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Abstract: 

The tornadic storm of August 20, 2009 of Southern Ontario is studied using a 

numerical prediction model. It is found that a 3km resolution simulation works as 

well as a 1 km resolution model to model the storms underlying physical 

processes relevant to supercell mesocyclone formation and storm propagation, 

although both models showed a significant phase bias in the storm system's 

squall line position. A 3m resolution ensemble of 20 members is us~d to model 

the storm system further, and it is found that the ensemble mean shows the 

same bias that the 1 km and 3km resolution models exhibited. Investigation of 

ensemble perturbation growth rates from ensemble mean values reveals differing 

growth rates for baroclinic and convective modes. Ensemble-based sensitivity 

analyses reveal that there are strong correlations of squall line position with 

model variables up to 12 hours previously. 
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Motivation 

The primary focus of this research study is to determine how well an ensemble of 

moderately high resolution (3km) numerical weather prediction (NWP) 

simulations can model an intense, deeply-convective mesoscale phenomenon. 

Attention will be paid to the performance of such an ensemble in. comparison to 

that of a single higher resolution (1 km) deterministic NWP simulation. The 

phenomenon that will be modeled is the tornadic squall line system which hit 

southern Ontario on August 20, 2009. A secondary focus will also relate to what 

other benefits can be realized by using an ensemble-based approach to 

modeling, over and above an expected increased forecast accuracy. Ideas 

associated with the relationship between the scale of features forecast, and their 

predictability will be explored as well. 

This study will be broken down into three sections, and each these sections will 

be addressed in a separate chapter. 

The first chapter will attempt to address the following question - are the physics 

that are being modeled at the 3km resolution the same as those being modeled 

by the 1 km resolution simulation? This is an important consideration, for in both 
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cases convection will be fully resolved, with no model convective 

parameterization at these resolutions. Given the obvious intensity of convection 

of this storm, and that several studies (which we will present below) which have 

called into question the ability of NWP models to adequately model convection at 

these scales, it is important to establish that the same processes are being 

modeled by both the 1 km and 3km models, before we start comparing the results 

of the 3km ensemble model to the 1 km deterministic model. 

Once we have established that the same physics are being modeled at both 

resolutions, the second chapter will attempt to determine how well the predictions 

of an ensemble of 3km resolution simulations perform when compar~d to that of 

a single 1 km resolution simulation. Specifically, the performance of the ensemble 

mean's predictions will be investigated. 

Finally, in the third chapter we will deal with another use of 'the ensemble - how 

the ensemble can be used for sensitivity analyses of modeled phenomenon. We 

will show here how model variables at much earlier times can correlate strongly 

with the final squall line position, even up to 12 hours previously in so,me 

locations. Such correlations are useful, for they indicate areas and variables 

where changes in observational data have significant impacts on our final squall 



3 

line position. If we should find that such areas of high correla~ion fall into areas 

where few observations have been taken, we would know that we could improve 

upon our model's accuracy by taking more observations in these areas, 

incorporating these results using the well-established practice of data 

assimilation. Note that our results will also show that data assimilation would be a 

necessary best step to improve upon our results, as we will see that both the 

high resolution and ensemble results show a similar significant phase error in the 

squall line position. 

Note that, as mentioned above, issues concerning the relationship between 

feature scale and predictability will be addressed throughout the study. We will 

see that such issues are highly relevant to all of the considerations discussed 

above. 

Finally, it should be noted that the use of ensemble methods for the investigation 

of highly convective mesoscale phenomena is a relatively new field of study. It is 

therefore hoped that the current study might help in some small way to add to the 

still somewhat limited body of knowledge related to this area of investigation. 



1 Relative Performance of Low and High 
Resolution Deterministic Simulations 

1.1 Introduction 
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As noted above, one of the main aims of this study will be to compare the 

performance of an ensemble of low resolution simulations to a higher resolution 

deterministic simulation. Before we investigate this issue (in Chapter 2), there is 

a concern with using this approach that must first be addressed. This concern 

relates to an uncertainty that the 3km resolution simulation is capable of 

capturing the same physical processes that the 1 km resolution simulation is 

capable of. These concerns arise because of issues raised in several papers 

regarding the ability of simulations in this range to fully model convection (which 

we will elaborate upon further below). While it has been shown in this literature 

that convective parameterization is not used below a 4km resolution, there is 

some concern. whether or not that, at resolutions at and above 1 km, the direct 

explicit simulation of convection by the model is indeed correct. 

Thus this chapter will present an examination of the ability of a 3km lower 

resolution simulation to correctly model the physical processes of our subject 

squall line system in comparison with those of the 1 km resolution simulation. 



5 

This first step is important, for as mentioned above, our ultimate goal of this study 

will be to determine if an ensemble of 3km simulations can match or indeed 

exceed the performance of a single 1 km deterministic simulation, and if our 

ensemble can offer benefits not afforded by a single deterministic simulation. For 

one to have confidence that the ensemble has an equal ability to adequately 

reflect the the reality of what is being simulated, one would expect that both the 

deterministic 1 km high resolution simulation, and the 3km low resolution 

simulation 1 upon which the ensemble is based, would show similar abilities to 

capture the physics of the modeled event - in this case, a severe squall line 

formed on August 20, 2009 that spawned 11 2 separate tornadoes across 

Southern Ontario. Naturally, the characteristics that should be compared 

between the two simulations are those of a tornadic storm. For example, if the 

1 km simulation should capture strong vertical updraft velocities and vorticities 

along the squall line, but the 3km simulation should prove incapable of capturing 

or simulating these expected properties of the supercells of our squall line 

system, then any attempt to draw conclusions from an ensemble of such 

simulations would be highly questionable. Thus, our first step, and the first part of 

this study, will endeavor to answer the question of how well a 3km simulation is 

l We realize of course that in present NWP practice, a 3km resolution simulation is not regarded as a low 
resolution simulation - but for the purposes of this study, we will refer to the 3km resolution simulation 
as ~he low resolution simulation to contrast it with the higher resolution lkm deterministic simulation. 

2 http://www.ec.gc.ca/default.asp?lang=En&n=7 l 4D9AAE- l &news=A4D26BC9-8777-4E5B-8258-
C72 l 3 A24606C 
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able to model the expected physical properties of a squall line of severely 

convective tornadic supercells as compared to a deterministic 1 km simulation, 

and to answer if even a 1 km simulation is able to adequately model such 

properties. To frame this study as a whole, we will first provide a synoptic 

overview of the storm system being studied. 



7 

1.1.1 Synoptic Overview of Storm System 

While it is not the purpose of this research project to conduct a thorough synoptic 

analysis of the storm event itself, an overview will nevertheless be helpful to 

provide some synoptic background of the event, and to provide some context 

which will help in our understanding of the storm's genesis and evolution. 

The National Oceanic and Atmospheric Administration (NOAA) Storm Prediction 

Center (SPC)3 predicted that between 01 OOZ and 1200Z on August 20, 2009 a 

deeply occluded low pressure system would remain situated over the upper 

Mississippi valley, with a cold front moving south-eastward across the mid 

Mississippi valley towards Indiana/Michigan, and a warm front running east-west 

across the southern Great Lakes. Boundary layer moisture content in the warm 

sector below the warm front was predicted as being very high. At this point 

models predicted an organized mesoscale convective system spreading 

northeastward across northern/central Indiana and portions of Michigan and 

Illinois. 

Shown below in Figure 1 is a synoptic analysis for OOZ August 20, 2009. At this 

3 The reports from which this synoptic overview is based are obtainable from 
http://www.spc.noaa.gov/products/outlook/, where putting "20090820" in the date entry field at the 
bottom of the page retrieves all of these reports. 
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· point, the low pressure system associated with the storm system of this study 

was located over southern Manitoba, but was moving south-eastward towards 

the upper Mississippi valley. 

Figure 1: Surface analysis and radar reflectivity for OOZ, August 20, 2009. 
Sea level pressures are plotted in blue at intervals of 4hPa. 
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This storm system was then predicted to develop, between 1200Z August 20 and 

1200Z August 21, an intensifying large scale upper-level trough located over the 

southern plains and running north to the Great Lakes, with a strongly sheared 

moist pre-frontal environment located over the middle Mississippi and lower Ohio 

River valleys, where it was noted that this environment would provide a potential 

for severe storms. 

Clearing within a dry-slot across northern Indiana into lower Michigan was 

indicated as a possible factor in allowing for sufficient heating to allow for 

moderately strong destabilization. It was noted that within the warm sector the 

boundary layer was expected to remain very moist, and the low level hodographs 

were likely to be highly clockwise curved, with a large low-level shear. At this 

point the report indicated that this environment was supportive of the 

development of supercells, with the possibility of tornado generation. 

Shown below in Figure 2 is the synoptic analysis for 1200Z, August 20. Note that 

by this time, the low pressure system previously situated over southern Manitoba 

has moved south-eastward over the upper Great Lakes and has become a 

detached low. Note also that the cold front near this low has become occluded, 

and runs north-south generally to the west of Lake Michigan roughly over the 
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Mississippi valley. Note also that a strong crescent-shaped band of reflectivity, 

identified by the SPC as an organized mesoscale convective system (MCS), is 

situated well to the east of this cold front. 

Figure 2: Same as Figure 1, but for 1200Z, August 20 

Shown following in Figure 3 are output maps from a NAM model analysis at 

1200Z. Notable in these maps is the presence of the developing upper level jet 

just to the south-east of the detached low in the 300 hPa wind speed map in the 
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top-right, and the high humidity of the environmental air in and to the east of this 

area, evident in the relative humidity plot in the lower right. Note· also in the 

relative humidity plot the contours of the Lifted Index (LI) are also plotted. LI 

values of less than 0 are indicative of convective instability, and values of LI less 

than -4 are indicative of the possibility of severe thunderstorms4
. While values of 

LI less than 0 do exist ahead of the cold front shown in Figure 1, severe 

thunderstorm LI values (less than -4) along the front and the pre-frontal 

reflectivity band exist only in north-eastern Oklahoma at this point. 

4 See UNISYS upper air plot description at http://weather.unisys.com/upper_air/details.php 



Top Left Panel: 850 hPa temperature (coloured shading) and 850 hPa geopotential (contours) 
Top Right Panel: 300 hPa wind speed (coloured shading) and 300 hPa geopotential (contours) 
Bottom Left Panel: Surface pressure (blue contours) 
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Bottom Right Panel: 850-500 hPa Integrated Relative Humidity (coloured shading) and Lifted 
Index (contours) · 

Figure 3: NAM analysis diagnostic plots for 1200Z, August 20 

The NOAA SPC analyses predicted between 1630Z August 20 and 1200Z 

August 21 the presence of a trough confluence boundary, situated ahead of the 

cold front from central to south-eastern Michigan and north-western Ohio. It was 

predicted here that the combination of moderate instability with a largely 

unidirectional low-mid level flow of 35-50 knots, and an effective bulk shear of 35 
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knots, would be supportive of storms with supercell structures and persistent line. 

segments capable of producing damaging winds and hail. Shown below in Figur~ 

4 is the NOAA SPC analysis for OOZ, August 21. Note that the detached low has 

moved only slightly to sit over northern Lake Superior, and that both the cold front 

and the squall line ahead of the front have moved to the east. At this point, the 

squall line runs north-so_uth over Lake Ontario and is situated well to the east of 

the Toronto area - a fact which will be of some consequence for this study and 

will be discussed further later in this report. 

Figure 5 shows a satellite image at the same time. Clearly evident ih this figure is 

the dry-slot mentioned above running south from Michigan through Illinois and 

Ohio. 

Finally, the NAM Analysis plots for OOZ, August 21st are presented in Figure 6. Of 

significance in these plots are the strengthened upper level jet evident in the 

300hPa wind speed plot at the top right, running north-northeast from Illinois up 

through Michigan and between Lake Huron and Lake Superior. Also of 

importance is the increased humidity in the southern Ontario area evident in the 

humidity plot at the lower right, along with the decreased LI values in this area. It 

is significant that at OOZ on August 21, the entire southern Ontario area has LI 
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values well below -4, again indicative of severe thunderstorm activity. 

Figure 4: Same as Figure 1, but for OOZ, August 21 
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Figure 5: Satellite image and surface analysis at OOZ, August 21 
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Figure 6: Same as Figure 3, but for DOZ, August 21 

In summary, the synoptic analysis of the storm system featured in this study 

showed a squall line developing well ahead of a cold front, possibly at a trough 

confluence boundary. Ahead of the cold front in the warm sector, was· a warm 

and moist air mass of high instability down to the boundary layer. As the storm 

system progressed, a strongly convective band/squall line formed at the 

confluence boundary, with the convection driven by the low level jet and its 
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associated high magnitude of low level wind shear. As e>epected, this storm 

system produced significant convection, and even resulted in tornadic activity. 

Indeed, as mentioned above, this storm produced 11 tornadoes across southern 

Ontario, an unusually large number for a single storm system. 
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1.1.2 Comparison of 1 km and 3km Resolution Simulations 

With the storm system's synoptic background established, we return to our main 

focus of this chapter - the comparison of the high and low resolution simulations 

of this event. 

As discussed above, the primary focus of this study is to investigate how well an 

ensemble of moderately high resolution (3km) simulations can mc;>del an intense 

mesoscale5 meteorological phenomenon such as the August 20, 2009 squall line 

system of this study, and compare the predictive performance of this ensemble to 

a single higher resolution (1 km) deterministic model. But, as we also mentioned, 

we must first address concerns that a 3km resolution simulation (which again we 

shall hereafter refer to as the low resolution simulation) is capable of capturing 

the same physical processes that the 1 km resolution simulation (the high 

resolution simulation) is capable of. As we mentioned, these concerns arise from 

issues addressed in several papers which have questioned the ability of 

simulations at this range of resolution to adequately model convection explicitly. 

We will now discuss and elaborate upon these matters below. 

5 Note that while officially (according to the AMS), mesoscale is defined as covering features of scale 
from 2km to 2000km in extent, it must be remembered that in order to resolve features of size L, the 
grid spacing should be of size L/6 or less to resolve such features (Shamrock, 2004). Thus, our I km 
resolution model will be considered a mesoscale model for this study. 
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Relative Abilities of 1 km and 3km Resolution Simulations 
to Capture Physics of Supercell/Squall Line Activity 

The current literature brings into question the ability of even our high resolution 

(1 km) simulation to adequately capture the physical processes necessary for an 

accurate simulation of deep convective processes (Dudhia 2011, Zhang and 

Zhang 2011 ). As these authors have commented, while a 4km resolution appears 

adequate to resolve convection, as low as a 250m resolution might be required to 

fully resolve the deep convective processes of the supercells in the squall line 

being studied. Thus, it remains an open question whether or not all of the 

physical processes are being as well resolved at a 3km resol,ution as are 

resolved at a 1 km resolution. 

In order to address this question of whether or not the correct and same physical 

processes are being captured by both simulations, it will be necessary to look for 

certain characteristics of the squall line most relevant to a deep convective 

process. Particular attention should be paid to characteristics of the supercells 

which are believed to be constitute the squall line being studied - specifically, to 

the simulated vertical velocities and storm-relative helicities, since high values of 

these variables are associated with supercell activity (Weisman and Rotuno, 

2000). Differences between the two simulations will be looked for with regard to 
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these variables, as it is expected that any differences between the capacities 

between the two simulation resolutions will manifest themselves in mesoscale 

processes that at least partially underlay supercell evolution. 

Evidence for supercellular characteristics should be also looked for in the 

evolution of the storm cells over time. As Fankhauser et al (1992) have noted, it 

is unusual for an ordinary thunderstorm cell to last for more than 20-30 minutes, 

and longer lived cells are therefore symptomatic of supercells. Supercells, aside 

from being relatively long-lived phenomena, are also prone to cell splitting, where 

a single supercell will over time split into two distinct cells. Both simulations will 

also then be examined for evidence of this cell splitting phenomenon, as well as 

for evidence of structures that remain coherent for more than 1 hour. Such 

evidence is strongly indicative of the presence of the supercells that are believed 

to have spawned the 11 tornadoes that were generated by the August 20 squall 

line event. 

In addition, both simulations should be compared with regard to their predicted 

rates of rainfall and their predictions of maximum radar reflectivity, as both of 

these variables are of course indicative of the precipitation that accompanies 

squall lines. In particular, attention will be paid to the degree of continuity of the 
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simulated squall lines, and to the locations of the squall lines. Total rainfall will 

also ~e a factor to consider, as there is some question, as noted by Dudhia 

(2011 ), as to how well NWP simulations are able to predict rainfall rates during 

convective activity with resolutions in the 1 km - 3km range. 

Following this, to get a complete picture of the modeled dynamics, a center of 

particularly intense convection will be chosen from an area in both models which 

shows a high value of vertical velocity, and zonal cross-sections will be taken 

through this point. We will look for evidence of environmental air which is 

predisposed to convective activity, which is most easily understood in terms of 

Convective Available Potential Energy (CAPE) - a measure of the amount of 

potential energy held in the air typically necessary to fuel convection. Before we 

can have convection however, it is necessary first to lift the air by some 

mechanism past the the level of free convection (LFC) where the air is free to 

convect. The vertical motion of the air before we have reached this point is 

inhibited by the environmental Convective Inhibition (CIN), in a sense the total 

energy necessary to overcome to initiate convection. After reaching the LFC 

however, convection is free to commence6
• However, since the squall line itself, 

based on the synoptic analysis alluded to above appears not to have formed at a 

6 Note that this is of course a purely thermodynamically driven convective mechanism - we will see later 
that the convective activity of the supercells has also a strong dynamically driven mechanism as well. 
Nevertheless, thermodynamic mechanisms will be important for supercell convection as well. 
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front, but instead appears to be pre-frontal, then evidence for some lifting 

mechanism other than frontal lifting will have found from the simulation results, 

perhaps from some low level convergence condition, or from the lifting that would 

be generated at low levels by the gust front, or the tilting effect which we will 

discuss in more detail below. In any event, if lifting characteristics are similar in 

both models, then further evidence will be available that the same driving 

dynamics are being captured in both simulations. There will therefore be some 

justification in comparing the results of an ensemble of low resolution simulations 

to a single deterministic simulation, since the same physics are being captured 

by both. 
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1.1.2.2 Storm Relative Helicity 

Another important parameter to consider when dealing with supercells is Storm 

Relative Helicity (SRH), first introduced by Davies-Jones (1990). This parameter 

measures the· degree to which there is a horizontal, streamwise component of 

vorticity which matches up with the direction of horizontal flow relative to the 

storm's motion, and is given by the following formula: 

H - f k · (V - c) X d V dz h ( - i 
0 dz 

(1) 

where Vis the velocity of the wind, c is the direction of storm motion, and his the 

top height to which this quantity is integrated to - typically taken to be 3000m. It 

can be interpreted as a parameter equal to the area swept out between 0 and h 

on the hodograph by a vector with one end held at c, in other words, the area 

swept out by the hodograph relative to the storm's velocity vector. Davies-Jones 

(1990) found this parameter to be a promising tool for the prediction of the 

tornadic potential of a supercell storm. Having high values of this parameter then 

would add further evidence that the simulations are indeed successful. We will 

therefore present an analysis of the simulations' predictions of this parameter 

below. 
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1.1.2.3 Supercell Evolution 

Finally, some mention should be made regarding the evolution of the supercells. 

Supercells are of course a class of deeply-convective mesoscale structures that 

are strongly associated with the presence of high vorticity and strong updrafts, 

and which are known to be responsible for generating the majority of tornadoes. 

They have several features that set them apart from other mesoscale storm 

structures associated with deep convection, such as single cells and multicell 

storm systems. For instance, as we have alluded to above, unlike single cell and 

multicell storm structures that obtain their convective energy by lifting warm, 

moist and high CAPE air above the level of free convection (LFC) as the storm's 

gust front is pushed underneath the moist air at the storm's leading edge, 

supercells are not generated by the interaction of a gust front with high CAPE air. 

Rather, the lift of this air results as a dynamic process involving the 'tilting' of 

highly sheared low level air by updrafts in the system. 

Wallace (2006) offers a useful description of this process. He states that what is 

necessary first is a highly sheared environment, not necessarily exhibiting any 

turning of the wind with height (veering or backing). Assume then that we have 
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an isolated deep convective updraft develop for some reason, perhaps due to a 

more typical convective storm. As this updraft is lifted upward, it carries with it the 

horizontally sheared air, tilting it so that vertical vorticity is induced into the flow 

as a vortex couplet, as can be seen in part a) of Figure 7. On either side of the 

updraft, these counter-rotating vortexes induce negative pressure perturbations 

at mid levels, which not only intensify the upward pressure gradients at the base 

of the updraft and thereby intensify it, but as well cause the single updraft to split 

into two halves which are then each be pulled towards the vortexes - effectively 

splitting the single storm into two halves, each of which will thereafter generate 

its own vorticity couplet. The net effect of this sequence is the gradual evolution 

and splitting of individual supercells over time. This effect is shown in part b) of 

Figure 7. Note that while a downdraft is shown in part b) and is very often seen 

associated with such storm systems, Wallace (2006) states that the downdraft 

itself is not responsible for this splitting, and indeed splitting is observed in 

numerical simulations even when the microphysical processes that are 

responsible for downdrafts are removed. This splitting phenomenon seems to be 

largely a result of the creation of the counter-rotating vortexes by the updrafts 

and is purely a dynamic phenomenon not associated with subscale or 

thermodynamic processes in the system. Thus, one should expect splitting in the 

presence of strong updrafts and vorticity in storms, even in the absence of storm-
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generated downdrafts. Further, the vortexes are not only responsible for splitting 

the supercell, but they are also responsible for generating the pressure 

perturbations which in turn further lift moderate or high CAPE air at the ·storm 

front. Thus, a supercell can be seen to be a self-propagating system requiring 

only the presence of low-level, highly-sheared air and moderate CAPE 

environment for its evolution. 

Note that other interactions are important to this process. The process discussed 

above, without any veering or backing with height (with a straight hodograph), will 

generate supercell pair members of equal strength moving to the right and left of 

the mid level steering flow7
. As Markowski and Richardson (2011) and Davies-

Jones (1984) have noted, with veering of the wind with height (as is comr:non with 

supercells ), streamwise advection of the vortex couplet will push the right half of 

the vortex couplet into the updraft, and the left half out. As they also note, it is the 

correlation of the vorticity and updrafts in the supercell that is responsible for 

strengthening the supercells and extending their lives (up to 4 hours), giving 

them much longer lives than other mesoscale storms. Thus the right half 

supercell will strengthen in veering, highly sheared air, and the left half will 

weaken. This process will favour the generation of right-half supercells that will 

7 Note however that with any such lack of veering or backing, the resulting hodograph will be uncurved 
and thus the SRH will necessarily be zero - indicating a lack of tornadic-generating potential. 

\ 
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tend to move to the right of the mid-level steering flow of the storm system. Thus, 

right-moving supercells will tend to be associated with veering, highly-sheared 

environments - environments where the hodographs are long and curved 

concave downwards, especially in the lower levels. 

It has also been noted that CAPE values need not be especially high for 

supercell production as suggested in the above description - indeed Finley 

(1988) notes that supercells have been reported with CAPE values as low as 800 

J/Kg. Of course, this is a result of the fact that supercells gain a large portion of 

their energy from the production of vertical vorticity through the tilting of strong 

low level environmental shear. Their updrafts are produced as a result of the 

dynamics of the pressure gradients resultant from this interaction, so high CAPE 

values are not a necessity to contribute the thermodynamic energy to drive these 

updrafts. 

It should also be noted that there are many more processes at work in the 

evolution of a supercell than are outlined in the above description, which is 

admittedly highly simplified and involves only a prediction of the mesocyclone 

from the larger scale dynamics of the environment. Many of these processes that 

have not been covered are thermodynamic in nature, which naturally involve 

interactions at a significantly smaller scale than that of the supercell as a whole, 
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and are associated with such processes as evaporative cooling and downdraft 

generation. Given that the mesocyclones of supercells are typically sized on the 

order of 3-8 km in diameter (Markowski and Richardson, 2011 ); we would expect 

these sub-storm-scale processes to be below the scale of both the high and low 

resolution models to resolve adequately. Thus for instance, given that the 

downdrafts of a storm result from the evaporative cooling and descent of air 

within the storm (Finley, 1998), and that these downdrafts naturally result from 

processes occurring at scales smaller than are resolvable by our simulations, we 

should not be surprised if our simulations fail to predict these downdrafts. In 

addition, given that tornadoes are thought to be the result of the descent to 

ground level of mid-level mesocyclone vorticity by these downdrafts (Finley, 

1998), we should also not expect our simulations to be capable of explicitly 

modeling tornadoes either. Our mesocyclone, driven dynamically by properties of 

tile large scale environment, should however be resolvable, and thus we should 

expect to see both vertical vorticity in our simulations, as well as the updrafts 

resultant from the vertical pressure perturbations produced by this vorticity. 
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1.2 Methodology 

Again, as outlined above, in order to address the question regarding whether or 

not a 3km resolution simulation in indeed able to capture the same physical 

processes as a 1 km simulation, two experiments were carried out at resolutions 

of 3km and 1 km. We will begin with a discussion of the model s~t-up for these 

experiments. 

1.2.1 Physics Options and Model Domain Configuration 

Both experiments, and indeed all of the experiments described in this study, were 

modeled using the latest version (3.3.1) of the Weather Research and 

Forecasting (WRF) model8
. WRF is a fully compressible non-hydrostatic 

mesoscale model with a full suite of physics options (Shamrock et al., 2005). The 

particular options used for the experiments were shown in Table 1. Note that the 

control files used for the simulations, the 'namelist.input' files that WRF uses to 

control program execution, are both listed in Appendix A. 

8 WRF was developed jointly by the National Center of Atmospheric Research (NCAR), the National 
Oceanographic and Atmospheric Administration (NOAA), the National Center for Environmental 
Prediction (NCEP), the Forecast Systems Laboratory (FSL), the Air Force Weather Agency (AFWA), 
the Naval Research Laboratory, and University of Oklahoma, and the Federal Aviation Administration. 
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All simulations utilized nest grids of increasing resolution. The 1 km resolution 

simulations used 4 nested grids of horizontal resolution (in the x and y directions) 

of 27km, 9km, 3km and 1 km, for the 1st, 2nd, 3rd and 4th domains respectively, 

while the 3km resolution simulation used the 1st, 2nd and 3rd domains of the 1 km 

simulation, without the final 4th domain. The extents of these domains are 

showing in Figure 8 below. 

It is important to note that in all of the simulations involved in this study, that two­

way communication was utilized between the domains. What this means is that, 

not only are the higher resolution nested domains obtaining their initial and 

boundary conditions from their parent domains during the simulation (so for 

example, the 3rd domain would obtain its initial and boundary conditions from the 

2nd domain nodes), but also the lower resolution parent domain will have its nodal 

values updated during the simulation using a weighted average of the 

corresponding adjacent higher resolution nodes in the child domain. In this way, 

the parent domain values gain from the increased resolution and accuracy of 

their child domains, and are updated due to this interaction. 
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!Physics Scheme Type Physics Scheme ll\Haime 

Cloud Microphysics · Morrison Double-Moment 
Scheme 

Surface Layer Physics Monin-Obukhov Scheme 

Land Surface Physics Noah Land Surface Scheme 

Planetary Boundary Layer Physics Yonsei University Scheme 

Cumulus Physics (only in domains 1 and 2) Kain-Fritsch Scheme 

Longwave Radiation Physics Rapid Radiation Model Scheme 

Shortwave Radiation Physics Dudhia Scheme 

Table 1: Physics schemes used in WRF simulations 

Figure 8: Domains used in WRF simulations 
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1.2.2 Initialization and Boundary Condition Data 

The data used for the initial conditions and boundary conditions for the high and 

low resolution experiments was NCEP's GFS FNL Analysis. This data is available 

every 6 hours at a 1 degree by 1 degree resolution starting from OOZ, so data 

was obtained for August 20, 2009 OOOOZ, as well as 0600Z, 1200Z, 1 BOOZ and 

August 21, 2009 OOOOZ. Note that for clarity, we will hereafter refer to the August 

21, 2009 OOOOZ time as 2400Z. 

The data was preprocessed using the WRF's WPS utilities, which both 

horizontally and vertically interpolate the data to the grid points specified by the 

user. For the present study, the horizontal grid points were specified as 

discussed above and as shown in Figure 8. WRF uses a terrain-following vertical 

coordinate called an ri level, defined as follows: 

'7 -
(P - P1ap) 

(Pbottom - P1ap) 
(2) 

where p is the hydrostatic pressure, Pbottom is the pressure at the bottom of the air 

column (at ground level), and Ptop is the pressure at the top of the modeled air 



34 

column. We chose 27 ri levels, with the highest resolution of 60m near the 

ground and gradually stretching to 2000m aloft. 

The simulations were configured to output model variables at 1 hour intervals, in 

a standard NetCDF format. NCAR's NCL language, which comes with a wide 

array of processing and plotting functions for atmospheric model data, was used 

to interpret these results. The results that were drawn from this processed data 

will be presented below. 



1.3 Results and Discussion 

1.3.1 Relative Capability of Capturing Squall Line Storm 
Dynamics 
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The primary goal of the first phase of this research project was as mentioned 

above, to establish that the low resolution 3km simulation resolves the same 

physics as the high resolution 1 km simulation. Particularly, for the area where the 

dynamics are the niost 'nonlinear ' in character - that is along the squall line - we · 

are interested in the relative ability of the low resolution simulation to capture the 

correct evolution of the squall line as compared to the high resolution simulation. 

We will begin the investigation of this question instead with an examination of the 

modeled distribution of radar reflectivity for both simulations, since radar 

reflectivity shows areas for which convection is the most intense, and it is these 

areas of intense convection that are the most challenging phenomena for a 

numerical model to simulate. Any significant deviations of the low resolution 

simulation's reflectivity from the observed reflectivity that were correctly simulated 

by the high resolution simulation, would be indicative of a failure of the low 

resolution simulation to resolve some of the physics that were being successfully 

resolved by the high resolution model. Thus we will begin first with this 
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examination of our models at both resolutions. 

1.3.1.1 Simulation Radar Reflectivity 

Shown below in Figures 9 and 10 are plots of the modeled compositie radar 

reflectivity for both the high and low resolution simulations. Plotted are the 

modeled reflectivities for the 3rd domain for both the high and the low resolution 

simulations. Note that while the high resolution simulation's highest resolution 

domain was in fact the 4th domain, for the two-way domain communication 

chosen for this study which we discussed above, values from the 3rd domain 

were obtained by an averaging process using adjacent 4th domain nodal values. 

Thus, the high resolution's 3rd domain values should reflect the more highly 

re.solved physics of the 4th domain, and we should not expect significant 

differences between the two. 

We can see from these figures that the high and low resolution models showed 

similar patterns of maximum radar reflectivity - a line of high radar reflectivity . 

running generally north-south situated just west of the western end of Lake 

Ontario connected in the north to a more diffuse broad band of high reflectivity 
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running west-east just north of the Great Lakes. 

The peak radar reflectivities are similar for both simulations - the high resolution 

storm predicted peak reflectivity values of 56.5 dBZ at 2400Z, while the low 

resolution storm predicted peak reflectivity values of 58. 7 dBZ. 

Figure 11 is an image showing the observed radar reflectivity pattern at 23:58Z. It 

can be noted from the observed radar plot that peak reflectivities are of a similar 

magnitude as the high and low resolution simulations - between 55 and 60 dBZ. 

Therefore, at least in terms of observed peak magnitudes, the simulations can be 

seen to be quite successful. 

We can see clearly however from the observed reflectivity figure that there is a 

significant displacement of the observed squall line compared to the modeled 

squall line - with the observed squall line positioned approximately 80km to the 

east of the modeled squall lines (both squall lines delineated according to their 

peak values of maximum dBZ). It is important to note that although both the high 

and low resolution simulations showed this significant bias to the west in their 

positions as compared to the observed squall line, they showed a very similar 

position as compared to each other. This will be significant, for again, one of the 
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primary goals of the first phase of this study has been to establish that the low 

resolution 3km simulation is capable of modeling the same underlying processes 

as the high resolution 1 km simulation. Clearly, for whatever physical processes 

were responsible for the phase error observed for the low a·nd high resolution 

simulations, it is evident that their modeling was no more successful in the high 

resolution simulation than in the low resolution simulation. 

One characteristic of the squall line however that was captured by the high 

resolution simulation which was not as well captured by the low resolution 

simulation was the degree of structure of the peak reflectivity areas. For the high 

resolution simulation, the structure of these areas is more finely delineated, with 

smaller and more contiguous features along the line than the lower resolution 

simulation - which again showed similar peak values of reflectivity, but in larger, 

and more dispersed 'cells' along the simulated squall line. 

It is interesting to note that the greatest differences between the two· simulations 

WE~re in the areas of highest reflectivity - along the squall line and. along the 

comma-shaped head to the north. There is however quite a lot of similarity 

between the two simulations along the eastern coast of the United States where 

reflectivity values are lower. 
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Thus, from these last two observations - the first observation being the similarity 

of observed bias of squall line position between the two simulations, and the 

second observation being the differences in the delineation of structural detail in 

the two simulations along the squall line - we can hypothesize that the 

differences in results appear to be dependent on the predictability of multiple 

length scales - the 3km simulation appears to be as successful as the 1 km 

simulation in capturing the coarser grained physics driving squall line position -

possibly because this is driven by an error in the large scale initial flow condition 

of our simulations - while the 3km simulation does not appear to be as 

successful at capturing the smaller scale structure of the individual cells along 

the squall line - because the processes responsible for such details are driven by 

smaller scale mesoscale phenomena, more successfully modeled by the finer­

grained resolution of the 1 km simulation. It must be reiterated however that the 

differences between the two model resolutions were evident only in the degree of 

structure or delineation of features in the squall line - values of variables such as 

maximum vertical velocity or maximum radar reflectivity were very much the 

same between the two simulations. This is the issue of scale mentioned earlier -

the low resolution simulation appears to capture large scale features as well as 

high resolution simulation: squall line position for example, but not small scale 
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features, such as fineness of detail of structures in the squall line. 

Again, we see that while the coarse, large scale structure - squall line position -

is captured by the low resolution simulation as well as it is· by the high resolution 

simulation, fine detail of the structure is modeled more readily by the high 

resolution simulation. It is important to note that specific detail of the higher 

resolution simulation does not necessarily correspond to an ability to model with 

higher accuracy actually occurring structures in the squall line. 

This brings us to a central point of contention of this study. There appears to be 

more than one scale at work here. There is a large scale, more 'linear' flow 

driving the system as a whole, which explains why the low resolution simulation 

works as well as the high resolution simulation. This large scale of flow is much 

larger than either the low or high simulation resolution scales, thus they work 

equally as well modeling this large scale flow since they are both much smaller 

than the scale of this flow and thus able to fully resolve it. There is also however, 

the squall line convective activity which is much more unstable (and hence 

sensitive to feedback and initial conditions) for which the scales are much 

smaller. Thus with this smaller scale instability, the extra degrees of freedom 

offered by the increased resolution of the high resolution simulation will offer 
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more opportunities along the squall line for the instabilities to manifest 

themselves. The convective cells will thereafter form more readily and in smaller 

areas, resulting in finer structure for the high resolution simulation. We will return 

again to this issue of scale in our ensemble analysis later in this study. 
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Figure 9: Composite radar reflectivity in high resolution simulation at 2400Z 
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Figure 10: Composite radar reflectivity in low resolution simulation at 2400Z 
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Figure 11: Base reflectivity from Buffalo NEXRAD radar at 2358Z 
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1.3.1.2 Storm Relative Helicity 

Next to be considered is Storm Relative Helicity (SRH), which as discussed 

above, is a characteristic of the storm's environment that indicates a potential for 

the development of the tornadoes which were reported for the August 20, 2009 

storm studied in this report. 

Shown below in Figures 12 and 13 are plots of the 0-3km storm relative helicity 

(SRH) for the 3rd domain of both the high and low resolution simulations 

respectively. 

We can see a similar pattern to that noted above for the radar reflectivity. Both 

simulations showed two regions of high helicity in roughly the same area - one 

just south-west of Lake Simcoe and the other on the eastern end of Lake 

Nippissing near North Bay. For the high resolution run, the area of high SRH 

southwest of Lake Simcoe ran in a line from Vaughn, Ontario upward to just 

south of Barrie and was broken into three smaller 'cells' of high helicity, while the 

·1 km simulation showed only a single, larger 'cell' with high helicity. Thus again, 

we see that the areas of peak intensity are in roughly the same positions for the 

two simulations, but with more finely structured detail in the high resolution 
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simulation than the low resolution simulation. 

Peak values of helicity predicted by the models at 2400Z were 1540.6 m2/s2 and 

1909. 7 m2/s2 for the high and low resolution models respectively. It should be 

noted that, as evident from Figures 12 and 13, that these values of high helicity 

only occurred in very localized regions, and that the general helicity values for 

the area were somewhat smaller than these values, just in excess of 800 m2/s2 in 

a larger area over the GTA for both simulations. Nevertheless, these helicity 

values are quite large, and indicative of an unusual set of circumstances. 

Significantly, the two areas of high helicity for both simulations - just south-west 

of Lake Simcoe and at the eastern end of Lake Nippissing near North Bay, both 

reported tornadoes around the same time that these two figures correspond to 

(2400Z). Thus, there is a good chance that both simulations could have correctly 

predicted the tornadoes in these areas given sufficient grid resolution, especially 

since SRH is often noted as a good predictor for the supercell tornadic potential. 
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1.3.1.3 Vertical Velocity 

Highly convective storms will also show areas of high vertical velocity. A 

successful model will therefore be able to be able to generate s·uch high vertical 

velocities, and be able to position them correctly. In the following Figures (14 and 

15), we show plots of vertical velocities at 2400Z for both the high and low 

resolution simulations. 

We see from these figures that the areas of highest vertical velocity fall along the 

simulated squall line - the line running roughly north-south just west of the 

western end of Lake Ontario. Once again, the low resolution simulation places 

this squall line at roughly the same position as the high resolution simulation, but 

with somewhat less finely discriminated structure. 

Peak vertical velocities at these levels were 16.64 and 19.10 m/s for the high and 

low resolution models respectively. 
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Figure 12: 0-3km storm relative helicity for high resolution simulation 
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Low Resolution Model (3km) Storm Relative Helicity at 2400Z 
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Figure 13: 0-3km storm relative helicity for low resolution simulation 
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Figure 14: Vertical velocities at mid-level (eta =0.5) for 2400Z high resolution 
simulation 

Vertical Velocity at Level 13 (Eta 0.5) - 3km Low Resolution Model 
z-wind component m s-1 

12 

11 

10 

9 

8 

7 

',\~' 6 

5 

4 

3 

2 

~{ 
Figure 15: Vertical velocities at mid-level (eta=0.5) for 2400Z low resolution 
simulation 
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1.3.1.4 Longevity of Simulated Supercells 

We will consider now the issue of longevity of the storm-cells simulated. As we 

noted in our Introduction, supercells are a relatively long-lived phenomenon. As 

we can see in Figures 16 and 17, which shows the progression of storm cells 

through the movement of mid level (level 13 where eta=0.5) vertical velocities 

from 1600Z to 1900Z for the high and low resolution simulations, the storm cells 

modeled are definitely long-lived phenomena. As stated in the Introduction, 

regular convective storm cells rarely live longer than 20-30 minutes, but 

supercells can live for several hours. As can be seen in the tracing of a single 

supercell over the 1600Z to 1900Z period (circled in the figures), this supercell 

stayed as a coherent structure for at least 3 hours. As well, we can see clear 

evidence of the splitting phenomenon mentioned in the Introduction, adding 

further evidence for the presence of supercells in our simulation. 

Thus, based on the similar longevity of modeled storms, one could conclude that 

the 3km resolution simulation is indeed as capable of capturing the same 

physical processes contributing to storm longevity as the 1 km simulation. 
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Figure 16: High resolution simulation mid-level (eta=0.5) vertical velocities 
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Figure 17: Low resolution simulation mid-level (eta=0.5) vertical velocities 



1.3.2 A Detailed Analysis of One of the High Helicity Areas 
of the Simulations 
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In order to get a better understanding of the modeled processes at the two 

resolutions, we will look at a comparison of the two simulations from another 

perspective - from that of a vertical cross-sectional view through one of the areas 

of most significant convection - specifically, sections which run through the point 

44.19° N, 79.71° W running along the 44.19° N latitude. Consider first the 

meridional and zonal wind sections for the high resolution simulation in figures 

1'8, 19 and 20. 

We can clearly see the jet running north at 1 Okm altitude to the left of the 

meridional section in Figure 18, but quite significantly, there is also a .lower level 

jet at approximately 79. 7° W to 80.0° W also running north at around 2km height, 

which would therefore· mean a high low l~vel shear at this location just above 

ground level. Looking at the zonal winds in Figure 20, just to the east of the 

79.7° W location there exists a low level band of air moving counter (east to 

west) to the main flow of the storm (west to east) just above ground level. This 

would result in a low level convergence at the same location, which could act as 

a lifting mechanism for the flow. This lifting mechanism would induce strong 

vorticity into the flow through the tilting of the highly sheared low level air 
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mentioned above. 

We can see evidence for this low level shear in Figure 21, which shows a Skew-T 

diagram for this location. Also, we can see evidence for a moderately high CAPE 

for this location - 714 J/kg. Given that this moist air mass of moderate CAPE 

would be unstable in the presence of any lifting mechanism, and given that the 

low level convergence discussed above would act as just such a lifting 

mechanism, and that significant vorticity would be induced into the air mass by 

tilting of the highly sheared air by this lifting, we can understand this low level 

convergence would act as a self-perpetuating mechanism driving the formation of 

the supercells along the squall line. Lifted, high shear air would induce significant 

vorticity into the flow, driving the formation of supercells which, through the 

mechanism described in our Introduction would impart a strong vertical pressure 

gradient that would intensify lifting, pulling in adjacent low level moist air and 

resulting in further lifting· immediately adjacent to the supercell, beginning the 

process again. It is important to note that this mechanism would only be 

mesoscale in extent. Thus, at least for the high resolution simulation, the lifting 

mechanism is clearly a mesoscale process. 
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Figure 18: Meridional winds (color shaded) for the high resolution simulation 
through a vertical-zonal cross section crossing 44.19 N, 79.71 Wat 2400Z. 
Simulated radar reflectivity (units: dBZ) is in contours at intervals of 20 dBz. 
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Figure 19: Same as Figure 18, but for a close up view near the squall line. 
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Figure 20: Same as Figure 18 but for zonal winds (color shaded). 
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Sounding at 2400Z for 79.71W, 44.19N 
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Figure 21: Skew-T diagram for high resolution simulation at 44.19 N, 79. 71 W at 
2400Z 

The high resolution simulation then shows a clear mechanism for generating the 

supercells along the squall line. Is the same mechanism evident in the 

corresponding cross-sections for the low resolution simulation? Considering 
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Figures 22, 23 and 24, which show the low resolution cross sections for the 

meridional and zonal winds respectively, we see clear evidence for the same 

mechanisms - specifically a low-level jet with high wind shear at 2km level at 

approximately 79.7° W in the meridional cross section, with a corresponding 

east-west moving wind at ground level moving against the west-east moving air 

mass above up to this 79. 7° W. 
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Figure 22: Meridional winds (color shaded) for the low resolution simulation 
through a vertical-zonal cross section crossing 44.19 N, 79.71 Wat 2400Z. 
Simulated radar reflectivity (units: dBZ) is in contours at intervals of 20 dBz. 
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Figure 23: Same as Figure 22, but for a close up view near the squall line. 
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Figure 24: Same as Figure 22 but for zonal winds (color shaded). 
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Sounding at 2400Z for 79.71W, 44.19N 
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Figure 25: Skew-T diagram for low resolution simulation at 44.19 N, 79.71 Wat 
2400Z 
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1 .4 Conclusions 

So, as stated above, we can conclude that for the purposes of modeling squall 

line formation a·nd position at 2400Z, the low resolution simulation appeared to 

work as well as the high resolution. However, as we have also noted, both the 

high and low resolution simulation showed a similar lag of approximately 80km to 

the west for this squall line position as compared to the actually observed squall 

line. 

The high resolution simulation appears to simulate a more continuous squall line 

with finer structure than the low resolution simulation. This is seen in the 

simulation of radar reflectivity indicative of atmospheric convection. 

We therefore surmise a possible mix of length scales at work contributing to the 

storms evolution - a large length scale driving squall line position captured 

equally well by the low resolution simulation as the high resolution simulation, but 

also a smaller, more 'nonlinear' length scale contributing to the formation of 

discrete supercell structures, and thus likely to take advantage of the increased 

degrees of freedom offered by the higher resolution, and thus more dependent 

on resolution. 
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Despite this however, peak values of radar reflectivity, storm relative helicity and 

vertical velocity were comparable if not higher, for the low resolution simulation, 

therefore adding to our contention that the low resolution simulation was as 

successful in capturing the basic dynamics of the storm's formation and evolution 

as the high resolution simulation. 

The detailed cross-sectional analysis of the storm indicates that a low level jet at 

2km was indeed a driver for the storm's evolution, creating a low level shear 

environment in the moist unstable air in the warm sector. While CAPE values 

were not especially high, the high shear values were enough to constitute a very 

high values of helicity which in turn contributed to the strong updraft vorticities 

that resulted in supercell evolution all. along the squall line. 

We can also conclude from our results that the same physical processes appear 

to be driving supercell evolution in both resolutions. 

Finally, it should be mentioned that for both the low and high resolution 

simulations, mesocyclones (and therefore supercells) do appear to have been 

adequately simulated - in both cases, areas of high upward vertical velocity and 

vertical vorticity were predicted. However, significant downdrafts were not 
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simulated at either resolution. As we discussed in our Introduction however, this 

was to be expected given that these downdrafts were driven by sub-scale 

thermodynamic processes. Given that tornadoes were similarly of a scale smaller 

than our models are capable of resolving, we should not have expected 

tornadoes to be predicted by our model. Nevertheless, our simulations were 

capable of predicting the precursors for tornadic activity, the supercells 

themselves, and are thus · certainly capable of predicting the at least the 

possibility of tornado genesis, which is the most that one could expect at these 

resolutions. 
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2 Convective-Scale Ensemble Methods 

2.1 Introduction 

We come then to the second phase of our study. Having established that the 

same physical processes are being captured by the low resolution model as are 

captured by the high resolution model, we can feel that one can use the results 

derived from an ensemble of low resolution simulations with some justification as 

a suitable basis of comparison with our single deterministic high resolution 

simulation - in other words, to put it more colloquially, that we would be 

comparing apples to apples, and not apples to oranges, as we would be for 

entirely different modeled physical processes. Again, this is important, for having 

done this, we can now regard the statistical products of our ensemble - the 

ensemble averages for instance - as being averages of the same physical 

processes as those of the high resolution simulation, and not averages of 

simulations which were too coarse to capture the same physics. 

We will begin this Introduction with a general overview of those studies that have 

been carried out on the issues related to ensemble modeling in general """.' issues 
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such as nonlinearity and predictability, and the properties of the ensemble mean 

and its benefits, among others. Towards the end of this Introduction, we will 

introduce some studies which have been carried out specifically on the 

convection resolving ensemble modeling of convective phenomena. As noted in 

our general Introduction above, this is an important issue of considerable 

practical relevance, given the difficulties inherent in effectively modeling such 

strongly convective phenomena, and the great need to correctly forecast them 

given their often catastrophic impact. 

We note again the apparent singularity of the meteorological condition being 

considered in this study - the tornadic storm system and the associated squall 

line of August 20, 2009 in southern Ontario. As noted above, this event spawned 

an unprecedented 11 tornadoes across southern Ontario and was therefore 

unusually strong in its intensity. Also, as we discussed above in the first phase of 

this study, the prime lifting mechanism driving the convection along the squall line 

would appear to be a mesoscale phenomenon, and thus driven by a more 

nonlinear set of dynamics than would be the case if more linear, quasi­

geostrophic or synoptic scale processes were dominant. 

Thus, as we mentioned above, it was decided for this study to carry out an 
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analysis focused only on this single event alone, given that it would be very 

difficult to find other storms which we could be sure were driven by exactly the 

same dynamics - certainly storms of this intensity are· very rare, at least in 

Southern Ontario. It is recognized of course that an analysis of only a single 

event is more inconclusive than would be the case were multiple events 

analyzed. In a loose sense however, ensemble-based methods compensate for 

this loss of certainty by putting the statistical burden of certainty on a plurality of 

slightly differing simulations of a given single event, rather than on several 

different but similar events with similar (one hopes) underlying dynamics and 

physics. On important example of such an ensemble-based usage is the 

ensemble mean, which we will elaborate upon below. 

We therefore will look at this study as a test case to see how much ensemble 

methods can tell us about a presumably highly-nonlinear, and somewhat singular 

atmospheric phenomenon, when multiple events of a similar nature may be 

unavailable for a more exhaustive study. There are of course also other practical 

benefits to this approach. It is our belief that these benefits, which will be 

elaborated upon below, will provide justification for this approach. 

We will begin with a discussion of ensemble methods in numerical weather 
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prediction, and specifically what benefits are offered by such methods when 

compared to single, deterministic models. We will also di$cuss here the 

questions of predictability, and how predictability relates to questions of the scale, 

since such questions are central to this study. 

2.1.1 Overview of the Development of Ensemble Methods 

Ensemble methods had their beginning with Lorenz (1963), who had shown that 

nonlinear dynamical systems, like the atmosphere, have only a finite limit of 

predictability, where initial perturbations or errors in the system's starting state 

will over time multiply until any hope of predictability is lost - even round off 

errors in the system's starting state will eventually lead to completely different 

predictions of the system's final state, given enough time. The time at which such 

a complete loss of determinism of the system's final state occurs is a measure of 

the system's predictability - Lorenz estimated that the upper limit of the. weather's 

predictability is about 2 weeks. Thus the well-known 'butterfly effect', where the 

flapping of a butterfly's wings in Brazil, could lead to the difference between calm 

weather or a hurricane in Texas at a sufficiently distant time in the future. While 

an extreme example, the unpredictability highlighted by this effect is certainly 
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relevant, for it is fundamentally this inherent unpredictability which accounts for 

the difficulties faced by all numerical weather prediction system today. 

To complicate matters however, there is as well the fact this predictability limit 

depends also upon the state of the atmosphere - for some smaller scale 

(mesoscale) weather systems, which tend to have more nonlinear dynamics, the 

predictability time scale will in fact be even lower than for the less significantly 

nonlinear and slower evolving synoptic systems. Clearly, especially nonlinear 

mesoscale systems such as supercells and squall lines would fall into this 

category of short predictability processes. This point has been raised in the 

literature, where convective instability has been implicated in reducing the 

predictability of mesoscale processes in weather models (Hohenegger and 

Schar, 2007). Indeed, Hohenegger and Schar (2007) add that for some smaller­

scale phenomena, the predictability horizons may be as short as 75 minutes. 

Clearly then, modeling of mesoscale convective processes presents a significant 

challenge to the NWP community. In order to help deal with the general 

challenge presented by the loss of predictability of the nonlinear processes of 

weather modeling, Lorenz (1965) proposed that rather than running ·a single 

deterministic simulation, one might rather run an ensemble of weather models, 
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each differing from the other by a slight perturbation in initial conditions. Lorenz 

however had a simple model of 28 variables, and introduced an ensemble of 28 

ensemble members. 

There is of course wisdom in this approach - the approach of ensuring that the 

number of ensemble members equals the number of model variables. If one 

assumes for a moment that all model variables are independent, then one would 

need at least this many ensemble members, each with linearly independent initial 

perturbations, to ensure that the full space of possible perturbations realizable by 

the system is in fact spanned by the ensemble. By this reasoning, employing any 

smaller number of ensembles will run the risk that there will be directions in 

perturbation space that will be missed by ensemble members. 

Of course, the number of model variables of any NWP system which attempts to 

accurately model the atmosphere is on the order of 107 (Kalnay, 2003), so clearly 

any attempt to run an ensemble with this many members is far from being 

practical. Equally clearly however, one has only to give the matter a little thought 

before one realizes that the model variables in any NWP model are far from 

being independent from each other. The many equations which drive evolution 

and balance of the model variables in a NWP model impose very significant 
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restraints on the independence of these variables, thereby lessening the span of 

perturbations realizable by the system, and therefore the number of ensemble 

members needed to span their phase space. As well, the system's restriction on 

the type of perturbations possible in the system will favor some of these 

realizable perturbations over others, making some dominant at a particular time 

and place in the system (the dominant modes of the error, or errors of the day) 

and some less dominant. While it is not the purpose of this study to get too deep 

into such matters, it is worth mentioning that studies have shown that most of the 

variation in atmospheric variation is in fact accounted for by relatively few 

dominant modes of variation, at least locally. Indeed, Patil et al. (2001) has 

shown that locally, the atmosphere can exhibit very low dimensions of variation -

with values as low as 2.5 for a local measure of dimensionality called the Bred 

Vector dimension. As they have noted, such low levels of Bred Vector dimension 

indicate correspondingly low levels of atmospheric variation. 

So, it would seem that one might be able to obtain useful results from an 

ensemble of number much less than the number of model variables of the 

system. One of the first to investigate this was Leith (1974), who found that, by 

using a 'Monte Carlo' approach to choosing ensemble members, considerable 

benefit could be obtained by using a relatively small number of ensemble 
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members. Indeed, according to Leith adequate accuracy for ensemble forecasts 

using conventional NWP models could be obtained with sample sizes as small as 

8. 

In his analysis, Leith was also able to show that a major benefit of using an 

ensemble for forecasting is that the ensemble mean has the property that, over a 

long time period, its variance is only slightly more than Yi of what the variance for 

a single forecast would be over the same period. 

For u denoting the deviation of some modeled variable of interest, perhaps wind, 

from the climatology, and uo denoting the deviation of the true state of this 

variable from the climatology, then over a long enough, period, we will have a 

variance of this variable u from the true state uo of: 

<(u-u9)(u-u 0 )) (3) 

Note however that over a long enough time u and uo are uncorrelated, so the last 

two terms disappear, and the variance of u approaches the variance of the 

climatology (which we will denote as U). The first and second terms become U, 

and thus the variance of u from the true state becomes: 
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(4) 

which is twice that of the climatology from the true state. So over a long enough 

time, any deterministic forecast has a variance of twice that of the climatology. 

Hence, the benefit of tempering a forecast towards a climatology (Leith, 197 4 ). 

If however, we use the ensemble mean instead of the deterministic forecast, our 

variance drops to (1 +, 1/m) times the climatological variance - an automatic 

tempering towards climatology. To see this, consider the ensemble mean defined 

as: 

1 Ill 

u = -Iui 
m i=I 

(5) 

then the variance of the mean from the true state is: 

(6) 

But since the mean u and Uo become uncorrelated over time, the last two terms 
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approach 0. Also, substituting in the above equation for the mean u into the first 

term gives: 

(7) 

Since ui and uk are uncorrelated over a long enough period however, only those 

terms for which j=k affect the above sum, giving: 

(8) 

or, more simply, noting that the first term is just 1 /m times the variance for long 

lead times: 

(9) 

So clearly, as we add more ensemble members, our variance gets closer and 

closer to the climatology - hence the automatic tempering to climatology for an 

ensemble mean forecast that we noted above. 
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The ensemble mean has another benefit. It also acts as a filter which removes 

small scale unpredictable features at high resolution. This nonlinear filtering is 

important, because this unpredictability is manifested as an extreme sensitivity to 

initial conditions - simple round off error in the model quickly grows to the point 

where forecasts become useless. Having a mechanism such as the ensemble 

mean to filter out the unpredictable nonlinear modes helps remove this extreme 

sensitivity and make forecasts more reliable. Indeed, it has been noted that the 

ensemble mean is the optimal nonlinear filter which gives the best unbiased 

estimate of the true state of the atmosphere in an root-mean-squared (RMS) 

sense for a model that is identical with the real atmosphere and for an ensemble 

that is perfect (Szunyogh and Toth, 2002). However, even for an imperfect model 

and ensemble, the ensemble mean is still superior to a single control forecast as 

the forecast lead time increases (Toth and Kalnay, 1993). To understand why this 

is the case, we must understand how the perturbations of an ensemble will vary 

over time, and how this variation relates to the predictability of the ensemble 

mean. 

Any ensemble is of course just a collection of initial condition states each with a 
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set of small perturbations from a given control state. These perturbations are 

ideally meant to equal the uncertainty in the analysis that one would obtain 

during a data assimilation step - in other words, the best possible estimate of our 

error in our model state assuming a known degree of uneertainty in our 

background error and a known degree of uncertainty in our observation error. So, 

what the perturbations should represent is the uncertainty that one would have 

in an operational context for the starting state of the atmosphere at the beginning 

of a simulation. With a perfectly predictable system - where there is a perfect 

correlation between the system's input state and its output state, and thus without 

any loss of determinism over time - we could track the evolution of our ensemble 

over the course of the model's evolution and know what the uncertainty in our 

final state would be simply by looking at how large the variation of final states is 

in our ensemble. For areas where there is a great variation of some particular 

variable, say 2m temperature for example, we can know that our predictions will 

be more uncertain in this location than at areas where there is a small variation in 

that variable. This variation is typically quantified by the ensemble spread, which 

is the RMS variation of each ensemble member from the ensemble mean, and is 

often taken as a measure of the unpredictability of a phenomenon - although this 

is a matter of some debate about which we will elaborate upon further below. 
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Thus, for areas where there is a great variation or spread in some particular 

variable, say again 2m temperature, there will be more uncertainty in our 

predictions for that variable at that location. We can however take the ensemble 

mean, which averages out these variations to give us the best possible estimate 

of this variable. 

To see this, we will assume again that we have perfect predictability and a 

perfect ensemble. Now in any system, there will be dominant modes of variation 

(we will discuss this further below, but for now we need only note that some 

directions of variation will be followed by the system much more than others -

these are the "errors of the day", or the dominant modes of variation of the 

system, which are time dependent and will vary with synoptic and mesoscale 

conditions). With a perfect ensemble, our ensemble member's perturbations will 

span these dominant modes of variation both along the vectors oriented in the 

direction of the dominant modes and opposite to them. In such a case for all 

modes of variation, our ensemble mean will therefore tend to fall midway 

between these spanning dominant modes, and so the ensemble mean should 

tend to fall at the center of this cloud spanning the most dominant modes of 

variation. Consider for illustrative purposes variations in only a single direction for 

a particularly dominant mode, with a sample size of N ensemble members. In 
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such as case, if each member has a variation (standard deviation) of o, then the 

variation of the mean of these N members will tend to a variation (standard 

deviation) of o/N 112 
- a well known property of the standard deviation of the 

sample mean for an N member sample. This is why of course, for a perfect 

ensemble with perfect predictability, the ensemble mean converges to the truth 

as our ensemble size increases, when the initial state of the model equals the 

true state at that initial time. 

Unfortunately of course, we neither have perfect predictability nor a perfect 

ensemble in practice. We will deal with this lack of perfect predictability in 

practice first. 

2.1.3 The Relationship Between Scale and Predictability 

For any NWP model, as we have noted above, we must have an inherent 

nonlinearity, since of course the advection term of the Navier-Stokes equations 

introduces an unavoidable nonlinearity, and any NWP model must of course 

contain the Navier-Stokes equations since these equations are part of the 

fundamental basis of any simulation of fluid flow. It is found however, that this 

nonlinearity is more pronounced at smaller scales than at larger scales - in other 
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words, sensitivity to initial conditions, the hallmark of this nonlinearity, is much 

more pronounced the smaller in scale we go. Thus, we have the larger scales of 

flow, baroclinic waves for example, much less susceptible to small variations in 

initial conditions than smaller scale features, such as for example, convective 

modes in the mesoscale. What this means then is that we can predict the large 

scale variations much more easily and for longer periods than the smaller scale 

features - the larger scales, although also nonlinear in nature, are much less 

susceptible to this nonlinearity (or sensitivity to initial conditions) than the smaller 

scales. 

This lack of predictability is best understood in terms of the rate of growth of 

errors over time of variables that are reflective of the scale in question. For 

example, the variation of 500 hPa geopotential heights are reflective of synoptic 

variations in large scale flow (Hohenegger and Schar, 2007), and it is found ·that 

variations of 500 hPa geopotential tend to vary with a doubling time of about 2 

days (the doubling time is of course the time it takes for a perturbation to double 

in size), while for variables like low level temperature, reflective of smaller scale 

modes of variation, the doubling time is only 2-4 hours (Hohenegger and Schar, 

2007). These errors will not grow without bound, howev~r, but will grow 

.exponentially until they reach a maximum, at which point we will have reached 
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saturation. It is at this point where there is a complete loss of predictability of our 

system given our initial state - there will here be no correlation between our 

simulation end state and the initial state, and the variations of our end state will 

effectively be completely random. Again, Hohenegger and Schar (2007) estimate 

from their data that for the ECMWF EPS (Ensemble Prediction System) for 500 

hPa heights, and for the European LM model for lowest level temperatures, 

saturation of the errors of 500 hPa heights and lowest level temperatures occur 

between 6 and 10 days, and 12 and 28 hours respectively. This latter result is 

extremely important in its relation to this study, for it appears to be stating that 

saturation of the 2m temperature can occur in shorter time span than is used for 

the simulations of this study - 24 hours. If saturation of the smaller modes occurs 

before the simulation finishes, what confidence can we have that there will be 

any correlation between our initial smaller-mode related perturbations and our 

final perturbations, as a fully saturated perturbation is effectively a random draw 

without any correlation to the initial perturbation? 

The situation of course is not this simple. Note that the 12 to 28 hour saturation 

time is the average for low level temperatures over all LM runs of Hohenegger 

and Schar's study - for fully convective processes which are even more 

unpredictable, the situation is even worse. Short convective modes, manifested 
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in such features as individual thunderstorms, may indeed be unpredictable for 

time periods as little as 1 hour (Kalnay, 2003). However, Kalnay adds that 

organized convective activity such as squall lines and mesoscale convective 

systems which are forced by the larger scales can be predictable for much 

longer, even on the order of a day or less. As well, of course, these predictability 

limits will also vary from case to case, and will depend upon the dominant modes 

of variation of the system, hence the variations noted above in Hohenegger and 

Schar's results for the 500 hPa geopotential and low level temperatures, which 

reflect a range of conditions. 

So what sort of predictability we should expect from the squall line system of the 

current study is an open and important question, and key to our understanding of 

this system. It will therefore be a question that we will consider further, and will be 

of relevance throughout this study. 
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We should also mention the importance of ensuring that the perturbations 

chosen initially are large enough to span the modes related to the larger scale 

variations discussed above. This is important not only to ensure that the 

ensemble perturbations initially reflect the operational uncertainty of our initial 

state, but also to ensure that .we excite more than just the small scale, convective 

modes of variation. As noted by Toth and Kalnay (1993) in their study, if initial 

amplitudes for the ensemble perturbations (using NCEP's bred vector method -

Tracton and Kai nay, 1993) were initially set to be between 1 and 15 m for the 500 

hPa geopotential height, then the scale of perturbations evolving from the initial 

ensembles during the simulation were of short, baroclinic waves and these 

perturbations grew at an exponential growth rate of 1.5/day. However, if the initial 

perturbations were scaled back to only about 1 Ocm or less, then while these 

smaller perturbations grew much quicker initially, at a rate of about 5/day, they 

tended to saturate much more quickly and at much lower amplitudes, remaining 

at these low amplitudes without further growth9
. Their results showed that this 

9 It is important to note here that Toth and Kai nay are talking about growth of perturbations in a bred 
vector context - where perturbations are periodically rescaled back so that perturbation size equals an 
initial uncertainty. If a convective mode variation does not have time enough to align itself to one of the 
"higher energy" synoptic-scale modes of variation and grow along that mode for any appreciable time, 
but rather simply saturates in the convective mode before the next bred-vector iteration, then the 
perturbations will only remain at these lower energy convective mode amplitudes. Such an ensemble 
will be under-dispersive. 
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difference in saturation amplitude between the two cases was quite significant -

while the larger scale , higher energy initial perturbations saturated at a value on 

the order of about 100% of climate variance, the smaller scale, lower energy 

perturbations saturated at a value on the order of about 1 % of climate variance. 

Thus, with a set of initial perturbations which is too small to catch both high and 

low energy modes of variation, only the quickly saturating low energy convective 

modes will be excited, and not the higher energy baroclinic modes. We therefore 

need to be sure that our initial perturbations are sufficient to get past this low 

energy, small scale saturation barrier. In other words, the result from an 

ensemble of perturbations that are too small will be under-dispersive - the set of 

end states of the ensemble will vary only very slightly about their mean, and will 

in all probability not contain the true state. Thus, it is important that any ensemble 

employed has initial perturbations large enough to span these larger scale, 

higher energy modes. 

So, as we have noted, the ensemble mean is the best estimate of the true 

atmospheric state that we have, given the information available from our 

ensemble. But one might ask, how certain can one be of that the mean correctly 

reflects this true state? What is the uncertainty that the ensemble mean is 

correct? 
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2.1.5 Ensemble Spread and the Spread/Skill Relationship 

Typically, the ensemble spread has been used to make this determination. The 

ensemble spread is for any variable, equal to the root-mean-squared value of 

that variable among the ensemble members. It would seem evident that if there 

is little variation (and therefore spread) among the ensemble members then there 

should be little uncertainty about the true result and therefore the forecast should 

have a high skill. However, that there indeed exists in general a high correlation 

between ensemble spread and forecast skill is in fact a matter of some debate 

(Whitaker and Loughe, 1998). 

On the affirmative side, one can consider a study has been carried out to answer 

this question for forecasts of precipitation (Verret et al., 2002), specifically for 12 

hour probability of precipitation (PoP) forecasts. Here Verret et al have found that 

the spread can be used as a proxy for a confidence index of the skill of the 

ensemble mean, and that the spread-skill relationship for the 12-hour PoP 

remains statistically significant for 240 hours. 

How. significant in general however this relationship remains over time is an 

important issue for the purposes of this study, so we will discuss this matter in · 
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more detail. Houtekamer (1993) has looked into the spread-skill relationship from 

a theoretical perspective which provides much useful insight. We will therefore 

present his analysis as follows. 

We assume an ensemble of forecasts all verifying at the same time, and from 

this ensemble we determine the local ensemble spread SM at a given point from 

the following lognormal distribution: 

(10) 

where J3M is a parameter which determines how much the spread varies, Sc is a 

constant10, and d1 is a normally distributed random variable of mean 0 and 

variance 1; N(O, 1 ). 

We also assume that the corresponding local forecast error 'lM at a given point M 

is given by the following formula: 

(11) 

I 0 Houtekamer's analysis does not include this constant, but his analysis has taken the maximum spread to 
be unity for simplicity, since he is only interested in the correlation between spread and forecast error, 
and the value of this constant has no bearing on the result. In the aim of correctness however, we have 
included this constant in the analysis, since the spread of any physical measurement necessarily should 
not be either dimensionless or in general necessarily l at maximum. 
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where again d2 is also a N(0, 1) distributed normal variable. 

With this relationship established, Houtekamer (1993) shows that the correlation 

between the local spread and the local forecast error is given by: 

2 1-exp(-/3~) 

7r 1 - ; exp (- /3~) (12) 

Also given in his study are two maximum likelihood estimates of SM and ~M from 

data measurements of spread Si: 

(13) 

(14) 

These can be used to estimate SM and ~M from known measurements of spread. 

Once the parameter ~M a is known, the correlation between the spread and the 

forecast error is easily determined. Clearly, as ~M approaches ·negative infinity, 
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the correlation ·approaches 0 as well. With J3M near negative infinity, SM is almost 

uniformly Sc over the domain with little to no variation, since the variations in d 1 

are damped by the large negative J3M. With J3M large, variations in d1 will have a 

much bigger effect, and SM will vary much more over the domain. So ~M tells us 

how much SM varies over the domain - it is a parameter which determines the 

variation of the spread, and as we can see, it also directly determines how much 

the spread correlates with the forecast error (equation 15). One can then see 

from inspection of equation 15 that particularly large positive or negative J3M 

values give us high values of the theoretically expected correlation. This gives us 

a theoretical understanding why anomalously high or low values of spread in 

recent studies have been found to be those with the strongest spread-error 

relationship (Grimt and Mass, 2003; Whitaker and Loughe, 1998). 

Another important relationship to consider is the ratio of the ensemble mean to 

the ensemble spread - called the signal to noise ratio. One can understand 

intuitively that if we have a low value of this ratio, then the variation of the 

quantity being modeled is much bigger than the value of the quantity being 

measured, and thus, the predictability of this quantity must be correspondingly 
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low. To help quantify this relationship Tang et al. (2008) have shown that the 

anomaly correlation (r) of a series of N predictions of some variable u, given by: 

n 

L (uf- PP)( u~- 1'
0

) 

i=I 
r = 

I ~(uf-pP)2I ~(u~-p0 )2 
i=I i=I 

(15) 

where p in the superscript denotes predicted values, and o denotes observed 

values, with µP and µ0 denoting their respective means, relates the signal to noise 

ratio s (the ratio of the mean to the spread or standard deviation of u), as follows: 

r = (16) 

Thus, a signal to noise ratio of 0.5 for example, would correspond to an expected 

anomaly correlation of 0.447, which is not a very strong expected correlation 

between the observed and predicted values. As the signal to noise ratio 

increases, the correlation between our predicted and observed anomalies (r) 

incr~~ases, so a signal to noise ratio of 1 corresponds to an expected anomaly 

correlation of 0.71. For a signal to noise ratio of 2, the correlation has reached 

0.89. Thus, an argument might be made that for a reasonably predictabl_e 
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simulation, we would require that the signal to noise ratio be appreciably greater 

than 1. We .will adopt this criterion (minimum signal to noise ratio of 1) for the 

purposes of this study as the minimum signal to noise ratio possible for a 

reasonably predictable phenomenon. 

2.1.7 Previous Convection Resolving Ensemble Studies 

As we have noted above, there have been only a few studies that have used 

ensemble methods for convection-resolving simulations of convective 

phenomena. Kong et al. (2007), studied the use of an ensemble of 3km 

simulations to model the development of a tornadic thunderstorm ·system - a 

study very similar to the study of this paper. As they noted, theirs was the first 

study to use full-physics storm scale ensemble simulations incorporating realistic 

terrain and realistic horizontally varying initial conditions with the assimilation of 

real observations (data assimilation). Since the study of this paper is also 

investigating a tornadic system using very similar methods, this study of Kong et 

al is v·ery relevant. Note that one very significant difference between the current 

study and that of Kong's is that the current study does not employ data 

assimilation. Thus, any benefits realized in this study using ensemble methods 
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over a single deterministic study can be argued to be attributable to ensemble 

methods alone, rather than ensemble methods in combination with data 

assimilation methods. 

However, there are also other differences between our study and that of Kong et 

al. Firstly, and most importantly perhaps, their study using a scaled lagged 

averaging forecasting (SLAF) technique to generate their ensembles (Ebiusuzaki 

and Kalnay - 1991 ). This technique uses staggered forecasts which start at 

different times but which all verify at the same time. The differences between the 

verifying forecasts are then used as the basis of perturbations which, when 

added to a control forecast, provide the ensemble for ensemble forecasting. Note 

that because error growth occurs as the staggered forecasts progress, earlier­

initialized forecasts will have larger perturbations than later-initialized forecasts, 

which necessitates the need to scale the perturbations accordingly. 

However, as Kong et al noted, the scaling technique used in traditional SLAF is 

inappropriate for fast growing convective perturbations, as perturbations are 

assumed to grow linearly with time. They therefore developed an amplitude­

based scaling method for their study. In addition, presumably due to the fact that 

their ensemble was generated from staggered initializing forecasts, only 5 
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members were used in their study. While they did not make mention of the 

reasons for this relatively small sample size in their study, one may surmise that 

the reason may relate to the fact that it would be necessary to ensure that the 

staggered forecasts were not initializing too far into the past, as nonlinearities 

and possibly saturation of even the larger scale modes might then become an 

issue. They also note however that considerable benefits can be obtained from 

ensemble products even when the ensemble sample size is as small as 5, which 

is comparable to Leith's lower limit of 8 ensemble members, and could therefore 

be argued to be justifiable. Nevertheless, we can conclude generally from these 

considerations that generating ensemble perturbations for convective scale 

modeling presents a significant challenge. Hence the need to develop a 

computationally inexpensive alternative for generating ensemble perturbations 

for research/investigative purposes. In the approach of this study, to be 

presented in the Methodology section to follow, we use an existing ensemble -

the Global Forecast System (GFS) Ensemble from the National Center for 

Environmental Predictions (NCEP) - to act as the basis from which the 

perturbations which generate the ensemble of this study will be interpolated. 

Note that while the approach of using existing ensembles to generate new 

ensembles has been used before, it should be remembered that the GFS 

ensemble uses a much coarser resolution (1 degree) than the ensemble 
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simulation resolution of this study (3km). Given this very signiflcant difference in 

resolution, and that most ensemble prediction studies have been used for only 

for synoptic scale prediction using such coarser resolution ensembles as the 

GFS, and that only a few studies have been carried out using ensemble methods 

for convective scale prediction of strongly convective phenomena, the success of 

using such a coarse data set to generate a convective scale ensemble as in our 

study is an open question and is worth investigating further. Hence, the need to 

address this issue in the current study. 

To continue, the study of Kong et al noted that for their ensembles, a delay in the 

initiation of convection was a problem - which they noted was due to model start 

up issues in the absence of initial data assimilation. Since the same conditions 

would also occur in the current study - a lack of data assimilation and start 

up/spin up issues after initialization, a delay in convection initiation for the cyrrent 

study may also be a problem. Obviously, such convection delay should be looked 

for in our results - especially given the phase lag evident in the low and high 

resolution single model runs of the first part of this study. 

They also addressed the issue of the efficacy of using lower resolution data to 

generate ensemble perturbations - specifically, is it appropriate to generate 
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perturbations from coarse-grained initial conditions from an existing forecast and 

interpolate the data to the finer-grained resolution of our ensemble? Since as we 

have noted, and will see below, just such a data interpolation method is also 

used in the current study, this question will also be of importance. 

Hanley et al (2011) also conducted a similar study of a convective scale 

ensemble simulation of a squall line over central Europe. While, like the Kong et 

al study, they were able to initiat~ convection for all ensemble members, they 

noted, also as in the Kong et al study, that there was a 1-2 hour delay in 

convection initiation among the most of the 28 members which resulted in a 50-

200 km phase lag of the position of the simulated squall lines behind the actual 

squall line, with only a few of the ensemble members accurately positioning the 

squall line. It should be noted that the ensembles were generated using the Met 

Office Global and Regional Ensemble Prediction System (MOGREPS: Bowler et 

al 2008), which perturbs both initial conditions using an ensemble transform 

Kalman filter and model physics parameters. 

They added that they believed that the speed of squall line development is linked 

to variations in the large scale dynamics. Thus, one could suppose that there 

would be a positive correlation between the initiation time or place of a simulated 
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squall line system and some large scale feature(s) of the model initiation 

environment. Again, this will be a key question which we will attempt to address 

in the third part of this study. 

Ensemble methods for convective scale forecasting were also examined by 

Leoncini et al (2010) who noted that the growth rate of convective scale errors 

are around 10 times larger than those of the synoptic scale, and hence the 

tangent linear approximation used in non-ensemble based data assimilation 

techniques breaks down within a few hours. In other words, and as noted above, 

synoptic modes of variation (while inherently nonlinear due to the nonlinear term 

of the Navier-Stokes equation) are nevertheless less nonlinear than the 

convective modes of variation (and therefore retain some of the linearity needed 

by the tangent linear approximation). Thus synoptic modes of variation retain 

strong correlations for longer periods of time with initial conditions 11 than the 

convective modes. From this one could conclude that ensemble methods would 

appear to be much more effective for numerical weather prediction than single 

deterministic prediction simulations, as they have the ability, as we noted above, 

to filter out these small scale convective nonlinearities (which have lost any 

11 We will look into correlations in more detail in the third part of this study, but it is worthwhile to note 
that formally defined correlation (see equation 24 in Chapter 3) presuppose a linear relationship. In 
other words, a significant correlation of a variable with initial condition variables is an indication of a 
retained linearity of this variable with initial conditions - a condition expected of the "less nonlinear" 
synoptic modes of variation. 
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useful information due to modal saturation), but still retain the useful information 

contained in the "less nonlinear" synoptic perturbations. 

However, it should be noted in general that the unavoidable nonlinearities make 

conventional methodologies for perturbation generation, designed initially for 

large scale synoptic modes of variation - perhaps questionable when employed 

for convective prediction due to the loss of initial condition perturbation 

"information" due to convective mode saturation. Does this convective mode 

saturation problem negate the possibility of useful convective predictability using 

ensemble methods, or do the synoptic modes still retain useful predictability for 

such features as squall line position, if not for the placement of particular storm 

scale features past these convective saturation timescales? As a result of these 

concerns, the effectiveness of the ensemble used in the current study for 

convective prediction is a key question that needs to be addressed. Hence this 

issue remains one of the key concerns of this phase of our study. 

Finally, a quick mention should be made of methods used to locate the squall 
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lines of the ensemble members in this study. We will use for our investigations of 

squall line position a quantity called moisture flux convergence (MFC), which is 

expressed in equation 17 below. This approach has been used in several studies 

in the past - for example Banacos and Shultz (2005) have noted, moisture flux 

conv~rgence is an effective means of locating mesoscale convective boundaries 

(such as squall lines). 

MFC = V·(wv) (17) 

where w is the mixing ratio (in kg/kg) and v is the velocity. 
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2.2 Methodology 

Our ensembles was generated using an existing analysis ensemble - the GFS 

ensemble of NCEP. The 20 available perturbed members of the GFS analysis 

ensemble were used, each verifying on August 20, 2009 at OOOOZ, 0600Z, 

1200Z, 1800Z and 2400Z (August 21st, OOZ). For each of these analysis times, 

the corresponding ensemble mean was calculated and subtracted from the 

ensemble members, to give a set of ensemble perturbations. Next, the 3km 

resolution simulation initial and boundary condition data sets from the first phase 

of the study were taken (our base state), and these perturbations were added to 

this base to give a set of 20 initial and boundary condition data sets for our 

ensembles. Note that by doing this, not only do we ensure that our initial 

condition perturbation sizes are the same as those used to initialize the GFS 

ensemble, but also, we ensure that our boundary conditions also change 

accordingly and are thus not all fixed to be the same for all ensemble members 

(which would otherwise tend to 'pin' and therefore restrict synoptic variations -

Hohenegger and Schar, 2007). As well, some of the balance that exists between 

variables in the GFS ensemble will be transferred to our ensemble as well, 

assuming that the 'control' states for both are close. This will presumably help 

speed up the time needed for our simulations to 'spin-up' and attain the balance 
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needed for a successful simulation. 

Note that to do this it was necessary to interpolate the GFS ensemble 

perturbations to our model's higher horizontal resolution, as well as interpolate 

the perturbations also to our model's vertical resolution. Thus, each ensemble 

perturbation was interpolated using NCL to the same horizontal and vertical 

resolution of the base state low resolution 3km resolution simulation. 

The simulations using the resulting ensembles as initial conditions and boundary 

conditions were then run for the full 24 hour period, from August 20, OOZ to 

August 21, OOZ - which again, for clarity, we will call 2400Z in the following 

analysis. 

As noted above, it should be remembered that our method is not the typical 

method used to generate ensembles. Typically, fairly involved procedures are 

used, such as the Breeding Method (Tracton and Kalnay, 1993) used at NCEP. 

Indeed, this is the method that was used to generate the GFS ensemble used in 

the study. As has been noted in the literature, ensembles generally suffer from 

under-dispersion (Stensrud et al., 1997), so a great deal of research has been 

carried out to ensure that the ensembles used by the various centers (NCEP, 
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ECMWF, CMC, etc.) are indeed performing as needed, having their ensemble 

means remain as close to reality as possible, while at the same time having 

reality fall within the 'cloud' of ensemble members - or as Kalnay has noted 

(2003), having reality fall as a 'plausible member of the ensemble'. This is a 

significant challenge and involves a fair degree of work, so having a method to 

generate quickly an ensemble for study from an already existing ensemble could 

be useful for investigative and research purposes. Having a result from this study 

therefore which shows that this method generates an ensemble that is not under­

dispersive, and generates accurate forecasts, would therefore hopefully be of 

some benefit. 
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2.3 Results and Discussion 

We begin first with an examination of the behavior of the different ensemble 

simulations - how the perturbations of the initial conditions were carried through 

the simulation to result in differing final conditions of the model by the end of our 

simulation period - at 2400Z in our model time - or August 21st, OOZ. 

2.3.1 Moisture Flux Convergence 

We first turn to our moisture flux convergence (MFC) results, which as we have 

noted in our introduction, are a diagnostic means of locating mesoscale 

convective boundaries - squall lines (Banacos and Shultz, 2005). 

We will consider then low level (850 hPa) moisture flux divergence, noting of 

course that moisture flux convergence is just the opposite of the divergence, so 

we are looking for negative values. Following in Figures 26 and 27 are two plots 

showing the 2400Z low level moisture flux convergence for two of the ensemble 

members - ensemble members 6 and 8 respectively. 
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Figure 26: Low level moisture flux divergence for ensemble member 6 
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Figure 27: Low level moisture flux divergence for ensemble member 8 
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As we can see from these figures, there is considerable difference between the 

two with regard to the quality of the squall lines simulated. Ensemble member 6 

shows a line of well-defined areas of convergence and divergence alternating 

along a line running roughly north-northeast through the west end of Lake Erie, 

while ensemble member 8 shows a much less well defined 'band' of smaller 

convergence areas at roughly the same position, with little moisture divergence. 

Note that all 20 of the ensemble members are presented in Appendix C, but for 

brevity of the current study, we will only present a few of the ensemble members 

in the main body to illustrate points we wish to draw attention to, as needed. 

A.s we noted in our Introduction, areas of low level moisture flux convergence 

correspond fairly well with areas of low level mass convergence, so areas of 

moisture flux convergence should correspond with areas of upward air 

movement, and areas of divergence with areas of downward air movement. One 

could surmise then that ensemble member 6 simulated more well-defined 

downdraft cells, and stronger, more well-defined updraft cells. There is therefore 

quite a significant degree of difference between the ensemble members with 

respect to the strength and formation (and as we will soon discuss, position) of 

the generated squall-line. 
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Further, as we have noted in our Introduction, one question of importance for a 

generated ensemble is whether or not the ensemble is under-dispersive. As we 

have noted, a poorly generated ensemble which has too high a degree of 

correspondence between ensemble members will tend to be under-dispersive. 

As we have also noted, it is a non-trivial matter and a subject of considerable 

research to generate a well behaved ensemble, not subject to this and other 

deficiencies. Thus we arrive at one of the aims of the present thesis - to prove 

that the method used by the current thesis to generate the ensemble used for 

this study gives an ensemble that is sufficiently dispersive, and with the actual 

observed state falling within the ensemble. This issue will be covered in more 

detail below. 
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Squall Line Positions As Determined by ·Extreme 
Moisture Flux Convergence Regions and High 
Temperature Gradient Regions: How These Regions 
Relate in Position to the Actually Observed Squall 
Line 

In order to answer this question of dispersion then, we consider again some of 

the plots that were obtained for moisture flux divergence discussed above, as 

well as corresponding plots of high temperature gradient values - which as we 

noted in our Introduction, are highest at the squall line boundary. Thus, the same 

areas which show high moisture flux convergence should also be those areas 

which show high temperature gradients as well - those areas with significant 

convective activity. For clarity in the temperature gradient plots, we have isolated 

those areas which have absolute temperature gradients more than 50% of the 

domain (2"d domain) peak absolute temperature gradient value. Each 'object' 

obtained (indicating a contiguous region of high temperature gradient value) 

corresponds to a high absolute temperature gradient - and should thus in theory 

correspond fairly well to squall line position. We will show in the following figures 

one example where the simulated squall line fell to the east of the actually 

occurring squall line (Ensemble member 4 - Figures 28 and 29) and one to the 

west of the squall line (Ensemble member 17 - Figures 30 and 31 ). It should be 

. noted however, as could be expected from the westward biases of our 1 km and 
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3km resolution simulations from first phase of this study, that there was also a 

significant westward bias of the ensemble members. Thus, we should expect a 

larger fraction of our ensemble members to have squall lines which fall to the 

west of the observed squall line, as opposed to the east. However, we should 

also expect for a well designed, non under-dispersive ensemble, to have some 

number that would fall to the east for a large enough ensemble - this would be a 

necessary condition for a sufficiently dispersive ensemble. 

Note that in Appendix 8 the squall lines defined using this 'object-based' are 

plotted for the 20 ensemble members. While the 'objects' that correspond to the 

high temperature gradient areas are in fact determined objectively, as per the 

method outlined above, the linear extent of the squall lines, determined by 

choosing those two 'objects' which define the squall lines ends, were determined 

subjectively, and are thus admittedly subject to some interpretation. The resulting 

squall lines are presented in these plots in Appendix 8. Also presented in 

Appendix C are the plots of 2400Z moisture flux divergence for the 20 ensemble 

members. 

There are several things to note from Figures 28 to 31 for ensemble members 4 

and 17. First, in both cases, when an area has a squall line position expected as 



I. "!. 

108 

a result of high levels of moisture flux divergence/convergence, there is also a 

high level of temperature gradient as well at roughly the same position. 

To summarize findings from the figures in Appendix B and Appendix C, we have 

the following results for estimated squall line positions (see explanations both 

above and in Appendixes B and C), both to the east of the observed squall line, 

and to the west of the actual squall line, which we can see in Figure 11 above, 

and which falls about 80km east of the western end of Lake Ontario at 2400Z: 

Squall Line Position 
Relative to Observed 

Position12 

West 

East 

Same Position 

Uncertain/Indistinct 
Squall Line 

Moisture Flux Divergence 
Squall Line Position 

Ensemble Members 13 

1,2,6,7,9, 10, 12, 13, 14, 16, 17, 18, 1 
9,20 

4,15 

3,5,11 

5, 14, 19,20 

High Temperature 
Gradient 

Squall Line Position 
Ensemble 
Members14 

1,2,6, 7,8, 10, 12, 13, 1 
6,17,18 

4,9,15 

3, 11 

8 

Table 2: Positions of simulated squall lines relative to observed position using 
moisture flux divergence and high temperature gradient plots at 2400Z 

12 The observed squall line position is simply the position as seen in Figure 11 - the linear cloud band 
running about lOOkm east of th western end of Lake Ontario. 

I 3 This line is estimated at the best fit through the high moisture flux divergence/convergence limear band 
which runs roughly north/south through most of the plots of Appendix C. Of course, such an estimate is 
subjective, but in most cases, the band is fairly clear. 

14 The squall lines here are just the gray lines drawn through the plots in Appendix 8 - see above and 
Appem;lix 8 for an explanation. 
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As we can see from Table 2, there is a definite westward bias of simulated squall 

line position for both the squall line positions from the moisture flux divergence, 

and for those from the high temperature gradient, so clearly the two methods 

generally agree - although there are some slight differences. Again however, 

there were nevertheless a few ensemble members which did fall to the east of 

the observed squall line, so it would certainly seem that the observed squall line 

position did appear to fall as a plausible member of the ensemble. This, then 

lends support to the contention that the ensemble used for this study satisfies 

one the main criteria of a 'good ensemble' (Kalnay, 2003) - that the observed 

'cloud' of ensemble members encompasses the true state as well. Nevertheless, 

our bias/phase lag is exactly the same one mentioned by Kong et al (2007) and 

Hanley et al (2011) discussed in the Introduction, and is of comparable size to 

the bias noted by Hanley et al in their study (they reported a 50-150 km phase 

lag error for their ensemble members, while our ensemble mean had 

approximately an 80 km phase lag error, as did the high and low, resolution 

simulations). 
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Figure 28: Low level moisture flux divergence for ensemble member 4 at 2400Z 
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Figure 29: High temperature gradient areas for ensemble member 4 at 2400Z 
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Figure 30: Low level moisture divergence for ensemble member 17 at 2400Z 
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Figure 31: High temperature gradient areas for ensemble member 17 at 2400Z 
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There is however another reason, as noted in our Introduction, to be interested in 

the degree to which we have adequate dispersion of the ensemble members -

again, that they diverge enough as the simulation progresses to envelop the true 

atmosphere state. As has been hypothesized by a number of authors (Hamil and 

Colluci, 1998; Stensrud et al., 1999; Wandishin et al., 2001 ), under-dispersion is 

believed to be a major cause of the inability of the ensemble spread to correlate 

accurately with the skill of the ensemble mean. Given that our ensemble does 

indeed manage to capture the actually occurring state, we therefore have further 

evidence that our method for generating the ensembles provides an ensemble 

spread that will have the ability to reflect accurately the skill of the ensemble 

mean forecast. 

Thus, having shown that the ensemble we have created is not under-dispersive, 

we now turn to two of the most widely used products of the ensemble, the 

ensemble mean and the ensemble spread. 

2.3.3 Vertical Velocity - Ensemble Mean and Ensemble 
Spread Relationship 

We will consider the ensemble mean and ensemble spread here of mid level 

(eta=0.5) vertical velocity at 2400Z. The meteorological phenomenon which is the 



113 

focus of this study is of course the squall line/supercell system discussed in the 

Introduction, so it would be most informative to study vari_ables which are most 

indicative of squall line/supercell activity, and vertical velocity is of course one of 

the most informative of these variables, as high vertical velocities are naturally 

associated with severe convective activity. 

With this in mind we consider first Figures 32 and 33 which give the ensemble 

mean and ensemble spread vertical velocity at level 13 (approximately eta=0.5) 

at 2400Z. We will note of course immediately that for the ensemble mean vertical 

velocity plot (Figure 32), extreme values of the mean occur at the position of the 

squall line predicted by our high and low resolution simulations of the first part of 

this study. Thus, clearly the ensemble mean predicts the squall line at the same 

position as the high and low resolution simulations. 

One should also note that the ratio of mean vertical velocity to spread vertical 

velocity (the signal to noise ratio), is on the order of 1. As we noted above, a low 

level of this ratio in an area where the ensemble mean is significantly greater 

than zero 15 is indicative of a higher degree of unpredictability in our simulation . 

Values along the squall line are on the order of a value of 1 for these vertical 

15 The stipulation that the mean must be greater than 0 is important, otherwise for low ensemble rnean 
areas the signal to noise ratio might be small simply because there is little vertical velocity in any of the 
simulations, which has nothing to do with predictability 
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velocity plots. This of course is right at the lower limit of what we have chosen to 

be representative of a reasonably predictable phenomenon. 

Thus, using this criterion, the vertical velocity mean and spread plots can be 

argued to offer sorne evidence that the processes along the squall line appear to 

be somewhat unpredictable in nature. 

Ensemble Mean Vertical Velocity at Mid-Level (Eta=13) 
at 2400Z 
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Figure 32: Ensemble mean vertical velocity at 2400Z at level 13 (Eta=0.5) 
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Figure 33: Ensemble spread vertical velocity at 2400Z at level 13 (Eta=0.5) 
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It is important to note here that the unpredictability that is being discussed here is 

being manifested as high values of ensemble spread (or low values of signal to 

noise ratios for appreciably non-zero ensemble mean values) for vertical velocity. 

NotE~ that these high values of vertical velocity spread are distributed in very 

concentrated areas along the squall line, as evident in Figure 33. Thus, the 

unpredictability that we are dealing with here is an unpredictability for features in 

the mesoscale. This is important, for we will see later in Chapter 3 that 
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predictability remains significant for the larger synoptic scale features of the 

storm, specifically the squall line's position. Thus, issues of scale and their 

relationship to predictability (an important theme of this study) are evident in 

Figures 32 and 33 as well. 

Note also that peak values of mean vertical velocity are only on the order to 2 

m/s along the squall line - well under the 16.6 m/s and 19.1 m/s peak vertical 

velocities obtained for the high and low resolution simulations respectively in the 

first part of this study. Thus, it would appear that the ensemble mean has had the 

effect of smearing the peak values over a larger area, exactly the ensemble 

mean smearing effect noted in our introduction. 

2.3.4 Ensemble Spread and Predictability of Rainfall Rate 

Let us consider the ensemble spread of the 2400Z rainfall, given in Figure 34. As 

can be seen in this figure, the spread is highest along the squall line, as 

expected, since nonlinearity should be highest here. _We might ask however, how 

indicative is this spread of the expected forecast error along here. 
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As we noted above, anomalously high values or low values of spread show 

better spread-skill relationships than values of spread which tend to fall in the 

middle, so we might expect that along the squall line, there would be a good 

correlation, and thus we could surmise a high degree of uncertainty along the 

squall line. 

Houtekamer's theory allows us to quantify this correlation however. Using 

equations 13 and 14 above, we can estimate the ~ parameter for the ensemble 

spread distribution of Figure 34. Using the data from this distribution, we 

calculated the ~ parameter for all values of spread above the following cutoff 

thresholds 16 using equations 13 and 14 as follows: 

Spread Threshold (mm/hr) 

0.0 

0.2 

0.5 

1.0 

2.0 

5.0 

Calculated ~ Parameter 

2.057 

2.165 

2.120 

2.053 

1.961 

1.790 
Table 3: Calculated ~ parameters for various cutoff thresholds of ensemble 
spread of rainfall at 2400Z 

16 We use a cutoff threshold because we are interested in the behavior of spread along the squal I line, 
where presumably our predictability is lowest, and hence the spread is highest. So by using the 
threshold, we exclude the low values of spread in the areas away from the squall line. We see from our 
results however, that for reasonable cutoff values, our~ parameter is fairly insensitive to our choice of 
cutoff threshold. 
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As we can see from Table 3, the ~ parameter calculation is fairly insensitive to 

our cutoff threshold, so choosing a threshold of 0.5 mm/hr seems appropriate. 

This insensitivity to the threshold indicates that the behavior of the variation of 

the spread is driven by the higher values of spread - those spread values along 

the squall line. 

Choosing a representative value of~ of 2.12 then, we can calculate an expected 

correlation between spread and forecast error from Equation 12, giving a 

correlation of p=0.796. This is a reasonably high correlation between ensemble 

spread and forecast error, so we can be fairly certain that our high spread values 

along the squall line are indeed indicative of a higher forecast error of the mean. 

To see how significant these high spread values are, it is important to again look 

at the variation of the ensemble mean to the spread - the signal to noise ratio, for 

rainfall. 

Figure 35, gives the ratio of the ensemble mean rainfall to the ensemble spread 

for all points which received more than 0.5 mm/hr of rain at 2400Z. As noted 

above, where this ratio is small in those areas where the ensemble mean is 

significantly greater than zero, the noise or variation in rainfall is greater than the 

mean, meaning there is more uncertainty in the mean than in those places where 
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this ratio is higher. It is evident from this figure that along most of the squall line, 

the signal to noise ratio is on the order of 0.5 or less, so we should expect that 

predictability would be low here. Again, we must note that the predictability that 

we are referring to here relates to the scale of the phenomenon being studied -

squall line associated rainfall distribution - which is mesoscale in character. 

Thus, our r3 parameter results inferred from our distribution indicate again that 

first that our spread skill relationship is fairly high (p=0.796), and therefore the 

high signal to noise ratios evident in Figure 35 indicate a true lack of predictability 

for mesoscale phenomena such as rainfall rates. These findings of low 

predictability along the squall line for rainfall of course corroborate our similar 

findings from our vertical velocity results. 
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Figure 34: Ensemble spread hourly rainfall at 2400Z (mm/hr) 
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Figure 35: Ensemble signal to nqise ratio for hourly rainfall at 2400Z (mm/hr) 
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Relative Predictive Abilities of the Deterministic, 
Ensemble Mean and Rescale 1V1ean Distributions - Hit 
Rates and Root Mean Squared~ Rainfall Rate Errors 
Relative to Observed Values 

In order to get a more quantitative understanding of the relative performance of 

the high resolution deterministic and ensemble mean distributions, we will 

consider the hit rate 17 of the rainfall rates over the period of simulation. Shown in 

Figure 36 is of the hit rate for both the ensemble mean distribution plotted against 

the hit rate for the deterministic simulation for the 1 mm/hr rain threshold. 

Following this is a similar plot in Figures 37 for the 2.5 mm/hr threshold, and a 

plot in Figure 38 for the 5 mm/hr threshold. 

Clearly, as can be seen from these figures, the ensemble mean compared 

favorably with the deterministic simulation. Indeed, both distributions appeared to 

follow each other's performance fairly closely over the 24 hour simulation period. 

One might surmise that this performance similarity has a lot to do with the similar 

westward bias of squall line position for the 2 simulations, since as noted above, 

both simulations showed a similar predicted position for the squall line. Naturally, 

having a bias in squall line position, along which a large proportion of the rainfall 

I 7 The hit rate is defined as the ratio of the number of cases where observed values and predicted values 
were both above or below the threshold - in other words they agreed about rainfall being above or 
below the threshold - to the total number of cases in total. 
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is distributed, would have a large effect on the hit rate for rainfall. Thus, any one 

could argue that the differences between the three distributions are more than 

offset by their similar westward bias, making any meaningful quantitative 

comparison difficult. 

A similar comparison was made with rainfall rates derived from radar reflectivity 

data. In this case, the rainfall rate product derived from radar reflectivity values 

were taken from the Buffalo Airport radar facility data set at 24002, and 

compared against the predicted rainfall rates from the high resolution 

deterministic and ensemble mean distribution. The results are presented below in 

Table 4: 

Model Root Mean Squared Rainfall Rate Error 
As Compared to Buffalo Radar Derived 

Data 

High Resolution Deterministic Model 8.56 mm/hr 

Ensemble Mean 7 .68 mm/hr 

Table 4: RMS error of predicted rainfall rates at 2400Z as compared to Buffalo 
RADAR data derived rates 

We can see that from this result the ensemble mean appears to perform better 

than the deterministic mode. One might expect this, given the phase error of the 
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squall line position - with the ensemble mean having smearing of the rainfall 

pattern over a more distributed area than the deterministic distribution, the phase 

error will have less of an impact for a smeared distribution. The deterministic 

distribution however, was not able to benefit from this smearing effect, and so 

with its large phase error, had the highest RMS error. Naturally we have to be 

careful about drawing any conclusions from the above results however, as we 

are looking at only a single case. 

It has to be admitted then that these results are somewhat inconclusive - the 

large phase error which was observed for the deterministic and ensemble mean 

distributions makes any meaningful comparison difficult, since tne variations 

between the three are minimal in effect compared to the effect of their common 

phase error. 

2.3.6 The Relationship Between the Scales of the Modes of 
Variation and Predictability 

We come now to an issue that, as we discussed in the Introduction, is an 

important issue for this study - the contention that the smaller scales of variation, 

such as those relating to convective modes, are inherently less predictable than 

the larger scales of variation, such as those relating to baroclinic modes. 
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We can see this relationship more concretely if we consider F,igures 47 and 48, 

which show the growth of 3rd domain root mean squared deviation from the 

ensemble mean of 2m temperature perturbations and 500 hPa geopotential 

perturbations respectively. 

We can see from Figure 39 that the temperature perturbations drop from their 

initial value to a lower value at around 2 hours, before gradually increasing in 

size until they reach a maximum value at around 16 hours, after which there is no 

further growth but just a variation around this value. Of course this is only a 

single case, and so these results cannot be taken as conclusive, but the results 

are certainly similar to the results of Hohenegger and Schar (2007) mentioned 

above, who found that for low level temperature perturbations, there will be 

saturation of low level temperature perturbation heights between 12 and 28 

hours. Further, they also noted that initially, temperature perturbations will drop to 

a low value after several hours, after which there will be growth to this point of 

saturation. This initial drop corresponds to the initial perturbations initially aligning 

themselves with the directions of dominant growth 18 
- the directions of the 

dominant singular vectors - after which growth will follow these dominant singular 

18 What happens is that the portions of the perturbations not aligned with a singular vector will quickly 
dissipate as gravity waves, thereby causing an initial drop in perturbation magnitude, while the portion 
of the perturbation aligned with a dominant singular vector will grow as expected for a domin~nt mode. 
Thus, the pattern resulting is as seen in our results, an initial drop of perturbation amplitude, followed 
by a growth of perturbation amplitude over time. 
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vectors (Kalnay, 2003). So the results of the ensemble temperature perturbation 

growth are indicative of the dominant modes of fast growing, unpredictable 

convective error growth. The 12-16 hour saturation time will be important as well, 

which we will discuss further below. 

Figure 40 is less clear however, since the 500 hPa geopotential heights 

necessarily grow much more slowly than the low level temperature perturbations, 

and tend to saturate as we noted above between 6 and 10 days (Hohenegger 

and Schar, 2007). Thus, our 24 hour study period is much too short to see this 

effect. Nevertheless, we can see a distinct drop in perturbation height between 0 

and 16 hours, after which their appears to be gradual growth of the perturbation 

heights with time (presumably after alignment with the dominant synoptic 

modes), although of course this growth is truncated soon after it began at our 24 

hour cutoff time. These results, while again noting that we have only a single 

case here and therefore no definite conclusions can be drawn from them, are 

nonetheless suggestive of the more slowly growing, baroclinic modes of variation 

noted by Hohenegger and Schar (2007), and indeed appear to match those of 

their study. 

It would appear that our ensemble was able to successfully capture both the 
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unpredictable, quickly-varying modes of variation suggestive of convection, as 

well as the more slowly varying and more predictable modes of variation 

associated with baroclinic activity. This conclusion can be made .because, as 

Hohenegger and Schar (2007) have noted, baroclinic activity is captured by the 

500 hPa geopotential RMS perturbations from the ensemble mean, and 

convective instability is captured by the low level temperature perturbations from 

the mean. As we mentioned in the Introduction, ensemble perturbations that start 

too-small in size quickly saturate (after around an hour) at unrealistically small 

perturbation values - and hence, as noted above, are under-dispersive. The 

slower growth of our perturbations evident for 2m temperature and 500 hPa 

geopotential heights would indicate then that our simulation's ensemble does not 

suffer from this problem. Thus the approach that we have taken to generate our 

hi~1her resolution ensemble (from an existing lower resolution ensemble) appears 

to be successful in capturing both the synoptic and convective modes of 

variation, and should therefore be considered in this respect a successful 

ensemble. 
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Figure 36: Hit rate for ensemble mean distribution - 1 mm threshold 
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Preciptiation Hit Rate - 5 mm/Hr Threshold 
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Figure 38: Hit rate for ensemble mean distribution - 5mm threshold 
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Figure 39: RMS perturbation size growth for domain 3 2m temperatures 
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2.4 Conclusions 

We have seen then that the ensemble mean has the same bias of squall line 

position that was seen in both the high and low resolution simulations - a general 

lag of the position of convection in relation to observations. Therefore, the use of 

the ensemble mean has not improved our simulation in this respect - westward 

bias is still a problem. It is worth noting that this is the same bias that has been 

seen in two studies of convective scale ensemble modeling discussed in our 

Introduction, which was hypothesized to be related to a delay in convection 

initiation. 

However, we have also shown that the ensemble members are not under­

dispersive - the true state of the atmosphere appears to be a plausible member 

of the ensemble, albeit somewhat biased to the east. Thus, at least in terms of 

dispersion, our ensemble generation method outlined in the Methodology 

appears to be a successful means of obtaining initial ensemble members and 

ensemble boundary conditions. This would lend evidence to the contention that 

the outlined methodology for creating a set of ensemble perturbations from a 

preexisting ensemble is a viable approach. Also, the results of this study allay to 

a certain extent the concerns raised in the Introduction regarding the use of low 
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resolution ensemble data for the creation of a higher resolution set of ensemble 

perturbations. It should be noted however that this study is only a single case, so 

no definitive conclusions can be drawn from its results. Nevertheless, our 

ensemble generation approach - creating a high resolution ensemble quickly and 

cheaply by adding the interpolated perturbations obtained from a pre-existing low 

resolution ensemble to a high resolution control - appears to have worked, and 

appears therefore to be worthy of further study in the proposed follow-up study 

employing ensemble data assimilation methods. 

As we should have expected, unpredictability is highest along the squall line, with 

the signal to noise ratio either 1 or below along this line for vertical velocities, 

potential vorticities, and rainfall. Thus, we cannot expect that measurements of 

these quantities will have any real possibility of being accurately forecasted along 

the squall line - especially since there appears to be a great variability of these 

quantities along the squall line with domain maximum and minimum values 

occurring in very close proximity. Therefore, forecasting the genesis or evolution · 

of specific structures in the squall line would be questionable at best. 

Whil(~ this modeled unpredictability is manifested as an increase in spread 

among our ensemble members, we have seen for the rainfall predictions that 
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there is a high likelihood, based on Houtekamer's theory, that this unpredictability 

also indicates an actual inherent unpredictability of the true atmospheric state. 

We have also seen that there appear to be at least two scales of unpredictability 

relevant to our results - a smaller scale of unpredictability related to low level 

temperatures that reaches saturation (and thus loses all predictability) around 16 

hours of simulation time, and a larger, synoptic scale of unpredictability related to 

mid-level geopotential heights that reaches saturation at time scales well past our 

24 hour simulation period. Thus, those phenomena that relate to the larger, 

synoptic scale should remain predictable over the time scale of our study. Given 

that the ensemble mean and both the high and low resolution simulations all 

showed the same positioning of the squall line, there is a strong argument to be 

made for the fact that the squall line position is therefore driven by the 

predictable larger synoptic-scale flow, rather than from the unpredictable smaller 

scale - since all three methods agreed on this position, adding indirect evidence 

to their predictability at this scale. 



3 Convective-Scale Ensemble Sensitivity 
Studies 

3.1 Introduction 
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Having shown then that there is some predictability after 24 hours of simulation 

time (at least for our baroclinic modes of variation), we come then to the third 

phase of this study. With at least some level of predictability now established, can 

we establish that this predictability is useful for informing us about squall line 

position? In other words, is their a significant correlation of squall line position 

with model variables at earlier times - correlations that at we have noted earlier, 

might possibly be exploited to advantage, by helping optimally target those areas 

where additional observations in data poor areas would maximally improve upon 

our simulation results using data assimilation? 
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3.1.1 Correlation of Input Variables with Output States 
(Sensitivity Analysis) and Targeted Observations for 
Data Assimilation 

Predictability means of course that there is some positive correlation between our 

input state and our output state. This correlation is important, for, as we 

mentioned above, one method widely used today to improve forecasts is data 

assimilation. It is not the purpose of this study to discuss data assimilation in too 

much detail, since data assimilation was not actually employed in this study, but it 

is worth mentioning that data assimilation improves upon a forecast by 

incorporating observational data into a forecast so that the resulting product, the 

analysis, is the optima.I interpolation between the model's prediction and the 

observations in a least-squared-error sense, given a known covariance of model 

errors, and a known covariance of observational errors. 

Usually, the observation error covariance is known fairly well, but the model error 

covariance, also called the background error covariance, is not as well known, 

and it is generally a non-trivial matter to determine this matrix. One group of 

methods frequently used to address this matter are called ensemble data 

assimilation methods, which use the covariance among the ensemble 

perturbations to estimate this model or background covariance. 
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So, for this type of data assimilation, it is helpful to have a well behaved 

ensemble - one that incorporates the trµe state as a 'plausible member of the 

ensemble' and at the same time is not under-dispersive. Thus, the results of the 

second phase of this study, which indicate that the ensemble has both these 

properties, would indicate that the ensemble generated for this study might be 

useful for a further improvement of our simulation's results using data 

assimilation. This is important, for as we have seen in the first phase, there was a 

significant westward phase error in the position of the squall line that was not 

removed by ensemble averaging, and remained the same in both the low and 

high resolution simulations. Given that all 3 simulations showed roughly the same 

E~rror, we can surmise either two causes - either an error in the initial conditions 

(perhaps a large scale under-estimation in the background eastward wind field), 

that caused the squall line end up to far to the west, or a model deficiency that 

resulted in too slow a propagation of the squall line. However, given that the 

squall line position appears to require the presence of the low level jet for 

propagation (a conclusion from the first phase of our study), and that this low 

level jet results from the action of our large scale flow, it would seem much more 

likely that our phase error relates to an error in our initial large scale background 

flow, since propagation appears to require the presence of this low level jet. In 

either case however, data assimilation would improve our results by pulling the 
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simulation closer to reality. 

One need only give the matter a little thought however to conclude that not all 

observations at earlier times will be _equally effective to improve model 

predictions when assimilated. For instance, on purely intuitive grounds one would 

expect that observations taken along a squall line at some earlier time might 

have a larger impact on the predictions than observations taken well away from 

the squall line. This question has been addressed in some detail already in the 

literature (Ancel and Hakim, 2007). As we alluded to earlier, it is important to help 

locate these areas of maximum effectiveness for data assimilation when 

observations are not already present, as often there are no observations 

available where in fact they would do the most good. Thus, for a potentially 

catastrophic even such as a tornadic storm, knowing where to take additional 

radiosonde observations ahead of time to most effectively improve upon the 

model's predictions would be useful data indeed. 

It has been found that ensemble sensitivity analysis is an effective means of 

finding these areas of maximum benefit for data assimilation (Bishop et al. 2001; 

Hamill and Snyder 2002) . Further, it has been noted by Ancel and Hakim (2007) 

that ensemble sensitivity analysis is effective in pinpointing those sensitivities 



138 

that relate to synoptic scale features (which we have seen may drive the squall 

line phase error of our simulations), while adjoint-sensitivity analysis is more 

effective in finding sensitivities to mesoscale features. Indeed, ensemble 

sensitivity analysis was first investigated by Torn and Hakim (2008), who 

examined the linear relationship between the 24 hour forecast of an extra-tropical 

cyclone position and the forecast's initial conditions, and they found that the 

linear relationships uncovered were related mainly to synoptic scale differences 

(mainly phase differences) in the primary synoptic structures. Thus, ensemble­

based data assimilation would seem very well suited to improving upon our 

simulation's results, given that we are looking to improve upon synoptically driven 

phase differences in our simulation. 

Data assimilation is therefore believed to be the most promising means of 

improving upon the performance of the forecast of this study, and so as we 

mentioned above, further work is planned to see if improvements can be effected 

using data assimilation. However, before such work can be done, those areas 

which would offer the most observational benefit will have to be targeted, and 

naturally, for the reasons mentioned above, a sensitivity analysis is the most 

promising first step for such targeting. Hence, the third phase of this study will 

endeavor to begin this work with an investigation of such sensitivity studies for 



139 

the storm system of this study. 

Before such studies are carried out however, a few technical points must be 

noted. The first of these relates to spurious correlations that can arise from such 

sensitivity analyses. Bishop and Hodyss (2007) have noted that small ensemble 

size can contribute to significant error in the values of correlations obtained from 

an ensemble analysis. 

Thus, for this reason it will be necessary to first filter out such 'sample-size­

related correlation errors. Before we discuss how we will do. this, we must first 

discuss how the sensitivity analyses will be conducted. 

3.1.2 Sampling Error of Correlation Results 

First, correlations for some 'output' variable, which we will call V, will be 

cormlated with some 'input' variable u(i,j,k,t), where i,j,k denote the location in 

space of the variable (the grid point indexes perhaps), and t denotes the point in 

time that this variable is considered. Note that V will be a single derived variable 

- such as zonal or meridional position of some feature of the squall line, and we 

will confine our interest to output variable values at 2400Z only. Our input 
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variable u however, as is evident from the indexes above, will be taken to be 

distributed both in space and time. So we will determine ensemble correlations of 

these time and space distributed input variables with our output variable, giving 

us a series of location dependent plots of correlations at different times, and 

these will help us target those areas (and times) which are the most correlated 

areas (and times) with our variable of interest. The correlations will be found 

using the following formula, noting that for simplicity of notation we have dropped 

the indexes on u but these are to be taken to be implied: 

where 

u' = u-(u) 
V' = v-<v> 

and 

(18) 

(19) 

(20) 
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Note that these averages are taken over the ensemble. Now, as we have 

mentioned, sampling error will be a concern for our study. In order to address 

this, error bounds on our correlations were determined using a Fisher 

transformation (von Storch and Zweirs, 2002). The Fisher transformation is used 

as follows - for those correlations p transformed by the Fisher transformation, 

which is given by: 

z = _!_ ln(11) 
2 1-p 

(21) 

it is known that they are normally distributed with mean z - _!_In ( 1 +p ) and 
2 1-p 

with a standard error of ~ , where N is the ensemble sample size. 

With this known, one can determine error bounds on the correlation. For 

example, to find the lower bound on our sample correlation such that one can be 

95%) sure that the actual correlation is higher, we simply calculate z from our 

sample correlation, and then find out from a standard error function table where 

the 5% cumulative probability is situated, in terms of standard deviations, from 

the mean. Knowing this, we multiply this number of standard deviations by our 
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standard error 1/(N-3)1
'
2

, subtract this amount from our determined z value, and 

then find the inverse this value using: 

p = (22) 

to get our 95% lower confidence bound on p. Of course, a similar method allows 

us to find our upper confidence bound as well. 
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3.2 Methodology 

The first sensitivity analysis carried out was an analysis of the relationship 

between what we will term the rainfall weighted "center of gravity" (CG) of the 

rainfall at 2400Z over domain 2 (this being our output variable V as discussed in 

the Introduction), and the 850 and 500 hPa zonal and meridional winds, 

temperatures, relative humidities and potential vorticities (our input variables). 

3.2.1 Rain-Weighted 'Center of Gravity' (CG) Correlations 

We will have to explain of course what we mean by rain weighted CG. What this 

variable is is an attempt to mark the location of the "center" of the s~orm system 

by weighting each coordinate value (in the zonal and meridional directions) in the 

domain by the amount of rain falling at that location, and dividing by the total 

domain rainfall. Note that the equation used to find this CG is given as follows: 

N
111 

N,, 

I I r(iJ)i 
. = _i=_l..._j=_I __ 
lavg N,,, N,, (23) 

I I r(iJ) 
i=I j=I 
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where r(i,j) is the rainfall at grid point (i,j), and iav9 is the rain-weighted i value of 

the CG. Of course, jav9 is found in a similar way. 

So shifts of the storm system either zonally or meridionaly will be manifested as 

changes in the zonal or meridional component of the CG. This CG is not a 

perfect measure however, since the rainfall is distributed also over areas other 

than the squall line, but it is believed that the analysis based on this output 

variable will be informative nonetheless. What will result from this analysis then is 

a set of graphs for correlations of the zonal position of this center of mass with 

850 hPa and 500hPa zonal and meridional winds, temperatures, relative 

humidities and potential vorticities. 

Further, in order to remove the sampling errors of our correlations discussed 

above, the 95% lower bound on the positive correlations will be calculated, and 

only those lower bound values which remain positive will be plotted as non-zero. 

Similarly, the 95% upper bound on all negative correlations will be calculated, 

and only those upper bound values which remain negative will be plotted as non­

zero. Thus, what will remain in the plot will be areas of 0 correlation, with only a 

few areas for which we can be 95% sure that there is indeed either a positive or 

negative correlation between our input variable and either the zonal or meridional 
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component of our rain weighted CG - we call this the 95% reduced correlation in 

our plots and discussion. 

We noted above however that the rainfall CG will not correspond perfectly with 

the location of the squall line. One reason we would tend to believe that this 

correspondence might not be perfect is again because rainfall will fall in other 

areas, such as the warm front which will tend to move northward as the squall 

line moves eastward. To deal with this issue, as second sensitivity analysis was 

carried out. In this analysis, an attempt was made to use an "object-based", more 

subjective method, to help pinpoint more definitively the squall line. 

3.2.2 l<em[p)eir<dlftu.nirce Gir<dldnelnlft Olb]e(Cft0 IB<dls<ed ~OJ!!.n<dl~~ Ulnle 
C©irire~<dl~D©lnls 

This method involves finding all those areas that constitute a region of high 2m 

temperature gradient (in this case, high was taken to be 0.5 of the domain 

maximum temperature gradient), and then drawing a line through these high 

temperature gradient 'objects' which are determined by inspection to fall along 

the squall line. This of course is done subjectively as the position of the object 

basE~d squall line is a matter of some interpretation. Examples of objects for 
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some ensembles through which these lines have been drawn have already been 

shown in Figures 29 and 31 above for our previous analysis of ensemble 

dispersion. 

Shown in Figures 41 and 42 are these same two ensemble object plots with lines 

drawn through the objects that define their squall lines. As can be seen from 

these two figures, and those in the Appendix C for the other ensemble members, 

the length of the squall lines and their angles with respect to the vertical (for 

simplicity, all squall lines are assumed to be purely linear in extent) change 

considerable from member to member. Thus, in order to find some objective 

zonal characteristic with which they could be compared, it was decided to find the 

longitude where each object 'squall line' intersects with some given 'reference' 

latitude. This 'reference' latitude was taken to be the average mid-latitude point of 

the ensemble member 'object-based' squall lines, to ensure that intersection with 

these object 'squall lines' was maximally possible. The longitude of intersection of 

an ensemble member's squall line with this reference latitude was taken to be 

the best measure of the zonal position of the squall line - since, for example, 

taking instead the mid-point longitude for a very short 'squall line' which has its 

highest temperature gradients concentrated mostly along the northern extent of 

the line (and therefore has temperature gradient 'objects' only to the north) and 



147 

which also has a large tilt toward the horizontal, would give us an unrealistically 

eastward bias of mid-point longitude, or westward, for a southward dominated 

temperature gradient line. By taking the intersection of the extended object­

based 'squall line' with a given reference latitude, we are able to resolve this 

difficulty and give ourselves a better idea of the representative longitudinal 

position of the squall line. 

This intersection longitude then gives us our 'output variable' for our correlation. 

For this particular correlation study however, unlike the first study discussed 

above, we looked only at the correlation of this output variable with a single input 

variable - the latitude of the pressure low, the longitude of the pressure low, and 

intensity of the pressure low, and the mean zonal velocity at OOZ. Note then that 

this would give us only single numerical correlations for the 4 'input' variable 

considered. Naturally, equations 18 to 20 were used to determine these 

correlations. 
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Figure 41: Ensemble member 4 squall line intersection with reference latitude 

Figure 42: Ensemble member 17 squall line intersection with reference latitude 
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3.3 Results and Discussion 

3.3.1 Rain Weighted CG Correlations 

Shown in Figures 43 to 46 are the 95% reduced correlations (see the 

Introduction for an explanation of this term) of the 850 hPa zonal velocity with the 

rainfall-weighted CG longitude at 2400Z. These figures show these correlations 

at 1200Z to 2400Z over the 2nd domain. 

11f we look at Figure 46, we can see a large area of positive correlation of zonal 

velocity with CG longitude at 2400Z located right over the area where the squall 

line was predicted to be by the model, as well as to the east of this line over Lake 

Ontario. We can explain this correlation by noting that at 2400Z, a higher zonal 

wind in the background flow will tend to carry the squall line system further 

eastward, resulting in this positive correlation between zonal wind and CG 

longitude. 

As explained in the introduction, the 95% reduced correlation means that we are 

95% sure that the correlations are as high or higher than the indicated values in 
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Figure 46, so it is evident that there is a positive correlation between these 

variables, physical explanations aside. The fact that we can physically explain 

this relationship only makes the contention stronger, but in general having such 

an explanation is not a necessity, as the physical relationship for other variables 

may in fact be fairly subtle. 

If we now track backward three hours to 21 OOZ (Figure 45), we can still see a 

positive correlation between the zonal wind speed and the CG longitude, but now 

this area of positive correlation is shifted ·westward - it is in fact tracking 

backward with the squall line system. Since this region has remained as a 

contiguous, integrated region of positive correlation, that tracks with a physical 

structure and ends up in a position for which we have a plausible and physically­

based explanation of position correlation, we have no reason to expect that this 

prior positive correlation is not just as physically relevant and explainable. 

Tracking back another 3 hours to 1800Z (Figure 44 ), we see that this region of 

positive correlation has increased in size and moved further westward. 

Tracking back 6 hours more to 1200Z (Figure 43), we see that the positive 

correlation region has moved back further to the west and the south. Interestingly 
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however, we now have a region of negative correlation in the north, just north of 

Lake Huron. This is explainable however by noting that our low pressure system 

sits just to the west of the 2nd domain, between the areas of high and low 

correlation. With a stronger low, the cyclonic motion around this low will be 

stronger, increasing eastward zonal flow to the south (where our positive 

correlation area is) increasing westward zonal flow to the north (where our 

negative correlation area is). Thus, the pattern evident here could be interpreted 

as a positive correlation between cyclonic flow around our pressure low and the 

eastward position of the squall line, in other words, a positive correlation between 

the strength of the baroclinic disturbance at 1200Z and its eventual position at 

2400Z, which is certainly plausible. 

In any event however, physical discussions aside, the 95% reduction that we 

have effected on our correlations gives us a 95% certainty that these positive 

correlations are statistically significant anyway. Again, having a physical 

explanation helps, but such physical explanations are not necessary to establish 

our positive correlations - they have been established statistically. 
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Figure 43: 850hPa 1200Z zonal velocity and 2400Z CG longitude correlations 
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Figure 44: 850hPa 1800Z zonal velocity and 2400Z CG longitude correlations 
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Figure 45: 850hPa 21 DOZ zonal velocity and 2400Z CG longitude correlations 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

; -0.2 

-0.3 

-0.4 

-0.5 

-0.6 

Figure 46: 850hPa 2400Z zonal velocity and 2400Z CG longitude correlations 
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Next, we will consider the correlations of 500 hPa humidity with 2400Z CG 

longitude. In order to understand the following correlation plots however, we will 

first have to consider the distribution of 500 hPa relative humidity along the squall 

line at 2400Z, Figure 47. We can see a fairly concentrated band of relative 

humidity here running along the squall line. What relationship might zonal shifts 

of this band of relative humidity have to the relative humidity/CG longitude 

correlation? To help answer this, consider Figure 48. 

As we can see from the simplified explanation in this diagram, we can expect to 

have running on on either side of the relative humidity maximum band (along the 

squall line), negative and positive bands of correlation with CG longitude. In the 

center between these bands, we should expect a low or zero band of correlation. 

As we can see in the 2400Z plot of correlation for relative humidity, Figur·e 52, 

this was exactly what was seen. Thus physically, the 2400Z correlation of 500 

hPa humidity with CG longitude makes sense. Note as well that the humidity/CG 

longitude c.orrelation is not so simple once we get away from the squall line at 

2400Z as there is no requirement that the variables be directly related like they 

are along the squall line at this time - the above arguments refer only to 

variations the squall line itself. Thus, the humidity distribution along the warm 

front (which was appreciable), may not have as direct a correlation with the 
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squall line position, so the large region of positive correlation to the north-east 

along the St. Lawrence is not as easily explainable. 

As we step back 3 hours, we see in a situation similar to above, in Figure 51, that 

these correlation bands track with the squall line, and hence again appear to be 

physically meaningful. Back 6 hours at 1800Z, Figure 50, we have these bands 

· tracking further to west. Back 12 hours, at 1200Z, Figure 49, we have only a 

single line of positive correlation running from the southwest to the northeast over 

the Great Lakes. The relationship between final squall line position and humidity 

position is not as direct over 12 hours, so it is probably not surprising that we do 

not see parallel bands of positive and negative correlation anymore. 

However, we can see that even 12 hours beforehand, we can be 95% certain 

that the correlation between relative humidity and CG longitude remains 

significant, as there are regions where the correlation exceeds 0.6 even after we 

take the 95% lower error bound on correlation. 

This is a significant point, for it is just this sort of long-term positive correlation 

that would indicate those areas that would be most effective as data input 

regions for improvements to the model using data assimilation. 
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Figure 50: 500hPa 1800Z relative humidity and 2400Z CG longitude correlations 
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Figure 51: 500hPa 21 OOZ relative humidity and 2400Z CG longitude correlations 
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Figure 52: 500hPa 2400Z relative humidity and 2400Z CG longitude correlations 
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. In Figures 53 to 60 we have similar plots of correlation of CG longitude with 850 

hPa temperature and meridional velocity. 

For the temperature plots, Figures 53 to 56, a situation similar to the relative 

humidity at 500 hPa is evident - bands of positive and negative correlation which 

appear to track with the squall line backward in time. In this case however, the 

correlation is much less pronounced and more subtle. 

For the meridional velocity correlations,· Figures 57 to 60, the relationship is 

more difficult to interpret, but again, a physical interpretation is not necessary. By 

taking the 95% lower bound of our correlations, we can be 95% sure that the 

correlations are statistically significant. Given that the meridional velocity 

correlations remain high (in excess of 0.6), even 12 hours beforehand, we can be 

sure that they should offer guidance for targeting efficient data assimilation 

activity. 
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Figure 53: 850hPa 1200Z temperature and 2400Z CG longitude correlations 
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160 



0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

-0.1 

-0.2 

-0.3 

-0.4 

~0.5 

()0 -0.6 

I . 
Figure 55: 850hPa 2100Z temperature and 2400Z CG longitude correlations 
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Figure 56: 850hPa 2400Z temperature and 2400Z CG longitude correlations 
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95% Reduced Correlation of 850 hPa Meridonal Velocity 
at 1200Z and 2400Z Rainfall CG Longitude 

Figure 57: 850hPa 
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Figure 58: 850hPa 18002 meridional velocity and 2400Z CG longitude 
correlations 
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CG longitude 
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Figure 60: 850hPa 24002 meridional velocity and 24002 CG longitude 
correlations 



3.3.2 Temperature Gradient 'Object-Based' Squall Line 
Correlations 
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We come now to our second sensitivity study, the correlation of input variables 

with the longitude of intersection of the object-based . 'squall lines' w_ith a 

reference latitude (the ensemble average mid-point latitude of these object-based 

'squall lines'). Here however, as we noted in the Methodology, we are interested 

in the correlations not with basic variables distributed in time and space, but 

derived single value variables at 1200Z - namely pressure low latitude, 

longitude, strength and mean zonal wind flow. Again, as for the distributed 

correlation studies, a 95% lower bound was taken on the correlations. The 

results are as follows: 

Variable 

1200Z Pressure Low Longitude 

'! 200Z Pressure Low Latitude 

1200Z Pressure Low Strength 

1200Z 2"d Domain Mean Zonal 
Flow 

Correlation With Squall Line/Reference 
Latitude Intersection Longitude 

(95% Lower Error Bound, or 95% Upper 
Error Bound for Negative Correlations) 

0 (-0.006)19 

0 (-0.124) 

0 (0.254) 

0.294 

Table 5: Object-based squall line correlations 

19 The values for the first 3 correlations were taken to be zero, since an initial positive (negative) 
correlation became negative (positive) when the lower (upper) 95% correlation was calculated. See 
explanation in the Methodology section. 
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Clearly, these correlations are not as significant as those obtained for the CG 

longitude correlations above, except for the domain mean zonal flow, which is 

also admittedly quite low. This is probably because the 'output variable' chosen, 

the longitude of the intersection of the squall line with the reference latitude is a 

poor indicator of squall line position. Perhaps by choosing a larger lower 

threshold of temperature gradient to define our squall lines, we could use the 

object-based 'squall line' mid point longitude as our final variable, since we could 

be more sure in this case that the full squall line was being indicated by our 

squall line objects, rather than the more indirect method of using ah intersection 

with a reference latitude. Nevertheless, given the poor correlations obtained, it is 

hard to say whether the correlations with these input variables are poor in 

actuality, or poor because of a poor choice of output variable. 
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3.4 Condus~ons 

We see then notably strong correlations between the 2400Z longitude of the rain 

weighted center of gravity (CG) and the low level (850 hPa) zonal. and meridional 

velocities, and mid level (500 hPa) relative humidities even as far back as 1200Z 

hours. While not as strong, appreciable correlations with 850 hPa temperatures 

also exist. As noted in our Introduction, such strong correlations have been used 

to help target those variables, areas and times, for which data assimilation 

methods for improving forecast accuracy would be most effective. 

The correlations derived from using the 2400Z longitude of object-based 'squall 

line' intersection with our reference latitude as our output variable, and 1200Z 

pressure low latitude, longitude, intensity and domain mean zonal velocity as our 

input variables, were much smaller. The results of this study are inconclusive as 

to whether these poor correlations are indeed indicative of poor of squall line 

zonal position correlation with our input variables, or rather just our poor choice 

of output variable to correlate with. 

Nevertheless, the correlation studies as a whole have shown that there are 

indeed strong correlation between our squall line zonal position and many input 
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variables back to 1200Z. Thus, these results suggest that data assimilation 

strategies employed back at these and later times would be effective in reducing 

the biased zonal position of squall line predicted by the high and low resolution 

simulations of the first phase of this study and the ensemble mean distribution of 

the second phase. 



4 Summarizing Conclusions and Future 
Work 
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We can see then that the low resolution (3km) simulations were just as 

successful as the high resolution simulation (1 km) in capturing the basic 

dynamics and evolution of the storm system, modeling a squall line system as 

expected by observations. As was learned from our modeling, the basic driver for 

the storm was a low level jet situated adjacent to a moist, unstable air mass. This 

jet imparted very significant shear into the lower level flow and resulted in 

especially high helicity values along the squall line, which resulted in very high 

levels of vorticity when tilted by the updrafts simulated, leading to the genesis of 

supercells. Evidence of suspercell splitting along the squall line, and long-lived 

supercells were indeed witness at both resolutions. It would appear from our 

results that dynamically driven vertical pressure gradients resulting from 

supercell evolution were the primary lifting mechanism, although low level 

convergence may also have been a factor, and that the scale of this lifting 

mechanism was mesoscale in extent. Both the high and low resolution 

simulations resulted in a significant phase error of squall line position however. 

A method of generating ensembles for research purposes, from a re-interpolation 

of lower resolution ensemble perturbations generated from the published 
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ensembles of forecast centers was proposed. It was found that the ensemble 

generated was indeed successful as it offered a sufficiently dispersive ensemble 

- one that after 24 hours was able to contain the true state· of the atmosphere as 

a plausible member of the ensemble. Thus, despite concerns which have been 

raised regarding the usage of low resolution data for the generation of 

convective-scale ensembles, the ensemble generated by the method used in our 

study appears to have been successful. 

The ensemble mean was found to give the same phase lagged position for the 

squall line position as the high and low resolution simulations, although peak 

values of quantities such as rainfall and vertical velocity along the squall line 

were unrealistically low. 

There appear to be at least two scales of unpredictability at work in the system 

simulated - a small scale nonlinear scale related to low level temperature 

fluctuations that appears to saturate quickly after about 12 hours, and a larger, 

synoptic-scale scale which appears to saturate well after· the 24 hour period of 

our simulation. Thus, information related to these larger scales would be 

expected to remain correlated with our ensembles' end states after 24 hours. 

This expected correlation is confirmed by our correlation results from the third 
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part of the study, which showed very significant correlations of squall line zonal 

position at 2400Z with model initial variables. Since the small scales have lost 

correlation with the· model's end state by 2400Z (due to saturation), but the larger 

scale has retained significant correlations, we can surmise that the squall line 

position is driven by the activity at the larger scale, which would otherwise not 

correlate. Thus, the phase error may well be the result of some initial condition 

error, possibly an error in the background flow. This would explain why all three 

simulations - both the high and low resolution simulations, and the ensemble 

mean simulation, all showed the same phase error. 

Again, our correlation studies show that significant correlations of squall line 

position remain with prior model variables at least 12 hour before. Thus, targeting 

areas for adding observations to improve upon the squall line position using data 

assimilation is certainly very feasible. Naturally, confirming this hypothesis 

remains a definite goal for future work. 
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Appendix A: WRF Control Files for High and Low Resolution 
Simulations 

The following are the namelist input files for the high and low resolution models, 

as well as the eta levels used to define th_e vertical levels in all sin:'IUlations. 

High Resolution Model (1 km) namelist.input file: 

&time_control 

run_days 

run_hours 

run_minutes 

run_seconds 

start_year 

start_month 

start_day 

start_hour 

start_minute 

start_second 

end_year 

end_ month 

end_ day 

end_ hour 

€~nd_minute 

end_second 

interval seconds 

input_from_file 

fine_input_stream 

hi story_ interval 

frames_per_outfile 

restart 

restart interval 

io __ form_history 

= 0, 

= 24, 

= 0, 

= 0, 

= 2009, 2009, 2009, 2009 

= 08, 08, 08, 08, 

= 20, 20, 20, 20, 

= 00, 00, 00, 00, 

= 00, 00, 00, 00, 

= 00, 00, 00, 00, 

= 2009, 2009, 2009, 2009, 

= 08, 08, 08, 08, 

= 21, 21, 21, 21, 

= 00, 00, 00, 00, 

= 00, 00, 00, 00, 

= 00, 00, 00, 00, 

21600 

.true., .true., .true., .true., 

=0, 2, 2, 2, 

60, 60, 60, 60, 

1, 1, 1, 1, 

.false., 

720, 

2 



io_form_restart 

io_form_input 

io_form_boundary 

debug_ level 

&domains 

time_step 

time_step_f ract_num 

time_step_fract_den 

max_dom 

e_we 

e_sn 

e_vert 

p_top_requested 

num_metgrid_levels 

num_metgrid_soil_levels 

dx 

dy 

grid_ id 

parent_ id 

i_parent_start 

j_parent_start 

parent_grid_ratio 

parent_time_step_ratio 

feedback 

smooth_option 

&physics 

mp_physics 

ra __ lw_physics 

2 

1000 

90, 

0, 

1. 

3. 

193, 274, 421, 421. 

129. 229, 391, 661, 

28, 28, 28, 28. 

20000, 

8, 

0, 

27000, 9000, 3000. 1000. 

27000, 9000, 3000, 1000, 

1, 

1, 

1, 

1, 

1, 

1, 

1. 

0 

10, 

1, 

2, 

1. 

87, 

35, 

3. 

3. 

10, 

1, 

3. 4. 

2. 3. 

92, ·111, 

60. 91. 

3. 3. 

3. 3. 

10, 

1. 

10, 

1. 
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ra_sw_physics 

radt 

sf_sfclay_physics 

sf_surface_physics 

bl_pbl_physics 

bldt 

cu_physics 

cudt 

i sfflx 

if snow 

icloud 

surface_input_source 

num_soil_layers 

sf_urban_physics 

maxi ens 

max ens 

maxens2 

maxens3 

ensdim 

I 

&fdda 

8cdynami cs 

w_damping 

diff _opt 

km _opt 

diff - 6th _opt 

di ff 6th factor - -

base _temp 

damp_ opt 

zdamp 

dampcoef 

khdif 

1. 

27, 

1. 

1. 

1, 

0, 

1. 

5. 

1, 

0, 

1. 

1, 

5' 

0, 

1, 

3, 

3. 

16, 

144, 

0, 

1, 

4, 

1, 

0.12, 

290. 

0, 

5000 .. 

0.2, 

0, 
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1, 1, 1, 

9, 3. 1, 

1, 1. 1, 

1, 1, 1, 

1, 1, 1, 

0, 0, 0, 

1, 0, 0, 

5, 5, 5' 

1, 1, 1, 

0.12, 0.12, 0.12, 

5000 .. 5000.' 5000.' 

0.2, 0.2, 0.2, 

0, 0, 0, 



kvdif 

non_hydrostatic 

moist_adv_opt 

scalar_adv_opt 

I 

&bdy_control 

spec_bdy_width 

spec_zone 

relax zone 

spec if i ed 

nested 

&grib2 

/ 

&namelist_quilt 

nio_tasks_per_group 0, 

nio_groups = 1, 

I 

0, 0, 0, 0, 

.true., .true., .true., .true., 

1, 

1, 

5, 

1, 

4, 

1, 

1, 

1, 

1, 

1' 

1, 

. true., . false.,. false.,. false., 

.false., .true., .true.,.true., 
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Low Resolution Model (3km) namelist.input file: 

&time_control 

run_days 

run hours 

run_minutes 

run_seconds 

start_year 

start_month 

start_day 

start hour 

start_minute 

start second 

end_year 

end_month 

end_day 

end_hour 

end_minute 

end_second 

interval seconds 

i nput_from_f i le 

fine_input_stream 

hi story_ interval 

frames per outfile 

restart 

res tart_ interval 

io_form_history 

io __ form_restart 

i o __ form_ input 

io_form_boundary 

debug_ level 

I 

&domains 

ti me __ s tep 

time_step_fract_num 

0, 

24, 

0, 

0, 

2009. 2009, 2009 

08, 

20, 

00, 

00, 

00, 

08, 

20, 

00, 

00, 

00, 

08 

20 

00 

00 

00 

2009, 2009, 2009 

08. 08. 08 

21, 

00, 

00, 

00, 

21600 

21, 

00, 

00, 

00, 

21 

00 

00 

00 

.true ... true. ,.true. 

0, 2, 

60' 60. 

1, 1, 1 

.false .. 

720, 

2 

2 

2 

2 

1000 

90, 

0, 

2 

60 
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time_step_fract_den 

max_dom 

e_we 

e_sn 

e_vert 

p_top_requested 

num_metgrid_levels 

num_metgrid_soil_levels 

dx 

dy 

grid id 

parent id 

i_parent_start 

j_parent_start 

parent_grid_ratio 

parent_time_step_ratio 

feedback 

smooth_option 

&physics 

mp_physics 

ra_lw_physics 

ra_sw_physics 

radt 

sf_sfclay_physics 

sf_surface_physics 

bl_pbl_physics 

bldt 

cu_physics 

cudt 

i sfflx 

ifsnow 

icloud 

surface_input_source 

nurn_soil_layers 

1, 

3' 

193, 274, 421 

129, 229, 391 

28, 28, 28 

20000, 

8, 

0, 

27000, 

27000, 

1, 

1, 

1, 

1, 

1, 

1, 

1, 

0 

10, 

1, 

1, 

27, 

1, 

1, 

1, 

0, 

1, 

5' 

1, 

0, 

1, 

1, 

5' 

9000, 

9000, 

2, 

1, 

87, 

35, 

3' 

3' 

10, 

1, 

1, 

9, 

1, 

1, 

1, 

0, 

1, 

5' 

3000 

3000 

3 

2 

92 

60 

3 

3 

10 

3 

1 

1 

0 

0 

5 
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sf_urban_physics 

maxi ens 

maxens 

maxens2 

maxens3 

ensdim 

&fdda 

I 

&dynamics 

w_damping 

diff_opt 

km_opt 

diff_Gth_opt 

diff Gth_factor 

base_ temp 

damp_opt 

zdamp 

dampcoef 

khdif 

kvdif 

non_hydrostatic 

moist_adv_opt 

scalar_adv_opt 

I 

8cbdy_control 

spec_bdy_width 

spec_zone 

relax zone 

specified 

nested 

0, 

1, 

3, 

3, 

16, 

144, 

0, 

1, 

4, 

1, 

0.12, 

290. 

0, 

5000 .. 

0.2. 

0, 

0, 

1, 

0.12, 0.12 

5000.. 5000. 

0. 2. 0. 2 

0, 0 

0, 0 

. true., . true., . true. 

1, 

1, 

5, 

1, 

4, 

1, 

1, 

1, 

1, 

. true ... false ... false. 

.false ... true ... true. 
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&grib2 

&name l is t_qu il t 

nio_tasks_per_group 0, 

nio_groups = 1, 
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Eta Levels For WRF Simulations: 

The following are the eta levels used to define the vertical levels in all WRF 
simulations (note that level numbers count from 0 for the first level): 

1.000, 0.990, 0.978, 0.964, 0.946, 0.922, 0.894, 0.860, 0.817, 0.766, 

0. 707 , 0.644 , 0.576 , 0.507 , 0.444 , 0.380 , 0.324 , 0.273 , 0.228 , 0.188 , 

0.152 , 0.121 , 0.093 , 0.069 , 0.048 , 0.029 , 0.014 , 0.000 
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Appendix B: Ensemble Object-Based Squall Lines at 2400Z 

The following plots are of the 2400Z ensemble members where the 2m 

temperature gradient exceeded 50% of the domain maximum temperature 

gradient of each ensemble member. Typically, such areas fell along the squall 

line, although high temperature gradients were seen in other areas as well. Note 

that while these objects were called 'frontal objects' in the plots, such areas are 

also associated with pre-frontal phenomena such as squall lines as well as high 

temperature gradient areas such as cold fronts, so these term 'frontal object' is to 

be taken as only a informal term for all such high gradient 'objects'. Note also that 

the colors are not indicative of any specific physical properties of these 'frontal' 

objects - these objects were differentiated as separate contiguous objects by 

frontal numbers for analysis purposes in the database constructed from the data, 

and the colors are a just a by-product of the plotting algorithm of NCL - the 

language used for the data analysis and plotting of this study. Since the colors 

help differentiate the objects being studied, it was decided to leave them as 

plotted. 

Lines were then.drawn through those objects corresponding to the squall lines of 

the ensembles, and as described in the Methodology section of Chapter 3, the 

lon~]itudes of the intersections of these lines with a 'reference' latitude was then 
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determined. This reference latitude was taken to be the average 'squall line' mid­

point latitude among the ensemble members. 

As can be seen from these plots, there was considerable variation in their 

positioning. 
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Appendix C: Moisture Flux Divergence Squall Lines at 2400Z 

The following plots are of the 2400Z moisture flux divergence at the 850 hPa 

level for the 20 ensemble members. As was the case with the squall lines as 

estimated from the high 2m temperature gradient 'objects' of Appendix C, there is 

considerable variation in the squall line positions that can be estimated from the 

following figures. These estimated squall lines in most of the following figures can 

be subjectively delineated as the linearly extended regions adjacent to the Great 

Lakes which show the most highly concentrated regions of maximum moisture 

flux convergence and divergence. Note of course that some ensemble members 

showed more easily defined squall lines than others- for instance, the squall line 

is fairly evident for ensemble member 6, but not so well defined for ensemble 

member 1. 
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