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Abstract

Autonomous social robots have many tasks that they need to address such as

localization, mapping, navigation, person following, place recognition, etc.

In this thesis we focus on two key components required for the navigation

of autonomous robots namely, person following behaviour and localization

in dynamic human environments. We propose three novel approaches to

address these components; two approaches for person following and one

for indoor localization. A convolutional neural networks based approach

and an Ada-boost based approach are developed for person following. We

demonstrate the results by showing the tracking accuracy over time for this

behaviour. For the localization task, we propose a novel approach which

can act as a wrapper for traditional visual odometry based approaches to

improve the localization accuracy in dynamic human environments. We eval-

uate this approach by showing how the performance varies with increasing

number of dynamic agents present in the scene. This thesis provides quali-

tative and quantitative evaluations for each of the approaches proposed and

show that we perform better than the current approaches.
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Chapter 1

Background

1.1 Introduction and Motivation

Robotics finds application in a range of different fields. A key issue in many

potential application areas is the need for the robot to operate within an

environment that is populated by other users (people) who execute inde-

pendent motions thus complicating sensing and planning tasks. To take but

one example, imagine the deployment of an autonomous robot in a hospital

environment. Such a robot would have to be able to navigate in the hospi-

tal corridors autonomously while avoiding moving people, beds, and other

dynamic events that take place in the corridors. The robot might have to

follow a particular nurse/doctor to a specific room using a person following

behaviour [1], [6]. The robot would need to address the localization prob-

lem [7], [8] which means knowing its current pose/location with respect

to its environment. The robot might need to have the ability to do place

recognition [9] to know the place it is in currently, perform autonomous
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navigation [10], finding navigable collision free space [11], generating a

map of the environment the robot is operating in [12], address the problem

of simultaneous localization and mapping [13] and many more capabilities.

Although there are many computational tasks required of such a robot

operating in dynamic environments, one enabling capability is having the

robot to be able to know its current pose in this environment, and it is this

problem that is one of the major components of this thesis. Localization

of a robot in static environments with a known map is much easier [14],

than when the map is unknown and the environment is not static. Basic

localization approaches for known and unknown static environments can be

found in most texts on robots (e.g., [15]) and for properly conditioned robots

and sensors this problem can be considered solved. This thesis addresses a

more complex version of the problem of localization of a mobile robot in

a dynamic environment with a known 2D occupancy map with dynamic

obstacles with unknown trajectories.

Another major contribution of this thesis is the ability for a robot to

be able to follow a given person (the target) in complex dynamic environ-

ments under challenging situations. Basic person following behaviour under

controlled environments is addressed in [16]. Keeping track of the target

under challenging situation and following the target over long periods of

time remains an open problem. In this thesis we address this problem as

well. The robot follows a given target agent (human) and follows it un-

der varying illumination conditions, appearance changes, partial/complete

occlusions, etc. Two approaches are proposed to address this problem. A

convolutional neural networks (CNN) based approach and an Ada-boosting
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Figure 1.1: Pioneer 3AT robot mounted with a Point Grey Bumblebee
stereo camera.

based approach are developed.

In this thesis, we make use of a standard RGBD sensor (a stereo camera)

for environmental sensing and a commercial robot base for locomotion (see

Figure 1.1). This thesis concentrates on two critical issues when operating a

vehicle in a pre-mapped environment occupied with dynamic obstacles: lo-

calization and person following behaviour. Each of these topics is considered

in the thesis and discussed in detail.

We use stereo vision in our work as other sensors are error prone or are

limited by other factors. For example, shaft encoders are not too reliable

because wheels slip or lose contact with the ground and this leads to accu-

mulation of error over time leading to the problem of dead reckoning over

long distances [17]. Other sensors like sonar, radar, lasers could be inappro-
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priate in places like hospitals, schools, universities, hotels, etc. Additionally

these sensors might be deemed inappropriate due to reasons of concealment

or possible confusion with broadcasts of other robots nearby.

1.2 Thesis Outline

The thesis is divided into five chapters.

• Chapter 1 describes the motivation behind this thesis, and provides

an overview of relevant literature and background.

• Chapter 2 describes one of the approaches used for person following

robots using Selected Online Ada-Boosting, provides empirical evalua-

tion and results obtained from this approach. The material presented

in Chapter 2 is based on and extends the paper “Person Following

Robots using Selected Online Ada-Boosting with a Stereo Camera”

published in the 14th Conference on Computer and Robot Vision.

• Chapter 3 describes the second approach used for person following

robots using Convolutional Neural Networks (CNNs), provides empir-

ical evaluation and results obtained from this approach. The material

presented in Chapter 3 is based on and extends the paper “Integrat-

ing Stereo Vision with a CNN tracker for a person-following robot”

published in the 11th International Conference on Computer Vision

Systems.

• Chapter 4 describes the approach used for Indoor Robot Localization

in Dynamic Human environments using visual odometry and a global
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pose refinement technique. It provides an empirical analysis and shows

the results obtained from the work. The material presented in Chapter

4 is based on and extends the paper “Indoor Localization in Dynamic

Human Environments using Visual Odometry and Global Pose Refine-

ment” which has been accepted to be published in the 15th Conference

on Computer and Robot Vision.

• Chapter 5 provides a conclusion to the thesis and provides some in-

teresting future work that can be done using the components proposed

in the thesis.

1.3 Literature Review

In this section we review existing relevant work in person following robots

and mobile robot localization.

1.3.1 Person Following Robots

Here we provide existing literature about person following robots. We divide

this section into real time trackers being used for person following robots,

provide some literature on object tracking approaches in general and provide

some relevant work on CNN-based trackers.

Real-Time Tracking

Person following robots have been researched as early as 1998 [18] where the

authors used basic color and contour information of the target for tracking.

In 1999, Ku et al. [19] attached a rectangular shape to the back of the
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person as the interest region with a particular color. Their method could

solve the simple detection problem, but it did not provide any robustness.

In 1998, Piaggio et al. [20] started using optical flows for a person following

robot. Similar work was done in [21] and [22] as well. However, optical

flow has the restriction that the person and background must have different

motions which is not always the case. In 2003, Beymer et al. [23] used wheel

odometry to subtract background motion and estimate the person location.

However this only works well on uniform surfaces. In 2003, Tarokh et al.

[24] used colour and shape of the person’s clothes as features for detection.

Although their method improved the robustness over Ku et al. [19], they did

not consider situations when the target changes his/her appearance heavily.

In 2006, Yoshimi et al. [25] used feature points (edges or corner points)

detection and combined the pre-registered color and texture of the clothes.

This method provided good robustness when the person is making a turn

or walking in upright poses. In 2007, Calisi et al. [26] used a pre-trained

appearance model to detect and track the person. Their method could pro-

vide a good tracking result if they trained the model well enough with a lot

of data. However, dynamic environments are unpredictable, and the target

might change appearance from time to time. Similarly, in 2007, Chen et al.

[27] used sparse Lucas-Kanade features to track the target. But the features

could be lost if the person is turning, or changing appearance. Again in 2007,

Takemura et al. [28] used the H-S Histogram in hue-saturation-value (HSV)

color space, where HSV is robust to illumination since V (lightness) can be

considered separately. In 2009, Satake et al. [29] used depth templates and

SVM to train a human upper body classifier to track the person. However,
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this method did not handle cases such as crossing, partial occlusion, etc. In

2010, Tarokh et al. [30] used HSV and controlled the light exposure to han-

dle light variations. An update was made in 2014 to improve the following

speed [31]. Some other fundamental feature tracking algorithms were also

used in later literature, e.g., SIFT feature based [32] in 2012, HOG feature

based [33] in 2013 and [34] in 2014, etc. In the latest work (2016), Koide et

al. [35] applied height and gait with appearance features for person tracking

and identification, but height and gait are only limited to the target walking

in an upright position. The method is not robust when the target changes

its clothes or puts on a backpack ( [36] also has this problem).

People have been using various other sensors for person following robots

like laser based approaches [37], [38] and RGBD camera based approaches,

e.g., Kinect [39], [40]. Kinect has the drawback of only working indoors.

Laser based approaches might not be suitable for places like hospitals,

schools, or retail stores which might have a restriction on the usage of laser.

Object Tracking

Real-time object tracking is an important task for a person-following robot.

Many state of the art algorithms exist that can achieve high accuracy (ro-

bustness), e.g., MGbSA [41], CNN as features [42], Proposal Selection [43],

deep learning [44], Locally Orderless tracking [45], etc. However, these ap-

proaches do not target real-time performance. Some other works that focus

on computation speed include (Struck SVM with GPU) [46], (Structure pre-

serving) [47], (Online Discrimination Feature Selection) [48],(Online Ada-

Boosting) [2], etc. Recent work from Camplani et al. [4] (DS-KCF) used
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RGBD image sequences from a Kinect sensor to track objects under severe

occlusions and rank highly on the Princeton Tracking Benchmark [49] with

real-time performance (40fps). One of the earliest works using convolutional

neural networks (CNNs) for tracking appeared in 2010 by Fan et al. [50].

They considered tracking as a learning task by using spatial and temporal

features to estimate location and scale of the target. Hong et al. [51] used

a pre-trained CNN to generate features to train an SVM classifier. Zhai et

al. [44] also used a pre-trained CNN, but added a Naive Bayes classifier

after the last layer of the CNN. Zhang and Suganthan [52] used one single

convolutional layer with 50 4-by-4 filters in the CNN structure. The network

was trained from scratch and updated every 5 frames. Gao et al. [42] used a

pre-trained CNN as a feature generator to enhance the ELDA Tracker [53].

Held et al. [54] proposed deep regression networks with which they were

able to track with high accuracy and their approach could run at 100 fps.

However their network had to be trained with huge amounts of data in order

to have a good performance.

CNN Using RGBD images

Training a CNN model with RGB and stereo depth images is another ap-

proach proposed for the person following behaviour. Previous work includes

using RGBD CNNs for object detection [55] and object recognition [56].

Couprie et al. [57] used RGBD images to train a single stream CNN clas-

sifier to handle semantic segmentation. Eitel et al. [56] trained RGB layers

and D layer separately in two CNN streams. These two streams were com-

bined in the fully connected layer.
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1.3.2 Robot Localization

Localization of mobile robots refers to the ability of the robot to know

its pose at any given time instance. Essentially this requires the robot to

answer the question, “Where am I?”. To answer this question, the robot

may rely on a variety of sensors, techniques such as wheel odometry using

shaft encoders [58], laser odometry using LIDAR [59], inertial navigation

systems using gyroscopes and accelerometers [60], visual odometry using

cameras [61], global positioning systems [62] and Sonar / Ultrasonic sensors

[63]. Each of these approaches have their own strengths and weaknesses. For

instance wheel odometry suffers from accumulation of errors due to slippage,

lasers provide long range depth information but provide no visual context

about the scene and do not work with glass walls, cameras provide good

visual information about context but are not be able to provide long range

depth information, GPS does not work in indoor environments or its signal

might degrade in city environments. Often approaches rely on techniques

known as sensor fusion to leverage data from multiple devices and provide

an accurate estimate about the pose of the robot. One of the current state

of the art techniques for localization is based on a sensor fusion approach

using data from a 3D laser and monocular camera by Zhang and Singh

[14]. Their approach ranks at top of the KITTI visual odometry benchmark

[64]. Another interesting sensor fusion based localization technique is that

of Tsotsos et al. [65] where they used data from an IMU and monocular

camera and performed better than the current state of the art Systems.
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Their technique, when first presented, performed better than Google Tango1

visual odometry for smart phones.

In this section we focus primarily on localization using visual sensors

particularly stereo vision. The process of estimating ego-motion (translation

and orientation of an agent (e.g., vehicle, human, and robot)) by using only

the input of a single or multiple cameras attached to it is called Visual

Odometry [66]. The work of Aqel et al. [61] provides an overview on

the different techniques for addressing localization using visual odometry.

The term visual odometry was first introduced by Nister et al. [67]. Nister

provided a basic approach to compute ego-motion of a vehicle based on stereo

and monocular images. The basic steps for estimating the motion are (i)

Match features between left and right images (ii) Track features for a certain

number of frames and use RANSAC for outlier rejection to further refine

the pose, (iii) Triangulate all new feature matches and repeat step (ii) a

number of times to estimate the pose. The concept of visual odometry (VO)

was also used in 1987 by Matthies and Shafer [68] where they used stereo

cameras to model errors during navigation. They perform stereo matching

and solve for motion estimation by finding out the rotation and translation

matrix between each successive frame. Matthies and Shafer’s work [68]

and Nister et al. [67] form the basis of most approaches of visual odometry

today. Most VO approaches today try to optimize these approaches in an

efficient manner to produce optimal results. Visual odometry approaches are

primarily based on features, appearance or a combination of both feature

and appearance based. Howard’s work [69] is one of the seminal works in

1https://developers.google.com/tango/
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the field of stereo visual odometry. Howard’s approach makes a modification

in the inlier detection stage during feature matching. They use the fact that

a pair of feature matches is consistent if the distances between two features

in frame a is identical to the distance between the corresponding features in

frame b. Any pair of matches for which this does not hold true are rejected.

By improving the quality of features being selected for motion estimation the

performance of the algorithm is greatly improved. Kitt et al. [70] used an

iterated sigma point Kalman Filter together with a RANSAC-based outlier

rejection approach to estimate ego motion of the vehicle. They bucketed

their features to extract information from most parts of the image. Feature

based approaches have been used by NASA on the Mars rovers in Maimone

et al. [71].

In 2007, Klein and Murray [72] presented a SLAM approach known

as PTAM (Parallel Tracking and Mapping) to create a map of the scene

and in parallel estimating the pose of the camera. They separated the

mapping and pose estimation techniques into two parallel threads one for

mapping and the other for tracking of features for pose estimation. They

were able to map and estimate motion of a hand-held camera with high

accuracy and speed. Following the approach of PTAM, Pire et al. [73]

proposed S-PTAM in which they overcame the limitations of the PTAM

approach. They used a stereo camera for doing localization and mapping

in seperate threads minimizing the inter-thread dependency. They used

binary features to describe visual point landmarks thereby reducing storage

requirements and improving speed. They also have a maintenance process

which iteratively refines the map. Other details and empirical results about
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SPTAM can be found in [74] where they compare their localization accuracy

to other Visual odometry based techniques like ORB SLAM 2 [75] and LSD-

SLAM [76].

Cvǐsić and Petrović [77] proposed a visual odometry technique SOFT

to estimate vehicle pose. They extract features in an intelligent manner

by carefully selecting features based on its age, strength, initial descriptor,

refined current position in image, etc. and track the reliable features. They

also use a 3 point RANSAC scheme fused with IMU Measurements to further

refine the pose. Geiger et al. [5] proposed the libviso SLAM algorithm to

compute the pose of the robot and construct 3d maps from high resolution

stereo images in real time. Their approach runs successfully on a CPU at 25

fps for the localization part and 3-4 fps for the map construction. Similar to

PTAM [72] they also separated localization and mapping into two different

threads which does not limit the computation of the localization to be bottle-

necked by the costly mapping operation. Their approach takes as input a

pair of stereo images. For feature extraction they first pre-filter their image

with a 5x5 blob and corner masks and then employ non-maximum and non-

minimal suppression on these filtered images. When they get the feature

candidates, features are matched in a circular fashion. Starting from the

current left image, a match is searched in the previous left image, next

in the previous right image, next in the current right image and finally

in the current left image again. All features that successfully match the

initial feature in current left image are retained as good features. They also

employ a bucketing technique which ensures features are extracted from

most parts of the image. The ego motion is estimated by minimizing the
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sum of re-projection errors and refining obtained velocity estimates by a

Kalman filter. A RANSAC approach is used to estimate the inliers and

reject the outliers in the process of estimating the rotation and translation

matrices which describe the motion between each frame. We build on top

of this localization approach in this work by making some modifications

to their visual odometry approach and integrating wheel odometry and a

global refinement based on the floor plan in our approach. Their approach

performs well on the KITTI Odometry benchmark and is able to handle

sparsely populated dynamic scenes quite well.

Localization has also been addressed using Place Recognition based tech-

niques as in [78] and [9]. Recently in 2017, Zhu [79] proposed an approach

GDVO (gradient dense visual odometry) for visual odometry using a stereo

camera. They extract features in the gradient domain which makes their

system robust to illumination changes. The main contribution of their ap-

proach was using a dual Jacobian based optimization which is integrated

with a multi-scale pyramid scheme while estimating the ego motion of the

vehicle. Their approach ranked as 2nd on the KITTI benchmark using vi-

sion only algorithms at the time of publication. Another interesting work

for estimating pose of the vehicle was proposed by Mur-Artal et al. [80]

which they termed as ORB-SLAM. They proposed a SLAM approach using

a monocular camera and used ORB features to estimate pose with high ac-

curacy. Engel et al. [76] proposed LSD-SLAM in which they estimate pose

accurately using direct image alignment and construct a pose graph of the

key-frames. Their approach is featureless and they track key-frames based

on image alignment and depth estimation techniques.
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Pink [81] and Pink et al. [82] proposed an approach to estimate the pose

of the vehicle by visually matching local features with a global feature map

obtained from geo-referenced aerial imagery. They matched lane markings in

the global map to local lane markings to estimate ego-motion of the vehicle.

Chu et al. [83] used a similar concept to estimate the pose of the vehicle by

using GPS measurements and a 2D city plan. They refine the position of

the GPS location and estimate the camera pose, based on detecting vertical

corner edges from a single image by mapping the cuboidal buildings to a 2D

city map with building outlines. For doing so they compute TICEP (Tilt-

Invariant Corner Edge Position) features by estimating vanishing points,

identifying vertical buildings’ corner edges and normalizing the tilt angles.

After TICEP feature extraction, LOHs (location orientation hypothesis) are

used to choose the location that best geometrically corresponds between the

corners on the 2D map and extracted TICEP features. Our work also used

a similar refinement stage to refine poses obtained from Visual Odometry

which we correct using information from the global map. We do refinements

at points where we can do a geometric matching between the interest points

in our map to the image that the robot might see when its traversing a path

around that area.

In the context of indoor localization, Chu et al. [84] used floor plans to

address localization. They do matching of the video stream of the camera

to estimate the pose of the camera. They do piece-wise point cloud and

free space matching to align the geometric structure with the given floor

plan. Their localization technique is similar to that of a particle filter based

localization approach [85] where initially all poses are equally likely and
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gradually weaker particles die out and the pose can be estimated with high

accuracy.

In 2002, Wang and and Thorpe [86] introduced the concept of detection

and tracking of moving objects in SLAM (Simultaneous Localization and

Mapping). They divide the map into stationary object map and moving ob-

ject map and do not consider the moving objects while map generation and

localization. They used laser scans obtained from the objects to segment out

moving objects. Yang and Wang [87] estimated ego motion of the vehicle in

highly dynamic environments using laser information. They were able to ad-

dresses the pose estimation problem even when more than 50% of the scene

was covered with the dynamic agent. They used a multi-model RANSAC

approach to classify the motion of the feature belonging to either static, un-

known or moving type. They did not employ any geometric features which

might sometimes not be reliable in urban settings. They also did not use

odometry information, only laser data. In 2016, Sun et al. [88] proposed a

localization technique for dynamic environments. Their approach was based

on a bayesian estimation process and used laser data and odometry informa-

tion. They addressed the localization problem by means of a particle filter

integrated with a distance filter and a scan matching approach which helps

them handle dynamic obstacles in the environment. They compared their

approach with the AMCL (Adaptive Monte Carlo Localization) technique

in the ROS framework [89]. They did not provide information about the

quality of the dataset nor about the dynamic nature of the environment.

However these approaches use a laser scanner which may not be permitted

in places like hospitals, schools, etc.
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1.4 Objective of the Work

The objective of the thesis can described below:

• Person Following Robot: To have a robot system equipped with

a stereo camera to follow a given target under challenging situations.

The robot should be able to follow the target in difficult situations like

appearance changes, pose changes, illumination changes, following the

target even when the target is transiently out of the robot’s camera

view. Two approaches are developed which are successfully able to

achieve this aim.

• Indoor Robot Localization in Dynamic Indoor Environments:

To have a visual system which allows the robot to localize in challeng-

ing dynamic environmwnts. We aim to provide a wrapper to tra-

ditional visual odometry algorithms, so they can use our proposed

approach and work with a higher accuracy in dynamic environments.

1.5 Significance and Contributions

Today with the increasing trend of Artificial Intelligence, the world is build-

ing a lot of autonomous agents in the form of robots, autonomous cars,

autonomous driving assistants, drones, underwater robots, etc. We have

focused on the aspect of indoor robots in this thesis particulary robots that

are deployed among humans.

The outcome of this thesis is a system which enables a robot to follow

a given person under challenging situations and a system which enables
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an autonomous agent to localize in crowded spaces in an efficient manner.

This has wide application today. Person following robots can be used as

autonomous carts in grocery stores [90], personal guides in hospitals, or

airports for autonomous suitcases [91]. It can also be used in hotels to

welcome guests and escort their luggage to their respective rooms, the robot

follows the person while the luggage is kept on top of the robot. This can be

used in hospitals for autonomous following behaviour to help hospital staff

transport heavy objects, in corporate offices to transfer small objects from

one location to another, in factories to transfer equipment from one point

to another and many more such places. The localization approach proposed

in the thesis can be integrated with standard navigation approaches which

makes the applications of this thesis even wider.

In this thesis we propose three approaches for two key components in-

volved in navigation of robots. We propose a convolutional neural netowrk

based tracker and an online ada-boosting approach for person following

robots. We deployed this robot in the real world and showed that the robot

was able to successfully follow a given target under challenging situations.

We also present a localization framework which estimates the robots pose

using an approach which integrates wheel and visual odometry and further

uses a global refinement stage to get rid of error accumulation. We tested

this component by deploying our robot in a university corridor and reported

empirical results in the thesis.

Parts of thesis have been published or will be published in the following

articles and conference papers:
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• B.X. Chen, R. Sahdev and J.K. Tsotsos, ”Person Following Robot

using Selected online ada-boosting with stereo camera”, in 14th Con-

ference on Computer and Robot Vision (CRV), pp 48-55, IEEE, 2017.

(Best Robotics Paper Award.)

• B.X. Chen, R. Sahdev and J.K. Tsotsos, ”Integrating Stereo vision

with a CNN tracker for a person-following robot”, in International

Conference on Computer Vision Systems (ICVS), pp. 300-313, Springer,

2017. (Finalist for the Best Conference paper award.)

• R. Sahdev, B.X. Chen and J.K. Tsotsos, ”Indoor Localization in Dy-

namic Human Environments using Visual Odometry and Global Pose

Refinement ”, in 15th Conference on Computer and Robot Vision

(CRV), IEEE, 2018. (accepted to be published)
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Chapter 2

Person Following Robots

using Selected Online

Ada-Boosting
1

2.1 Introduction

Person following robots need a robust and real-time algorithm to solve the

tracking problem in a dynamic environment which may encounter unex-

pected circumstances; for example, the tracking target might be occluded

by other instances, the lighting condition in the scene might change rapidly,

and the target might change its pose dramatically (eg: squat down and pick

up something from the floor or removing a bag from the person (see Fig-

ure 2.1)). To the best of our knowledge this is the first work which can

1this chapter is an extended version of the paper which appeared in 14th Conference
on Computer and Robot Vision in [1]
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2.1: Different cases that our approach (Selected Online Ada-
Boosting) can handle. (a) picking bag. (b) wearing bag. (c) sitting. (d)
squatting. (e) illumination. (f) side facing. (g) partial occlusion. (h) com-
plete occlusion. (i) standing side-by-side with the same clothes. (j) front
crossing with the same clothes. (k), (j) appearance changed.
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handle situations when two people are wearing the same clothes and the

tracker can still track the correct target under partial and complete occlu-

sions; it can also deal with appearance changes, like removing a jacket, the

tracker still tracks the target (human) and not the jacket. Another chal-

lenge is maintaining a given distance from the robot to the target, a natural

consequence of following behaviour of the robot. The robot being used here

is the Pioneer 3AT robot as shown in Figure 1.1. The main contributions

of this chapter are as follows: (i) a novel approach building on the Online

Ada-Boosting tracker, (ii) a novel algorithm named Selected Online Ada-

Boosting which can run in real-time to follow a given target and is more

robust than the current state of the art (see Figure 2.1), (iii) a novel stereo

dataset of different indoor environments for person following. This chapter

is organized as follows. In Section 2.2, we describe our proposed approach

which modifies the Online Ada-Boosing algorithm to make it more robust.

Section 2.3 describes the system design of the proposed approach. In Sec-

tion 2.4, we provide the experimental results of our approach and describe

the dataset. Finally, Section 2.5 concludes the chapter and provides possible

future work.

2.1.1 Depth Detection

In this work, we use depth to assist the tracking model for improving the

reliability. Yoon et al. [92] gained aid from depth information to improve the

computational speed and accuracy. Depth could also help with background

and foreground issues by eliminating the sudden depth changing pixels, e.g.,

occlusion. Doisy et al. [39] used the Kinect camera and a laser sensor to
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propose an algorithm which solves the person depth information for person

following.

Nowadays, there are many different types of depth sensors in the market.

In the modern publications, researchers prefer RGB-D cameras, eg: Kinect

[40], ASUS xTion [36] and [92]. These cameras provide very good depth

information only if the robot is running indoor without strong sunlight.

Our approach uses a Point Grey Bumblebee 2 stereo camera which can be

used both indoors and outdoors. Laser sensors provide another approach

to detect depth [33] and [34]. But a laser sensor is expensive and often

not permitted in places like hospitals, universities, malls and other similar

places.

To obtain the depth information of each pixel in an image, we use a

stereo image based algorithm to compute the depth. Since focal length and

baseline are constants in a single stereo camera, we are only interested in

disparity [93].

2.1.2 Online Ada-Boosting (OAB) Tracker

Boosting algorithms have been used in many areas in machine learning and

computer vision ( [95], [96], [97], [98]). Boosting usually trains with offline

datasets. Online Ada-Boosting algorithm for tracking an object in real-time

has been described by Grabner et al. in [94] and [2]. To achieve real-time

tracking, Grabner et al. used Haar wavelet features to improve robustness

when appearance changes gradually, which was described by Wang et al. in

[99].

In OAB, the tracking target is assumed to be given in the first frame

22



(a) (b) (c)

(d) (e) (f)

Figure 2.2: OAB updating process: (a) yellow box is the target region,
the red box is the search region. (b) is the next frame. (c) is searching and
evaluating the patches in the search region. (d) is the confidence map of the
evaluation. (e) is the best matching with minimum error. (f) update the
classifier with positive and negative patches. After (f) then go back to (a)
to search in the next frame. Similar to [94], [2]

(selected by human or detected by an off-line detection algorithm). The

selected patch is used as a positive example to train the classifier. Then

random patches are extracted from four regions (upper right, upper left,

bottom right, bottom left, see Figure 2.2(f)) in the search area as negative

examples. These random patches contain negative features, e.g., windows,

wall, furniture, etc. An initial classifier is trained from these positive and

negative patches. In the second frame, the target is detected using the
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Figure 2.3: Proposed Approach: Tracking Module and the Control Module
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classifier. The patch in the search region with minimum error is the best

responding example. This patch is used as a positive example and the

surrounding random patches from the four regions as negative examples to

update the classifier. The steps performed on the second frame are continued

on the subsequent frames (see Figure 2.2).

In order to achieve real-time boosting, OAB does not use all weak classi-

fiers to calculate a strong classifier [2]. Instead, it selects N weak classifiers

from all M global weak classifiers. In the following equations, Hweak is the

set of all weak classifiers, Hselected is the set of selected weak classifiers from

Hweak, y is the prediction of boosting, and αn is the weight of each selected

classifiers.

Hweak = {hweak1 , ..., hweakM } (2.1)

Hselected = {hselected1 , ..., hselectedN } (2.2)

hselectedn = hweakm (2.3)

y =
N∑
n=1

αn ∗ hselectedn (2.4)

αn in Equation 2.4 is calculated according to the error of selected weak

classifier hselectedn .

2.2 Approach

To the best of our knowledge, this is the first work that introduces the

Online Ada-Boosting tracking algorithm (OAB) [2] for a person following

robot. On top of the OAB algorithm, we add a depth image as an additional
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tool to assist the Ada-Boosting approach. We call this new modification as

Selected Online Ada-Boosting (SOAB).

2.2.1 Computing Depth From Stereo Images

Assuming that the cameras are parallel, have identical focal lengths identical

pixel aspect ratios and parallel axes and are separated by a distance, B along

the common x axes then the depth of each pixel can be easily calculated

from the following equation [100]:

Z =
fB

xl − xr
(2.5)

f is focal length. B is the baseline. xl and xr are the left and right image

coordinates.

2.2.2 Classifier Initialization

[94] and [2] initialized the first frame with a human to draw the bounding

box. Here we present two ways to initialize the target to the tracker: user

defined and a pre-defined bounding box.

For the pre-defined case, a bounding box was placed in the center of the

image frame. The target has to walk into the bounding box at a particular

distance from the robot. If all these conditions are satisfied, then the robot

starts to initialize the classifier and follows the person. In our experiment,

we draw a bounding box at pixel coordinates (272, 19) with the width equal

to 100 pixels and the height as 390 pixels, and the default disparity is 200

(this is the initial disparity for the first frame).

26



For the user defined case, we proceed as follows. Since the initial posi-

tion of the person is known, and the depth image is given by equation 2.5,

we can estimate the initial disparity of the person easily. Here we need to

overcome a big problem: the depth image is very noisy (see Figure 2.4(a)).

Let the initial patch be called Ip. We sort the pixels in Ip according to

their disparity value (Note: the larger the disparity, the closer the distance.

See equation (2.5)). Then we remove the disparities before 50th percentile

and remove the disparities after 75th percentile. After that, we compute

the mean of the remaining disparities as the initial depth. This method

works, because the body of our target will almost fill the whole initial patch

from our experiments (see Figure 2.4(b)), and noisy disparities are typically

not be more than 25% in the initial patch. Removing 75% of the dispari-

ties will definitely give us a precise result. This was found experimentally

that retaining the disparities in this range gives best performance. We tried

different numbers here and found that for our chosen stereo camera and dis-

parity estimation, 75% was an appropriate number. This would change with

change in choice of the disparity estimation algorithm and stereo camera.

In next subsection 2.2.3, we will discuss when to update the classifier.

2.2.3 Selected Online Ada-Boosting (SOAB)

In this section, we will describe how to optimize OAB with given the depth

information on each pixel from Section 2.2.1. One of the weaknesses of the

OAB algorithm is that the target might not always maintain the same size

in the scene. The size of the target could be changed when it is occluded,

changing poses, or tracking improperly in the current frame (see Figure 2.1).
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(a) (b)

Figure 2.4: (a) is a normalized disparity image. (b) is from the left camera.

These weak detections pollute our classifier badly. Once the classifier adapts

to those unwanted features, the tracker looses the target easily. Here un-

wanted features include background and foreground features. So, the depth

of each pixel plays a significant role to calculate the proportion of unwanted

features in the current positive patch. We call this proportion the depth

ratio, R. Before computing this depth ratio for the positive patch, we need

to determine where our target is in the previous frame (here we focus on the

distance between the robot and the person).

Once the initial disparity (called preDisp) is computed from Section 2.2.2,

we estimate the disparity in the second frame. To do this, we run the original

OAB algorithm to detect the positive patch in the second frame. Assuming

that the displacement of the target can not be more than a threshold β,
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the possible disparities that belong to the person are preDisp±β. Then we

compute the mean of the pixels in preDisp±β range as the current disparity

(called curDisp). We assign curDisp to preDisp and repeat this for later

frames to perform tracking.

curDisp = Mean(Ip[Ip ∈ preDisp± β]) (2.6)

The next step is to update the classifier. We do this differently than

OAB. We introduce the depth ratio R to evaluate the current positive patch

containing a minimum amount of unwanted features. R equals the ratio of

the number of pixels that are used to calculate curDisp to that of the total

number of pixels in the current patch. The width of patch Ip is w, and the

height is h.

R =

∑
[Ip ∈ preDisp± β]

w ∗ h
(2.7)

Now our algorithm (SOAB) makes the decision. If the depth ratio R is

greater than a threshold γ, then we update the classifier using the current

positive patch. Otherwise, we do not update the classifier.

2.3 System Design

In this part, we describe the design of our system. Here we use a Pioneer 3AT

robot (see Figure 1.1.) which is a four wheeled differential drive robot with

an on-board computer. It is configured with a Point Grey Bumblebee Stereo

Camera which acts as the only sensor on the robot to sense its environment.
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Algorithm 1 SOAB (Selected Online Ada-Boosting)

Data: Camera Stream
1. fetch left and right image from Camera Stream;
2. select target to track
3. calculate curDisp
4. preDisp← curDisp
5. pre-train OAB;
6. while true do
7. fetch left and right image from CameraStream
8. run OAB to extract a positive patch
9. fetch left and right image from CameraStream
10. run OAB to extract a positive patch Ip
11. curDisp←Mean(Ip[Ip ∈ preDisp± β])

12. R←
∑

[Ip∈preDisp±β]
w∗h

13. if R ≥ γ
14. update the classifier
15. preDisp← curDisp

The system is built using the robot operating system (ROS) to integrate

different components involved in the system. Figure 2.3 gives an overview

of our system design.

Initial components of the system are responsible for tracking the target

(human) and computing the centroid and depth of the target being tracked.

Based on these values, the control module computes the corresponding linear

and angular velocities for the robot (see Figure 2.5). The controller main-

tains a predefined distance from the human being followed. It is ensured

that the centroid of the human target bounding box is always near the cen-

tre of the image within a pre-specified area. This is done by simply steering

in the direction to which the person is moving. If the person appears to be

moving left in the image, the robot moves leftwards to keep the centroid of

the detected human near the center of the image. The robot maintains a

set depth from the target. If the person is moving towards the robot, the
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(a) Linear velocity vs. Disparity Plot

(b) Angular Velocity vs. centroid of the target

Figure 2.5: Controller Module of our system. (a) The function represents
the linear velocity as a function of the target’s disparity in the current frame
(b) represents the angular velocity as a function of the x-coordinate of the
centroid of the target

robot moves backward and vice versa. The linear velocity of the robot is a

function of the disparity alone and the angular velocity is a function of the

x-coordinate of the centroid of the human being tracked (see Figure 2.5).

These functions were obtained experimentally and would change with the

change in the robot platform.

We run this system on a laptop with Intel i7 2.5GHz processor and 16GB

RAM (the requirement is lower for our algorithm). The design of various
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components involved here is presented in Figure 2.3.

2.4 Experiments and Evaluation

Since the proposed method relies on a dataset that is different from what

people did in the past, we were unable to find an existing dataset which

satisfies our need (a stereo dataset for a human following robot under chal-

lenging situations). As a result, we constructed a dataset of four image

sequences to test the robustness of the person following robot system. The

person being followed in our dataset exhibits varying motions and challeng-

ing poses in different indoor environments (see Figure 2.1). The dataset is

built from image sequences captured by the robot in these places. The robot

is following a person in a university hallway, a living room, and a lecture

hall. We make the dataset of these three places publicly available at our

project page2. Videos of the robot following behavior of our proposed ap-

proach can also be found at the project page2. The dataset consists of the

person being followed under varying illumination conditions, different poses

of the person being followed, partial and complete occlusion of the person

being followed and multiple people present in the scene. The resolution of

the images is 640 ∗ 480 pixels. Using the algorithm described above we are

able to track people while the robot is moving at up to speeds of 0.70 m/s.

The person being tracked also has a maximum speed of 0.70 m/s. It should

be noted that our system could be deployed on any mobile robot platform.

We tested our proposed approach on a Pioneer 3AT robot (see Figure 1.1).

2http://jtl.lassonde.yorku.ca/2017/02/person-following
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(a) Sequence Hall Way (b) Sequence Multiple Crossing

(c) Sequence Same Clothes Crossing

Figure 2.6: The graphs are comparing the accumulated square error on
three different image sequences captured in different places and the target
acted very differently. OAB is the Online Ada-Boosting approach and SOAB
is our approach Selected Online Ada-Boosting
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Our algorithm can run in real-time at a frame rate of 15fps on a single CPU

core.

First, we tested our algorithm on an experimental sequence of images.

The target in the sequence is turning around, and squatting down (see Fig-

ure 2.7). From the result, we could distinguish that SOAB with depth ratio

threshold γ = 0.60 outperforms the original OAB. By selecting the patches

to update the classifier does make a huge improvement. In Figure 2.7(f),

OAB did a mistake and updated the classifier. The classifier then learned

the background as the important feature and as a result continuously made

mistakes in later frames. On the other hand, SOAB avoids this problem by

using the depth information to make decision on whether or not to update

the classifier. We also select a depth ratio threshold γ = 0.80 for testing.

Since the threshold is too high, SOAB skipped most of the frames. This is

not how we want SOAB to behave. In the later experiment, we fixed the

depth ratio threshold as 0.60.

We made another image sequence to test more challenging scenarios.

The target is picking up a backpack from the ground, and someone is pass-

ing between the robot and the target in the sequence (see Figures 2.8,

2.9, 2.10). Again in this test case, SOAB achieved the best result overall.

Comparing Figure 2.8(b), OAB learnt the background features leading to a

mistake in Figure 2.8(c). From Figure 2.8(e-g), OAB learned the features

of the crossing person. The second person became the target of the OAB

tracker. Since the depth information is used as a gate, SOAB did not up-

date the classifier with unwanted features when depth ratio is less than the

threshold. Figure 2.6(a) shows the accumulated square error of OAB and
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SOAB. The green line in the graph increases very smoothly meaning that

SOAB performed very well without losing track. But, OAB looses track at

about frame 900 and becomes very unstable later, roughly at the occlusion

in Figure 2.8(f).

Another image sequence was made to test multiple crossing with differ-

ent speeds. The comparison between OAB and SOAB can be seen in Fig-

ure 2.6(b). There are 12 crossing actions in this sequence. SOAB completed

this test case without failure. But, OAB failed after the fourth crossing.

The third sequence is for testing when two people are wearing the same

clothes. This sequence is the most significant one in our dataset. The result

can be seen in Figure 2.6(c). In this sequence, two people are crossing each

other, walking in a circle. As expected, the robot is following the same

person all the time using SOAB.

2.5 Summary

In this chapter, we described a robust person following robot system us-

ing a modified version of Online Ada-Boosting algorithm with only a stereo

camera. The system was optimized to perform well in a dynamic environ-

ment. Our modified version of OAB performs much better than the original

algorithm (see Figure 2.6). We handled difficult situations dealing with sim-

ilar clothes of people crossing, appearance changes in terms of removing the

target’s jacket, partial and complete occlusions and were able to run our

approach in real-time on a mobile robot. It should also be noted that even

though we present our approach for the human following robot, this can be
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s) (t) (u)

Figure 2.7: (a-g) is tracking using original OAB algorithm. (h-n) is track-
ing using SOAB with depth ratio threshold γ = 0.30. (o-u) is tracking
SOAB with with depth ratio threshold γ = 0.60.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.8: Red box is tracking using original OAB algorithm. Yellow
box is tracking using SOAB with depth ratio threshold γ = 0.60. (a-h) are
sequences from a hallway.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.9: Red box is tracking using original OAB algorithm. Yellow
box is tracking using SOAB with depth ratio threshold γ = 0.60. (a-f) are
sequences from a lecture hall.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.10: Red box is tracking using original OAB algorithm. Yellow
box is tracking using SOAB with depth ratio threshold γ = 0.60. (a-f) are
sequences showing crossings with same clothes.
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applied to any object following robot as well, but the object needs to be

known a priori. For instance the robot can follow objects like a handbag,

shopping cart, an animal (cat/dog), etc. In this sense our approach targets

not only the human following task but also generalizes to other objects as

well.

We proposed changes to the OAB algorithm. We believe that there could

be further improvements, e.g., using a more robust online boosting tracking

algorithm called Online Multiple Instance Learning [101], or increasing the

classification error if the bounding box jumps unstably from frame to frame.

Another possible future work would be to include the recognition aspect by

making use of a human detector to aid in the process of having a better model

for the classifier. Another approach of making the following system more

reliable could be adding a path planning and obstacle avoidance strategy to

the robot control module in our system.
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Chapter 3

Person Following Robots

using CNNs
1

3.1 Introduction

In the previous chapter we presented a person following approach which

could robustly track the person under challenging situations. Our approach

Selected Online Ada-Boosting (SOAB) was built on top of the Online Ada

Boosting (OAB) technique [94]. OAB uses traditional hand crafted features

like Haar like features from [102] and Local Binary Patterns [103]. In this

chapter we propose a new approach where we extract the features using

a convolutional neural network (CNN) and integrate information obtained

from the stereo depth image to update the person classification model when

required. Features extracted from our CNN are of a better quality than the

1This chapter is an extended version of the paper which appeared in 11th International
Conference on Computer Vision Systems in [6]
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ones used in OAB. Hence we proposed another tracking module using CNNs

in this chapter.

Here, an online convolutional neural network (CNN) is used to track

the given target under different situations. In addition to the situations

mentioned in Chapter 2, the target being tracked might also move around

corners making it transiently disappear from the field of view of the robot.

We address this problem by computing the recent poses of the target and

have the robot replicate the local path of the target when the target is not

visible in the current frame. The robot being used is a Pioneer 3AT robot

which is equipped with a stereo camera. We tested our approach with two

stereo cameras namely the Point Grey Bumblebee22 and the ZED stereo

camera3. We also evaluate the performance of our CNN based approach

with that of SOAB [1] and some other stereo based trackers like the ASE

(accurate scale estimation) tracker [3] and the DS-KCF (depth sensitive

kernelised correlation filter) tracker [4].

The main contributions of this chapter are: (i) A Person Following Robot

application using a CNN trained online in real-time (≈20 fps) making use

of RGB images and a stereo depth image for tracking, (ii) a robot following

behaviour which can follow the person even when the person is transiently

not in the field of view of the camera, (iii) a novel stereo dataset for the task

of person following. This chapter is organized as follows. In Section 3.2,

we describe our proposed CNN model and the navigation system of the

robot. We describe the dataset and experimental results of our approach in

2http://www.ptgrey.com/stereo-vision-cameras-systems
3https://www.stereolabs.com
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Section 3.3. Finally, Section 3.4 concludes the chapter and provides possible

future work.

3.2 Approach

Here we describe our proposed CNN models and the learning process. The

input to the CNN is the RGB channel and the computed depth from the

stereo images, we call this as RGBSD (RGB-Stereo Depth). Stereo Depth

(SD) is computed using the ZED SDK4. The CNN Tracker outputs the depth

and the centroid of the target. The depth and centroid are then used by the

navigation module of the robot to follow the target and replicate the path

when required.

3.2.1 CNN Models With RGBSD Images

We develop three different CNN models and use each of them separately to

validate our approach. The first model (CNN v1) uses RGBSD layers as a

single image to feed the ConvNet. Similar to conventional CNN architec-

tures, the network contains convolutional layers, fully-connected layers, and

an output layer (see Fig. 3.1). The second model (CNN v2) uses 2 convolu-

tional streams and the input is RGB channels for one stream and just the

stereo depth image for the other (see Fig. 3.1). In the fully connected layer,

the input is a combination of the flattened output from those two convolu-

tional streams. The third ConvNet (CNN v3) is a regular RGB image based

CNN. It has a similar structure as that of the first model. Table 3.1 shows

4https://github.com/stereolabs/zed-opencv
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Table 3.1: CNN Model 1 (CNN v1) RGBSD architecture details. Activa-
tion function used at each layer was ReLu (Rectified linear units)

type input size
filter size/
stride

Number
of Filters

output
size

convolution1 28x28x4 3x3x4/1 32 28x28x32

max-pool1 28x28x32 2x2/2 - 14x14x32

convolution2 14x14x32 32x32x3/1 64 14x14x64

max-pool2 14x14x64 2x2/2 - 7x7x64

Fully Connected 3136 - - 128

OutputLayer 128 - - 1

the details for one of the architectures of our CNN models. Now we describe

our approach to initialize and update the CNN tracker.

Initial training set selection

In order to use the CNN model to track a person, we must initialize the CNN

classifier. The initialization is done from scratch using random weights. A

pre-defined rectangular bounding box is placed in the center of the first

frame. To activate the robot following behaviour, a person must stand inside

the bounding box at a certain distance from the robot or the target to be

tracked can be manually selected. Once the CNN is activated, the patch in

the bounding box is labeled as class-1. The patches around the bounding

box are labeled as class-0. Since these two classes are highly unbalanced, we

uniformly select n patches from class-0, and copy the class-1 patch n times to

form the training set (n = 40 in our experiment). This initial training set is

used to train a CNN classifier until it has a very high accuracy on the training

set. This might make the classifier overfit the training set. To handle this

strong over-fitting, we assume that the target pose and appearance should
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Figure 3.1: Three CNN models: Model 1 takes a 4-channel RGBSD image
as input; Model 2 takes an RGB image and an SD image as input; Model 3
takes an RGB image only as the input. The parameters of the CNN in each
of the layers are chosen empirically for real-time performance.
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not change dramatically in the first 50 frames (about 2-3 seconds).

Test set selection

Once the CNN classifier is initialized or updated, we use it to detect the

target in the next frame. When a new frame is available along with the

stereo depth layer, we search the test patches in a local image region as

shown in Fig. 3.2(a). We also restrict the search space with respect to the

depth as shown in Fig. 3.2(b). If the patches in the image do not have the

depth within previous depth ± α, we do not consider them (Fig. 3.2(c)),

where α is the search region in depth direction (we use α = 0.25 meters).

By doing this, most of the patches belonging to the background will be

filtered out before passing to the CNN classier. Only the highest responses

on class-1 will be considered as the target in the current frame. If no target

is detected (e.g., highest responses on class-1 < 0.5) after 0.5 sec, it will

enter the target missing mode. Then, the whole image is scanned to create

a test set.

Update CNN tracker

To update the classier, a new training set needs to be selected. The update

step is performed only if the detection step finds the target (class-1) in the

test set. In order to maintain robustness, the most recent 50 class-1 patches

are retained from the previous frames to form the class-1 patch pool which is

implemented as a First-In-First-Out queue. The patches around the target

form the class-0 patch pool. In this new training set, we again uniformly

select n patches from class-0 patch pool. For selecting n patches from class-
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(a) (b) (c)

Figure 3.2: 3D search region for test set (a) candidate test patches in 2D
region (based on a sliding window approach), (b) search region with respect
to depth, (c) pixels in black are within ±α meters from the previous depth.
If black pixels are less than 70% of the patch, the patch will be discarded,
else, it will be retained. The number 70% is chosen experimentally as this
covers the human body completely in most of the cases. According to (c),
the red and blue patches in (a) will be discarded, the green, pink, and yellow
patches will be retained.

1 patch pool, we sample the patches based on a Poisson distribution with

λ = 1.0 and k = b queue index10 c (see Equation 3.1 and Fig. 3.3). This gives a

higher probability of selecting patches from the recent history rather than

selecting older patches. This training set is used to update the classifier. The

Poisson distribution based sampling of class-1 patches avoids overfitting and

provide a chance to recover from bad detection in the previous frame(s).

P (k) = e−λ
λk

k!
(3.1)

3.2.2 Navigation of the Robot

In this section, we describe the navigation aspect of the robot. There are

two cases: (i) when the robot can see the target (human) in the image;

(ii) when the robot cannot see the target. A proportional integral deriva-
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(a) normalized PMF (b) CDF

Figure 3.3: Poisson distribution with λ = 1.0 and k = b queue index10 c, where
queue index is the patch index in First-In-First-Out queue. To select an
index, just randomly generate a real number from 0 to 1.0. Then, base on
(b) the CDF graph, an index is selected.

tive (PID) controller [104] is used in the former case while the path of the

target is replicated in the latter. A local history of the target poses is main-

tained to compute the local path of the robot. The robot moves to the last

observed pose of the target to find the target and continue the following

behaviour. There are 4 basic components involved here: (i) Localization of

the robot, (ii) Target Pose Estimation, (iii) Robot following using a PID

based controller, and (iv) A local path planner (trajectory replication).

Robot Following using PID controller

In this section we describe the robot following behavior for the case when the

human can be seen in the image. A pre-specified distance, D is maintained

between the robot and the target. The linear velocity, v of the robot is

directly proportional to the error in current depth, (d−D), where d is the

current depth of the target. The angular velocity, ω is proportional to the

error in the x coordinate of the target (x−X mid). X mid is the centre of

the image in the horizontal direction. Only the Proportional and Integral
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components of the PID controller are used. We use D = 1.0m. Following

equations detail the velocities as a function of the error terms.

v = Kp ∗ (d−D) +Ki ∗
∫
T

(d−D)dt; (3.2)

ω = K ′p ∗ (x−X mid) +K ′i ∗
∫
T

(x−X mid)dt; (3.3)

where Kp, Ki, K
′
p, K

′
i are the PI constants, (d−D), (x−X mid) are the

error terms for the linear and angular velocities and dt is the time difference

between successive frames.

Localization

Localization of the robot requires estimating the robot pose with respect

to a global coordinate frame. In the 2D case, this is x,y coordinates and

the orientation, θ of the robot. The robot must maintain an estimate of

its pose as it moves in the presence of dynamic obstacles. Here we address

localization using wheel odometry. Wheel odometry is reliable for short dis-

tances with an error of less than 4% for environments with a smooth surface

(e.g., indoor flooring, outdoor pavement, sidewalk, etc.) for our robot (Pio-

neer3AT). For this work, the robot is tested in university hallways/corridors

which often have minimal features or are featureless (blank walls), hence

Visual Odometry based approaches [105] do not give accurate localization.

Moreover, the environment is dynamic (has humans walking) which makes

Visual odometry even less reliable.

For our work, it is only important that the pose of the robot is accurate
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for any short time (e.g., 5 seconds). This is the time we require localiza-

tion information of the robot to compute the local path of the target and

previously accumulated errors due to dead reckoning [17] do not matter.

Target Pose Estimation

The pose (World coordinates) of the target with respect to the camera frame

is estimated using the depth and the focal length of the camera [100]. Know-

ing the pose of the robot and target pose with respect to the camera frame,

the 2D pose of the target can be estimated accurately in a global frame.

Fig. 3.4(a) shows the top view for computing target pose.

Trajectory Replication / Path Planner

Here we describe the navigation algorithm used to follow the human when

the robot cannot see the human. This part is used when the person is

turning around a corner or around a tree in an outdoor context. The robot

always keeps a local history of the recent p poses of the target with respect to

the global coordinate frame, this is called the recent trajectory of the target

(See Fig. 3.4(b)). We use p = 100 here. If the robot cannot see the target

transiently for 0.5 seconds, it implies that the human turned around a corner

or is blocked by something else, so the robot replicates the recent trajectory

of the target. By doing so, the robot reaches the last observed pose of the

target. After reaching this position, the robot should be able to find the

target and resume the following behaviour using the PID based controller.

If for some reason the robot cannot find the target after replicating the path,

the robot turns on the spot to see if it can find the target, if not the robot
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(a)

(b)

Figure 3.4: (a)Estimation of the target pose in the global frame (top view)
(b) Local Trajectory of the target poses is stored, when the robot cannot see
the target in the image the robot simply replicates the latest local history
of target poses stored to find the target. In this work, local history of 100
poses is stored.
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Figure 3.5: Overview of the System Design of our approach.
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stops there and the following behaviour terminates. On the other hand, if

the robot finds the target while replicating the local path, the robot shifts

to the PID based following behavior. Some of the cases when the target

might not be found include when target runs away after the turn or turns

somewhere else unexpectedly or vanishes due to some reason. In all these

cases it is reasonable to assume that the robot would not be able to find

the target. A similar behaviour is expected if a human is following another

human.

The overview of our proposed approach is described in Fig. 3.5. The

input to our system is an RGB image and a computed stereo depth image.

These images are then run through an online CNN which runs at a frame

rate of 20 fps. The CNN returns the depth, the centroid coordinates of the

target being tracked and a flag which indicates the presence/absence of the

target. If the target is present in the scene a PID based controller is used

to steer in such a way so as to keep the target in the center of the image;

in case of absence of the target, the local path of the target is replicated by

the robot to continue the following process. We run our robot at speeds up

to 1.0 m/s. The Robot Operating System (ROS) was used for integrating

the different components in this work. We tested our approach on a Dell

Alienware Laptop with Intel core i7, 7th Gen, 2.8 GHz processor and a GTX

1070 mobile graphics card.
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3.3 Dataset and Experiments

3.3.1 Dataset

Several Datasets exist for pedestrian detection and tracking5. In particular,

the Princeton Tracking Benchmark [49] provides a unified RGBD dataset

for object tracking which includes various occlusions and some appearance

changes. But, each sequence is very short (maximum 900 frames, most of

them are under 300 frames). Many other works exist that aim at solving

the person following problem, but there is a lack of a standardized dataset

which could be used to validate the tracking algorithm used for person fol-

lowing robots. In this work, we built an extensive stereo dataset (left, right,

and depth images) of 9 indoor and 2 outdoor sequences. Each sequence has

more than 2000 frames and up to approximately 12000 frames. The dataset

has challenging sequences which have pose changes, intense illumination

changes, appearance changes (target removing/wearing a jacket, exchang-

ing jacket with another person, removing/wearing a backpack or picking-

up/putting-down an object), crouching and walking, sitting on a chair and

getting up, partial and complete occlusions, occlusions by another person

wearing same clothes and some other different situations. The dataset also

has image sequences when the target is not visible transiently in the image

and reappears after some time. The dataset is built in different indoor and

outdoor environments in a university context. Some of the samples from the

dataset can be seen in Fig. 3.6. The images are captured at a frame rate

of 20 Hz and the resolution is standard VGA (640 x 480) for bumblebee2

5http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm#people
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Figure 3.6: Comparison of some tracking algorithms on our dataset. (1):
Hallway 2; (2): Walking Outdoor; (3): Sidewalk; (4): Corridor Corners; (5):
Lab & Seminar; (6): Same Clothes 1; (7): Long Corridor; (8): Hallway 1;
(9): Lecture Hall. (SOAB [1], OAB [2], ASE [3], DS-KCF [4])
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and (672 x 376) for ZED. We also provide with ground truth of the image

sequences6. The ground truth contains the bounding box labeled for the

target (human) which is manually labeled by human annotators for each

frame.

3.3.2 Evaluation Metric

The interest of person following task is to follow a person, so the size of the

bounding box is not important for the robot. However, the centroid of the

target plays an important role. The evaluation of tracking algorithms has

been done in numerous ways. Wu et al. [106] provide details about various

existing evaluation metrics that have been used for tracking. For our dataset

we use the precision-plot as defined in [106] as the metric to evaluate the

performance of our approach. We report the percentage of frames in which

center of the detected bounding box is within a specific range of pixels

from the ground truth (See Figures 3.8, 3.9). Since the initial bounding

box size is about (100 x 350) for all the video sequences, we compute the

average precision of all sequences using location error threshold 50 pixels

to evaluate tracker performance(see Fig. 3.10(a)). Fig. 3.10(b) shows the

average precision plot over all sequences from Figures 3.8, 3.9.

3.3.3 Experiments

We validated our proposed approach in different indoor and outdoor envi-

ronments. We achieved a frame rate of approximately 20 fps depending on

6demo videos and dataset available at http://jtl.lassonde.yorku.ca/2017/05/

person-following-cnn/

56

http://jtl.lassonde.yorku.ca/2017/05/person-following-cnn/
http://jtl.lassonde.yorku.ca/2017/05/person-following-cnn/


(a) normal person following case

(b) path replication case

Figure 3.7: Overall performance of our robot system. (a) Ground truth is
the path the robot should have taken ideally maintaining a 1-meter distance
from the target. A tape was drawn on the ground on which the robot was
supposed to drive, the target was walking at a 1-meter distance from each
point on this tape. Robot Odometry trials are the robot paths based on wheel
odometry. (b) Ground truth is the same as the human path we are testing
the path replication behaviour here. We have a maximum error (includes
tracking, control, and wheel odometry errors) of roughly 30 centimeters
which is not high for our task.
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(a) Hallway 1 (b) Multi-crossings

(c) Same Clothes 1 (d) Lecture Hall

(e) Same Clothes 2 (f) Long Corridor

Figure 3.8: Precision-plots: comparison between our trackers and dif-
ferent tracking algorithms, SOAB [1], OAB [2], ASE [3], DS-KCF [4] in 6
different situations
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(a) Walking Outdoor (b) Sidewalk

(c) Lab & Seminar (d) Corridor Corners

(e) Hallway 2

Figure 3.9: Precision-plots: comparison between our trackers and differ-
ent tracking algorithms, SOAB [1], OAB [2], ASE [3], DS-KCF [4]
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(a) Precision at location error threshold 50 pixels

(b) Precision Plot

Figure 3.10: Comparison over 11 sequences (SOAB [1], OAB [2], ASE [3],
DS-KCF [4]) in 5 different situations
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the search window size that we use for the depth range and the local image

search region. For evaluation, we compare three versions of our tracking al-

gorithm with four other existing stereo vision based trackers (for which the

code is publicly available). We used the precision-plot evaluation metric as

defined in [106] to report the performance of our system. The performance

can be seen in Fig. 3.6, 3.8, 3.9 and 3.10. We evaluated the performance of

our approach on 11 challenging sequences which exhibit varying situations

as described in the previous section. It was found that the RGBSD based

CNN (CNN v1) outperformed all other existing approaches. The RGB based

CNN (CNN v3) could not perform better than SOAB [1] in some sequences.

We also compare our approach with Martin et al. [3] (ASE with monocular

images) and Camplani et al. [4] (DS-KCF with RGBD images). We show

the performance of our overall robot system in Fig. 3.7. A demo video of

our approach on the robot under different situations can be found at the

link 6.

3.4 Summary

In this chapter, we described a robust person following robot system using

an online real-time Convolutional Neural Network in the context of robotics.

The proposed system was compared with some of the existing stereo vision

based trackers and it was shown that our approach outperforms other ap-

proaches. Our technique could find the person even when the robot could not

see it by replicating the local trajectory of the target being followed. Possible

future work includes incorporating dynamic obstacle avoidance techniques
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with the person following robot to give it more intelligence. Person following

could also be addressed for places with known maps like using a social robot

to follow people in a specific house, malls, retail stores and other places.
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Chapter 4

Localization in Dynamic

Human Environments
1

4.1 Introduction

Indoor Localization is a primary task for social robots. We are particularly

interested in how to solve this problem for a mobile robot using primarily

vision sensors. This chapter examines a critical issue related to general-

izing approaches for static environments to dynamic ones: (i) it considers

how to deal with dynamic users in the environment that obscure landmarks

that are key to safe navigation, and (ii) it considers how standard local-

ization approaches for static environments can be augmented to deal with

dynamic agents (e.g., humans). We propose an approach which integrates

wheel odometry with stereo visual odometry and perform a global pose re-

1this chapter is an extended version of the paper accepted to be published in the 15th

Conference on Computer and Robot Vision in [7]
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finement to overcome previously accumulated errors due to visual and wheel

odometry.

We address the localization task in dynamic human environments using

a known 2D occupancy map with dynamic agents moving with unknown

trajectories. The map has certain interest points which serve as important

landmarks at which a global refinement is performed. Due to this refine-

ment we overcome any previously accumulated errors introduced by visual

or wheel odometry. The chapter has detailed empirical analysis to evaluate

our approach through a series of controlled experiments to see how localiza-

tion performance varies with increasing number of dynamic agents present in

the scene. For this work, we make use of a standard RGBD sensor (a stereo

camera) for environmental sensing and a commercial robot base (Pioneer

3AT).

In this work, we are able to localize the robot with high accuracy in

challenging situations (see Figure 4.1) like partial or complete occlusions of

the camera view, significant number of dynamic agents present in the scene,

robot navigating in a texture-less corridor, robot facing blank walls, etc. A

map of the environment is assumed to be known apriori. The map could

be a 2D occupancy map or a floor plan of the world in which the the robot

operates. As opposed to loop closure techniques for pose refinement where

one needs to have visited the place in advance to perform a refinement,

in our approach, we do not need to have visited the place before. The

major contributions of this chapter are: (i) an approach which can act

as a wrapper for traditional localization approaches to handle challenging

dynamic situations, (ii) empirical analysis of our approach to see how visual
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.1: Different situations our approach can localize in (a-b) crowded
corridor with 4 people; (c-d) corridor with 2-3 people (e-f) robot moving in
a texture-less corridor and motion blurr; (g) robot moving in narrow spaces;
(h) camera view occluded
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odometry behaves as number of dynamic agents are increased, (iii) a dataset

in which the number of dynamic agents vary which can be used by others

to validate their alternative approaches.

The chapter is structured as follows. Section 4.2 presents the proposed

approach. In Section 4.3, we provide detailed empirical results for our work.

Section 4.4 provides the conclusion and possible future work.

4.2 Our Approach

Localization of the robot requires estimating where the robot is with respect

to a global coordinate frame. The robot must know its pose - in the 2D case

this is x,y coordinates and the orientation, θ of the robot in some global

coordinate frame. The initial position of the robot is assumed to be known.

Now, we describe our proposed localization approach. We enable the robot

to maintain an estimate of its pose as it moves in the presence of dynamic

obstacles. Dynamic obstacles do not provide any useful information to the

robot in terms of localization. Worse, their presence can degrade the quality

of localization of the robot as they may obscure some of the visual landmarks

required for the localization of the robot. The robot needs to find a way to

make use of its wheel odometry and the information it perceives from the

stereo camera about its environment to accurately localize itself in the map

in the presence of these potentially intermittent visual landmarks.

Visual sensors are known to be very accurate in static environments,

however a detailed analysis of their performance in terms of dynamic envi-

ronments remains open. We propose to use a combination of information
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Figure 4.2: An occupancy grid map for the environment we deploy our
robots in. Yellow zone is the global pose refinement zone.

obtained from cameras wherever possible and use wheel odometry when-

ever the camera’s current view is obscured by humans or dynamic objects.

Wheel odometry is known to perform with good accuracy for short distances

as shown in [107] and [62]. This short-term accuracy is leveraged in our

approach to integrate with traditional visual odometry approaches. We ad-

ditionally use a global pose refinement technique to update the pose of the

robot with respect to known landmarks in the occupancy map. The input

to our approach is a 2D occupancy map/floor plan and a known start point

w.r.t. the global map. Mapping is assumed to be known/solved. Now we

describe our approach.
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4.2.1 Interest Point Detection in the Map

Mapping refers to knowing information about the environment which would

help localize the robot with respect to a global coordinate frame. In this

work, we use a simple form of map known as Occupancy grids [108]. An oc-

cupancy grid is a 2D top down representation of the environment. It divides

the given environment into 2D cells and each cell indicates the probability of

it being occupied or not. A sample occupancy map we used in our approach

can be seen in figure 4.2. Occupancy maps provide valuable information

about the geometric structure of the environment. They are similar to floor

plans without the semantic annotations in them. From the given occupancy

maps, we mark certain points in the map as interest points. These are the

points where a global refinement can be performed to accurately localize the

robot in the map. In this work we mark these points manually using the

occupancy map. Figure 4.2 shows these interest points in a sample map.

The occupancy map in our approach is generated from a SICK tim 551

2D laser scanner 2 (the scanner is used only for initial map creation and not

for any subsequent operation of the robot). A sample gmapping package in

ROS 3 is used to create the map. After creating occupancy map, it is cleaned

manually to remove any inconsistencies in the map. Now we detect interest

points where a global refinement is performed during the localization step.

Knowing the resolution of the map to be 5 cm for one pixel, we get the

coordinates of each of the marked interest points in the map. These inter-

est points serve as candidate landmarks which if detected successfully will

2http://wiki.ros.org/sick_tim
3http://wiki.ros.org/gmapping
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Figure 4.3: Overview of our proposed localization approach.
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improve the quality of localization and remove error accumulation. Similar

interest point detection can also be manually done easily using a 2D floor

plan of the building.

4.2.2 Localization in the Presence of Dynamic Obstacles

Our approach is a hybrid approach using wheel encoders, visual odome-

try and a global pose refinement scheme to overcome previous accumulated

errors in visual/wheel odometry. Figure 4.3 provides a basic overview of

our approach. Now, we describe the 3 basic components involved in the

Localization phase namely: (i) Visual Odometry by tracking features, (ii)

Wheel Odometry using Shaft encoders, and (iii) Global Pose Refinement

using Known map. Each of these components are described below:

Visual Odometry by tracking features

The visual odometry component in our approach is same as that of Geiger et

al. [5]. Features are extracted and then tracked to estimate ego-motion. In

[5], features are matched within a set of 4 images: current left image, current

right image, previous left image and the previous right image. In order to

find stable feature locations, the input images are initially filtered with 5x5

blob and corner masks. Next non-maximum and non-minimum suppression

is applied resulting in features belonging to one of the 4 classes (i.e. blob

max, blob min, corner max, corner min). Features are matched only between

these 4 classes. Features are matched in a circle to be qualified as a successful

match. We extract features from the current left image, match it with the

best point in the previous left image within a MxM search window, then
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in the previous right image, then the current right image and finally in the

current left image again. A feature point gets accepted only if the last

feature point co-incides with the first one.

A RANSAC based approach is used to estimate the transformation ma-

trix T = (r, t) which is the transformation (rotation, r and translation,

t) between two subsequent images. The number of feature matches and

the percentage of inliers here play a crucial role. Based on the number of

matches and inliers percentage, we make use of wheel odometry when the

inliers percentage is not promising enough.

Wheel Odometry Integration using shaft encoders

From the previous visual odometry component, if the percentage of inliers

obtained is less than a threshold, γ, this means that the visual odometry

component estimated the r, t matrices with fewer feature matches. This

could happen due to lack of sufficiently good static features, tracking a

dynamic consistent set of patches from a human, etc. In such cases, we rely

on wheel odometry to transiently update the pose of the robot. Cases when

visual odometry would not provide us with a sufficient number of feature

inliers include when the robot is facing a blank featureless wall, too many

moving people in front of the camera, limiting visibility of static content,

motion blur, low quality of features detected, etc. In all such circumstances,

we estimate and update the motion using wheel odometry. Say the robot

at time, t was at position, p and upto time t + δT visual odometry cannot

be relied on. So the motion of the robot during δT is computed using wheel

odometry.
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Using wheel odometry, we get the pose of the robot at each time instance

in the form of position P (x, y, z) and orientation Q(x, y, z, w) in quaternion

form. This is converted to a transformation matrix, T (consisting of rotation,

r and translation, t) of size 4x4. Say the transformation matrix at time t1

is given by Rt1 and at t2 by Rt2 so the motion during t2 − t1 is given by

(Rt1)
−1 * Rt2. This motion is then used to update the pose obtained from

visual odometry.

It should also be noted that a standard inertial measurement unit (IMU)

can also be used instead of shaft encoders in wheel odometry.

Global Pose Refinement using Known Map

This step is used to update pose of the robot whenever the robot is near

known landmarks/interest points. Interest points are unique points in the

occupancy maps which the robot can use to refine its pose and reduce any

previously accumulated errors in the pose estimation process. The global

refinement component is only run when the robot’s pose obtained from the

integration of the visual and wheel odometry is within a predefined range.

These ranges of robot poses form zones in which this component is run. An

example of refinement zones and interest points can be seen in figures 4.2,

4.4.

The interest points are typically at the intersection of two perpendic-

ular walls, but could also be at the intersection of two walls at an angle

or a pillar. These interest points in the occupancy map are straight lines

perpendicular to the ground when observed from a camera’s view. Figure

4.4 shows a correspondence between interest points on the occupancy map

72



Figure 4.4: Interest Points detection from camera view and corresponding
match in the occupancy map

Figure 4.5: Estimation of the predicted landmark location (Robot pose +
World Coordinates of feature point w.r.t. camera)
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and a camera view. To detect these interest points we need to detect points

in the highlighted regions in Figure 4.4. Now, we explain the process of

detection of points on the specific landmarks. As these points lie on vertical

lines, we need to detect points on these lines. First, we filter the images with

an oriented gabor filter at 90 degrees to detect vertical edges/lines. Gabor

Filters have been widely used for texture analysis, feature extraction, dis-

parity estimation, etc. These filters are special types of filters which only

allow a certain band of frequencies to pass through and reject the others.

Now, we get only vertical edges from the image. Next, we employ a Line

Segment Detector (LSD) [109] on the filtered image. After doing this, we

retain the feature points on vertical edges only. We only detect lines greater

than a specific length and at an angle of approx. 90 degrees.

Now, we have a set of n interest points, P = P1, P2, ..Pn from the image.

Each point belongs to a vertical edge. Knowing the depth, focal length

and base line, we can compute the world coordinates of each feature point

in the camera coordinate system [93]. Knowing the pose of the robot

obtained from visual and wheel odometry in the global coordinate frame,

we can compute the global coordinates of each point detected as shown

in Figure 4.5. Now, we have a set of n global world coordinates of the

interest points P ; lets call these transformed points as W = W1,W2, ..Wn,

where Wi = (xwi , ywi , zwi). Since its a ground robot (2D case) we only

care about the x and y coordinates. For the interest points as shown in

Figure 4.2, say each of these landmarks/interest points, L = L1, L2...Lm

have world coordinates as Lj = (xlj , ylj ). We know these location of the

landmarks as we have the ground truth occupancy map, so we can estimate
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the absolute values of these landmarks with respect to the start position of

the robot. From the set W , we find the closest point, Pi for each of the

landmarks, Lj based on the distance metric
√

(xli − xwi)
2 + (yli − ywi)

2.

Now, we have m points which are closest to each of the landmarks. We have

the distance error metric for each of these points to landmark assignment.

Let the error in distances be E = (e1, e2, ...em). From the given map, we

make a set of pairs of landmarks that are adjacent to each other. Figure

4.2 shows 16 landmarks and 4 zones, so we make the pairs in each zone,

e.g., (L1, L2); (L2, L3); (L3, L6); (L4, L5) as in Figure 4.4 depending on the

distance between 2 landmarks in a particular zone. Now, for each pair

(Li, Lj), we compute the quality of the matched point’s distance as (ei, ej).

If both ei and ej are less than an empirically determined threshold, β then

we consider that as a good pair and the corresponding matched points as

good matches. Now, we update the absolute robot pose based on these two

landmarks using triangulation [110]. Doing the update at this stage gets

rid of any previously accumulated errors due to wheel and visual odometry.

Algorithm 2 formulates this.

4.3 Empirical System Performance

In this section, we describe our generated dataset and provide a detailed

analysis of our results. Our algorithm was deployed on a mobile robot in a

real world environment in a university corridor. To validate our proposed

approach we developed a dataset for the purposes of localization of mobile

robots in dynamic environments. We first describe our generated dataset
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Algorithm 2 Pseudocode for Global Pose Refinement
Input:

- Set of n Key Points’ world coordinates w.r.t. camera frame, Pc = {pc1 , pc2 , ..., pcn}
; pci = (xpi , ypi , zpi)
- Set of landmark coordinates, L = {L1, ..., Lm}; Li = (xlj , ylj )
- Pairs of adjacent Landmarks in zone k, Lkpairs = {(L1, L2), (L2, L3)...(Li, Lj)}
- Zone number, k
- Empirically determined threshold, β

Output:

Refinement succeeded or not
Refined robot pose, R : (xrefined, yrefined, θrefined)

Procedure 1, Global Pose Refinement:

1. W = GlobalCoordinatesOfPoints (P )
2. C = (CL1, CL2, ..CLm), set of closest points to landmarks
3. E = (eL1, eL2, ..eLm), errors of closest points to landmarks
4. for Li ∈ L do
5. min = inf
6. for Wj ∈W do

7. ei =
√

(xli − xwi)
2 + (yli − ywi)

2

8. if ei < min
9. min = ei
10. CLi = Wj

11. for (Li, Lj) ∈ Lkpairs
do

12. if ei < β & ej < β

13. update pose wrt to Li,Lj using triangulation

14. else

15. do not update robot pose
16. return robotpose

Procedure 2, Global Coordinate of Point (P):
1. for pci ∈ Pc do
2. Wk = GlobalCoordinates(Pi) using Figure 4.5
3. return W = W1,W2, ..,Wn;Wi = (xwi , ywi , zwi)
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and later describe the localization results we obtained. The number of dy-

namic agents in the scene are varied and an empirical performance analysis

is reported.

4.3.1 The Dataset

Several datasets exist for computing the localization of a mobile platform

equipped with vision sensors. Strum et al. [111] built an RGB-D dataset

in indoor environments (industrial hall and office scene) to evaluate visual

odometry where they generated ground truth from motion capture systems.

Their dataset was built using a handheld Kinect sensor in indoor environ-

ments, which for most of the sequences have no presence of humans/dynamic

agents or are sparsely populated by one or two people. Smith et al. [112]

built a SLAM dataset using a laser, stereo and omni directional cameras in

a university environment outdoors. Their dataset was built while the robot

was driving several kilometers through a park and university campus. It

was built using a segway robot equipped with the sensors like IMU, GPS,

stereo, omni-directional, panaromic cameras and Lasers. This dataset also

does not have a lot of humans/dynamic agents moving in the environment.

One of the most famous benchmarks for ego-motion estimation in outdoor

environments (for autonomous driving) is the KITTI dataset [64] which is

also sparsely dynamic. The dataset is primarily used for benchmarking var-

ious computer vision tasks in the context of autonomous driving. As there

is not a dataset having a high number of dynamic agents in the scene, we

built a new dataset to validate our approach.

Now, we describe our dataset to address the shortcomings of existing
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datasets. We build a dataset which has many dynamic agents (humans) nav-

igating in the scene in an indoor office-like corridor of size 18m x 18m. Our

dataset was built using a mobile ground robot in a university environment on

the 3rd floor of the lassonde building at York University, Toronto, Canada.

The dataset was created using a Pioneer 3AT robot using on board stereo vi-

sion sensors (ZED stereo camera) with wheel odometry. While building this

dataset, the robot was driven manually to evaluate the localization frame-

work. Our dataset consists of wheel odometry information obtained from

the mobile base, stereo image pairs and a depth image from a ZED stereo

camera. The images were captured with a 720p resolution (1024 x 720) RGB

stereo camera at a frame rate of 30 fps. The camera was mounted on the

robot at a height of 76 cm above the ground plane. Images in the dataset

were taken indoors during night time in the winter season (January 2018).

We created 5 different types of sequences:

• Type 1 is the situation of with no dynamic agent present in the scene,

only the static scene.

• Type 2 indicates the situation where there is only one person in the

environment.

• Type 3 implies presence of one or two .

• Type 4 implies presence of at most 3 people.

• Type 5 implies presence of at most 4 people.

Each situation differs from the other in terms of the number of dynamic

agents and pose changes. The data acquisition phase was spread over a
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Figure 4.6: An analysis about the percentage of times wheel odometry is
used and when visual odometry can be relied on. Experiments performed in
a university corridor. (i): Static environment without any dynamic agents,
(ii): Dynamic environment with at most one person in the scene, (iii) Dy-
namic environment with at most 2 people in the scene, (iv) Dynamic Envi-
ronment with at most 3 people in the scene, and (v) Scene with at most 4
people present.

week. Each sequence has 6000-8000 images. Some sample sequences from

our dataset can be seen in Figure 4.1. We make the dataset and demo

video publicly available for download at the project web-page4. The ground

truth, map coordinates and interest points coordinates are also available at

the project page. Ground truth pose of the robot was generated by manually

driving the robot on a path pre-defined by a marking tape on the floor. The

coordinates on this path were known and were measured manually with a

measuring tape.

4.3.2 Results

We validate our approach through a set of controlled experiments to have

a quantitative analysis using our dataset. We show how performance varies

as the number of dynamic agents present in the scene are changed.

4http://jtl.lassonde.yorku.ca/2018/03/localization-among-humans/
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(a)

(b)

Figure 4.7: Trajectory of our approach against (i) wheel odomery, (ii)
visual odometry (method proposed in [5]), (iii) visual + wheel odometry,
(iv) visual + wheel odometry + global-refinement, and (v) ground truth (a)
Type 1 (no people), (b) Type 2 (one person)
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(a)

(b)

Figure 4.8: Trajectory of our approach against (i) wheel odomery, (ii)
visual odometry (method proposed in [5]), (iii) visual + wheel odometry,
(iv) visual + wheel odometry + global-refinement, and (v) ground truth (a)
Type 3 (2 people), (b) Type 4 (3 people)
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(a)

(b)

Figure 4.9: Trajectory of our approach against (i) wheel odomery, (ii)
visual odometry (method proposed in [5]), (iii) visual + wheel odometry,
(iv) visual + wheel odometry + global-refinement, and (v) ground truth (a)
Type 5 (four people), (b) sum of squared errors of 4 corners and the terminal
point of the trajectory with the ground truth.
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We compute the localization errors of the robot in the presence of dy-

namic obstacles and compare it to that when the robot moves in the static

environment and with the ground truth. We report the performance of our

approach on 5 different sequences in our generated dataset. The sequences

differ in the number of humans present in the scene. Varying the number

of dynamic agents in the scene implies varying the number of dynamic and

static visual features present in the environment. As the number of dynamic

agents increases the number of static visual features decreases and robot may

not be able to trust its vision for estimating its pose, hence in such cases

wheel odometry comes to our rescue. Wheel odometry is transiently relied

on under such circumstances. On the other hand, with no dynamic agents

present in the scene, the dependence of the robot on visual odometry is max-

imum and wheel odometry is minimally used. Some of the situations where

wheel odometry is solely relied on include when a particular person blocks

the view of the camera, too many moving agents in front of the camera lim-

iting visibility of static content, robot facing a blank featureless wall/door,

motion blur, etc. Figure 4.6 shows the proportion of times when wheel

and visual odometry is relied on under varying dynamic agents. To avoid

accumulation of errors, we do a global pose refinement based on landmarks

from the 2D map. As opposed to traditional loop closure techniques, we do

not need to visit the place once to perform a refinement. Knowing the map

and a few interest points, the robot knows when to perform a refinement.

Our approach runs at 25 fps in real time.

We report the trajectory that the robot takes based on its visual odom-

etry and compare it to the following: (i) Wheel Odometry alone, (ii) Vi-
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sual Odometry alone, (iii) Wheel+Visual Odometry, (iv) Our Approach

(Wheel+Visual+Global-Refinement), (v) Ground Truth. Figures 4.7, 4.8,

4.9 show the trajectory under each of the approaches, it can be seen that

our approach performs better than visual or wheel odometry alone. Ground

truth was generated by driving the robot on a predefined path (the coor-

dinates of which were known ±7.5cm). For generating the ground truth,

a predefined path was created by using a marking tape on the floor. The

robot was manually driven on this path as closely as possible. An error of

±7.5cm could be there due to inaccuracy introduced due to manual driving

of the robot. Due to global refinement we correct the pose and remove any

accumulation of error due to both wheel and visual odometry which gives

us a better trajectory closer to the ground truth. As can be seen, as the

number of dynamic agents are increased quality of traditional visual odom-

etry approach reduces, however using our approach we maintains a good

alignment with the ground truth.

4.4 Summary

In this chapter, we presented an approach as to how standard localization

techniques can be extended to deal with dynamic agents present in the scene.

One of the existing localization algorithms was chosen and integrated with

our proposed refinements. An empirical analysis was performed to see how

the task of localization differs in a static environment to that of a dynamic

environment as number of people in the scene are increased. Some of the

possible future works include integrating this approach with a navigation
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approach to have an autonomous agent navigating among humans. In this

work, only one of the current localization approach was built on top of. Our

proposed additions to the localization framework can also be applied to other

localization techniques and an analysis can be done on the performance of

other existing algorithms as to how they perform in a dynamic context after

incorporating our integrations.
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Chapter 5

Discussions and Conclusions

5.1 Summary

In this thesis we presented three novel approaches for two key components

involved in the navigation of autonomous robots. Two approaches were

presented for Person Following robots and one for localization of robots in

dynamic human environments. Each of the presented approaches was evalu-

ated extensively and it was shown that our approaches perform better than

current approaches. In chapter 2, we used an existing appoarch of online

ada-boosting and proposed a modification to the approach which we called

SOAB (Selected Online Ada-Boosting) by using depth as a gate to decide

when to update the classifier. This neat trick allowed us to handle challeng-

ing situations and perform the tracking in a robust manner. Our approach

SOAB used Haar wavelet features to learn the model for the target. To fur-

ther improve the quality of tracking we used a convolutional neural network

in Chapter 3 which learns a better feature representation of the target
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and performs even better than SOAB. A similar depth trick was used to

update the CNN model to handle dynamically changing appearance of the

target. Each of these approaches were empirically compared with existing

approaches and were able to handle more challenging situations than what

the current person following robots are able to address. Finally in Chapter

4, we proposed a localization approach which enables a mobile robot to es-

timate the pose in dynamic human environments. We proposed a wrapper

based approach which can be used with traditional visual odometry algo-

rithms to enhance the performance of these algorithms in dynamic scenes.

An empirical evaluation was reported which showed how the performance

of our system varies with increasing number of dynamic agents present in

the scene. In conclusion our proposed approaches are robust, comparable

to or better than the current state of the art approaches. We also tested all

the approaches proposed in real world environments and ran everything in

real time. Videos for each of the approaches are avalailable at the respective

project pages shown in each chapter.

5.2 Future Work

As discussed in the motivation Section 1.1 of the thesis an autonomous

agent needs to address a number of tasks including place recognition, local-

ization, navigation, person following, mapping, and SLAM. Some of these

components are connected with each other in a direct way. One component

uses another to perform a bigger goal. For example to perform autonomous

navigation a robot must know its pose at each instant, hence localization is
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a significant component for robot navigation. Now we discuss some of the

future work that is planned using the components proposed in this thesis.

Autonomous Navigation: An immediate future work arising from the

proposed thesis would be integrating the localization based approach with

a navigation approach to avoid dynamic agents present in the scene. The

robot can integrate the localization component with a path planner to do

intelligent planning and navigation from a given start point to a known goal

localization using a 2D occupancy map. A similar analysis as was done in

the localization chapter of this thesis would be performed with respect to the

navigation component. The number of dynamic agents would be varied and

it would be analysed how the performance varies with increasing number of

dynamic agents present in the scene.

Localization in Dynamic Environments: In chapter 4, we showed

how traditional localization approaches can be extended to handle dynamic

agents present in the scene. We integrated our approach with only one of

the existing Stereo Visual Odometry algorithms [5], some of the future

work involves integrating our approach with a few other visual odometry

approaches and report the performance of the integrated approaches. This

would be an interesting task as it would provide more empirical evidence

for the validation of our proposed wrapper based approach to visual odom-

etry techniques. We performed localization in a crowded indoor office-like

university corridor environment of size 18m by 18m. Some future work

involves testing this approach in bigger and different environments like uni-

versity hallways, hotels, etc. Increasing the number of landmarks obtained

from the occupancy map or the floor plan to possibly increase the accuracy
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of pose estimation is another future work which needs more experimental

analysis.

Person Following Robots: The Person Following approaches could be

extended to make use of the map of the environment to follow the target even

when the target disappears after a corner by using information obtained from

the map of the environment. The robot can employ searching algorithms

to scan the map and find the given target. Knowing the map, the robot

could compute the path it should take where it might find the lost target.

Since the model of the target is already learnt from the approach proposed

in thesis, as soon as the target appears in the camera view the robot would

resume the following behaviour. While doing the searching for the target,

the robot would also need to avoid dynamic agents present in the scene for

navigation. The robot should know its pose while searching for the given

target. Our proposed localization approach would be directly employed in

this context.
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“Stereo parallel tracking and mapping for robot localization,” in In-

telligent Robots and Systems (IROS), 2015 IEEE/RSJ International

Conference on, pp. 1373–1378, IEEE, 2015.

[74] T. Pire, T. Fischer, G. Castro, P. De Cristóforis, J. Civera, and J. J.
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