
 

 

Negative Selection in Social Insects 

 

Mohammad Arshad Imrit 

 

 

 

 

A Thesis submitted to the Faculty of Graduate Studies in Partial Fulfillment of the 

Requirements for the Degree of Master of Science  

 

 

Graduate Program in Biology 

York University 

Toronto, Ontario  

 

 

September 2019 

 

 © Mohammad Arshad Imrit 2019 

  



ii 

 

Abstract 

Eusociality, characterized in part by cooperative brood care, and reproductive division 

of labor, evolved independently several times in insects. The evolution of eusociality has been 

hypothesized to lead to differences in the extent of both positive and negative selection. While 

population genomics studies of eusocial insects have so far focused on positive selection, there 

has been no study of the extent of negative selection in social insects, and its relationship to the 

evolution of caste-biased genes. To address this knowledge gap, our research estimated the 

extent of negative selection in honey bees, bumble bees, and paper wasps, through analysis of 

published population genomic datasets. Our results showed that there was a significant negative 

correlation between increasing social complexity and negative selection, suggesting effective 

population size plays a role in strength of negative selection. We identified significantly 

stronger negative selection in queen traits relative to worker traits in honey bees but not in 

bumble bees and paper wasps. Lastly, we observe stronger negative selection in drone traits 

relative to queen traits in honeybees, and we attribute this effect to the haplodiploidy system of 

honey bees. 
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Introduction 

The honey bee - a model organism 

Honey bees (Apis mellifera) are advanced eusocial insects that live in complex societies 

and show cooperative and altruistic social behaviors, such as brood care and division of labour 

(Keller and Chapuisat, 1999). Honey bees are conceivably the most widely known social insect 

with the genome, physiology, and behavior of the honey bee studied intensively over the last 

century (Chandrasekaran et al., 2011). The extensive knowledge gained from previous studies 

make the honey bee a model organism for understanding how social behavior evolves and how 

sociality influences patterns of genome evolution to enhance or limit the spread of social 

alleles.  

Previous studies investigated how positive selection influenced the evolution of 

eusociality in honey bees, such as adaptive evolution of worker traits. Positive selection was 

also studied in other eusocial insects such as bumble bees (Bombus impatiens) and ants (Jancek 

et al., 2013; Roux et al., 2014; Harpur et al., 2017). Moreover, a recent study compared positive 

selection on the genome of honey bees, bumble bees, and paper wasps (Polistes dominulus) 

(Dogantzis et al., 2018). However, there are no comparable studies quantifying evidence of 

negative selection on social insects. 

My research is the first to determine the extent of negative selection in social insects by 

carrying out population genomic analyses in honey bees (Apis mellifera), bumble bees (Bombus 

impatiens), and paper wasps (Polistes dominulus). 



2 

 

What is negative selection? 

Negative selection, also known as purifying or purging selection, is defined as the 

removal of deleterious alleles in a population (Loewe, 2008). When a mutation occurs in the 

genome (such as in protein coding sequences or non-coding regions), its effect will lie on a 

spectrum, ranging from lethal to neutral to strongly advantageous. Most mutations are neutral, 

where there is no significant effect on the fitness of the individual in the population. Lethal and 

strongly advantageous mutations occur on the extremes of the spectrum; lethal mutations 

drastically reduce fitness, whereas strongly advantageous mutations enhance the fitness of 

individuals with these mutations.  

Therefore, deleterious alleles have a wide range of effects and decrease the fitness of 

individuals. Negative selection decreases the frequency of such deleterious alleles by removing 

them from the population. This leads to reduced genetic variation in regions of the genome 

where deleterious alleles usually occur.  

Estimating negative selection 

With the availability of genotypic data, the distribution of fitness effects (dfe) parameter 

from population genetics can be used to understand the effect of deleterious mutations (Eyre-

Walker and Keightley, 2007). Dfe gives the probability that a mutation will have a given 

negative effect, relative to the regions of the genome that evolve neutrally. These neutrally 

evolving regions are usually 4-fold degenerate/synonymous sites, where different bases in a 

codon (for example, the 3rd position of a codon) of a gene sequence code for the same amino 

acid. Dfe is estimated based on a maximum likelihood approach by comparing the allele 

frequencies at other sites of the genome (such as non-synonymous gene coding regions, introns, 

or binding sites) to the benchmark (the neutrally evolving sites) to determine if negative 

selection has occurred at these regions and at what strength (Zhen and Andolfatto, 2012)). 
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By comparing the neutrally evolving sites and the sites being investigated, dfe gives a 

value for the strength of selection (Nes), with ‘Ne’ representing the effective population size 

and ‘s’ the selection coefficient. Sites experiencing stronger negative selection will have larger 

coefficients of selection and show less variance in the genome when compared to neutrally 

evolving sites. Therefore, there is a shift in the allele frequency spectrum of sites impacted by 

negative selection, where there are more deleterious alleles having low frequencies and less 

deleterious alleles having high frequencies (Figure 0.1). This method of estimating dfe has been 

implemented into the software DFE-Alpha by Eyre-Walker and Keightley in 2007. DFE-Alpha 

incorporates demographic processes that allows for population size changes, thereby providing 

robust estimates of negative selection in the genome. This software has been used to investigate 

negative selection in a variety of species, such as the insects D. melanogaster, C. pipiens, M. 

cinxia, M. barbarus, H. scabiosae, R. grassei (Romiguier et al., 2014; Elyashiv et al., 2016), 

the plants C. grandiflora and C. rubella (Williamson et al., 2014; Lafon-Placette et al., 2018), 

and H. sapiens (Boyko et al., 2008; Chun and Fay, 2009; Harris and Nielsen, 2016). 

 

Figure 0.1: Theoretical Allele Frequency Spectrum. The y-axis represents the proportion of 

sites that have a given allele frequency on the x-axis. Highly deleterious sites show a leftward 

shift in the spectrum, where there are more sites with low alternate allele frequency (compared 

to the reference allele frequency) and fewer sites with high alternate frequency.  
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For this study, we used DFE-Alpha to estimate negative selection for A. mellifera, B. 

impatiens, and P. dominula. More specifically, we looked at negative selection in 5 regions of 

the genome – intronic regions, intergenic regions, 5’ Untranslated Regions (UTR), 3’ UTR, 

and protein coding regions (also known as missense sites or 0-fold sites). For each of these 

species, we looked at the extent of negative selection in their whole genome and compared the 

negative selection estimates among the species. The 3 species herein have varying levels of 

eusociality and we expected a correlation between levels of eusociality and negative selection 

(Chapter 1). Secondly, we compared the amount of negative selection in queen-biased genes 

against worker-biased genes in all 3 species. We expected queen-biased genes to show stronger 

negative selection due to queens being reproductive and affecting the fitness of the colonies 

directly (Chapter 2). Lastly, we compared the strength of negative selection in drone-biased 

genes against queen-biased genes. Both drones and queens are reproductive, with drones being 

haploid and queens being diploid. We expected haploid individuals to experience stronger 

negative selection as there are less chances for masking deleterious alleles in these individuals 

(Chapter 3).   
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Chapter 1: Negative selection and social complexity 

1. Introduction 

A. mellifera, B. impatiens, and P. dominula are all eusocial insects. These 3 species all 

show cooperative brood care, overlapping generations, and division of labor or caste 

differentiation - the three hallmarks of eusocial insects (Keller and Chapuisat, 1999). 

Cooperative brood care is when individuals of a species cooperatively take care of the brood 

in the nest. These young include offspring from other individuals and hence can be siblings. 

The second condition - overlapping generations – implies that individuals of different 

generations occupy the same nest during the same time (i.e. mothers and her offspring).In 

eusocial hymenopteran insects, there are typically 2 distinct female castes: diploid reproductive 

queens, or diploid sterile workers (Hölldobler and Wilson, 1990). This is a division of labor 

creating reproductive and nonreproductive groups. Haploid reproductive males are also 

present, although their role is purely reproductive. The reproductive group (queens and drones) 

are responsible for reproduction only while the nonreproductive workers take care of the 

colony, including nursing the brood. Although the 3 species studied herein show these 

characteristics, A. mellifera, B. impatiens, and P. dominula differ in their expression of 

eusociality. 

A. mellifera is the most advanced eusocial insect in this species triad (Barchuk et al., 

2007). They have a large colony size, with a single queen, few hundreds of drones, and over 

50, 000 workers (Engel, 1999). A. mellifera uses swarms to found new colonies, where the old 

mated queen will move out of the colony, along with a few thousand workers, to establish a 

new colony. Once settled in, the queen will start laying fertilized eggs to develop new worker 

brood and the workers will take care of the new offsprings (Gould and Gould, 1995). Compared 

to other eusocial species, A. mellifera workers have a highly advanced division of labor, where 



6 

 

specific set of individuals will perform certain tasks in the colony (Michener, 1969). For 

example, young worker bees are usually the ‘nurse’ bees that will take care of the larvae in the 

colony. These nurses will feed the larvae and also clean the hive space surrounding the larvae. 

As these nurses get older, they transition to foragers. Foragers have the task of finding food 

resources, such as nectar and pollen, for the colony. When a forager finds a resourceful 

location, she goes back to the hive and performs a waggle dance. The frequency and vector 

movement of the waggle dance notifies the other bees in the hive where that particular resource 

is and how far out it is (Riley et al., 2005). Hence, she is able to communicate with the other 

bees in the hive. Other tasks performed by workers include undertaking dead bees from the 

colony, and guarding, where guard bees attack intruders and check if their own siblings are 

coming back to the colony.  

Although A. mellifera workers can perform a wide variety of tasks, they are effectively 

sterile and cannot lay fertilized eggs. In a colony, only the queen is the reproductive female 

that will lay fertilized eggs, which will develop into workers or future queens. Hence, we see a 

high extent of caste differentiation in A. mellifera. In the absence of a queen, A. mellifera 

workers can activate their ovaries to lay haploid drone eggs, but not diploid female eggs 

(Cardinal and Danforth, 2011). Moreover, queens are morphologically different compared to 

workers, where the queens have longer abdomens. Hence, workers are vastly different from 

queens with extensive caste differentiation. 

The paper wasp P. dominula is primitively eusocial, and is the least social among the 

three species studied herein (Dogantzis et al., 2018). P. dominula has a small colony size of 

around 100 individuals (Hocherl and Tautz, 2015), much smaller than A. mellifera. For 

founding, P. dominula uses the foundress strategy (Eberhard, 1969). Foundresses are 

overwintered gynes (i.e. future queens). As winter comes along, gynes in the colony will 
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overwinter and hibernate while the rest of the colony dies. In the spring, these overwintered 

gynes, now foundresses, will build the nest and start laying eggs, with the foundress laying the 

most eggs emerging as the dominant queen. The other foundresses will simply help the colony. 

Regarding workers, the behavioral tasks are less stringent compared to A. mellifera. Most 

workers can nurse or forage, or do both at the same time (Jandt, Tibbetts and Toth, 2014). The 

workers also retain the ability to become fully reproductive. For example, the removal of the 

dominant queen, the second most dominant female from the colony will assume the dominant 

role and lay fertilized eggs (Theraulaz, Pratte and Gervet, 1989). Moreover, it has been shown 

that workers will start laying eggs when there is a decline in the colony health (Liebig, Monnin 

and Turillazzi, 2005). Hence, the workers are totipotent that can switch to a reproductive state 

and lay fertilized diploid eggs like the queen, showing a low degree of caste divergence. 

Morphologically, P. dominula queens and workers are not different (Hunt, 2007). Another 

example of low divergence is the presence of gynes, which are daughters destined to become 

queens. Due to some interactions in the colony, some workers are influenced to become gynes 

and will overwinter to found the next colony (Dapporto, Turillazzi and Palagi, 2006). An 

interesting characteristic of P. dominula nests is that not all the individuals of the colony are 

related to each other (Queller et al., 2000). This means that helpers in the colony are not 

necessarily related to each other and are still taking care of the young in the colony. These 

characteristics make P. dominula primitively eusocial. 

B. impatiens is considered intermediately eusocial, due to its life history. Compared to 

A. mellifera and P. dominula, B. impatiens has a intermediate colony size number between 

these 2 species, which is usually around 500 individuals (Michener, 1974). B. impatiens is 

similar to P. dominula ins many aspects, such as using gynes and foundresses for colony 

founding.  But B. impatiens workers are not totipotent; they are unable to mate and lay diploid 

eggs, but they can lay unfertilized male eggs (Cnaani, Schmid-Hempel and Schmidt, 2002). 
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However, with the queen present, the workers do not attempt to lay eggs even when they had 

mature oocytes, showing behaviours similar to A. mellifera. Size of the workers plays a role in 

their task in the colony. Typically, smaller workers are located in the center of the nest where 

they care for the young while larger workers venture around the edge of the nest and act as 

guards or foragers (Jandt and Dornhaus, 2009). Moreover, B. impatiens queens and workers 

are morphologically distinct, similar to A. mellifera and unlike P. dominula. With these 

characteristics, B. impatiens show intermediate caste divergence, with distinct but blurred lines 

between queens and workers.  

 Hence, in the 3 species studied herein, A. mellifera is the most socially complex, P. 

dominula is primitively eusocial, with B. impatiens being intermediately social. This gradient 

of social complexity allowed us to investigate how social complexity relates to negative 

selection. 

In population genetics, the effective population size (Ne), a parameter estimating the 

number of breeding individuals in a population, is often used in lieu of the actual population 

size (Halliburton, 2004). In social insects, only a few individuals are reproductive while the 

majority of the population do not usually reproduce. This leads to a substantial reproductive 

skew in eusocial species, limiting the number of reproductive individuals and decreasing the 

effective population size in these individuals (Crozier, 1976). 

Romiguier et al. (2014) hypothesized and showed some evidence of decreasing 

effective population size with increasing social complexity. In their study, they looked at 

several insects with varying social complexity and showed that species with higher social 

complexity showed effective population sizes similar to vertebrates, that is low effective 

population size. Romiguier et al. suggested that with decreasing effective population size, the 

efficiency and strength of selection on such species decrease. Therefore, they expect a positive 
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correlation between effective population size and selection. Several studies have suggested that 

species with larger effective population sizes would show evidence of stronger and more 

effective selection, both positive and negative (Lynch and Conery, 2003; Wright and 

Andolfatto, 2008; Akashi, Osada and Ohta, 2012; Gossmann, Keightley and Eyre-Walker, 

2012; Galtier, 2016; Harpur et al., 2017).  

In 2015, Kapheim et al. published their study looking at trends in genomic signatures 

of bees transitioning from solitary to group living. One of their main findings was that with 

increasing social complexity, genes in these species showed evidence of relaxed selection, akin 

to weaker negative selection. Kapheim et al. further showed that with increasing social 

complexity, there was an increased in capacity for gene regulation, mainly through 

transcription factors. This suggests that there is relaxed constraint, coupled with positive 

selection to allow better gene regulation mechanisms. Their finding that genes involved in 

coordinating gene regulation show evidence of rapid evolution in socially complex species 

further support the relaxed selection concept. Some of the rapidly evolving genes in highly 

eusocial species were under relaxed negative selection and Romiguier et al. (2014) 

hypothesized that it was due to reduced effective population size.  

In this study, we suspect A. mellifera has the lowest effective population size and P. 

dominula has the highest, with B. impatiens having an intermediate effective population size 

between A. mellifera and P. dominula (Dogantzis et al., 2018).  The high effective population 

size of P. dominula may be attributed to dominant workers easily replacing a dead queen or the 

fact that 35% of a colony are genetically unrelated, meaning that multiple ‘families of wasps’ 

are living together (Queller et al., 2000). In population genetics, the strength of selection is 

correlated with effective population size. Since negative selection is proportional to Ne 

(Strength of selection = Ne * s, where s is the selection coefficient determined by DFE-Alpha), 
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a decrease in Ne will reflect a decrease in negative selection, or a relaxation of constraint. 

Therefore, we hypothesized that we would see strong effects of negative selection in the 

genome of P. dominulq, and relatively weak effects in A. mellifera due to the difference in 

effective population size (Eyre-Walker, 2002). The null hypothesis was that there would be no 

difference in the strength of negative selection between the different species. 

2. Materials and Methods 

1. Data and samples 

We worked with published datasets for Apis mellifera scutellata (49 worker samples), 

Bombus impatiens (10 drone samples), and Polistes dominula (10 worker samples) (Harpur et 

al., 2014; Harpur et al., 2017; Dogantzis et al., 2018). We obtained the allele frequency 

spectrums for the different species by counting sites in the variant-calling files (VCF). These 

VCF contain information outlining where mutations are in the genome and the details of each 

mutation. Invariant and variant sites were removed if: 1) the site quality was below 50; 2) read 

depth was not within the interquartile range (A. mellifera: 1300-2907, B. impatiens: 31-223, P. 

dominula: 69-337); or 3) the site was within 5 base pairs of indels. Moreover, sites with more 

than 2 alleles were removed to avoid analyzing SNPs with probable sequencing error.  

2. Site annotation and filtration 

We used SnpEff (Cingolani et al., 2012) to annotate the sites passing all the filtering 

criteria and from these annotations we obtained the different site categories: synonymous sites, 

intergenic regions, intronic regions, missense (0-fold sites), 3’ and 5’ UTRs (untranslated 

regions). Genes with warning for incomplete transcripts, multiple stop codons, or no start 

codon were excluded from the analysis. Genes with loss or gain of start or stop codon were 

also discarded.  
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3. Estimation of the distribution of fitness effects 

To quantify the amount of negative selection acting on the different categories of sites, 

we used the methods of Eyre-Walker and Keightley (2010). DFE-alpha uses the allele 

frequency spectrum (AFS) of a site category of interest and compares it to the AFS of neutral 

sites. For neutral sites, we used 4-fold degenerate sites. These are sites in the genome where 

any mutation causes the same protein to be coded and they are assumed to be under neutral 

selection in population genomic studies (Williamson et al., 2014). We bootstrapped each region 

5000 times to obtain 95% confidence intervals.  

 

 

3. Results  

We estimated the proportion of sites under negative selection for 5 genomic regions 

intronic, intergenic, 3’ UTR (generally found at the end of genes), 5’ UTR (usually located 

before genes), and 0-fold. Nes bins (from DFE-Alpha) of 0-1 represents effectively neutral 

evolution, 1-10 represents weak negative selection, 10-100 represents moderate negative 

selection, and > 100 represents strong negative selection. 
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Figure 1.1: DFE-Alpha outputs for A. mellifera scutellata (A), B. impatiens (B), P. 

dominula (C). Nes bins (from DFE-Alpha) of 0-1 represents effectively neutral evolution, 1-

10 represents weak negative selection, 10-100 represents moderate negative selection, and > 

100 represents strong negative selection. UTR regions represent Untranslated Regions in the 

genome. 
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Figure 1.1 presents negative selection across the whole genome for each of A. mellifera, 

B. impatiens, and P. dominula, focusing on the 5 genomic regions mentioned above. 

Figure 1.1.A shows the DFE-Alpha results for A. mellifera. Intronic and intergenic 

regions show no evidence of negative selection, evident by most of their sites being found in 

the 0-1 Nes bin. Hence, these sites are likely evolving neutrally. 5’ UTR sites and 3’ UTR sites 

show evidence of moderate negative selection (10-100 Nes bin), with 36% of 5’ UTR and 31% 

of 3’ UTR sites (Wilcoxon t-test, p < 3e-15). Lastly, we see the most amount of negative 

selection in 0-fold (missense) sites, with 42% of the sites being under high negative selection 

(Nes >100). 

For B. impatiens (Figure 1.1.B), intronic and intergenic regions show evidence of 

neutral evolution, with the majority of their sites found in the 0-1 Nes bin. Again, 5’ UTR and 

3’ UTR sites show moderate negative selection (10-100 Nes), with 9% and 3% of the sites 

respectively. Interestingly, we see 0.5 % of 3’ UTR showing high negative selection (Nes > 

100). However, it should be noted that the B. impatiens genome is not clearly annotated as the 

A. mellifera and P. dominula genomes. In fact, the UTR regions were modeled from SnpEff 

and may not be an accurate representation of the actual UTR sites in the genome. Finally, we 

see a large proportion of missense sites under high negative selection (62% of sites with Nes > 

100). 

 In P. dominula (Figure 1.1.C), intron and intergenic regions show no sign of negative 

selection. 3’ UTR and 5’ UTR sites show evidence of strong negative selection, with 21% and 

16% of their sites respectively having Nes > 100. Missense sites significantly show the largest 

amount of negative selection here, with 72% of the sites having Nes > 100. 

 Comparing A. mellifera, B. impatiens and P. dominula, interesting patterns stand out. 

In all 3 species, intronic and intergenic regions both show no signature of negative selection, 
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suggesting these sites are evolving neutrally. Another similarity is the evidence for moderate 

to strong negative selection on UTR regions in the genomes of all 3 species, for both 5’ UTR 

sites and 3’ UTR sites. We found stronger negative selection in UTR regions of P. dominula, 

compared to both A. mellifera and B. impatiens (p < 1e-16). Finally, in all 3 species, we see a 

high proportion of 0-fold (missense) sites experiencing strong negative selection, which is a 

high Nes > 100 (44% in A. mellifera, 62% in B. impatiens, and 72% in P. dominula; Kruskal-

Wallis 1-way ANOVA, p < 1e-16) (Figure 1.2). This is expected as 0-fold sites are in protein-

coding regions of the genome and these sites code for specific amino acids. Although the 

proportion of 0-fold sites experiencing strong negative selection are different among the 3 

species, these regions still show the most negative selection compared to other regions. Similar 

results were presented for these regions in C. grandiflora (Williamson et al., 2014). 

For the 3 species, we suspect A. mellifera has the smallest effective population size and 

P. dominula has the largest effective population size, with B. impatiens being intermediate. We 

expected sites in A. mellifera to show less negative selection, with B. impatiens showing 

intermediate negative selection and P. dominula having strongest negative selection. 
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Figure 1.2: Estimates of negative selection for missense (0-fold) sites under high Nes 

(>100) in the genome of A. mellifera scutellata, B. impatiens, P. dominula. Data was obtained 

for 52 Apis mellifera workers, 10 Bombus impatiens drones and 10 Polistes dominulus workers. 

Sites were annotated using SnpEff and DFE-alpha was run on missense sites from these 

species, with 4-fold degenerate sites used as the neutral selection sites. The error bars represent 

the 95% bootstrapped confidence intervals. We see higher negative selection in less socially 

complex species (p < 1e-16). 
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4. Discussion 

We estimated the amount negative selection in the genome of A. mellifera, B. impatiens, 

and P. dominula. 

Negative selection in the different regions of the genome 

 We observed no evidence of negative selection in intronic and intergenic regions, 

moderate to high negative selection in UTR regions and high negative selection in missense 

sites. 

Intergenic regions are found in between genes and their functions in the genome have 

yet to be clearly characterized (Birney et al., 2007). These regions have widely been considered 

to be ‘junk’ DNA but recent studies, including the ENCODE project, have found some of these 

to be functional based on the conservation of some intergenic sequences (Djebali et al., 2012; 

Dunham et al., 2012). Some enhancer sequences, where proteins can bind, have been found in 

these intergenic regions. Protein binding to these enhancers can change gene expression during 

development to change the fate of a cell (Schmidt et al., 2015). For example, binding to 

enhancers found in intergenic regions can lead to increased expression of genes found 

downstream of these intergenic regions, even though these genes are located thousands of base-

pairs downstream. Moreover, it has been hypothesized that intergenic regions contain 

noncoding RNAs (Birney et al., 2007). Noncoding RNAs are sequences that are not translated 

into protein but rather serve as a system to control gene expression. For example, some 

noncoding RNAs can bind to coding RNAs to silence them and prevent them from being 

translated. With no translation, the amount of that protein decreases, hence a reduced 

expression of that gene (Zhu, 2006). 

However, it’s only recently that we have started identifying some of the subtle functions 

of intergenic regions. We see no evidence of selection on intergenic regions and these results 
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correlate with previous studies, such as Williamson et al. (2014). We suggest that due to the 

vast amount of intergenic regions in the genome, we do not have the resolution to detect 

negative selection on a few small intergenic regions. 

Intronic regions are located between coding sequences of genes, within a gene, in 

contrast to intergenic regions. These introns do not code for amino acids and are not translated. 

Similar to intergenic regions, introns were believed to have little to no function in the genome 

(Penny et al., 2009) until recently. (Rearick et al., 2011) showed that some introns contain 

noncoding RNAs that can act as transfer RNAs (tRNA), ribosomal RNAs (rRNA), both 

important during translation, and noncoding RNAs. tRNAs catalyze the addition of amino acid 

to the elongating protein chain, allowing the right amino acid ‘block’ to be put in place (Crick, 

1968). rRNAs are associated with the ribosome and help the latter function efficiently (Wolfe, 

1993). The ribosome is part of the complex that reads a mRNA transcript for translation into a 

protein sequence and eventually a functional protein. Noncoding RNAs can also act as 

microRNAs and siRNAs where they regulate gene expression (Mack, 2007; Rana, 2007). 

These noncoding RNAs bind to functional RNAs and prevent the latter from being translated.  

Introns are also involved in alternative splicing, which is a mechanism used to obtain 

different proteins from the same mRNA transcript. In alternative splicing, specific exons 

(regions coding for amino acid) are retained in specific orders, allowing different polypeptide 

chains to be made and giving rise to different proteins. These proteins are often related to each 

other and work in the same pathway in the cell (Bicknell et al., 2012). Although the majority 

of introns are removed from the transcript during alternative splicing, an increasing number of 

studies have shown that some introns are retained inside the transcript (Sammeth, Foissac and 

Guigó, 2008; Rearick et al., 2011). These retained introns downregulate gene expression by 

limiting the number of transcripts that will be read and successfully translated into proteins. 
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Given we see no evidence of negative selection on introns, we hypothesize that most of the 

intronic sequences are neutral, with only a few bases being important for gene regulation. 

UTR regions are untranslated regions in the genome and hence do not code for amino 

acids. However, they are still kept in the mRNA transcript and not spliced out like introns. 

These UTR regions are usually involved in the regulation of transcription of protein sequences, 

determining the level of gene expression and amount of protein made (Araujo et al., 2012; 

Barrett, Fletcher and Wilton, 2012).  

5’ UTR regions are located upstream of genes and generally regulate the stability and 

translation efficiency of the mRNA of the downstream genes. Protein complexes bind to these 

sequences and help in recruiting of the ribosome complex, initiating translation and reading the 

codes to make a protein (Araujo et al., 2012). The ribosome complex is made up of RNAs and 

proteins, and is the main complex that reads the mRNA to translate the latter into amino acid 

sequences. Conversely, RNA binding proteins can bind to the 5’ UTR regions and fold the 

sequence in such a way that it prevents the ribosome complex from being recruited, thereby 

preventing translation (Kozak, 2008). Although they are called untranslated, some sequences 

of the 5’ UTR have an open reading frame (ORF) that can be used to start translation within 

the 5’ UTR. These specific sequences have their own initiation codon that will be read by a 

ribosome to make proteins (Wethmar, Smink and Leutz, 2010). These proteins can then 

regulate translation of the main protein coding sequence of the mRNA, by either repressing or 

enhancing translation. 

3’ UTR regions are located downstream of genes and have similar functions to 5’ UTR, 

in the sense that both help in the regulation of translation (Barrett et al., 2012). 3’ UTR also 

help in the stability and translation efficiency of the mRNA (Pichon et al., 2012). There are 

many intricate sequences in the 3’ UTR such as microRNA response elements (MRE), AU rich 
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elements (ARE), and poly A tails among others. The MRE are sequences where microRNA 

can bind and form a complex, preventing tRNA from being recruited and halting translation, 

serving as a repression mechanism (Alshalalfa, 2012). At the ARE, ARE binding proteins 

enhance the decomposition of the mRNA or enhance the stability of the mRNA (Barrett et al., 

2012). This effect depends on the types of ARE binding proteins being recruited and can hence 

upregulate or downregulate gene expression. The poly A tail consists of long stretches of the 

adenosine base, where additional proteins can bind to regulate the stability of the mRNA 

(Proudfoot, Furger and Dye, 2002). In general, longer 3’ UTRs tend to have lower levels of 

mRNA expression, suggesting that with longer 3’ UTRs, there are more sites for miRNAs and 

proteins to bind, repressing the translation of the mRNA. (Barrett et al., 2012)  

5’ UTRs and 3’ UTRS can also interact with each other. Special RNA binding proteins 

bind to the 5’ UTRs and 3’ UTRs simultaneously and this interaction causes the mRNA to form 

a loop (Gilbert, 1988). With the loop, the ribosome complex cannot read the transcript, 

repressing gene expression. However, Kozak (2008) disputes this concep. 

Therefore, mutations in UTR regions will affect the expression of multiple genes, even 

genes that appear to be unrelated. Deleterious alleles negatively impacting these UTR regions 

could eventually lead to misregulation of multiple genes, decreasing the fitness of individuals 

carrying these alleles. Due to these functions, we expected UTR regions to experience moderate 

to high negative selection. Our results are consistent with these expectations, albeit UTR sites 

show relaxed constraint relative to missense sites. Moreover, UTR sites showed signatures of 

moderate to strong negative selection in C. grandiflora (Williamson et al., 2014) 

Missense, or 0-fold sites, are protein coding regions in the genome. These sites usually 

form part of a codon, a 3-base sequence, that code for an amino acid. Although there codons 

can be degenerate, that is multiple codons can code for the same amino acids, missense sites 
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are non-degenerate (Lagerkvist, 1978). Any mutation at that specific base will cause a different 

amino acid to be coded and potentially lead to a loss of protein function (Minde et al., 2011). 

In fact, the majority of new mutations that occur are considered to be deleterious and lead to 

loss of functions (Loewe and Hill, 2010). Given mutations on these sites will adversely affect 

the amino acids being coded for, and hence the proteins being made, we expected negative 

selection to be high in these regions to reduce the frequency of deleterious alleles from 

potentially producing non-functional proteins. Jackson, Campos, & Zeng (2015) showed that 

missense sites in the fruit fly, Drosophila melanogaster, are under stronger negative selection 

compared to other regions in the genome, with around 78 % of sites under high negative 

selection. Williamson et al. (2014) found high levels of negative selection in protein coding 

regions of the plant Capsella grandiflora, showing that these missense regions experience 

strong negative selection other than insects. 

Negative Selection and Eusociality 

We observed strongest negative selection in the genome of P. dominula, followed by 

B. impatiens and A. mellifera showed the least amount of negative selection. Hence we see a 

trend that with increasing social complexity, negative selection is less efficient, supporting our 

hypothesis and Romiguier et al.’ hypothesis (2014). As insects evolve to have more socially 

complex societies, reproduction becomes restricted to fewer individuals in the population. 

Queens are usually the only reproductive females in these 3 species but in the absence of a 

queen, some workers can activate their ovaries to lay eggs, becoming reproductive. In 

primitively eusocial species, like B. impatiens and P. dominula, even though individual 

colonies are smaller compared to A. mellifera, there are more reproductive individuals at a 

population level. We suspect this is due to these species not being socially advanced enough to 

have only a few reproductive individuals to allow colonies to reach large numbers, like in A. 
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mellifera. Since reproductive individuals are passing on their alleles to the next generation, 

these reproductive individuals are affecting the fitness of the population directly and will 

experience stronger selection (Linksvayer and Wade, 2009). With the number of reproductive 

individuals being smaller in highly eusocial species, selection is less efficient. This can explain 

why we observed weaker negative selection in A. mellifera, the most socially complex insect 

in our triad of species and strongest negative selection in P. dominula, the most primitively 

social insect in this study. 

Hence, our results support the hypothesis that with decreasing social complexity, the 

strength and effectiveness of negative selection decreases. We also see no signs of negative 

selection in intronic and intergenic regions, moderate negative selection in UTR sites and 

strongest negative selection in missense sites. To further expand on this study, we could look 

at negative selection in other social complex insects, such as termites and ants, to help us 

confirm if strength of negative selection and levels of eusociality are indeed corelated. 
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Chapter 2: Negative Selection in Queen against Workers in Social Insects 

1. Introduction 

Social insects have a fascinating living structure. In hymenopteran social insects, the 

individuals are usually separated into 3 different castes: a diploid reproductive female queen, 

a few haploid reproductive male drones, and thousands of diploid non-reproductive female 

workers. The castes carry out different functions, with workers being the most diversified in 

tasks.  

 The reproductive task is typically confined to queens and males (referred to as drones 

in A. mellifera and males in B. impatiens and P. dominula). Usually, the queen is the only 

reproductive female in the colony and she typically releases pheromones that down regulate 

reproductive genes in workers, rendering the workers non-reproductive (Pirk et al., 2004). 

Hence, almost every individual in the colony is genetically related to the queen. In the 3 social 

insects studied here, once the queen has mated, she stores the sperm in her spermatheca, a 

special organ for sperm storage. She will never mate again during her lifetime and will simply 

use the stored sperm to fertilize her eggs. Fertilized eggs develop into workers and unfertilized 

eggs develop into males (Peters et al., 2017).  

In A. mellifera, female larvae that are fed royal jelly, a highly nutritious food, by the 

workers will likely develop into queens (Buttstedt et al., 2018). The first virgin queen to emerge 

will usually kill of the other queens that have yet to emerge. The surviving virgin queen will 

eventually go on mating nights in congregational areas, where drones gather to mate with 

queens (Waldbauer, 1998). The mating can occur over several nights. Once a drone has 

inseminated the queen, the drone’s abdomen is ripped off and he will eventually die. The queen 

generally mates with 12 to 20 drones over the mating nights. Once the queen has mated with 

enough drones, she will store the sperm in her spermatheca and will gradually use the sperm to 
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fertilize the eggs she lays. Given that the queen mates with few drones only, genetic diversity 

should be alarmingly low. However, A. mellifera has a high genomic recombination rate (Kent 

et al., 2012), allowing variants to be constantly introduced in the population and increasing 

genetic diversity. In A. mellifera, queens solely lay eggs and are not involved in any aspect of 

the colony. The workers take care of the young, build the nest, find a new nest site if needed, 

forage and do everything else for the colony (Ratnieks and Helanterä, 2009). 

In B. impatiens, larvae that were fed copious amounts of food (nectar and pollen) by 

the workers will develop into gynes, which are females destined to become queens. A gyne 

will mate with a single male bee in fall, at the end of the hive life cycle. The male will mate 

long enough for his sperm to harden and after mating the vaginal orifice is plugged (Laverty 

and Harder, 1988). The mated gyne will then hibernate until spring. During spring, the gyne 

will emerge and find a potential nest, usually in the ground or in tree crevices, to form a colony. 

When a suitable nest site is found, the gyne (queen) will set up a honeypot and fill this with 

nectar and pollen, and will use this honey pot to feed her new brood (McAulay, Otis and 

Gradish, 2015). During this time, the queen has started laying eggs that will develop into 

offspring female workers. In late summer, the queen will lay unfertilised eggs that will develop 

into males and workers will start feeding larvae large amount of food to increase gyne 

production, hence restarting the cycle (Cnaani, Schmid-Hempel and Schmidt, 2002). 

P. dominula gynes are chosen similar to B. impatiens, where they are fed large amounts 

of food. Similarly, gynes will mate during fall but here P. dominula gynes will mate with 

several males (Liebert et al., 2010). In leks, P. dominula males will fight to prove their 

dominance, with the losers leaving the area. The gynes will fly to these areas and choose the 

dominant males, which is indicated by the variation of spots on the males’ abdomens (Izzo and 

Tibbetts, 2012). Since P. dominula gynes are larger and more aggressive than the males, the 
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gynes are able to prevent copulation from unwanted males by biting them or stinging them 

(Reeve, 1991). After a number of copulations, the mated gynes (now foundresses) will 

hibernate with other females or alone. Similar to B. impatiens, the foundresses will emerge 

during spring, build the nest and provide food to their offspring. In some cases, multiple 

foundresses will emerge together and lay eggs together. The foundress that lays the most eggs 

usually becomes the dominant queen and the other foundresses will stop laying eggs and help 

the dominant foundress take care of the colony (Tibbetts, 2003). In late summer and fall, P. 

dominula is similar to B. impatiens where future foundresses and males are laid. 

 In A. mellifera, B. impatiens, and P. dominula, workers perform most of the tasks in the 

colony. These include foraging for food (foragers), guarding the colony against intruders 

(guards), feeding and taking care of the young in the colony (nurses), removing sick larvae and 

deal individuals from the colony (undertakers), among others (Jandt et al., 2014; Jandt & 

Dornhaus, 2009; Michener, 1969). Foragers will go outside and look for resources and come 

back to the colony. These foragers bring nectar, which is used as fuel and energy source, and 

pollen, which is high in protein and used to build tissues, to the colony. Guards check the 

colony for intruders and will attack them, by either biting the intruders or stinging them.  

In A. mellifera, workers usually transition roles as they mature (Amdam and Omholt, 

2003). For example, young workers become nurses and take care of larva and other young 

offspring in the colony. As these nurses mature, they transition to other distinct roles, such as 

foragers, and guards in some cases. Foragers are able to waggle dance to direct other bees to 

where the resources are, recruiting more workers to efficiently harvest a resource (Riley et al., 

2005). The transition between roles is marked by upregulation and downregulation of certain 

genes (Whitfield, 2003). In the absence of a queen, some A. mellifera workers can lay 

unfertilized eggs that will develop into drones. 
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The tasks in B. impatiens workers are mostly defined by the size of the individuals 

(Jandt et al., 2009). Smaller workers tend to be nurses and will be found in the center of the 

hive, where most larvae develop. Larger workers are usually foragers and guards, roaming 

around the edge of the hives (Jandt and Dorhaus, 2009). In this case, being at the extremities 

of the hive allows these guard workers to quickly detect intruders and the foragers to easily 

leave the hive to forage for food. B. impatiens workers do not typically transition to different 

roles during their lifetime. In the absence of a queen, B. impatiens workers can activate their 

ovaries and lay unfertilized and fertilized eggs, if they are able to mate (Cnaani et al., 2002). 

P. dominula workers roles are defined based on interactions between individuals in the 

colony (O’Donnell, 1996). Most of the workers forage and nurse, with no true distinction 

between the roles. Dominance among individuals influence what the workers can do in the 

colony. The more dominant a worker is, the more likely she will be to lay eggs even if a queen 

is around. In fact, Liebig et al. (2005) showed that removing larvae increases the reproductivity 

of workers. Removing the queen also increases worker reproductivity (Strassmann et al., 

2004). These studies indicate that in the case where a colony seems to have an unhealthy queen 

(laying less eggs and hence less larvae present) or no queen at all, the more dominant workers 

will lay eggs and take over the role of the queen. Hence, workers are totipotent and able to 

perform a wide variety of roles in the colony, even reproduction, with no clear roles assigned 

to any worker (Jandt et al., 2014).  

Here we compared caste-biased genes in female queens and female workers. Since 

caste-biased genes differentially expressed in these castes lead to different morphology and 

behavior, caste-biased genes offer an interesting way of the evolution of traits. As the queen is 

the primary reproductive diploid female in the population (Pamilo and Crozier, 1997), her 

genes and alleles are passed directly to the next generation. Hence, genes that are differentially 
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expressed in the queen, hereafter called queen-biased genes, will directly affect colony fitness 

because the queen contributes directly to the population’s genotype. As workers are typically 

non-reproductive but do take care of the colony through foraging and nursing for example, the 

workers affect the overall health of the colony and indirectly contribute to colony fitness.  

Linksvayer and Wade (2009) hypothesized that genes affecting social (or colony) 

fitness directly would show stronger negative selection compared to genes affecting colony 

fitness indirectly. In this study, genes affecting colony fitness directly are queen-biased genes 

and genes affecting colony fitness indirectly are worker-biased genes. Therefore, we 

hypothesized that worker-biased genes would have experienced relaxed negative selection, 

resulting in an accumulation of more deleterious alleles. Queen-biased genes would experience 

stronger negative selection. However since B. impatiens and P. dominula workers can 

reproduce in certain circumstances, we would expect higher negative selection in their genes 

compared to A. mellifera workers. The null hypothesis is that there will be no difference in the 

strength of negative selection between queen-biased genes and worker-biased genes. 

2. Materials and Methods 

1. Data and samples 

See Chapter 1: Section 2 

2. Differentially expressed genes 

All caste-biased genes were obtained from RNAseq data and data for A. mellifera was 

analyzed using DESeq2 (Love, Huber and Anders, 2014). RNAseq data for A. mellifera were 

obtained from Ashby et al. (2016) and He et al. (2019). We obtained caste-biased genes data 

from Harpur et al. (2017) and Amsalem et al. (2015) for B. impatiens, and Woodard et al. 

(2014) and Standage et al. (2016) for P. dominula. For all species, queen and worker biased 

genes were obtained from these datasets, with the addition of drone biased genes for A. 



27 

 

mellifera. In order to obtain estimates of the distribution of fitness effects, the VCF files were 

divided into the different castes consisting of only regions with the respective caste-biased 

genes. For comparison, only missense sites (0-fold sites) under high negative selection (Nes > 

100) were analyzed since these are the regions showing the largest and noticeable changes in 

the genome. 

3. Results 

We tested the hypothesis that queen-biased genes would have experienced stronger 

negative selection compared to worker-biased genes because queen-biased genes affect social 

fitness directly whereas worker-biased genes indirectly affect social fitness (Linksvayer and 

Wade, 2009). 

 

Figure 2.1: Estimates of negative selection for missense (0-fold) sites of queen-biased 

genes and worker-biased genes under high Nes (>100) in the genome of A. mellifera, B. 

impatiens, and P. dominula. Data was obtained for 52 Apis mellifera workers, 10 Bombus 

impatiens drones and 10 Polistes dominula workers. Sites were annotated using SnpEff and 

gene-biased castes were obtained from RNASeq data. DFE-alpha was run on missense sites 

from these caste-biased genes, with 4-fold degenerate sites used as the neutral selection sites. 

The error bars represent the 95% bootstrapped confidence intervals. 
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In A. mellifera scutellata, 42% of 0-fold sites from queen-biased genes are under strong 

negative selection compared to 8.7% for worker-biased genes (permutation test, p < 1e-12) 

(Figure 2.1). For B. impatiens, 65 % of missense sites from queen-biased genes show evidence 

for strong negative selection while 57% of missense sites from worker-biased genes are under 

strong negative selection, with no significant difference between the caste-biased genes 

(permutation test, p=0.71). Lastly, we see no difference in strong negative selection between 

queen-biased genes (66% of sites) and worker biased genes (65% of sites) in P. dominula 

(permutation test, p=0.86). We observe an interesting pattern regarding social complexity and 

caste biased genes here. As social complexity increases from primitively eusocial P. dominula 

to intermediately eusocial B. impatiens and finally advanced eusocial A. mellifera, the 

difference in amount of negative selection between queen-biased genes and worker-biased 

genes increases. 

To confirm that the difference in negative selection between A. mellifera queen-biased 

genes and worker-biased genes are solely due to caste-bias and not expression level, we divided 

the top 200 highly expressed genes and the bottom 200 lowly expressed genes for both queen-

biased and worker-biased genes. There is no difference between expression levels for highly 

expressed genes in queens and highly expressed genes in workers (Mann-Whitney test, 

p=0.23). To obtain the distribution for proportion of sites under high negative selection (Nes > 

100), we ran DFE-Alpha on the subsets using 5000 bootstrap iterations. For highly expressed 

genes, there are more 0-fold sites under high negative selection for queen-biased genes 

compared to worker-biased genes (permutation test, p < 1e-16). The same pattern is observed 

for low expression genes, where we observe stronger negative selection in queen-biased genes 

compared to worker-biased genes (permutation test, p < 1e-16). These results confirm that the 

difference we observe in negative selection in queen-biased genes compared to worker-biased 
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genes is not confounded by expression levels in these castes. Hence, the differences we observe 

can be attributed mainly to the genes being expressed in the different castes. 

 

Figure 2.2: Estimates of negative selection for missense (0-fold) sites of high expression 

and low expression queen-biased genes and worker-biased genes under high Nes (>100) 

in the genome of A. mellifera. Data was obtained for 49 Apis mellifera workers. Sites were 

annotated using SnpEff and gene-biased castes were obtained from RNASeq data. DFE-alpha 

was run on missense sites from these caste-biased genes, with 4-fold degenerate sites used as 

the neutral selection sites. Sites were bootstrapped 5000 times to obtain the distributions. The 

top 200 genes highly expressed and the top 200 genes lowly expressed in both queen-biased 

genes and worker-biased genes were taken for this analysis. We see stronger negative selection 

in queen-biased genes compared to worker-biased genes, irrespective of expression level of 

these genes. 

4. Discussion 

We investigated the difference in negative selection between queen-biased genes and 

worker-biased genes for A. mellifera, B. impatiens, and P. dominula. Our results indicate higher 

negative selection in queen-biased genes compared to worker-biased genes for A. mellifera, 

with no difference between the two castes for both B. impatiens and P. dominula. 
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Compared to A. mellifera, B. impatiens and P. dominula are primitively eusocial 

(Dogantzis et al., 2018) and have similar life histories. For example, they live in small colonies 

and tasks are not confined to specific castes. Moreover, these 2 species show similar levels of 

positive selection, suggesting they are similar to each other (Dogantzis et al., 2018). In this 

study, I found no significant difference between queen-biased genes and worker-biased genes 

for both B. impatiens and P. dominula and this may be explained by the reproductive roles of 

B. impatiens and P. dominula. In primitively eusocial insects, the female reproductive task is 

not confined to queens. In fact, some workers can reproduce in B. impatiens and P. dominula 

in certain cases (Cnaani et al., 2002; Foster, et al., 2004; Strassmann et al., 2004). Since 

reproductive workers are passing on their genes to the next generation, the worker’s caste-

biased genes are affecting colony fitness directly. This contrasts with the indirect link to social 

fitness for the non-reproductive worker’s caste-biased genes in A. mellifera. Following 

Linksvayer and Wade’s (2009) hypothesis, reproductive worker’s caste-biased genes that affect 

social fitness directly should experience stronger negative selection and this is indeed what we 

observe for B. impatiens and P. dominula. 

Comparing our results to Dogantzis et al’s (2008), where they studied positive selection 

(in the same three species studied herein), shows interesting trends. Dogantzis et al. showed 

that P. dominula and B. impatiens have stronger positive selection on queen biased genes, as 

well as similar patterns in adaptive evolution. My results complement their study, where we 

observe stronger negative selection in queen biased genes of B. impatiens and P. dominula, 

which can be again attributed to larger effective population sizes. Moreover, species that 

showed strong positive selection in Dogantzis’ et al. study also exhibit signals of strong 

negative selection in this study. Both species are independently founding and species with 

similar life histories may be experiencing similar levels of selection, whether positive or 

negative.  
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We showed that A. mellifera queens experience stonger negative selection compared to 

workers, and there is no difference in negative selection between workers and queens of B. 

impatiens and P. dominula. In the future, with more RNAseq data and better gene sequences, 

we hope to consolidate our results and get better estimates for B. impatiens and P. dominula. 
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Chapter 3: Negative Selection on Drones trait versus Queens traits in Social 

Insects 

1. Introduction 

Apis mellifera are hymenopteran social insects with a haplodiploid system. Here, a 

major proportion of the population is diploid (queens and workers) and the rest (males) is 

haploid (Grimaldi and Engel, 2005). For this part of the study we are considering only A. 

mellifera scutellata.  

When considering the reproductive castes in A. mellifera, drones are haploid males 

while the queen is a diploid female. Morphologically, the queen is longer than the drones but 

the drones are typically more stout (Koeniger, Koeniger and Phiancharoen, 2011), being larger 

than the average worker but smaller than queens. Drones have bigger eyes than queens or 

workers, where some studies suggest larger eyes in drones help them identify the queens and 

proceed to mating (Menzel, Wunderer and Stavenga, 1991). As mating occurs during flight, 

drones have musculature adapted to fast flight pursuits, possibly to help get to the queen faster 

and mate with her (Radloff, Hepburn and Koeniger, 2003). Drones typically do not help in 

taking care of the colony as their main role is to mate with queens. Drones from multiple 

colonies assemble in the congregational areas and wait for the queen (Zmarlicki and Morse, 

1963). Once they spot a queen, they will fly to her to mate. During the process, the drones’ 

abdomen is ripped off due to the morphology of their penis and abdomen, and the drone will 

die shortly after.  In this respect, drones do not collect pollen or nectar. Additionally, drones do 

not have stingers and hence cannot defend the colony in case of attacks or intrusion. Queens 

are reproductive and similar to drones; they do not generally take care of the colony. In contrast 

to drones however, queens do have stingers. 
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Being a haplodiploid system, drones have only one set of chromosomes while queens 

have two sets of chromosomes. This haplodiploid system offers an interesting way to look at 

selection on deleterious allele. In diploids, a recessive allele’s effect can be masked, whereas 

this is not the case in haploids (Kondrashov and Crow, 1991; Orr and Otto, 1994; Gerstein and 

Otto, 2009). We will consider a case where there is a recessive deleterious allele on one 

chromosome in the queen. If the other chromosome has a wild type non-deleterious allele at 

the same locus as the deleterious allele, this wild type allele can mask the recessive deleterious 

allele. For drones, however, recessive deleterious alleles cannot be masked as only one copy is 

present. If deleterious mutations were able to accumulate in drones, their genetic load, which 

is defined as the relative reduced fitness compared to the optimum fitness of the population 

(Klekowski, 1988), would increase and negatively impact their fitness, compared to queens. 

As drones are more susceptible to deleterious mutations, there would be stronger negative 

selection on deleterious mutations in genes that are mostly expressed in males, leading to lower 

alternate allele frequencies in drone-biased genes. 

Our hypothesis is that drone-biased genes would show stronger negative selection 

compared to queen-biased genes, and this would lead to less genetic diversity in drone-biased 

genes. The null hypothesis is that there will be no difference in strength of negative selection 

when comparing drone-biased genes and queen-biased genes. 

2. Materials and Methods 

1. Data and samples 

See Chapter 1: Section 2 

2. Differentially expressed genes 

We obtained RNAseq data for A. mellifera from Ashby et al. (2016) and He et al. 

(2017). We analyzed the RNAseq data using DESeq2 (Love et al., 2014) to get drone-biased 
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genes and queen-biased genes. In order to obtain estimates of the distribution of fitness effects, 

the VCF files were divided into drone and queen castes consisting of only regions with the 

respective caste-biased genes. For comparison, only missense sites (0-fold sites) under high 

negative selection (Nes > 100) were analyzed since these are the regions showing the largest 

and noticeable changes in the genome. 

3. Results 

We expected stronger negative selection in drone-biased genes relative to queen-biased 

genes due to haplodiploidy and how selection affects each ploidy (Grimaldi and Engel, 2005).  

Figure 3.1: Estimates of negative selection for missense (0-fold) sites of queen-biased 

genes and drone-biased genes under high Nes (>100) in the genome of A. mellifera. Data 

was obtained for 49 Apis mellifera workers. Sites were annotated using SnpEff and gene-biased 

castes were obtained from RNASeq data. DFE-alpha was run on missense sites from these 

caste-biased genes, with 4-fold degenerate sites used as the neutral selection sites. The error 

bars represent the 95% bootstrapped confidence intervals. There is stronger negative selection 

in drone-biased genes compared to worker-biased genes (p<1e-16). 

We observed a mean of 46% of 0-fold sites in drone-biased genes are under strong 

negative selection (Nes > 100), compared to 42% of sites in queen-biased genes. The 
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differences are subtle but statistically significant (Kalmogorov-Smirnov test, p<1e-16), 

supporting our hypothesis.  

4. Discussion 

We expected stronger negative selection in drone-biased genes compared to queen-

biased genes, with our results supporting the masking hypothesis in haplodiploids systems (Orr 

and Otto, 1994). 

In A. mellifera, haploid drones and diploid queens are the only reproductive individuals 

in the colonies (Brutscher, Baer and Niño, 2019). If the queen has a recessive deleterious allele 

on one chromosome, the allele’s effect can be masked if the second chromosome has a 

dominant wild-type allele (Kondrashov and Crow, 1991). For haploid drones, with just one set 

of chromosomes, there is a 50% chance of having a functional allele and a 50% chance of 

having a recessive deleterious allele. Hence the masking effect is not possible in drones and 

the effects of deleterious alleles would be more prominent in drones compared to queens. 

Negative selection reduces the frequency of deleterious alleles in the population. As we observe 

stronger negative selection in drones relative to queens, deleterious alleles are purged more 

efficiently in these haploid drones. This phenomenon is observed in plants as well. Haploid 

pollens and pollen genes experience stronger negative selection relative to other diploid parts 

of the plants (Gerstein and Otto, 2009; Arunkumar et al., 2013). Hence, there is support for the 

fact that haploid systems experience stronger negative selection compared to diploids. 

We showed that drone-biased genes experienced stronger negative selection compared 

to queen-biased genes and we suggest that it is due to drones being haploid. With more caste 

biased gene data in the future, we hope to better clarify these results and support the haploid 

selection hypothesis. 
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Conclusion 

The evolution of eusociality has been studied intensively over the last decade, with the 

honey bee used as a model organism. These studies focused on positive selection and adaptive 

selection in eusocial insects. Our study looked at negative selection in A. mellifera, B. impatiens 

and P. dominula, with interesting findings. Firstly, we see strong negative selection in protein 

coding regions (missense sites), moderate negative selection in regulatory regions (UTR) and 

no negative selection in intronic and intergenic regions, in all 3 species. Secondly, we observed 

stronger negative selection in queens compared to workers in A. mellifera but no difference in 

B. impatiens and P. dominula, and we attribute this difference to reproductive capabilities of 

the different castes. Thirdly, we see stronger negative selection in drones compared to queens, 

suggesting that haploids experience stronger efficient negative selection. Lastly, we observe 

the trend that with increasing social complexity, there is weaker negative selection, meaning 

negative selection is less efficient. These results confirm several hypotheses we tested and 

further elucidates the evolution of eusocial insects.  

With better genomic data and concurrent analyses on negative selection, positive 

selection, and adaptive evolution, we will be able to test the hypothesis that a relaxation of 

constraint is important for adaptive evolution (Hunt et al., 2011). Hunt et al. suggest that 

relaxation of constraint allows more genetic variants into the population that may then 

accelerate adaptive evolution in the future. Hence, in different environments, some alleles may 

have positive effects instead of negative effects in the population. Moreoever, knowing the 

distribution effects of mutation can also help in conservation. For example, they shed light on 

the deleterious genetic load that is segregating within natural populations, which can help us 

understand how inbreeding and small effective population size can influence extinction in 

small populations (Frankham and Ralls, 1998). 
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