
ITERATIVE LEARNING CONTROL AND ITS APPLICATIONS

PENGHAI ZHAO

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTERS OF SCIENCE

GRADUATE PROGRAM IN EARTH AND SPACE SCIENCE
YORK UNIVERSITY

TORONTO, ONTARIO

JANUARY 2021

c© PENGHAI ZHAO, 2021

Abstract

Robotic manipulators and Unmanned Aerial Vehicles (UAVs) have been used to

execute some repeatable assignments, due to the advantage of safety, convenience

and flexibility. Iterative learning control (ILC) is an approach to eliminate some

repeatable disturbance which may come from unknown parameters, dynamic uncer-

tainties or the surroundings. Therefore, this research aims to present two types of

iterative learning controllers, PD-type and adaptive-type, to implement on robotic

manipulators and UAVs, which would complete the given repetitive missions and

achieve the expected specifications. PD-type and adaptive-type ILC are tested on

SRV02 equipment with a rigid manipulator, to eliminate the repetitive unknown

disturbance. Meanwhile, a dead zone inverse model is proposed to solve the actua-

tor dead zone problem, which is verified using the same equipment with a flexible

manipulator. Compares with PD-type test on manipulator, adaptive-type ILC is

decided to implement on UAVs in this research. The traditional hierarchical control

ii

method for UAVs is adopted. Attitude and position control systems are designed

based on the same adaptive-type ILC algorithm, however, the experimental test are

finished separately. The inner loop control performance are verified using Gimbal

which is a frame that UAVs can be setup on it with two degrees of freedom, in-

cluding roll and yaw angles. The free flight experimental test is completed with the

purpose of certifying the proposed out loop control strategy. In addition, theoreti-

cal proof and simulation results are also presented to demonstrate the effectiveness

of the proposed controllers.

iii

Dedication

I dedicate this thesis to people I love who love me in return

iv

Acknowledgements

I would foremost like to acknowledge, with gratitude, Professor Jinjun Shan for his

supervision. His intelligence and wisdom have greatly enhanced and enlightened

my inexperienced skills and knowledge in research. His advice and guidance was

invaluable on completing this work. Without his generous educational and financial

support, this research would have been nowhere near as it is.

I would like to thank Dr. Ti Chen for his invaluable guideline and advice throughout

my graduate study. Sincere thanks to my lab mates Dr. Shiyuan Jia, Dr. Zeng

Wang, Dr. Yuying Liang, Marc Savoie, Hassan Alkomy, Samira Eshghi, Mingfeng

Yuan, and Yibo Liu, for various help they have offered me.

Last, but certainly not least, I would like to thank my family and friends, my room

mates, Caoyi Chen and Shifei Yang, and Shihan Gong, Yutong Zhang and Penghan

Wang for their mental support.

v

Table of Contents

Abstract ii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives and Methodology . 5

1.3 Organization of Thesis . 7

vi

2 Iterative Learning Control 9

2.1 Introduction of Iterative Learning Control (ILC) 9

2.2 A Simplest ILC Example . 11

2.3 PD-Type Iterative Learning Control (ILC) 13

2.3.1 Problem Formulation . 14

2.3.2 Convergence of PD-Type ILC in the Sense of Sup-norm . . . 14

2.4 Adaptive-Type Iterative Learning Control (ILC) 16

2.4.1 Problem Formulation . 17

2.4.2 Learning Control without Parameter Adaptation 19

2.4.3 Adaptive Learning Control 22

2.5 Conclusions . 26

3 Application of ILC to Robotic Manipulators 27

3.1 Rigid Manipulator . 27

3.1.1 Dynamic Modeling . 27

3.1.2 Control System Design . 33

3.2 Flexible Manipulator . 39

3.2.1 Dynamic Modeling . 40

3.2.2 Dead-zone and Dead-zone inverse 43

3.2.3 Control System Design . 47

vii

3.3 Simulation Results . 49

3.3.1 PD-Type ILC . 50

3.3.2 Adaptive-Type ILC . 52

3.4 Experimental Results . 55

3.4.1 Rigid Manipulator . 55

3.4.2 Flexible Manipulator . 60

3.5 Conclusions . 66

4 Application of ILC to UAVs 68

4.1 Dynamic Modeling . 68

4.2 Control System Design . 75

4.2.1 Controller Design Based on the Attitude Control 75

4.2.2 Controller Design Based on the Position Control 81

4.3 Simulation Results . 86

4.4 Experimental Results . 90

4.4.1 Experimental Results with Gimbal 90

4.4.2 Free Flight Test . 94

4.5 Conclusions . 113

5 Conclusions and Future Work 115

5.1 General Review . 115

viii

5.2 Future Work . 117

Bibliography 119

ix

List of Tables

3.1 Parameters of system, controller and deadzone 62

3.2 Comparison of PD-type ILC and adaptive-type ILC 66

4.1 Conclusion of free flight test - QDrone 113

x

List of Figures

1.1 Example of robotic manipulators 3

1.2 Food drone delivery [2] . 4

2.1 Structure of iterative learning control [57] 11

3.1 SRV02 DC motor armature circuit and gear train [3] 28

3.2 Flexible manipulator . 40

3.3 Dead-zone model [4] . 44

3.4 Structure of the controller with dead-zone 45

3.5 PD-type ILC simulation results : trajectory tracking at the 1st iteration 50

3.6 PD-type ILC simulation results : trajectory tracking at the 2nd iter-

ation . 51

3.7 PD-type ILC simulation results : trajectory tracking at the 10th

iteration . 52

xi

3.8 Adaptive-type ILC simulation results : trajectory tracking at the 1st

iteration . 53

3.9 Adaptive-type ILC simulation results : trajectory tracking at the 2nd

iteration . 54

3.10 Adaptive-type ILC simulation results : trajectory tracking at the 9th

iteration . 55

3.11 Rigid manipulator experimental system 56

3.12 PD-type ILC experimental results : trajectory tracking at the 1st

iteration . 57

3.13 PD-type ILC experimental results : trajectory tracking at the 2nd

iteration . 57

3.14 PD-type ILC experimental results : trajectory tracking at the 14th

iteration . 58

3.15 Adaptive-type ILC experimental results : trajectory tracking at the

1st iteration . 59

3.16 Adaptive-type ILC experimental results : trajectory tracking at the

2nd iteration . 59

3.17 Adaptive-type ILC experimental results : trajectory tracking at the

8th iteration . 60

3.18 Flexible manipulator experimental system 61

xii

3.19 The sliding variable s at the 1st and 10th iteration 63

3.20 The trajectory tracking of the flexible manipulator at the 1st and the

10th iteration with dead-zone inverse 63

3.21 The tracking error at the 1st and the 10th iteration with dead-zone

inverse . 64

3.22 The trajectory tracking of the flexible manipulator at the 1st and the

10th iteration without dead-zone inverse 64

3.23 The tracking error at the 1st and the 10th iteration without dead-zone

inverse . 65

4.1 UAV schematic . 69

4.2 Z-direction translation schematic 72

4.3 X-direction translation and pitch rotation schematic 73

4.4 Y-direction translation and roll rotation schematic 74

4.5 Yaw-direction rotation schematic 75

4.6 QDrone simulation results : trajectory tracking in Z-axis direction . 87

4.7 QDrone simulation results : trajectory tracking in X-axis direction . 88

4.8 QDrone simulation results : trajectory tracking in Y-axis direction . 89

4.9 QDrone simulation results : trajectory tracking in Yaw direction . . 89

4.10 QDrone experimental system . 90

xiii

4.11 Experimental results with the Gimbal : rotation in the roll angle &

yaw angle maintains stable . 92

4.12 Experimental results with the Gimbal : rotation in the yaw angle &

roll angle maintains stable . 93

4.13 Free flight test - translation in the X-axis direction only : results in

the X-axis direction . 95

4.14 Free flight test - translation in the X-axis direction only : results in

the Y-axis direction . 95

4.15 Free flight test - translation in the X-axis direction only : results in

the Z-axis direction . 96

4.16 Free flight test - translation in the X-axis direction only : results in

the Yaw angle . 96

4.17 Free flight test - translation in the Y-axis direction only : results in

the X-axis direction . 98

4.18 Free flight test - translation in the Y-axis direction only : results in

the Y-axis direction . 98

4.19 Free flight test - translation in the Y-axis direction only : results in

the Z-axis direction . 99

4.20 Free flight test - translation in the Y-axis direction only : results in

the Yaw angle . 99

xiv

4.21 Free flight test - translation in the Z-axis direction only : results in

the X-axis direction - test 1 . 101

4.22 Free flight test - translation in the Z-axis direction only : results in

the Y-axis direction - test 1 . 101

4.23 Free flight test - translation in the Z-axis direction only : results in

the Z-axis direction - test 1 . 102

4.24 Free flight test - translation in the Z-axis direction only : results in

the Yaw angle - test 1 . 102

4.25 Free flight test - translation in the Z-axis direction only : results in

the X-axis direction - test 2 . 103

4.26 Free flight test - translation in the Z-axis direction only : results in

the Y-axis direction - test 2 . 104

4.27 Free flight test - translation in the Z-axis direction only : results in

the Z-axis direction - test 2 . 104

4.28 Free flight test - translation in the Z-axis direction only : results in

the Yaw angle - test 2 . 105

4.29 Free flight test - translation in the Z-axis direction only : results in

the X-axis direction - test 3 . 106

4.30 Free flight test - translation in the Z-axis direction only : results in

the Y-axis direction - test 3 . 106

xv

4.31 Free flight test - translation in the Z-axis direction only : results in

the Z-axis direction - test 3 . 107

4.32 Free flight test - translation in the Z-axis direction only : results in

the Yaw angle - test 3 . 107

4.33 Free flight test - translation in the X+Y-axes direction : results in

the X-axis direction . 108

4.34 Free flight test - translation in the X+Y-axes direction : results in

the Y-axis direction . 109

4.35 Free flight test - translation in the X+Y-axes direction : results in

the Z-axis direction . 109

4.36 Free flight test - translation in the X+Y-axes direction : results in

the Yaw angle . 110

4.37 Free flight test - translation in the X+Y+Z-axes direction : results

in the X-axis direction . 111

4.38 Free flight test - translation in the X+Y+Z-axes direction : results

in the Y-axis direction . 111

4.39 Free flight test - translation in the X+Y+Z-axes direction : results

in the Z-axis direction . 112

4.40 Free flight test - translation in the X+Y+Z-axes direction : results

in the Yaw angle . 112

xvi

1 Introduction

1.1 Motivation

Robotic manipulator is a instrument, an arm-like mechanism which includes a series

of parts that can be moved with a number of degrees of freedom, used to operate

materials without direct physical contact by the operator [5]. Initially, they were

used in inaccessible places. In recent decades, there has been increased interests in

the development of robotic manipulators, including rigid and flexible manipulators

[6]. Robotic manipulators are employed to implement in wide range of applications,

such as robotic surgery [7], space [8] (Fig. 1.1(a)) and manufacturing tasks [9]

(Fig. 1.1), i.e, transporting [10] and assembling [11].

In industrial environment, manipulator usually performs the transporting and as-

sembling missions, which are repetitive. Furthermore, the rigid or flexible manipu-

lators usually operate with uncertain parameters in real engineering. In this case,

1

there are some unknown repetitive disturbance [12, 13, 14, 15, 16], such as the pay-

load, frictional force, and vibration and dead-zone problems [17, 18, 19, 20, 21, 22].

Many research use different approaches to solve the problem, including neural-

network control [23] and sliding-mode control [24]. Generally, the aforementioned

literature can eliminate these kinds of disturbance, however, these methods do not

take advantage of repetitive missions and characteristic of repetitive disturbance.

This research tries to present control algorithms, which can remove the repetitive

disturbance and dead-zone based on the characteristic of repetitive missions.

2

(a) Canadarm during Soace Shuttle Mission STS-72 [1]

(b) robotic manipulator [25] (c) 6-DOF robotic manipulator arm [26]

Figure 1.1: Example of robotic manipulators

3

Unmanned Aerial Vehicles (UAVs) have been gained much attention and been the

subject of significant study for decades, which can perform operations that could

be harmful to humans or that would require more invest of resources if done by

humans, it would require fewer resources to use an UAV to check up the condition

of machinery, structures or infrastructures located on remote areas [27, 28, 29, 30].

Additionally, UAVs are also appealing for civilian [31, 32] use like aerial photo

[33], transport [34, 35], terrain detection [36, 37], deliveries [38, 39] and even data

collection [40, 41].

Figure 1.2: Food drone delivery [2]

Quadrotors use varying rotor speeds to maneuver [42], which are widely used in

aerial tasks, since the capability of vertical take-off and land, high agility [43]. The

dynamic model of quadrotors is nonlinear and under-actuated, since there are less

actuators than the degrees of freedom. Similarly, the quadrotors can execute the

repetitive missions [44], and most of research relied on complicated dynamic model

4

which causes intense computation. Hence, this research is focusing on the linearized

dynamic model of quadrotors, and using the same control algorithms as in robotic

manipulators to track repetitive trajectories with unknown repetitive disturbance.

Iterative learning control (ILC) algorithms are designed to improve the present

control performance of a system by learning from the past perform experience,

which is widely used in industrial applications [45, 46]. The advantage of ILC

algorithms is dealing with tasks performed repeatedly. They have the robustness

to eliminate the system uncertainties and unknown disturbance and the simplicities

to apply a system. Motivated by the aforementioned superiority of ILC algorithms,

this research is focusing on apply ILC algorithms to robotic manipulators and UAVs

to perform repetitive missions, respectively.

1.2 Objectives and Methodology

The goal of this research is to take superiority of ILC algorithms and use two types

of ILC algorithms, PD-type ILC and adaptive-type ILC, to present the learning

control systems for both robotic manipulators [47, 48, 49] and UAVs [50, 51, 52] to

improve the trajectory tracking performance.

Usually, for the robotic manipulators, when driven it to complete some repetitive

tasks, there are some unknown disturbance. This research aims to use the present

5

ILC controllers to compensate the effect of dead-zone and some unknown distur-

bance. Dead-zone is a phenomenon that happens during an interval where the

output of the control system is zero. For robotic manipulators, it happens during

the manipulator changes the rotation direction, such as from clockwise to counter

clockwise. To remove the effect of it, this research will add a dead-zone inverse,

which is designed to convert the auxiliary control input to control input. Then

this research will compare these two ILC controllers to determine the advantages

and disadvantages. In order to verify the theoretical analysis, Simulink model is

used, and the experimental test is finished by using Quanser SRV02 equipment

which is from Quanser company. The robotic manipulator is assembled on SRV02

equipment.

The UAV equipment is also from Quanser company which is called QDrone. First,

implement the ILC controllers, which are verified on robotic manipulator, on the

UAV attached to the Gimbal to track the desired repetitive time-varying attitude.

After that, implement the ILC controllers on UAV to track the desired repetitive

time-varying trajectory on different directions, respectively, as well as focusing on

the performance of the position and the attitude stabilization at the same time.

Meanwhile, as the number of iteration increases, the tracking performance could

be improved.

6

The simulation of the previously mentioned objectives can be achieved using Mat-

lab & Simulink. The test of UAVs can be finished in York University Autonomous

Unmanned Vehicle (YU-UAV) facility in Spacecraft Dynamics Control and Naviga-

tion Laboratory (SDCNLab). There are 5 markers on the top of the QDrone with

a unique shape, and there are 16 cameras on the wall to locate the position of the

QDrone.

1.3 Organization of Thesis

The contents in this thesis are organized as follows:

Chapter 2: Iterative Learning Control - to provide basic information about iterative

learning control method including its history, advantages and two types of iterative

learning control algorithms which are used in this research.

Chapter 3: Application of Iterative Learning Control (ILC) to Robotic Manipula-

tors - to present the dynamic model of both rigid and flexible manipulator, and the

implementation of ILCs to them, finally, the correlative simulation and experimen-

tal results are attached.

Chapter 4: Application of Iterative Learning Control (ILC) to UAVs - to describe

the dynamic model of a UAV, including the general translation of a UAV, and

7

provide the controller design based on attitude and position separately. To demon-

strate the performance, simulation and experimental results are provided.

Chapter 5: Conclusion and Future Work - to provide general reviews of this thesis

and to have a discussion on the possible future development.

8

2 Iterative Learning Control

This chapter is devoted to describe and summarized past studies and some inves-

tigation in Iterative learning control method. Firstly, a brief introduction of ILC

is proposed in Section 2.1. Two different types of ILC algorithms for two types of

systems are shown in Section 2.2 and 2.3, respectively. Finally, conclusion of this

chapter are summarized in Section 2.4.

2.1 Introduction of Iterative Learning Control (ILC)

Iterative learning control is different from most other control methods, because

this algorithm uses the past control experience, such as control input signals and

tracking errors, to improve the current control performance [53]. It is same as the

human learning behavior by repeating or practicing same tasks for many times, the

performance of human behavior would be better as one learns each time. In this

case, ILC is widely used in systems that operate some specific tasks, repeatedly,

9

such as robot manipulators for transporting and assembling, quadrotors for data

collection and delivery, etc. There are two phases in iterative learning control:

first the long term memory components are used to store past control information,

then the stored control information is fused in certain manner so as to ensure that

the system meets control specifications such as convergence, robustness, etc [54].

ILC was first proposed by [55] in 1984. It should be noted that, ILC does not

require full information about the dynamic model of the system to generate the

desired dynamic behaviors. Due to the mentioned advantages, many researchers

paid much attention to it [56].

In the past decades, researchers found that the combination of ILC and other con-

trol techniques may generate better controllers that meet the desired control per-

formance which is impossible for any individual approach. Integration of classical

PD, adaptive, newton-method or other learning algorithms into ILC to eliminate

various control problems has been reported. Since both robotic manipulators and

quadrotors are considered to operate some repetitive missions, ILC is considered to

be the control algorithm in this research. As mentioned before, there are various

types of ILC algorithms. This research selects two types as the desired controller,

which are PD-type ILC and adaptive-type ILC.

10

Figure 2.1: Structure of iterative learning control [57]

2.2 A Simplest ILC Example

A simplest ILC example is proposed here to describe the fundamental principles

and concepts of ILC [57]. For a known process,

y(t) = g(t)u(t) (2.1)

where g(t) 6= 0 is bounded defined over a period [0, T], the objective is to get the

control input, u(t), which ensures that the desired bounded trajectory yd(t)∀t ∈

[0, T] can be tracked and the tracking error e(t) decreases.

If g(t) is given, so that the desired control input can be calculated directly by

inverting the process, which is an open-loop approach

ud(t) =
yd(t)

g(t)
∀t ∈ [0, T] (2.2)

However, the open-loop control scheme is sensitive to the plant modeling error and

11

any other uncertainties. So that assume g(t) is unknown and bounded with

0 < α1 ≤ g(t) ≤ α2 <∞ (2.3)

where α1 and α2 are known lower and upper bounds. When the the desired tra-

jectory yd(t) is repeated, the control input can be calculated iteratively by the

following simple iterative learning control algorithm,

ui+1 = ui + pei(t) ∀t ∈ [0, T] (2.4)

where i presents the ith iteration, u0(t) is set zero. p is a positive constant learning

gain, and ei(t) = yd(t)− yi(t) is the defined tracking error. It should be noted that,

once the desired trajectory yd(t) is given, the desired control input ud(t) is fixed. In

order to prove the convergence of the proposed ILC algorithm, as i→∞, ei(t)→ 0

or ∆ui(t) = ud(t)− ui(t)→ 0, there are two methods.

Method 1. Output Tracking

ei+1 = yd − yi+1 = yd − g(ui + pei) = (1− pg)ei (2.5)

So that

| ei+1 |≤| 1− pg || ei | (2.6)

Method 2. Control Input

∆ui+1 = ud − ui+1 = ud − (ui + pei) = ∆ui − pei (2.7)

12

And

ei = yd − yi = gud − gui = g∆ui (2.8)

By substituting ei into Eq. (2.7)

∆ui+1 = (1− pg)∆ui (2.9)

So that

| ∆ui+1 |≤| 1− pg || ∆ui | (2.10)

The above two proof approaches illustrate the proposed ILC algorithm works, which

makes the convergence of ui to ud (or yi to yd) as i→∞. And describes the basic

information about ILC. However, for more complicated situations such as multi-

input and multi-output (MIMO) case, dynamic models or some uncertainties, more

complex controller should be applied.

2.3 PD-Type Iterative Learning Control (ILC)

PD control is a classical control method, which is widely used in applications, due

to its simple structure and easy to tune the control gains. The integration of PD

control and ILC control remains the advantages of both algorithm [54].

13

2.3.1 Problem Formulation

Consider the linear time invariant system described by

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

(2.11)

where x(t) ∈ Rn, u(t) ∈ Rl and y(t) ∈ Rr denote the state, input and output, re-

spectively. A, B and C are matrices with appropriate dimensions and it is assumed

that CB is nonsingular.

Denote xd(t) is the desired state trajectory which is continuously differentiable on

[0, T]. The objective is to find the desired control input ud(t), which makes the

tracking error ei(t) = yd(t) − yi(t) converges to zero, where i presents the ith-

iteration. The following PD-type iterative learning control algorithm is adopted,

ui+1(t) = ui + Γ(ėi(t)−Rei(t)) (2.12)

The initial condition at each iteration remains the same, i.e., xi(0) = x0.

2.3.2 Convergence of PD-Type ILC in the Sense of Sup-norm

Theorem Suppose that the PD-type ILC control law is applied to the system

with Γ such that the convergence condition holds, that is ρ =‖ I − ΓCB ‖∞< 1.

Also assume that the initial error is zero at each iteration. If the desired trajectory

14

is given on the interval t ∈ [0, Tsup] where Tsup is bounded as

Tsup <
1

a
ln(1 +

a(1− ρ)

hb
) (2.13)

where

a =‖ A ‖∞, b =‖ B ‖∞, h =‖ Γ(CA−RC) ‖∞ (2.14)

then, there exists ρ0 < 1 such that

‖ ei+1(t) ‖m≤ ρ0 ‖ ei(t) ‖m (2.15)

where

‖ ei(t) ‖m= max
t∈[0,Tsup]

‖ ei(t) ‖∞ (2.16)

Proof. From the control law and system,

ei+1(t) = (I − ΓCB)ei(t)− Γ(CA−RC)

∫ t

0

eA(t−τ)Bei(τ)dτ (2.17)

By taking the ‖ · ‖∞-norm on both side,

‖ ei+1(t) ‖∞= ρ ‖ ei(t) ‖∞ + ‖ Γ(CA−RC)

∫ t

0

eA(t−τ)Bei(τ)dτ ‖∞ (2.18)

so that,

‖ ei+1(t) ‖m ≤ ρ ‖ ei(t) ‖m +h max
t∈[0,Tsup]

‖
∫ t

0

eA(t−τ)dτ ‖∞‖ B ‖∞‖ ei(t) ‖m

≤ ρ ‖ ei(t) ‖m +h max
t∈[0,Tsup]

∫ t

0

ea(t−τ)dτb ‖ ei(t) ‖m

=
(
ρ+

1

a
hb(eaTsup − 1)

)
‖ ei(t) ‖m (2.19)

15

From the above equation, the exponential convergence will be guaranteed with

respect to the sup-norm if

ρ0 = ρ+
1

a
hb(eaTsup − 1) < 1 (2.20)

where

ρ0 = ρ+
1

a
hb(eaTsup − 1)

< ρ+
1

a
hb(ea

1
a
ln(1+

a(1−ρ)
hb − 1)

= ρ+
1

a
hb(1 +

a(1− ρ)

hb
− 1)

= 1 (2.21)

If Tsup is bounded by assumption, so that the condition holds. This completes the

proof.

2.4 Adaptive-Type Iterative Learning Control (ILC)

Adaptive control [58, 59, 60, 61, 62] is a control method which is used to adapt the

parameters of the system, the parameters can be unknown or vary. In this section,

an adaptive-type ILC is shown for robotic systems [54].

16

2.4.1 Problem Formulation

Consider a robot system with n rigid links, the mathematical model of which is

D(q(t))q̈(t) +B(q(t), q̇(t))q̇(t) + F (q(t), q̇(t)) + Ta(t) = T (t) (2.22)

where q(t) ∈ Rn is the generalized joint coordinate vector, D(q(t)) ∈ Rn×n is

the inertia matrix, B(q(t), q̇(t)) ∈ Rn is the centripetal plus Coriolis force matrix,

F (q(t), q̇(t)) ∈ Rn is the gravitational plus frictional forces, T (t) ∈ Rn is the joint

torque vector, and Ta(t) ∈ Rn is the unknown disturbance vector which is assumed

to be bounded and periodic. The symmetric inertia matrix D(q(t)) ∈ Rn×n is

assumed to be positive definite and bounded as

0 ≤ λ1I ≤ D(q(t)) ≤ λ2I ∀t ∈ [0, tf] (2.23)

where λ1, λ2 > 0 and I is an n × n identity matrix. The matrix Ḋ(q(t)) −

2B(q(t), q̇(t)) is assumed to be skew-symmetric as

zT (Ḋ − 2B)z = 0 ∀z ∈ Rn and z 6= 0 (2.24)

When the desired trajectory qd(t) ∈ Rn is specified as a reference input for system

Eq. (2.22), the fundamental control problem is to find a control input T (t) with

which the system output q(t) follows qd(t) ∀t ∈ [0, tf] as close as possible. In the

framework of learning control, this objective can be stated as follows:

17

Problem Statement. Suppose that qd(t) ∈ [0, tf], the trajectory vector of sys-

tem Eq. (2.22), is in the interior of a domain Q which is a closed, bounded, and

simply connected subset of Rn. Then, find a sequence of piecewise continuous con-

trol input T j(t) ∈ Rn (t ∈ [0, tf]) for uncertain system Eq. (2.22) with which the

system trajectory qi(t) follows qd(t) with a given accuracy ε. In other words for a

given ε > 0, there exists a positive integer N such that

| qd(t)− qj(t) |≤ ε, ∀t ∈ [0, tf], j ≥ N (2.25)

where j denotes the jth-iteration. This means that qj converges uniformly to qd.

In the following, the uncertain system Eq. (2.22) is assumed to be repetitive for

all t ∈ [0, tf] and the operating conditions such as sampling frequency, payloads

scheduling, and initial configuration etc. are all assumed to be prespecified. The

desired joint position, velocity, acceleration and control input vectors are denoted

as qd(t), q̇d(t), q̈d(t) and Td(t), respectively, and the actual joint position, velocity,

acceleration and control input vectors at the jth iteration are denoted as qj(t),

q̇j(t), q̈j(t) and T j(t), respectively. For notational brevity, the time argument t will

be omitted in the sequel.

18

2.4.2 Learning Control without Parameter Adaptation

In the learning control scheme, the control input T j for the jth iteration consists

of three input components:

T j = Ej + Cj +Hj (2.26)

where Ei is the feedback control input, Cj is the nonlinear compensation term

that generates computed torque error, and Hj is the learning control input. The

feedback control input Ej is computed from the conventional proportional plus

derivative (PD) type control algorithm

Ej = βL(ėj + αej) (2.27)

where ej = qd−qj, β is a positive constant, L is a symmetric positive definite matrix

and α is a positive scale factor. The nonlinear compensation term Cj compensates

for the nonlinear part of the robotic system and helps keep the feedback gain of

Ej reasonably small. The learning control input Hj drives the system to track the

reference trajectory over the sequence of iterations and converges to the desired

input trajectory function Td(t). When the system parameters of Eq. (2.22) are

completely known, the nonlinear compensation term Cj is of the form

Cj = De(q
j)q̈d +Be(q

j, q̇j)q̇d + Fe(q
j, q̇j) + α(D(qj)ėj +B(qj, q̇j)ej) (2.28)

19

where De(q
j) = D(qj) − D(qd), Be(q

j, q̇j) = B(qj, q̇j) − B(qd, q̇d) and Fe(q
j, q̇j) =

F (qj, q̇j)− F (qd, q̇d).

Substituting the torque input Eq. (2.26) into Eq. (2.22), and applying Eq. (2.27)

and Eq. (2.28), it can be obtained that

D(qj)żj +B(qj, q̇j)zj + βLzj = Td −Hj = Ũ j (2.29)

where zj = ėj + αej, Td = D(qd)q̈d + B(qd, q̇d) + F (qd, q̇d) + Ta.For the subsequent

development of the learning controller, the following assumption is listed

Assumption The desired control input Td is piecewise continuous on [0, tf] and

each element Ti of Td is bounded with known bound T bi . This means that | Ti |≤ T bi

for all i = 1, 2, 3, · · ·n, where n is the number of elements of Td.

As a motivation to generate a learning algorithm, a Lyapunov function candidate

W (zj) is defined as 1
2
zj
T
D(qj)zj. Then the derivative of W (zj) along the error

trajectory is

Ẇ (zj) = zj
T
D(qj)żj +

1

2
zj
T
Ḋ(qj)zj = −βzjTLzj + zj

T
Ũ j (2.30)

Integrating both sides of the above equation

W (zj(t))−W (zj(0)) = −
∫ t

0

βzj
T
Lzjdτ +

∫ t

0

zj
T
Ũ jdτ (2.31)

20

Therefore, the learning algorithm is proposed as

Hj+1 = Proj{H̄j+1} = {Proj{H̄j+1
1 }, ..., P roj{H̄j+1

n }} (2.32)

where H̄j+1 = Hj + βLzj and

Proj{H̄j+1
i } =


T bi if H̄ i+1

i ≥ T bi

−T bi if H̄j+1
i ≤ −T bi

H̄j+1
i otherwise

(2.33)

As an initial condition, zj(0) is set to 0 (i.e., ej(0) = 0 and ėj(0) = 0).

Theroem The control law with the learning rule converges as

(1) lim
j→∞

V j(t) = V (t)

(2) lim
j→∞

zj(t) = 0, for all t ∈ [0, tf]

where V j is the performance index function

V j(t) =

∫ t

0

Ũ jT (τ)L−1Ũ j(τ)dτ (2.34)

Proof. From the definition of Ũ j and the learning rule

∆Ũ j = ˜̄U
j+1
− Ũ j = −βLzj (2.35)

where ˜̄U
j

= Td − H̄i. Since | Ũ j |≤| ˜̄U
j
|

V j+1 − V j ≤ V̄ j+1 − V j (2.36)

21

where V̄ j =
∫ t
0

˜̄U
jT

(τ)L−1 ˜̄U
j
(τ)dτ ,

V j+1 − V j ≤ V̄ j+1 − V j

=

∫ t

0

(˜̄U
j+1T

L−1 ˜̄U
j+1
− Ũ jTL−1Ũ j)dτ

=

∫ t

0

(∆Ũ jTL−1Ũ j + 2∆Ũ jTL−1Ũ j)dτ

=

∫ t

0

(β2zj
T

Lzj − 2βzj
T

(D(qj)żj +B(qj, q̇j)zj + βLzj))dτ

= −2β

∫ t

0

zj
T

(D(qj)żj +B(qj, q̇j)zj)dτ − β2

∫ t

0

zj
T

Lzjdτ

= −βzjTD(qj)zj + β

∫ t

0

zj
T

(Ḋ(qj)− 2B(qj, q̇j))zjdτ − β2

∫ t

0

zj
T

Lzjdτ

= −βzjTD(qj)zj − β2

∫ t

0

zj
T

Lzjdτ

≤ −βzjTD(qj)zj (2.37)

Since V j is positive definite and monotonically decreasing, V j converges to some

function V [63]. Hence, V j+1 − V j converges to zero. Therefore, zj converges to

zero.

2.4.3 Adaptive Learning Control

When the system parameters are not completely known, then rearrange the dy-

namic Eq. (2.22) in terms of a set of system parameters, the following algebraic

description of the system is obtained,

Y (q(t), q̇(t), q̈(t))Θ = T (t)− Ta(t) (2.38)

22

where Y (q(t), q̇(t), q̈(t)) ∈ Rn×l is the regression matrix and Θ ∈ Rl is a suitably

chosen parameter vector. The following assumption is proposed

Assumption Each element Θi of the parameter vector Θ is bounded with known

bound Θb
i . This means that | Θi |≤ Θb

i for all i = 1, 2, · · ·, l, where l is the number

of elements of Θ.

Compared with the previously developed learning controller without parameter

adaptation, the current learning controller system uses the feedback input

Ej = βY j
e Y

jT

e + βLzj (2.39)

The additional term helps to eliminate the constraints that was imposed on L

and β in [64]. Next, since the system parameters Θ are not known, the nonlinear

compensation input term Cj depends on the estimated parameter vector Θ̂j as

Cj = D̂e(q
j)q̈d + B̂e(q

j, q̇j)q̇d + F̂e(q
j, q̇j) + α(D̂(qj)ėj + B̂(qj, q̇j)ej) (2.40)

where D̂e(q
j) = D̂(qj) − D̂(qd), B̂e(q

j, q̇j) = B̂(qj, q̇j) − B̂(qd, q̇d), F̂e(q
j, q̇j) =

F̂ (qj, q̇j) − F̂ (qd, q̇d). Note that .̂ denotes the estimated variables. Substituting

Eq. (2.39) and Eq. (2.40) into Eq. (2.22), and rearrange the equation

D(qj)żj +B(qj, q̇j)zj + βLzj + βY j
e Y

j
e

T
zj = Y j

e θ̃
j + Ũ j (2.41)

23

Define W (zj) as 1
2
zj
T
D(qj)zj,

W (zj(t))−W (zj(0)) = −β
∫ t

0

βzj
T

(L+Y j
e Y

j
e

T
)zjdτ+

∫ t

0

zj
T

(Ũ j+Y j
e θ̃

j)dτ (2.42)

Hence, the parameter learning rule is proposed as

θ̂j+1 = Proj{ˆ̄θ
j+1
} = {Proj{ˆ̄θ

j+1
}, ..., P roj{ˆ̄θ

j+1
}} (2.43)

where ˆ̄θ
j+1

= θ̂j + βY j
e z

j and

Proj{ˆ̄θ
j+1

i } =


θbi if ˆ̄θ

j+1

i ≥ θbi

−θbi if ˆ̄θ
j+1

i ≤ −θbi

ˆ̄θ
j+1

i otherwise

(2.44)

The adaptive-type ILC controller could be:

T j = Ej +Hj + Y j
e Θ̂j (2.45)

Theorem The adaptive learning control law for the system converges uniformly

as

(1) lim
j→∞

V j
a (t) = Va(t)

(2) lim
j→∞

zj(t) = 0, for all t ∈ [0, tf]

where

V j
a (t) =

∫ t

0

(Ũ jT (τ)L−1Ũ j(τ) + Θ̃jT (τ)Θ̃j(τ))dτ (2.46)

24

Proof. Since | ˜̄U
j
≥| Ũ j | and | ˜̄Θ

j
|≥| Θ̃j |,

V j+1
a − V j

a ≤ V̄ j+1
a − V̄ j

a (2.47)

where

V̄ j
a =

∫ t

0

(˜̄U
jT

(τ)L−1 ˜̄U
j
(τ) + ˜̄Θ

jT

(τ) ˜̄Θ
j
(τ))dτ (2.48)

and

˜̄Θ
j

= Θ− ˆ̄Θ
j

(2.49)

∆Θ̃j = ˜̄θ
j+1
− Θ̃j = Θ̂j − ˆ̄Θ

j+1
= −βY j

e z
j (2.50)

and

V j+1
a − V j

a ≤ V̄ j+1
a − V̄ j

a

= −2β

∫ t

0

zj
T

(D(qj)żj +B(qj, q̇j)zj)dτ

−β2

∫ t

0

zj
T

(L+ βY j
e Y

j
e

T
)zjdτ (2.51)

Integrating the first term by part and exploiting the fact that Ḋ − 2B is skew-

symmetric, the following equation can be obtained,

V j+1
a (t)− V j

a (t) ≤ βzj
T

D(qj)zj (2.52)

since V j is positive definite and monotonically decreasing, V j converges to some

function Va [63]. Then zj also converges to zero as in the proof of Theorem.

25

2.5 Conclusions

This chapter illustrates a brief introduction of ILC and the reason why in this

research ILC is adopted. And given an simple example to determine the basic

principle of ILC. Two types of ILc are shown as the potential method to solve the

problems in this research for robotic manipulators and quadrotor.

PD-type ILC is using for the linear time invariant system, which can be described

as state-space form. Due to its simple structure and easy to tune the control gains,

this method is used for robotic manipulators to operate some specific repetitive

missions, like transporting and assembling.

Adaptive-type ILC is using for some more complex systems which can be described

as Lagrange equations, including dynamic uncertainties, parameters uncertainties,

and etc. This method may also be used into robotic manipulators to verify the

control performance and be familiar with it. Additionally, because of the widely use

of Lagrange equations, this method is selected as a method to apply on quadrotor

to accomplish some tasks which need to repeat many times.

26

3 Application of ILC to Robotic Manipulators

In this chapter, two kinds of manipulators are introduced, which are rigid manip-

ulator and flexible manipulator. The dynamic model of rigid manipulator and two

types of ILC algorithm are illustrated in Section 3.1. Similarly, Section 3.2 presents

the model of flexible manipulator based an Euler-Lagrange equation, and describes

a new ILC controller to eliminate the effect of uncertain parameters, dead-zone

and unknown repetitive disturbance. The simulation and experimental results are

provided in Section 3.3 and 3.4, respectively. Finally, concluding remarks of this

chapter are summarized in Section 3.5

3.1 Rigid Manipulator

3.1.1 Dynamic Modeling

The dynamic model of one rigid manipulator is considered to be the DC motor

model, as shown in Fig. 3.1,

27

Figure 3.1: SRV02 DC motor armature circuit and gear train [3]

3.1.1.1 Electrical Model

The DC motor system is shown in Fig. 3.1. Denote that Rm is the motor resistance,

Lm is the inductance, and km is the back-emf constant. The back-emf voltage eb(t)

depends on the motor shaft,wm, and the back-emf constant of the motor, km. It

opposes the current flow. The back emf voltage is given by [3]:

eb(t) = kmwm(t) (3.1)

Using Kirchoff’s Voltage Law, the following equation can be obtained,

Vm(t)−RmIm(t)− Lm
dIm(t)

dt
− kmwm(t) = 0 (3.2)

where Im(t) is the current cross the circuit. Since the motor inductance Lm is much

less than its resistance, it can be ignored. Then, the equation can be rewritten as

Vm(t)−RmIm(t)− kmwm(t) = 0 (3.3)

28

By solving the equation above, the motor current can be found as,

Im(t) =
Vm(t)− kmwm(t)

Rm

(3.4)

3.1.1.2 Mechanical Model

In this section the motion speed wl of the rigid manipulator will be described, with

respect to the applied motor torque, τm, is developed. According to the Newton’s

Second Law of Motion and since the SRV02 with rigid manipulator is a one degree-

of-freedom rotary system, the follow equation can be obtained,

J · α = τ (3.5)

where J is the moment of inertia of the system, α is the angular acceleration of the

system, and τ is the sum of the torques being applied to it. As shown in Fig. 3.1,

the SRV02 gear train along with the viscous friction acting on the motor shaft, Bm,

and the load shaft Bl are considered. So that,

Jl
dwl(t)

dt
+Blwl(t) = τl(t) (3.6)

where Jl is the moment of inertia of the load and τl is the total torque applied on

the load. The load inertia includes the inertia from the gear train and the attached

rigid manipulator. The motor shaft equation is expressed as,

Jm
dwm(t)

dt
+Bmwm(t) + τml(t) = τm(t) (3.7)

29

where Jm is the motor shaft moment of inertia and τml is the resulting torque

acting on the motor shaft from the load torque. The torque at the load shaft from

an applied motor torque can be written as,

τl(t) = ηgKgτml(t) (3.8)

where Kg is the gear ratio and ηg is the gearbox efficiency. The planetary gearbox

that is directly mounted on the SRV02 motor is represented by the N1 and N2 gears

in Fig. 3.1. and has a gear ratio of

Kgi =
N2

N1

(3.9)

This is the internal gear box ratio. The motor gear N3 and the load gear N4 are

directly meshed together and are visible from the outside. These gears comprise

the external gear box which has an associated gear ratio of

Kge =
N4

N3

(3.10)

The gear ratio of the SRV02 gear train is given as

Kg = KgeKgi (3.11)

Thus, the torque at the motor shaft through the gears can be expressed as,

τml(t) =
τl(t)

ηgKg

(3.12)

30

The motor should shaft Kg times for the output shaft to rotate one revolution.

θm(t) = Kgθl(t) (3.13)

By taking the time derivative, the relationship between the angular speed of the

motor shaft, wm, and the angular speed of the load shaft, wl.

wm(t) = Kgwl(t) (3.14)

By substituting, the following equation can be got,

JmKg
dwl(t)

dt
+BmKgwl(t) +

dwl(t)
dt

+Blwl(t)

ηgKg

= τm(t) (3.15)

Collecting the coefficients in terms of the load shaft velocity and acceleration gives

(ηgK
2
gJm + Jl)

dwl(t)

dt
+ (ηgK

2
gBm +Bl)wl(t) = ηgKgτm(t) (3.16)

Defining the following terms,

Jeq = ηgK
2
gJm + Jl (3.17)

Beq = ηgK
2
gBm +Bl (3.18)

So that, the Eq. (3.16) can be simplified as

Jeq
dwl(t)

dt
+Beqwl(t) = ηgKgτm(t) (3.19)

31

3.1.1.3 Dynamic Model

The motor torque is proportional to the voltage applied and is described as

τm(t) = ηmktIm(t) (3.20)

where kt is the current-torque constant, ηm is the motor efficiency. By substituting

Eq. (3.4) into Eq. (3.20), here comes the relation among motor torque, input voltage

and load shaft speed,

τm(t) =
ηmkt(Vm(t)− kmwm(t))

Rm

(3.21)

To express this in terms of Vm and wl, so that,

τm(t) =
ηmkt(Vm(t)− kmKgwl(t))

Rm

(3.22)

Substitute above equation into mechanical model,

Jeq

(d
dt
wl(t)

)
+Beqwl(t) =

ηgKgηmkt(Vm(t)− kmKgwl(t))

Rm

(3.23)

By rearranging the above euqation, it can be obtained,

(d
dt
wl(t)

)
Jeq +

(kmηgK2
gηmkt

Rm

+Beq

)
wl(t) =

ηgKgηmktVm(t)

Rm

(3.24)

This equation can be rewritten as,

(d
dt
wl(t)

)
Jeq +Beq,vwl(t) = AmVm (3.25)

32

where the equivalent damping term is defined as,

Beq,v =
kmηgK

2
gηmkt +BeqRm

Rm

(3.26)

and the actuator gain is

Am =
ηgKgηmkt

Rm

(3.27)

3.1.2 Control System Design

3.1.2.1 PD-Type ILC Controller Design

Based on the above section, the dynamic model of a rigid manipulator can be

written into State-Space form, which is described as,

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

(3.28)

where x(t) ∈ Rn, u(t) ∈ Rr and y(t) ∈ Rr denote the position of the manipulator,

input voltage and the actual position of the manipulator, respectively. A, B and C

are matrices with appropriate dimensions and CB is nonsingular.

Denote xd(t) be the desired state trajectory which is continuously differentiable on

[0, T]. The following PD-type learning control law is used,

ui+1 = ui + Γ(ėi(t)−Rei(t)) (3.29)

33

where ui(t) and ei(t) = yi(t)−yd(t) are the control input and tracking error between

actual output and the desired trajectory, respectively, at the i− th iteration.

Theorem 3.1.1 Suppose that the control law is applied to the system and the

initial condition at each iteration remains the same, i.e., xi(0) = x0, i = 0, 1, 2,

If

‖I − ΓCB‖ ≤ ρ < 1 (3.30)

then,

lim
k−→∞

yi = yd + eRtC{x0 − xd(0)} (3.31)

uniformly on t ∈ [0, T].

Proof Let ua(t) be a control input such that

yd(t) + eRtC{x0 − xd(0)} = CeAtx0 + C

∫ t

0

eA(t−τ)Bua(τ)dτ (3.32)

define

∆ui(t) = ua(t)− ui(t) (3.33)

so that

∆ui+1(t) = ua(t)− ui(t)− Γ(ẏd(t)− ẏi(t)) (3.34)

∆ui+1(t) = (I − ΓCB)eui(t)− Γ(CA−RC)

∫ t

0

eA(t−τ)Bui(τ)dτ (3.35)

34

Taking the norm ‖ · ‖∞ on both side of equation and multiplying both side by e−λt

and taking the norm ‖ · ‖λ, so that

‖∆ui+1(t)‖∞ = max0≤t≤T e
−λt‖∆ui+1(t)‖∞ (3.36)

and

max0≤t≤T e
−λt‖∆ui+1(t)‖∞ = (ρ+ h

1− e(a−λ)T

λ− a
)‖∆ui(t)‖ (3.37)

where h = ‖Γ(CA − RC)Γ‖∞ · ‖B‖∞, and a = ‖A‖∞. Since 0 ≤ ρ < 1 by

assumption, it is possible to choose λ sufficiently large so that

ρo = ρ+ h
1− e(a−λ)T

λ− a
< 1 (3.38)

Thus,

lim
i−→∞

‖∆ui(t)‖λ = 0 (3.39)

It is clear by definition of the norm ‖ · ‖λ that these convergence are uniform on

t ∈ [0, T]. Therefore, limk−→∞ ui(t) = ua(t) uniformly on [0, T]. Then,

lim
i−→∞

yi = yd + eRtC{x0 − xd(0)} (3.40)

uniformly on t ∈ [0, T]. This completes the proof.

35

3.1.2.2 Adaptive Type ILC Controller Design

Based on section 3.1.1, the dynamic model of the system can be described as fol-

lowed Lagrange-system,

D(q(t))q̈(t) +B(q(t), q̇(t))q̇(t) + Ta(t) = τ(t) (3.41)

where q(t) ∈ Rn is the generalized joint coordinate vector, D(q(t)) ∈ Rn×n is the

inertia matrix, B(q(t), q̇(t))q(t) ∈ Rn is the centripetal plus Coriolis force vector,

τ(t) ∈ Rn is the joint torque vector, and Ta(t) ∈ Rn is the unknown disturbance

vector which is assumed to be bounded and periodic. And n presents the number

of rigid manipulators. The symmetric inertia matrix D(q(t)) ∈ Rn×n is assumed to

be positive definite and bounded as

0 < λ1I ≤ D(q(t)) ≤ λ2I for all t ∈ [0, tf] (3.42)

where λl, λ2 > 0 and I is an nxn identity matrix. The matrix Ḋ(q(t))−2B(q(t), q̇(t))

is assumed to be skew-symmetric as

zT (Ḋ − 2B)z = 0 for all z ∈ Rn and z 6= 0. (3.43)

Denote the desired trajectory qd(t) ∈ Rn is specified as a reference input for the

system. The error ei is defined as

ei = qd − qi (3.44)

36

The control law is designed as,

τi = Ei +Hi + Y (q(t), q̇(t), q̈(t))Θ̂ (3.45)

where Ei is the feedback input, designed as

Ei = βL(ėi + αei) (3.46)

where β is a positive constant, L is a symmetric positive definite matrix and α is a

positive scale factor.

Define a sliding surface which obtained as

si = ėi + αei (3.47)

The initial condition, si(0) is set to 0, since ei(0) = 0 and ėi(0) = 0. Hi is the

learning law which is proposed as,

Hi+1 = Hi + βLsi (3.48)

Y (q(t), q̇(t), q̈(t)) ∈ Rn×l is the regression matrix and Θ ∈ Rl is a suitably chosen

parameter vector. Θ̂ is the estimates of the system parameters.The updating law

is defined as,

Θ̂i+1 = Θ̂i + βY si (3.49)

Theorem 3.1.2 The adaptive learning controller for the uncertain dynamic sys-

tem uniformly as follows,

37

(1) lim
i−→∞

Vi,a(t) = Va(t)

(2) lim
i−→∞

si(t) = 0, for all t ∈ [0, tf]

where Vi,a(t) =
∫ t
0
(ŨT

i (τ)L−1Ũi(τ) + Θ̃T
i (τ)Θ̃i(τ))dτ for all t ∈ [0, tf] and for all

i ≥ 1.

Proof Since ‖ ˜̄U i‖ ≥ ‖Ũi‖ and ‖ ˜̄Θi‖ ≥ ‖Θ̃i‖, and

Vi+1,a − Vi,a ≤ V̄i+1,a − Vi,a(t) (3.50)

where

V̄i,a(t) =

∫ t

0

(˜̄U
T

i (τ)L−1 ˜̄U i(τ) + ˜̄Θ
T

i (τ) ˜̄Θi(τ))dτ (3.51)

and

˜̄Θi = Θ− ˆ̄Θi (3.52)

And define ∆Θ̃i as ˜̄Θi+1 − Θ̃i, so that

∆Θ̃i = ˜̄Θi+1 − Θ̃i = Θ̂i − ˆ̄Θi+1 = −βYisi (3.53)

and

Vi+1,a(t)− Vi,a(t) ≤ V̄i+1,a − Vi,a(t)

= −2β

∫ t

0

sTi (D(qi)ṡi +B(qi, q̇i)si)dτ

−β2

∫ t

0

sTi (L+ βYiY
T
i)sidτ (3.54)

38

Integrating the first term by part and exploiting the fact that Ḋ − 2B is skew-

symmetric, so that,

Vi+1,a(t)− Vi,a(t) ≤ −βsTi D(qi)si (3.55)

where has defined si(0) = 0. This completes the proof.

3.2 Flexible Manipulator

In recent decades, flexible manipulators are widely used in the industrial field to

complete some assembling and transporting tasks. The flexible manipulators can

be modeled as Lagrange equation system [65], which is used to describe mechanical

and electrical systems. Therefore, solving Lagrange system problems becomes series

of hot research topics. At the same time, some space and undersea tasks require

the manipulators to be faster rotation speed and less weight with high accuracy.

The flexible manipulators get attention because of the lower energy consumption,

cost, and higher flexibility than the rigid ones [66]. Because the control input is

less than the degrees of freedom of the flexible manipulator, normally, it is treated

as under-actuated.

This section aims to develop an adaptive ILC to compensate the effect of dead-

zone, which compensates the repetitive disturbance for an under-actuated flexible

manipulator. And the flexible manipulator is under-actuated because it is driven

39

by the torque only at the joint. To compensate the effect of dead-zone, a smooth

inverse of dead-zone is used in controller design. The adaptive scheme is used to

estimate dead-zone parameters.

3.2.1 Dynamic Modeling

Figure 3.2: Flexible manipulator

As shown in Fig. 3.2. A load is assembled at the tip of a flexible manipulator, and

the flexible manipulator can be driven to rotate by connecting to the motor. When

the flexible manipulator is rotated, to control the vibration of it directly cannot

be achieved. The flexible manipulator can be treated as Euler-Bernoulli beam to

simplify the analysis. The kinetic energy and potential energy of this manipulator

40

system can be written as [65]

EK =
1

2

∫ l

0

ρṙTAṙAdx+
1

2
mtṙ

T
t ṙt (3.56)

Ep =
1

2
EI

∫ l

0

(
∂2u

∂x2
)2dx (3.57)

where rA and rt illustrate the position vector of random point on the manipulator

and the load, respectively, u is the deformation of the random point on the manip-

ulator, mt signifies the mass of the load, θ represents the angular position of the

manipulator when it rotates, as shown in Fig. 3.2. In the above equations, l, ρ and

EI declare the length, density and bending stiffness of the manipulator.

According to the Lagrange equation, the dynamic model of the manipulator

shown in Fig. 3.2 can be described as followed

Mi(xi)ẍi + Ci(ẋi, xi)ẋi + Ci,d(ẋi, xi)ẋi + gi(xi) = τi + w (3.58)

where i expresses the number of iterations. Since the dimension of the control

input is less than the degrees of freedom of the system, the system is treated as

under-actuated. Some basic properties of the under-actuated Lagrange system are

listed below [65]

Property 1 Mi =

 Mi,θθ Mi,θp

Mi,pθ Mi,pp

 ∈ R2×2 is the inertia matrix, which is positive

definite and bounded.

41

Property 2 Ci =

 Ci,θθ Ci,θp

Ci,pθ Ci,pp

 ∈ R2×2 is the Coriolis and centrifugal matrix

and selected by skew-symmetric matrix Ṁi − 2Ci.

Property 3 Ci,d =

 0 0

0 Ci,d,p

 ∈ R2×2 is the damping matrix, where Ci,d,p =

η1 > 0.

Property 4 gi = [0 gi,p]T ∈ R2×1 is the stiffness term, τi = [ud 0]T ∈ R2×1

is the control input vector and w = [wθ wp]T ∈ R2×1 represents the modeling

errors and some repetitive disturbances.

Property 5 xi = [θi pi]T ∈ R2×1 is the generalized coordinate vector.

Property 6 ρ, mt, EI and η1 are treated as uncertain parameters. There-

fore, the dynamic equation is linear with respect to the parameter vector Θi =

[ρ mt EI η1]T [67, 68].

The dynamic equation can be rewritten as
Mi,θθθ̈i +Mi,θpp̈i + Ci,θpṗi = ud + w + θ

Mi,pθθ̈i +Mi,ppp̈i + Ci,pθθ̇i + (Ci,pp + Ci,d,pṗi) + gi,p = wp

(3.59)

42

According to property, the dynamic equation can be rearranged as
Mi,θθθ̈i +Mi,θpp̈i + Ci,θpθ̇i + Ci,θpṗi = Yi,θ(xi, ẋi, θ̈i, p̈i, θ̇i, ṗi)Θi

Mi,pθθ̈i +Mi,ppp̈i + Ci,pθθ̇i + (Ci,pp + Ci,d,pṗi) + gi,p = Yi,p(xi, ẋi, θ̈i, p̈i, θ̇i, ṗi)Θi

(3.60)

where Yi = [Y T
i,θ Y T

i,p
]T is called the regression matrix.

3.2.2 Dead-zone and Dead-zone inverse

Dead-zone is a phenomenon, which happens during an interval where the output

of the control system is zero, while the input of the control system is not zero. In

this case, it appears during the flexible manipulator changes the rotation direction,

such as from clockwise to counterclockwise. The dead-zone model can be described

as [4]

u(t) = DZ(v(t)) =


mr(v(t)− br) v(t) ≥ br

0 bl ≤ v(t) ≤ br

ml(v(t)− bl) v(t) ≤ bl

(3.61)

where br, bl, mr and ml are the breakpoints and slope of dead-zone, respectively.

br ≥ 0, bl ≥ 0, mr ≥ 0, ml ≥ 0 are unknown constants, u(t) is the control output

and v(t) is the control input, as shown in Fig. 3.3.

It should be noted that the magnitudes of br and bl are not required to be equal,

and the slope mr and ml are not required to be the same.

43

Figure 3.3: Dead-zone model [4]

To remove the effect of dead-zone, the solution in this paper is to place a dead-zone

inverse. It is designed to convert the input ud into control input v. The unknown

dead-zone inverse parameters are estimated by the adaptive control scheme and

changed follow the number of iterations. Because the dead-zone is unknown, the

dead-zone inverse can only be complied with the estimation of dead-zone parame-

ters. The dead-zone inverse is described as

v(t) = DI(ud(t)) =


ud(t)+m̂rbr

m̂r
, if ud ≥ 0

ud(t)+m̂lbl

m̂lbl
, if ud ≥ 0

(3.62)

where m̂r 6= 0, m̂rbr 6= 0, m̂l 6= 0, m̂lbl 6= 0 are estimates of the dead-zone parame-

ters mr, mrbr, ml, mlbl, respectively.

The described dead-zone inverse is a relay-type discontinuity when the parameters

for dead-zone inverse is correct, it works and counteracts the effect of dead-zone.

44

However, when the estimates parameters b̂r, b̂l are different from the true values br,

bl of dead-zone, this discontinuity appears and may cause control chattering.

In order to avoid this possible problem, an improved approach which is the smooth

inverse of the dead-zone is claimed to compensate for the effect of the dead-zone in

controller design. The smooth inverse for the dead-zone is described as

v(t) = DI(ud(t)) =
ud(t) + m̂rbr

m̂r

φr(ud) +
ud(t) + m̂lbl

m̂l

φl(ud) (3.63)

where φr(ud) and φl(ud) are smooth continuous functions defined as
φr(ud) = eud/ε0

eud/ε0+e−ud/ε0

φl(ud) = e−ud/ε0

eud/ε0+e−ud/ε0

(3.64)

where ε0 is a free parameter, which can be chosen in any values, but needs to be

satisfied greater than 0. The structure of the controller with dead-zone is revealed

in Fig. 3.4.

Figure 3.4: Structure of the controller with dead-zone

The error between u(t) and ud(t) is calculated. The output of the dead-zone u(t)

45

is parameterized as

u(t) = −ψT ξ (3.65)

where

ξ = [mr,mrbr,ml,mlbl]
T (3.66)

ψ = [−σr(t)v(t), σr(t),−σl(t)v(t), σl(t)]
T (3.67)

σr(t)


1 if u(t) ≥ 0

0 otherwise

(3.68)

σl(t)


1 if u(t) ≤ 0

0 otherwise

(3.69)

Based on Eq. (3.63), ud(t) can be written as a function of v(t) as

ud(t) = −ψT ξ̂ (3.70)

where ξ̂ denotes estimate of ξ as given below,

ξ̂ = [m̂r, m̂rbr, m̂l, m̂lbl]
T (3.71)

ψ = [−φr(t)v(t), φr(t),−φl(t)v(t), φl(t)]
T (3.72)

Additionally, ξ̂ is obtained by the following equation

˙̂
ξ = −Γψ

T
s (3.73)

where Γ is a positive constant.

46

3.2.3 Control System Design

The control objective is to drive an under-actuated flexible manipulator with uncer-

tain parameters, repeatable disturbance and dead-zone to track a desired trajectory.

Some assumptions are imposed [65].

Assumption 1. The desired angular trajectory is defined by θd(t) and gets 2

requirements.

(1) θd(t) is a bounded continuously differentiable function of time t.

(2) The speed and acceleration are bounded, which means θ̇d(t) and θ̈d(t) are

bounded.

Assumption 2. The initial values of the angular position θd(t) and angular ve-

locity θ̇d(t) of the flexible manipulator are the same as the desired initial state at

the beginning of each iteration, which means θi(0) = θd(0) and θ̇i(0) = θ̇d(0). Fur-

thermore, the unknown variable pi has the same initial value during each iteration,

which is named as the Iterative Learning Control [69].

Assumption 3. The modeling errors and repetitive disturbance are bounded.

Determine ei = θi − θd presents the tracking error. The initial velocities of θi and

47

pi are θ̇(i,r) and ṗ(i,r), which are obtained from

θ̇i,r = λei (3.74)

Yi,p(xi, ẋi, θ̈i, p̈i, θ̇i, ṗi)Θ̂i = α tanh(ṗi − ṗi,r) + ŵi,p (3.75)

where λ and α are positive constant, Θ̂i and ŵi,p are the estimates of Θi and wi,p.

Here defined two auxiliary variables, which are called sliding surfaces. The starting

value ṗ(i,r) is set as ṗi(0). Based on the Assumption 2 and the meaning of ṗi,

initially, si and ri are zero.Two variables are defined as

si = θ̇i − θ̇i,r (3.76)

ri = ṗi − ṗi,r (3.77)

so that it can be obtained as
Mi,θθṡi +Mi,θpṙi + Ci,θpsi + Ci,θprk = τi,θ + wθ − Yi,θ(xi, ẋi, θ̈i,r, p̈i,r, θ̇i,r, ṗi,r)Θi

Mi,pθṡi +Mi,ppṙi + Ci,pθsi + (Ci,pp + Ci,d,pri) = wp − Yi,p(xi, ẋi, θ̈i,r, p̈i,r, θ̇i,r, ṗi,r)Θi

(3.78)

The tracking controller is designed as follows

τi,θ = −µ tanh(βsi) + Yi,θ(xi, ẋi, θ̈i,r, p̈i,r, θ̇i,r, ṗi,r)Θ̂i − ŵi,θ (3.79)

where µ and β are positive constant, ŵi,θ is the estimates value of w(i, θ). ŵ(i,p) and

ŵ(i,θ) are obtained from the following learning lows and the initial value of ŵ(i,p)

48

and ŵ(i,θ) are both equal to zero

ŵ(i,θ) = ŵ(i−1,θ) + ξsi (3.80)

ŵ(i,p) = ŵ(i−1,p) + ξri (3.81)

where ξ is a positive constant learning gain.

Denote Θi,u = −(Y T
i,θsi +Y T

i,pri). The j− th entry of Θ̂i, i.e., Θ̂i,j, is updated by the

following law,

˙̂
Θi,j =


γΘi,u,j ifΘ̂i,j ≥ ε

γ
√

Θ2
i,u,j + ε1 ifΘ̂i,j < ε

(3.82)

where Θi,u,j is the j − th element of Θi,u, both ε and ε1 are small positive numbers

and γ is a positive constant gain. ε is chosen very small so that it is less then every

entry of Θi,j. The initial condition and iteration initial guess of Θ̂i are

Θ̂i(0) = Θ̂i−1(T), Θ̂1(0) = δ (3.83)

where δ is a positive number and T is a finite large number.

3.3 Simulation Results

This section mainly presents some simulation results for trajectory tracking of a

rigid manipulator, using PD-type and adaptive-type ILCs. All the simulation re-

sults are obtained solely using MATLAB & Simulink programming.

49

3.3.1 PD-Type ILC

Throughout the simulation, the given desired trajectory is set as

sin(
π

4
t+

π

2
)− 1 (3.84)

where t = 8 s is the iteration time. And the learning control gain Γ and R are

chosen as

Γ = 0.8 (3.85)

R = −0.12 (3.86)

Because u0(t), e0(t) and ė0(t) are set as 0, there is no response at the first iteration,

and the results are shown as Fig. 3.5. After the first iteration, u1(t), e1(t) and ė1(t)

0 1 2 3 4 5 6 7 8

Time (s)

-120

-100

-80

-60

-40

-20

0

20

P
o

s
it
io

n
 (

d
e

g
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 2 4 6 8

Time (s)

-120

-100

-80

-60

-40

-20

0

e
i (

d
e

g
)

(b) Tracking error

Figure 3.5: PD-type ILC simulation results : trajectory tracking at the 1st iteration

are updated, then the results in the second iteration is as followed Fig. 3.6.

50

0 1 2 3 4 5 6 7 8

Time (s)

-120

-100

-80

-60

-40

-20

0

20

P
o

s
it
io

n
 (

d
e

g
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 1 2 3 4 5 6 7 8

Time (s)

-60

-40

-20

0

20

40

e
i (

d
e

g
)

(b) Tracking error

Figure 3.6: PD-type ILC simulation results : trajectory tracking at the 2nd iteration

After taking 9 iterations, the desired trajectory gradually converges to the desired

trajectory, and the tracking error is less than ±0.6 deg of the desired trajectory, as

shown in Fig. 3.7. Therefore, according to the shown simulation results, the rigid

manipulator tracks the desired trajectory after 10 iterations by using PD-type ILC

algorithm.

51

0 1 2 3 4 5 6 7 8

Time (s)

-120

-100

-80

-60

-40

-20

0

20

P
o

s
it
io

n
 (

d
e

g
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 1 2 3 4 5 6 7 8

Time (s)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

e
i (

d
e

g
)

(b) Tracking error

Figure 3.7: PD-type ILC simulation results : trajectory tracking at the 10th itera-

tion

3.3.2 Adaptive-Type ILC

Similarly, throughout the simulation, the given desired trajectory is set as

sin(
π

4
t+

π

2
)− 1 (3.87)

where t = 8 s is the iteration time. And the learning control gain β, L and α are

chosen as

β = 1 (3.88)

L = 2 (3.89)

α =
1

3
(3.90)

52

The initial learning control input H1(t), sliding surface s1(t), Y1(t) and estimated

parameters Θ̂1(t) are all chosen as 0. As seen in Fig. 3.8, the trajectory tracking

at the first iteration including tracking response (Fig. 3.8(a)) and tracking error

(Fig. 3.8(b)). The difference between PD-Type and Adaptive-Type is there is con-

trol response at the first iteration, due to the feedback term in adaptive-Type ILC

controller.

0 1 2 3 4 5 6 7 8

Time (s)

-120

-100

-80

-60

-40

-20

0

20

P
o

s
it
io

n
 (

d
e

g
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 1 2 3 4 5 6 7 8

Time (s)

-20

-15

-10

-5

0

5

10

15

20

e
i (

d
e

g
)

(b) Tracking error

Figure 3.8: Adaptive-type ILC simulation results : trajectory tracking at the 1st

iteration

Then, from Fig. 3.9, the actual trajectory gives the trend to converge to the desired

trajectory, the tracking error decreased as well.

53

0 1 2 3 4 5 6 7 8

Time (s)

-120

-100

-80

-60

-40

-20

0

20

P
o

s
it
io

n
 (

d
e

g
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 1 2 3 4 5 6 7 8

Time (s)

-15

-10

-5

0

5

10

e
i (

d
e

g
)

(b) Tracking error

Figure 3.9: Adaptive-type ILC simulation results : trajectory tracking at the 2nd

iteration

At the 9th iteration, the tracking error has decreased to between −0.35 deg and

0.05 deg. According to the given simulation results, adaptive-type ILC controller

drive the rigid manipulator tracks the desired trajectory using 9 iterations.

54

0 1 2 3 4 5 6 7 8

Time (s)

-120

-100

-80

-60

-40

-20

0

20

P
o

s
it
io

n
 (

d
e

g
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 2 4 6 8

Time (s)

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

e
i (

d
e

g
)

(b) Tracking error

Figure 3.10: Adaptive-type ILC simulation results : trajectory tracking at the 9th

iteration

3.4 Experimental Results

3.4.1 Rigid Manipulator

Rigid manipulator experimental results are presented in this section. As shown

in Fig. 3.11, the experimental system consists of a Q2-USB acquisition device, an

amplifier device, a computer, and a Quanser SRV02 rotary servo plant. A rigid

link is mounted on the top of Quanser SRV02 rotary servo plant [70]. The angular

position is detected by encoder sensor.

55

Figure 3.11: Rigid manipulator experimental system

3.4.1.1 PD-Type ILC

In each iteration process, the experiment time, T , is set as 8 seconds. Fig. 3.12

shows the desired trajectory (solid line) and actual trajectory (dash line) at the 1st

iterations. It is clear to see that the gap between the desired trajectory and actual

trajectory at the 1st iteration. Then, at the 2nd iteration, ei and ė1 are updated, in

this case, there is a response that the rigid manipulator start to track the desired

trajectory, as shown in Fig. 3.13. Finally, actual trajectory converges to the desired

trajectory at the 14th iteration. And Fig. 3.14 presents the tracking error at the 14th

iteration, which obviously tells the tracking performances are improved as iteration

time increased.

56

0 2 4 6 8

Time (s)

-120

-100

-80

-60

-40

-20

0

20

P
o

s
it
io

n
 (

d
e

g
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 2 4 6 8

Time (s)

-120

-100

-80

-60

-40

-20

0

e
i (

d
e

g
)

(b) Tracking error

Figure 3.12: PD-type ILC experimental results : trajectory tracking at the 1st

iteration

0 2 4 6 8

Time (s)

-120

-100

-80

-60

-40

-20

0

20

P
o

s
it
io

n
 (

d
e

g
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 2 4 6 8

Time (s)

-30

-20

-10

0

10

20

30

e
i (

d
e

g
)

(b) Tracking error

Figure 3.13: PD-type ILC experimental results : trajectory tracking at the 2nd

iteration

57

0 2 4 6 8

Time (s)

-120

-100

-80

-60

-40

-20

0

20

P
o

s
it
io

n
 (

d
e

g
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 2 4 6 8

Time (s)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

e
i (

d
e

g
)

(b) Tracking error

Figure 3.14: PD-type ILC experimental results : trajectory tracking at the 14th

iteration

3.4.1.2 Adaptive-Type ILC

In each iteration process, the experiment time, T , is set as 8 seconds. Fig. 3.15 shows

the trajectory and tracking error at the 1st iterations. And the given trajectory is

the same as simulation.

58

0 2 4 6 8

Time (s)

-120

-100

-80

-60

-40

-20

0

20

P
o

s
it
io

n
 (

d
e

g
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 2 4 6 8

Time (s)

-30

-20

-10

0

10

20

30

e
i (

d
e

g
)

(b) Tracking error

Figure 3.15: Adaptive-type ILC experimental results : trajectory tracking at the

1st iteration

Then the 2nd iteration is shown as Fig. 3.16.

0 2 4 6 8

Time (s)

-120

-100

-80

-60

-40

-20

0

20

P
o

s
it
io

n
 (

d
e

g
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 2 4 6 8

Time (s)

-20

-15

-10

-5

0

5

10

15

e
i (

d
e

g
)

(b) Tracking error

Figure 3.16: Adaptive-type ILC experimental results : trajectory tracking at the

2nd iteration

59

Finally, at the 8th iteration, the tracking error is within 0.5 deg, as shown in

Fig. 3.17.

0 2 4 6 8

Time (s)

-120

-100

-80

-60

-40

-20

0

20

P
o

s
it
io

n
 (

d
e

g
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 2 4 6 8

Time (s)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

e
i (

d
e

g
)

(b) Tracking error

Figure 3.17: Adaptive-type ILC experimental results : trajectory tracking at the

8th iteration

3.4.2 Flexible Manipulator

Flexible manipulator experimental results are presented in this section. As shown in

Fig. 3.18, the experimental system has four parts, including a Q2-USB acquisition

device, an amplifier device, a computer, and a Quanser SRV02 rotary servo plant.

A flexible link with a tip mass is assembled on the top of Quanser SRV02 rotary

servo plant. The angular position is detected by encoder sensor and deformation

is detected by a strain gage connected to the tachometer sensor. The parameters

of the flexible manipulator, control system and dead-zone are shown in Table 3.1

60

[71]. In each iteration process, the experiment time, T , is set as 40 seconds.

Figure 3.18: Flexible manipulator experimental system

The designed trajectory is set as θ̄d = sin(π
10
T + π

2
) − 1. In the actuated channel,

manually subjoin a 0.1 sin(1.5T) disturbance to demonstrate the performance of

the designed controller. Fig. 3.19 shows the s at the 1st and 10th iterations. It is

clear to see that s gradually reduce to almost zero as iteration time increasing. The

trajectories of the flexible manipulator at 1st and 10th iterations are illustrated in

Fig. 3.20. And Fig. 3.21 presents the tracking error at the 1st and 10th iterations,

which obviously tell the tracking performances are promoted from time by time.

61

Table 3.1: Parameters of system, controller and deadzone

Parameters Value Unit

Linear density of flexible link ρ 0.1354 kg/m

Length of flexible link l 0.435 m

Bending stiffness of flexible link EI 0.181 N·m2

Mass of tip payload mt 0.0324 kg

η1 0.01 -

λ 5 -

α 0.1 -

ε 10−3 -

ε1 10−5 -

β 2 -

γ 0.5 -

δ 0.1 -

ϕ 0.5 -

µ 0.2 -

ε0 0.01 -

m̂r 1 -

m̂rbr 0.01 -

m̂l 1 -

m̂lbl 0.01 -

62

Figure 3.19: The sliding variable s at the 1st and 10th iteration

Figure 3.20: The trajectory tracking of the flexible manipulator at the 1st and the

10th iteration with dead-zone inverse

63

Figure 3.21: The tracking error at the 1st and the 10th iteration with dead-zone

inverse

Figure 3.22: The trajectory tracking of the flexible manipulator at the 1st and the

10th iteration without dead-zone inverse

64

Figure 3.23: The tracking error at the 1st and the 10th iteration without dead-zone

inverse

All above results contain the smooth inverse of dead-zone. Moreover, Fig. 3.22

clarifies the trajectories of the flexible manipulator at 1st and 10th iterations, which

do not have dead-zone inverse. Additionally, Fig. 3.23 indicates the tracking error

at the 1st and 10th iterations. By comparing with Fig. 3.20, Fig. 3.21, Fig. 3.22

and Fig. 3.23, it is should be noted that placing the smooth inverse of dead-zone

in controller design can successfully compensate the effect of dead-zone.

65

3.5 Conclusions

Table 3.2: Comparison of PD-type ILC and adaptive-type ILC

PD-Type ILC Adaptive-Type ILC

Simulation tracing error (deg) | ei |≤ 0.6 | ei |< 0.35

Simulation converge speed 10 iterations 9 iterations

Experimental tracking error (deg) | ei |< 1.5 | ei |< 1

Experimental converge speed 14 iterations 8 iterations

First iteration no response tracking

In this chapter, dynamic model of both rigid and flexible manipulator are presented,

and based on these two dynamic models, two types of ILC algorithm are designed

to ensure the manipulator tracks the desired trajectories, and compensates repet-

itive disturbance. As shown in simulation and experimental results, the proposed

PD-type ILC and adaptive-type ILC meet the requirements, which is the tracking

error is less than 1% of the maximum value of the desired trajectory. By compared

with these two controllers, PD-type has the lower convergence speed, and at the

first iteration, there is no response which causes some misunderstanding in appli-

cations, such as the operator may think the instrument is broken and waste 1 time

to manipulate the materials. For the Adaptive-type ILC, tracking error at the 1st

iteration is acceptable, and it took 8 iterations to converge to the required speci-

66

fications. And from Table 3.2, it can be seen the tracking error for adaptive-type

ILC is less than that for PD-type ILC in both simulation and experimental results.

The problem of a flexible manipulator with uncertain parameters, dead-zone, and

unknown disturbance is addressed using the designed iterative learning controller

with placing a smooth inverse of the dead-zone. An adaptive sliding-mode con-

troller keeps the system on the designed sliding variables during the experimental

time interval as iteration time goes up. The smooth inverse of the dead-zone is de-

signed to compensate the effect of the dead-zone. Experimental results show that

the proposed controller can drive the flexible manipulator tracking the designed

trajectory and compensate the effect of the dead-zone.

67

4 Application of ILC to UAVs

In this chapter, detailed discussions of a quadrotor UAV are presented. The or-

ganization of this chapter is as follows: the dynamic model of the UAV, the basic

concepts and the assumptions used in this chapter are introduced in Section 4.1.

The controller design based on the attitude and the position control is explained in

4.2. The simulation of the quadrotor is discussed in Section 4.3. The experimental

results using gimbal and QDrone are shown in section 4.4 and finally concluding

remarks of this chapter are included in Section 4.5.

4.1 Dynamic Modeling

The UAV configuration [72] used in this model is illustrated in Fig. 4.1. As seen

in the figure, based on the right hand rule, the three rotations Roll (φ), Pitch (θ)

and Yaw (ψ) present the rotation about X-axis, Y -axis and Z-axis, respectively.

Propellers 1 and 2 rotate in clockwise, meanwhile generate the torques 1 and 2.

68

Similarly, propellers 3 and 4 rotate in counter-clockwise and generate torques 3 and

4 , which are in the opposite direction of torques 1 and 2 to keep the stability of

the UAV.

X Y

Z
𝑃4

𝑃2

𝑃1

𝑃3

Yaw(𝜓)

Roll(𝜙) Pitch(𝜃)

L

𝜏4

𝜏2 𝜏3

𝜏1

Figure 4.1: UAV schematic

The dynamic model fo a UAV with respect to the Earth-fixed coordinate system

can be expressed as [73]

ẍ = (cosφ sin θ cosψ + sinφ sinψ)U1

m
− k1

m
ẋ

ÿ = (cosφ sin θ sinψ − sinφ cosψ)U1

m
− k2

m
ẏ

z̈ = (cosφ cos θ)U1

m
− g − k3

m
ż

φ̈ = U2

Ix
− Lk4

Ix
φ̇

θ̈ = U3

Iy
− Lk5

Iy
θ̇

ψ̈ = U4

Iz
− Lk6

Iz
ψ̇

(4.1)

69

with 

U1 = F1 + F2 + F3 + F4

U2 = L(F3 − F4)

U3 = L(F1 − F2)

U4 = Ky(F1 + F2 − F3 − F4)

(4.2)

where, x, y, and z represent the coordinates in the inertial frame, φ, θ, and ψ

illustrate roll, pitch, and yaw angles, ki represents the drag coefficients, m, g, Fi,

and Ky are the mass of the UAV, acceleration of gravity, thrust generated be the

ith motor and thrust-to-moment scalling factor, respectively, and U1, U2, U3, U4,

and L illustrate the total lift force, the moments about x, y, and z axes, and the

distance between the center of the UAV and the rotor.

To simplify the nonlinear model shown above, the linear model of a UAV can be

expressed with an assumption:

Assumption It is assumed that the UAV operates in a hovering condition (U1 ≈

mg). The pitch and roll motions are small such that sin θ ≈ θ and sinφ ≈ φ. There

is no yaw motion (ψ = 0) during the whole flight. Furthermore, the UAV moves

extremely slow, so the drag force can be neglected [73].

Based on the assumption, the simplified dynamic model can be obtained in the

70

following equation: 

ẍ = θg

ÿ = −φg

z̈ = U1

m
− g

φ̈ = U2

Ix

θ̈ = U3

Iy

ψ̈ = U4

Iz

(4.3)

The mathematical model of UAV with unknown disturbance could be expressed as

Dq̈ + Ua = U (4.4)

where Ua = [Ua1, Ua2, Ua3, Ua4]
T is the unknown disturbance vector.Denote qi =

[xi, yi, zi, φi, θi, ψi]
T as the actual output, and qd = [xd, yd, zd, φd, θd, ψd]

T is

specified as a reference input for system, ei is the tracking error, which is defined

as ei = qi − qd, and ėi = q̇i − q̇d.

Z-direction Translation

Taking off and raising the height for a quadrotor can be done by increasing the

rotors’ speeds equally, and vice versa for landing and reducing the height. The

change in the torque in each pair is equal and thus be canceled out. Fig. 4.2

illustrates the concept of the vertical motion.

71

X Y

Z

𝑃4

𝑃2

𝑃1

𝑃3

Figure 4.2: Z-direction translation schematic

X-direction Translation and Pitch Rotation

Since the quadrotor dynamic is highly coupled, the motion in one direction depends

on a rotation with a certain angle, which is the fundamental of how the quadrotor

moves in each direction. Therefore, starting from hovering, increasing the speed of

rotor 1 and decreasing the speed of rotor 2, while maintaining speeds of rotor 3 and

4 result in rotation in the pitch(θ) angle and motion in the X-direction and vice

versa. Note that at this point the UAV tilts with a small angle and the thrust is

approximately equal to weight, thus no motion in the Z-direction. This is illustrated

in Fig. 4.3.

72

X Y

Z

𝑃4

𝑃2

𝑃1

𝑃3

Figure 4.3: X-direction translation and pitch rotation schematic

Y-direction Translation and Roll Rotation

Similar to the pitch motion, the roll motion is coupled with the Y-direction motion.

In this case, increasing the rotors’ speed of rotor 3 and decreasing it of rotor 4, while

maintaining the speeds of rotors 1 and 2 result in rotation in the roll(φ) angle and

motion in Y direction and vice versa. This is described in Fig. 4.4.

73

X Y

Z

𝑃4

𝑃2

𝑃1

𝑃3

Figure 4.4: Y-direction translation and roll rotation schematic

Yaw-direction Rotation

The yaw motion is not coupled. Instead of canceling out the torques, the thrust

is balanced to maintain the altitude in this case. To perform a pure yaw motion,

starting from hovering, equally increase the speed in a pair of rotors with the same

direction of propeller rotation, and decrease the other pair. Increasing the speed

of rotors 1 and 2, while decreasing the speed of rotor 3 and 4 result in rotation in

yaw(ψ) direction and vice versa. See Fig. 4.5 for more details.

74

X Y

Z

𝑃4

𝑃2

𝑃1

𝑃3

Figure 4.5: Yaw-direction rotation schematic

4.2 Control System Design

4.2.1 Controller Design Based on the Attitude Control

The attitude control considers the attitude of UAV, which are ψ, θ and ψ, Z direc-

tion still be considered in this part. Therefore, attitude equations are used as the

dynamic model.

4.2.1.1 Learning control without parameter adaptation

U = [U1, U2, U3, U4]
T is the control input, which can be expressed as follows

U = Ei + Ci + Hi, (4.5)

75

where, Ei = −βLS is the feedback control input, Ci = Dėi is the nonlinear

compensation term. The four sliding surfaces [74] are defined as

s1 = (zi − zd) + (żi − żd)

s2 = (yi − yd) + (ẏi − ẏd)

s3 = (xi − xd) + (ẋi − ẋd)

s4 = (ψi − ψd) + (ψ̇i − ψ̇d)

(4.6)

Based on Eq. 4.6, can define S = [s1, s2, s3, s4]
T and Ṡ = [ṡ1, ṡ2, ṡ3, ṡ4]

T , Ṡ

expressed as 

ṡ1 = (żi − żd) + (z̈i − z̈d)

ṡ2 = (ẏi − ẏd) + (ÿi − ÿd)

ṡ3 = (ẋi − ẋd) + (ẍi − ẍd)

ṡ4 = (ψ̇i − ψ̇d) + (ψ̈i − ψ̈d)

(4.7)

Substitute Eq. (4.5) into Eq. (4.4), could have

Dq̈i + Ua = Ei + Ci + Hi (4.8)

D(ëi + q̈d) + Ua = −βLS + Dėi + Hi (4.9)

therefore,

DṠ+βLS = −(Dq̈d+Ua−Hi) = −(U∗
d +Ua−Hi) = −(Ud−Hi) = Ũi (4.10)

76

To generate the learning algorithm, define a Lyapunov function candidate W (Si) =

1
2
ST

i DSi, then, the derivative of W (Si) along the error trajectory is

Ẇ (Si) = ST
i DṠi +

1

2
ST

i ḊSi = −βST
i LSi + ST

i Ũi (4.11)

Integrating both sides of Eq. (4.11), results in

W (Si(t))−W (Si(0)) = −
∫ t

0

βST
i LSidτ +

∫ t

0

ST
i Ũidτ (4.12)

which indicates that the error dynamics is strictly passive with respect to the pair

{Ũi/Si}. Due to the unknown disturbance vector Ua, proposed a physically real-

izable control algorithm,

Hi+1 = Proj{H̄i+1} = Proj{H̄1
i+1, ..., H̄

n
i+1}, (4.13)

where H̄i+1 = Hi − βLSi and

Proj{H̄i+1} =


Unb if H̄n

i+1 ≥ Unb

−Unb if H̄n
i+1 ≤ −Unb

H̄n
i+1 otherwise

(4.14)

Theorem The control scheme Eq. (4.10) with the learning rule Eq. (4.13, 4.14)

converges as

(1) lim
i→∞

Vi(t) = V (t)

(2) lim
i→∞

Si(t) = 0

77

where, Vi is the performance index functional

Vi(t) =

∫ t

0

ŨT
i (τ)L−1Ũi(τ)dτ (4.15)

Proof From the definition of Ũi and the learning rule,

∆Ũi = Ũi+1 − Ũi = −βLSi (4.16)

Therefore,

Vi+1 − Vi =

∫ t

0

(ŨT
i+1L

−1Ũi+1 − ŨT
i L
−1Ũi) (4.17)

Vi+1 − Vi ≤
∫ t

0

(−2βST
i DṠi − β2ST

i LSi)dτ (4.18)

Vi+1 − Vi ≤ −2βST
i DSi (4.19)

Because Si(0) = 0. Hence, Vi+1 − Vi converges to zero, and Si converges to zero.

4.2.1.2 Adaptive ILC with parameter learning

Y (q(t), q̇(t), q̈(t))Θ = U −Ua (4.20)

In order to prove the convergence of the parameter estimator, impose the following

assumption on the system.

Assumption Each element Θn of the parameter vector Θ is bounded with known

bound Θnb. This means that |Θn| ≤ Θnb for all n = 1, 2, ..., l, where l is the number

78

of elements of Θ.

Ei = −βYiY
T
i Si − βLSi (4.21)

the additional term βYiY
T
i Si helps to eliminate the constrains that was imposed

on β and L.

Ci = −D̂ėi (4.22)

where D̂ denotes the estimated variables. Substitute Eq. (4.21) and (4.22) into

Eq. (4.4),

DṠi + βLSi + βYiY
T
i Si = YiΘ̃ + Ũi (4.23)

Θ̃i = Θ− Θ̂i (4.24)

In order to construct good learning rules, define W (Si) = 1
2
ST

i DSi So that,

W (Si(t))−W (Si(0)) = −β
∫ t

0

ST
i (L+YiY

T
i)Sidτ +

∫ t

0

ST
i (Ũi +YiŨi)dτ (4.25)

Proposing an adaptive learning controller with following parameter learning rule:

Θ̂i+1 = Proj{ ˆ̄Θi+1} = Proj{ ˆ̄Θ
1

i+1, ...,
ˆ̄Θ
n

i+1}, (4.26)

where ˆ̄Θi+1 = Θ̂i − βYiSi and

Proj{ ˆ̄Θi+1} =


Θnb if ˆ̄Θ

n

i+1 ≤ Θnb

−Θnb if ˆ̄Θ
n

i+1 ≤ −Θnb

ˆ̄Θ
n

i+1 otherwise

(4.27)

79

The designed adaptive learning controller is composed of the feedback controller,

the learning control rule and the parameter leaning rule, which is shown below,

U = Ei + Hi + YiΘ̂i; (4.28)

Theorem The adaptive learning controller for the uncertain dynamic system con-

verges uniformly as follows

(1) lim
i→∞

Vi(t) = V (t)

(2) lim
i→∞

Si(t) = 0

where, Vi is the performance index functional

Vi(t) =

∫ t

0

(ŨT
i (τ)L−1Ũi(τ) + Θ̃T

i Θ̃i)dτ (4.29)

Proof Since | ˜̄U i |≥| Ũi | and | ˜̄Θi |≥| Θ̃i | so that

Vi+1 − Vi ≤ V̄i+1 − Vi (4.30)

where,

V̄i =

∫ t

0

(˜̄U
T

i (τ)L−1 ˜̄U i(τ) + ˜̄Θ
T

i (τ) ˜̄Θi(τ)) (4.31)

∆Θ̃i = ˆ̄Θi+1 − Θ̂i = −βYiSi (4.32)

and

Vi+1(t)− Vi(t) ≤ −2β

∫ t

0

ST
i DṠidτ − β2

∫ T

0

ST
i (L+ βYiY

T
i)Sidτ (4.33)

80

Vi+1(t)− Vi(t) ≤ −βST
i DSi (4.34)

Because Si(0) = 0, Hence, Vi+1 − Vi converges to zero, and Si converges to zero.

4.2.2 Controller Design Based on the Position Control

The position control considers the position of the UAV, which is Z, X and Y,

meanwhile, keeps yaw direction the same as the previous one. In this case, φ and

θ are considered to be U2 and U3, which are the control input.

4.2.2.1 Learning control without parameter adaptation

U = [U1 φ θ U4]
′ is the control input.

U = Ei + Ci +Hi (4.35)

where Ei = −βLS is the feedback control input, Ci = Dėi is the nonlinear com-

pensation term. Defined four sliding surfaces shown as

s1 = (zi − zd) + (żi − żd) (4.36)

s2 = (yi − yd) + (ẏi − ẏd) (4.37)

s3 = (xi − xd) + (ẋi − ẋd) (4.38)

s4 = (ψi − ψd) + (ψ̇i − ψ̇d) (4.39)

81

Based on Eqs. (4.36)-(4.39), could have S = [s1 s2 s3 s4]
′ and Ṡ = [ṡ1 ṡ2 ṡ3 ṡ4]

′, Ṡ

expressed as

ṡ1 = (żi − żd) + (z̈i − z̈d) (4.40)

ṡ2 = (ẏi − ẏd) + (ÿi − ÿd) (4.41)

ṡ3 = (ẋi − ẋd) + (ẍi − ẍd) (4.42)

ṡ4 = (ψ̇i − ψ̇d) + (ψ̈i − ψ̈d) (4.43)

Substitute Eq.(4.35) into Eq.(4.4), could have

Dq̈i + Ua = Ei + Ci +Hi (4.44)

D(ëi + q̈d) + Ua = −βLS +Dėi +Hi (4.45)

Therefore,

Dṡ+ βLS = −(Dq̈d + Ua −Hi) = −(U∗d + Ua −Hi) = −(Ud −Hi) = Ũi (4.46)

To generate the learning algorithm, define a Lyapunov function candidate W (Si) =

1
2
STi DSi, then, the derivative of W (Si) along the error trajectory is

Ẇ (Si) = STi DṠi +
1

2
STi ḊSi = −βSTi LSi + STi Ũi (4.47)

Integrating both sides of the above equation, could obtain

Ẇ (Si(t))− Ẇ (Si(0)) = −
∫ t

0

βSTi LSidτ +

∫ t

0

STi Ũidτ (4.48)

82

which indicates that the error dynamics is strictly passive with respect to the pair

{Ũi/Si}. Due to unknown disturbance vector Ud, proposed a physically realizable

control algorithm,

Hi+1 = Proj{H̄i+1} = Proj{H̄1
i+1, ..., H̄

n
i+1}, (4.49)

where H̄i+1 = Hi − βLSi and

Proj{H̄i+1} =


Unb if H̄n

i+1 ≥ Unb

−Unb if H̄n
i+1 ≤ −Unb

H̄n
i+1 otherwise

(4.50)

Theorem The control scheme Eq. (4.46) with the learning rule Eq. (4.49, 4.50)

converges as

(1) lim
i→∞

Vi(t) = V (t)

(2) lim
i→∞

Si(t) = 0

where Vi is the performance index functional

Vi(t) =

∫ t

0

ŨT
i (τ)L−1Ũi(τ)dτ (4.51)

Proof From the definition of Ũi and the learning rule,

∆Ũi = Ũi+1 − Ũi = −βLSi (4.52)

83

Therefore,

Vi+1 − Vi =

∫ t

0

(ŨT
i+1L

−1Ũi+1 − ŨT
i L
−1Ũi) (4.53)

Vi+1 − Vi ≤
∫ t

0

(−2βSTi DṠi − β2STi LSi)dτ (4.54)

Vi+1 − Vi ≤ −2βSTi DSi (4.55)

Because Si(0) = 0. Hence, Vi+1 − Vi converges to zero, and Si converges to zero.

4.2.2.2 Adaptive ILC with parameter learning

Y (q(t), q̇(t), q̈(t))Θ = U − Ua (4.56)

In order to prove the convergence of the parameter estimator, impose the following

assumption on system.

Assumption Each element Θn of the parameter vector Θ is bounded with known

bound Θnb. This means that |Θi| ≤ Θnb for all n = 1, 2, · · ·, l, where l is the number

of elements of Θ.

Ei = −βYiY T
i Si − βLSi (4.57)

The additional term βYiY
T
i Si helps to eliminate the constrains that was imposed

on β and L.

Ci = −D̂ėi (4.58)

84

where .̂ denotes the estimated variables. Substitute Eq. (4.57) and (4.58) into Eq.

(4.4),

DṠi + βLSi + βYiY
T
i Si = YiΘ̃ + Ũi (4.59)

Θ̃i = Θ− Θ̂i (4.60)

In order to construct good learning rules, define W (Si) = 1
2
STi DSi So that,

W (Si(t))−W (Si(0)) = −β
∫ t

0

STi (L+ YiY
T
i)Sidτ +

∫ t

0

STi (Ũi + YiŨi)dτ (4.61)

Proposed an adaptive learning controller with following parameter learning rule:

Θ̂i+1 = Proj{ ˆ̄Θi+1} = Proj{ ˆ̄Θ
1

i+1, · · ·, ˆ̄Θ
n

i+1}, (4.62)

where ˆ̄Θi+1 = Θ̂i − βYiSi and

Proj{ ˆ̄Θi+1} =


Θnb if ˆ̄Θ

n

i+1 ≤ Θnb

−Θnb if ˆ̄Θ
n

i+1 ≤ −Θnb

ˆ̄Θ
n

i+1 otherwise

(4.63)

The designed adaptive learning controller be composed of the feedback controller,

the learning control rule and parameter leaning rule, which is shown below,

U = Ei +Hi + YiΘ̂i; (4.64)

Theorem The adaptive learning controller for the uncertain dynamic system con-

verges uniformly as follows

85

(1) lim
i→∞

Vi(t) = V (t)

(2) lim
i→∞

Si(t) = 0

where Vi is the performance index functional

Vi(t) =

∫ t

0

(ŨT
i (τ)L−1Ũi(τ) + Θ̃T

i Θ̃i)dτ (4.65)

Proof Since | ˜̄U i |≥| Ũi | and | ˜̄Θi |≥| Θ̃i | so that

Vi+1 − Vi ≤ V̄i+1 − Vi (4.66)

where

V̄i =

∫ t

0

(˜̄U
T

i (τ)L−1 ˜̄U i(τ) + ˜̄Θ
T

i (τ) ˜̄Θi(τ)) (4.67)

∆Θ̃i = ˆ̄Θi+1 − Θ̂i = −βYiSi (4.68)

and

Vi+1(t)− Vi(t) ≤ −2β

∫ t

0

STi DṠidτ − β2

∫ T

0

STi (L+ βYiY
T
i)Sidτ (4.69)

Vi+1(t)− Vi(t) ≤ −βSTi DSi (4.70)

Because Si(0) = 0, Hence, Vi+1 − Vi converges to zero, and Si converges to zero.

4.3 Simulation Results

This section presents the trajectory tracking simulation results of the UAV, using

the proposed adaptive-type ILCs. All the simulation results are obtained solely

86

using MATLAB & Simulink programming.

Translation in Z-axis Direction

Throughout the simulation, the iteration time is 20 seconds and desired trajectory

in Z is given as

zd =


1 if 0 ≤ T ≤ 10

0.3 sin(π
5
T)− 1 if 10 < T ≤ 20

(4.71)

where, T ∈ (0, 20] is the time in each iteration, the mass of the UAV used in

the simulation is m = 1.12 kg and the acceleration of gravity is g = 9.81 m/s2.

The initial parameters for the proposed controller are estimated as sz1(T) = 0,

Hz1(T) = 0, Θ̂z1(T) = 1.1 and Yz1(T) = 0. As shown in Fig. 4.6, the actual

trajectory gradually tracks the desired trajectory and the tracking error decreases.

0 50 100 150 200

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

H
e

ig
h

t
(m

)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 50 100 150 200

Time (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

E
rr

o
r

(m
)

(b) Tracking error

Figure 4.6: QDrone simulation results : trajectory tracking in Z-axis direction

87

Translation in X-axis Direction

The desired trajectory on X direction used in the simulation is

xd = RT 5e(−2T) (4.72)

where, R = 2, and T is the time in each iteration. The proposed controller drives

the UAV to track the desired trajectory in X-axis direction, and the tracking error

shows the learning performance iteration by iteration, which is described as Fig. 4.7.

0 50 100 150 200

Time (s)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

D
is

ta
n

c
e

 (
m

)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 50 100 150 200

Time (s)

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015
E

rr
o

r
(m

)

(b) Tracking error

Figure 4.7: QDrone simulation results : trajectory tracking in X-axis direction

Translation in Y-axis Direction

The desired trajectory and all parameters are setting as in the translation in X-axis

direction. The tracking performance is illustrated as Fig. 4.8.

88

0 50 100 150 200

Time (s)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

D
is

ta
n

c
e

 (
m

)
Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 50 100 150 200

Time (s)

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

E
rr

o
r

(m
)

(b) Tracking error

Figure 4.8: QDrone simulation results : trajectory tracking in Y-axis direction

Rotation in Yaw Direction

The given trajectory is the same as the trajectory in Z-axis direction, and Iz = 0.002

kg/m2. From Fig. 4.9, it can be seen that the tracking performance is promoted as

the number of iterations increased.

0 50 100 150 200

Time (s)

-20

-15

-10

-5

0

5

10

15

20

Y
a

w
 A

n
g

le
 (

d
e

g
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 50 100 150 200

Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

E
rr

o
r

(d
e

g
)

(b) Tracking error

Figure 4.9: QDrone simulation results : trajectory tracking in Yaw direction

89

4.4 Experimental Results

This section presents the experimental results by using the QDrone [75], with the

proposed adaptive-type ILCs. The experimental results are divided into two parts:

the test with the gimbal and the free flight test.

(a) The gimbal and the QDrone (b) The QDrone in flying space

Figure 4.10: QDrone experimental system

4.4.1 Experimental Results with Gimbal

The gimbal is a frame that the QDrone can be mounted on it. In this case, there

are two degrees of freedom, i.e, roll and yaw. Fig. 4.10(a) shows the QDrone with

gimbal. To do the test, first, mount the QDrone on the gimbal, then give the

desired trajectory in directions such as roll or yaw. While the QDrone is mounted

on the gimbal, the dynamic model of the QDrone is considered to be the same as

in free flight test, since the motion is equivalent to an attitude motion of a QDrone

90

in hovering. It is worth nothing that the gimbal has no actuators and the QDrone

is actuated only by the four propellers.

Rotation in the Roll Direction

The given trajectory in roll direction is

φd =


0.3 sin(π

10
T) if 0 < T ≤ 10

0 if 10 ≤ T ≤ 20

(4.73)

where, T ∈ (0, 20] is time for each iteration. The yaw angle is set to zero. As

shown in Fig. 4.11, the tracking performance is promoted as the time increases,

meanwhile, the yaw direction is stable.

91

0 50 100 150 200

Time (s)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

R
o

ll
A

tt
it
u

d
e

 (
ra

d
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 50 100 150 200

Time (s)

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

R
o

ll
e

rr
o

r
(r

a
d

)

(b) Tracking error

0 50 100 150 200

Time (s)

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Y
a

w
 A

tt
it
u

d
e

 (
ra

d
)

Desired Trajectory

Actual Trajectory

(c) Tracking performance

0 50 100 150 200

Time (s)

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Y
a

w
 e

rr
o

r
(r

a
d

)

(d) Tracking error

Figure 4.11: Experimental results with the Gimbal : rotation in the roll angle &

yaw angle maintains stable

Rotation in the Yaw Direction

Similarly, the given trajectory in the yaw direction is

ψd =


0.3 sin(π

10
T) if 0 < T ≤ 10

0 if 10 ≤ T ≤ 20

(4.74)

92

where, T ∈ (0, 20] is time for each iteration, conversely, the roll angel is set to zero.

As shown in Fig. 4.12, the tracking performance is promoted as the time increases,

meanwhile, the roll direction is stable.

0 50 100 150 200

Time (s)

-0.03

-0.02

-0.01

0

0.01

R
o

ll
A

tt
it
u

d
e

 (
ra

d
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 50 100 150 200

Time (s)

-0.02

-0.01

0

0.01

R
o

ll
e

rr
o

r
(r

a
d

)

(b) Tracking error

0 50 100 150 200

Time (s)

-0.4

-0.2

0

0.2

0.4

Y
a

w
 A

tt
it
u

d
e

 (
ra

d
)

Desired Trajectory

Actual Trajectory

(c) Tracking performance

0 50 100 150 200

Time (s)

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Y
a

w
 e

rr
o

r
(r

a
d

)

(d) Tracking error

Figure 4.12: Experimental results with the Gimbal : rotation in the yaw angle &

roll angle maintains stable

93

4.4.2 Free Flight Test

The tests have been run in the York University Autonomous Unmanned Vehicle

(YU-AUV) facility in the Spacecraft Dynamics Control and Navigation Lab (SDC-

NLab). The QDrone has 5 markers on the top of it with a unique shape, and there

are 16 cameras on the wall to recognize the real-time position of the QDrone, as the

shown in Fig. 4.10(b). For all the tests, the desired trajectories are given after the

QDrone takes off. But before that, the system considers the initial position of the

QDrone on the map is the desired one, therefore, the tracking error is zero during

that period. And the precision of this experimental system is 0.05 m.

Translation in the X-axis Direction

First, the motion is only in the X-axis direction, and the motion in the other

directions are set to zero. The desired trajectory is

xd = 0.5 sin(
π

10
T) (4.75)

where, T ∈ (0, 20] is time for each iteration. As shown in Fig. 4.13, the tracking

performance is promoted as the time increases. At the 1st iteration, the tracking

error is 0.15 m, but at the 6th iteration it drops to 0.05 m. From Fig. 4.14, it can

be seen that the QDrone is stable in the Y-axis direction since the tracking error

is within ±0.05 m. Also, in the Z-axis direction, the learning effect is shown from

94

Fig. 4.15. Meanwhile, the tracking error in the Yaw-axis direction is around ±0.04

rad as shown in Fig. 4.16.

0 50 100 150

Time (s)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

X
 (

m
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 50 100 150

Time (s)

-0.05

0

0.05

0.1

0.15

0.2

X
 e

rr
o

r
(m

)
(b) Tracking error

Figure 4.13: Free flight test - translation in the X-axis direction only : results in

the X-axis direction

0 50 100 150

Time (s)

-0.06

-0.04

-0.02

0

0.02

0.04

Y
 (

m
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 50 100 150

Time (s)

-0.06

-0.04

-0.02

0

0.02

0.04

Y
 e

rr
o

r
(m

)

(b) Tracking error

Figure 4.14: Free flight test - translation in the X-axis direction only : results in

the Y-axis direction

95

0 50 100 150

Time (s)

-0.2

0

0.2

0.4

0.6

0.8

1
Z

 (
m

)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 50 100 150

Time (s)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Z
 e

rr
o

r
(m

)

50 100 150
-0.1

-0.05

0

(b) Tracking error

Figure 4.15: Free flight test - translation in the X-axis direction only : results in

the Z-axis direction

0 50 100 150

Time (s)

-0.06

-0.04

-0.02

0

0.02

0.04

Y
a

w
 (

ra
d

)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 50 100 150

Time (s)

-0.06

-0.04

-0.02

0

0.02

0.04

Y
a

w
 e

rr
o

r
(r

a
d

)

(b) Tracking error

Figure 4.16: Free flight test - translation in the X-axis direction only : results in

the Yaw angle

96

Translation in the Y-axis Direction

The trajectory in the Y-axis direction is the same as in the X-axis direction, as

shown below,

yd = 0.5 sin(
π

10
T) (4.76)

where, T ∈ (0, 20] is time for each iteration. In this test, there is no desired motion

in the X-axis direction. According to Fig. 4.17, the QDrone is stable in the X-axis

direction since the tracking error is between −0.02 m and 0.06 m. At the same

time, Fig. 4.18 illustrates the learning performance in the Y-axis direction, since

the tracking error declines from more than 0.1 m to ±0.05 m as iteration time

added. Similarly, Fig. 4.19 shows the learning performance in the Z-axis direction.

The actual altitude converges to the desired one, which is 1 m, and the error in the

Yaw-axis direction is around ±0.05 rad.

97

0 40 80 120 160

Time (s)

-0.02

0

0.02

0.04

0.06

X
 (

m
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 40 80 120 160

Time (s)

-0.02

0

0.02

0.04

0.06

X
 e

rr
o

r
(m

)

(b) Tracking error

Figure 4.17: Free flight test - translation in the Y-axis direction only : results in

the X-axis direction

0 40 80 120 160

Time (s)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Y
 (

m
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 40 80 120 160

Time (s)

-0.1

-0.05

0

0.05

0.1

0.15

Y
 e

rr
o

r
(m

)

(b) Tracking error

Figure 4.18: Free flight test - translation in the Y-axis direction only : results in

the Y-axis direction

98

0 40 80 120 160

Time (s)

-0.2

0

0.2

0.4

0.6

0.8

1
Z

 (
m

)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 40 80 120 160

Time (s)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Z
 e

rr
o

r
(m

)

40 80 120 160
-0.1

-0.05

0

(b) Tracking error

Figure 4.19: Free flight test - translation in the Y-axis direction only : results in

the Z-axis direction

0 40 80 120 160

Time (s)

-0.15

-0.1

-0.05

0

0.05

Y
a

w
 (

ra
d

)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 40 80 120 160

Time (s)

-0.15

-0.1

-0.05

0

0.05

Y
a

w
 e

rr
o

r
(m

)

(b) Tracking error

Figure 4.20: Free flight test - translation in the Y-axis direction only : results in

the Yaw angle

99

Translation in the Z-axis Direction

In this test, there are three different desired trajectory in the Z-axis direction,

which are used to verify the present controller drive the QDrone to track a variety

of trajectories. The attached experimental results are all illustrate the QDrone

improves the flying behavior in the Z-axis direction, and maintain no motion in the

other directions.

Test 1

The trajectory in the Z-axis direction is

zd =


0.8 + 0.3 sin(π

10
T) if 0 < T ≤ 10

0.8 if 10 ≤ T ≤ 20

(4.77)

where T ∈ (0, 20] is time for each iteration. Figs. 4.21 and 4.22 describe the QDrone

maintains no motion, since the tracking error are all acceptable. Meanwhile, the

actual trajectory of the QDrone converges to the desired one as time increases, and

the tracking error converge to around 0 m, as shown in Fig. 4.23. Fig. 4.24 shows

the tracking error in the Yaw angle is between 0.06 rad and −0.08 rad.

100

0 50 100 150 200

Time (s)

-0.15

-0.1

-0.05

0

0.05

0.1

X
 (

m
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 50 100 150 200

Time (s)

-0.15

-0.1

-0.05

0

0.05

0.1

X
 e

rr
o

r
(m

)

(b) Tracking error

Figure 4.21: Free flight test - translation in the Z-axis direction only : results in

the X-axis direction - test 1

0 50 100 150 200

Time (s)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Y
 (

m
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 50 100 150 200

Time (s)

-0.12

-0.08

-0.04

0

0.04

0.08

0.12

Y
 e

rr
o

r
(m

)

(b) Tracking error

Figure 4.22: Free flight test - translation in the Z-axis direction only : results in

the Y-axis direction - test 1

101

0 50 100 150 200

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

Z
 (

m
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 50 100 150 200

Time (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Z
 e

rr
o

r
(m

)

50 100 150 200
-0.1

-0.05

0

0.05

(b) Tracking error

Figure 4.23: Free flight test - translation in the Z-axis direction only : results in

the Z-axis direction - test 1

0 50 100 150 200

Time (s)

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Y
a

w
 (

ra
d

)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 50 100 150 200

Time (s)

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Y
a

w
 e

rr
o

r
(r

a
d

)

(b) Tracking error

Figure 4.24: Free flight test - translation in the Z-axis direction only : results in

the Yaw angle - test 1

102

Test 2

The trajectory in the Z-axis direction is

zd = 0.8 + 0.3 sin(
π

10
T) (4.78)

where, T ∈ (0, 20] is time for each iteration. According to Fig. 4.25, the QDrone

improves the tracking behavior in the X-axis direction, the tracking error reduced

from more than ±0.2 m to 0.1 m. At the same time, Fig. 4.26 shows the QDrone is

stable In the Y-axis direction. Fig. 4.27 provides the learning performance in the

Z-axis direction, since there is a tendency that the tracking error goes to 0 m, and

the error in the Yaw angle is within ±0.1 rad.

0 50 100 150 200 250 300

Time (s)

-0.2

-0.1

0

0.1

0.2

0.3

X
 (

m
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 50 100 150 200 250 300

Time (s)

-0.2

-0.1

0

0.1

0.2

0.3

X
 e

rr
o

r
(m

)

(b) Tracking error

Figure 4.25: Free flight test - translation in the Z-axis direction only : results in

the X-axis direction - test 2

103

0 50 100 150 200 250 300

Time (s)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Y
 (

m
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 50 100 150 200 250 300

Time (s)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Y
 e

rr
o

r
(m

)

(b) Tracking error

Figure 4.26: Free flight test - translation in the Z-axis direction only : results in

the Y-axis direction - test 2

0 50 100 150 200 250 300

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

Z
 (

m
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 50 100 150 200 250 300

Time (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Z
 e

rr
o

r
(m

)

100 200 300
-0.1

-0.05

0

0.05

(b) Tracking error

Figure 4.27: Free flight test - translation in the Z-axis direction only : results in

the Z-axis direction - test 2

104

0 50 100 150 200 250 300

Time (s)

-0.1

-0.05

0

0.05

0.1

Y
a

w
 (

ra
d

)
Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 50 100 150 200 250 300

Time (s)

-0.1

-0.05

0

0.05

0.1

Y
a

w
 e

rr
o

r
(r

a
d

)

(b) Tracking error

Figure 4.28: Free flight test - translation in the Z-axis direction only : results in

the Yaw angle - test 2

Test 3

The trajectory in the Z-axis direction is

zd = 0.8 + 0.3 sin(
π

5
T) (4.79)

where, T ∈ (0, 10] is time for each iteration. Similarly, Figs. 4.29 and 4.30 describe

the QDrone is stable in both X and Y axes directions. In the Z-axis direction, the

QDrone improves the tracking behavior, since the tracking error converges to 0 m,

as shown in Fig. 4.31. At the same time, the tracking error in the Yaw angle is

within ±0.1 rad.

105

0 50 100 150 200

Time (s)

-0.1

-0.05

0

0.05

0.1

0.15

X
 (

m
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 50 100 150 200

Time (s)

-0.1

-0.05

0

0.05

0.1

0.15

X
 e

rr
o

r
(m

)

(b) Tracking error

Figure 4.29: Free flight test - translation in the Z-axis direction only : results in

the X-axis direction - test 3

0 50 100 150 200

Time (s)

-0.2

-0.16

-0.12

-0.08

-0.04

0

0.04

0.08

0.12

Y
 (

m
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 50 100 150 200

Time (s)

-0.2

-0.16

-0.12

-0.08

-0.04

0

0.04

0.08

0.12

Y
 e

rr
o

r
(m

)

(b) Tracking error

Figure 4.30: Free flight test - translation in the Z-axis direction only : results in

the Y-axis direction - test 3

106

0 50 100 150 200

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

Z
 (

m
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 50 100 150 200

Time (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Z
 e

rr
o

r
(m

)

50 100 150 200
-0.1

-0.05

0

0.05

(b) Tracking error

Figure 4.31: Free flight test - translation in the Z-axis direction only : results in

the Z-axis direction - test 3

0 50 100 150 200

Time (s)

-0.1

-0.05

0

0.05

0.1

Y
a

w
 (

ra
d

)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 50 100 150 200

Time (s)

-0.1

-0.05

0

0.05

0.1

Y
a

w
 e

rr
o

r
(r

a
d

)

(b) Tracking error

Figure 4.32: Free flight test - translation in the Z-axis direction only : results in

the Yaw angle - test 3

107

Translation in the X+Y-axes Direction

In this test, the QDrone translates in both the X-axis and the Y-axis directions at

the same time, and the desired trajectories are the same as the previous individual

tests, which are

xd = 0.5 sin(π
10
T)

yd = 0.5 sin(π
10
T)

(4.80)

where, T ∈ (0, 20] is time for each iteration. According to Figs. 4.33 and 4.34,

the learning performance in both the X-axis and the Y-axis can be shown, while

the tracking error is reduced from around 0.1 m to ±0.05 m. Also, from Fig. 4.35,

the learning result in the Z-axis direction can be seen. Fig. 4.36 shows the flying

behavior in the Yaw-axis direction is stable and the tracking error is around ±0.05

rad.

0 20 40 60 80 100 120

Time (s)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

X
 (

m
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 20 40 60 80 100 120

Time (s)

-0.05

0

0.05

0.1

X
 e

rr
o

r
(m

)

(b) Tracking error

Figure 4.33: Free flight test - translation in the X+Y-axes direction : results in the

X-axis direction

108

0 20 40 60 80 100 120

Time (s)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Y
 (

m
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 20 40 60 80 100 120

Time (s)

-0.05

0

0.05

0.1

Y
 e

rr
o

r
(m

)

(b) Tracking error

Figure 4.34: Free flight test - translation in the X+Y-axes direction : results in the

Y-axis direction

0 20 40 60 80 100 120

Time (s)

-0.2

0

0.2

0.4

0.6

0.8

1

Z
 (

m
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 20 40 60 80 100 120

Time (s)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Z
 e

rr
o

r
(m

)

40 60 80 100 120
-0.1

-0.05

0

(b) Tracking error

Figure 4.35: Free flight test - translation in the X+Y-axes direction : results in the

Z-axis direction

109

0 20 40 60 80 100 120

Time (s)

-0.15

-0.1

-0.05

0

0.05

Y
a

w
 (

ra
d

)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 20 40 60 80 100 120

Time (s)

-0.15

-0.1

-0.05

0

0.05

Y
a

w
 e

rr
o

r
(r

a
d

)

(b) Tracking error

Figure 4.36: Free flight test - translation in the X+Y-axes direction : results in the

Yaw angle

Translation in the X+Y+Z-axes Direction

In this test, the proposed adaptive-type ILC is verified to be working in the three

directions at the same time, which are X-axis, Y-axis and Z-axis. The desired

trajectories are

xd = 0.5 sin(π
10
T)

yd = 0.5 sin(π
10
T)

zd = 1 + 0.3 sin(π
10
T)

(4.81)

where, T ∈ (0, 20] is time for each iteration. As shown in Figs. 4.37 and 4.38,

the tracking error in the X-axis and the Y-axis directions decreased as iteration

time increased and finally are around ±0.05 m. Meanwhile, the tracking behavior

improves in the Z-axis direction, which is shown in Fig. 4.39, since the tracking

110

error converges to zero. The behavior in the Yaw-axis direction shows the similar

performance as the previous test, which is tracking error around ±0.05 rad.

0 50 100 150 200 250

Time (s)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

X
 (

m
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 50 100 150 200 250

Time (s)

-0.05

0

0.05

0.1

0.15

X
 e

rr
o

r
(m

)
(b) Tracking error

Figure 4.37: Free flight test - translation in the X+Y+Z-axes direction : results in

the X-axis direction

0 50 100 150 200 250

Time (s)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Y
 (

m
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 50 100 150 200 250

Time (s)

-0.1

-0.05

0

0.05

0.1

Y
 e

rr
o

r
(m

)

(b) Tracking error

Figure 4.38: Free flight test - translation in the X+Y+Z-axes direction : results in

the Y-axis direction

111

0 50 100 150 200 250

Time (s)

0

0.5

1

1.5

Z
 (

m
)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 50 100 150 200 250

Time (s)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Z
 e

rr
o

r
(m

)

50 100 150 200 250
-0.1

-0.05

0

(b) Tracking error

Figure 4.39: Free flight test - translation in the X+Y+Z-axes direction : results in

the Z-axis direction

0 50 100 150 200 250

Time (s)

-0.15

-0.1

-0.05

0

0.05

Y
a

w
 (

ra
d

)

Desired Trajectory

Actual Trajectory

(a) Tracking performance

0 50 100 150 200 250

Time (s)

-0.15

-0.1

-0.05

0

0.05

Y
a

w
 e

rr
o

r
(r

a
d

)

(b) Tracking error

Figure 4.40: Free flight test - translation in the X+Y+Z-axes direction : results in

the Yaw angle

112

4.5 Conclusions

Table 4.1: Conclusion of free flight test - QDrone

Free flight test Desired trajectory Tracking error (m)

Translation in the X-axis direction Eq. (4.75) | exi |≤ 0.05

Translation in the Y-axis direction Eq. (4.76) | eyi |≤ 0.05

Translation in the Z-axis direction test 1 Eq. (4.77) | ezi |≤ 0.05

Translation in the Z-axis direction test 2 Eq. (4.78) | ezi |≤ 0.05

Translation in the Z-axis direction test 3 Eq. (4.79) | ezi |≤ 0.05

Translation in the X+Y-axes direction Eq. (4.80)
| exi |≤ 0.05

| eyi |≤ 0.05

Translation in the X+Y+Z-axes direction Eq. (4.81)

| exi |≤ 0.05

| eyi |≤ 0.05

| ezi |≤ 0.05

In this chapter, the dynamic model of the UAV is presented, and the adaptive-

type iterative learning controller is designed based on the attitude and the position

separately. The simulation results suggested the possibility of conducting the ex-

periments, and the experimental tests are divided into two parts. First, the test

on the Gimbal to verity the proposed attitude controller on the QDrone. Accord-

ing to the results, the proposed controller, successfully drove the QDrone to track

113

the desired trajectory in the roll and yaw directions, and the learning performance

was shown. Second, the tests were run in the flying space, where the QDrone can

take-off, then perform the given task. Initially, the QDrone took-off, then the de-

sired trajectory in the X-axis, Y-axis and Z-axis were given separately to verify

that each controller matches the desired performance. There were three tests in

the Z-axis direction to show the proposed controller fits for different types of de-

sired trajectories. Test 1 verified the desired trajectory can be discontinuous, so

that the QDrone can hover for 10s after executing one tracking mission. Test 2

and 3 illustrated the iteration time can be different for the desired trajectory. Af-

ter that combine trajectories from different directions were considered to test the

whole performance. The experimental results clearly demonstrated the proposed

adaptive-type iterative learning controller ensure that the QDrone can track all the

trajectories, including attitude, position, simple trajectory and complex trajectory.

And Table 4.1 shows the tracking error in each test achieves the best accurate of

the experimental system, which is the tracking error no larger than 0.05 m.

114

5 Conclusions and Future Work

This chapter simply summarized and generalized concepts, research, simulation and

experimental results. This chapter is organized as beginning with general review

of this thesis in Section 5.1, followed by the discussion about future work, which

could possibly be further investigated, in Section 5.2.

5.1 General Review

This thesis aims to present two different types of iterative learning control algo-

rithms, and apply them into different areas to verify the capability of them. The

first one is PD-type iterative learning controller, which combines the classical PD

control approach and the iterative learning technique. The second one is adaptive-

type iterative learning controller, which is suitable for the dynamic model with

unknown parameters. The general concepts of ILC are included in Chapter 2.

By considering the one rigid manipulator, both controllers are used for simulation

115

and experimental test, which are described in Chapter 3. The given results shows

PD-type iterative learning controller has less parameters to tune and more conve-

nient to employ, however, the convergence speed is less then the adaptive-type one,

and there is no response in the first iteration that may cause misunderstanding

or risk in real application for factory. Adaptive-type iterative learning controller

achieves the objective by using less iteration time, but the degree of difficulty also

increased. An adaptive-type iterative learning controller also be used in flexible ma-

nipulator with considering to deal with dead-zone problem. An dead-zone inverse

was added in the controller to eliminated the effect of dead-zone. The provided

experimental results verify the proposed controller remove the dead-zone and other

repetitive disturbances successfully.

According to the conclusion of previous chapter, this research was focus on applying

adaptive-type iterative learning controller on UAV. The general dynamic model of

UAV, control system design, simulation and experimental results are concluded in

Chapter 4. The dynamic model could be two parts, one is the attitude, another

one is the position. This research uses the traditional inner loop and out loop

method to control the UAV. In this case, the control system is designed in two

parts, the attitude one and the position one. To verify the performance of the

proposed controller, simulation are finished by using Matlab & Simulink and the

116

experimental tests are done by using the Gimbal and the QDrone. First, mount the

QDrone on the Gimbal to test the attitude control involving roll and yaw directions,

because there are two degree of freedom when using the Gimabl to do the test. The

attached results clearly show the learning process in both roll and yaw directions.

Then, the test were run after the QDrone took-off, the test includes X-axis, Y-axis,

Z-axis, X+Y-axis and X+Y+Z-axis, all the mentioned test results illustrate the

learning performance when the QDrone executed the given missions, and the final

results are all achieved the expected requirement which are within 0.05 m.

5.2 Future Work

The work finished in this thesis is preliminary step on the applications of iterative

learning control algorithms, which illustrates the proposed two types of iterative

learning controller have the capability on dealing with repetitive disturbance both

on robotic manipulators and UAVs. However, there are still some issues for the

future development.

This research tested one manipulator without any attachments or more links. If

there are some attachments on the flexible manipulator, the vibration problem need

to be considered [76, 77]. Also, the dynamic model could be more complex, if there

are more than one link, and the system becomes the under-actuated one, but the

117

degrees of freedom increased which makes the manipulator to be agile [78, 79].

This research did not consider the actuator fault, which means the actuator can

not provide the desired input, that causes the control performance can not achieve

the excepted requirements. Fault tolerant can be an valuable part to be considered

in designing the iterative learning algorithm, since fault tolerant control is capable

of maintaining the performance of the closed-loop system at an acceptable level

in the presence of faults. The actuator fault has been solved in many research

[80, 81, 82, 83, 84, 85], but there is a challenge to combine the iterative learning

algorithm and the fault tolerant. Therefore, flexible manipulator with attachments,

more links dynamic system and actuator fault can be the future work in designing

the new iterative learning controllers.

This research still used the traditional control method for the UAV, which is inner

loop (attitude control) and out loop (position control). This method has the ad-

vantage to tune the gains expediently for each loop. However, the control of the

UAV can be done in one loop based on the dynamic model, which means control

the attitude and the position at the same time, but the requirement of tuning the

gains and the desired trajectory is more strict. This can be a challenge work for

the future, to design an iterative learning controller based on differential flatness

[86, 87], and how to balance the weights of gains on attitude and position part

118

can be a research direction in the future work. Meanwhile, quadrotor-manipulator

system control can be an interesting topic [88, 89, 90], since it offers a feasible

and attractive possibility to pick up and transport desired objects from inaccessible

locations where the access of ground vehicles are not possible [91].

119

Bibliography

[1] Website, https://upload.wikimedia.org/wikipedia/commons/thumb/6/61/
Canadarm 1 - STS-72.jpg/680px-Canadarm 1 - STS-72.jpg.

[2] Website, https://www.fluxtrends.com/trendconfirmation-food-drone-delivery/.

[3] J. Apkarian, M. Levis, and H. Gurocak, Rotary Servo Base Unit - Workbook
(Student), 2011.

[4] B. Wu, X. Cao, and L. Xing, “Robust adaptive control for attitude tracking
of spacecraft with unknown dead-zone,” Aerospace Science and Technology,
vol. 45, pp. 196–202, 2015.

[5] J. Iqbal, R. U. Islam, and H. Khan, “Modeling and analysis of a 6 dof robotic
arm manipulator,” Canadian Journal on Electrical and Electronics Engineer-
ing, vol. 3, no. 6, pp. 300–306, 2012.

[6] H. A. Almurib, H. F. Al-Qrimli, and N. Kumar, “A review of application
industrial robotic design,” in 2011 Ninth International Conference on ICT
and Knowledge Engineering. IEEE, 2012, pp. 105–112.

[7] R. S. Penning, J. Jung, J. A. Borgstadt, N. J. Ferrier, and M. R. Zinn, “To-
wards closed loop control of a continuum robotic manipulator for medical appli-
cations,” in 2011 IEEE International Conference on Robotics and Automation.
IEEE, 2011, pp. 4822–4827.

[8] B. A. Aikenhead, R. G. Daniell, and F. M. Davis, “Canadarm and the space
shuttle,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and
Films, vol. 1, no. 2, pp. 126–132, 1983.

[9] Z. Chen, F. Huang, C. Yang, and B. Yao, “Adaptive fuzzy backstepping control

120

for stable nonlinear bilateral teleoperation manipulators with enhanced trans-
parency performance,” IEEE transactions on industrial electronics, vol. 67,
no. 1, pp. 746–756, 2019.

[10] A. Brahmi, M. Saad, G. Gauthier, W.-H. Zhu, and J. Ghommam, “Adap-
tive control of multiple mobile manipulators transporting a rigid object,” In-
ternational Journal of Control, Automation and Systems, vol. 15, no. 4, pp.
1779–1789, 2017.

[11] M. A. Wardeh and S. Frimpong, “Kinematic analysis of an under-actuated,
closed-loop front-end assembly of a dragline manipulator,” International Jour-
nal of Automation and Computing, pp. 1–12, 2020.

[12] K. S. Eom, I. H. Suh, W. K. Chung, and S.-R. Oh, “Disturbance observer
based force control of robot manipulator without force sensor,” in Proceedings.
1998 IEEE International Conference on Robotics and Automation (Cat. No.
98CH36146), vol. 4. IEEE, 1998, pp. 3012–3017.

[13] Z. Zhao, X. He, and C. K. Ahn, “Boundary disturbance observer-based control
of a vibrating single-link flexible manipulator,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 2019.

[14] J. N. Yun and J.-B. Su, “Design of a disturbance observer for a two-link manip-
ulator with flexible joints,” IEEE Transactions on Control Systems Technology,
vol. 22, no. 2, pp. 809–815, 2013.

[15] K.-Y. Chen, “Robust optimal adaptive sliding mode control with the distur-
bance observer for a manipulator robot system,” International Journal of Con-
trol, Automation and Systems, vol. 16, no. 4, pp. 1701–1715, 2018.

[16] L. Zhang, Q. Jia, G. Chen, and H. Sun, “Pre-impact trajectory planning for
minimizing base attitude disturbance in space manipulator systems for a cap-
ture task,” Chinese Journal of Aeronautics, vol. 28, no. 4, pp. 1199–1208,
2015.

[17] W. He, Y. Ouyang, and J. Hong, “Vibration control of a flexible robotic ma-
nipulator in the presence of input deadzone,” IEEE Transactions on Industrial
Informatics, vol. 13, no. 1, pp. 48–59, 2017.

121

[18] W. He, A. O. David, Z. Yin, and C. Sun, “Neural network control of a robotic
manipulator with input deadzone and output constraint,” IEEE Transactions
on Systems, Man, and Cybernetics: Systems, vol. 46, no. 6, pp. 759–770, 2016.

[19] S. I. Han and J. Lee, “Finite-time sliding surface constrained control for a robot
manipulator with an unknown deadzone and disturbance,” ISA transactions,
vol. 65, pp. 307–318, 2016.

[20] W. He, B. Huang, Y. Dong, Z. Li, and C.-Y. Su, “Adaptive neural network
control for robotic manipulators with unknown deadzone,” IEEE transactions
on cybernetics, vol. 48, no. 9, pp. 2670–2682, 2017.

[21] Z. Liu, F. Wang, and Y. Zhang, “Adaptive visual tracking control for manipula-
tor with actuator fuzzy dead-zone constraint and unmodeled dynamic,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 45, no. 10, pp.
1301–1312, 2015.

[22] H. Wang and S. Kang, “Adaptive neural command filtered tracking control for
flexible robotic manipulator with input dead-zone,” IEEE Access, vol. 7, pp.
22 675–22 683, 2019.

[23] C. Hua, L. Zhang, and X. Guan, “Distributed adaptive neural network output
tracking of leader-following high-order stochastic nonlinear multiagent systems
with unknown dead-zone input,” IEEE transactions on cybernetics, vol. 47,
no. 1, pp. 177–185, 2015.

[24] S. Khoo, L. Xie, and Z. Man, “Robust finite-time consensus tracking algorithm
for multirobot systems,” IEEE/ASME transactions on mechatronics, vol. 14,
no. 2, pp. 219–228, 2009.

[25] Website, https://www.imedicalapps.com/wp-content/uploads/2014/10/
iStock 000010884338Large1-e1413268096498.jpg.

[26] Website, https://japanese.alibaba.com/product-detail/
danbach-rm08-industrial-robot-manipulator-price-60697719238.html.

[27] S. Sun, “A new method for monitoring machinery movement using an un-
manned aerial vehicle (uav) system,” Master’s thesis, University of Twente,
2019.

122

[28] F. Ruggiero, V. Lippiello, and A. Ollero, “Aerial manipulation: A literature
review,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1957–1964,
2018.

[29] T. Nisser and C. Westin, “Human factors challenges in unmanned aerial vehi-
cles (uavs): A literature review,” School of Aviation of the Lund University,
Ljungbyhed, 2006.

[30] J. Everaerts et al., “The use of unmanned aerial vehicles (uavs) for remote
sensing and mapping,” The International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, vol. 37, no. 2008, pp. 1187–
1192, 2008.

[31] A. Otto, N. Agatz, J. Campbell, B. Golden, and E. Pesch, “Optimization
approaches for civil applications of unmanned aerial vehicles (uavs) or aerial
drones: A survey,” Networks, vol. 72, no. 4, pp. 411–458, 2018.

[32] H. Shakhatreh, A. H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Almaita, I. Khalil,
N. S. Othman, A. Khreishah, and M. Guizani, “Unmanned aerial vehicles
(uavs): A survey on civil applications and key research challenges,” Ieee Access,
vol. 7, pp. 48 572–48 634, 2019.

[33] E. Cheng, Aerial photography and videography using drones. Peachpit Press,
2015.

[34] B. Shirani, M. Najafi, and I. Izadi, “Cooperative load transportation using
multiple uavs,” Aerospace Science and Technology, vol. 84, pp. 158–169, 2019.

[35] A. S. Aghdam, M. B. Menhaj, F. Barazandeh, and F. Abdollahi, “Cooperative
load transport with movable load center of mass using multiple quadrotor
uavs,” in 2016 4th International Conference on Control, Instrumentation, and
Automation (ICCIA). IEEE, 2016, pp. 23–27.

[36] D. Giordan, M. S. Adams, I. Aicardi, M. Alicandro, P. Allasia, M. Baldo,
P. De Berardinis, D. Dominici, D. Godone, P. Hobbs et al., “The use of un-
manned aerial vehicles (uavs) for engineering geology applications,” Bulletin
of Engineering Geology and the Environment, pp. 1–45, 2020.

[37] E. Romero-Chambi, S. Villarroel-Quezada, E. Atencio, M.-L. Rivera et al.,

123

“Analysis of optimal flight parameters of unmanned aerial vehicles (uavs) for
detecting potholes in pavements,” Applied Sciences, vol. 10, no. 12, p. 4157,
2020.

[38] V. Spurnỳ, T. Báča, M. Saska, R. Pěnička, T. Krajńık, J. Thomas, D. Thakur,
G. Loianno, and V. Kumar, “Cooperative autonomous search, grasping, and
delivering in a treasure hunt scenario by a team of unmanned aerial vehicles,”
Journal of Field Robotics, vol. 36, no. 1, pp. 125–148, 2019.

[39] K. Kuru, D. Ansell, W. Khan, and H. Yetgin, “Analysis and optimization of
unmanned aerial vehicle swarms in logistics: An intelligent delivery platform,”
Ieee Access, vol. 7, pp. 15 804–15 831, 2019.

[40] S. Goudarzi, N. Kama, M. H. Anisi, S. Zeadally, and S. Mumtaz, “Data col-
lection using unmanned aerial vehicles for internet of things platforms,” Com-
puters & Electrical Engineering, vol. 75, pp. 1–15, 2019.

[41] R. Pěnička, J. Faigl, M. Saska, and P. Váňa, “Data collection planning with
non-zero sensing distance for a budget and curvature constrained unmanned
aerial vehicle,” Autonomous Robots, vol. 43, no. 8, pp. 1937–1956, 2019.

[42] P. Pounds, R. Mahony, and P. Corke, “Modelling and control of a large quadro-
tor robot,” Control Engineering Practice, vol. 18, no. 7, pp. 691–699, 2010.

[43] T. Chen and J. Shan, “A novel cable-suspended quadrotor transportation sys-
tem: From theory to experiment,” Aerospace Science and Technology, vol. 104,
p. 105974, 2020.

[44] A. Hock and A. P. Schoellig, “Distributed iterative learning control for a team
of quadrotors,” in 2016 IEEE 55th Conference on Decision and Control (CDC).
IEEE, 2016, pp. 4640–4646.

[45] K. L. Moore, “Iterative learning control: An expository overview,” in Applied
and computational control, signals, and circuits. Springer, 1999, pp. 151–214.

[46] X. Li, Q. Ren, and J.-X. Xu, “Precise speed tracking control of a robotic fish
via iterative learning control,” IEEE Transactions on Industrial Electronics,
vol. 63, no. 4, pp. 2221–2228, 2015.

124

[47] P. Bondi, G. Casalino, and L. Gambardella, “On the iterative learning control
theory for robotic manipulators,” IEEE Journal on Robotics and Automation,
vol. 4, no. 1, pp. 14–22, 1988.

[48] Y. Yang, Z. Liu, and G. Ma, “Adaptive distributed control of a flexible manip-
ulator using an iterative learning scheme,” IEEE Access, vol. 7, pp. 145 934–
145 943, 2019.

[49] M. Zhu, L. Ye, and X. Ma, “Estimation-based quadratic iterative learning con-
trol for trajectory tracking of robotic manipulator with uncertain parameters,”
IEEE Access, vol. 8, pp. 43 122–43 133, 2020.

[50] R. Adlakha and M. Zheng, “An optimization-based iterative learning control
design method for uav’s trajectory tracking,” in 2020 American Control Con-
ference (ACC). IEEE, 2020, pp. 1353–1359.

[51] M. Zhaowei, H. Tianjiang, S. Lincheng, K. Weiwei, Z. Boxin, and Y. Kaidi,
“An iterative learning controller for quadrotor uav path following at a constant
altitude,” in 2015 34th Chinese Control Conference (CCC). IEEE, 2015, pp.
4406–4411.

[52] W. Giernacki, “Optimal tuning of altitude controller parameters of unmanned
aerial vehicle using iterative learning approach,” in Conference on Automation.
Springer, 2019, pp. 398–407.

[53] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative learning
control,” IEEE control systems magazine, vol. 26, no. 3, pp. 96–114, 2006.

[54] Z. Bien and J.-X. Xu, Iterative learning control: analysis, design, integration
and applications. Springer Science & Business Media, 2012.

[55] S. Arimoto, “Iterative learning control for robot systems,” Proc. IECON,
Tokyo, 1984, pp. 393–398, 1984.

[56] J.-X. Xu, “A survey on iterative learning control for nonlinear systems,” In-
ternational Journal of Control, vol. 84, no. 7, pp. 1275–1294, 2011.

[57] J.-X. Xu and Y. Tan, Linear and nonlinear iterative learning control. Springer,
2003, vol. 291.

125

[58] C. Chen, C. Wen, Z. Liu, K. Xie, Y. Zhang, and C. P. Chen, “Adaptive asymp-
totic control of multivariable systems based on a one-parameter estimation
approach,” Automatica, vol. 83, pp. 124–132, 2017.

[59] C. Chen, Z. Liu, K. Xie, Y. Zhang, and C. P. Chen, “Asymptotic adap-
tive control of nonlinear systems with elimination of overparametrization in
a nussbaum-like design,” Automatica, vol. 98, pp. 277–284, 2018.

[60] C. Chen, C. Wen, Z. Liu, K. Xie, Y. Zhang, and C. P. Chen, “Adaptive con-
sensus of nonlinear multi-agent systems with non-identical partially unknown
control directions and bounded modelling errors,” IEEE Transactions on Au-
tomatic Control, vol. 62, no. 9, pp. 4654–4659, 2016.

[61] S. Mobayen, F. Tchier, and L. Ragoub, “Design of an adaptive tracker for n-
link rigid robotic manipulators based on super-twisting global nonlinear sliding
mode control,” International Journal of Systems Science, vol. 48, no. 9, pp.
1990–2002, 2017.

[62] T. Sun, H. Pei, Y. Pan, H. Zhou, and C. Zhang, “Neural network-based sliding
mode adaptive control for robot manipulators,” Neurocomputing, vol. 74, no.
14-15, pp. 2377–2384, 2011.

[63] W. Rudin, “Principles of mathematical analysis, new york, mcgtaw-hill,” 1976.

[64] B. Park, T.-Y. Kuc, and J. S. Lee, “Adaptive learning control of uncertain
robotic systems,” International Journal of Control, vol. 65, no. 5, pp. 725–744,
1996.

[65] T. Chen and J. Shan, “Distributed control of multiple flexible manipulators
with unknown disturbances and dead-zone input,” IEEE Transactions on In-
dustrial Electronics, 2019.

[66] L. Gümüsel and N. G. Özmen, “Modelling and control of manipulators with
flexible links working on land and underwater environments,” Robotica, vol. 29,
no. 3, pp. 461–470, 2011.

[67] Z. Liu, J. Liu, and W. He, “An adaptive iterative learning algorithm for bound-
ary control of a flexible manipulator,” International Journal of Adaptive Con-
trol and Signal Processing, vol. 31, no. 6, pp. 903–916, 2017.

126

[68] T. Meng and W. He, “Iterative learning control of a robotic arm experiment
platform with input constraint,” IEEE Transactions on Industrial Electronics,
vol. 65, no. 1, pp. 664–672, 2017.

[69] S. Yang, J.-X. Xu, X. Li, and D. Shen, Iterative learning control for multi-agent
systems coordination. John Wiley & Sons, 2017.

[70] J. Apkarian, M. Levis, and H. Gurocak, SRV02 Base Unit User Manual, 2011.

[71] T. Chen, M. Li, and J. Shan, “Iterative learning control of a flexible manipu-
lator considering uncertain parameters and unknown repetitive disturbance,”
in 2019 American Control Conference (ACC). IEEE, 2019, pp. 2209–2214.

[72] P.-i. Pipatpaibul and P. Ouyang, “Quadrotor uav control: online learning ap-
proach,” in International Design Engineering Technical Conferences and Com-
puters and Information in Engineering Conference, vol. 54839, 2011, pp. 701–
710.

[73] Y.-j. Zhong, Z.-x. Liu, Y.-m. Zhang, W. Zhang, and J.-y. Zuo, “Active fault-
tolerant tracking control of a quadrotor with model uncertainties and actuator
faults,” Frontiers of Information Technology & Electronic Engineering, vol. 20,
no. 1, pp. 95–106, 2019.

[74] Z. Ma and G. Sun, “Dual terminal sliding mode control design for rigid robotic
manipulator,” Journal of the Franklin Institute, vol. 355, no. 18, pp. 9127–9149,
2018.

[75] Research Studio Setup Guide, 2018.

[76] Z. Liu and J. Liu, “Dynamic modeling and vibration control for a nonlin-
ear three-dimensional flexible manipulator,” in PDE Modeling and Boundary
Control for Flexible Mechanical System. Springer, 2020, pp. 137–171.

[77] Z. Mohamed, J. Martins, M. Tokhi, J. S. Da Costa, and M. Botto, “Vibration
control of a very flexible manipulator system,” Control Engineering Practice,
vol. 13, no. 3, pp. 267–277, 2005.

[78] W. He, H. Gao, C. Zhou, C. Yang, and Z. Li, “Reinforcement learning con-

127

trol of a flexible two-link manipulator: an experimental investigation,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 2020.

[79] B. Subudhi and A. S. Morris, “Dynamic modelling, simulation and control of a
manipulator with flexible links and joints,” Robotics and Autonomous Systems,
vol. 41, no. 4, pp. 257–270, 2002.

[80] Y. Wang, J. Shi, D. Zhou, and F. Gao, “Iterative learning fault-tolerant control
for batch processes,” Industrial engineering chemistry research, vol. 45, no. 26,
pp. 9050–9060, 2006.

[81] Z. Yu, Y. Qu, and Y. Zhang, “Safe control of trailing uav in close formation
flight against actuator fault and wake vortex effect,” Aerospace Science and
Technology, vol. 77, pp. 189–205, 2018.

[82] Y. Zhong, Y. Zhang, W. Zhang, J. Zuo, and H. Zhan, “Robust actuator fault
detection and diagnosis for a quadrotor uav with external disturbances,” IEEE
Access, vol. 6, pp. 48 169–48 180, 2018.

[83] Y. Zhong, Y. Zhang, and W. Zhang, “Active fault-tolerant tracking control of
a quadrotor uav,” in 2018 International Conference on Sensing, Diagnostics,
Prognostics, and Control (SDPC). IEEE, 2018, pp. 497–502.

[84] Z. Liu, C. Yuan, Y. Zhang, and J. Luo, “A learning-based fault tolerant track-
ing control of an unmanned quadrotor helicopter,” Journal of Intelligent &
Robotic Systems, vol. 84, no. 1-4, pp. 145–162, 2016.

[85] Z. Liu, C. Yuan, and Y. Zhang, “Active fault-tolerant control of unmanned
quadrotor helicopter using linear parameter varying technique,” Journal of
Intelligent & Robotic Systems, vol. 88, no. 2-4, pp. 415–436, 2017.

[86] M. Faessler, A. Franchi, and D. Scaramuzza, “Differential flatness of quadrotor
dynamics subject to rotor drag for accurate tracking of high-speed trajecto-
ries,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 620–626, 2017.

[87] D. Zhou and M. Schwager, “Vector field following for quadrotors using dif-
ferential flatness,” in 2014 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2014, pp. 6567–6572.

128

[88] H. Yang and D. Lee, “Dynamics and control of quadrotor with robotic manip-
ulator,” in 2014 IEEE International Conference on Robotics and Automation
(ICRA), 2014, pp. 5544–5549.

[89] Y. Qi, J. Wang, and J. Shan, “Aerial cooperative transporting and assembling
control using multiple quadrotor–manipulator systems,” International Journal
of Systems Science, vol. 49, no. 3, pp. 662–676, 2018.

[90] Z. A. Ali and X. Li, “Controlling of an under-actuated quadrotor uav equipped
with a manipulator,” IEEE Access, vol. 8, pp. 34 664–34 674, 2020.

[91] T. Wang, K. Umemoto, T. Endo, and F. Matsuno, “Dynamic hybrid posi-
tion/force control for the quadrotor with a multi-degree-of-freedom manipula-
tor,” Artificial Life and Robotics, vol. 24, no. 3, pp. 378–389, 2019.

129

