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Abstract 

For parametric models, the third order asymptotic theories for approximating tail 

probabilities are extremely accurate even for small sample size. These methods only 

require the likelihood function and the observed sample. Two third order asymptotic 

methods developed by Skovgaard in 1996 and Fraser and Reid in 1999 are compared 

and applied to location-scale family model in this dissertation. The Fraser and 

Reid method and the Skovgaard method have similar ideas except the canonical 

parameterization is different. 

Based on the special structure of location-scale model, a simple and accurate 

method is developed by transforming all the scale parameters into location type 

parameters. However, the general formulas to calculate the confidence intervals for 

location or scale parameter in the Fraser and Reid method and the Skovgaard method 

are also derived. The Behrens-Fisher problem with an assumption that the ratio of 

the two variances is known which is first considered by Schechtman and Sherman 

(2007) is revisited. Our proposed third order methods exhibit significant advantage 
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over some existing first order methods especially for small sample size. All of these 

results will be illustrated through numerical studies. 
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1 Introduction 

1.1 Motivation 

Inference for scalar parameter of a parametric model is a mainstay in statistical infer­

ence and is introduced in most, if not all, introductory statistics books. Parametric 

likelihood inference is often based on first order approximations to standard sum­

mary statistics from the likelihood, such as the signed log-likelihood ratio statistic, 

the Wald statistic and the Score statistic. From these statistics, we are able to derive 

the p-value, as well as the confidence interval for the scalar parameter. Details for 

these first order approximations are reviewed in Section 1.2.3. 

Although the first order methods are widely used, they generally do not give 

accurate approximation especially for small sample size. In recent literature, a more 

accurate asymptotic method was derived by Fraser and Reid in 1995. Rekkas and 

Wong (2008) implemented the Fraser and Reid method for fat-tailed distribution. 

Wong, Chang and Rekkas (2013) applied the Fraser and Reid method to time series 
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model. Another accurate asymptotic method developed by Skovgaard in 1999 but is 

not as frequently mentioned in statistics literature as the Fraser and Reid method. 

In my thesis, I will compare the accuracy and computation efficiency of these two 

· asymptotic methods for location-scale models. Finally, it is illustrated in this the­

sis that, for the Behrens-Fisher problem, the two methods give identical numerical 

results. 

1.2 Literature Review 

This section reviews some key concepts and definitions in parametric statistical in­

ference. In Section 1.2.1, likelihood function and maximum likelihood estimation 

defined by Fisher (1922) are reviewed. We introduce the general terminologies and 

notation that will be used throughout this thesis in Section 1.2.2. In Section 1.2.3, 

the first order asymptotic techniques are examined. The development of saddlepoint 

approximation is introduced in Section 1.2.4. The Lagrange Multiplier technique is 

reviewed in Section 1.2.5. 

1.2.1 Definitions of Likelihood Function and MLE 

Assume y = (y1, · · · , Yn)' is a random sample obtained from a population with the 

parameter 0, where () = (Bi,··· , Ok)' E 8 is a k-dimensional parameter. The Like-
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lihood Function of the sample is defined as: 

L(O) = L(O; Yi,··· , Yn) =cf (yi, · · · , Yn; 0) 

for values of 0 within a given domain, where c > 0 is a multiplicative constant, 

and f (y1 , · · · , Yn; 0) is the value of the joint probability distribution function for n 

independent identically distributed variables or the joint probability density function 

of the random variables Y1, · · · , Yn evaluated at Y1 = y1, · · · , Yn = Yn (Miller and 

Miller ( 2003)). 

The Log-Likelihood Function is 

n 

R(O) = R(O; Y1, ... , Yn) =a+ :E log(f (yi; 0)) (1.1) 
i=l 

where a E IR is an additive constant. Without lost of generality, a is taken to be 0 

hereafter. 

It is more convenient to work with log-likelihood function. The reason is that log-

arithm is a monotonically increasing function, and therefore the logarithm of a func-

tion achieves its maximum value at the same point as the function itself. Moreover, 

it is easier to calculate the maximum value by taking the derivative of a logarithm 

function. For example, in many statistical applications, the likelihood function is a 

collection of statistically independent observations (product of independent proba-

bility density functions for continuous distribution, once taking logarithm, then it 
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becomes the sum of individual log density function), and it is easier to compute the 

derivatives of sum than the derivatives of product. 

In statistics, Maximum Likelihood Estimation is a method of estimating 

the parameters of a statistical model. In general, for a fixed set of data from an 

underlying statistical model, the method of maximum likelihood selects values of the 

model parameters that maximize the likelihood function. 

Given a statistical model {! (yi, ... , Yn; (}) : (} E 8} with log-likelihood function 

f((}), the Score function U is defined to be the gradient off((}): 

U(B) = V'f(B) = a~~) = fo(B). (1.2) 

By setting U ( (}) to 0, we have the likeliho.od equations: 

(
8f(fJ) 8f(fJ))' ' u(e)= ae1 , ... , aek =(o, ... ,o). 

The maximum likelihood estimate (MLE) {J of the parameter vector () can usually 

be found by solving the likelihood equations. 

1.2.2 Terminologies and Notation 

The followings are the notation that will be used throughout this dissertation. 

• () = ('l/J, X)', parameter of model with size k; 

• 'if;, scalar parameter of interest; 
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• A, nuisance parameter with size k - 1; 

• f(B), log-likelihood function, f(B) = f(B; Y1, ... , Yn) =log f (yi, · · · , Yn; B); when 

Y1 , · · · , Yn are independent and identically distributed random variables with 

probability density function f (·; B), then f(B) can be simplified to f(B) = 

2:~=1 log [f (Yi; B)]; 

( ) 
8£(0) f . • f o e = ao ' score unct10n; 

( ) 
82 l(O) • foo1 e = aoao1 ; 

• j 001(B) = -foo1(B), the observed full information matrix; 

• J>.N(B) = -f>.N(B), the observed nuisance information matrix; 

• i 001 ( B) = E [)001 ( B)], the full expected Fisher information matrix; 

• fJ, the overall maximum likelihood estimate which maximizes f(B), i.e., fJ is 

obtained by solving the likelihood equations: fo(B) = a~(:) I ~ = O; 
0=0 

• i(B), tilted log-likelihood function, i(B) = f(B) + K,('lf;(B) - 'l/;0 ) where 'l/;0 is a 

given 'lf; value (See Section 1.2.5); 

• "'' Lagrange multiplier (See Section 1.2.5); 

• K,, the Lagrange multiplier which maximized the tilted log-likelihood function 

(See Section 1.2.5); 
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• 01/J, the constrained MLE which maximizes£((}) for a given 'lf;, i.e., 01/J is generally 

obtained by solving the estimating equation f>..(0¢) = 8~~) I ~ = 0, with A 
0=01/J 

explicitly available. However, if A is not explicitly available, we could apply 

Lagrange Multiplier technique (See Section 1.2.5) to obtain 01/J; 

• cp = cp( (}), canonical parameter of an exponential family model. 

Moreover, the following mild regularity conditions given in Wilks (1938) are as-

sumed to be true throughout this dissertation: 

• f (y; (}) > 0 is twice differentiable in a neighborhood of(}; 

• E[f0(y; B)f~J(y; B)] exists and is nonsingular; 

• J sup0EN lfo(Y; B)ldy < oo and J sup0EN lfoo1 (y; B)ldy < oo; 

1.2.3 The First Order Asymptotic Methods 

Consider y = (yi, · · · , YnY from a statistical model with log-likelihood function l(B). 

Under the mild regularity conditions discussed in Section 1.2.2, by applying Central 

Limit Theorem and Taylor expansion, the followings can be obtained: 
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• f~(O) {var[fo(0)]}-
1 fo(O) ~ x~, where var(fo(O)) = ioo1(0) (Rao 1947); 

• (B - O)'[var(B)]-1 (B - 0) ~ x~, where var(B) ~ i0l(O) (Wald 1943); 

• 2[t(B)-f(o)] ~x~ (Wilksl938). 

Note that although iooi(O) can be difficult to obtain, it can be approximated 

by iorJ' ( B). Hence the following test statistics are usually used when e is a scalar 

parameter: 

• the Wald statistic 

" 1 " w = w(B) = j(fJ)2(e - fJ), (1.3) 

• the signed log-likelihood ratio statistic 

r = r(O) = sign(O - B){2[l(O) - l(B)]}~, (1.4) 

• the Score statistic 

(1.5) 

And all of them are asymptotically distributed as N(O, I) (Cramer (1946, Section 33) 

and Lehmann (1983, Chapter 6)). Based on Taylor expansion, the accuracy of all of 

the three methods is O(n-~) and they are referred to as the first order methods. 
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If 0 is a vector parameter with 'l/; being the scalar parameter of interest, and A 

being an explicitly known nuisance parameter, then the three test statistics become: 

• the Wald statistic 

" 1 " w = w('l/;) = (var('l/;))-2(1/;- 'l/;), (1.6) 

• the signed log-likelihood ratio statistic 

" " " 1 r = r( 'l/;) = sign( 'l/; - 'l/; ){2[l(O) - l(Ol/1)]}2, (1.7) 

• the Score statistic 

(1.8) 

where 

var(,,f;) ~ 'l/Jo(fJ)j~~(fJ)'l/;o(fJ)' 

For first order asymptotic theory, Barndorff-Nielsen and Sorenen (1994) suggested 

to use the observed information rather than the expected Fisher information as the 

estimate of the inverse of the variance of the MLE. 
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The Significance(P-value) Function p: n---+ [O, l] is taken to be 

p(B) = p(B < tfo; B). 

p( 0) is also called confidence distribution function since all possible confidence 

intervals can be obtained by inverting p( 0). 

The p--value functions based on (1.3), (1.4) and (1.5) are defined as 

<I>( w) 

p('lf;) = cI>(r) 

<I>( s) 

where <I>(-) is the cumulative distribution function of N(O,l). 

A ( 1 - a) * 100% Confidence Interval for () is 

(1.9) 

(min {p-1 (~) ,p-1 
( 1 - ~)},max {p-1 (~) ,p-1 

( 1 - ~)}) . (1.10) 

The first order asymptotic theory of likelihood-based methods is studied in many 

texts on statistical theories. See, for example, Cox and Hinkley (1974, Chapter 

9), Sen and Singer (1993, Chapter 5), Ferguson (1996, Part 4), Schervish (1997, 

Chapter 7) and Severini (2000, Chapter 4). The first two approximations are more 

often used. Recent researchers showed that ( 1.4) gives more powerful and accurate 
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test than (1.3), but (1.3) is more popular in applied statistical analysis since it is 

simple to apply (Neymann and Pearson (1933), Doganaksoy and Schmee (1993)). 

Although the three first order methods are widely used in hypothesis testing, 

they do not perform well when the sample size is small or when the underlying 

distribution is far away from the normal distribution. Some researchers working 

on likelihood inference focused on how to improve the accuracy of these first order 

asymptotic methods. In the rest of the thesis, I will introduce some higher order 

asymptotic methods and compare the accuracies with those obtained by the first 

order methods. 

1.2.4 Saddlepoint Approximation 

In order to provide a better approximation to the true density function for the aver­

age of n independent and identically distributed random variables, Daniels in 1954 

introduced saddlepoint method. The method is very accurate but can be extremely 

complicated in terms of computation. 

1.2.4.1 Saddlepoint Approximation for Mean 

Let Yi, ... , Yn be independent, identically distributed random vectors from a model 

with density fy(·; 0). The moment generating function and cumulant generating 

10 



function are defined by 

K(t) = log(M(t)) 

respectively. 

The saddlepoint approximation for the density of the mean of n independent, 

identically distributed random variables, Y = n-1 L:~=l Yi, is given by Daniels (1954): 

where 

{ }

1/2 

fy(Y) = (27r)-k/2 I n ~I exp [n{K(i) -i'y}]{l+ O(n-1
)} 

Ktt'(t 

Kt(t) = 8K(t) 
at 

KI t - 8K2(t) 
tt ( ) - atat' 

and i is known as the saddlepoint and is defined by 

(1.11) 

One way to derive (1.11) is by combining the exponential tilting and the Edge-

worth expansion techniques. For detailed review of the derivation, please refer to 

Barndorff-Nielsen (1979), Barndorff-Nielsen and Cox (1979, 1989, 1994) and Reid 

(1988). Note that (1.11) has a relative error of O(n-1 ). 
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Durbin (1980) showed that if (27rtk/2 is replaced by a re-normalizing constant 

a, the error term of the saddlepoint approximation in (1.ll) is reduced to O(n-312). 

Then the saddlepoint approximation for the density of the mean becomes 

{ }

1/2 

fy(Y) =a IK,~(i)I exp [n{K(i) - i'y}] {1 + O(n-3
/
2
)}. (1.12) 

In general, a has to be obtained numerically. 

1.2.4.2 Saddlepoint Approximation for MLE 

There is another important development from the saddlepoint approximation which 

is an approximation for the density of the maximum likelihood estimate. Suppose 

y = (y1 , ... , Yn)' is a random sample from exponential family model with density 

fy(y; 0) =exp {O'y - a(O) - b(y)}. 

From the above model, the log-likelihood function can be written as 

l(O) = nO'y - na(O). 

The cumulant generating function is 

K(t) = log(M(t)) = a(B + t) - a(B). 

For the above exponential model, there exists a one-to-one correspondence be-

tween the minimum sufficient statistic Y and the maximum likelihood estimate 0 



From these, Barndorff-Nielsen (1980, 1983) showed that the saddlepoint approxima­

tion of the density function of 0 is 

f(O; fl) = clJ<w(O)l 1
/
2 exp { f(fl) - f(O)} { 1 + O(n-312

)} (1.13) 

where c is a normalized constant which is generally obtained numerically. Note that 

(1.13) has a relative error of O(n-312). 

For a general model, if an ancillary statistic is available, there is one-to-one 

correspondence between the minimum sufficient statistic and an ancillary statistic. 

The construction of the ancillary statistic is discussed in Barndorff-Nielsen (1980). 

For a general model, the conditional distribution of the maximum likelihood estimate 

0 given the ancillary statistic A is derived by Barndorff-Nielsen and Cox (1984) 

f(OIA; fl) = a(fl, A)IJ001(0)l 1!2 exp { f(fl) - f(O)} { 1 + O(n-312)}. (1.14) 

The above approximation has a relative accuracy of 0( n-312 ). Detailed discussion 

of the saddlepoint method and its application in statistics can be found in Barndorff­

Nielsen (1983), McCullagh (1987), Fraser (1988), Reid (1988) and Barndorff- Nielsen 

and Cox (1989). The main concern about this approach is that the ancillary statistic 

may not always exists nor unique. 
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1.2.5 Lagrange Multiplier Technique 

Lagrange Multiplier is a method in mathematical optimization which provides a 

strategy for finding the local extrema of a function subject to equality constraints. 

For instance, consider the optimization problem: maximize f (y) subject to g(y) = 

c. We introduce a new variable K, called Lagrange Multiplier and study the 

Lagrange function defined by 

H(y, K) = f (y) + K(g(y) - c). 

Let (y, Pi,) satisfies 

fJH(y, K) I = 0 
oy (A A) ' y,K 

and 

fJH(y, K) I = o. 
BK (AA) y,K 

Then (y,f(y)) is the extrema of f(y) subject to g(y) = c. For detailed review of 

Lagrange Multiplier technique, please refer to Lang (1973). 

is 

In our case, we want to maximize f(B) subject to 'lf;(B) = 'l/;0 , the Lagrange function 

H(B, K) = f(B) + K('lf;(B) - 'l/;0), 
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then ( B1f;, Pi,) satisfies 

8H(B, K) I = 0, 
ao (o.p,;~> 

8H(B, K) I = o. 
BK (O,µ,R) 

The tilted log-likelihood function is defined as 

i(B) = f(B) + Ki('lf;(B) - 'I/Jo). 

The tilted log-likelihood is useful whenever the nuisance parameter is not ex-

plicitly available or does not exist in closed form. Note that, for a given constraint 

'lf;(B) = 'I/Jo, i(B'lf;) = f(B1f;), i.e., the tilted likelihood has the same maximum as the 

original likelihood at the constrained MLE. 

1.3 Summary 

We briefly reviewed the three first order methods. As it is shown in the following 

two Chapters, the first order methods are pretty easy to use but not that accu-

rate, especially for small sample size. We also reviewed the saddlepoint method. 
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Barndorff-Nielsen and Cox (1979) highlighted the usefulness and accuracy of the 

saddlepoint approximation of the density function of the mean of n independent 

identically distributed random variables. They also pointed out that to approxi­

mate the cumulative distribution function of Y, generally, does not have closed form 

and hence, numerically integrating the saddlepoint density is required. Higher order 

methods will be introduced in the following Chapter. We will see how accurate they 

are especially for small sample size. 
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2 Higher Order Likelihood Asymptotic 

2.1 Methodology 

Followed by the idea of saddlepoint approximation and using complex analysis, Lu­

gannani and Rice (1980) calculated the cumulative distribution function of Y, the 

mean of n independent identically distributed random variables: 

where 

r sgn(i)V2n[tfj- K(i)] 

Q = iJnKtt'(i). 

(2.2) 

(2.3) 

Note that i is the saddlepoint as defined in Chapter 1 satisfied Kt ( i) = y, K ( t) 

is the cumulant generating function and Kt ( i) and Ktt' ( i) are the first and second 

derivatives of the cumulant generating function with respect to t evaluated at the 

saddlepoint. Barndorff-Nielsen (1986) derived alternative approximation that incor-

17 



porates the correction term into the quantile of the normal cumulative distribution: 

Fv(Y) = P(Y ~ y) = <I>(r*) (1 + O(n-312
)) (2.4) 

where 

(2.5) 

Assume (y1, ... , Yn) is a random sample obtained from the natural exponential 

family with probability density function 

f (y; (}) = exp { (}y - c( (})} h(y) 

where (} is a scalar canonical parameter, c((}) and h(y) are known functions. The 

moment generating function and the cumulant generating function are 

M(t) = exp { c(t + (}) - c((})} 

K(t) = c(t + (}) - c((}) 

respectively. The log-likelihood function is 

n 

z(e) = logIIJ(yi;e) 
i=l 

n 

= (} LYi - nc(e). 
i=l 

According to the definition of MLE in the previous Chapter, we have 

fo(li)'
0
=

9 
= t y; - neo(li)'

0
=

9 
= O 
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i.e. 

(e)I 2::1 Yi -
C() = = y. 

O=O n 

From the definition of saddlepoint in Chapter 1, we have 

K,(i) = c,(t + 0) Li = y. 

It is equivalent to say 

de( B) I = de( t + B) I . 
dB o=o ct t=i 

This implies that {J = i + B. Therefore, 

K(i) = c(i + B) - c(B) 

= c(O) - c(B). 

Thus rand Qin equations (2.2) and (2.3) have simple forms for natural exponential 

family case 

A { A }1/2 r = sgn(B - B) 2[l(B) - l(B)] (2.6) 

Q = (0 - B)j~£?'(0). (2.7) 

Note r and Q coincide with the signed log-likelihood ratio statistic and the stan-

dardize maximum likelihood departure for a scalar parameter situation. Hence, 

19 



the p-value function of parameter e with relative error O(n-312 ) approximated by 

Lugannani-Rice (1980) and Barndorff-Nielsen (1986) formulas are 

respectively. 

p(B) 

p(B) 

i!>(r) + ef>(r) G- ~) 
<I>( r*) 

(2.8) 

(2.9) 

Fraser (1990) showed that these two methods are equivalent up to third order 

accuracy. Both (2.8) and (2.9) are referred to as third order methods. For exponential 

family models and transformation models, (2.8) and (2.9) could be obtained easily. 

However for general models, Q could be difficult or impossible to obtain since it 

is based on the existence of ancillary statistic. In practice, there is no accessible 

procedure available for the construction of an ancillary in a general context. In this 

Chapter, asymptotic approaches developed by Fraser and Reid in 1999 (FR method), 

and Skovgaard in 1996 and 2001 will be discussed and compared. 
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2.2 Fraser and Reid Method (1999) 

This Section details the mechanics developed by Fraser and Reid in 1999 of the like-

lihood based third order method for the natural exponential model (canonical expo-

nential model), then extends the methodology to general statistical model (Fraser 

(1990) ). 

2.2.1 Natural Exponential Model 

Consider a natural exponential family model 

f (y; B) = exp { (}' y - c( B)} h(y) 

where () = ('lf;, >..')' is the canonical parameter with 'ljJ being the scalar parameter of 

interest. It is easy to see that y is a sufficient statistic. For any random sample from 

the above model, the sign log-likelihood ratio statistic is: 

.... { .... .... }1/2 r = r('lf;) = sgn('lf; - 'lf;) 2[l(8) - l(8iµ)] . (2.10) 

By using the the sequential saddlepoint procedure (Fraser, Reid and Wong (1991)) 

and taken into consideration of eliminating the nuisance parameter A, a measure of 

the standardized maximum likelihood estimate departure calculated in the canonical 
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parameter space is 

,.. )otP(B) 

{ 
I ,.. I } 1/2 

Q = Q('lf;) = ('lf; - 'lf;) 1 · A I , 

J>-N ( e1/J) 
(2.11) 

where Joo' ( 0) is the observed overall information matrix evaluated at the overall 

MLE 0 and )>.N(01/J) is the observed nuisance information matrix evaluated at the 

constrained MLE {J1/J· Detailed derivation of (2.11) is discussed in Fraser, Reid and 

Wong (1991). 

Hence, the p-value function, p( 'ljJ), can be obtained by using either the Lugannani-

Rice (LR) approximation (2.8) or the Barndorff-Nielsen (BN) approximation (2.9) 

with r and q defined as above. And the third order confidence interval of 'ljJ can be 

obtained from (1.10). 

2.2.1.1 Example: Approximation to Gamma distribution 

To illustrate the application and accuracy of the third order method for natural 

exponential family, let us examine the following example. Suppose (y1, · · · , Yn) is a 

sample from exponential distribution with density function 

f (y; B) = B exp { -yB} , y > 0, e > 0. 

Then 

n 

l(B) = nlog(B) - LYie. 
i=l 
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To obtain fJ, the first derivative of the likelihood function is: 

n 

l9(0) = ~ - ~Yi 
e~ 

i=l 

and by equating it to be 0, we have 

Since 

j991(0) 

= at(e) = _!!_ 
aeae1 e2 

n 
= -l991(e) = e2, 

the signed log-likelihood ratio statistic and the standardized maximum likelihood 

estimate departure given in (2.6) and (2. 7) can be easily obtained 

r sgn(O - 0) { 2(1(0) -1(0)]} 
112 

Q = (0-0) (;t 
Hence, we can approximate p-value function for (} by (2.8) or (2.9). 

Moreover if (Y1, · · · , Yn) is sample from exponential distribution model, it is equiv-

alent to say that the sample is from (Gamma( e, 1)). Due to the additivity property 

for the Gamma distribution, T = 2:7=:1 Yi rv Gamma( e, n). From distribution theory, 

the exact p-value function for e is 

p(O) = 1- P(T :=; t;fJ). 
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To compare the accuracy of our proposed methods, let us consider three simulated 

data sets from exponential distribution with rate 3 and sample size to be 1, 10 and 

100. The data sets are given in Table 2.1. 

Table 2.2 shows the exact 903 confidence interval, two first order 903 confidence 

intervals and two third order 903 confidence intervals. Figure 2.1, 2.2 and 2.3 show 

the rrvalue functions obtained from the exact distribution, <I>(r), <I>(Q), (2.8) and 

(2.9), labelled as Exact, r, Wald, LR and BN respectively for the three data sets. 

The two horizontal lines indicate the nominal levels, 0.05 and 0.95 for the 903. 

confidence interval of the three data sets. 

It is obvious that the third order methods give us remarkable accuracy comparing 

to the first order methods. And we can see the outstanding performance of the third 

order methods especially when the sample size is extremely small. 
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Data Set 

1 

2 

3 

Table 2.1: Three simulated data sets 

Sample Size n 

1 

10 

100 

Observations y 

0.6218 

0.1349, 0.0489, 0.5769, 0.0298, 0.2223, 0.3581, 0.5039, 0.4381, 

0.0522, 0.2484 

0.4144, 0.2246, 0.5301, 0.3607, 0.2655, 0.4818, 1.4973, 0.5678, 

0.2068, 0.1188, 0.2296, 0.2775, 0.1115, 0.5300, 0.0266, 0.1837, 

0.3632, 0.0013, 0.2069, 1.6207, 0.0636, 0.1906, 0.1419, 0.0601, 

0.0897, 0.2463, 0.2653, 0.3116, 1.0407, 0.6212, 0.6178, 0.1703, 

0.2818, 0.0930, 0.3652, 0.1147, 1.3563, 0.4325, 0.6620, 0.0748, 

0.1555, 0.3511, 0.0878, 0.2765, 0.8559, 0.7396, 0.4226, 0.2803, 

0.0639, 0.0341, 0.4719, 1.3479, 0.1575, 0.3955, 0.0496, 0.2169, 

0.2091, 0.0255, 0.0460, 0.9841, 0.5178, 0.1715, 0.0419, 0.3045, 

0.1291, 0.3456, 0.6784, 0.0053, 0.3189, 0.1104, 0.0224, 0.2119, 

0.6228, 0.4304, 0.6046, 0.2783, 0.0863, 0.2978, 0.3854, 0.3133, 

0.2731, 0.3787, 0.0910, 0.2766, 0.0183, 0.2871, 0.2269, 0.0104, 

0.2936, 0.1007, 0.8131, 0.0031, 0.8989, 0.2401, 0.0896, 0.3636, 

0.4987, 0.1003, 0.0293, 0.1321 
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Table 2.2: 903 confidence interval 

Method n=l n= 10 n = 100 

Exact (0.0803, 4.8203) (2.0803, 6.0103) (2.5003, 3.4803) 

Wald (0.0000, 4.2503) (1.8403, 5.8103) (2.4903, 3.4703) 

r (0.1603, 5.8603) (2.1603, 6.1703) (2.5103, 3.4903) 

LR (0.0803, 4.8303) (2.0803, 6.0103) (2.5003, 3.4803) 

BN (0.0903, 4.8403) (2.0803, 6.0103) (2.5003, 3.4803) 

2.2.2 General Exponential Model 

Consider a general exponential model 

f (y; B) =exp { cp'(B)t(y) - c(B)} h(y) 

where cp(B) and t(y) are the canonical parameter and the canonical variable. Let 

B = ('¢,A')' where the scalar parameter of interest is 'lf;(B) = 'lj; and A is nuisance 

parameter vector. 

Note that a vector exponential family is said to be curved if the dimension of B = 

(Bi,··· , Bk)' is less than the dimension of the vector cp(B) = (cp1 (B), · · · , cp
8
(B))'. That 

is, if the dimension of the parameter vector is less than the number of functions of 

the parameter vector in the above representation of the probability density function. 
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Since most common distributions in the exponential family are not curved, and many 

algorithms designed to work with any member of the exponential family implicitly 

or explicitly assume that the distribution is not curved, we restrict our attention to 

full ranked exponential family model, i.e., the rank of our canonical parameter and 

the rank of the natural parameter are the same. For more details about the curved 

exponential family model, please see Barndorff- Nielsen (1978). 

The signed log-likelihood ratio statistic, r = r( 'lj;), is invariant to the reparame-

terization and is 

" { " " }1/2 r = r('l/;) = sgn('l/; - 'l/;) 2(l(O) - l(Oiµ)] 

which is the same as in (2.10). Therefore the only thing we need to focus on is how 

to express Q = Q('l/;) in the canonical parameter, cp(O), scale. 

For the general exponential set up above, 

f(O; y) = cp'(O)t(y) - c(O). 

The reparameterization <.p = cp( 0) typiCally does not have the parameter of interest 

'lj; as a separate component, so it is necessary to extract a linear surrogate for 'lj; from 

the new parameter cp. We obtain this by constructing a scalar parameter x(O) that 

is an orthogonal combination of the coordinates of cp(B) and is tangential to 'l/;(O) at 
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The gradient 'l/Jr.p' ( B) of 1/J( B) with respect to <.p( B) is calculated as 

and is evaluated at the constrained maximum likelihood value {Jt/J· This scalar pa-

rameter x( B) operates as a canonical parameter in a one-dimensional marginal model 

used to access the value 'ljJ. 

For simplicity in terms of calculation, we have the formula for the scalar parameter 

of interest in <.p( B) scale 

(2.12) 

Basically, the calibrated version, x( B) of <.p( B) is a vector from the space spanned by 

the columns the <.p( B) and its direction depends on the constrained MLE for given 

1.p(B). Hence lx(B) - x(BtP)I is a measure of departure of -J; from 'ljJ in 1.p(B) scale. 

Fraser, Reid and Wu (1999) obtained an estimated variance for ( x(B) - x(BtP)) 

in 1.p( B) scale: 
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The full nuisance information determinant is recalibrated on the rp( 0) scale: 

and nuisance information defined on the canonical parameter space 

The quantity Q is then a standardized maximum likelihood departure in the surrogate 

parameterization x( B): 

Combine the calculation above, we have the following formula to calculate Q: 

Or from simple calculation, 

(2.14) 

Therefore, the p-value function for 'if; can be obtained by using either the Lugannani-

Rice approximation (2.8) or the Barndorff-Nielsen approximation (2.9) with r and 

Q being defined in (2.10) and (2.13), respectively. Thus a (1- a) x 1003 confidence 

interval for 'if; can be obtained. 
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2.2.2.1 Approximating the Cumulative Distribution Function of the t 

Distribution 

In the above Section, the p-value function for a scalar parameter of interest from a 

general exponential family model was obtained. We now consider a random sample 

x = (xi, ... , Xn) from a normal distribution with mean µ and variance cr2. If the 

parameter of interest is the mean parameter, 'lf;(B) = µ, it is well known that the 

exact p-value function ofµ is 

p(µ) = Ftn-l (t), 

where Ftn-l () is the cumulative distribution function of the Student t distribution 

with ( n - 1) degrees of freedom and 

By applying the Fraser and Reid method, this model is an exponential family 

model with log-likelihood function given by 

n 1 ~ f(B) = f(µ,cr 2
) = --

2 
logcr2 - - 2 L)xi -µ)2. 

2cr 

A convenient version of the canonical parameter is 

( 
1 µ)' 

<p( B) = cr2 ' cr2 
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It is easy to obtain the overall maximum likelihood estimation of B: 

,.. (,.. "2)' (- ( ) 2; )' (I: xi I:(xi - x)
2
)' (} = µ a = x, n - 1 s n = --, ----

' n n and 
A n2 

lioo1 
( B) I = 

20
.6 

and the constrained maximum likelihood estimation of B: 

and 

The signed log-likelihood ratio statistic can then be simplified to 

{ ( 
t2 ) }1/2 r(µ) = sgn( x - µ) n log 1 + n _ 

1 (2.15) 

Moreover, with 

( 

0 _..!..) 
;. -~ , 

Q(µ) can be simplified to 

(2.16) 

and r*(µ) can be obtained from (2.5). Thus the p-value function ofµ, or equivalently 

the cumulative distribution function of the Student t distribution with ( n- l) degrees 

of freedom can be approximated by <I> ( r* (µ)). 

Finally by re-indexing the above result, the cumulative distribution function for 

the Student t distribution with v degrees of freedom can be approximated by using 
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the Barndorff-Nielsen formula 

or by using the asymptotically equivalent Lugannani and Rice formula 

F1.(t) = <T>(r) + ef>(r) { ~ - ~}, 

where 

{ ( t2) }1/2 
r = sgn(t) (v+ l)log 1 + ~ and Q=Jv(v+l)C~t2), (2.17) 

with O(n-312 ) accuracy. 

In the Fraser and Reid method for natural exponential model Section, we com-

pare the Fraser and Reid method with the traditional first order methods. Here to 

illustrate the accuracy of our proposed method, we compare it with some recent ap-

proximations. Jing, Shao and Zhou (2004) applied the saddlepoint method without 

using the moment generating functions to approximate the cumulative distribution 

function of the Student t distribution function. They provide numerical compari-

son of their approximations with the exact Student t distribution with 5 degrees of 

freedom and get pretty accurate result. But the exact form of their result is very 

complicated. Table 1 contains the results from Jing, Shao and Zhou (2004) and the 

results from our approximations using both the Barndorff-Nielsen (BN) and Lugan-

nani and Rice (LR) formulas. In Figure 2.4, we plot the relative errors of the three 
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approximations. From Table 2.3 and Figure 2.4, we observe that the Jing, Shao and 

Zhou's method and our method are almost indistinguishable around the center of 

the distribution, but our approximations are much better towards the tail of the dis­

tribution which is crucial for inference purposes. In Figure 2.5 we plot our proposed 

approximations for the extreme case of the Student t distribution with 1 degree of 

freedom. Even for this extreme case, our approximations give remarkably accurate 

approximations, especially so using the Lugannani and Rice approximation. But it 

is obvious that Jing, Shao and Zhou's method is not accurate in the extreme case. 
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Table 2.3: Comparisons for 1 - Ft
5 
(t) 

t Exact Jing BN LR 

0.1001 0.4620 0.4621 0.4618 0.4618 

0.2010 0.4243 0.4244 0.4238 0.4238 

0.3034 0.3869 0.3872 0.3861 0.3861 

0.4082 0.3500 0.3505 0.3489 0.3490 

0.5164 0.3138 0.3146 0.3125 0.3126 

0.6290 0.2785 0.2797 0.2771 0.2771 

0.7473 0.2443 0.2460 0.2427 0.2427 

0.8729 0.2113 0.2136 0.2097 0.2097 

1.0078 0.1799 0.1829 0.1782 0.1783 

1.1547 0.1502 0.1539 0.1485 0.1486 

1.3171 0.1225 0.1268 0.1208 0.1209 

1.5000 0.0970 0.1010 0.0954 0.0955 

1.7107 0.0739 0.0793 0.0725 0.0727 

1.9604 0.0536 0.0592 0.0524 0.0525 

2.2678 0.0363 0.0417 0.0353 0.0355 

2.6667 0.0223 0.0271 0.0215 0.0217 

3.2271 0.0116 0.0154 0.0112 0.0113 

4.1295 0.0045 0.0070 0.0043 0.0044 
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Figure 2.4: Relative error for approximations to l-Ft
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Figure 2.5: Approximations to Ft
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2.2.2.2 Approximating the Cumulative Distributions Functions of the x2 

Distribution 

Consider a random sample x = (xi, ... , Xn) from the normal distribution with mean 

0 and variance CJ2 for which the parameter of interest is the variance parameter, 

'ljJ(B) = CJ2
. A convenient canonical parameter is r.p(B) = l/CJ2

. The exact p-value 

function of u2 is given by 

where Fx.a () is the cumulative distribution function of the x2 distribution with n 

degrees of freedom and 

2 I:~=I x;/n 
x = 2 . 

(j 

By applying the Fraser and Reid method, we can obtain 

r = sgn(x2 
- n)J(x2 - n) + nlog; (2.18) 

Q 
x2 -n 

(2.19) = ffn 

and r* can be obtained from (2.5). Thus the p-value function of u2 , or equivalently 

the cumulative distribution function of the x2 distribution with n degrees of freedom 

can be approximated by <I> ( r*). 
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In other words, the cumulative distribution function of the x2 distribution with 

v degrees of freedom can be approximated by using the Barndorff-Nielsen formula 

(2.20) 

or by using the asymptotically equivalent Lugannani and Rice formula 

(2.21) 

where 

[ v] 1/2 r = sgn(x2 
- v) (x2 

- v) + vlog x
2 and 

x 2 -v 
Q= V2v (2.22) 

with 0( n-3!2
) accuracy. 

Lin (1988) provides a very simple approximation to the cumulative distribution 

of the x2 distribution. Figures 2.6 and 2. 7 plot approximations to the cumulative 

distribution function Fx~ (x2
) for v = 5 and 1, respectively. We observe that the 

Lin (1988) approximation is not at all satisfactory. We also observe that, even 

for the extreme case of the x2 distribution with 1 degree of freedom, the proposed 

approximations give remarkably accurate approximations. 
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Figure 2.6: Approximations to Fx~ (x2) 
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Figure 2. 7: Approximations to Fxf (x2 ) 
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2.2.3 General Statistical Model 

If the dimension of the variable and the dimension of the parameter are the same, 

as may occur after a reduction by sufficiency in exponential families, approximate 

p-values for testing a component of the canonical parameter can be obtained from 

appropriate density approximation. In the case when sufficiency and ancillarity do 

not reduce the dimension of the variable to that of the parameter, some alternative 

reduction method such as approximate ancillarity seems needed in order to apply 

available methods. An approximate ancillary can be developed using likelihood ra­

tio statistics for testing the full model (Barndorff-Nielsen (1986); Barndorff-Nielsen 

and Wood (1998)). However the feasible methods are lacking for tail probability ap­

proximation (see, for example, the discussion in Pierce and Peters (1992)). In 1995, 

Fraser and Reid indicated that it is possible to find an approximating exponential 

family model, the tangent exponential model, by using both ancillary direction and 

observed likelihood to construct an approximate ancillary statistic and the subse­

quent derivation of significance probabilities having third order accuracy for scalar 

parameter of interest. The tangent exponential model has the same observed log­

likelihood function as the original model and the same first derivative with respect 

to the data at the observed data point. The tangent exponential model at the data 
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point y0 is defined from the model f (y; 0) as 

frEM(s; O)ds =exp{ r.p(O)' s + R(O; y0 )}h(s)ds (2.23) 

where s = s(y) is a nominal variable that can be viewed as a score variable s(y) = 

£0(0°; y), and R(O; y0
) and r.p(O; y0

) are defined from the original model as 

l(B; y0
) = log(f(y0; 0)) (2.24) 

(2.25) 

where the notation (v denotes differentiation in the sample space in directions given 

by the columns of a matrix V. The term ancillary direction V = (vi,··· , vp) stands 

for the tangent direction to the ancillary surface at the observed data. It can be 

constructed easily from a first derivative ancillary based on a full-dimensional pivotal 

quantity. The pivotal quantity is typically straightforward and natural, and can be 

viewed as presenting how the variable measures the parameter. Next a general way 

of obtaining the ancillary direction are discussed. 

The tangent vectors V are constructed using a vector z = (zi, · · · , zn)' of pivotal 

quantities Zi = Zi (Yi; 0) that has a fixed distribution. A simple choice is given by the 

successive distribution functions zi = F(yi; 0) for (i = 1, · · · , n) which are uniformly 

distributed. The array V is obtained from the pivotal z(y; B) by 
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v = fJy I = - ( f) z )-1 ( f) z ) I 
fJ()' (yO ,0) By' fJ()' (yO ,0) 

where yO is the observed data point and 0 is the maximum likelihood estimate. 

If we choose cumulative distribution functions to be our pivotal quantities, the 

V becomes 

(2.26) 

where Fy(y; (})and Fo(y; (})are the partial derivatives of F(y; (})with respect toy and 

(}, respectively. For more details on the ancillary directions tangent to the surface of 

an approximate ancillary statistic see Fraser (1990), Fraser and Reid (1995, 1996). 

Fraser and Reid (1993) introduced the tangent exponential model which is the 

exponential family model whose asymptotic expansion is closest to that of the true 

model. The advantage is that highly accurate approximations available for the ex-

ponential family can be extended to general models. 

If the model is a conditional model which is conditioned on some ancillary statis-

tic, then the conditional likelihood gradient becomes the full likelihood gradient. 

Fraser and Reid (1999) showed that the gradient of the conditional likelihood, cp((}), 
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is 

cp(IJ) a~l(IJ; y) I 
yO 

ly(B'; y0 )V 

( 

n a n a ) 
= L ~l(B; y0

)vii, · · · , L-
8 

. z(e; y0)vik . 
i=l Yi i=l Yi 

(2.27) 

This gradient cp( 8) gives a canonical reparameterisation, which is the canonical pa-

rameter of the tangent exponential model at the data point y0 (Fraser and Reid 

(1995)). So the observed log-likelihood l(B; y0 ) and the ancillary direction V together 

will produce a locally defined canonical parameter cp( B). The tangent exponential 

model provides the full third order p-values for the original model (Fraser and Reid 

(1999)). 

Once we have the tangent exponential family model and locally defined canonical 

parameter, the methodology in Section 2.2.2 can be directly applied to approximating 

the tail probability by using either the Barndorff-Nielsen approximation (2.8) or the 

Lugannani-Rice approximation (2.9) with rand Q being defined in (2.10) and (2.13), 

respectively. Thus a ( 1 - a) x 1003 confidence interval for 'ljJ has the same expression 

as in Section 2.2.2. We will apply the asymptotic method to all the examples and 

simulations in the rest of the thesis, and compare it with some recent methods to 

see the accuracy in location-scale family models. 
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2.3 Skovgaard Method 

A different approach to higher order approximation was proposed by Skovgaard 

(1996), who obtained estimates of the directions of conditioning. Let l(B; B
0

) desig-

nate a mean log-likelihood function: 

1(0; 00 ) = Eo0 {f(O; y)} = j €(0; y)f(y; Oo)dy (2.28) 

where the symbol Eo0 means taking the expectation over the distribution with pa-

rameter B0 • This function arises in studies of the robustness of likelihood inference, 

where it is called the Fraser Information (Kent (1982), Fraser and Reid (2010)). A 

new version of <.p, say cp, of the canonical parameter for the model (2.12) is defined 

by differentiating the function I ( B; B) instead of f ( B; y) 

a I a A 

cp(B) = 8Bo l(B; Bo) Oo=O = ael(B; B). (2.29) 

Averaging the log-likelihood in the calculation of cp eliminates dependence on 

the approximate ancillary, and also for many models, the calculation of cp is simpler 

than the calculation of <.p. On the other hand, it reduces the accuracy of tail area 

approximations based on cp discussed in the following part of this Section. Broadly 

speaking, the <.p version is easier to compute in transformation families and the cp is 

easier to compute in curved exponential families. 

Example. Suppose Yi follows a one-parameter location model f(y- B). A sample 
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(yi, · · · , Yn) admits an exact ancillary statistic, a= (ai, · · · , an) = (Y1 -fJ, · · · , Yn-0), 

and then x 1 vector V from the pivotal zi =Yi - e is simply a vector of ls. Thus 

From (2.27), 

Then 

cp(B) 
n a 

= L- logf(Yi - B) 
i=l 8yi 

n a 
= - L ae log J (Yi - O). 

i=l 

I(B; Bo) - Eo0 {f(B; y)} 

= Eo0 { t,logf(y; - 0)} 
= n j log J(y; - O)f(y;; 00)dy; 

= n j log f(y; - O)f(y; - 00 )dy;. 

l a A 

<p(O) = n -,. log f (y - O)J (y - O)dy. ae 

On dividing the above expressions for cp( B) and <p( 8) by n, we see that cp( 0) is the 

nonparametric bootstrap estimate of the expected value of %o log f (y - 8) and <p( 0) 

is the parametric bootstrap estimate of the same quantity. 

For higher order log-likelihood inference, Skovgaard (1996, 2001) derived another 

expression for r* from Barndorff-Nielsen (1986) for tail area approximation in a well-
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behaved parametric model with the same expression of r but different expression of 

Q as follows: 

(2.30) 

where [ ... ]1/J denotes the 'l/J coordinate of the vector, iotF(B) is the expected Fisher 

information matrix, ioo(O) and j;...;...(01/J) are the observed Fisher information matrices 

for () and A, respectively, q and S are defined as follows: 

ij = cov(lo(B), l(B) - l(B'lfJ)) and S = cov(lo(B), lo(B'l/J)) 

respectively. The first component of the vector in square brackets assumes that 'l/J is 

the first component of B. 

The approximate ( 1 - a) 1003 confidence interval for 'l/J has the same expression 

as in Section 2.2.2. 

The idea of the Skovgaard method came from Barndorff-Nielson's likelihood ap­

proximation formula. Barndorff-Nielson in 1986 and 1991 derived Q as follows: 

It involves the sample space derivatives lo(B) - lo(B'l/J) and loo(B'l/J) and the sample 

space derivatives are only defined when an ancillary statistic is specified and {J is 

sufficient. Even so, the computation may be difficult. We can still calculate it in 
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full exponential models and in simple transformation models. But what if it is not 

available to calculate? Skovgaard (1996) estimated the sample space derivatives by 

covariances as follows: 

[lo(B) - lo(BtJ;)]' ~ ,.,-:_l "· 
q 'l J 

" " l" S'i- j 

where 

S = cov0(lo(B), lo(BtJ;)) 

q cov0(lo(O), lo(O) - lo(OtJ;)). 

Then Q could be estimated by (2.30). 

The Skovgaard method expressions do not require specification of the ancillary 

statistic or its tangent vectors V. But the expected Fisher information matrix, 

together with the two covariances defined above are of the same computational 

complexity. Alternative expressions for q and S are in terms of derivatives of the 

Kullback-Leibler distance 

K L(8, B1) = Eo {log J (y; B) - log f (y; 81)} 

- Eo {R(8) - £(81)} 
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from which we obtain 

covo { fo(8), £(8) - £(81)} 

[J 
= 88K £(8, 81), 

x11(8, Bi; 8) = covo {fo(8), £(81)} 

Then we have estimation of ij, S and i(B) as follows: 

q X10(B,B1/J;B) 

S = Xn(B,01/J;O) 

ioo1(0) = Xn(O, 0). 

These are the methods for estimating the three complex terms in the Skovgaard 

method. But Severini (1999, 2000) showed that in the model that he considered, the 

estimation of S and ij are numerically unstable. 

From the definition of cp(B) at (2.29), we could see that the Skovgaard method of 

Q is identical to (2.14) with different canonical parameter cp as 

cp(B) = cov0{fo(B), f(B)} (2.31) 

<Po(8) = cov0{ fo(B), fo(8)} (2.32) 
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where cov9 means taking the covariance over the distribution with parameter e. 
Note <Po(B) = i991(0), and Skovgaard (1996) also noted that the determinant in the 

numerator of (2.14) can be expressed as 

where the choice of the first component of the vector in square brackets assumes that 

'l/; is the first component of() (Fraser and Reid (2010)). 

Let us consider a simple example where y = (y1; · · · ; Yn) is a random sample from 

a normal distribution with mean µ and variance a 2 . The parameter of interest is 

'l/; = µ. Here are some facts that we need to calculate Q in the Skovgaard method: 
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n 

f(B) n 2 i L 2 = -2 log a - 2a2 (Yi - µ) 
i=l 

1 n 

fµ(B) = 2 L(Yi -µ) 
O" i=l 

n 

fa2(B) n i L 2 = --+- (yi-µ) 
2a2 2a4 

i=l 

fµµ(B) n 
= a2 

1 n 

fµa2(B) - -:4 L(Yi - µ) 
O" i=l 

= fa2µ 

fa2a2(8) n 1 t 2 = - - - (Yi-µ) 
2a4 a6 

i=l 

e - (f.t, ;2) 

= (y, (n - l)s
2

) 
n 

ioo(B) 
[-fµµ -fµu2 l = 
-fa2µ -fa2u2 

ioo(B) = [~ ;.] 
lioo(B) I 

n2 
= 2&6 

01/J = (µ,er;) 

= (µ, L~~,(~ - µ)2) 
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i>.>.(B) = ju2u2 ( B) 

= -fu2u2 ( B) 

1 t 2 n = - (Yi-µ) - -
a6 2a4 

i=l 

I j >.>. ( 0 ,µ) I n 
= r4 aµ 

As discussed above, we use Kullback-Leibler divergence to derive the two covari-

ance S, ij and the expected Fisher information matrix ioo' ( B). 

Consider two univariate normal models Fo and F with parameter 0
0 

= (µo, a5) 

and B = (µ, a 2
). After some calculations from the formula for KL divergence, we 

have 

K L(B0 , B) = - 0 + __Q_ - log __Q_ - 1 . 1 { (µ - µ ) 2 a2 ( a2) } 
2 a 2 a 2 a 2 

For details of the calculations, see Strimmer (2010). Then it is straightforward to 

obtain S, q and the expected Fisher information matrix ioo1(B). Note that for our 

simple example, the expected Fisher information matrix for normal distribution is 

as follows: 

ioo' (B) = 
[

.1... 0 l 
: 2;., 
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therefore 

Results from the above simulated data show that the Skovgaard method and the 

Fraser and Reid method give indistinguishable estimation accuracy. Both are much 

better than the first order methods especially for small sample size (n = 3 for the 

following figure). 
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Figure 2.8: Approximation to the mean of Normal distribution 
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2.4 Summary 

We introduced the third order methods to calculate the p-value function of a param­

eter of interest approximated by Lugannani-Rice and Barndorff- Nielsen with third 

order relative error. Fraser developed the method from natural exponential, expo­

nential to general models. Based on the property for exponential family models, we 

derive simpler formula to calculate the p-value function for the parameter of interest. 

But for the general models, we need to specify the ancillary statistic and its tan­

gent vectors. Skovgaard developed another approach to calculate the the confidence 

intervals for the parameter of interest without specifying the ancillary statistic and 

its tangent vectors. But it is difficult, or sometimes impossible, to calculate the ex­

pected Fisher information matrices and covariances. Also Fraser (2010) established a 

simple connection between the higher order approximation due to Skovgaard (1996) 

and that of Fraser and Reid (1999). He shows that the Skovgaard approximation to 

p-value function can be obtained by using the exponential family model, but with a 

different canonical parameter. From my numerical comparison, Jing, Shao and Zhou 

(2004) method for Student t distribution is not satisfactory toward the tail of the 

distribution which is crucial for inference purpose. Although Lin (1988) provided 

a very simple approximation to the cumulative distribution of the x2 distribution, 

but the Fraser and Reid method and the Skovgaard method give more accurate 

58 



approximations especially for the extreme case. Formulas for r and Q of Student 

t distribution and x2 distribution are explicitly calculated for the Fraser and Reid 

method. Formulas for r and Q of normal distribution are numerically calculated for 

the Skovgaard method. 
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3 Inference on Location-Scale Family 

This Chapter is devoted to the Fraser and Reid method and the Skovgaard method 

applied to the location-scale model to obtain the third order approximation to the 

p-value function for either the location or scale parameter. In Section 3.1, we will 

start from a simple location model, and then extend to general location model, 

finally convert scale parameter to be another location type of parameter to calculate 

the confidence interval. In Section 3.2, general formulas to calculate the confidence 

intervals for location or scale parameters are derived. 

3.1 A Simple and Accurate Approach for Location-Scale 

Model 

In this Section, based on the special structure of the location-scale model, a simple, 

efficient and accurate numerical procedure is first developed for the location model 

and then extended to location-scale model. 

60 



For statistical purposes, the approximation of the cumulative distribution func-

tion of Y, the mean of n independent identically distributed random variables, is 

more convenient if based on the likelihood function for an embedding exponential 

model. In Chapter 2, we introduced the invariant tail probability formula which can 

be calculated by (2.1), (2.6) and (2.7) or (2.11) or (2.13) based on this approach. 

The approximation can also be embedded in a location model. The two tail area 

approximations are special cases of different invariant versions of the Lugannani and 

Rice formula (1980). The invariant version are due to Barndorff-Nielsen (1988, 1990) 

and Fraser (1990). Fraser's (1990) invariant version uses a data dependent parame-

ter that is obtained as the sample space derivative of the observed likelihood and is 

given by (2.1) with r in (2.6) and Q specified as follows: 

"' 1 "' { "' }1/2 Q = (ly(O) - ly(O))t;o (0) iefp(O) . (3.1) 

3.1.1 Inference for Simple Location Model 

Consider the simple location model: 

f (y; µ) = f (y - µ), 

the observed log-likelihood function is 

n 

l(µ) = L log !(Yi - µ). 
i=l 
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The three first order statistics for location model are as follows: 

• the Wald statistic 

• the signed log-likelihood ratio statistic 

r(µ) =sign(µ - µ) {2[l(fl,) - l(µ)]} 112 , 

• the Score statistic 

Then the p-value could be calculated from (2.9). 

For the Fraser and Reid method, from some simple calculation, the Q for location 

model from (3.1) is 

Q = lµ(µ) {jµµ(fl,) }-1/2. (3.2) 

The same expression can be easily derived from the Skovgaard formula as well. 

That means, the Fraser and Reid method and the Skovgaard method give the same 

expression of Q for simple location model. 

Note that since this is a location model and there is no nuisance parameter, the 

statistic Q is the Score statistic. Therefore, the significance function for location 
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model can be obtained by using either the Barndorff-Nielsen approximation (2.8) or 

the Lugannani-Rice approximation (2.9) with r = r(µ) and Q being defined above. 

The following simple example illustrates the accuracy of this numerical procedure 

even for a very small sample size. However, for simple location model, to obtain the 

p-value function, numerical interaction of the density may be preferred. This third 

order approximation to obtain the p-value function could serve as the basic procedure 

which allows us to extend to location-scale model and avoid complex integrals from 

these models. 

Example: Consider a Cauchy distribution with location parameterµ and scale 1, 

which has density 

Let us consider an extreme case with the sample size one and the observed data is 

x 0 = 1. Therefore the observed log-likelihood function is 

l(µ) = - log(l + (1 - µ) 2
). 

The exact p-value function can be evaluated by direct integration and is equal to 

p(µ) = 7r-
1 [arctan(1 - µ) + 7r /2] 

forµ E (-oo, oo ). The following figure plots the p-value functions obtained from the 

Wald statistic, signed log-likelihood statistic, our proposed method and the exact 
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significance value. It is obvious to see that even in such a extremely small sample 

size ( n = 1), our proposed method still out performed the other 3 asymptotic meth­

ods. Also note that the unusual behavior of the p-value function obtained by the 

Score statistic is due to the non-monotonicity of the score function for the Cauchy 

distribution. 
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3.1.2 Inference on General Location Model 

Now let us consider the general location model which has density 

If we are interested in a particular location parameter, say µi, then we need the 

marginal density of (Yi - µi), which should be obtained by integrating out the other 

ys. To avoid the high· dimensional integrations, we could use the numerical proce-

<lure described in the previous Section which only needs the marginal log-likelihood 

function for µi. However the marginal log-likelihood function may not be easy to 

obtain in an explicit form. DiCiccio, Field and Fraser (1990), Fraser, Lee and Reid 

(1990) and Fraser and Reid (1990) derived and justified the approximated observed 

marginal log-likelihood function. 

Let () = ('lf;, A')', where 'lj; is the location parameter that we are interested, and 

A is the vector containing the remaining location parameters, or we can say A is 

the nuisance parameter. Then the observed marginal log-likelihood function can be 

approximated by 

(3.3) 

where fJ1/J = ( 'lj;, >.~ )', 5.1/J is the maximum likelihood estimate of A for a fixed 'lj;, l ( 'lj;, 5.1/J) 

is the original observed log-likelihood function evaluated at 5.1/J, and J>.>.('lf;,5.1/J) = 
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-82 l('l/J, >..)/8>..BA' evaluated at ~1/J· 

Thus we can get Q in (3.2) by using equation (3.3) as input. Therefore, the 

p-value function for general location model can be obtained. 

Skovgaard (2001) derived the Q explicitly for full exponential model and simple 

transformation models. For general location model, the formula to calculate Q is as 

follows: 

(3.4) 

3.1.3 Inference for Location-Scale Model 

Now let us consider the location-scale model. There exists a random variable Z that 

is 

Y-µ 
Z=-­

a 

which has the same distribution under all values of the parameter. The density of 

the location-scale model has the following form 

1 x-µ 
f(y;µ,a) = -!(-) 

a a 

where µ is the location parameter and a is the scale parameter. The joint density 

can also be rewritten as 

f (yi, ... 'Yn; µ,a) = II f (Yi - µ elog(s)-log(cr))e- log(cr) 
s 
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where µ is a location parameter and T = log( cr) is a location type parameter. There-

fore we could use our numerical procedure for the general location model to obtain 

the p-value function for location-scale model. The observed log-likelihood function 

can be written as 

n 

l(µ, T) = -nT + L log J((Yi - µ)e-r). 
i=l 

For inference concerning either µ or T = log( cr), we need marginal log-likelihood 

function for the Fraser and Reid method which can be approximated by (3.3). Once 

we have the observed marginal log-likelihood function, the numerical procedure in-

troduced in the previous Section will give the approximated significance function. 

For the Skovgaard method, we can calculate Q explicitly. The following example 

will demonstrate how this numerical procedure works. 

Example: The Lieblein and Zelen (1956) data which recorded the lifetimes, t, 

until failure of 23 deep-grove ball bearings in millions of revolutions are 

17.88 28.92 33.00 41.52 42.12 45.60 

48.48 51.84 51.96 54.12 55.58 67.80 

68.64 68.64 68.68 84.12 93.12 98.64 

105.12 105.82 127.92 128.04 173.40 

Wong (1992) analyzed this data set by using the log-normal analysis. Let y = 

log(t), then y rv N(µ, cr). Note normal distribution belongs to location-scale family 
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with location parameter µ and scale parameter a. The density function of y is as 

follows 

1 1 (~)2 J(y; µ,a) = rn=e-2 u • 

ay27r 

And the observed log-likelihood function can be expressed as: 

l(µ, a) ~ 
1 

1 _l(Yi-µ)2 
L.J og--e 2 u 

i=l aV2K 
i 2Ln 2 -nloga--a- (yi-µ). 
2 . 

i=l 

With reparameterization, T = log( a), it is changed to location model with location 

parameter µ and location type of parameterT. Then the observed log-likelihood 

function becomes 

l(µ, r) = -nr - ~e-2r t<Y• - µ)2. (3.5) 
i=l 

Now we are ready to apply our numerical procedure discussed in the previous Sec-

tions. First we need the observed marginal log-likelihood functions for our location 

parameter or location type of parameter (depends on which parameter we are inter-

ested in). Here are something we need to obtain the observed marginal log-likelihood 

functions for µ and T in the Fraser and Reid method and to calculate Q in the Skov-
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gaard method 

lµ(µ, r) e-2r(ny - nµ) 

n 

lr(µ, r) = -n + e-2r L(Yi - µ)2 
i=l 

lµµ(µ, r) = -ne-2r 

n 

lrr(µ, r) -2e-2r L(Yi - µ)2 
i=l 

µ y 

f 1 2 = --log(n - l)s 
2 

f µ 
1 n 

= --log 
2 I:~=I (Yi - µ )2 

µT y 

where y is the sample mean ands is the sample standard deviation. 

Then the marginal log-likelihood functions forµ and r are 

lm(µ) 
n n ,...._, - 2 log I:n ( . _ ) 2 

,...._, 

i=I Yi µ 
n ,...._, - 2 log[(n - l)s2 + n(y - µ) 2], (3.6) ,...._, 

lm(r) ,...._, ( ) n - 1 2 2r (3.7) ,...._, - n - 1 r - --s e-2 . 
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Then 

lmµ (µ) ~ n2(y - µ)[(n - l)s2 + n(y - µ)2r1 ~ 

lmµµ (µ) ~ n2[(n - l)s2 + n(y - µ)2t 2[n(y - µ)2 - (n - l)s2] ~ 

[ rl/2 [(n - l)s2 + n(y - µ)2] [n(y - µ)2 - (n - l)s2r112 -lmµµ (µ) ~ 

n 

[-lmµµ (P,) J-1/2 ~ 

(n - 1)1/2 
~ s. 

n 

So if the parameter of interest is µ, the location parameter of normal distribution, 

the Q needed in the Fraser and Reid method is as follows: 

Q = lmµ (µ) [imµµ (fl) r 112 

n(n - 1)112(y - µ)s 
(n - l)s2 + n(Y- µ)2 (3.8) 

where the sample standard deviations has value 0.5333, and sample mean y = 4.1503 

for this example. 

If our parameter of interest is 1, the log scale parameter of normal distribution, 

following the same steps, we can get exact formula to calculate Q as well. 

lm,. (1) ~ (n- l)(s2e-27 - 1) ~ 

lm,.,. (1) ~ -2(n - l)s2e-27 
~ 

[-lm,.,. (1)r112 
~ [2(n - l)t1/2s-1er ~ 

[-lm,.,.(r)r112 
~ rtf2(n - 1tls-2. ~ 
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So the Q needed in the Fraser and Reid method for log scale parameter of interest 

in normal distribution is as follows: 

Q - /} ( ) [ . ( ")]-1/2 - .C.m.,. T Jm.,..,. T 

(3.9) 

For the Skovgaard method, Q could be calculated explicitly as follows: 
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If our parameter of interest is µ, then 

fµ(O) = e-27 (ny - nµ) 

Rµ(Br) = [(n - l)s2 + n(y - µ) 2] (ny - nµ) 

J>.>. ( 0) = jTT(O) 

= -f77 ({}) 

n 

= 2e-2r L(Yi - µ)2 
i-1 

J>.>. (BT) = 2n 

Joo( 0) r-fµµ -fµTl -

-frµ -fTT 

[ ne-2' 2e-
2
'(nj/- nµ) l = 

2e-27 (ny - nµ) 2e-2r L~=l (Yi - µ )2 

Joo(B) [ n(n ~ l)s
2 

2(n -

0

1)2s4] 

lioo(B)I = 2n(n - 1)3s6 

since s
2 = n~I I:~=l (Yi - y) 2

. Then we are able to calculate Q as follows: 

Q = [(n - l)s2 + n(y - µ) 2
] (ny - nµ)(n - l)-3l2s-3 . (3.10) 
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If our parameter of interest is log scale parameter T, then 

n 

lT ( 0) = -n + e-2r L(Yi - µ)2 
i=l 

lr( BT) = -n + e-2r(n - l)s2 

IJoo(B)I = 2n(n - 1)3s6 

IJ>.>. ( B) I = IJµµ(B)I 

= 1- lµµ' 

= ne-2r 

Then we are able to calculate Q as follows: 

(3.11) 

Therefore, the p-value functions for µ and T can be obtained by using either the 

Barndorff-Nielsen approximation (2.8) or the Lugannani-Rice approximation (2.9) 

with r calculated by (2.6) and Q being defined above. The confidence intervals for 

parametersµ and T can be obtained by (1.10). 

The following two tables show that the numerical procedure give pretty accurate 

approximation compared to the exact confidence intervals for the location and the 

scale parameters. 
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Table 3.1: 90% confidence interval for µ 

Exact Fraser and Reid Method Skovgaard Method 

903 CI (3.959, 4.341) (3.960, 4.341) (3.961, 4.341) 

Table 3.2: 90% confidence interval for T 

Exact Fraser and Reid Method Skovgaard Method 

903 CI (0.429, 0. 712) (0.429, o. 713) (0.429, o. 713) 

3.2 General Formula for Location-Scale Model from the Fraser 

and Reid Method and the Skovgaard Method 

Suppose Y belongs to the location-scale model defined as 

y = µ + O"Z (3.12) 

where z has known density function f. The parameter for location-scale model is 

(} = (µ, o-'). It is equivalent to say 

y-µ 
Z ---- . 

()" 
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The log-likelihood function of(} for the location-scale model is 

n 

l(µ, a) = L li(µ, a) 
i=l 

n 

'""" y· - µ = -nlog(a) + ~logf(-i-) 
i=l O' 

(3.13) 

n 

= -nlog(a) + Llogf(zi)· 
i=l 

The overall maximum likelihood estimate {J = (P,, fJ) can be obtained by solving 

the following estimating equations: 

n 

lµ(µ, a)= -a-1 L f'(zi)f- 1(zi) = 0 (3.14) 
i=l 

n 

lo(µ, a) = -n - L f'(zi)f- 1(zi)a- 1(Yi - µ) = 0. (3.15) 
i=l 

The observed full information matrix is 

(

lµµ luµ) ioo1 (µ, a)= -
lµu luu 

where 

n 

lµµ(µ, a) a-2 L [J"(zi)f- 1(zi) - J'(zi)f- 2 (zi)] 
i=l 

n 

lµu(µ, a) = a-1 L [f'(zi)f- 1(zi) + f"(zi)f- 1(zi)(zi) - f'(zi)f- 2(zi)(zi)] 
i=l 

= luµ (µ, O') 

n 

luu(µ, a) = a-1 L (Yi - µ)[J'(zi)f- 1(zi) + f"(zi)f- 1(zi)(zi) - f'(zi)f- 2 (zi)(zi)]. 
i=l 
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The determinant of the observed information matrix can be developed as follows: 

IJ1w ( B) I = D( z)o--4 
(3.16) 

where 

D(z) = { t g"(i;) }{ n + t i;2g''(i;) }- { t i;g"(i;) r 
- log /(ii) 

( ,.. ,.. ) ( Y1 - fl, Yn - fl,) 
Zi,··· ,Zn = -,..-,···, ,.. · 

(j (j 

Similarly, we can easily obtain the observed nuisance information matrix i>i.N = -l>i.>.'· 

Whenever the nuisance parameter is not explicitly available or does not exist in 

close form, we use Lagrange multiplier technique to get tilted log-likelihood as intro-

duced in Section 1.2.5. For testing 'if;(µ, a) = 'l/;0 , first we need the Lagrange function 

to derive the constrained MLE and constrained observed nuisance information ma-

trix: 

H(µ, a, A)= f(µ, a)+ A('lj;(µ, a) - 'l/;0). 

The constrained MLE B'l/Jo = (P,tJ;0 , 0-1fJ0 , ~1/Jo) is calculated by the following estimating 

equations: 

H;..(µ, a, A) = 'if;(µ, a) - 'l/;0 = 0. 
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Then the tilted log-likelihood function is as follows: 

And the constrained observed nuisance information matrix is 

_ (lµµ laµ) 
ifw(µ, CJ) = - _ _ 

lµa laa 

From (2.26), the ancillary direction 

where i indicates the dimension of data, and j indicates the dimension of parameter 

(}. For location-scale model 

1 Y1-P, 
& 

V= 

1 Yn-P. 
& 

From (2.27), the canonical parameter <p(B) for location-scale model is 

n n 

<p(B) - (CJ-1 L f'(zi)f- 1(zi), CJ-2 L f'(zi)f- 1(zi)(Yi - µ)) 
i=l i=l 

The scalar parameter of interest in <p( B) scale is 

x(O) = 1/io,(~,µ)cpO,:(~,µ) cp(O) 
l~<F(B¢)cp;, (B¢)I 
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where 

Then we are able to calculate r and Q from formula (2.10) and (2.13) to further 

derive the confidence interval for our hypothesis test' by using the Fraser and Reid 

method. 

For the Skovgaard method, the determinant of the observed information matrix 

and the observed constrained information matrix could be easily got from the above. 

But the information matrix together with the two covariance terms are pretty com-

plicated to calculate. The Fraser and Reid's and the Skovgaard's development in 

asymptotic methods provide accurate approximations for p-value function and thus 

confidence intervals for a scalar component parameter in location-scale model. Al-

though, conceptual-wise, the Skovgaard method is pretty straightforward, it could 

still be complicated in terms of calculation. 
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3.3 Summary 

A simple and accurate numerical procedure to obtain the p-value function is devel­

oped for the location model and then extended to location-scale model. For inference 

concerning location parameter or scale parameter, the Fraser and Reid numerical pro­

ced ure only depends on the observed log-likelihood function which can be either full, 

marginal or conditional log-likelihood function. But this method can only be used 

once the parameter of interest is either the location parameter or the scale parame­

ter. If the parameter of interest is a function of these two parameters, for example 

the ratio of the location parameter to the scale parameter, then we need to use other 

approximation methods such as the Skovgaard method (Skovgaard (2001)). General 

formulas to calculate the confidence intervals for location or scale parameter in the 

Fraser and Reid method and the Skovgaard method are derived in the second Sec­

tion. So that we could apply these third order methods directly to any location-scale 

model. It makes our third order methods to be pretty straightforward. But it could 

still be complicated in terms of calculation. 
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4 Revisit Behrens-Fisher Problem Using Third 

Order Methods 

Inference for the difference of two independent normal means has been widely stud­

ied in statistical literature. Typically, the variances are assumed to be unknown and 

must be estimated. When we assume equal variances, then a pooled estimate of 

the common variance is used and the test statistic is exactly distributed as a Stu­

dent t distribution. However, without making the equality of variances assumption, 

the problem is then the well-known Behrens-Fisher problem, where no exact dis­

tribution of the test statistic is available. There exist many approximate solutions 

for this problem. Most statistical software packages use the Satterthwaite (1946) 

solution, where the test statistic is approximately distributed as a Student t dis­

tribution. Maity and Sherman (2006) considered the Behrens-Fisher problem with 

an additional assumption that one of the variances is known, and a Satterthwaite 

type solution is obtained. Wong and Wu (2008) examined the problem considered 
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by Maity and Sherman (2006) and derived a likelihood based asymptotic solution, 

which has excellent coverage property. Schechtman and Sherman (2007) also con-

sidered the Behrens-Fisher problem but with an assumption that the ratio of the 

two variances is known. This problem arises in many practical situations. For ex-

ample, when two instruments report averaged responses of the same object based 

on a different number of replicates, the ratio of the variances of the response is then 

known, and is the ratio of the number of replicates going into each response. In 

this chapter, we apply our third order methods developed by Fraser and Reid, and 

Skovgaard to Behrens-Fisher problem. The simulation results showed the excellent 

coverage property of our proposed method. 

4.1 Main Result for the Fraser and Reid Method 

Let x = (xi, ... , Xn) and y = (yi, ... , Ym) be random samples from two independent 

normal distribution with mean and variance (µx, a;) and (µy, a~), respectively. As-

sume a; and a; are unknown but with the ratio a~/ a; = c known. Our parameter 

of interest is 'l/J = µx - µy. 

The log-likelihood function can be derived as follows: 

m + n 2 ) 1 ~ 2 1 ~ 2 l(B) = --
2

- log(ax -
2
a 2 ~(xi - 'l/J - µy) -

2
ca2 ~(Yi -11y) 

x i=l x j=l 

where()= ('l/;, µy, a;)'. 
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Here are some facts that we need to calculate Qin the Fraser and Reid method: 

R1/J ( fJ) 

Then we have MLE for this problem as follows: 

x-fi 

fj 

2:~=1 (xi - x)2 + ~ I:;:1 (Yi - fi)2 
m+n 

The overall observed information matrix can be calculated by the inverse of the 

second derivatives. 

j991(fJ) = n + m 
u2 cu2 x x 

n(x-1/;-µy) + m(jj-µy) 
(a~)2 c(a~)2 

Here is the observed nuisance information matrix: 

( 

n + m 
u2 cu2 x x 

n(x-1/;-µy) + m(jj-µy) 
(u~)2 c(a~)2 

n(x-1/;-µy) + m(y-µ,1 ) ) 

(u~)2 c(a~)2 

- 2%1)2 + (a~)3 (2:: (xi - 'l/J - µy) 2 + ~ 2:: (Yi - µy) 2
) 
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Then 

n 0 0 72 
<TX 

j(}(}' ( 0) 0 m 0 
ca~ 

0 0 m+n 
2(0-~)2 

Ii(}(}' ( 8) I = 
mn(m+n) 

2c(ai)4 

Apply Lagrange Multiplier Technique introduced in Section 1.2.5. We have the 

tilted log-likelihood function: 

i(O) = l(O) + Ki(µx - µy - 'lf;). 

So that the constrained MLE can be calculated by setting the constrained score 

functions to be zero. Then 

n _ m/c _ n ,.,, 
---x + y - ---'f/ 
n+m/c n+m/c n+m/c 
l:(xi - 'lj; - P,1/Jy)2 + ~ l:(Yi - P,1/Jy)2 

= m+n 

K, -

Now we are able to calculate the determinant of constrained nuisance information 

matrix 

(m + n)(m +en) 
2c( a-2 )3 

1/Jx 
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From the log-likelihood function, we can easily determine our canonical parameter 

cp(B) = (1/J+µy µy ..l.. )'. Then we have 
ui ' ui' ui 

-2 
(7x 

-2 
(7x -(7/J + µy)C7;4 

<po((}) = 0 -2 
(7x 

-4 
-µye7x 

0 0 -4 -(7x 

lcpo(e)I -8 = -(7x 

-2 
(7x -(7/J + µy)C7;4 

'P>.((}) - -2 (7x 
-4 

-µye7x 

0 -(7-4 
x 

cp'l/J ( B) = ( (7;, -(7;, -7/Je7;). 

Now we have everything to get our signed log-likelihood ratio statistic r and 

the standardized maximum likelihood estimate departure calculated in the canonical 

parameter space Q in formula (2.13) as follows: 

r = sgn(~ - 7/J) 2(m + n)log(~'l/Jx) 
C7x 

Q = ~~; (~-7/J). 
v~(7!x 

Therefore, the p-value function for 'ljJ can be obtained by using either the Barndorff-

Nielsen approximation (2.8) or the Lugannani-Rice approximation (2.9) with r and 

Q calculated above. 
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4.2 Main Result for the Skovgaard Method 

The expression for r* derived by Skovgaard in 1996 and 2001 has the same expression 

of r but different Q which has formula (2.30). From the calculation in the above 

Section, we know the observed Fisher information matrix JOO' ( 0) and constrained 

observed Fisher information matrix J>..N(B'l/J)· In order to get Q, we need to calculate 

the two covariance matrices, S and q, and the expected Fisher information matrix 

i(B). As discussed in Section 2.3, all of them could be estimated by Kullback-Leibler 

distance. 

We know 

we have 

= Eo1 [log f(x, y; Bi)] 
f(x, y; 82) 

= Eo1 [£(81) - £(82)]. 
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Note 

Therefore, we have the expression of Kullback-Leibler distance: 

KL(B e) = ('l/11 + µy1 - 'l/12 - µy2)
2 + (µy1 - µy2)

2 
+ u;1 - l u;1 _ 1 

i, 2 2 2 2 2 2 og 2 . 
li x2 CO" x2 li x2 li x2 

As discussed in Section 2.3, 

Then we have estimation of q, S and ioo' ( 0) as follows: 

q = X10(0, 01/J; B) 

s = Xn(B, B1/J; B) 

ioo1(B) = Xn(B,B). 
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For the Behrens-Fisher problem, 

= 

1 1 
caL)2 ( 'l/J1 + µyl - 'l/J2 - µy2) u;2 u;2 

= 1 c+l 
(ul

2
)2 ( 'l/J1 + µyl - 'l/J2 - µy2) + c(u~2 )2 (µyl - µy2) u;2 cu;2 

0 0 1 
(ui2 )2 

Now we are able to calculate q, S and the expected Fisher information matrix in 

terms of MLE. Then we have everything to calculate Q from equation (2.30) for the 

Skovgaard method. 

From Figures 4.1, 4.2 and 4.3, we can observe that our third order methods are 

very accurate even when the sample sizes are extremely small. 

Here is the algorithm to perform Monte Carlo simulation studies: 
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Figure 4.1: p(µx - µy) for independent normal distribution with sample size n=lOO, 

m=150 
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Figure 4.2: p(µx - µy) for independent normal distribution with sample size n=lO, 

m=15 
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Figure 4.3: p(µx - µy) for independent normal distribution with sample size n=3, 

m=5 

91 



Set up: N = 10000, n = 100, m = 150, c = 0.5, µx = 0, µy = 1, CT; = 1, a; = 

Aim p-value for testing µx - µy = 'lj;. 

Step 1 (a) Simulate sample of size n from normal distribution N(µx, CT;). 

(b) Simulate sample of size m from normal distribution N(µy, CT;). 

Step 2 (a) For the Fraser and Reid method: Calculate p-value for 'ljJ = -1 from 

formula (2.8) or (2.9) with r calculated from (2.10) and Q calculated 

from (2.12) or (2.13). If p-value is less than 0.025, then lower error 

of the Fraser and Reid method = lower error of the Fraser and Reid 

method + 1. If p-value is greater than 0.975, then upper error of the 

Fraser and Reid method= upper error of the Fraser and Reid method 

+ 1. 

(b) For the Skovgaard method: Calculate p-value function from formula 

(2.8) or (2.9) with r calculated from (2.10) and Q calculated from (2.30). 

If p-value is less than 0.025, then lower error of the Skovgaard method 

= lower error of the Skovgaard method+ 1. If p-value is greater than 

0.975, then upper error of the Skovgaard method= upper error of the 

Skovgaard method + 1. 

Step 3 Repeat step 1 and step 2 N times. 

Step 4 Report lower error a~ upper error for both methods. 



Run the algorithm multiple times by changing the sample size of n and m to 

be smaller. The following is the result for both methods: The following two tables 

show that both of the Fraser and Reid method and the Skovgaard method give 

pretty accurate approximation compared to the exact confidence intervals even for 

the sample size to be extremely small. 

Table 1: µx = 0,µy = l,CT; = l,CT~ = cO";,n = 100 and m = 150 

c (known) Method Lower Error Upper Error Central Coverage 

5 r 0.0287 0.0218 0.9495 

Fraser and Reid 0.0282 0.0213 0.9505 

Skovgaard 0.0282 0.0213 0.9505 

3 r 0.0289 0.0211 0.9500 

Fraser and Reid 0.0283 0.0205 0.9512 

Skovgaard 0.0283 0.0205 0.9512 

1 r 0.029 0.0226 0.9484 

Fraser and Reid 0.0287 0.0221 0.9492 

Skovgaard 0.0287 0.0221 0.9492 

0.5 r 0.0306 0.0218 0.9476 

Fraser and Reid 0.0299 0.0212 0.9489 

Skovgaard 0.0299 0.0212 0.9489 
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Table 2: µx = O,µy = l,O"; = l,O"~ = cO";,n = 10andm=15 

c (known) Method Lower Error Upper Error Central Coverage 

5 r 0.0336 0.0314 0.9350 

Fraser and Reid 0.0266 0.0239 0.9495 

Skovgaard 0.0266 0.0239 0.9495 

3 r 0.0337 0.0315 0.9348 

Fraser and Reid 0.0262 0.0240 0.9498 

Skovgaard 0.0262 0.0240 0.9498 

1 r 0.0339 0.0302 0.9359 

Fraser and Reid 0.0273 0.0253 0.9474 

Skovgaard 0.0273 0.0253 0.9474 

0.5 r 0.0333 0.0309 0.9358 

Fraser and Reid 0.0266 0.0256 0.9478 

Skovgaard 0.0266 0.0256 0.9478 



Table 3: µ = 0 µ = 1 a 2 = 1 a 2 = ca2 n = 3 and m = 5 X l Y l X l y X' 

c (known) Method Lower Error Upper Error Central Coverage 

5 r 0.0493 0.0499 0.9008 

Fraser and Reid 0.0260 0.0263 0.9477 

Skovgaard 0.0260 0.0263 0.9477 

3 r 0.0498 0.05 0.9002 

Fraser and Reid 0.0263 0.0255 0.9482 

Skovgaard 0.0263 0.0255 0.9482 

1 r 0.0517 0.0497 0.8986 

Fraser and Reid 0.026 0.0255 0.9485 

Skovgaard 0.026 0.0255 0.9485 

0.5 r 0.0514 0.0492 0.8994 

Fraser and Reid 0.0256 0.025 0.9494 

Skovgaard 0.0256 0.025 0.9494 

Monte Carlo simulation results show that the Fraser and Reid method and the 

Skovgaard method give indistinguishable results whereas the result from the first 

order method, especially for extremely small sample size, is not satisfactory. 
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4.3 Summary 

The likelihood based third order methods to obtain inference for the difference of two 

independent normal means with known ratio of variances are proposed. Monte Carlo 

simulation results showed that the the Fraser and Reid method and the Skovgaard 

method give much better estimation when the sample sizes are small and they are 

almost indistinguishable. Schechtman & Sherman (2007) method is tailored made 

for this particular problem and cannot be applied to the case where the ratio of 

variances is unknown. However, the proposed methods can still be applied to the 

unknown ratio of variance case. 
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5 Discussion and Future Work 

The third order likelihood based inferences on a scalar parameter of interest for 

location-scale family models are discussed and developed in this thesis. Most of 

researchers use the Fraser and Reid method, and some others use the Skovgaard 

method. But nobody really think why they choose one or the other. In my the­

sis, I compared these two methods theoretically and numerically for location-scale 

models. The Fraser and Reid method is easy to calculate, especially for full expo­

nential models and in simple transformation models. This method is theoretically 

complicated, but computationally more efficient in terms of programming. But it 

involves the sample space derivatives and the sample space derivatives are only de­

fined when an ancillary statistic is specified and the overall MLE is sufficient. And 

sometimes it is not available to calculate, for example, in discrete case. The Skov­

gaard method does not require specification of the ancillary statistic or its tangent 

vector V, so it is applicable to discrete distribution. And it is easier to understand. 

But the expected Fisher information matrix, together with the two covariances are 
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of the same computational complexity. Also the Skovgaard method is not commonly 

used in current literature. Both proposed methodologies require reasonable compu­

tational complexity and exhibits high accuracy for relatively small data set. Both 

methods have advantages and disadvantages. And in terms of numerical accuracy in 

approximating p-value, the two methods give almost indistinguishable results when 

the model is a location-scale model. 

Based on the current work, there are· several possible directions that research 

could be extended to: 

Firstly, the model I am dealing with is from a continuous distribution. However, 

when the distribution is of a discrete nature, the ancillary direction V in the Fraser 

and Reid method cannot be obtained by differentiation. Instead, we could try the 

Fraser and Reid method by differencing and compare the results with the Skovgaard 

method. 

Secondly, models with Gaussian error structure are widely studied as normal 

distribution is a simple and reasonable choice for the error term. Alternative to the 

normal distribution, the error terms can be assumed to follow other distributions, 

such as Student t distribution. Therefore, similar studies can also be performed for 

models with non-Gaussian errors. 

Thirdly, the third order methods could be applied to reliability problems. For 
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example, P( X < Y) where X and Y are independent random variables that follow 

known parametric distibutions. This kind of problem is widely considered in en­

gineering, medical studies, economics and finance, for example, Wong (2012). We 

could use the Skovgaard method comparing with the Fraser and Reid method to 

illustrate the accuracy of our proposed methods. 
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