max⟩

U∞

y1/2
D

0 -0.17 1.09 1.17 0.22 1.01 0.79 0.47
4 -0.13 1.08 1.13 0.24 1.01 0.76 0.49
15 -0.05 1.08 1.05 0.28 1.01 0.72 0.50
26 0.00 1.07 0.99 0.28 1.01 0.72 0.51
30 0.08 1.05 0.92 0.33 1.01 0.66 0.52
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the yaw angle from θ = 0o to 15o, the extent of the reverse flow region and the wake closure

length decreases. Beyond θ = 26o, at Z/D = 3, it can be observed that a region of positive

streamwise velocity occurs immediately behind the rear surface of the cylinder and the wake

closure length increases. The highest positive streamwise velocity occurs at θ = 30o while the

reverse flow velocity on the wake centerline decreases to almost zero. In the Z/D = −3 plane,

there is a similar trend of reduction in the extent of reverse flow region with increasing yaw

angle, as shown in the bottom row of Figure 4.10. For yaw angles of θ = 26o and 30o, the

flow at the rear side of the cylinder experiences a no-reverse flow situation.

Figure 4.10: Profiles of mean normalized streamiwse velocity (⟨U⟩/U∞) for the static yawed
cylinder in Z/D = 3 plane (top) and Z/D = −3 plane (bottom) for yaw angles of θ = 0o, 4o,
15o, 26o, and 30o at Re = 1.5×104.
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Figure 4.11: Spanwise variation of the
mean wake closure length for static
yawed cylinder (⟨Lc⟩/D) for yaw angles
of θ = 0o, 4o, 15o, 26o, and 30o at Re
= 1.5×104.

4.2.2 Spanwise Variation of Wake Closure Length

Figure 4.11 depicts the spanwise variation the time-averaged wake closure length (⟨Lc⟩) for

the static yawed cylinder at yaw angles of θ = 0o, 4o, 15o, 26o, and 30o. From profiles of

Figure 4.11, it is evident that the wake closure length is almost constant along the majority

of the span of the cylinder for the yaw angles of θ = 0o to θ = 15o. For θ = 26o and 30o, the

wake closure length along the span of the cylinder is reported for two separated regions. The

mean recirculation region between the two is shown to be suppressed. The extension of mean

recirculation region suppression along the top half of the cylinder is remarkable at θ = 30o,

where it only exists for regions between Z/D = 3.5 to 4.5. For all yaw angles, the wake closure

length significantly decreases near the bottom end due to the interaction of the cylinder free

end trailing vortices and the regular vortex shedding. Near the free surface-piercing end, the

recirculation region is elongated downstream presumably under the impact of the free surface

end condition. Figure 4.11 also reveals that the wake closure length along the span of the

cylinder progressively decreases with increasing yaw angle for the static yawed cylinder. The

results are consistent with the flow topology presented in Figure 4.1.
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4.3 Vortex Shedding

4.3.1 The Mid-Span Plane

The vortex shedding is determined by obtaining the frequencies on the power spectral density

function. The frequency of vortex shedding in the present work is presented in terms of the

Strouhal number. Figure 4.12 (a) shows the velocity spectra at X ′/D = 2.0 and Y/D = 1.5

for the static cylinder at different yaw angles. X ′, which is the streamwise distance from

the base of the cylinder, is used to locate the probe at the same distance from the surface

of the cylinder at all yaw angles. It is apparent that for all yaw angles there is a peak on

the energy spectra that corresponds to the Strouhal number of vortex shedding. The value

of St for each yaw angle is presented in Figure 4.12 (b). By increasing the yaw angle, the

Strouhal number of vortex shedding decreases from around St = 0.197 for θ = 0o to around

St = 0.175 for θ = 30o. Similar trend in the vortex shedding frequency of the static yawed

cylinders are can be seen in the literature [8, 32, 40, 91]. Moreover, Figure 4.12 (a) reveals

that the height of the peak on the energy spectra is significantly reduced by increasing the

yaw angle indicating the reduction in the vortex shedding intensity. At higher yaw angles,

especially beyond θ = 15o, the width of the region centered about the peak on the spectra

broadens with the yaw angle, which can be associated with the decorrelation or breakdown

of the large organized structures [36, 32]. The disorganized vortex shedding is depicted by

the instantaneous vorticity downstream the cylinder for θ = 0o and 30o at the mid-span in

Figure 4.13. The broadening of the peak and reduction in its magnitude is consistent with the

variation of flow structure that was shown for the related PIV results previously presented in

Figures 4.2 and 4.3, where increasing yaw angle led to suppression of swirl patterns due to

the increase in the magnitude of positive axial velocity.

Applicability of the independence principle for the static yawed cylinder in the current

study is examined from the ratio of StN /Sto at each yaw angle and is shown in Figure 4.14.

The Strouhal number of vortex shedding based on the normal component of the freestream is
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given by StN and Sto is the Strouhal number of vortex shedding at θ = 0o, which is calculated

to be around 0.203 in the current study at Re = 1.5 × 104. In Figure 4.14, the results are

compared to the literature for both static downstream (DY) and upstream (UY) yawed

cylinders at subcritical flow. In case of validity of IP, the StN/Sto should be equal to 1 at

all yaw angles. For the present study, the StN/Sto ratio is close to 1 up to θ = 20o. For

θ = 25o and 30o, the results deviate from those predicted by the IP, which aligns with the

other experimental results for finite cylinders obtained by Ramberg [8] and Zhou et al. [91].

This can be related to the change in the flow patterns at high yaw angles previously shown

in Figure 4.3, namely an increase in the positive streamwise flow behind the cylinder and

the reduction and eventually suppression of the swirl patterns. Interestingly, for an infinite

yawed cylinder, the numerical flow simulation of Zhao et al. [32] are observed to indicate

StN /Sto = 1 even at the high yaw angles. The differences between the results shown in Figure

4.14 are presumably attributed to differences in the end conditions, blockage ratio, and the

aspect ratio of the cylinder considered in each study. The impact of Reynolds number and

aspect ratio on the vortex shedding of the static yawed cylinder will be examined later in

Chapters 6 and 7, respectively.

Figure 4.12: a) Normalized power spectral density of the streamwise velocity for X ′/D = 2
and Y/D = 1.5 for the static cylinder at different yaw angles. b) Variation of Strouhal number
of vortex shedding with yaw angle at Re = 1.5×104.
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Figure 4.13: Instantaneous vorticty (ωzD/U∞) at the mid-span for the static cylinder at
θ = 0o and 30o.

Figure 4.14: Variation of StN/Sto with the yaw angle for the present work and other
experimental and numerical studies. DY indicates the cases with the static cylinder inclined
in the downstream direction and UY denotes the case with upstream yawed cylinder.

4.3.2 Spanwise Variation

In order to assess the variation of the vortex shedding frequency along the span of the static

yawed cylinder, the probe was located at X ′/D = 2 and Y/D = 1.5 and three spanwise

locations of Z/D = 3, 0, -3. The spanwise variation of the streamwise velocity spectra at

for the static cylinder at θ = 0o, 15o, and 30o are shown in Figure 4.15. It is apparent that

the height of the peak region associated with vortex shedding decreases and it becomes

further broadband towards the bottom free end. This is attributed to the effect of high-
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magnitude positive axial flow generated from the upstream end that interferes and suppresses

the organized vortex shedding, as previously demonstrated in Figures 4.4 and 4.2). The

reduction in the energy of the peak and the enlargement in the width of the peak region at

Z/D = −3 is more pronounced at the yaw angle of θ = 30o, which indicates the significant

mitigation of the vortex shedding near this region. However, it is apparent that even for

θ = 30o, the vortex shedding is recovered downstream the top half of the cylinder at Z/D = 3.

This is consistent with the PIV results previously shown in Figure 4.1 and 4.11 in which the

mean recirculation region is suppressed significantly along the bottom half of the span up to

around Z/D = 3 and is recovered up to around Z/D = 4.5. Figure 4.15 also indicates that

the Strouhal number of vortex shedding decreases for the plane closer the bottom free end.

The values Strouhal number of vortex shedding along the span of the cylinder for yaw angle

of θ = 15o are presented in this figure as an example. It is shown that the Strouhal number

decreases from St = 0.197 at Z/D = 3 to St = 0.184 at Z/D = −3. The reduction in the

Strouhal number closer to the free end of the static cylinder is in agreement with the trend

provided in the literature [39, 60].

Figure 4.15: Spanwise variation of the streamwise velocity spectra for the static cylinder at
θ = 0o, 15o, and 30o.
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4.4 Chapter Summary

In this chapter, the near wake of the static yawed cylinder at Reynolds number of 1.5×105

with L/D = 13 were studied. The range of yaw angle varied between θ = 0o to 30o. It was

shown that by increasing the yaw angle, the streamline patterns downstream the cylinder

becomes further parallel to the axis of the cylinder, except for the regions in the vicinity of

both ends that are under the impact of the free-surface near the top and the free-end trailing

vortices at the bottom. Results revealed that the magnitude of the reverse flow velocity

within the mean recirculation region decreases with yaw angle and at high yaw angle of

θ = 30o, the suppression of the mean recirculation region was observed along the majority

of the span that could result in lower drag. Studying the variation of axial velocity, it was

observed that the increase in the magnitude of axial flow generated from the bottom free end

of the cylinder is the dominant factor that led to the spanwise variations in the near wake of

a yawed cylinder.

Evaluation of the vortex shedding behavior showed that the high-magnitude axial flow

reduces the mixing between the separating shear layers and leads to a less periodic vortex

shedding at lower frequencies for high yaw angles. Investigation of the validity of the IP for

the static cylinder indicated that it did not apply beyond θ = 20o.
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Chapter 5

Results: Effect of Reduced Frequency

The near wake of the cylinder undergoing yaw oscillation over a range of reduced frequencies

is examined for the cylinder with L/D = 13 at Re = 1.5×104. A comparison is made between

the near wake flow characteristics of a yaw-oscillating cylinder and the baseline stationary

counterpart at corresponding yaw angles previously discussed in Chapter 4. First, the effect

of yaw oscillation on the flow characteristics is studied from the phase-averaged perspective

in the (X,Z) planes at specific yaw angles. Next, the phase-averaged and yaw-averaged

data are used to evaluate the influence of reduced frequency on flow topology and the wake

parameters in the (X,Y ) planes. Finally, the time-resolved results are used to assess the

variation of vortex shedding frequency with the yaw oscillation of the cylinder.

5.1 Flow Structure in the (X,Z) Symmetry Plane

Phase-averaged streamline topology (⟨ψϕ⟩) and contours of normalized streamwise velocity

(⟨Uϕ⟩/U∞) for the yaw-oscillating cylinder at different oscillation frequencies ranging from

K = 0.5 to 1.3 in the (X,Z) plane are shown in Figures 5.1 and 5.2, respectively. The

time-averaged results for the static cylinder at yaw angles corresponding to each phase are

given in the first row of Figures 5.1 and 5.2.

Figure 5.1 indicates that when the cylinder undergoes yaw-oscillations, the flow patterns
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Figure 5.1: Phase-averaged streamline topology (⟨ψϕ⟩) for the static yawed cylinder and
the yaw-oscillating cylinder at various reduced frequencies with K = 0.5, 1, and 1.3 in the
Y/D = 0 symmetry plane for eight discrete phases over a complete oscillation cycle at Re
= 1.5×104. The time-averaged results for the static yawed cylinder at corresponding yaw
angles are given in the first row.

deviate from the corresponding flow patterns of the static cylinder, and this discrepancy

becomes even more substantial with increasing reduced frequency. During the first half of an

oscillation cycle (from ϕ= 0 to ϕ= π), the ⟨ψ⟩ patterns in Figure 5.1 show that as the yaw

angle increases, the near-wake region around the top-middle section of the yaw-oscillating

cylinders (centered about Z/D = 3) shows a reduction in the streamwise extent of the mean

recirculation region, which generally becomes suppressed by increasing the reduced frequency.
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The mean recirculation region in this region elongates gradually back in the second half of

the cycle (from ϕ= π to 7π/4) as the cylinder returns to the non-yawed position. On the

other hand, flow patterns near the bottom half of the yaw-oscillating cylinders exhibit the

opposite trend. That is, the reverse flow region elongates in the streamwise direction in

the first half of the oscillation cycle, whereas it shrinks or becomes eliminated in the return

cycle. Additionally, at the phase of ϕ= 3π/4, the streamlines within the mean recirculation

region on the lower half of the cylinder (centered around Z/D = −4.5) start getting further

directed towards the downstream end for all reduced frequencies. This tendency in the

near-wake streamlines extends to a larger section of the cylinder span for the following phases

up to ϕ= 3π/2. This observation in streamline patterns is associated with the presence of a

large-magnitude axial flow around the same region, which will be discussed later.

In Figure 5.2, contours of phase-averaged streamwise velocity for the yaw-oscillating

cylinder with a reduced frequency of K = 0.5 show that the negative streamwise velocity in

the upper half of the cylinder (centered about Z/D = 3) gradually decreases in magnitude

in the first half of the oscillation cycle from ϕ = 0 to π. This result may be attributed to

the positive streamwise thrust added to the fluid behind the cylinder by the same direction

movement of the cylinder’s top half. For higher reduced frequencies of K = 1 and 1.3 and

at ϕ = π/4, the significant increase in the streamwise thrust of the fluid, induced by the

positive-direction motion of the cylinder combined with the large acceleration in the cylinder’s

top half, leads to suppression in the mean recirculation region near the top of the cylinder

(around Z/D = 5). At this phase, the increase in the spanwise extent of this suppression when

the reduced frequency is increased from K = 1 to 1.3 is presumably a result of the increase in

the acceleration of the cylinder motion with increasing oscillation frequency. This suppression

spreads to a larger spanwise region in the top half of the cylinder (centered around Z/D = 3)

when the cylinder reaches ϕ = π/2 for both K = 1 and 1.3. Although for the low reduced

frequency of K = 0.5, the magnitude of reverse velocity keeps decreasing gradually near the

top half of the cylinder continues to move in the positive X-direction as the oscillation phase

of the cylinder passes from ϕ= 3π/4 and reaches ϕ= π, for the higher reduced frequencies of
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Figure 5.2: Contours of normalized phase-averaged streamwise velocity (⟨Uϕ⟩/U∞) for the
static yawed and the yaw-oscillating cylinder at various reduced frequencies of K = 0.5, 1, and
1.3 in the Y/D = 0 symmetry plane for eight discrete phases over a complete oscillation cycle
at Re = 1.5×104. The time-averaged results for the static yawed cylinder at corresponding
yaw angles are given in the first row.

K = 1 and 1.3, the cylinder deceleration at these phases leads to a recovery in the negative

streamwise velocity and a local resurgence of the mean recirculation region in the wake of

the upper half of the cylinder for the same phases. From these trends, it appears that the

acceleration or deceleration of the cylinder during its yaw oscillation influences the near

wake in the top half span notably only at moderate reduced frequencies (K = 1 and 1.3).

In the return cycle, as the top half of the cylinder moves against the freestream direction,
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the magnitude and the streamwise extent of the reverse flow region gradually increase for

all the reduced frequencies. However, the start of this increase in the magnitude of the

negative streamwise velocity is delayed to ϕ= 3π/2 for K = 0.5 due to the development of a

very high-magnitude positive axial flow in the top half of the cylinder at earlier phases of

the return cycle, which will be shown in Figure 5.4. Note that the increase in the negative

streamwise velocity in the direct vicinity of the cylinder top end at each phase is related

to the effect of the free surface, which becomes more pronounced with increasing reduced

frequency.

Contours of ⟨Uϕ⟩/U∞ in Figure 5.2 reveal that for all the yaw-oscillating cylinders during

the movement of the bottom half of the cylinder against the inflow direction, the peak

magnitude of the reverse flow behind the bottom half of the cylinder (near Z/D = −3) first

gradually increases from ϕ = 0 to π/2, and then breaks up and gradually decreases from

ϕ= π/2 to π. This reduction in the reverse flow velocity from ϕ= π/2 to π is presumably

related to the increase in the spanwise flow near the lower half of the cylinder (discernable

from the ⟨ψ⟩ patterns given earlier in Figure 5.1 and from the axial velocity distributions to

be discussed later in Figure 5.4. The deceleration in the cylinder motion as it moves from

ϕ= π/2 to π might also contribute to this trend. In the return cycle of the yaw-oscillating

cylinders, as the movement of the bottom half of the cylinder is reversed so that it moves

in the inflow direction, the induced positive-direction streamwise thrust on the fluid by the

bottom half of the moving cylinder and the increase in the spanwise flow leads to the gradual

decrease or even local disappearance of the reverse velocity from ϕ= π to 5π/4 around the

lower half of the cylinder for all reduced frequencies. In the return cycle from ϕ= 3π/2 to

7π/4, although the increase in the magnitude and extent of the reverse flow seen in the top

half gradually spreads to almost the entire lower half of the cylinder for the lower reduced

frequency of K = 0.5, for higher reduced frequencies, with the deceleration of the cylinder,

the resurgence of the reverse flow in the lower half mainly occurs near the top end of the

lower half.

Figure 5.3 shows the contours of phase-averaged normalized vorticity (⟨ωy,ϕ⟩D/U∞) for
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Figure 5.3: Contours of normalized phase-averaged vorticity (⟨ωy,ϕ⟩D/U∞) for the static
yawed and the yaw-oscillating cylinder at various reduced frequencies of K = 0.5, 1, and 1.3
in the Y/D = 0 symmetry plane for eight discrete phases over a complete oscillation cycle at
Re = 1.5×104. The time-averaged results for the static yawed cylinder at corresponding yaw
angles are given in the first row.

the yaw oscillations at various reduced frequencies. Time-averaged results (⟨ωy⟩D/U∞) for

the static yawed cylinder are also shown as a reference for comparison. Figure 5.3 reveals

that the flow in the near-wake is strongly three-dimensional. Similar to the observation

made for the static cylinder, the negative vorticity still occurs near the bottom free end

of the yaw-oscillating cylinders all along their oscillation period. However, contrary to the

results of the statically yawed cylinder, the positive vorticity is not always located near the
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bottom end of the oscillating cylinder, but rather it is spread both in the spanwise and the

streamwise directions depending on the phase of the oscillation. As the reduced frequency of

oscillations increases, the peak magnitude of positive vorticity increases for a given phase,

and its ascend towards the mid-span section in the return cycle is delayed. In the return

cycle, the positive vorticity dissipates while it ascends towards the middle section of the

cylinder. This dissipation in the peak clockwise vorticity initiates starting from ϕ= 5π/4 for

K = 1, whereas it is delayed until ϕ= 3π/2 for K = 1.3.

Figure 5.4 illustrates the contours of time-averaged normalized axial velocity (⟨VA⟩/U∞)

for the static yawed cylinder and contours of phase-averaged normalized axial velocity

(⟨VA,ϕ/U∞⟩) for the yaw-oscillating cylinder at three reduced frequencies of K = 0.5, 1, and

1.3 obtained in the symmetry plane. A general inspection of Figure 5.4 for the yaw-oscillating

cylinders demonstrates a substantial spanwise variation for the axial flow, which is strongly

dependent on the oscillation phase and the frequency of oscillations. For K = 0.5, the

moderate levels of positive axial flow, detected near the vicinity of the bottom end of the

cylinder at ϕ= 0, increases progressively both in magnitude and extent, spreading towards the

upper sections of the wake, with increasing yaw angle during the first half of the oscillation

cycle from ϕ= 0 to π. The extent of the axial flow reaches its maximum at ϕ= 5π/4 and 3π/2.

At ϕ= 7π/4, which is when the cylinder is about to return to its non-yawed position, this

upward axial flow in the near-wake and along the span of the cylinder decreases significantly.

On the other hand, a weak negative axial flow (oriented from the top to the bottom end of

the cylinder) emerges at ϕ= 0 to π/2 locally behind the upper half of the cylinder (within

Z/D > 0), as can be distinguished through the solid white line marking the ⟨VA,ϕ⟩/U∞ = 0

level in the contour patterns (i.e., the border between the negative and positive contour

levels). This weak negative axial flow eventually recedes at ϕ= 3π/4, becoming constrained

to a very small spanwise region near the free surface before completely disappearing in the

following phases of oscillation.

For moderate reduced frequencies of K = 1 and 1.3, in the first half of the oscillation cycle,

with increasing yaw angle from ϕ = 0 to 3π/4, the low-magnitude, negative axial velocity

69



5.1 FLOW STRUCTURE IN THE (X,Z) SYMMETRY PLANE

Figure 5.4: Contours of normalized phase-averaged axial velocity (⟨VA,ϕ⟩/U∞) for the
static yawed cylinder and the yaw-oscillating cylinder at various reduced frequencies of
K = 0.5, 1, and 1.3 in the Y/D = 0 symmetry plane for eight discrete phases over a complete
oscillation cycle at Re = 1.5×104. The time-averaged results for the static yawed cylinder
at corresponding yaw angles are given in the first row. The contour levels of ⟨VA,ϕ⟩/U∞ = 0
and 0.4 are shown by white solid line and black dashed line, respectively.

region prevalent near the top end of the cylinder at the early oscillation stage of ϕ = π/4,

extends toward the lower sections of the span with increasing yaw angle until the phase of

ϕ= 3π/4. The negative axial velocity levels reach up to Z/D = −1.5 and −2 in the lower half

of the cylinder wake when the cylinder is at ϕ= 3π/4 for K = 1 and 1.3, respectively. Notice

that this trend of increasing extent in the low-amplitude downward-oriented flow toward

the lower sections of the span with increasing yaw angle is the direct opposite of what was

70



5.2 FLOW STRUCTURE IN THE (X,Y ) PLANES

observed at the lower reduced velocity of K = 0.5 and may be attributed to the dominance

of the downward motion of the flow near the upper half of the span under the effect of the

cylinder’s downstream movement (see Figure 5.1). This low-amplitude downward axial flow

clashes with the opposite-direction axial flow that originates from the free lower end of the

cylinder and prevents the upward axial flow from being expanded over the entire span. Near

the lower end of the cylinder, the upward oriented axial flow is generated at moderate levels

starting from ϕ= 0. This positive axial flow becomes stronger and stronger in magnitude as

the phase of oscillation advances in the first half of the oscillation cycle up until ϕ= π. In

the first half of oscillations, the positive (upward-oriented) axial velocity near the bottom

free end of the cylinder for K = 1 and 1.3 appears to be higher in magnitude than those seen

for K = 0.5. The spread of the positive axial flow over the span of the cylinder becomes

notable for K = 1 and 1.3 in the return cycle from ϕ= π to 7π/4. In the last quarter cycle of

oscillations, from ϕ= 3π/2 to 0, both the spanwise extent and the magnitude of the positive

axial flow undergoes a reduction. The remnants of the strong positive axial flow can still be

observed around the middle section of the cylinder at ϕ= 0. Comparing the results of the

yaw-oscillating cases in Figure 5.4, where contour levels of ⟨VA,ϕ⟩/U∞ = 0.4 are highlighted

by a dotted line, it can be noticed that with increasing reduced frequency, the development of

a strong positive axial flow over the span of the cylinder is delayed. For instance, the positive

axial velocity of around 0.4U∞ and higher occurs behind the mid-span of the cylinder for the

first time at ϕ= π for K = 0.5, whereas it is delayed to ϕ= 5π/4 and 3π/2 for K = 1.0 and

1.3, respectively.

5.2 Flow Structure in the (X,Y ) Planes

The near-wake flow in the (X,Y ) planes, namely at the mid-span and the Z/D = ±3 planes is

studied in this section. First, the results at the mid-span are evaluated from the time-averaged

perspective and then the phase-averaged technique is used to study the flow at discrete phases

at the mid-span and Z/D = ±3 planes.
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5.2.1 Yaw-Averaged Near Wake Flow Topology in the Mid-Span

Plane

For the yaw-oscillating cylinders, the yaw-averaged near-wake results at a given oscillation

frequency are determined from the average of the velocity field over 4000 consecutive snapshots,

which covers at least 40 complete cycles of yaw oscillation. In contrast, for the static cylinder,

the yaw-averaged results are determined by averaging the time-averaged velocity data of

12 discrete yaw angles from θ = 0o to 30o. Note that, hereafter, the symbols signifying

the quantities corresponding to the yaw-averaged data are given a subscript of θ to denote

the applied averaging procedure. The left column of Figure 5.5 depicts the yaw-averaged

streamline topology (⟨ψθ⟩) superimposed over the contours of the normalized yaw-averaged

streamwise velocity (⟨Uθ⟩/U∞) for both the stationary yawed cylinder and the cylinder

undergoing yaw oscillations at various oscillation frequencies ranging from K = 0.25 to 1.3

at Re = 1.5×104. From these plots, it is apparent that the counter-rotating swirl patterns

remain visible for each of the cases. However, with increasing reduced frequency, the core

of these swirl patterns gradually approaches the base of the cylinder, and the streamwise

extent of the swirls decreases. This effect is further shown by the upstream relocation of

saddle points SP1 and SP2 with reduced frequency. For higher reduced velocities of K = 1

and 1.3, SP2 is not detectable. As indicated earlier in Section 4.1.2.1, the existence of SP2,

which is the saddle point between the base of the cylinder and the mean recirculation region,

is related to the presence of an axial flow along the longitudinal axis of the cylinder. The

observed disappearance of this saddle point at high-frequency yaw oscillations (i.e., K = 1

and 1.3) may be related to the weakening of the axial flow in the spanwise direction.

The corresponding contours of normalized yaw-averaged vorticity (⟨ωz,θ⟩D/U∞) are

presented in the right column of Figure 5.5. In these plots, the contour levels of ⟨ωz,θ⟩D/U∞ =

±0.025, ±0.05, ±0.01 are specified by the solid, dash, and dash-dot lines, respectively.

Note that the lowest of these three highlighted vorticity levels (⟨ωz,θ⟩D/U∞ = ±0.025) is

approximately 10% of the maximum vorticity in the field of view. A comparison of the
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Figure 5.5: Yaw-averaged streamline (⟨ψθ⟩) topology superimposed over the normalized yaw-
averaged streamwise velocity (⟨Uθ⟩/U∞) and the contours of the yaw-averaged normalized
vorticity (⟨ωz,θ⟩D/U∞) for static yawed and yaw-oscillating cylinder at reduced frequencies
of K = 0.25, 0.5, 1, and 1.3 at Re = 1.5×104. For the contours of ⟨ωz,θ⟩D/U∞ given in the
second column, the levels for the solid, dashed, and dash dot lines are ±0.025, ±0.05, ±0.1,
respectively. Symbols represent saddle points as described in Figure 4.3.

downstream extend of the contour lines with ⟨ωz,θ⟩D/U∞ = ±0.025 shows that the length

of the shear layers reduces with increasing oscillation frequency. The observed reduction in

the streamwise extend of the shear layers with increasing oscillation frequency is consistent

with the observed decrease in the streamwise extend of the mean recirculation region with

increasing K, shown in the left column of Figure 5.5. Furthermore, from the downstream

ends of the solid contour lines of the ⟨ωz,θ⟩D/U∞ = ±0.025 level, it can be seen that the

73



5.2 FLOW STRUCTURE IN THE (X,Y ) PLANES

yaw-averaged shear layers become more curved towards the wake centerline at higher reduced

frequencies. For comparison, Figure 4.3 showed that for the static cylinder, the shape of the

mean shear layers was less curved with a greater yaw angle, which suggested that the shear

layer would become more stable resulting in the mitigation of vortex shedding as was shown

by Wang et al. [34]. Therefore, increasing reduced frequency leads to a reduction in the

stability of the yaw-averaged shear layers.

The effect of the yaw oscillation on the drag can be speculated based on the near-wake

flow topology information (albeit for only the central mid-span region). It was previously

shown that an increase in the time-averaged streamwise velocity near the rear surface of a

yawed cylinder and/or an increase in the streamwise length of the mean recirculation region

reduces the momentum deficit and leads to a reduction in the base suction pressure [34,

32, 40]. This is consistent with the modified Kirchhoff’s free streamline theory proposed by

Roshko [92]. In the present results, since the streamwise extent of the mean recirculation

region reduces in the mid-span for the higher reduced frequencies of oscillation at K = 1 and

1.3, it can be inferred that there is an increase in the base suction pressure and therefore an

increase in the mean drag coefficient. Again, this is only relevant to the mid-span and the

total drag over the entire span of the cylinder could not be so simply speculated on.

5.2.2 Phase-Averaged Flow Topology in the Mid-Span Plane

The near-wake flow topology at the mid-span of the cylinder using phase-averaged data at

eight discrete phases of yaw oscillation, which were marked earlier in Figure 3.4 (a). At

each phase, a set of 400 independent velocity fields were acquired and ensemble-averaged

to determine the corresponding streamline topology (⟨ψϕ⟩), streamwise velocity (⟨Uϕ⟩), and

vorticity (⟨ωz,ϕ⟩). The phases (corresponding yaw angles) considered for the yaw-oscillating

cylinder in this section exactly correspond to the yaw angles of the static yawed cylinder

examined so far. Thereby, the phase-averaged flow topology of the yaw-oscillating cylinder is

also compared in this section against the time-averaged topology of the static yawed cylinder

at corresponding yaw angles.
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Figure 5.6: Phase-averaged flow streamline topology (⟨ψϕ⟩) superimposed over the contours
of phase-averaged normalized streamwise velocity (⟨Uϕ⟩/U∞) for eight select phases of yaw
oscillations cylinder for K = 0.5, K = 1, and K = 1.3 (in the first, second, and third column of
images, respectively). For the static yawed cylinder, time-averaged streamline topology (⟨ψ⟩)
superimposed over the contours of time-averaged normalized streamwise velocity (⟨U⟩/U∞) at
yaw angles corresponding to the phases of the yaw-oscillating cylinder (in the fourth column
of images). The Reynolds number is Re = 1.5 × 104. The symbols SP1 and SP2 represent
saddle points. Schematics on the far left depict the phase, its corresponding yaw angle, and
the direction of motion of the cylinder with respect to the freestream.
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Figure 5.7: Contour plots of the phase-averaged normalized vorticity (⟨ωz,ϕ⟩D/U∞) for eight
select phases of yaw-oscillations with reduced frequencies of K = 0.5, K = 1, and K = 1.3 at
Re = 1.5 × 104 (in the first, second, and third column of images, respectively). For the static
yawed cylinder, contour plots of the time-averaged normalized vorticity (⟨ωz⟩D/U∞) at yaw
angles corresponding to the phases of the yaw-oscillating cylinder (in the fourth column of
images). The solid, dashed, and dash dot lines correspond to the contour levels of ±0.025,
±0.05, ±0.1, respectively. Schematics on the far left depict the phases of oscillation, its
corresponding yaw angle, and the direction of motion of the cylinder with respect to the
freestream.
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Figures 5.6 shows the phase-averaged streamline (⟨ψϕ⟩) patterns overlaid on the contours

of the normalized phase-averaged streamwise velocity and Figure 5.7 shows the contours of

normalized phase-averaged vorticity ⟨ωz,ϕ⟩D/U∞. Results of the yaw-oscillating cylinder are

shown in these figures at eight phases and three reduced frequencies (K = 0.5, 1, and 1.3). In

addition, the time-averaged results for the static yawed cylinder at yaw angles corresponding

to each phase are included in the far-right column of these figures. Inspecting Figure 5.6 for

K = 0.5 shows that a pair of counter-rotating swirl patterns is visible at every phase of yaw

oscillation. The streamwise extent of these swirl patterns depends not only on the yaw angle

but also on the phase of oscillation. For example, for the yaw angles of θ = 15o and θ = 26o,

comparing the results at ϕ= π/2 and 3π/4 in the first half-cycle of oscillation with the phases

ϕ= 3π/2 and 5π/4 in the second half respectively, it is evident that for the same yaw angle,

SP1 is further downstream in the return cycle compared to the first half cycle. Aligned with

this observation, Figure 5.7 also shows for K = 0.5 that the shear layers are further elongated

downstream for the phases on the second half-cycle compared to those with the same yaw

angle but on the first half-cycle. Also, the assessment of ⟨ψϕ⟩ patterns over all phases of the

yaw-oscillating cylinder case at K = 0.5 shows that once the cylinder passes the yaw angle of

θ = 4o (corresponding to ϕ= π/4), SP1 gradually moves downstream, reaching the farthest

downstream location at θ = 26o in the return cycle (ϕ = 5π/4). This is unlike the static

case where, as the yaw angle increases beyond θ = 4o, SP1 gradually moves upstream with

increasing yaw angle (as seen in the far right column in Figure 5.6). Also, during the return

cycle for K = 0.5, from θ = 26o, as the yaw angle reduces with the advancement of the phase,

SP1 moves gradually upstream. Another interesting trend for the yaw-oscillating cylinder

at the reduced frequency of K = 0.5 is related to the cores of the swirl patterns. Beyond

θ = 4o, the cores of the swirl patterns move gradually upstream with increasing yaw in the

first-half cycle and move back in the return cycle as the yaw angle changes from θ = 30o to

0o. Furthermore, the swirls are asymmetric around the wake centerline for θ > 4o, with the

core of the upper swirl generally being located more downstream. However, the situation for

the static yawed cylinder at the corresponding yaw angles is quite different. The location of
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the cores of the swirl patterns in the static case remains unchanged and symmetric for all

yaw angles.

At higher reduced frequencies of K = 1 and 1.3, the discrepancy in the streamwise extent

of the swirl patterns exists between the opposite directions of cylinder motion over the cycle.

For K = 1, the mean recirculation region is either weak or absent for the yaw angles of θ= 30o,

θ = 26o, and θ = 15o in the return cycle, which correspond to the oscillation phases of ϕ= π,

ϕ= 5π/4 and ϕ= 3π/2, respectively. At these particular phases, Figure 5.7 also shows that

the shear layers are relatively longer and flat, suggesting suppression in vortex shedding [34]

compared to other phases. For K = 1.3, at θ = 15o in the return cycle (corresponding to a

phase of ϕ= 3π/2), the mean recirculation region is significantly suppressed in Figure 5.6 and

the shear layers of that phase appear less curved in Figure 5.7, suggesting the suppression in

vortex shedding.

The overall inspection of the phase-averaged flow topology of the yaw-oscillating cases in

the mid-span of the cylinder reveals that with increasing oscillation frequency, the suppression

of the vortex shedding at the mid-span of the cylinder occurs at increasingly later phases of

oscillation in the return cycle. For instance, the less curved and elongated shear layers and

suppressed mean recirculation region occur at the phase of ϕ= π for the reduced frequency of

K = 0.5, while it is delayed to ϕ= 5π/4 and ϕ= 3π/2 for K = 1 and 1.3, respectively. This

delay in the suppression of the mean recirculation region is associated with the delay in the

development of high magnitude axial flow, as discussed in Section 5.1. It should also be noted

here that the substantial distinctions observed in the mid-span flow topology between the

same yaw angles of the static yawed cylinder (which is in a state of zero acceleration at all

times) and the yaw-oscillating cases, as well as between the same yaw angle of a yaw-oscillating

cylinder at different oscillation phases indicates that the acceleration of the cylinder may

be one of the important parameters influencing the flow. For instance, according to Figure

3.4 (a), the cylinder at phase ϕ= 3π/4 is decelerating at θ = 26o while it is accelerating at

θ = 26o at the phase of ϕ= 5π/4.

78



5.2 FLOW STRUCTURE IN THE (X,Y ) PLANES

5.2.3 Phase-Averaged Flow Topology in Z/D = ±3 Planes

In this section, the spanwise variation of the near-wake of the yaw-oscillating cylinder is

studied by comparing the phase-averaged results obtained on two (X,Y ) planes, namely at

Z/D = 3 and −3. In order to have a better understating of the impact of spanwise flow in

these planes, flow patterns on the (X,Z) planes are also provided.

5.2.3.1 Z/D = 3 Plane

Figure 5.8 depicts the phase-averaged streamline patterns (⟨ψϕ⟩) overlaid on contours of the

phase-averaged normalized streamwise velocity (⟨Uϕ⟩U∞) and Figure 5.9 shows the contours

of normalized vorticity (⟨ωz,ϕ⟩D/U∞) at the same eight phases as previously considered

for each of the yaw-oscillating cases in the Z/D = 3 plane. Moreover, the phase-averaged

streamline patterns (⟨ψϕ⟩) and contours of normalized Y -direction vorticity (⟨ωy,ϕ⟩D/U∞)

in the Y/D = 0 symmetry plane are included in Figures 5.8 and 5.9, respectively.

Inspecting Figure 5.8 demonstrates that the mean recirculation region deforms, becomes

entirely suppressed or contains strong counter-rotating swirls in the Z/D= 3 plane at different

phases of oscillation depending on the frequency of oscillations. For K = 0.5, when the phase

of oscillation is ϕ= 0, the counter-rotating swirl patterns forming behind the cylinder in the

Z/D = 3 plane appear highly deformed and asymmetric, which may be related to the change

in the direction of the cylinder motion at the end of a complete oscillation cycle. As the

phase of oscillation advances from ϕ = π/4 to 3π/4, the asymmetry in the swirl patterns

continues to exist while the negative streamwise velocity in this Z/D plane gradually reduces

under the impact of the positive-direction motion of the cylinders’ top half (as also detected

for these phases in Figure 5.2 at this Z/D level). When the phase of oscillation reaches

ϕ= π and ϕ= 5π/4, the mean recirculation bubble is suppressed at this Z/D plane, where

no swirl patterns are detectable anymore behind the rear surface of the cylinder. This is

presumably a result of the strong upward axial flow, which originates from the lower free

end of the cylinder and spreads over the span as the phase of oscillation increases, reaching
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this Z/D = 3 level at these two oscillation phases (as seen earlier in the phase-averaged axial

velocity contours given in Figure 5.4). This suppression in the recirculation bubble is also in

accord with the observed significant reduction in the reverse flow velocity at ϕ= π and 5π/4

at this Z/D plane (as seen in the corresponding contours of streamwise velocity given in the

present Figure 5.8 and the previously-shown Figure 5.2). Moreover, for K = 0.5, the contours

of Z-direction vorticity in Figure 5.9 also depict that at ϕ= π and 5π/4, the shear layers in

the Z/D = 3 plane are less curved towards the wake centerline compared to other phases.

This implies a reduction in the flapping of the separating shear layers (i.e., an increase in the

stability of the shear layers) due to the mitigation of the Karman vortex shedding [34]. From

a further inspection of the ⟨ψϕ⟩ patterns in Figures 5.8 and ⟨ωz,ϕ⟩D/U∞ patterns in Figure

5.9 for K = 0.5, it is apparent that at ϕ= 3π/2 and 7π/4, the swirl patterns accompanied by

an intense reverse flow velocity re-appear in the near wake of the cylinder and the vorticity in

the separating shear layers becomes more curved towards the wake centerline in the Z/D = 3

plane, suggesting increased strength in Karman vortex shedding at this Z/D plane.

As depicted in Figure 5.8, the wake flow behavior in the Z/D = 3 plane for the yaw-

oscillating cylinders with reduced frequencies of K = 1 and 1.3 is almost similar. For both

cases, the swirl patterns, seen at ϕ= 0, become substantially suppressed when the cylinder

reaches the oscillation phases of ϕ= π/4 and π/2. In accord with this observation, Figure

5.9 shows that the curving of the shear layers towards the wake centerline becomes lesser for

those phases and the shear layers depict a large lateral distance from each other, suggesting a

suppression in regular vortex shedding. Notice that the suppression of the mean recirculation

bubble at ϕ= π/4 and π/2 must be linked to the significant amount of positive streamwise

thrust conveyed on the fluid behind the top half of the cylinder (including the Z/D = 3

plane in question here) as a result of the positive X-direction movement of the cylinder’s

top half combined with the cylinder’s large acceleration at these phases, as indicated earlier

while discussing Figure 5.2. Here, as mentioned before, unlike the lower reduced frequency of

K = 0.5, the influence of the cylinder’s acceleration becomes an essential factor leading to

this outcome at the higher reduced frequencies of K = 1 and 1.3. The substantial increase
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Figure 5.8: Phase-averaged streamline topology (⟨ψϕ⟩) in the Y/D = 0 and Z/D = 3 planes
and contours of phase-averaged streamwise velocity (⟨Uϕ⟩/U∞) on Z/D = 3 plane for eight
select phases of yaw-oscillating cylinder with reduced frequencies of K = 0.5, 1, and 1.3 at
Re = 1.5×104. The coordinate system, the flow direction, and the PIV field of visualization
(with the red dashed lines marking the boundaries of the field of view in the Y/D = 0 plane)
are depicted on the far right.

in the positive streamwise velocity at the base of the cylinder would obstruct the mixing

of the shear layers, thereby suppressing the regular Karman vortex shedding. Furthermore,

remember from Figure 5.2 that unlike the lower K value of 0.5, at ϕ = 3π/4 and π, the

significant deceleration in the positive X motion of the cylinder’s top half for the higher

oscillation frequencies of K = 1 and 1.3 leads to a recovery in the reverse flow velocity, which

gradually spreads to upper sections in the wake of the cylinder’s top half as the phase of

oscillation progresses in the second quarter of its oscillation cycle (i.e., when the forward

movement of the cylinder’s top is decelerating). With the recovery of the reverse flow comes
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Figure 5.9: Contours of phase-averaged normalized Y -direction vorticity (⟨ωy,ϕ⟩D/U∞) in
Y/D = 0 and phase-averaged normalized Z-direction vorticity (⟨ωz,ϕ⟩D/U∞) in Z/D = 3
plane for eight select phases of yaw-oscillating cylinder with reduced frequencies of K = 0.5,
1, and 1.3 at Re = 1.5×104. The coordinate system, the flow direction, and the PIV field of
visualization (with the red dashed lines marking the boundaries of the field of view in the
Y/D = 0 plane) are depicted on the far right.

the resurgence of the swirl patterns. As a result, the revival in the mean recirculation bubble

with counter-rotating swirls occurs at ϕ= 3π/4 and π in the Z/D = 3 plane for K = 1, in

agreement with the inwardly curved shear layers depicted in the corresponding contours

of Z-direction vorticity in Figure 5.3. Note that, for K = 1.3, because the recovery in the

negative streamwise velocity has yet to reach the Z/D = 3 plane at ϕ= 3π/4 (as apparent

from Figure 5.2), a complete resurgence of the mean recirculation bubble does not occur at

this phase at Z/D = 3. In the return cycle, at ϕ= π and 5π/4, unlike K = 0.5, no suppression

is observed in the mean recirculation bubble for K = 1 and 1.3. This is associated with

the low magnitudes in the axial flow around the Z/D = 3 plane for the cases with higher
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K, as shown in Figure 5.4. Instead, under the effect of negative X-direction motion of the

cylinder’s top along with large acceleration, as the phase changes from ϕ= π to 3π/2, the

negative streamwise velocity gradually recovers and the swirl patterns become stronger. From

ϕ = 3π/2 to 7π/4, as the cylinder’s top half moves against the freestream direction, the

reverse flow velocity increases and the swirl patterns in the Z/D = 3 plane become stronger.

Notice that at ϕ= 3π/2 and 7π/4 for the reduced frequencies of K = 1 and 1.3, the effect of

the axial flow near the Z/D = 3 plane subsides due to the rapid decrease in its strength for

the phases near the end of the return cycle, and as a result, the reverse flow velocity revives

in the wake and no suppression is observed in the mean recirculation bubble. Also, Figure

5.9 demonstrates that for K = 1 and 1.3 at ϕ= 3π/2 and 7π/4, the shear layers appear to be

more curved toward each other, suggesting amplification in the Karman vortex shedding. It

is also evident that when the positive Y -direction vorticity in the Y/D = 0 plane ascends

and reaches the Z/D = 3 plane at the oscillation phase of ϕ= 7π/4 in the return cycle, the

magnitude of the Z-direction vorticity within the shear layers decreases significantly as the

cylinder moves to this phase. As the remnants of the positive vorticity in the Y/D = 0 plane

continue to exist at ϕ= 0, the Z-direction vorticity also continues to have low magnitudes at

this phase in the Z/D = 3 plane.

5.2.3.2 Z/D = −3 Plane

Figures 5.10 and 5.11 show the similar results as Figure 5.8 and 5.9 but in the Z/D = −3

plane. General inspection of Figure 5.10 demonstrates that for all three reduced frequencies,

from ϕ= 0 to 3π/4 in the first half of the yaw oscillation cycle, when the bottom half of the

cylinder moves against the incoming flow, a pair of well-defined counter-rotating swirls forms

behind the cylinder in accord with the strong reverse velocity developing at the lower half of

the cylinder (as apparent from the ⟨Uϕ⟩/U∞ contours in the present Figure 5.10 as well as

the previously-given Figure 5.2 for this Z/D level at these phases). The streamwise extent of

these swirls increases with increasing yaw angle.

In the second half of the yaw oscillation cycle, as a common feature for all K values in
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Figure 5.10: Phase-averaged streamline topology (⟨ψϕ⟩) in Y/D = 0 and Z/D = −3 planes
and contours of phase-averaged streamwise velocity (⟨Uϕ⟩/U∞) in Z/D = −3 plane for eight
select phases of yaw-oscillating cylinder with reduced frequencies of K = 0.5, 1, and 1.3 at
Re = 1.5×104. The coordinate system, the flow direction, and the PIV field of visualization
(with the red dashed lines marking the boundaries of the field of view in the Y/D = 0 plane)
are depicted on the far right.

question, the patterns of swirls become significantly suppressed or totally eliminated at the

Z/D = −3 plane for the oscillation phases of π ⩽ ϕ ⩽ 3π/2, which is associated with the

impact of the strong axial flow passing through the Z/D = −3 plane (as detected earlier in

Figure 5.4 at this Z/D level) as well as the positive streamwise flow conveyed on the wake

fluid by the movement of the lower middle section of the cylinder in the inflow direction (as

discernible from Figure 5.2 at this Z/D level). For K = 0.5, the reverse flow velocity increases

and a pair of swirl patterns re-appears again at ϕ= 7π/4 at the Z/D = −3 plane. On the

other hand, for higher reduced frequencies of K = 1 and 1.3, unlike K = 0.5, the suppression
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of the mean recirculation bubble extends to ϕ= 7π/4 in the return cycle. This is presumably

due to cylinder’s large deceleration at higher oscillation frequencies. As mentioned earlier

during the discussion of the corresponding ⟨Uϕ⟩/U∞ results for K = 0.5 in Figure 5.2, as the

cylinder’s top half moves opposite to the inflow direction in its return cycle, the negative

streamwise velocity in the wake behind the top half grows and spreads toward the lower

spanwise regions as the yaw angle decreases (reaching the Z/D = −3 plane discussed here

at ϕ = 7π/4). However, for higher yaw oscillation frequencies of K = 1 and 1.3, with the

deceleration effects being significant, the reverse flow presumably cannot make it to the

Z/D = −3 plane at ϕ= 7π/4 (right before returning to the unyawed position), which explains

the suppressed mean recirculation bubbles detected at this phase for K = 1 and 1.3 at the

Z/D level in question. The significant suppression of the mean recirculation bubble observed

at π ⩽ ϕ⩽ 3π/2 for K = 0.5 and π ⩽ ϕ⩽ 7π/4 for K = 1 and 1.3 in Figure 5.10 is also aligned

with the drastic divergence of the shear layers from the wake centerline for these phases in

Figure 5.11. That is, for the phases of ϕ= π, 5π/4 and 3π/2, the shear layers for all K are

generally less curved towards each other, suggesting the mitigation of the vortex shedding.

Furthermore, at ϕ= 7π/4, this is continued to be the case for the higher frequencies of K = 1

and 1.3, but for K = 0.5, aligned with the observed resurgence of the swirl patterns at this

phase, the shear layers are inclined toward the wake centerline again, suggesting the recovery

of the vortex shedding. Another observation that surfaces from an inspection of Figure 5.11

is that when the strong positive Y -direction vorticity in the Y/D = 0 plane passes through

the Z/D = −3 plane, which happens at ϕ= π for the yaw-oscillating case of K = 1 and at

ϕ = π and 5π/4 for K = 1.3, the magnitude of the Z-direction vorticity within the shear

layers substantially decreases.
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Figure 5.11: Contours of phase-averaged normalized Y -direction vorticity (⟨ωy,ϕ⟩D/U∞) in
Y/D = 0 and phase-averaged normalized Z-direction vorticity (⟨ωz,ϕ⟩D/U∞) in Z/D = −3
plane for eight select phases of yaw-oscillating cylinder with reduced frequencies of K = 0.5,
1, and 1.3 at Re = 1.5×104. The coordinate system, the flow direction, and the PIV field of
visualization (with the red dashed lines marking the boundaries of the field of view in the
Y/D = 0 plane) are depicted on the far right.

5.3 Wake Parameters

5.3.1 Yaw-Averaged Wake Parameters

In order to evaluate the effect of yaw-oscillation on the wake closure length, profiles of the

normalized yaw-averaged streamwise velocity on the wake centerline are plotted against

X ′, which is the streamwise distance measured from the base of the cylinder, for the static

cylinder and oscillating cases at reduced frequencies of K = 0.25, 0.5, 1, and 1.3 in Figure

5.12. The calculated wake closure lengths are shown in the inset of Figure 5.12. As apparent
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Figure 5.12: Normalized yaw-averaged streamwise velocity (⟨Uθ⟩/U∞) along the wake
centerline for static yawed cylinder and yaw-oscillating cylinder at different reduced frequencies.
Inset shows the variation of yaw-averaged wake closure length (⟨Lc,θ⟩) with reduced frequency
(K).

from the profiles in Figure 5.12, the maximum backflow velocity occurs at K = 1.3. The

streamwise velocity in the inflow direction is observed near the base of the cylinder for the

static and yaw-oscillating cases at K = 0.25 and 0.5 and changes to the backflow direction

at K = 1 and 1.3 exhibiting the streamwise flow behavior shown in Figure 5.5. In regions

beyond X/D = 0.5, an increase in the mean streamwise velocity with the oscillation frequency

is observed, which can be related to a shortening of the wake closure length. The decrease in

the wake closure length with increasing the reduced frequency is inline with the observations

in the flow topology shown in Figure 5.5. The inset of Figure 5.12 reveals that from the

static cylinder to the oscillating cylinder at K = 1.3 (the highest reduced frequency), ⟨Lc,θ⟩

is reduced by 30%.

Figure 5.13 shows the cross-stream profiles of the normalized yaw-averaged streamwise

velocity for the static and four yaw-oscillating cases at two locations downstream. As shown

in the top plot in Figure 5.13 and from the summarized wake parameters given in Table

5.1, the maximum velocity deficit (⟨Ud,max⟩) decreases as K increases for X/D = 1.5. The

decrease corresponds with the reduction in the wake closure length for the yaw-oscillating

cases. The profiles for X/D = 2 follow the same trend as those shown previously. From the

values of half wake width at X/D = 2 given in Table 5.1, it is found that the wake width
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Figure 5.13: Normalized yaw-averaged streamwise velocity (⟨Uθ⟩/U∞) across the wake at
X/D = 1.5 (top) and X/D = 2 (bottom) for the static yawed cylinder and yaw-oscillating
cylinder at different reduced frequencies.

Table 5.1: The minimum and maximum values of the normalized yaw-averaged streamwise
velocity, and the maximum streamwise velocity deficit (⟨Ud,max⟩ = U∞ −⟨U(x,y)⟩) for static
yawed cylinder and oscillating yawed cylinder at different reduced frequencies at two different
streamwise locations downstream of the cylinder.

X/D = 1.5 X/D = 2
K ⟨Umin⟩

U∞
⟨Umax⟩

U∞
⟨Ud,max⟩

U∞
⟨Umin⟩

U∞
⟨Umax⟩

U∞
⟨Ud,max⟩

U∞

y1/2
D

Static -0.04 1.07 1.04 0.27 1.0 0.73 0.45
0.25 0.01 1.06 0.99 0.29 0.99 0.71 0.47
0.5 0.06 1.04 0.94 0.34 0.99 0.66 0.51
1.0 0.13 1.03 0.87 0.40 0.99 0.60 0.56
1.3 0.20 1.02 0.80 0.46 0.99 0.54 0.64

increases with the reduced frequency. For instance, the wake width increased by 42% for the

highest reduced frequency in comparison to the static case.

5.3.2 Phase-Averaged Wake Parameters

5.3.2.1 Velocity Profiles in the Mid-Span Plane

Figure 5.14 shows the profiles of normalized phase-averaged streamwise velocity (⟨Uϕ⟩/U∞)

along the wake centerline at eight select phases of yaw oscillation for the reduced frequencies of
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K = 0.5, 1, and 1.3 (from the top plot to the bottom, respectively). The profile of normalized

time-averaged streamwise velocity (⟨U⟩/U∞) for the stationary yawed cylinder at θ = 0o is

also included in these plots as a reference for comparison. Note again that, in these plots,

the horizontal axis is X ′.

From Figure 5.14, it is evident that, compared to the cases with K = 1 and 1.3, the

maximum phase-averaged backflow velocity for each phase of the yaw-oscillating cylinder at

K = 0.5 appears much closer to the maximum backflow velocity of the stationary cylinder

at corresponding yaw angles (see Figure 4.8 for the streamwise velocity profiles of the

stationary yawed cylinder at corresponding yaw angles). This implies that with increasing

frequency of yaw oscillations, the near-wake deviates more and more from the near-wake

structure of the stationary yawed case. For a given reduced frequency, the location where the

maximum backflow velocity is reached at the mid-span depends on the phase of yaw oscillation.

Furthermore, for all reduced frequencies, the maximum phase-averaged backflow velocity

consistently occurs at the phase of ϕ= 0 (corresponding to θ = 0o). For K = 0.5, although

the value of this maximum backflow velocity at θ = 0o is almost the same as that of the

stationary cylinder case with θ = 0o (i.e., no yaw), it increases progressively with increasing

the reduced frequency. For K = 0.5, the maximum backflow velocity gradually reduces as the

oscillation phase changes from ϕ= 0 to ϕ= π in the first half of the cycle. It then increases

gradually from ϕ= π to ϕ= 0 in the return cycle. For K = 1, the maximum phase-averaged

backflow velocity gradually reduces from ϕ= 0 to ϕ= π, reaching the no-backflow situation

at ϕ= 5π/4, which indicates a suppressed mean recirculation region at the corresponding

yaw angle of θ = 26o in the return cycle, as observed earlier in Figure 5.6. It then gradually

increases with increasing ϕ from ϕ= 3π/2 to ϕ= 0 in the return cycle. For K = 1.3, with

increasing ϕ, there is a similar trend of gradual reduction followed by a gradual increase in

the phase-averaged maximum backflow velocity, with the no-backflow scenario occurring at

ϕ = 3π/2 (corresponding to a yaw angle of θ = 15o in the return cycle). Once again, zero

backflow encountered at θ = 15o in the return cycle is in accord with the inferences drawn

from the corresponding plots, given in Figures 5.6 and 5.7, where suppression recirculation
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Figure 5.14: Phase-averaged normalized
streamwise velocity (⟨Uϕ⟩/U∞) along the
wake centerline for the yaw-oscillating
cylinder at a) K = 0.5 b) K = 1 c) K = 1.3
at eight select phases. Also, ⟨U0o⟩/U∞
shows the stationary case with θ = 0o.

region and vortex shedding was reported.

Figure 5.15 shows the cross-stream profiles of normalized phase-averaged streamwise

velocity (⟨Uϕ⟩/U∞) for the yaw-oscillating cylinder at different phases of its oscillation for

three reduced frequencies. Profiles are provided for the streamwise locations of X/D = 1.5

(in the top row) and X/D = 2 (in the bottom row). For K = 0.5, at the streamwise station of

X/D = 1.5, the minimum phase-averaged streamwise velocity (which is reached at the wake

centerline) changes from being in the inflow direction at the first two phases studied (ϕ= 0

and π/4) to being in the backflow direction for the rest of the oscillation phases (Figure 5.15

(a)). This observation is a result of the fact that once the yaw-oscillating cylinder passes the

phase of ϕ= π/4 (or in other words, the yaw angle of θ = 4o), the closure in the near-wake

region occurs downstream of the X/D = 1.5 at the mid-span of the cylinder (in accord with

the streamwise extends of the recirculation region seen Figure 5.6). At X/D = 2, on the

other hand, for all phases of yaw oscillation at K = 0.5, the flow at the wake centerline
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Figure 5.15: Phase-averaged normalized streamwise velocity (⟨Uϕ⟩/U∞) across the wake at
two downstream locations of X/D = 1.5 and X/D = 2 for yaw-oscillating cylinder at each
phase a) K = 0.5, b) K = 1, and c) K = 1.3.

is in the freestream direction, indicating the wake closure upstream of that station. For

K = 1.0, the flow at the wake centerline in the mid-span of the cylinder is in the backflow

direction only between the phases of ϕ= 3π/2 to ϕ= 7π/4 in the return cycle at X/D = 1.5,

in accord with elongated wake regions seen in Figure 5.6 at these phases. The minimum

phase-averaged velocity at the wake centerline turns out to be in the freestream direction

at all phases for X/D = 2, indicating closure of the mean recirculation region upstream

of this streamwise station for all phases of oscillation. For K = 1.3, there is no backflow

for either of the X/D locations. Notice that, overall inspection of Figure 5.15 shows that

the velocity deficit at the wake centerline varies depending on the phase of oscillation, the

frequency of oscillation, and the X/D station considered. However, for K = 1.3, unlike others,

the maximum phase-averaged velocity deficit does not vary significantly with the phase of

oscillation at X/D = 2.
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Figure 5.16 (a) and (b) depict the variations in the phase-averaged wake closure length

(⟨Lc,ϕ⟩) and the phase-averaged half wake width (⟨Y1/2,ϕ⟩) at the X/D= 2 station, respectively,

at different phases of oscillation for the three reduced frequency under consideration. The

results for the static yawed cylinder at corresponding yaw angles are also included for

comparison purposes. Figure 5.16 (a), shows that for K = 0.5, the wake closure length

gradually increases with the yaw angle in the first half of the oscillation cycle, and in the

return cycle, it continues to increase until ϕ= 5π/4, after which it decreases, as visually seen

earlier in Figure 5.6. This trend is also in line with the inferences made above from Figure

5.15 (a). Figure 5.16 (b) indicates that for K = 0.5, the wake width at X/D = 2 decreases as

the cylinder is yawed to higher angles in the first half-cycle and then starts increasing in the

second half as the cylinder returns to the cross flow position. For K = 0.5, comparison of a

given yaw angle in the first-half cycle with the same yaw angle in the return cycle shows that

the wake is wider and the wake closure length is lower in the first half-cycle.

Figure 5.16 (a) demonstrates that for K = 1, the wake closure length decreases with

increasing the yaw angle in the first half of the oscillation cycle. After the suppression of

the mean recirculation region at ϕ= 5π/4, the wake closure length increases as the cylinder

returns to the cross-flow position in the second half of the cycle. Discrepancy in the wake

closure length is significant between phases corresponding to the same yaw angle in the

Figure 5.16: Phase-averaged wake parameters of all the static and yaw-oscillating cylinder
cases at Re = 1.5×104. a) Wake closure length (⟨Lc,ϕ⟩/D) and b) Half wake width (⟨Y1/2,ϕ⟩/D)
at X/D = 2.
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first and second half of the oscillation cycle. For instance, the mean recirculation region

extends in the streamwise direction by 60% from ϕ = π/2 to ϕ = 3π/2 and by 48% from

ϕ = π/4 to ϕ = 7π/4. Results for K = 1 in Figure 5.16 (b) indicate that the wake width

increases in the first half cycle of oscillation from the phase of ϕ= 0 to ϕ= 3π/4, and starts

decreasing for the rest of the oscillation cycle. For K = 1.3, the wake closure length in the

first half-cycle follows similar trend to that of the previous case, that is, it decreases gradually

with increasing yaw angle. In the second half, the wake closure length continues to decrease

until the suppression of the mean recirculation region occurs at ϕ= 3π/2. Then, it increases

back again. From Figure 5.16 (b), it can be inferred that the wake width for almost all

phases at K = 1.3 is higher than other yaw-oscillating cases. From an overall inspection of

the trends in Figure 5.16 (a) and (b), one can conclude that the lower the mean recirculation

region length, the wider the wake width outside the mean recirculation region and vice versa

(i.e., at the X/D = 2 location), which is in agreement with the trend shown by Norberg [83].

5.3.2.2 Velocity Profiles in Z/D = ±3 Planes

Figure 5.17 shows the profiles of the mean normalized velocity (⟨U⟩/U∞) and the phase-

averaged normalized velocity (⟨Uϕ⟩/U∞) along the wake centerline for the static yawed

cylinder and the yaw-oscillating cases, respectively. Results are shown at two locations along

the span of the cylinder, namely at the Z/D = 3 plane (top row) and the Z/D = −3 plane

(bottom row).

In the Z/D = −3 plane, Figure 5.17 for the yaw-oscillating cylinder shows that in the first

half cycle of oscillation, when the cylinder is accelerating from ϕ= 0 to π/2, the streamwise

velocity increases. For K = 1 and 1.3, this increase in the streamwise velocity is significant

enough to eliminate the reverse flow at ϕ = π/4 and π/2 aligned with the observation

previously made in Figure 5.18. While for K = 0.5 the streamwise velocity still increases

behind the cylinder at ϕ= 3π/4, the impact of cylinder deceleration of the cylinder at this

phase leads to a reduction in the streamwise velocity for K = 1 and 1.3. The trend for all

the reduced frequencies in the return cycle is identical and the reverse flow increases as the
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Figure 5.17: Profiles of a) Mean normalized streamwise velocity (⟨U⟩/U∞) on the wake
centerline for the static yawed cylinder and b-d) Phase-averaged normalized streamwise
velocity (⟨Uϕ⟩/U∞) on the wake centerline for eight select phases of yaw-oscillations with
reduced frequencies of K = 0.5, 1, and 1.3 in Z/D = 3 and -3 planes at Re = 1.5×104.

cylinder return to the non-yawed position.

Figures 5.17 reveals that in the Z/D = −3 plane for all the yaw-oscillating cases, the

reverse flow velocity increases from ϕ= 0 and reaches its maximum at ϕ= π/2 in association

with the acceleration and direction of motion of the cylinder bottom half. Deceleration of the
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cylinder and the increase in the axial flow around the Z/D = −3 plane leads to an increase

in the streamwise velocity at ϕ= 3π/4. In the return cycle, the strong axial flow (see Figure

4.2) and the induced positive streamwise velocity under the influence of the cylinder motion

contribute to the increase in the streamwise velocity on the wake centerline at all the reduced

frequencies. For K = 0.5, there is no reverse flow occurs behind the cylinder at ϕ= π, 5π/4,

and 3π/2. It is only for ϕ = 7π/4 in the return cycle where negative streamwise velocity

can be seen on the wake centerline. For K = 1, negative streamwise velocity never appears

behind the cylinder. However, for K = 1.3, reverse flow can be only observed at ϕ= 5π/4 in

the return cycle that can be related to the counter-rotating swirls ascending from near the

upstream end towards the mid-span.

5.3.2.3 Spanwise Variation of Wake Closure Length

Figure 5.18 depicts the spanwise variation of phase-averaged wake closure length (⟨Lc,ϕ⟩) for

different yaw-oscillating cases at eight select phases of oscillation. The time-averaged wake

Figure 5.18: The spanwise variation of phase-averaged wake closure length (⟨Lc,ϕ⟩/D) at
eight select phases for the yaw-oscillating cylinder with various reduced frequencies at Re
= 1.5 × 104. The mean wake closure length (⟨Lc⟩/D) for the static yawed cylinder are shown
at corresponding yaw angles.
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closure (⟨Lc⟩) for the static yawed cylinder for corresponding yaw angles are also included in

Figure 5.18 as reference values.

Results for the yaw-oscillating cases in Figure 5.18 show that unlike the static yawed

cylinder, the wake closure length substantially varies along the span of the cylinder for all

yaw-oscillating cases over their entire oscillation period. For K = 0.5, it can be observed

that in the first half cycle, the wake closure length on the top half of the cylinder generally

decreases with increasing yaw angle. For the higher reduced frequencies of K = 1 and 1.3,

⟨Lc,ϕ⟩/D on the top half of the cylinder also generally shows a decrease from ϕ= 0 to π/2,

with the mean recirculation bubble being partially suppressed near the top half of the cylinder

below the free-surface affected region where the recirculation bubble is locally enlarged. This

suppressed region for the mean recirculation bubble in the top half extends at most from

Z/D = 5.5 to around Z/D = 2 for both K = 1 and 1.3 at ϕ= π/2, which may be attributed

to a high acceleration rate in cylinder’s top half motion in the freestream direction. For

K = 1 and 1.3 from ϕ= 3π/4 to π, the large deceleration in the motion of cylinder causes

the mean recirculation bubble on the top half to appear again (as also seen in Figure 5.2),

and the wake closure length gradually increases. On the bottom half of the cylinder, in the

first half of the oscillation cycle, the trend in Figure 5.18 is almost similar for all the reduced

frequencies. That is, near the bottom half of the cylinder (particularly from the bottom end

up to around Z/D = −2), the maximum wake closure length generally increases from ϕ= 0

to 3π/4, and at these phases, the location of the maximum ⟨Lc,ϕ⟩/D approaches more and

more toward the middle section of the cylinder with increasing yaw angle. This trend seems

to be related to the spread of the tip vortices to upper spanwise regions with increasing yaw

angle as a result of the increase in the spanwise flow (which is apparent from a combined

inspection of Figures 5.2 to 5.4). In the first half of the return cycle, as the cylinder moves

from ϕ= π to 5π/4, the phase-averaged recirculation bubble becomes suppressed over a large

spanwise extent within the lower half of the span for K = 0.5 due to the positive streamwise

thrust exerted on the fluid by the movement of the bottom half of the cylinder and the large

axial flow (which was noted in Figure 5.4). This suppression covers the entire lower half of
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the cylinder for larger reduced oscillation frequencies of K = 1 and 1.3, presumably due to

the additional effect of large cylinder acceleration. In the second half of the return cycle, as

the cylinder moves from ϕ= 5π/4 to its upright location at ϕ= 0, the spanwise region having

zero wake closure length behind the lower half of the cylinder gradually lessens for all K,

with K = 1 and 1.3 still showing most of the lower half span suppressed before returning to

the upright position at ϕ= 7π/4.

5.3.2.4 Backflow Angle

In another approach to quantitatively investigate the spanwise variation of near-wake flow

patterns, the direction of the reverse flow streamlines has been explored in the current study as

defined in Section 3.5. Figures 5.19 (b) to 5.19 (d) depict the variation of β on three spanwise

locations in the Y/D = 0 plane, namely at Z/D = 3, 0, and -3, for the yaw-oscillating cylinder

at eight select phases of oscillation with various reduced frequencies. Results for the static

yawed cylinder at yaw angles corresponding to the phases of oscillation are presented in Figure

5.19 (a). The dashed line in Figure 5.19 represents the reverse flow angle of β = 90o. Below

this angle, the flow in the near wake possesses no negative streamwise velocity component,

hence, no mean recirculation region exists.

Results for the static yawed cylinder in Figure 5.19 (a) show that from the crossflow

position (θ = 0o) to θ = 26o, the reverse flow angle near the upper-middle section of the

cylinder is higher than the one obtained near the lower-middle section, however, this difference

gradually decreases by increasing the yaw angle. The reverse flow angle is almost identical on

the three locations for θ = 30o. This implies that with increasing yaw angle, the flow patterns

become more uniform along the span of the cylinder. The decrease in the reverse flow angle

by increasing yaw angle can be attributed to the increase in the extent of axial flow in the

near-wake of the cylinder that directs the streamlines further orthogonal to the freestream

direction.

For K = 0.5, similar to the static case, the spanwise uniformity of the reverse flow angle

increases with increasing yaw angle from ϕ = 0 to ϕ = π. However, when the cylinder is
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Figure 5.19: Variation of the reverse flow angle (β) at three spanwise locations of Z/D = 3,
0, and -3 for a) The static yawed cylinder at different yaw angles corresponding to the phases
of oscillation and b-d) The yaw-oscillating cylinder at eight select phases of yaw oscillations
with reduced frequencies of K = 0.5, 1, and 1.3 at Re = 1.5×104. e) The schematics show
how the reverse flow angle is measured in the presence (top) or the absence (bottom) of the
mean recirculation region.

yawed from the crossflow position (ϕ= 0) to ϕ= π/4, the reverse flow angle increases on all

three locations. At Z/D = 3, this trend is presumably the influence of the downward flow

occurring on the rear surface of the cylinder (near the top end) whereas for Z/D = −3, it can

be attributed to the increase in the strength of the reverse flow near the upstream end of the

cylinder. At ϕ= π, the reverse flow angle of around β = 90o occurs at Z/D = 3 and the first

acute reverse flow angle is observed at Z/D = −3. Notice that when the acute reverse flow

angle is obtained at each location, the mean recirculation region is shown to be suppressed at

the vicinity of that region (see Figure 5.18). The suppression at Z/D = −3 occurs due to a

strong axial flow around that location, which is in agreement with the axial velocity contours

previously shown in Figure 4.2. The development of the axial flow along the majority of the
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span is seen at ϕ= 5π/4 with the measured reverse flow angles being close and even below

90o. From ϕ= 3π/2 to ϕ= 7π/4, the increase in β at the mid-span and Z/D = 3 indicates

the increase in the reverse flow around these locations while the effect of axial flow is still

discernible at Z/D = −3.

Increasing the reduced frequency to K = 1 and K = 1.3 leads to a substantial spanwise

variation of β. In the first half of the oscillation cycle, at Z/D = 3, as the cylinder is yawed

from the non-yawed position, the reverse flow angle drops from obtuse to acute angle at

ϕ= π/4. Negative values of β are obtained at ϕ= π/2 and 3π/4 (not shown in Figures 5.19

(c) and (d)). This flow pattern is aligned with the previous observation made in Figure 5.1,

where the flow behind the upper half of the cylinder is in the downward direction under the

influence of the rapid cylinder motion. From ϕ = π to 7π/4, the obtuse angle is obtained

at Z/D = 3 indicating the existence of the reverse flow region and progressively decreases

as the cylinder is returning to crossflow position due to the development of axial flow on

the span of the cylinder around this location. At Z/D = 0, it is evident that the axial flow

becomes effective from ϕ= 3π/4 where β starts decreasing from around β = 180o. This trend

continues until the acute angle is first obtained at ϕ = 5π/4 and 3π/2 for K = 1 and 1.3,

respectively. Beyond these phases, the reverse flow angle increases in the return cycle. On

the lower-middle section of the cylinder, at Z/D = −3, the decrease in the reverse flow angle

starts from ϕ= 3π/4, similar to the trend discussed for the mid-span location. However, at

Z/D = −3, β consistently decreases from ϕ = 3π/4 until ϕ = 7π/4 from around 100o and

125o to around 50o and 30o for K = 1 and K = 1.3, respectively.

5.4 Vortex Shedding

5.4.1 Yaw-Averaged Analysis

In this section, the frequency analysis is performed on the continuous streamwise velocity

signal obtained during 1200 oscillation cycles. Figure 5.20 shows the velocity spectra for

the yaw-oscillating cylinder with a reduced frequency that varies from 0.25 to 1.3 at Re
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Figure 5.20: The velocity spectra for the yaw-averaged streamwise velocity signal of the
yaw-oscillating cylinder at various reduced frequencies. a) The PSD obtained at the frequency
resolution of 0.012 Hz (Stres = 0.0019) b) The PSD obtained at the frequency resolution
of 0.006 Hz (Stres = 0.00095) c) The velocity spectra in the in the range of 0.15 < St <
0.25. The Strouhal number of fundamental oscillation frequency (Stc) and its harmonics are
marked with blue dashed lines.

= 1.5×104. The power spectral density (PSD) estimation is provided for two different window

sizes used in the Welch method, which results in different frequency resolutions (fres) in the

fast Fourier transform (FFT). Note that 50% overlap is used in Welch method for all the

cases. Figure 5.20 (a) and (b) represent the velocity spectra for FFT frequency resolutions

of 0.012 Hz (Stres = 0.0019) and 0.006 Hz (Stres = 0.00095), respectively. The variation of

velocity spectra in Figure 5.20 (b) that is limited to the range of Strouhal numbers associated

with the vortex shedding frequencies are shown in Figure 5.20 (c). The dashed lines in each

plot mark the Strouhal number of frequency of oscillation and its harmonics. The Strouhal

numbers corresponding to the fundamental frequency of oscillations (Stc = fcD/U∞) are

0.0125, 0.025, 0.05, and 0.065 for K = 0.25, 0.5, 1, and 1.3, respectively. Figures 5.20 (a) and
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Figure 5.21: Instantaneous vorticity (ωzD/U∞) at the mid-span for the yaw-oscillating
cylinder with K = 0.5, 1, and 1.3 at ϕ= π/2.

(b) reveal the narrow-band peaks in the range of low Strouhal numbers from 0 to around 0.15.

These peaks are associated with the frequency of oscillation (Stc) and its harmonics at each

reduced frequency. It is shown that the energy of these peaks is substantially higher at higher

reduced frequencies of K = 1 and 1.3, which is more pronounced when the lower frequency

resolution is used in the FFT process in Figure 5.20 (a). Additionally, it is apparent that for

reduced frequencies of K = 1 and 1.3, the high energy peaks in the velocity spectra, which

are related to the harmonics of the oscillation frequency, occur in the range of frequencies

associated with the frequency of vortex shedding that is around St = 0.2.

Inspecting Figures 5.20 (b) and (c) for the range of 0.15 < St < 0.25 demonstrates

that by increasing the reduced frequency, the peak frequencies corresponding to the vortex

shedding become more broadband while the peak region is drawn towards lower frequencies.

In other words, by increasing the reduced frequency, the vortex shedding becomes further

disorganized accompanied by the breakdown of the large-scale structures and consists of

lower frequencies. Moreover, Figures 5.20 (b) and (c) indicate the reduction in the height

and energy of the peaks in the range of 0.15 < St < 0.25 by increasing the reduced frequency,

which can be associated with the lower intensity of the vortex shedding. Figure 5.21 depicts

the instantaneous vorticity field at ϕ= π/2 for the yaw-oscillating cases with K = 0.5, 1, and

1.3 at the mid-span. The figure demonstrates that the vortices shed closer to the surface of

the cylinder and become more disorganized by increasing the yaw angle.
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5.4.2 Phase-Averaged Analysis and Validity of IP

In this section, the variation of the vortex shedding frequency with the phase of oscillation

for the yaw-oscillating cylinder at various reduced frequencies is investigated. In the phase-

averaged analysis, the frequency analysis is performed using the peak finding method. In

the first step, as the focus is only on the range of vortex shedding frequency, low frequencies

associated with the oscillation frequency and its harmonics, as well as very high frequencies,

are required to be filtered from the signal. Therefore, a bandpass filter is applied to the

streamwise velocity signal to filter out frequencies below 0.75 Hz and above 1.75 Hz. Note

that the harmonics of the oscillation frequency are also removed using a narrow bandpass

filter. Figure 5.22 shows the velocity spectra of the raw and filtered streamwise velocity signal

for the yaw-oscillating cylinder with the reduced frequencies of K = 0.5 and 1.0.

In the next step, for each yaw-oscillating cylinder case, as shown in Figure 5.23 (a) for

K = 0.5 as an example, the minimum and the maximum peaks in the streamwise velocity

Figure 5.22: The velocity spectra for the streamwise velocity signal of the yaw-oscillating
cylinder for two reduced frequencies of K = 0.5, 1, and 1.3. The red line indicates the velocity
spectra without any filtering against the velocity spectra of the signal with bandpass filter of
f > 0.75 and f < 1.75 applied represented by blue line. For the blue line, the yaw oscillation
frequency and its harmonics are also filtered out.
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Figure 5.23: a) The variation of the streamwise velocity signal with time and the phase of
oscillation (marked by red color). The time difference between each maximum and minimum
peaks are calculated and converted to frequency (f = 1/∆t). Time (t∗) is allocated to each
set of successive peaks. b) Distribution of all the calculated peak frequencies along a complete
phase of oscillation. To measure the variation of vortex shedding with the phase of oscillation,
the values of f are averaged over eight equal periods marked by blue dashed lines.

signal is founded. Then, the time difference (∆t) between the successive maximum peaks and

successive minimum peaks in the velocity signal is calculated. This time difference is inverted

to be represented as a frequency and is obtained for all the peaks within the whole duration

of the signal. In order to relate the occurrence of the peaks to the phase of oscillation, a

specific time (t∗) is allocated to each set of successive peaks, which is the average of their

actual time in the signal. This time can be directly related to the corresponding phase of

oscillation and yaw angle of the cylinder, marked by the red curves in Figure 5.23 (a). Finally,

the frequencies (f) and their respective time (t∗) in each yaw oscillation cycle are obtained

and for around 1200 cycles are distributed along a complete yaw oscillation cycle as shown in

Figure 5.23 (b).

In order to estimate the variation of the frequency of vortex shedding with the phase of

oscillation, the peak frequency values are averaged over eight equal periods with the length of

π/4 throughout the oscillation, as marked in Figure 5.23 (b). The analysis on different yaw-

oscillating cases indicated that by increasing the reduced frequency, the peak frequencies tend

to be distributed along a wider range of values, hence, the averaging over each period would

be inevitably biased and would lower the accuracy of the phase-averaged vortex shedding

frequencies at each phase. Therefore, in the present study, the phase-averaged analysis for
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the peak frequencies is only implemented on the low reduced frequencies of K = 0.25 and 0.5.

Figure 5.24 (a) indicates the variation of the averaged values of peak frequencies at eight

different phases for reduced frequencies of K = 0.25 and 0.5. It is shown that for K = 0.25,

the frequencies for the same yaw angle but at different half cycles of oscillation are almost

similar and the frequency of shedding decreases with yaw angle at each half cycle. In other

words, the results for K = 0.25 are almost independent of the direction of motion of the

cylinder and similar to the static cylinder, the frequency of shedding only changes with

the yaw angle. It can be deduced that the yaw-oscillating cylinder at very low K values

represents the quasi-steady state case. However, for K = 0.5, it is observed that the frequency

of shedding at the same yaw angle depends on the direction of motion of the cylinder. In the

first half of oscillation, increasing yaw angle leads to a decrease in the frequency of shedding.

This decrease in the frequency continues to around ϕ= 3π/2 in the second half of oscillation

and then starts increasing up to ϕ= 7π/4. The decrease in the vortex shedding frequency is

in agreement with the increase in the length and the lateral distance of the shear layers at the

Figure 5.24: a) Phase-averaged vortex shedding frequency at various phases for the yaw-
oscillating cylinders with reduced frequencies of K = 0.25 and 0.5. b) Variation of Sto/StN

with the phase of oscillation for the yaw-oscillating cylinders. Results for the static yawed
cylinders are also provided as reference values.
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corresponding phases, as previously shown in the phase-averaged vorticity field in Figure 5.7.

The validity of IP for the yaw-oscillating cases using the results obtained in Figure 5.24 is

evaluated in Figure 5.24 (b). Results of the static yawed cylinders discussed in Section 4.3

are also provided to ease the comparison. Figure 5.24 (b) reveals that similar to the static

yawed cylinder, the IP fails for the yaw-oscillating cases beyond ϕ = π/2 (θ = 15o) up to

around ϕ= 7π/4 (θ = 4o) in the return cycle. It can also be seen that increasing the reduced

frequency leads to further deviation of the vortex shedding frequency from the IP prediction.

5.5 Chapter Summary

In this chapter, the effect of the reduced frequency on the near wake of a yaw-oscillating

cylinder with L/D = 13 at Re = 1.5×104 was evaluated and compared with the static basline.

The reduced frequency varied from low (K = 0.25, 0.5) to moderate (K = 1 and 1.3) values.

For the yaw-oscillating cylinder, the phase-averaged results showed that unlike the static

cylinder, the near wake is highly three-dimensional. The spanwise variation in the near wake

increased with the increase in the reduced frequency from low to moderate values. The

cylinder’s direction of motion, its acceleration/deceleration, and the axial flow generated

from the bottom end impacted the near-wake flow behavior. For low reduced frequencies, the

cylinder’s direction of motion played the most prominent role in the topology of the near wake

until large yaw angles. When half of the cylinder’s span moved in the freestream direction,

this movement added a positive thrust to the flow, leading to a shorter wake closure length

and a weaker mean recirculation region behind that section. In contrast, the movement of

the cylinder’s half against the freestream direction increased the reverse flow behind that

section of the cylinder, making the mean recirculation region stronger. At large yaw angles,

high-magnitude axial flow developed along the span, becoming the most influential parameter

controlling the flow topology in addition to the cylinder’s direction of motion effect. The

development of strong axial flow resulted in lower reverse flow velocity in the wake and

eventually led to the suppression of the mean recirculation region. For moderate values
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of reduced frequencies, the acceleration/deceleration of the cylinder became another factor

influencing the flow behavior. For the phases with the accelerating cylinder, the effect of the

cylinder’s direction of motion was intensified whereas it was weakened for the phases with

the decelerating cylinder.

Evaluating the vortex shedding behavior at the mid-span of the yaw-oscillating cylinder

revealed that increasing the reduced frequency results in a more disorganized vortex shedding

at a relatively lower range of shedding frequencies. Moreover, for the yaw-oscillating cylinder,

the failure of the independence principle at high yaw angles was found, similar to the trend

observed for the static cylinder.
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Chapter 6

Results: Effect of Reynolds Number

The influence of Reynolds number on the near wake of the stationary yawed and the yaw-

oscillating cylinder is assessed by considering two additional lower Reynolds numbers of

1×104 and 5×103. The flow topology, wake parameters, and vortex shedding for the lower

Reynolds numbers are compared to the results for Re = 1.5×104 discussed in Chapters 4

and 5.

6.1 Flow Structure in the (X,Z) Symmetry Plane

6.1.1 Static Yawed Cylinder

Figure 6.1 and 6.2 depict the mean streamline topology (⟨ψ⟩) and contours of normalized

mean streamwise velocity (⟨U⟩/U∞) in the near wake of the static yawed cylinder at three

Reynolds numbers for yaw angles of θ = 0o, 4o, 15o, 26o, and 30o. In these figures, it is shown

that in the near wake of the cylinder at Re = 1.5 × 104 and 1 × 104, the topology of the

streamlines is almost identical whereas the streamwise extent of the reverse flow region is

slightly greater for the lower Reynolds number. The elongation of the mean recirculation

region with decreasing Reynolds number is consistent with the results shown in the literature

for the non-yawed static cylinder in the subcritical flow regime [1]. Figure 6.1 depicts that
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Figure 6.1: Mean streamline topology (⟨ψ⟩) for the static cylinder at yaw angles of θ = 0o, 4o,
15o, 26o, and 30o at Re = 1.5×104, 1×104, and 5×103 in the symmetry plane at Y/D = 0.

for Re = 5 × 103 at θ = 0o and θ = 5o, the flow immediately downstream the cylinder is more

inclined in the spanwise direction compared to higher Reynolds number cases. Moreover, it

can be seen that for Re = 5×103, at θ = 15o the streamlines near the mid-span tend to move

in the downward direction and at θ = 26o the flow separates on the downstream surface of

the cylinder and then reattaches around Z/D = 3. The same flow behavior is seen closer to

the top free surface-piercing end of the cylinder (around Z/D = 5) at θ = 30o. As shown

108



6.1 FLOW STRUCTURE IN THE (X,Z) SYMMETRY PLANE

Figure 6.2: Contours of mean normalized streamwise velocity (⟨U⟩/U∞) for static cylinder
at yaw angles of θ = 0o, 4o, 15o, 26o, and 30o at Re = 1.5×104, 1×104, and 5×103 in the
symmetry plane at Y/D = 0.

in Figure 6.2, from θ = 15o to 30o, the magnitude of the streamwise velocity near the lower

half of the cylinder at Re = 5×103 is greater than for other cases. Overall inspection of ⟨ψ⟩

and ⟨U⟩/U∞ shows that by decreasing the Reynolds number the mean recirculation region is

further elongated downstream by moving towards the top surface-piercing end.

Figure 6.3 shows the mean normalized vorticity (⟨ωy⟩D/U∞) for the static yawed cylinder

at the three Reynolds numbers. The general trend in the variation of the negative and

positive vorticity is similar for all the Reynolds numbers, particularly for regions close to
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Figure 6.3: Contours of mean normalized vorticity (⟨ωy⟩D/U∞) for the static cylinder at yaw
angles of θ = 0o, 4o, 15o, 26o, and 30o at Re = 1.5×104, 1×104, and 5×103 in the symmetry
plane at Y/D = 0.

the upstream free end. Near the surface-piercing end of the cylinder, for all yaw angles, the

region and magnitude of the positive vorticity decrease with the Reynolds number, which

occurs due to lower impact of free surface on the near wake of the cylinder at lower Reynolds

numbers. For θ = 0o and 4o, it is evident that the negative vorticity develops further in the

spanwise direction for lower Reynolds numbers. For Re = 5×103, beyond θ = 15o, an increase

in the negative vorticity is observed near the downstream surface of the cylinder in the range

of Z/D = 0 to Z/D = 3. The strong negative vorticity around Z/D = 3 at θ = 26o and 30o

is aligned with the separation and reattachment of the flow on the downstream surface of

cylinder, as shown in Figure 6.1.
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Figure 6.4: Contours of mean normalized axial velocity (⟨VA⟩/U∞) for static cylinder at yaw
angles of θ = 0o, 4o, 15o, 26o, and 30o at Re = 1.5×104, 1×104, and 5×103 in the symmetry
plane at Y/D = 0. Contour levels of ⟨VA⟩/U∞ = 0 and 0.5 are marked by while solid line and
black dashed line, respectively.

Contours of mean axial velocity (⟨VA⟩/U∞) for the static yawed cylinder at the three

Reynolds numbers are depicted in Figure 6.4. As previously explained in Section 4.1 for Re

= 1.5×104, the extent of axial velocity in the spanwise direction increases with yaw angle

and the trend is similar for all Reynolds numbers. From Figure 6.4 it can be inferred that

in the range of the subcritical regime, the magnitude of positive axial velocity behind the

cylinder increases with Reynolds number at all yaw angles. This variation is more pronounced

at higher yaw angles of θ = 26o and 30o. For instance, at Re =1.5×104, the axial velocity
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of around 0.8U∞ occurs downstream the lower half of the span, while the maximum axial

velocity of 0.5U∞ is seen from the bottom free end up to Z/D = −3 at Re = 5 ×103. For Re

= 5×103, beyond θ = 15o, the separation of flow on the downstream surface of the cylinder,

which was explained earlier in this section, is shown by a decrease in the magnitude of axial

velocity between the mid-span and Z/D = 3.

6.1.2 Yaw-Oscillating Cylinder

In this section, the effect of Reynolds number is investigated on the flow behavior in the

near wake of a yaw-oscillating cylinder. Results in Chapter 5 for the cylinder undergoing

yaw oscillation at Reynolds number of 1.5 × 104 are compared with the lower Reynolds

numbers of 1×104 and 5×103. For the analysis done in this section, only the yaw-oscillating

case with K = 1.3 is considered as the case with significant near-wake flow variations along

the span. Figure 6.5 shows the phase-averaged streamline patterns (⟨ψϕ⟩) for the eight

phases of oscillation with K = 1.3 at the three Reynolds numbers considered. Contours of

phase-averaged normalized streamwise velocity (⟨Uϕ⟩/U∞) for the aforementioned cases are

depicted in Figure 6.6.

Discussions on the spanwise flow structure downstream the yaw-oscillating cylinder at

K = 1.3 and Re = 1.5×104 can be found in Section 5.1. Comparing the results over the entire

cycle indicates that the flow topology for K = 1.3 is generally similar at all the Reynolds

numbers considered and only subtle differences are observed. For instance, near the free

surface-piercing end of the cylinder, particularly in the first half of the oscillation cycle, the

region of negative streamwise velocity is diminished owing to the lower impact of the free

surface. Moreover, similar to the observation made for the static yawed cylinder, when the

mean recirculation region exists in the wake, the streamwise extent of this region increases

with decreasing Reynolds number. In the first half cycle, near the bottom half of the cylinder,

it can be seen from Figure 6.6 that the magnitude of backflow velocity decreases with

decreasing Reynolds number at the same phase of oscillation. In the return cycle and near

the top half of the span, the negative streamwise velocity is shown to be slightly higher for
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Figure 6.5: Phase-averaged streamline topology (⟨ψϕ⟩) for the yaw-oscillating cylinder with
reduced frequency of K = 1.3 at Re = 1.5×104, 1×104, and 5×103 in the symmetry plane
at Y/D = 0.

Re = 5×103. From the similarity of the flow structure for the yaw-oscillating cylinder with

K = 1.3 at all Reynolds numbers shown in Figures 6.5 and Figure 6.6, it can be inferred that

flow past yaw-oscillating cylinder is almost independent of Reynolds number in the range of

subcritical flow.

6.1.3 High Reduced Frequencies

The range of reduced frequency was extended to greater values within the mechanical

limitations of the system. By reducing the freestream velocity for the lower Reynolds

number, the reduced frequency can be increased while remaining below the maximum value
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Figure 6.6: Contours of phase-averaged streamwise velocity (⟨Uϕ⟩/U∞) for the yaw-oscillating
cylinder with reduced frequency of K = 1.3 at Re = 1.5 × 104, 1 × 104, and 5 × 103 in the
symmetry plane at Y/D = 0.

of vortex shedding frequency that was limited by the yaw-oscillation mechanism. For Re

= 5×103, reduced frequencies of K = 2 and 4 were achieved. From the previous section, it

was shown that the spanwise variation of the near-wake at a specific reduced frequency is

almost independent of the Reynolds number. Therefore, it is anticipated that the following

discussions on the influence of higher reduced frequencies of K = 2 and 4 on the near wake of

the cylinder at Re = 5×103 apply to the range of Reynolds numbers considered.

Figures 6.7 and 6.8 show the phase-averaged streamline patterns (⟨ψϕ⟩) and contours of

phase-averaged normalized streamwise velocity (⟨Uϕ⟩/U∞) for the yaw-oscillating cylinder

with K = 2 and 4 at Re = 5 × 103. Comparing the wake flow patterns at K = 2 to those

at the previously-discussed, moderately high reduced frequency values of K = 1 and 1.3

reveals a general similarity in wake flow patterns at corresponding oscillation phases, although
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increasing the reduced frequency to K = 2 leads to the suppression of the mean recirculation

bubble in the first half of oscillation over a much larger spanwise extent in the wake of the

cylinder’s top half, as discernible from the existence of a larger spanwise region where the

positive streamwise velocity prevails at the base of the cylinder and the streamlines point in

the inflow direction. However, for K = 2, Figure 6.7 depicts a distinct local wake flow pattern

at ϕ = π/2 to 5π/4; that is, the streamline patterns demonstrate a swirl being generated

in the vicinity of the mid-span region. This observation can presumably be ascribed to the

interaction of the strong positive streamwise velocity forming behind the top half of the span

and the high-magnitude reverse flow developing behind the bottom half of the cylinder at

π/2 ⩽ ϕ⩽ 3π/4, which is reversed at π ⩽ ϕ⩽ 5π/4 to having strong reverse flow above the

mid-span region and high-magnitude positive streamwise flow below owing to the switch in

the direction of motion of the cylinder. Although the reverse flow velocity grows to even

larger magnitudes behind the top half of the cylinder beyond ϕ= 5π/4, a swirl development

in the mid-span region is not observable at other phases. This may be related to the existence

of a positive axial flow around the mid-span region at other phases of oscillation, as seen

in the contour plots of phase-averaged normalized axial flow velocity given in Figure 6.10.

Also, it should be noted here that, similar to the previously discussed yaw-oscillating cases

with moderately high reduced frequencies of K = 1 and 1.3, as the cylinder’s lower half

moves against the inflow direction, the reverse flow velocity behind the lower half of the

cylinder gradually grows in magnitude as the cylinder accelerates from ϕ = 0 to π/2 and

decreases during its deceleration from ϕ = π/2 to π/2. However, compared to K = 1 and

1.3, this variation in reverse velocity magnitude is minute, and hence, the effect of cylinder

acceleration/deceleration on the near-wake flow appears to be less pronounced for K = 2.

For K = 4, Figures 6.7 and 6.8 show that the near wake flow field is highly affected by the

rapid motion of the cylinder. That is, in the first half cycle, significant positive X-direction

thrust is imparted onto the flow behind the top half of the cylinder from the cylinder’s top

half that moves in the inflow direction with a high velocity, directing the streamlines behind

the upper half of the cylinder in the inflow direction and eliminating the reverse flow, which
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Figure 6.7: Phase-averaged streamline topology (⟨ψϕ⟩) for eight select phases of yaw-
oscillating cylinder with reduced frequencies of K = 2 and 4 at Re = 5×103 in the Y/D = 0
symmetry plane.

Figure 6.8: Phase-averaged normalized streamwise velocity (⟨Uϕ⟩/U∞) for eight select phases
of yaw-oscillating cylinder with reduced frequencies of K = 2 and 4 at Re = 5×103 in the
Y/D = 0 symmetry plane.
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implies complete elimination of the recirculation bubble behind the top half of the cylinder.

This nonexistence of a recirculation region pattern behind the top half of the cylinder is

extended to the return cycle up to ϕ= 5π/4. Similarly, in the return cycle, the rapid motion

of the cylinder’s bottom half in the freestream direction suppresses the mean recirculation

bubble behind this section of the cylinder starting from ϕ= 5π/4, and this impact continues

to be effective even when the cylinder’s movement reverses until ϕ= π/4 in the first half-cycle.

Moreover, unlike the previously discussed cases of yaw-oscillating cylinders with K = 1 and

1.3, the recovery of the mean recirculation region near the top half of the cylinder is delayed;

it occurs later in the return cycle at ϕ= 3π/2 for K = 4. All these delayed changes in the

flow behavior at the highest considered reduced frequency value of K = 4 imply that there is

a phase lag between the response of the flow and the cylinder oscillations. This phase-lag

results from the lower response rate of the flow to the fast oscillatory motion of the cylinder.

Also, the impact of the cylinder acceleration/deceleration is not evident for K = 4, as, for

example, contrary to the cases of K = 1 and 1.3, the maximum reverse flow velocity, which

appears near the bottom end of the cylinder, continually increases as the phase of oscillation

advances in the first half cycle.

Corresponding contours of phase-averaged axial flow velocity (⟨VA,ϕ⟩/U∞) for K = 2 and 4

are given in Figure 6.10. From the contour levels of ⟨VA,ϕ⟩/U∞ = 0.4, which are marked using

a dashed line in the plots, it can be seen that increasing the reduced frequency to K = 2 leads

to a further delay in the spread of high-magnitude positive axial flow that originates from the

bottom end of the cylinder along the span of the cylinder in the return cycle, following the

same trend previously discussed in Figure 5.4 for the moderate reduced frequencies of K = 1

and 1.3. For K = 2, the spanwise spread of the large-magnitude positive axial flow in the

return cycle is blocked until ϕ= 5π/4 by the negative axial flow region developing immediately

behind the cylinder around the mid-span and the second negative axial flow zone forming

downstream of this region (detached from the cylinder surface) as a result of the swirl pattern.

For K = 4, as a result of the delay of the flow response to cylinder oscillations, the first

appearance of a high-amplitude positive axial flow near the bottom end of the cylinder occurs
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at ϕ= π/2. Distinct from other reduced frequencies, an interesting feature observed only for

K = 4 is that from ϕ= π/2 to 5π/4, although moderate levels of negative axial flow dominate

immediately downstream of the cylinder over a significant spanwise portion of the bottom half

of the cylinder (distinguishable from the pocket of negative axial velocity contours bounded

by the solid white line depicting the ⟨VA,ϕ⟩/U∞ = 0 level), the high-magnitude positive axial

flow originating from the free lower end of the cylinder still spreads in the spanwise direction,

wrapping around that negative axial flow region, and impacts directly downstream of the

cylinder near the top half of the cylinder (about Z/D = 3). Also, unlike other cases, due to

the high angular velocity of the cylinder motion, the remnants of this strong axial flow near

the top half of the cylinder remain attached to the surface of the cylinder at ϕ= 0 and π/2

in the first half cycle.

Figure 6.9 depicts the contours of vorticity for the yaw-oscillating cylinder with reduced

frequencies of K = 2 and 4. Results for K = 2 indicate that unlike the moderate reduced

frequencies (K = 1 and 1.3), very close to the bottom free end of the cylinder, the negative

vorticity region is not present for all the phases. For the phases where a negative vorticity

region exists near the upstream end, the streamwise extent is remarkably lower than those

observed for the moderate reduced frequencies. Another notable distinction can be seen in

the positive vorticity regions along the span of the cylinder. For K = 2, positive vorticity is

generated close to the surface of the cylinder from mid-span down to around Z/D = −5 at

ϕ= π/2. This is presumably related to the significant velocity gradient near the mid-span

caused by the opposite direction streamwise velocities near the top and bottom half of the

span. At ϕ = 3π/4, the bottom section of this vorticity region splits into two parts. The

part that is located further downstream, moves away from the surface of the cylinder in the

freestream direction from ϕ= π to 7π/4. On the other hand, from ϕ= π to 7π/4, the split

part of the positive vorticity that is closer to the surface of the cylinder is kept attached

to the surface of the cylinder and ascends in the spanwise direction towards the mid-span.

This positive vorticity detaches from the surface of the cylinder at ϕ= 0 and dissipates in

the following phases. The upper part of the positive vorticity region (from the mid-span to
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Figure 6.9: Phase-averaged vorticity (⟨ωy,ϕ⟩D/U∞) for eight select phases of yaw-oscillating
cylinder with reduced frequencies of K = 2 and 4 at Re = 5×103 in the Y/D = 0 symmetry
plane.

Figure 6.10: Phase-averaged normalized axial velocity (⟨VAϕ
⟩/U∞) for eight select phases

of yaw-oscillating cylinder with reduced frequencies of K = 2 and 4 at Re = 5×103 in the
Y/D = 0 symmetry plane. Contour levels of ⟨VAϕ

⟩/U∞ = 0 and 0.4 are marked with white
solid line and black dashed line, respectively.
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around Z/D = −2), detaches from the surface of the cylinder beyond ϕ= π and progressively

moves downstream until phase ϕ= 7π/4.

From Figure 6.9, for K = 4, it is apparent that the flow structure along the span of the

cylinder is not influenced by the vorticity generated near the upstream end, in contrast to

the observation made for the moderate reduced frequencies. Instead, it can be seen that the

positive vorticity is generated along the span of the cylinder from ϕ = 0 by the change in

the direction of motion of the cylinder and dissipates downstream over the oscillation cycle.

A large section of the positive vorticity is generated in the first half cycle associated with

significant thrust added to the flow immediately behind the cylinder and then dissipates

in the return cycle. This implies that the remarkably rapid motion of the cylinder is the

parameter that dominates the flow structure along the span of the cylinder.

6.2 Flow Structure in the (X,Y ) Planes

6.2.1 The Mid-Span Plane

In this section, the effect of the Reynolds number on the flow topology at the mid-span of

the stationary and yaw-oscillating cylinder is considered. The left column of Figure 6.11

shows the yaw-averaged streamline patterns (⟨ψθ⟩) superimposed over contours of normalized

yaw-averaged streamwise velocity (⟨Uθ⟩/U∞), and the right column gives the contours of

normalized yaw-averaged vorticity (⟨ωz,θ⟩D/U∞) for both the static yawed cylinder and

yaw-oscillating cylinder cases at K = 0.5, 1.3, and 4 for Re = 5 × 103. Similar to the

previous results of Figure 5.5 with Re = 1.5×104, as the frequency of oscillation increases,

the streamwise length of the mean recirculation region gradually reduces, and the core of

counter-rotating swirls moves towards the cylinder until they are suppressed at the case

with K = 4. The vorticity contours in the second column indicate a sharp reduction in the

streamwise extent of shear layers with increasing reduced frequency. The increasingly shorter

mean recirculation region and shorter length of shear layers as K increases suggest that

vortices shed gradually closer to the cylinder base, until they are suppressed at K = 4. Similar
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Figure 6.11: Yaw-averaged streamline (⟨ψθ⟩) topology superimposed over the normalized
mean streamwise velocity (⟨Uθ⟩/U∞) and the contours of the mean normalized Z-direction
vorticity (⟨ωz,θ⟩D/U∞) for the static yawed cylinder and yaw-oscillating cylinder at reduced
frequencies of K = 0.5, 1, and 4 at Re = 5×103. For the contours of ⟨ωz,θ⟩D/U∞ given in
the second column, the contour levels for the solid, dashed, and dash dot lines are ±0.0625,
±0.125, ±0.25, respectively. Symbols represent saddle points as described in Figure 4.3.

to the high Reynolds number counterparts at Re = 1.5×104, the mean drag coefficient in the

mid-span of the cylinder at this lower Reynolds number of Re = 5×103 may be speculated to

increase from the stationary case to the oscillating case with K = 1.3 due to gradual reduction

in the streamwise length of the mean recirculation region suggesting an increase in suction at

the base of the cylinder in the mid-span. Nevertheless, this inference is only rational for the

mid-span of the cylinder.

Figure 6.12 shows the contours of normalized phase-averaged streamwise velocity (⟨Uϕ⟩/U∞)

overlaid by the phase-averaged streamline (⟨ψϕ⟩) patterns for the stationary yawed cylinder

and the two yaw-oscillating cases of K = 1.3 and 4 at Re = 5 × 103. Streamlines for the case
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Figure 6.12: Phase-averaged flow streamline topology (⟨ψϕ⟩) superimposed over the contours
of mean normalized streamwise velocity (⟨Uϕ⟩/U∞) for the yaw-oscillating cylinder at reduced
frequencies of K = 1.3 and K = 4 (The first and second column, respectively) at eight select
phases and the static yawed cylinder (last column) at Re = 5×103. The symbols represent
saddle points as previously described in Figure 4.3. Schematics on the far-left indicate the
phase and its corresponding yaw angle as well as the direction of motion of the cylinder with
respect to the freestream.
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of the stationary yawed cylinder show that at θ = 4o and 15o in both the first-half and return

cycles, the streamwise flow develops at the base of the cylinder, pushing the swirl patterns

downstream. The mean recirculation region is eliminated at higher yaw angles of θ = 26o and

30o in agreement with the flow visualization shown by Najafi et al. [40].

For the yaw-oscillating cylinder at K = 1.3, the streamline patterns at different phases

resemble those obtained for higher Reynolds number of Re = 1.5×104 at the same reduced

frequency. The mean recirculation region exists all along the oscillation period, except for

the ϕ= 3π/2 phase in the return cycle, where the swirl patterns are significantly suppressed.

Results for K = 4 point out an interesting flow behavior. It can be seen that with the

oscillation frequency being substantially high at K = 4, the patterns of swirl are nearly

suppressed at all yaw angles.

6.2.2 Z/D = ±3 Planes

In this section, the flow topology on Z/D = ±3 planes is compared for static cylinder and

yaw-oscillating cylinder at two Reynolds numbers of 1.5×104 and 5×103. Results for the

static cylinder are presented first and then compared with the yaw-oscillating cylinder with a

reduced frequency of K = 1.3.

Figure 6.13 illustrates the mean streamline topology (⟨ψϕ⟩) overlaid on contours of mean

normalized streamwise velocity (⟨U⟩/U∞) for the static cylinder in the Z/D = 3 plane at

three yaw angles of θ = 0o, 15o, and 30o. Results are shown for Re = 5×103 and 1.5×104.

From Figure 6.13, it can be observed that for θ = 0o and 15o, a pair of swirl patterns exists

behind the cylinder whereas they are completely suppressed at θ = 30o for both Reynolds

numbers. The general difference between the two cases lies in the streamwise extent of the

mean recirculation region, which is further elongated downstream for the lower Reynolds

number case. At the yaw angle of θ = 15o an additional region of swirl appears immediately

behind the cylinder for the lower Reynolds number case. This swirl is presumably related

to the flow separation on the rear surface of the cylinder at Re = 5×103 around Z/D = 3,

which is aligned with the observation made near this location in Figures 6.1 and 6.3.
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Figure 6.13: Mean streamline topology (⟨ψ⟩) superimposed over the contours of mean
normalized streamwise velocity (⟨U⟩/U∞) in the Z/D = 3 plane for the static yawed cylinder
at yaw angles of θ = 0o, 15o, and 30o. Reynolds numbers considered are 5×103 and 1.5×104.
Symbols represent the saddle points.

Figure 6.14 shows the results for the static yawed cylinder in the Z/D = −3 plane. Similar

to the observation made for the plane on the top half of the cylinder, at θ= 0o, the streamwise

extent of swirl patterns are remarkably higher for the lower Reynolds number. For Re

= 1.5×104, at θ = 15o, the streamwise flow can be seen between the swirls and the surface

of the cylinder. On the other hand, for the same yaw angle and at Re = 5×103, the mean

recirculation region is significantly suppressed. This implies that at lower Reynolds, the

regular vortex shedding is highly impacted by the axial flow generated from the upstream

end. Note that in Figure 6.4, it was shown that the magnitude of positive axial flow for

Re = 5 × 103 is less around the location of the Z/D = −3 plane at θ = 15o, however, it is

shown to be more influential compared to higher Reynolds number case. At θ = 30o, for both

Reynolds numbers, results show the complete suppression of the recirculation region and

therefore vortex shedding.

To evaluate the impact of Reynolds number in Z/D = ±3 planes for the yaw-oscillating

cylinder, the flow topology on these planes along with the Y/D = 0 symmetry planes are

illustrated in Figures 6.15 and 6.16 for K = 1.3 at Re = 5 × 103 and 1.5 × 104. Overall

inspection of Figure 6.15 shows a resemblance in the general flow behavior in the near wake
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Figure 6.14: Mean streamline topology (⟨ψ⟩) superimposed over the contours of mean
normalized streamwise velocity (⟨U⟩/U∞) in the Z/D = −3 plane for the static yawed
cylinder at yaw angles of θ = 0o, 15o, and 30o. Reynolds numbers considered are 5×103 and
1.5×104. Symbols represent the saddle points.

of the cylinder in each half of oscillation for both Reynolds numbers. However, for ϕ= 0, the

backflow and the pair of swirls are stronger for the lower Reynolds number. As previously

mentioned, in the first half of oscillation cycle for Re = 1.5×104, when the cylinder accelerates

in the inflow direction at ϕ= π/4, the mean recirculation region is suppressed and this effect

continues further until ϕ = 3π/4 where the swirl patterns are recovered. However, for Re

= 5×103, the suppression of the mean recirculation region is delayed until ϕ= π/2.

As for the Z/D = −3 plane, flow patterns are generally similar for each Reynolds number.

For both cases, from ϕ= 0 to ϕ= π/2, the backflow velocity and the streamwise extent of

the swirl patterns increase with the yaw angle. At ϕ= 3π/4, increase in the spanwise flow

decreases the backflow velocity and the separated backflow region from the upstream end

reaches the Z/D = −3 plane at ϕ= π and ϕ= 5π/4. The only discrepancy is apparent in the

magnitude of the backflow velocity, which is higher for the higher Reynolds number.
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Figure 6.15: Phase-averaged streamline topology (⟨ψϕ⟩) superimposed over the contours of
phase-averaged normalized streamwise velocity (⟨Uϕ⟩/U∞) in the Z/D = 3 plane at eight
select phases of yaw-oscillating cylinder with K = 1.3. Reynolds numbers considered are
5×103 and 1.5×104.

Figure 6.16: Phase-averaged streamline topology (⟨ψϕ⟩) superimposed over the contours of
phase-averaged normalized streamwise velocity (⟨Uϕ⟩/U∞) in the Z/D = −3 plane at eight
select phases of yaw-oscillating cylinder with K = 1.3. Reynolds numbers considered are
5×103 and 1.5×104.
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6.3 Wake Parameters

6.3.1 Wake Width and Closure Length at the Mid-Span Plane

In Figure 6.17, the phase-averaged characteristics of the near wake are plotted to compare the

two different Reynolds numbers. From Figure 6.17 (a), it can be seen that for both Reynolds

numbers, yaw oscillation at K = 1.3 leads to a shorter wake closure length at every phase

of oscillation compared to the stationary cylinder. Suppression of the mean recirculation

region occurs at ϕ= 3π/2 for both Reynolds numbers. In addition, the wake closure length

is shorter for the lower Reynolds number case, relative to the stationary case of the same

Reynolds number.

As previously shown in Figure 6.12, increasing the reduced frequency to K = 4 at Re

= 5 × 103 leads to complete suppression of the mean recirculation region throughout the

entire oscillation, thus, no wake closure length is reported for this reduced frequency. Figure

6.17 (b) shows that for Re = 5 × 103, the wake width at X/D = 2 becomes wider for each

phase as the oscillation frequency increases, reaching the highest value of the wake width at

the fastest yaw-oscillating case that has a reduced frequency of K = 4. This latter case also

depicts the least variation in the wake width over the cycle.

6.3.2 Backflow Angle

In order to better understand the influence of the Reynolds number on the spanwise flow

pattern of the static and yaw-oscillating cylinder at K = 1.3, the variation of the backflow

angle on three different locations along the span, namely at Z/D = 3, 0, and -3, are shown in

Figure 6.18. The backflow angles are calculated for the three Reynolds numbers previously

studied in Figures 6.1 and 6.5. The top row in Figure 6.18 indicates that for the static

cylinder, for each of the Reynolds numbers, increasing yaw angle from θ = 0o to 30o leads to

a decrease in the backflow angle over the entire span. Moreover, it can be observed that the

difference between the backflow angles at each yaw angle increases with decreasing Reynolds
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Figure 6.17: Phase-averaged wake parameters of the static and yaw-oscillating cylinder cases
at two Reynolds numbers considered. a) Wake closure length (⟨Lc,ϕ⟩/D) and b) Half wake
width (⟨Y1/2,ϕ⟩/D) at X/D = 2.

number. At Z/D = −3 and the mid-span, the lowest backflow angle is obtained for Re =

5×103 at all yaw angles. The results for other Reynolds numbers are similar. At Z/D = 3,

the highest backflow angles at most of the yaw angles (except for θ = 0o) occurs for Re =

5×103. Comparing the results at different Z/D locations shows that decreasing the Reynolds

number causes an increase in the non-uniformity of the flow pattern over the span of the

static cylinder.

Results for the yaw-oscillating cylinder with reduced frequency of K = 1.3 are shown

along the bottom row of Figure 6.18. From the comparison of the values of the backflow

angle on various locations along the span, it can be discerned that the flow pattern in the

near wake of a yaw-oscillating cylinder, unlike the static yawed cylinder, is remarkably similar

for all the Reynolds numbers.
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Figure 6.18: Variation of backflow angle on three locations along the span of the cylinder,
namely at Z/D = 3, 0, and 3 for the static yawed cylinder (top) and yaw-oscillating cylinder
at K = 1.3 (bottom) at three Reynolds numbers of 1.5×104, 1×104, and 5×103.

6.4 Vortex Shedding

6.4.1 Static Yawed Cylinder

To evaluate the effect of Reynolds number on the vortex shedding frequency of the static

yawed cylinder, the velocity spectra and the variation of Strouhal number of vortex shedding

with the yaw angle are presented in Figure 6.20 for Re = 5×103 and 1.5×104. Results for

Re = 1× 104 are remarkably similar to the Re = 1.5 × 104 case and are not presented in this

section. The top row of Figure 6.20 reveals that regardless of the Reynolds number, increasing

yaw angle leads to a reduction in the height of the frequency peaks accompanied by the

enlargement of the width of the peak region. However, it is apparent that the reduction in the

height of the peaks by yaw angle is more pronounced at a higher Reynolds number. Moreover,
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it can be concluded that even at lower Re in the range of subcritical flow, the vortex shedding

becomes further disorganized by yaw angle and is significantly suppressed at high yaw angles.

As shown in the bottom row of Figure 6.20, the general trend in the variation of Strouhal

number with the yaw angle is similar, which is a decrease in St as the cylinder is further

yawed. However, at θ = 15o for Re = 5×103 where the vortex shedding frequency suddenly

increases with yaw angle. This observation is aligned with a corresponding increase in the

wake closure length at θ = 15o previously shown in Figure 6.12. One possible explanation for

this unexpected increase in the wake closure length and the vortex shedding frequency can be

associated with the flow separation on the surface of the cylinder near the mid-span region

with the regular vortex shedding, as shown in Figure 6.3. Current results are in agreement

with the observations of Najafi et al. [40] for the yawed cylinder with one side bounded by

the wall at the same Reynolds number.

6.4.2 Yaw-Oscillating Cylinder

In this section, the frequency analysis for the yaw-oscillating cases is conducted using the

yaw-averaged approach previously discussed in Section 5.4.1. Figure 6.20 shows the velocity

spectra for the yaw-oscillating cylinder with various reduced frequencies at Reynolds numbers

of 5 × 103, 1 × 104, and 1.5 × 104. The velocity spectra are obtained from the streamwise

velocity signal in 1200 oscillation cycles. From Figure 6.20, it is apparent that for all Reynolds

numbers, the distinct energy peaks indicating the oscillation frequency and its harmonics

occur in the lower range of Strouhal numbers and the peak height increases with the reduced

frequency. At all Reynolds numbers, in the range of St corresponding to the vortex shedding

frequency, it is indicated that increasing reduced frequency results in a reduction in the height

of the peak and an increase in the width of the peak region. As previously mentioned, such

behavior is consistent with the reduction in the organization and intensity of vortex shedding.

Comparing the results indicates that the drift of the peak region on the spectra towards the

lower values by increasing the reduced frequencies is more pronounced at higher Reynolds

numbers.
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The velocity spectra for K = 2 and 4 at Re = 5 × 103 are shown in Figure 6.21. For

K = 2, two narrowband peaks can be seen on the spectra that correlate with the fundamental

oscillation frequency and its harmonics. Moreover, broad-band energy peaks occur in the

range of vortex shedding frequency around 0.15 < St < 0.2. The low height of the peak

region indicates the mitigated vortex shedding. In addition to the regular vortex shedding,

the existence of vorticity near the hotwire probe at the mid-span plane could attribute

to the broadband peak frequencies in the range of 0.15 < St < 0.2. The contour level of

(⟨ωy,ϕ⟩D/U∞ =+0.1) for K = 2 is presented in Figure 6.22. In this Figure, as previously

shown in Figure 6.9, a positive Y -direction vorticity region is generated near the mid-span

region at ϕ= π/2 and moves downstream in the following phases. For K = 4, a narrow-band

peak for the oscillation frequency occurs at St = 0.18. Inspecting the velocity spectra for

Figure 6.19: The velocity spectra at different yaw angles (top) and the variation of Strouhal
number of vortex shedding with yaw angle (bottom) for the static yawed cylinder at Re
= 5×103 and 1.5×104.
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K = 4 shows that there is no discernible peak around the range of vortex shedding frequency

for the previous cases (around St = 0.2) that suggests the suppression of the vortex shedding

in agreement with the flow topology presented in Figure 6.11. However, a peak region can be

observed in the spectra in the range of St = 0.07 to 0.12. This peak region can be associated

with the positive region of vorticity that is generated near the cylinder and moves downstream

as marked by ⟨ωy,ϕ⟩D/U∞ =+0.1 contour level in Figure 6.22. Moreover, it should be noted

that the peak at 0.09 could also be related to the sub-harmonics of oscillation frequency.

Figure 6.23 depicts the instantaneous vorticity for the yaw-oscillating cases with K = 2 and 4

at the mid-span for ϕ= π/4. As shown in this figure, for K = 2 the vortices shed very close

to the surface of the cylinder and for K = 4 the shear layers are attached to the surface of

the cylinder and detach from the surface of the cylinder almost every half cycle.

Figure 6.20: The velocity spectra of the streamwise velocity for the yaw-oscillating cylinder
with various reduced frequencies at Re = 5×103, 1×104, and 1.5×104. The Strouhal number
of fundamental oscillation frequency (Stc) and its harmonics are marked with blue dashed
lines.
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Figure 6.21: The velocity spectra of the streamwise velocity for the yaw-oscillating cylinder
with high reduced frequencies of K = 2 and 4 at Re = 5 × 103. The Strouhal number of
fundamental oscillation frequency (Stc) and its harmonics are marked with blue dashed lines.

6.5 Chapter Summary
In this chapter, the effect of the Reynolds number on the near wake of both static and

yaw-oscillating cylinders was studied. Herein, two lower Reynolds numbers cases of 1×103

and 5×103 were studied and compared to the case of Re = 1.5×104 previously discussed in

the previous chapters.

For the static yawed cylinder, it was shown that decreasing the Reynolds number leads

to an increase in the streamwise extent of the mean recirculation region. The significant

suppression of the mean recirculation region along the majority of the span occurred at lower

yaw angles for the lowest Reynolds number. An increase in the magnitude of the axial flow

along the span of the cylinder with yaw angle occurred at all Reynolds numbers, however,

the axial flow had a higher magnitude for higher Reynolds numbers.

For the yaw-oscillating cylinders, the near wake structure was shown to be almost

independent of the Reynolds number. However, an increase in the length of the mean

recirculation region with decreasing Reynolds number at each yaw angle was observed, similar

to the results of the static cylinder.

At the lowest Reynolds number of 5 × 103, higher reduced frequencies of K = 2 and 4

were tested. While the wake structure at K = 2 was almost similar to the moderate values of

K = 1 and 1.3, special behavior was observed for the highest reduced frequency of K = 4. At

this reduced frequency, the near wake became more uniform again and the mean recirculation
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region was suppressed over most of the span under the dominant effect of the cylinder’s

direction of motion. Results showed that at high reduced frequencies, the response of the

flow to the fast oscillation motion of the cylinder was delayed leading to the elimination of

the effect of acceleration/deceleration of the cylinder.
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Figure 6.22: Depiction of ⟨ωy,ϕ⟩D/U∞ = +0.1 contour level at eight different phases of
oscillation for yaw-oscillating cylinder at reduced frequencies of K = 2 and 4 at Re = 5×103.

Figure 6.23: Instantaneous vorticity (ωzD/U∞) for the yaw-oscillating cylinder with K = 2
and 4 at the mid-span for ϕ= π/4.
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Chapter 7

Results: Effect of Aspect Ratio

The influence of the cylinder aspect ratio (L/D) on the near wake of a static yawed cylinder

and a cylinder undergoing yaw oscillation is investigated in this chapter. A comparative study

is conducted on the flow occurring in the near-wake of cylinders with two aspect ratios of

L/D = 13 and 20 at Re = 5×103. For the yaw-oscillating cylinders, two reduced frequencies

of K = 1.3 and 2 are considered.

7.1 Static Yawed Cylinder

Figure 7.1 shows the mean streamline topology (⟨ψ⟩) and contours of mean normalized

streamwise velocity for the static yawed cylinders with aspect ratios of 13 and 20 at Re

= 5 × 103. Assessment of ⟨ψ⟩ indicates that for both cylinders, as previously discussed in

Section 4.1, the separated flow from the edge of the bottom free end moves towards the

top end in the near wake of the cylinder. Moreover, it is shown that for both cylinders,

increasing the yaw angle causes the streamlines to become further parallel to the longitudinal

axis of the cylinder. A discrepancy can be observed in the streamline topology of the two

cylinders beyond θ = 15o. For the cylinder with L/D = 13, as previously shown in Section

6.1, the flow separates and then reattaches on the downstream surface of the cylinder around

Z/D = 3 at θ = 15o and the separation point moves further towards the surface-piercing end
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Figure 7.1: Mean streamline topology (⟨ψ⟩) and contours of mean normalized streamwise
velocity (⟨U⟩/U∞) for the static yawed cylinders with aspect ratios of L/D = 13 and 20 at
yaw angles of θ = 0o, 4o, 15o, 26o, and 30o at Re = 5×103 in Y/D = 0 symmetry plane.

for higher yaw angles. For the cylinder with L/D = 20, the streamlines are only inclined in

the downward direction near the surface-piercing end of the cylinder and no separation can

be seen on the downstream surface of the cylinder at any of the yaw angles. Moreover, it

is shown that for the cylinder with higher aspect ratio, the mean recirculation region along
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Figure 7.2: Contours of mean normalized vorticity (⟨ωy⟩D/U∞) for the static yawed cylinders
with aspect ratios of L/D = 13 and 20 at yaw angles of θ = 0o, 4o, 15o, 26o, and 30o at Re
= 5×103 in Y/D = 0 symmetry plane.

the span of the cylinder is less extended in the streamwise direction. Comparing contours

of the normalized streamwise velocity, it is evident that the negative streamwise velocity

is generally lower in the near wake of the cylinder with L/D = 20 at yaw angles of θ = 0o,

5o, and 15o. At θ = 26o and 30o, the suppression of the mean recirculation region along the

span is less significant for the higher aspect ratio cylinder, especially behind the top half of

the cylinder. For L/D = 20, the mean recirculation region exist from above the mid-span

up to the free surface at θ = 26o and from above the mid-span to Z/D = 3 at θ = 30o. The

discrepancy between the flow behavior of the two cylinders can be associated with the flow

separation on the downstream surface of the cylinder at L/D = 13 that could contribute to

the breakdown of the vortex shedding behind the top half of the cylinder. Figure 7.2 also

indicates this discrepancy in the contours of mean normalized vorticity (⟨ωy⟩D/U∞). For

L/D = 13 and beyond the yaw angle of θ = 15o, a strong negative vorticity region is seen

above the middle section of the cylinder that extends towards the free-surface piercing end
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by increasing yaw angle. However, for the cylinder with L/D = 20, there is no such region

downstream of the cylinder. Notice that other patterns of the vorticity for both cylinders at

different yaw angles are almost identical.

Contours of mean normalized axial velocity (⟨VA⟩/U∞) for the two static cylinder are

shown in Figure 7.3. Complete discussions on the variation of the axial velocity with yaw

angle for the static cylinder can be found in Section 4.1. As indicated in Figure 7.3, at all yaw

angles, higher magnitude axial flow is generated near the bottom free end of the cylinder with

L/D = 13. However, the development of axial flow along the span of the cylinder varies with

the aspect ratio of the cylinder. At θ = 15o and 26o, for the cylinder with a lower aspect ratio,

low-magnitude positive and negative axial flow is observed around the mid-span whereas for

the higher aspect ratio cylinder, the axial velocity of around 0.3U∞ can be seen in the same

region and low positive axial velocity occurs only for near the downstream end of the cylinder.

Figure 7.3: Contours of mean normalized axial velocity (⟨VA⟩/U∞) for the static yawed
cylinders with aspect ratios of L/D = 13 and 20 at yaw angles of θ = 0o, 4o, 15o, 26o, and
30o at Re = 5×103 in Y/D = 0 symmetry plane. Contour levels of ⟨VA,ϕ⟩/U∞ = 0 and 0.4
are marked with white solid line and black dashed line, respectively.
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At θ = 30o for L/D = 13, the low-magnitude positive axial velocity occurs downstream the

cylinder from around Z/D = 1 up to the top surface-piercing end of the cylinder while for

the cylinder with L/D = 20 and at the same yaw angle, a significant reduction in the axial

velocity can only be seen at the vicinity of the free surface.

7.2 Yaw-Oscillating Cylinder

7.2.1 Flow Structure in the (X,Z) Symmetry Plane

In this section, the influence of aspect ratio on the near wake of a yaw-oscillating cylinder

is investigated. Figure 7.4 illustrates the phase-averaged streamline topology (⟨ψϕ⟩) and

contours of normalized phase-averaged velocity (⟨Uϕ⟩/U∞) for the two yaw-oscillating cylinders

considered with the reduced frequency of 1.3. A discernible difference between the two

cylinders is the impact of the cylinder’s acceleration/deceleration on the near wake in the

first half cycle as apparent from the following observations. Contours of ⟨Uϕ⟩/U∞ reveal that

as the cylinder accelerates while moving from ϕ= 0 to π/2, both the increase in the positive

streamwise velocity in the top half of the span and the increase in the magnitude of the

negative streamwise velocity near the bottom of the cylinder are relatively greater for the

higher aspect ratio cylinder. Also, comparing the corresponding patterns of ⟨ψϕ⟩ between

these two cylinders during their acceleration from ϕ= π/4 to π/2 shows that the streamlines

very close to the free surface are perpendicular to the surface of the cylinder for the larger

aspect ratio cylinder with the effect of acceleration augmenting the streamwise thrust exerted

on the flow through the positive X-direction motion of the cylinder’s top half. In contrast,

the corresponding streamlines look more chaotic for the smaller aspect ratio cylinder under

the effect of the free surface. Moreover, when the cylinder decelerates from ϕ= π/2 to π, the

mean recirculation bubble is recovered on a relatively larger section of the top half of the

cylinder for the larger L/D. For instance, for L/D = 13, as the cylinder moves from ϕ= π/2

to π, the reverse flow zone expands from being over the spanwise region below Z/D = 1.1 to

being below Z/D = 2 (implying a recovery of the mean recirculation bubble over a spanwise
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Figure 7.4: Phase-averaged streamline topology (⟨ψϕ⟩) and phase-averaged normalized
streamwise velocity (⟨Uϕ⟩/U∞) for eight select phases of a yaw-oscillation with reduced
frequency of K = 1.3 and aspect ratios of L/D = 20 and 13 at Re = 5 × 103 in Y/D = 0
symmetry plane.

length of 0.071L), whereas for L/D = 20, the spanwise extent of the reverse flow grows from

being in regions below Z/D = 2 to being below Z/D = 5 (a recovery over a spanwise length

of 0.15L). All these observations suggest the presence of a more significant influence from the

acceleration/deceleration of the cylinder on the near-wake for the larger aspect ratio cylinder.

In order to compare the impact of the aspect ratio on the near wake of yaw-oscillating

cylinder at high reduced frequencies, the phase averaged flow patterns ⟨ψϕ⟩ and contours of

phase averaged normalized vorticity ⟨ωy,ϕ⟩D/U∞ for the yaw oscillation with the reduced
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Figure 7.5: Phase-averaged streamline topology (⟨ψϕ⟩) and phase-averaged normalized
vorticity (⟨ωy,ϕ⟩/U∞) for eight select phases of a yaw-oscillation with reduced frequency of
K = 2 and aspect ratios of L/D = 20 and 13 at Re = 5×103 in Y/D = 0 symmetry plane.

frequency of K = 2 is shown in Figure 7.5. Note that the discrepancies in the contours of

streamwise velocity for K = 2 is similar to what was shown for K = 1.3, hence, the focus

here is only on the differences in the flow streamline topology and vorticity fields for the two

cylinders. As mentioned in Section 6.1.3, high angular velocity of the cylinder at K = 2 leads

to a specific flow behavior around the mid-span of the cylinder for L/D = 13. Comparing

the streamline topology for the two cylinders demonstrates that the swirl created behind the

middle section of the cylinder with L/D = 13 is not visible for the one with the higher aspect

ratio. This is aligned with what is depicted in the contours of vorticity, which show that for
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Figure 7.6: Phase-averaged normalized axial velocity (⟨VA,ϕ⟩/U∞) for eight select phases of
a yaw-oscillation with reduced frequency of K = 1.3 and aspect ratios of L/D = 13 and 20
at Re = 5×103 in Y/D = 0 symmetry plane. Contour levels of ⟨VA,ϕ⟩/U∞ = 0 and 0.4 are
marked with white solid line and black dashed line, respectively.

the L/D = 20 cylinder, a positive vorticity region is only generated around Z/D = −7 at

ϕ= π/2 and gradually ascends near the surface of the cylinder up to around Z/D = −5 at

ϕ= 7π/2. Moreover, it can be seen that this positive vorticity region is seen to be dissipated

at the beginning of the next oscillation cycle.

Figure 7.6 shows the contours of phase-averaged normalized axial velocity (⟨VA,ϕ⟩/U∞)

for a yaw oscillation with reduced frequency of K = 1.3 for the two cylinders considered.

From Figure 7.6, it is apparent that the positive axial flow originating from the free lower

end of the cylinder is notably more substantial from ϕ= π/4 to 3π/4 in the first half of the

oscillation cycle for the cylinder with the higher length-to-diameter ratio. Furthermore, in

the return cycle, from ϕ = π to 3π/2, this positive axial flow spreads more rapidly along

the span of the cylinder for the higher aspect ratio case, possibly, once again, due to the

more significant influence of the cylinder’s acceleration for the larger L/D. This trend can

be identified by noting that, at these phases of ϕ= π to 3π/2, almost or entirely no negative

axial velocity is seen near the top of the cylinder and the contour levels of ⟨VA,ϕ⟩/U∞ = 0.4,

for example, which are marked by dashed contour lines, appear at locations with a higher
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Figure 7.7: Phase-averaged normalized axial velocity (⟨VA,ϕ⟩/U∞) for eight select phases
of a yaw-oscillation with reduced frequency of K = 2 and aspect ratios of L/D = 13 and 20
at Re = 5×103 in Y/D = 0 symmetry plane. Contour levels of ⟨VA,ϕ⟩/U∞ = 0 and 0.4 are
marked with white solid line and black dashed line, respectively.

Z/D for the larger L/D case.

Figure 7.7 illustrates the variation of the phase-averaged normalized axial velocity

(⟨VA,ϕ⟩/U∞) for the yaw-oscillating cylinders at K = 2. it is apparent from Figure 7.7

that for the L/D = 13 case, strong negative axial velocity occurs close to the bottom end

(centered about Z/D = −3) and immediately behind the cylinder at ϕ= π/4 and it ascends

towards the middle section at ϕ= π/2 and 3π/4. Moreover, it is shown that high magnitude

positive axial velocity generated from the upstream end of the cylinder cannot develop in the

near wake of the cylinder in the return cycle (unlike moderate reduced frequencies, see Figure

4.2) as it is hindered by the negative axial flow region generated near below the mid-span.

For the cylinder with L/D = 20, the low positive and negative axial velocity occurs behind

the bottom half of the cylinder (centered about Z/D = −5), however, the magnitude of the

negative axial velocity is lower than that of the lower aspect ratio cylinder. Contrary to the

observation made for the lower aspect ratio cylinder, for the cylinder with L/D = 20, the

positive axial flow develops significantly along the span and covers nearly an entire near wake

of the cylinder beyond ϕ = 5π/4. Furthermore, it can be seen that the low axial velocity
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region downstream the lower half of the span is eliminated in the return cycle for the higher

aspect ratio cylinder.

7.2.2 Flow Structure in the (X,Y ) Planes

7.2.2.1 The Mid-Span Plane

Figure 7.8 depicts the yaw-averaged streamwise velocity (⟨Uθ⟩/U∞) and the yaw-averaged

streamline patterns (⟨ψθ⟩) for the yaw-oscillating cylinders with aspect ratios of 13 and 20.

As shown in Figure 7.8, for K = 1.3, symmetric counter-rotating swirls occur behind the

cylinder for both aspect ratios. Notice that the streamwise length of the mean recirculation

region is greater for the cylinder with high aspect ratio. For K = 2, the yaw-averaged

near wake is shown to be remarkably different for each cylinder. It is evident that for

L/D = 13, asymmetrical counter-rotating swirls occur downstream the cylinder whereas the

wake structure is completely symmetrical for L/D = 20. Moreover, the size of the swirls

appears to be smaller for the cylinder with a lower aspect ratio cylinder. This discrepancy is

presumably related to swirls created behind the middle section of the cylinder with L/D = 13,

as previously shown in Figure 7.5.

The yaw-averaged vorticity field (⟨ωz,θ⟩D/U∞) for the above-mentioned cases are shown

in Figure 7.9. Comparing the vorticity field in the near wake of the yaw-oscillating cylinders

with different aspect ratios demonstrates that the high vorticity region within shear layers on

both sides of the cylinder with higher aspect ratio are further elongated and straight in the

streamwise direction. The variation in the shape of the shear layers is probably associated

with the higher magnitude of positive axial velocity near the mid-span for the L/D = 20 case,

particularly in the return cycle of the oscillation, as indicated in Figures 7.6 and 7.7. Figure

7.9 also indicates the yaw-averaged shear layers for the cylinder with L/D = 13 at K = 1.3 is

asymmetrical owing to the influence of the swirl created behind the middle section of the

cylinder during the oscillation cycle, as depicted in Figure 7.5.

Figures 7.10 and 7.11 show the contours of phase-averaged normalized streamwise velocity
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Figure 7.8: Contours of yaw-averaged normalized streamwise velocity (⟨Uθ⟩/U∞) overlaid by
yaw-averaged streamline topology (⟨ψθ⟩) for yaw-oscillating cylinders with reduced frequencies
of K = 1.3 and 2 for L/D = 13 and 20 at Re = 5×103 in the mid-span plane.

Figure 7.9: Contours of yaw-averaged normalized vorticity (⟨ωz,θ⟩D/U∞) for yaw-oscillating
cylinders with reduced frequencies of K = 1.3 and 2 for L/D = 13 and 20 at Re = 5×103 in
the mid-span plane. Contour lines show the vorticity levels of ±0.5 and ±0.3 with negative
values marked by the dashed lines.

(⟨Uϕ⟩/U∞) overlaid by phase-averaged streamline topology (⟨ψϕ⟩) for the yaw-oscillating

cylinders with reduced frequencies of K = 1.3 and 2, respectively. As evident in Figure 7.10,

for the phases in the first half of oscillation cycle from ϕ= 0 to 3π/4 for both cylinders, a

pair of counter-rotating swirls are present in the near wake. The main discrepancy in the flow

behavior of the cylinders with different aspect ratios can be observed at ϕ= π and 5π/4, in

which the mean recirculation region appears to be suppressed for the cylinder with L/D = 20
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Figure 7.10: Contours of phase-averaged normalized streamwise velocity (⟨Uϕ⟩/U∞) overlaid
by phase-averaged streamline topology (⟨ψϕ⟩) at eight select phases of oscillation with the
reduced frequency of K = 1.3 for aspect ratios of L/D = 13 and 20 at Re = 5 × 103 in the
mid-span plane. Symbols represent the saddle points.
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whereas it exists in the near wake of the cylinder with lower aspect ratio. In Chapters 5

and 6, it was discussed that for the L/D = 13 case at K = 1.3, the suppression of the mean

recirculation region in the mid-span plane occurs at the phase of ϕ= 3π/2. However, it is

shown that this flow phenomenon is happening at earlier phases for L/D = 20 cylinder. This

can be directly related to the previous discussion on the rapid development of positive axial

flow along the span of the cylinder in the return cycle by increasing the aspect ratio, as

depicted in Figure 7.6 and its impact on the suppression of the mean recirculation region.

For both cylinders, the swirl patterns are eliminated at ϕ= 3π/2 and then recovered again at

ϕ= 7π/4.

Figure 7.11 shows that for the phases of ϕ= 0 and π/4, the counter-rotating swirls can be

observed downstream of both cylinders. For L/D = 13, from the phase of ϕ= π/2 to ϕ= π, a

deformation in the shape of the counter-rotating swirls is seen and the center of the swirls is

apparently attached to the base of the cylinder. This deformation occurs due to the presence

of the negative vorticity at the mid-span (Figure 7.5) at the corresponding phases. However,

at the same phases for L/D = 20, the counter-rotating swirls experience weaker deformation

and symmetrical swirls can be seen downstream of the cylinder. In the return cycle, for both

cylinders, the mean recirculation region in the mid-span plane is shown to be significantly

suppressed at all phases.

7.2.2.2 Planes Located Above and Below the Mid-Span

This section is devoted to investigating the near wake flow features in planes biased toward

each end of the cylinders with different aspect ratios. Note that the planes considered in this

part are located at the same distance from the center of rotation for both cylinders, namely

at Z/L = ±0.23 and -0.35. Since the flow structure is more complex behind the bottom

half of the cylinder, two planes are studied closer to the upstream free end of each cylinder.

For both cases, the streamline patterns in the symmetry plane are also provided to better

understand the three-dimensional flow structure along the span of the cylinder.

Figure 7.12 shows contours of phase-averaged normalized streamwise velocity (⟨Uϕ⟩/U∞)
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Figure 7.11: Contours of phase-averaged normalized streamwise velocity (⟨Uϕ⟩/U∞) overlaid
by phase-averaged streamline topology (⟨ψϕ⟩) at eight select phases of oscillation with the
reduced frequency of K = 2 for aspect ratios of L/D = 13 and 20 at Re = 5 × 103 in the
mid-span plane. Symbols represent the saddle points.
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overlaid by the phase-averaged streamline topology in the Z/L= 0.23 plane at K = 1.3 for the

two cylinders at Re = 5×103. As indicated in this figure, for both cylinders, swirls patterns

exist behind the cylinder at ϕ= 0 and π/4. As a result of cylinder direction of motion and

acceleration, the mean recirculation region is suppressed at ϕ= 3π/4. As discussed earlier

in Figure 7.4 for ϕ= 3π/4, the recovery of the mean recirculation region occurs on a larger

portion of the near wake for the higher aspect ratio cylinder, hence, the counter-rotating

swirls appear downstream the cylinder for this case. In the return cycle, no discrepancy can

be detected in the near wake of cylinders with different aspect ratios.

Figure 7.13 shows the flow behavior in the Z/L = −0.23 and -0.35 planes. In the first

half cycle from ϕ = 0 to ϕ = 3π/4, the flow in the near wake for both cylinders represents

similar behavior, which is the elongation of the counter-rotating swirls further downstream

by increasing the yaw angle. Major discrepancies are evident from ϕ= π onward. At ϕ= π,

it can be observed that the counter-rotating swirls are detached from the rear surface of the

cylinder in the Z/L= −0.23 and -0.35 planes for the L/D = 13 cylinder while they are almost

Figure 7.12: Contours of phase-averaged normalized streamwise velocity (⟨Uϕ⟩/U∞) overlaid
by phase-averaged streamline topology (⟨ψϕ⟩) at eight select phases of oscillation with the
reduced frequency of K = 1.3 for aspect ratios of L/D = 13 and 20 at Re = 5 × 103 in the
Z/L= 0.23 plane.
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suppressed in the considered planes for the L/D = 20 case. This shows that the separated

counter-rotating swirls near the upstream end for L/D = 20 cylinder (see Figure 7.4) are

located between the studied planes. Therefore, it can be concluded that the size of the

detached wake from the surface of the cylinder near the upstream end for the cylinder with a

lower aspect ratio is relatively larger. At ϕ= 5π/4, as the detached wake ascends towards

the mid-span of the cylinder, the swirl patterns are eliminated in the Z/L= −0.35 plane. A

small section of the swirls and backflow velocity regions are still visible in the Z/L= −0.23

plane for L/D = 13 cylinder. However, for the cylinder with L/D = 20, no reverse flow and

swirls are shown owing to the significant influence of spanwise flow on the suppression of the

mean recirculation region in the studied plane. Results at ϕ= 3π/2 reveal that the detached

wake is still visible at Z/L = −0.23 for the L/D = 13 case whereas for the cylinder with

a higher aspect ratio the flow is strongly in the positive streamwise direction immediately

behind the cylinder under the effect of axial flow, the direction of motion of the cylinder, and

the acceleration of the cylinder. At ϕ= 7π/4, the flow in the positive streamwise direction is

seen behind the cylinders in both studied planes.

Variations in the shear layers in (X,Y ) planes at Z/L= −0.23 and −0.35 accompanied

by the vorticity field in the (X,Z) plane at Y/D = 0 are shown in Figure 7.14. It is apparent

that from ϕ = 0 to 3π/4, the shear layers in the Z/L = −0.23 are further curved towards

the wake centerline by increasing the yaw angle. However, in the Z/L= −0.35 plane, due

to the impact of the ascending positive vorticity region, as depicted in the Y/D plane, with

increasing yaw angle, the shear layers gradually diverge from the wake centerline. In the

return cycle, the effect of the interaction of positive Y -direction vorticity with the shear

layers in (X,Y ) planes is more pronounced. Comparing the results in the return cycle for

the two cylinders indicates that the positive Y -direction vorticity region moves more rapidly

towards the middle section of the cylinder for the cylinder with a higher aspect ratio. This

can be attributed to the more significant development of the axial flow along the span of

the cylinder with increasing the aspect ratio. From ϕ= π to ϕ= 3π/2, for the cylinder with

L/D = 13, when the positive Y -direction vorticity in the Y/D = 0 plane reaches each plane,
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Figure 7.13: Contours of phase-averaged normalized streamwise velocity (⟨Uϕ⟩/U∞) overlaid
by phase-averaged streamline topology (⟨ψϕ⟩) at eight select phases of oscillation with the
reduced frequency of K = 1.3 for aspect ratios of L/D = 13 and 20 at Re = 5 × 103 in the
Z/L= −0.23 and −0.35 planes.
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Figure 7.14: Contours of phase-averaged normalized Z-direction vorticity (⟨ωy,ϕ⟩D/U∞) in
the in the Z/L = −0.23 and −0.35 planes contours of Y -direction vorticity (⟨ωz,ϕ⟩D/U∞)
in the symmetry plane at eight select phases of oscillation with the reduced frequency of
K = 1.3 for aspect ratios of L/D = 13 and 20 at Re = 5×103
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the extent of the vorticity in the shear layers drops and the trajectory of the shear layers

significantly diverge from the wake centerline. When the vorticity passes by each plane,

the lateral distance of the shear layers gradually decreases as the cylinder returns to the

non-yawed position. For L/D = 20, the behavior is the same, however, due to the faster

motion of the Y -direction vorticity and the higher impact of the axial flow on the near wake,

the shear layers are significantly suppressed in the Z/L= −0.35 plane.

7.3 Wake Parameters

7.3.1 Wake Closure Length

The spanwise variations of the wake closure length for two yaw-oscillating cylinders at K = 1.3

and static yawed cylinders with aspect ratios of L/D = 13 and 20 are depicted in Figure 7.15.

As shown in this figure, for the static yawed cylinders, the wake closure length is generally

shorter along the span of the cylinder with a higher aspect ratio. Notice that the special

trend in the variation of wake closure length at θ = 15o occurs for both cases, which was

already discussed in Section 6.2. At yaw angles of θ = 26o and 30o, it is shown that the

suppression of the mean recirculation region occurs on a larger section of the span of the

cylinder with a lower aspect ratio owing to the discrepancy in positive axial flow. Results

for the yaw-oscillating cylinder reveal that the trend in the spanwise variation of the wake

closure length for yaw-oscillating cylinders with various aspect ratios is remarkably different

from what was observed in the static counterpart. Near the top half of the cylinder, the

streamwise extent of the mean recirculation region is greater for the cylinder with the lower

aspect ratio for nearly all the phases. In the first half of oscillation, near the top half of the

cylinder, it is evident that the impact of acceleration/deceleration of the cylinder is more

pronounced for the cylinder with L/D = 20. For instance, at ϕ= π/4, the suppression of the

mean recirculation region occurs from the top end down to around Z/L= 0.3 for L/D = 13

cylinder while this suppression is extended to around Z/L= 0.2 for the L/D = 20 case. In

the return cycle, behind the top half of the cylinder, the elongation of the wake closure length
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Figure 7.15: Profiles of phase-averaged normalized streamwise velocity (⟨Uϕ⟩/U∞) for eight
select phases of a yaw oscillation with reduced frequency of K = 1.3 for cylinders with aspect
ratios of 13 and 20 at a) Z/L= 0.23 b) Z/L= −0.23 and c) Phase-averaged normalized axial
velocity (⟨VA,ϕ⟩/U∞) in the return cycle at Z/L= 0.23. The Reynolds number is 5×103.

from ϕ= 5π/4 to ϕ= 3π/2 is more significant for the cylinder with L/D = 20. it is evident

that the deceleration of the cylinder from ϕ= 3π/2 to ϕ= 7π/4 for the cylinder with a higher

aspect ratio leads to a sudden decrease in the wake closure length. Unlike the regions behind

the top half, behind the bottom half of the cylinder, the walk closure length is elongated for

a cylinder with a higher aspect ratio in the first half of oscillation.
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7.3.2 Velocity Profiles

Profiles of ⟨Uϕ⟩/U∞ on the wake centerline, extracted from the two spanwise planes Z/L=

±0.23, are presented in Figures 7.16 (a) and (b) for the yaw-oscillating cylinders with

L/D = 13 and 20 at eight phases from the full oscillation cycle. Notice that these Z/L

locations for the two cylinders show the corresponding spanwise locations away from the

center of rotation by a fixed percentage of their respective L/D values. When defined in

terms of Z/D, these two spanwise planes are the Z/D = ±3 planes for the cylinder with

L/D = 13 and the Z/D = ±4.6 planes for L/D = 20. Also, Figure 7.16 (c) represents the

variation of ⟨VA,ϕ⟩/U∞ on the wake centerline at Z/L = 0.23 for the two cylinders from

ϕ= π to 7π/4 to compare the development of axial flow in their return cycle. Figure 7.16

Figure 7.16: Profiles of phase-averaged normalized streamwise velocity (⟨Uϕ⟩/U∞) for eight
select phases of a yaw oscillation with reduced frequency of K = 1.3 for cylinders with
L/D = 13 and 20 at a) Z/L= 0.23 b) Z/L= −0.23 and c) Phase-averaged normalized axial
velocity (⟨VA,ϕ⟩/U∞) in the return cycle at Z/L= 0.23.
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(a) indicates that at Z/L= −0.23, as the cylinder accelerates from ϕ= 0 to π/2, the peak

magnitude of the reverse flow velocity gradually increases for both cylinders and with the

acceleration effect being more influential for the larger L/D, relatively higher values are

obtained for the cylinder with larger L/D. As the cylinders go from ϕ= π/2 to π, the peak

reverse flow velocity decreases for both cylinders under the effect of cylinders’ deceleration,

and the change in the maximum reverse velocity is more considerable for the larger L/D

because of the greater impact of deceleration on the wake of the larger L/D case. In the

second half of oscillation from ϕ= π to 7π/4, the maximum positive velocity at Z/L= −0.23

keeps increasing for both L/D as the phase of oscillation advances under the effect of positive

X-direction motion of the cylinder. Profiles of ⟨Uϕ⟩/U∞ at Z/L= 0.23, given in Figure 7.16

(b), show for both cylinders a decrease in the peak magnitude of negative streamwise velocity

as the phase of oscillation goes from ϕ= 0 to π/4 owing to the positive direction of motion of

the cylinder’s top half with a large acceleration. The reverse flow is weaker at these oscillation

phases for the cylinder with larger L/D, again due to the more significant impact from the

cylinder acceleration. The accelerating motion of the cylinder in the streamwise direction

continues until ϕ = π/2, revoking the reverse flow completely at ϕ = π/2 and leading to a

positive streamwise velocity with the higher value obtained for the L/D = 20 case. When the

cylinder decelerates from ϕ= π/2 to 3π/4, the peak magnitude of the positive streamwise

velocity decreases for both cylinders, and this variation is more significant for the cylinder

with the higher L/D.

In the return cycle, the peak magnitude of the reverse flow at Z/D = 0.23 is generally

relatively lower for the cylinder with the higher L/D, suggesting a weaker recirculation region.

This behavior can be linked to the spread of the positive axial flow from the lower end of the

cylinder over larger spanwise sections in the cylinder wake for the larger length-to-diameter

ratio cylinder in its return cycle. The variation of the axial velocity at Z/L= 0.23, given in

Figure 7.16 (c), further reinforces this observation by depicting that the axial flow is more

substantial over the phases of the return cycle for the larger L/D cylinder.

157



7.4 VORTEX SHEDDING

7.4 Vortex Shedding

7.4.1 Static Yawed Cylinder

In order to compare the vortex shedding frequency from the mid-span of the static yawed

cylinders with different aspect ratios, the velocity spectra obtained from the streamwise

velocity signal at different yaw angles are presented in Figure 7.17 (a) at Reynolds number

of 5 × 103. Inspecting Figure 7.17 (a) shows that for both cylinders, narrow-bank peaks

associated with the vortex shedding frequency become further broadband with increasing

yaw angle accompanied by a reduction in the height and energy of the peak. This can be

related to the less organized and mitigated vortex shedding from the cylinder at high yaw

angles. Evaluating the impact of L/D in Figure 7.17 (a) reveals that for the cylinder with

higher aspect ratio, remarkably narrow-band peaks with higher energy occur at each yaw

angle associated with a larger degree of periodic vortex shedding compared to the cylinder

with lower L/D. The present results are aligned with the investigation of Benitz et al. [67]

for the non-yawed cylinder with similar end conditions as the current study. From Figure 7.17

(a), it can also be concluded that unlike the cylinder with L/D = 13, increase in the axial

flow especially from θ = 0o to 20o has less impact on the vortex shedding of the cylinder with

higher L/D as the increase in the width of the peak region by yaw angle is less pronounced.

Figure 7.17 (b) shows the variation of the Strouhal number of vortex shedding with yaw

angle for the two cylinders considered in this study. The general trend for both cylinders is a

decrease in St with increasing yaw. Moreover, the results indicate that at all yaw angles, the

higher Strouhal numbers are obtained for the cylinder with the higher L/D. The discrepancy

is more significant at lower yaw angles from θ = 0o to 15o and the unexpected increase in St

at θ = 15o does not occur for the higher aspect ratio cylinder. Figure 7.17 (c) indicates the

variation of StN/Sto obtained in Figure 7.17 (b) along with the results of Najafi et al. [40]

at a comparable range of Reynolds number and L/D. This Figure demonstrates that the

Strouhal number of vortex shedding at each yaw angle becomes closer to the prediction of
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Figure 7.17: a) Velocity spectra of the streamwise velocity for the static yawed cylinders at
different yaw angles. b) Variation of the Strouhal number with yaw angle c) Variation of
StN /Sto with the yaw angle for cylinders with the aspect ratios of 13 and 20 at Re = 5×103.

IP by increasing L/D. It can also be observed that the present results for the static yawed

cylinder are in agreement with those obtained in the literature.

7.4.2 Yaw-Oscillating Cylinder

Comparative study on the yaw-oscillating cylinders with different aspect ratios is conducted

using the yaw-averaged frequency analysis. The velocity spectra of the streamwise velocity

for the yaw-oscillating cylinder with reduced frequencies of K = 1.3, and 2 are shown for the
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Figure 7.18: Velocity spectra of the streamwise velocity for yaw-oscillating cylinders with
aspect ratios of 13 and 20 and reduced frequencies of K = 1, 1.3, and 2 at Re = 5×103. The
Strouhal number of the fundamental frequency of oscillation, which is denoted by Stc, and
the corresponding harmonic frequencies are marked by the blue dashed lines.

two studied cylinders at Re = 5×103 in Figure 7.18. As previously discussed in Section 6.4,

increasing the reduced frequency enlarges the width of the peak region and decreases the

peak energy in the spectra. Moreover, it was shown that vortex shedding occurs at lower

frequencies by increasing reduced frequencies. For moderate reduced frequencies of K = 1

and 1.3, it is apparent that similar to the static cylinder, the peak region in the range of

vortex shedding frequency is relatively narrow-band and has higher energy for the cylinder

with higher L/D. It can be deduced that more organized and periodic vortex shedding occurs

for the yaw-oscillating cylinder with L/D = 20 at moderate reduced frequencies. Figure 7.18

also indicates that the oscillation frequency is significantly lower than the range of vortex

shedding frequency for the cylinder with higher L/D, hence, lower impact of the harmonic

frequencies can be observed in this range of frequencies. At high reduced frequency of K = 2,
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the peak region in the spectra covers lower range of frequencies for the cylinder with lower

L/D. Moreover, for L/D = 13, a higher energy peaks are observed at frequency region of

0.15< St< 0.17. This can be associated with the positive Z-direction vorticity region created

behind the mid-span of the cylinder that moves downstream by cylinder yaw oscillation, as

previously discussed in Section 6.4.2. In the same range of frequencies, the energy of the peak

region is lower for L/D = 20 presumably due to the absence of such high vorticity region

near the mid-span, as previously shown in Figure 7.7.

7.5 Chapter Summary

In this chapter, the effect of the aspect ratio of the cylinder was evaluated by studying

the near wake of static and yaw-oscillating cylinders having L/D = 20 and comparing the

results with those obtained in the previous chapters for the L/D = 13 case. The results were

compared for Re = 5×103.

For the static cylinder, increasing the aspect ratio decreased the wake closure length along

the span at all yaw angles. It was also shown that for a larger L/D, the effect of axial flow,

particularly at high yaw angles, is diminished and the suppression of the mean recirculation

region occurs on a smaller section of the span for the cylinder with L/D = 20. Moreover, the

vortex shedding behavior at the mid-span of the static cylinders showed that more periodic

vortex shedding occurs for a larger L/D case at all yaw angles.

Results for the yaw-oscillating cylinders at K = 1.3 showed that the general near wake

structure was similar for both cases, however, some variations were observed. The effect of

acceleration/deceleration of the cylinder was shown to be more effective on the near wake

with increasing L/D. Another discrepancy was related to the development of axial flow along

the span of the cylinder, which occurs more rapidly for the cylinder with a larger aspect ratio.

The evaluation of vortex shedding behavior for the yaw-oscillating cylinders demonstrated

that similar to the static cylinder, the vortex shedding is more organized for the L/D = 20

case.
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Chapter 8

Conclusions and Future

Recommendations

8.1 Conclusions

An experimental study was conducted on a cylinder undergoing yaw oscillation and the

baseline flow over the static yawed cylinder at subcritical Reynolds numbers. The motivation

of the present research is drawn from sports aerodynamics and particularly the physics of the

flow that occurs past a moving limb of an athlete such as in the vicinity of the legs of a cyclist

as an example. The circular cylinder is used as a low order model of a limb of an athlete

and is subjected to yaw oscillation, which is the dominant motion of the leg of a cyclist

while peddling. The present research can provide insight into the understanding of flow past

yaw-oscillating bluff bodies that has not received any attention in the literature. The main

variables considered in this study are the rate of yaw-oscillation, Reynolds number, and aspect

ratio. The flow past the cylinder was measured using two experimental techniques, namely,

planar Particle Image Velocimetry (PIV) and Constant Temperature Anemometry (CTA).

The case of the static yawed cylinder was used to establish a baseline for comparison with

the yaw-oscillating counterpart. For the yaw-oscillating cylinders, the analysis was conducted

through ensemble averaging of the flow occurring over the range of yaw angles considered (θ =
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0o to 30o), termed yaw-averaged, and at discrete phases using a phase-averaging approach

and the results were compared to that of the static case.

For the static yawed cylinder, evaluating the near-wake flow indicated that increasing the

yaw angle leads to an increase in the streamwise and spanwise velocity and a decrease in the

streamwise extent of the mean recirculation region. Inspecting the vortex shedding behavior

at the mid-span of the static cylinder indicated a less periodic vortex shedding at lower

frequencies by increasing yaw angle. At the high yaw angles of θ = 26o and 30o considered in

the present study, significant suppression of the mean recirculation region and the vortex

shedding occurs near the bottom half of the span due to the impact of high-magnitude axial

flow that could eventually lead to lower drag. Moreover, evaluating the variation of Strouhal

number of vortex shedding with yaw angle indicated the failure of the Independence Principle

(IP) at high yaw angles.

Although the static yawed cylinder exhibited relatively more uniform wake flow features

along the majority of the span, the phase-averaged analysis of the near wake flow patterns

showed that the flow in the near wake of the yaw-oscillating cylinder is highly three-dimensional.

The spanwise variation in flow features became more significant as the reduced frequency

increased from low (K = 0.5) to moderate values (K = 1 to 2), and turned being relatively

more uniform again at very high reduced frequencies (K = 4) due to the delay in the

response of the flow to the fast yaw oscillations. The cylinder’s direction of motion, its

acceleration/deceleration state, and the axial flow developing as the cylinder is yawed during

an oscillation period were observed to be important parameters that can impact the flow in the

near wake, and which of these parameters remain prominent over different spanwise sections of

the wake and their effect depended on whether the reduced frequency of oscillations had a low,

moderate or high value. Evaluation of the vortex shedding behavior for the yaw-oscillating

cylinders showed that increasing reduced frequency leads to a less organized vortex shedding

behind the cylinder and decreases the frequency of vortex shedding.

For low reduced frequencies (K = 0.5), the direction of the cylinder’s motion is the only

dominant factor controlling the near wake flow structure until large yaw angles. This effect
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generally adds thrust into the flow from the movement of the cylinder. As half of the cylinder

moves in the inflow direction, this movement adds a positive thrust into the flow behind that

section of the cylinder, weakening the mean recirculation region and reducing its streamwise

extent at those spanwise regions. On the contrary, if the half of the cylinder in question

moves opposite to the inflow direction, this effect generates further reverse flow, strengthening

the mean recirculation bubble. For example, in the first half cycle of yaw oscillations, as the

yaw angle of the cylinder increases from θ = 0o to 30o, the top half of the cylinder moves

in the direction of the incoming flow, and the induced streamwise thrust on the flow by

this movement gradually reduces the reverse flow velocity and its streamwise extent with

increasing yaw angle in the top half span. On the other hand, during this same oscillation

period, the bottom half of the cylinder moves against the inflow direction. This direction of

the cylinder motion generates a gradual increase in the reverse flow velocity, strengthening

the mean recirculation bubble in the bottom half of the cylinder up to larger yaw angles.

At larger yaw angles, while the direction of the cylinder’s motion continues to impact the

near wake flow, high-amplitude axial flow velocity, originating from the bottom free end

of the cylinder, grows and spreads over larger spanwise sections, and becomes the most

prominent element that impacts the near wake flow topology over those spanwise portions.

The high-amplitude axial flow is observed to have the general effect of reducing the reverse

flow velocity and eventually leading to the suppression of the mean recirculation bubble.

For example, the reduction of the streamwise velocity and the subsequent suppression of

the recirculation bubble in the bottom half of the span at high yaw angles during the first

half cycle of yaw oscillations even though the bottom half of the cylinder continues to move

opposite to the inflow are connected to the presence of a more prominent axial flow effect in

those regions compared to the impact of the direction of the cylinder’s motion. Also, in the

second half of the oscillation cycle at large yaw angles, as the lower half of the cylinder moves

in the inflow direction, the continued reduction in reverse velocity and even its disappearance

over certain sections behind the lower half of the cylinder are a result of the combined effects

of the cylinder’s motion and the strong axial flow.
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For moderate reduced frequency values (K = 1 to 2), the acceleration/deceleration in the

cylinder motion during its oscillation became another significant effect influencing the near

wake flow behavior. Generally speaking, the acceleration of the cylinder motion made the

cylinder’s direction of motion more influential on the flow; on the contrary, the deceleration

weakened the same effect. For instance, as the cylinder’s yaw angle increases from θ = 0o

to 15o, with the acceleration enhancing the streamwise thrust induced by the cylinder’s

motion, the reduction in the reverse flow velocity and the spanwise region over which the

mean recirculation region is suppressed become much larger in the top half of the cylinder

for the moderate K values compared to the lower value of K = 0.5. As another example,

consider the top half of the cylinder during its deceleration from θ = 15o to 30o. During this

movement, although the reverse flow velocity keeps decreasing for K = 0.5, the cylinder’s

forward motion loses its impact on the flow at higher K values, and the reverse flow gradually

recovers.

At very high reduced frequencies (K = 4), the changes in flow behavior in response to the

oscillations occurred with a time-lag. Generally, the direction of motion became the most

influential factor in the flow behavior, while due to the delay in the response of the flow to

the fast oscillation motion, the effect of deceleration/acceleration of the cylinder on the near

wake was eliminated.

The influence of Reynolds number on the near-wake of the static yawed and yaw-oscillating

cylinders were evaluated. For the static yawed cylinder, decreasing the Reynolds number

results in the elongation of the mean recirculation and a decrease in the reverse flow velocity

in the near wake at each yaw angle. Moreover, it was shown that each yaw angle, decreas-

ing the Reynolds number leads to relatively lower axial velocity downstream the cylinder.

However, the impact of axial flow on the vortex shedding mitigation and suppression of

the mean recirculation region at high yaw angles remained the same. For yaw-oscillating

cylinders, results indicated that the flow patterns and the vortex shedding behavior are

almost independent of the Reynolds numbers considered. For each phase of oscillation, it was

indicated that the existing mean recirculation regions along the span are generally elongated
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by decreasing the Reynolds number.

The present study showed that aspect ratio is an important parameter that affects the

near wake of static yawed and yaw-oscillating cylinders. For the static yawed cylinders,

generally a longer wake closure length was observed for the cylinder with a lower aspect ratio.

Moreover, the influence and extent of axial flow on the near wake of the cylinder is reduced

by increasing the aspect ratio, thus, the mean recirculation region exists behind a larger

section of the span of the cylinder at yaw angles of θ = 26o and 30o for a cylinder with higher

aspect ratio. For the yaw-oscillating cylinder, the effect of cylinder aspect ratio on the near

wake is more pronounced in the return cycle of oscillation where the axial flow could rapidly

expand in the spanwise direction for the cylinder with a higher aspect ratio. Therefore, higher

streamwise velocity in the near wake and significant suppression of the mean recirculation

region occur behind the lower half of the span for the corresponding phases. The impact of

the acceleration/deceleration state of the cylinder on the near-wake flow was enhanced for

the larger aspect ratio. For both static and yaw-oscillating cylinders, increasing the aspect

ratio led to an increase in the organized periodic vortex shedding and the corresponding

frequencies.

8.2 Future Recommendations

The unsteady fluid dynamics of a cylinder undergoing yaw oscillation cylinder is a novel

topic concerning the flow past bluff bodies with foundational application for improving the

understanding of real complex problems. The present research builds an early understanding

of a complex three-dimensional flow structure that occurs behind the cylinder during yaw-

oscillation, however, aspects of this problem remain open. The following lists unresolved

areas for further exploration:

• Direct Drag Force Measurements: One of the important parameters in the investigation

of subcrticial flow past circular cylinders is the drag and lift force exerted. Considering

the related application of the flow past the limb of an athlete, knowledge concerning the
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variation of the total drag force during oscillation can shed further light on the impacts

of this motion on aerodynamic performance. The drag measurement was not feasible in

the present work due to the limitations and costs of the experimental setup. Although

speculations were made on the local drag of the cylinder based on the variation of

the mean recirculation region, the total drag of the system has not yet been directly

measured.

• Surface Pressure and Locating Separation Points: Results in the present study revealed

significant variations in the mean recirculation region and the separating shear layers

along the span of the yaw-oscillating cylinders based on the reduced frequency and the

phase of oscillation indicating variation in the separation point on the surface of the

cylinder. Obtaining circumferential pressure distribution on different spanwise locations

combined with the flow visualization very close to the cross-section of the cylinder can

help estimate the location of separation points and the local force distribution on the

cylinder. The information on the possible locations of flow separation points and the

variations along the span can be used for flow control purposes.

• Application to Realistic Limb Models: The focus of the present study was on the circular

cylinder while the realistic models of the limb vary in cross-section in the spanwise

direction and possess different end conditions. To extend the knowledge of flow past

the yaw-oscillating cylinder to the flow near the real limb of an athlete, a model with a

shape of a lower leg, upper leg, and arm of an athlete can be connected to the yawing

mechanism in the experimental setup. The size of the model can be chosen to keep the

Reynolds number within the range of sports applications. As the shape of these models

will not be a perfect circular cylinder, possible discrepancies in the flow behavior from

the cylindrical model can be recognized.

• Passive Flow Control: Gaining knowledge about the general structure of the flow past a

yaw-oscillating cylinder, ideas can be considered to perform a passive flow control over

the cylinder to seek any vortex shedding suppression and drag reduction mechanisms.
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Surface protrusion methods such as using tripwires, axial rods/strakes [93, 94], and

grooves [95] on the surface of the cylinder or increasing surface roughness [96, 97]

have been widely used in the literature to alter the flow structure in the near wake

of a cylinder with the purpose of drag reduction. However, the number of studies on

controlling flow past yawed cylinders is significantly limited. Results indicated that the

separation points vary along the span of the cylinder and they are also highly dependent

on the phase of oscillation. Therefore, using simple axial tripwires or rods on a fixed

location might not be properly functional. Therefore, variation in the angle of the wires

along the span or at least among a specific section of the cylinder might be required.

Finding the appropriate location, size, and shape of the aerodynamic means on the

surface of the yaw-oscillating cylinder (or limb model) to suppress the vortex shedding

and reduced the drag can be the subject of following research on the topic.

• Effect of Flow Acceleration/Deceleration: The flow behavior in the near wake of a

yaw-oscillating cylinder was associated with the combination of a cylinder direction

of motion and its acceleration/deceleration state. However, the pure impact of ac-

celeration/deceleration on the flow behavior could not be evaluated in the present

research. The existing literature on the accelerating/decelerating cylinders is predomi-

nantly focused on the impulsively started/stopped non-yawed cylinders [98, 99] whereas

studies on the impact of non-impulsive acceleration/deceleration on the near wake

of yawed/non-yawed cylinders remain widely unexplored. The effect of this motion

parameter is also relevant to athlete motion.
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Appendix A

Uncertainty Analysis

A.1 Sources of Error in PIV Measurement

In PIV measurements, errors are usually originated from three main sources of image

acquisition, calibration, and image processing [75]. In the image acquisition, the

uncertainty is aminly associated with the camera focus and aperture, particle seeding

density, the laser sheet alignment, and image acquisition rate. In the image processing

step, the sources of error include selection of interrogation window size, the cross-

correlation algorithm, and particle displacement vector computation. In the present

experiments, an effort was made to minimize the aforementioned sources of uncertainty

as described in the following sections.

A.1.1 Particle Seeding Density

In order to minimize the error related to the density of the particles in the successive

images, the literature recommends that at least 10 particles should fit within the

interrogation window [100, 101]. In the present experiment, the interrogation window of

32×32 pixel is chosen to ensure that ample numbers of particles are within the selected
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interrogation window. More information on the interrogation window size is given in

the following sections.

A.1.2 Camera Setting

As previously described in Chapter 3, the camera was located either below or at the

side of the water tunnel. The resolution of the images for the bottom view on different

planes along the span of the cylinder varies approximately from 0.95 to 0.125 pixels/mm.

For the side view analysis, the resolution is around 0.105 pixel/mm. The interrogation

windows were selected based on the resolution of the image pairs.

The focus and aperture of the camera play an important role in the effect called pixel-

locking in PIV measurement. Briefly, the pixel-locking happens when the diameter of

the particle in the image falls below two pixels of the images and results in particle image

displacement to be biased towards integer pixel values (see [102] for further details).

Assessing the histogram of the particle displacement for various apertures, the F5.6

setting was shown to have a distribution closer to the Gaussian distribution. Blurring

the images using the focus of the camera also had positive impacts on pixel-locking

improvement. However, it should be noted that the experimental PIV setup used

in the water tunnel was not ideal regarding minimizing the pixel-locking effect. As

suggested by Raffel et al. [75], the average particle diameter is better to be between 3

to 4 pixels. With the F5.6 aperture setting, this requirement is met in the present PIV

measurement.

A.1.3 Laser Sheet

The laser sheet thickness is an important factor in PIV measurement as it may contribute

to the image acquisition noise and signal-to-noise ratio [100]. The laser sheet has to be

sufficiently thick to ensure that the particles do not move out of the plane between the
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successive image pairs. Westerweel [73] recommends that to minimize the out-of-plane

disparity, the out-of-plane motion between consecutive image pairs has to be lower

than 25% of the laser sheet. In the present experiments, the out-of-plane motion of the

particles is calculated to be as high as 70% of the freestream velocity. The laser sheet

thickness is chosen to be approximately around 2 mm accompanied by the appropriate

size of the time interval between each frame to ensure that the maximum out-of-plane

displacement is always lower than 0.5 mm.

A.1.4 Interrogation Window Size

Ideally, it is suggested that the velocity gradient within an interrogation window should

be lower than half of the particle image diameter from top to the bottom of the

interrogation window [100, 101]. The interrogation window size of 32 × 32 pixel is

chosen in the current study to obtain maximum vector resolution in the flow and reduce

the errors that can be introduced by the velocity gradient to a minimum. Note that the

velocity gradient in the near wake region of the yaw-oscillating cylinder is lower than

the maximum recommended by Adrian [100]. Moreover, the interrogation window has

to be set in such a way that the maximum particle displacement is always lower than

the size of the window. For instance, in a bottom view for the highest Reynolds number

in the current study with the velocity of 0.298 mm/s and δt= 1.5 ms, the maximum

free stream displacement is around 4 pixels, which is equal to 1/8th of the window

size. However, by using multi-pass cross-correlation algorithms, the in-plane particle

displacement disparity is minimized. Adrian [100] also revealed that to minimize the

RMS fluctuation in particle displacement, the maximum displacement should be lower

than a quarter of the window size, which has been met in the current experiment. Since

the multi-grid iterative correlation methods can damp the RMS fluctuations [103], in

the image processing of the current experiments, a multi-pass algorithm in the PIVLab

program is chosen while 50% overlapping is implemented.
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A.1.5 Plane Location at the Mid-span

One of the (X,Y ) visualization planes passed through the center of rotation of the

cylinder, as marked in Figure 3.3, for both yaw-oscillating cylinder and static cylinder

cases. Due to the free surface end condition, an increase in the length of the cylinder

exposed to the flow is inevitable with yaw angle. The actual mid-span of the cylinder

is slightly closer to the free surface compared to the center of rotation plane with yaw.

The discrepancy of the flow in the plane passing from the center of rotation and the

plane at the exact mid-span for θ = 30o (with the maximum displacement) is evaluated.

Figure A.1 represents the profiles of the phase-averaged normalized streamwise velocity

(⟨Uϕ⟩U∞) at the wake centerline for Z/L= 0 (the center of rotation plane), 0.04, and

0.075 (the offset of the mid-span for θ = 30o) for K = 1.3. These profiles show that the

deviation of the velocity from the center-of-rotation plane is minor.

Figure A.1: a) Variation of the normalized phase-averaged streamwise velocity profiles along
the wake centerline at the planes that are passing from the center of rotation (Z/L= 0 plane),
the exact mid-span location at phase ϕ= π (θ = 30o) (Z/L= 0.075), and a plane in between
the two (Z/L= 0.04) for the yaw-oscillating case at K = 1.3 at Re = 1.5×104.
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A.2 Estimate of PIV Uncertainty

A.2.1 A Priori Approach

This section is devoted to the uncertainty analysis performed in the present thesis

to measure the propagation errors during the experiments using a priori approach.

According to Taylor [76], assume that x1, x2, ..., xn are measured with uncertain-

ties of δx1, δx2, ..., δxn and the measured values are used to compute the function

q(x1, x2, ..., xn). If the uncertainties in x1, x2, ... xn are independent and random, then

the uncertainty in q is:

δq =
√

( ∂q
∂x1

δx1)2 +( ∂q
∂x2

δx2)2 + ...+ ( ∂q
∂xn

δxn)2, (A.1)

To implement such analysis in the PIV measurement of the current study, the first step

is to find the contributing parameters to the uncertainties. In the PIV measurement,

the displacement of the illuminated particles is calculated over time. Thus, the velocity

field in the field of view can be obtained as follows:

u= ∆X
∆t , (A.2)

where, u is the velocity of the particle, X is the displacement of the particle, and t is

the time interval between the frames. To measure the uncertainty in the velocity field,

the uncertainty in the detected particle displacements and time interval between the

successive laser pulses should be taken into consideration. Using Equation (A.1), the

uncertainty of the velocity field can be expressed as:

δu=
√

( ∂u

∂∆Xδ∆X)2 +( ∂u
∂∆tδ∆t)

2, (A.3)

According to Raffel et al. [75], several factors contribute to the uncertainty for the
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particle displacement detection such as seeding density, variation in particle size, sub-

pixel displacement, interrogation window, calibration, variation of image quantization

level, background noise, etc.. Therefore, obtaining the total uncertainty considering all

sources of individual errors is highly challenging. In the present work, the uncertainties

associated with the calculation of the displacement vector are as follows:

∆X =MC, (A.4)

where M is the magnification factor in mm/pixel and C is the particle displacement

obtained from the cross-correlation done in the PIVLab program. Therefore, δ∆X can

be calculated as below:

δ∆X =
√

(∂∆X
∂M

δ∆X)2 +(∂∆X
∂C

δC)2, (A.5)

The calibration in the present PIV measurements was conducted using a ruler so

that the pixels in the image plane can be related to the real distance covered. The

magnification factor (M) can be defined as:

M = d

n
, (A.6)

where d is the reference distance used in the calibration process and n is the number of

pixels that fit in the reference distance. Therefore, the uncertainty in the magnification

(calibration) process can be obtained as shown below:

δM =
√

(∂M
∂d

δd)2 +(∂M
∂n

δn)2, (A.7)

Partial derivatives obtained in Equations A.2 to A.8 are summarized in Table A.1.

Using the above equations and parameters, the values obtained in the uncertainty

analysis of both the bottom view and side view PIV measurements are reported in
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Table A.1: Partial derivatives and experimental terms obtained for uncertainty calculation

Partial Derivatives Experimental Terms

∂U
∂∆X

1
∆t

∂U
∂∆t

∆X
(∆t)2

∂∆X
∂c M

∂M
∂d

1
n

∂M
∂n

d
n2

Table A.2: Calculated values for the uncertainty analysis of PIV measurements

Factor Side View (X,Z) Planes Bottom View (X,Y ) Planes

d 50.8 mm 50.8 mm

δd 0.1 mm 0.1 mm

n 406 pixels 472 pixels

δn 0.5 pixels 0.5 pixels

M 0.12 mm/pixel 0.10 mm/pixel

δM 0.0018 mm/pixel 0.0024 mm/pixel

δC 0.1 0.1

∆X 1.52 mm 1.61 mm

δ∆X 0.0028 mm 0.0037 mm

δu 6.3 mm/s 9.9 mm/s
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Table A.2. As shown in this table, the uncertainty of the velocity field in (X,Y ) and

(X,Z) planes are 0.021U∞ and 0.033U∞, respectively.

A.2.2 A Posteriori Approach

In this section, a posteriori approach is used to estimate the uncertainty of the PIV

results. In this approach, the analysis is made on the obtained image pairs and the

corresponding flow fields. Various types of a posteriori approaches for the uncertainty

calculation have been proposed in the literature (see, for example, [104]) and in

the present project, the particle disparity method [105] is used. The approach is

advantageous in estimating the uncertainty in both instantaneous and mean flow fields.

Figure A.2 (a) shows the contours of calculated random errors for the phase-averaged

streamwise velocity (⟨Uϕ⟩/U∞) of the yaw-oscillating cylinder at K = 1.0 in the (X,Y )

planes at Z/D = −3 and 3. The Reynolds number is 1.5×104 and the results are shown

at three phases of ϕ= 0, π/2, and 5π/4 corresponding to the yaw angles of θ = 0o, 15o,

and 26o to cover different near-wake flow conditions. As shown in Figure A.2 (a), the

highest error occurs at two main regions; 1) near the wake closure point, where the

shear layers roll up and start shedding, 2) regions immediately behind the cylinder for

cases with existing strong axial flow. The first scenario is observable for ϕ = 0 and

ϕ= π/2 in both Z/D = −3 and 3 planes due to the presence of the counter-rotating

swirls previously shown in Figure 6.4. It is seen that the maximum error of around 8.5%

is obtained around the wake closure point. The uncertainty is less further downstream

(around 5%) and around 1% in the freestream. The second scenario is seen for ϕ= 5π/4,

where the axial flow was already shown to be strong behind the rear surface of the

cylinder. The highest uncertainty of around 8% occurs immediately behind the cylinder

due to the higher extent of the out-of-plane motion of the particles.

The contours of uncertainty for the phase-averaged streamwise velocity in the (X,Z)

symmetry plane at Y/D = 0 for the yaw-oscillating cylinder at K = 1 are presented in
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Figure A.2 (b). Similar to the results for the (X,Y ) planes, three phases of ϕ= 0, π/2,

and 5π/4 corresponding to the yaw angles of θ = 0o, 15o, and 26o are shown. As evident

in Figure A.2 (b), in the (X,Z) planes, the highest errors in the PIV measurement

occur near both ends of the cylinder with higher flow interactions. Near the bottom

end, the separated flow from the free end interacts with the Karman vortex shedding

while the flow behind the top end of the cylinder is under the impact of the turbulent

free surface effect. The greatest uncertainty obtained is around 8% for various cases

considered.
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Figure A.2: Contours of random error estimate ( δU
U∞

) of phase-averaged normalized streamwise
velocity for yaw-oscillating cylinder with K = 1.0 and aspect ratio 13. Results are shown
for ϕ = 0, π/2, and 5π/4 corresponding to the yaw angles of θ = 0o, 15o, and 26o at Re
= 1.5×104 in a) (X,Y ) planes b) (X,Z) symmetry plane.

187


