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Abstract 

Previous research revealed that individuals with Parkinson’s disease (PD) show preserved 

learning of tool-related motor skills within a session. However, as a possible result of striatal 

dysfunction, retention has been found to be impaired after a 3-week delay. The goal of the 

current study was to further examine motor skill impairments related to complex tool use in PD 

by investigating the effects that different delays and extensive practice have on performance. PD 

participants and controls were trained on novel tools over four sessions, and motor skill 

performance was investigated by examining patterns of learning and forgetting over time. 

Results showed that PD participants were unimpaired in motor skill learning within sessions, but 

they did not retain these skills between sessions. In spite of forgetting, with practice, individuals 

with PD still demonstrated improvement across sessions. These findings indicate that people 

with PD may benefit from extensive practice when learning tool-related motor skills. 
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Introduction 

 
Parkinson’s disease (PD) results from striatal dysfunction caused by degeneration of 

dopamine-producing cells in the basal ganglia, leading to disruptions of voluntary movements. 

Physical symptoms may include tremor, rigidity, gait disturbances, and bradykinesia (i.e., slowed 

movements; Rodriguez-Oroz et al., 2009). Although PD is primarily characterized by these 

motor difficulties, cognitive impairments can also be present even in non-dementing individuals 

(Lewis, Dove, Robbins, Barker, & Owen, 2003; McFadden, Mohr, Sampson, Mendis, & Grimes, 

1996). More specifically, findings generally suggest that individuals in the early stages of PD 

show impaired procedural memory (i.e., skill-based learning; Squire, 1992), both on motor and 

non-motor tasks (Knowlton, Mangels, & Squire, 1996; Shohamy, Myers, Kalanithi, & Gluck, 

2008; Werheid, Zysset, Muller, Reuter, & Yves von Cramon, 2003). However, their declarative 

memory for consciously accessible information remains largely intact (Davidson et al., 2006), 

although deficits in some aspects of declarative memory have been found (Cohn, Moscovitch, & 

Davidson, 2010). Procedural memory plays an important role in learning and retaining motor 

skills, and this ability may be negatively affected in PD (Albouy, King, Maquet, & Doyon, 2013; 

Roy, in progress). However, it is currently unknown whether long-term learning and retention of 

motor skills could be improved in individuals with PD. 

There is recent evidence that impaired motor skill performance extends to the use of 

complex tools in PD (Roy, in progress). Complex tools are defined as objects that transform 

motor output into advantageous mechanical actions to achieve a goal when acting on a recipient 

object (e.g., using a knife to slice bread; Frey, 2007). We often rely on familiar complex tools, 

but there are also situations in which we must learn new skills, using a novel tool, to achieve a 

goal. Although complex tool use may seem relatively straightforward, this ability relies on a 
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multitude of skills and knowledge, mediated by different memory systems. The use of both 

familiar and unfamiliar novel complex tools is important because it allows us to fulfill various 

everyday activities that would otherwise be difficult or impossible to accomplish (Ambrose, 

2001). 

Of particular importance to the current study, Roy (in progress) showed that in learning 

how to use novel complex tools, people with PD demonstrated intact learning of motor skills 

within a session; however, unlike healthy controls, PD participants did not retain these skills 

after a 3-week delay. This pattern of preserved within-session learning but impaired long-term 

retention has been previously reported in PD using a variety of tasks (Bedard & Sanes, 2011; 

Marinelli et al., 2009; Mochizuki-Kawai et al., 2004). At this point, the neural and psychological 

processes underlying this impairment remain unresolved. It is also unclear whether it is possible 

to improve tool-related motor skill learning and retention in PD, and whether individuals with 

PD would show impaired performance after a shorter delay. Thus, the aim of the current study 

was to further investigate the findings by Roy (in progress) by examining the effects of shorter 

delays and more extensive practice on motor skill performance in PD. Prior to describing the 

current study in more detail, I will first provide an overview of human memory systems, and 

examine how they may interact in PD. I will then discuss how declarative and procedural 

memory may specifically mediate complex tool use, and describe how procedurally mediated 

tasks, such as motor skill learning, can be impaired in PD. Finally, I will consider whether more 

extensive practice may result in long-lasting retention of motor skills in PD. 

Overview of Human Memory Systems 

Declarative and procedural memory systems are functionally and neurally distinct. 

Encoding of declarative memories is dependent on the hippocampal complex, although it 
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remains controversial whether the hippocampal complex is required for the maintenance and 

retrieval of such memories (Moscovitch et al., 2005; Squire, 1992). It has been hypothesized that 

declarative memories are flexible and can be rapidly acquired (Squire, 2009; Squire & Zola, 

1996; Tulving, 1985), and a distinction in declarative memory has been made between semantic 

memory and episodic memory. Semantic memory comprises general knowledge about the world 

and oneself, whereas episodic memory involves the recollection of subjective events and 

experiences that are specific to a time and place (Renoult, Davidson, Palombo, Moscovitch, & 

Levine, 2012). Procedural memory is a type of nondeclarative memory, which is implicit, and it 

is believed to be less flexible and less rapidly acquired than declarative memory (Squire, 2009; 

Tulving, 1985). Although less is known about the neural underpinnings of procedural memory, 

motor skill learning is thought to be mediated by cortico-cerebellar and cortico-striatal systems 

(Doyon, Penhune, & Ungerleider, 2003). It is also important to note that although declarative and 

procedural memory systems are thought to rely on different neurological areas, both types of 

memory may require executive functions (i.e., control processes required for planning, 

monitoring, coordinating, etc.) mediated by the frontal lobes (Salthouse, Atkinson, & Berish, 

2003). For instance, changes in executive functioning have been shown to affect performance on 

tasks mediated by declarative memory (see Buckner, 2004 for a review), and performance on 

procedurally mediated tasks may require cognitive aspects involving executive functions 

(Beaunieux et al., 2006). 

A key functional difference between the two memory systems involves the retention of 

knowledge over time. Declarative memory is not always reliable because it is susceptible to 

forgetting as a result of decay over time or interference effects (Ellenbogen, Payne, & Stickgold, 

Mitchell, 2006; Brown, & Murphy, 1990). On the other hand, procedural memory appears to be 
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more robust to these effects, and performance on tasks that are procedurally mediated tends not 

to be susceptible to interference, or decline with time (Gabrieli, Corkin, Mickel, & Growdon, 

1993; Mitchell et al., 1990, though see Brashers-Krug, Shadmehr, & Bizzi, 1996).  

It was initially believed that declarative and nondeclarative (e.g. procedural) memory 

systems operated independently (Squire, Knowlton, & Musen, 1993). Evidence for this 

hypothesis stemmed from early studies demonstrating impaired declarative memory, but 

preserved procedural learning in amnesic individuals with medial temporal lobe damage (Cohen 

& Squire, 1980; see Squire & Zola, 1996 for a review). Additional support came from studies 

that demonstrated a double dissociation of declarative and nondeclarative memory using 

probabilistic classification learning, such as on the weather prediction task. This task relies on 

nondeclarative memory processes as participants learn to associate visual cues from four cards 

that are probabilistically associated with a weather outcome. Findings showed that amnesic 

individuals demonstrated preserved performance on this task, as they learned at the same rate as 

control participants. However, despite intact performance, they were unable to answer explicit, 

factual questions about the training procedure (Knowlton, Squire, & Gluck, 1994). On the other 

hand, individuals with basal ganglia dysfunction, as a result of Huntington’s disease (Knowlton, 

Squire, Paulsen, Swerdlow, Swenson, & Butters, 1996), and nondementing PD (Knowlton, 

Mangels, Squire, 1996), were impaired in learning the probabilistic classification task even 

though they could recall explicit details about training.   

Though the above mentioned patient studies originally suggested that declarative and 

nondeclarative memory systems operated independently, more recent evidence suggests that the 

two memory systems can interact with modulation from the prefrontal cortex (Poldrack et al., 

2001; see Poldrack & Rodriguez, 2004 for a review). It now appears that different types of 
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interactions can exist between declarative and nondeclarative (e.g., procedural) memory systems. 

For example, the two memory systems have been shown to interact cooperatively, which occurs 

when more than one system is simultaneously required to mediate performance, and the systems 

do not compete with each other (e.g., Sadeh, Shohamy, Levy, Reggev, & Marial, 2011). 

Conversely, memory systems can also interact competitively, which occurs when one system has 

an inhibitory influence over the other system (Packard & Goodman, 2013).  

Competitive interactions between the hippocampus and striatum were described from 

functional magnetic resonance imaging (fMRI) studies using probabilistic classification learning 

where increased activation in the striatum, and decreased activation in the medial temporal lobes 

has been reported (Poldrack, Prabhakaran, Seger, & Gabrieli, 1999; Seger & Cincotta, 2006). 

This antagonistic activity between the two systems has also been described during motor 

sequence learning. Generally, hippocampal activity increases during initial learning. However, 

with learning, striatal activation increases, whereas hippocampal activity decreases (Albouy et 

al., 2012; Schendan, Searl, Melrose, & Stern, 2003). Notably, during the early phases of motor 

sequence learning, cooperative interactions may actually hinder performance. For instance, 

parallel increasing activation in the striatum and hippocampus was shown to correlate with 

poorer performance in older adults (Rieckmann, Fischer, & Backman, 2010) and younger, slower 

learners (Albouy et al., 2008). It is important to note that with a competitive relationship between 

memory systems, compensatory interactions may also occur, whereby the dysfunction of a 

competing system results in a greater use of the preserved system (Packard & Goodman, 2013). 

For example, a compensatory relationship has been observed in people with PD when 

performing tasks that normally rely procedural memory. Compared to healthy control 

participants, individuals with PD may make greater use of their declarative system, mediated by 



	
  
	
  

6 

the hippocampus, possibly because of an impaired procedural system, mediated by the striatum 

(Gobel et al., 2013; Moody, Bookheimer, Vanek, & Knowlton, 2004). As motor skill learning is 

mediated by the striatum, it is possible that compensatory interactions may occur in people with 

PD, but further research is needed.  

Memory Systems in Tool Use 

Both declarative and procedural memory are required for complex tool use (Creem & 

Proffitt, 2001; Roy & Park, 2010; Silveri & Ciccarelli, 2009). It has been proposed that tool-

related skills and knowledge can be divided into four main components: 1) recalling a tool’s 

function and attributes, 2) grasping a tool for use, 3) skillfully using a tool to achieve a goal, and 

4) executing the motor skills associated with a tool (Roy & Park, 2010). Findings suggest that 

some of this tool-related knowledge relies primarily on declarative memory, while other aspects 

of performance rely predominantly on procedural memory. Conversely, other aspects of tool use 

may require an interaction of both types of memory.  

In a previous study, Roy and Park (2010) specifically examined how declarative and 

procedural memory systems mediate complex tool use. Using novel tools, the researchers 

examined tool use by an individual with profound hippocampal amnesia, D.A., and a matched 

sample of controls during three sessions, with three days between sessions 1 and 2, and three 

weeks between sessions 2 and 3. Compared to controls, D.A. was impaired in recalling a tool’s 

attributes and demonstrating its correct grasp after the delays, suggesting that these aspects are 

mediated, at least in part, by declarative memory. These findings were consistent with previous 

research suggesting that recalling conceptual knowledge about objects (Hodges, Bozeat, Ralph, 

Patterson, & Spatt, 2000) and tool grasping (Creem & Proffitt, 2001) rely on semantic memory. 
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For motor skill performance, D.A. learned how to use the tools during training trials 

within a session, during which he watched a video demonstrating a tool’s use, and then he 

immediately completed the task he had just observed. D.A. learned motor skills associated with 

the tools at the same rate as controls during the first training session. Also, after a 3-day and 3-

week delay, D.A. completed additional training sessions, and his performance did not decline 

from the previous sessions. Roy and Park (2010) concluded that motor skill learning during 

training was mediated by procedural memory, which is consistent with previous studies (Corkin, 

1968; Harrington, Haaland, Yeo, & Marder, 1990; Krebs, Hogan, Hening, & Adamovich, 2001; 

Siegert, Taylor, Weatherall, & Abernethy, 2006). 

Conversely, D.A’s performance during skilled tool use (i.e., the intentional use of a tool 

to achieve a goal) suggested that the task might require an interaction of both declarative and 

procedural memory systems. Although skilled tool use is similar to motor skill learning during 

training, as both require the execution of a motor skill to achieve a goal, skilled tool use may be 

more declaratively demanding because one must know how to accurately use a tool from 

memory (i.e., there is a delay between viewing the video demonstrating how to use a tool and 

using the tool at a later time). Compared to controls, D.A. was severely impaired in his ability to 

accurately demonstrate a tool’s use after a delay, suggesting that declarative memory was 

required. However, once the experimenters provided D.A. with a non-motor, visual cue (i.e., the 

starting position of the object that the tool acted on, referred to as the recipient), he could 

properly execute the required motor skills, and his completion time (i.e., the time it took to 

successfully complete the task) was no longer impaired relative to controls. This finding suggests 

that providing a visual cue may have helped D.A. access procedural memory, allowing him to 

execute the motor skills associated with the tool. 
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Further support for the relationship between declarative and procedural memory systems 

in various aspects of tool use emerged from a follow-up study examining novel tool use in a 

sample of people with mild-moderate PD, and healthy age and education-matched controls (Roy, 

in progress). Similar to Roy and Park (2010), participants were tested on four main components 

of tool use, but there were two sessions that were spaced three weeks apart. The results of the 

study were important because they provided evidence of a double dissociation where individuals 

with PD showed the opposite pattern of performance than the hippocampal amnesic case, D.A.: 

namely, impaired retention of motor skill learning, but unimpaired recall of tool attributes and 

function, and unimpaired grasp demonstration. Importantly, individuals with PD showed 

improved motor skill performance across training trials in session 1, and their rate of 

improvement did not differ from that of controls. However, in contrast to D.A., motor skill 

performance of individuals with PD declined after the 3-week delay, and was not significantly 

better than the first training trial in session 1.  

Participants also completed a test that assessed skilled tool use ability. Similar to training, 

participants carried out the motor skill associated with the tool to complete a task, but they were 

required to do so from memory. For this task, compared to controls, individuals with PD were 

unimpaired in their ability to accurately demonstrate a tool’s use. However, PD participants 

demonstrated impairments in the time it took them to complete the task. Though individuals with 

PD demonstrated intact learning within a session, they did not retain their completion time 

performance, and unlike controls, PD participants were significantly slower after the 3-week-

delay. Taken together, performance during skilled tool use provided evidence that this ability 

may require an interaction of both declarative and procedural memory systems. 
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Regarding motor skill performance during training, Roy (in progress) proposed a possible 

explanation for the performance pattern where individuals with PD showed intact learning within 

a session, but impaired retention over time. It was suggested that deficits in motor skill retention 

in PD might have resulted from impaired procedural processing due to striatal dysfunction. The 

experimenters proposed that due to an impaired procedural system, individuals with PD might 

have compensated by instead relying on declarative memory when learning motor skills. Thus, 

within a session, participants with PD were able to learn motor skills, but they were not able to 

retain this knowledge because their declarative memory declined over the 3-week delay. Though 

this type of compensation may have occurred, further investigation into motor skill performance 

in PD is required. 

Motor Skill Learning and Retention in Parkinson’s disease 

Intact learning within a session has been consistently reported in previous studies that 

examined motor skill learning in PD on a variety of tasks (see Nieuwboer, Rochester, Muncks, & 

Swinnen, 2009 for a review). However, fewer studies have examined the effects of delay on 

motor skill retention, and findings have been less consistent. It is important to note that factors 

such as the complexity of the task, the amount and type of training, and the retention intervals 

varied across studies, so mixed results could be attributable to such differences. For example, 

Marinelli and colleagues (2009) and Bedard and Sanes (2011) reported normal rates of learning 

within a session, but impaired retention after a 24-hour delay on visuomotor adaptation tasks in 

individuals with PD. In contrast, individuals with PD have shown unimpaired retention after 48 

hours on a rapid-arm reaching task (Behrman, Cauraugh, & Light, 2000). In addition, Smiley-

Oyen, Lowry and Emerson (2006) reported unimpaired retention on movement sequence tasks 
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after two days and three weeks in individuals with PD. It is worth noting that in this study 

participants completed extensive training over a three-week period, which may have contributed  

to unimpaired retention performance.  

Acquisition and long-term retention of a newly learned motor skill in PD was also 

investigated by Mochizuki-Kawai and colleagues (2004). In this study, participants with PD 

learned and practiced a motor skill during four sessions over 18 months. Overall, the study 

demonstrated that people with PD could acquire new motor skills, as they had unimpaired 

learning within a session, and they retained performance up to a month later. However, they did 

not retain these skills over longer delays, and they were unable to perform the skills after 3 and 

18 months. Based on these findings, the experimenters concluded that the striatum is required for 

motor skill consolidation. They proposed that because PD participants had a compromised 

striatal system, they were unable to form long-lasting motor skills that were retained over time. 

However, the authors also suggested that more frequent training might be beneficial, as 

individuals with PD retained their performance for up to one month after training. 

Can Practice Modulate the Relative Use of Different Memory Systems? 

As individuals with PD demonstrate impaired motor skill retention, it is important to 

consider factors that may improve long-lasting performance of skills. One factor may be the 

amount of practice that individuals with PD are given. It has been proposed that there are three 

distinct phases in motor learning: 1) a fast, early learning phase, mediated by declarative 

memory, when considerable improvement occurs initially, 2) a consolidation stage where motor 

skills become resistant to decay or interference, and 3) a slower, later learning phase, mediated 

by procedural memory, when practice leads to smaller improvements over time (Albouy et al., 

2013). In healthy younger adult participants it has been shown that as practice with motor 
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learning increases, striatal activation also increases, whereas hippocampal activation decreases 

(Albouy et al., 2008; Albouy et al., 2013). Thus, it could be argued that in motor learning more 

extensive practice may result in an increasing role for procedural memory, and a decreasing role 

for declarative memory, at least in younger, healthy adults.  

However, as individuals with PD have striatal dysfunction, they may be impaired in 

switching from a declaratively mediated fast learning phase to a procedurally mediated slow 

learning phase. In support of this possibility, Shohamy, Myers, Onlaor and Gluck (2004) 

examined performance of individuals with PD and controls during the weather prediction task. 

Results showed that individuals with PD were impaired on the task during later training trials, 

but not in early training trials. Their analysis suggested that during early learning both controls 

and individuals with PD used “sub-optimal” strategies mediated by declarative processes. 

However, with practice in later learning, healthy controls, but not individuals with PD, switched 

to an “optimal” strategy using stimulus-response associations mediated by the basal ganglia. 

Thus, practice may be an important factor to consider in motor skill learning because it has been 

shown to increasingly engage procedural memory processing in healthy adults. However, the 

adoption of an “optimal,” striatally mediated strategy may be impaired in individuals with PD, 

but this has not yet been investigated in motor skill learning and retention with novel complex 

tools. 

It has also been reported that although additional practice may not result in unimpaired 

retention, it may benefit people with PD in overall learning. For example, Leow, Loftus and 

Hammond (2012) showed that in a motor adaptation task, compared to controls, people with PD 

were impaired during within-session learning and retention after a 24-hour delay even after 

overlearning (i.e., repetitive practice). However, despite these impairments, individuals with PD 
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showed some improvement that was indicative of learning over time. Most critically, the results 

showed that people with PD did not have an absolute deficit in learning; though they had a 

slower learning rate and retained less over time, they still demonstrated attenuated learning that 

benefitted performance. 

Overview and Rationale of the Current Experiment 

 The purpose of the current study was to extend the findings from Roy (in progress) by 

investigating factors that may affect motor skill learning and retention in complex tool use in PD. 

Specifically, the current experiment examined the effects that additional practice and shortened 

retention intervals have on performance. These factors have been shown to affect procedural 

memory impairments in individuals with PD, although the previously discussed studies used 

different tasks, different retention intervals and different amounts of practice. One goal of the 

current study was to provide a better understanding of the motor skill impairment in individuals 

with PD and clarify whether long-term motor skill performance can be improved. Additionally, 

the findings could help to better understand the neural and psychological processes that underlie 

tool-related motor skill performance in PD (i.e., whether there may be an interaction between the 

declarative and procedural memory systems). Specifically, I examined (a) whether individuals 

with PD demonstrate motor skill learning over time with more extensive training and (b) whether 

individuals with PD retain their motor skill performance after delays. 

To assess these questions, a similar experimental procedure as described in Roy (in 

progress) was used, but participants were given more extensive training and were tested at 

shorter delays. Memory for various aspects of tool use (i.e., recall of tool attributes and function, 

grasp of tool, skilled tool use, and motor skill learning/retention) was tested in a sample of 

individuals with PD and a group of healthy age and education-matched controls, with the 



	
  
	
  

13 

primary focus on motor skill performance during training. Participants were tested over four 

sessions, with one day, approximately one week, and approximately three weeks between the 

sessions, respectively.  

Based on the assumption that individuals with PD are impaired on procedural processing 

that is striatally mediated the following hypotheses were proposed. First, I hypothesized that 

compared to controls, individuals with PD would demonstrate equivalent motor skill learning 

within each of the four training sessions, as Roy (in progress) reported intact learning within one 

session. Second, I predicted that compared to healthy controls, people with PD would be 

impaired in their retention of these motor skills, even after a 1-day delay.  If individuals with PD 

relied on declarative memory to learn motor skills, it was expected that their performance would 

decline between sessions, as their declarative memory may deteriorate over time. Third, I 

investigated whether individuals with PD would still demonstrate some overall learning across 

sessions as a result of more extensive training, despite forgetting between sessions. As proposed 

by Leow and colleagues (2012), people with PD may still be able to learn motor skills with more 

practice, but demonstrate attenuated benefits due to striatal dysfunction. However, it was unclear 

whether people with PD would show a similar pattern of improvement with novel tools, as the 

nature of task differed from the previously used motor adaptation task. 

In addition to examining motor skills, performance on recall of tool attributes, grasp and 

skilled tool use was also investigated. As performance of the recall and grasp measure are 

proposed to be mediated by declarative memory (Roy & Park, 2010; Roy, in progress), it was 

hypothesized that performance would also decline over the delays, and would not differ between 

the two groups. However, skilled tool use may be mediated by both declarative and procedural 
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memory systems, and because it was unclear how practice would affect performance, there were 

not any detailed predictions for skilled tool use performance. 

Method 

Participants 

 Eighteen participants with a diagnosis of idiopathic PD and 18 healthy aged and 

education-matched controls were recruited to complete the study. Participants with PD were 

recruited from the Sun Life Financial Movement Disorders Research Centre (MDRC), affiliated 

with Wilfred Laurier University in Waterloo, Ontario, Canada. Control participants were 

recruited through advertising within local communities. Participants with PD did not 

significantly differ from control participants on any characteristics, which are displayed in Table 

1. 

All participants were required to be right-handed, fluent English speakers, and between 

the ages of 50 and 85. Participants were excluded from the study if they had a reported history of 

any neurological illness (besides PD in the patient group), a history of serious head injury, 

current anxiety or depression as assessed by the Hospital Anxiety and Depression Scale (HADS; 

Zigmond & Snaith, 1983), general cognitive deterioration as demonstrated by a score below 26 

on the Mini-Mental State Examination (MMSE; Folstein, Folstein, & McHugh, 1975), or colour 

blindness. Additional exclusion criteria included: difficulty using right hand as a result another 

condition or injury; severe tremor in the right hand (or severe tremor in the left hand, which 

affected ability to use the right hand); severe bradykinesia; or severe rigidity in the right wrist or 

hand. To assess these criteria, prior to participation, participants answered questions about their 

daily functioning, and current scores from the motor section of the Unified Parkinson’s Disease 

Rating Scale (UPDRS III; Fahn & Elton, 1987) were examined for participants with PD. 
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 Participants remained on their regular medication throughout the study and were tested 

during their optimal medication levels. Seventeen PD participants were taking dopaminergic 

drugs, and one PD participant was not taking any medication. The study was approved by the 

relevant ethics review boards, and all participants gave written consent prior to participation. 

Materials 

Novel Tools. Nine novel complex tools were created for the study. The tools were 

constructed from a children’s building toy, K’NEX (see Figure 1). The tools were modeled after 

those developed by Roy & Park (2010), but some of the tools in the current study differed in 

their design and function. Each novel tool was unique in its appearance and function, and was 

constructed so that its function and manner of grasping could not be inferred from its appearance. 

The tools were designed to be grasped unimanually, and performed a specific task by acting on 

an object, known as the recipient. For example, one of the tools picked up and moved a ring (the 

recipient) to a designated area, and another tool was used to balance a cylindrical object, as the 

tool moved in a counterclockwise, circular motion. Each tool was painted a different color and 

pilot testing showed that the function, grasp and use of the tool could not be determined based on 

the physical appearance of the tool. The tools were randomly divided into three equal tool sets 

(Set A, B, and C). 

Training Videos. Each tool had an instructional video to explain its correct use. The 

videos were approximately 30 seconds in length and were played on a laptop. Each video 

featured a demonstration of the task and audio instructions, which provided enough information 

and detail to enable participants to understand how the task was performed.   

Recall Test. A cued Recall test was used to assess knowledge of tool attributes and 

function. The retrieval cue consisted of three different grey-scale images for each tool, which 
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were presented on one page. In response to each cue, participants gave verbal responses to 

questions inquiring about 1) the function of the tool 2) the colour of the tool 3) the recipient of 

the tool 4) the colour of the recipient and 5) the number of recipients used in that task. Each 

response was recorded by the experimenter.  

Grasp-to-command Test. One at a time, each tool was placed in front of the participant. 

Using their right hand, participants were instructed to grasp the tool in the correct way if they 

were to use it. To ensure no cues were given as to the correct grasp, the experimenter placed the 

tools down using an overhand grasp in one of three random orientations. Feedback was not 

provided during this task. 

Use-to-command Test. The Use-to-command test was a measure of skilled tool use. 

During the task, the experimenter placed the tool and its associated materials (e.g., the recipient) 

in front of the participant. Participants were then instructed to demonstrate the correct use of the 

tool and to inform the experimenter once they completed the task. It is important to note that 

tools were placed in the correct starting location, but the associated recipients were placed in a 

designated location, which was the same for all tools. Thus, to accurately complete the task, the 

recipient had to be placed in the correct starting location prior to carrying out the task. 

Participants had a 120-second time limit to complete one errorless attempt, and timing began 

once the tool made contact with the recipient. During this task, participants did not receive any 

feedback on their performance. 

Neuropsychological Tests. All participants with PD completed a battery of standardized 

neuropsychological tests, which was administered during a 60-minute session that was separate 

from the four experimental sessions. This battery consisted of the Brief Visuospatial Memory 

Test Revised (BVMT-R; Benedict, 1997), Hopkins Verbal Learning Test-Revised (HVLT-R; 
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Benedict, Schretlen, Groninger,  & Brandt, 1998), Stroop test - Victoria version (Troyer, Leach, 

& Stauss, 2006), Boston Naming Test (BNT; Kaplan, Goodglass, & Weintraub, 1983), Rey-

Osterrieth Complex Figure Test (ROCF; Osterrieth, 1944; Fastenau, Denburg, & Hufford, 1999), 

FAS Verbal Fluency Test (Spreen & Benton, 1977), Animal Naming Test (Tombaugh, Kozak & 

Rees, 1999), Trail Making Test (Reitan & Wolfson, 1985; Tombaugh, Rees, & McIntyre, 1998), 

selected tests from the Wechsler Adult Intelligence Scale (WAIS-IV; Wechsler, 2009), and 

Grooved-Pegboard test (Matthews & Klove, 1964). Test results for each participant were 

combined, and an overall cognitive profile for the PD group is displayed in Table 2. As shown in 

Table 2, participants with PD performed in the normal range on all neuropsychological test 

scores, with the exception of the Grooved Pegboard Test, which is a test requiring dexterity, 

processing speed and other psychological processes (Strauss, Sherman, & Spreen, 2006). Control 

participants did not complete formal cognitive testing. 

Design and procedure 

Participants were tested individually during four sessions (S1, S2, S3, S4). S1 and S2 

occurred one day apart, S2 and S3 occurred 6-7 days apart, and S3 and S4 occurred 20-22 days 

apart1. Each session was identical in design and format, and consisted of the Pre-test, Training 

and Post-test. Across participants and trials, the order within a tool set was fixed, but the 

administration of the sets (i.e., A, B, and C) was counterbalanced.  

Six tools (i.e., two sets) were used for each participant to minimize fatigue and keep 

sessions within one hour. Consequently, only three tools were included in the Pre-test and Post-

test. A detailed description of the study’s design is provided in Figure 2. Additionally, an 

example of the procedure for a given participant will be described in the sections below. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Participants with PD completed an additional, separate session for neuropsychological testing. 
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Pre-test. The Pre-test consisted of a Recall test followed by Grasp-to-command and Use-

to-command tests. For each participant, only one set of the tools was used (e.g., Set A), but the 

tool set varied across participants and each set was tested an equal number of times. The Pre-test 

in S1 was used to determine that the attributes, function, grasp and use of the tools could not be 

inferred prior to Training. The Pre-tests in S2, S3 and S4 were used to investigate retention of 

knowledge and performance after the delays. 

Training. Once the Pre-test was completed, participants were trained on two tool sets 

(e.g., Set B and Set A). During Training, one at a time, the tool and its associated objects were 

placed in front of the participant, in the same way they were positioned in the Training video. 

Participants then viewed the video, which demonstrated the proper grasp and use of the tool. 

Participants were not allowed to handle the tool while the video was playing. Immediately after 

viewing the video, participants were instructed to use the tool in the same way as in the video, 

and to complete the task as quickly as possible while minimizing errors. Participants had a 120-

second time limit to complete one errorless attempt. Timing began once the tool made contact 

with the recipient. During this time, the experimenter provided feedback if any errors were made 

(e.g., incorrect grasp, recipient placement or task order), and participants were asked to start 

over. Immediately after completing the first Training trial or once the 120 seconds elapsed, the 

task was reset so that the tools and associated objects were positioned as they were at the start of 

the video, and participants completed a second training trial. 

Post-test. Like the Pre-test, the Post-test consisted of the Recall, Grasp-to-command and 

Use-to-command tests. The tool set used in the Post-test was the set used in Training that was not 

administered in the Pre-test (e.g., Set B). In addition, the tool set assessed in the Post-test was the 

set that was administered first in Training session in order to reduce recency effects, and to 
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examine recall and performance after a short delay. For example, a participant completed the 

Pre-test on Set A and was then trained on Set B and Set A. The post-test was then conducted 

using Set B (refer to Figure 2 for full counterbalancing of administration). 

At the end of the Post-test during S4, participants completed a training trial on the tool set 

that had not been used in the previous sessions (e.g., Set C). This extra trial on the untrained tool 

set was included to determine whether previous training with the other tools generalized to 

improvement in performance with other novel tools. 

Scoring 

During Training, motor skill performance was measured as completion time. This 

measure reflects the amount of time required to complete one errorless, successful attempt. 

Timing began once the tool made contact with the recipient. If the task could not be successfully 

completed within the time limit, participants received the maximum score of 120 seconds. Also, 

the number of attempts was recorded, which accounts for the number of errors that were made 

prior to successfully performing one errorless trial. 

For the Recall test, performance was measured as the percentage of accurate responses to 

the items in each trial. Participants received one point for a correct answer and zero points for an 

incorrect answer. A scoring rubric of accurate responses was developed from previous pilot 

testing. 

Grasp-to-command performance was measured as the percentage of accurate grasps in 

each trial, where one point was awarded for every correct grasp. A second independent rater 

scored 25% of the data, and inter-rater reliability was 94.07% (calculated as percentage of 

agreement). 
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Use-to-command performance was assessed by accuracy and time. Accuracy was 

measured as the percentage of accurate tool demonstrations. One point was awarded if the task 

was performed successfully within the 120-second time limit. A second independent rater scored 

25% of the data, and inter-rater reliability was 94.98% (calculated as percentage of agreement). 

Similar to Training scoring, Use-to-command time was measured as completion time, which 

reflected how quickly participants successfully performed the task. 

Overview of Statistical Analyses 

The purpose of the data analyses was to compare the effects of practice and duration of 

delay on performance of PD participants relative to controls. Specifically, two different patterns 

of performance were examined: 1) Patterns of learning and 2) Patterns of forgetting. To 

investigate the effects of practice on learning, I analyzed whether participants improved their 

performance across days (i.e., the four sessions), as well as within each session. To examine 

forgetting, I analyzed whether the number of days delayed between sessions affected differences 

in performance. These two patterns of interest were examined using different models (Model 1 

and Model 2, respectively). Linear mixed models were used to assess these questions because the 

data are longitudinal, and some of the independent variables are continuous (Shek & Ma, 2011). 

The analyses for Model 1 and Model 2 were performed using the mixed model procedure in 

SPSS 17.0 statistical software. For each model, the fixed effects were examined using the 

maximum likelihood method. The design of Model 1 differed for the Training task than the other 

tests (i.e., Use-to-command, Recall and Grasp-to-command) because Training performance had a 

non-linear pattern, which will be subsequently described in more detail. The design of Model 2 

was similar for all tool measures. For all analyses, only statistically significant results are 

reported. 
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Results 

Training 

Model 1: Learning 

For Training, the outcome variable for Model 1 was completion time. The fixed effects 

associated with GROUP (PD participants vs. controls), DAY (the day each session was 

completed, where S1= day 1, S2 = day 2, S3 = day 8 or 9, S4 = day 29 or 30)2, and TRIAL 

within each session (the first vs. second Training trial) were examined. In the analyses, day and 

trial were treated as continuous variables, and group was treated as a categorical factor. To 

account for the curvilinear pattern in Training performance, the data were linearized by 

performing a negative inverse transformation on the DAY variable [–(1/X), where X= the day 

each session was completed], referred to as LINEARIZED DAY.  The fixed effects of the 

interactions of GROUP by LINEARIZED DAY, GROUP by TRIAL, and LINEARIZED DAY 

by TRIAL were also examined. Thus for Training, Model 1 had a total of seven predictors. 

The three predictor variables (i.e., GROUP, LINEARIZED DAY and TRIAL) were 

centered. To facilitate the interpretation of the findings, for the GROUP variable, the value of 0 

was assigned to controls (and PD participants = 1), to allow control participants to be the 

reference group. The TRIAL variable was centered, so the first trial in each session was assigned 

a value of 0, and the second trial was given a value of 1. The LINEARIZED DAY variable was 

also centered by adding 1 to the term (i.e., (-(1/DAY)) + 1), so the first session began when DAY 

= 0. Thus by centering the variables, the intercept represents the completion time of the PD 

group at the first trial in the first session (i.e., the beginning of the study). 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 There was slight variation in the days participants were tested in S3 and S4. The exact day each participant was 
tested was entered into the analysis. 
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There were four main questions to assess learning: 1) Did the effect of group contribute 

to performance (e.g., Was there a difference between PD participants and controls in their 

completion time during Training?); 2) Did the effect of days contribute to performance (e.g., Did 

performance on Training improve over sessions?); 3) Did the effect of trial contribute to 

performance (e.g., Did participant improve their completion time from the first to second 

Training trail within each session?); and 4) Did these variables interact in any way? 

Learning Analysis. To evaluate whether participants benefited from practice and 

improved their Training performance, completion time was analyzed as the outcome variable 

with the seven specified fixed effects for Model 134. Figure 3 shows Training performance 

measured as the mean completion in seconds for both training trials within the four sessions  

(i.e., after a 1-day, 7-day and 21-day delay). There was a main effect of group [F(1, 216) = 

19.88, p < .001] indicating that overall, PD participants were slower than controls. More 

critically, there was a significant effect of linearized day [F(1, 216) = 12.91, p < .001], which 

shows that participants became faster over the four sessions. However, there was no significant 

interaction between group and linearized day, suggesting that improvement did not differ across 

groups. In addition to overall learning, there was a significant effect of trial [F(1, 216) = 9.17, p 

= .003], showing that participants became faster from the first trial to the second trial within a 

session. Conversely, there was not a significant interaction between group and trial, indicating 

that within-session improvement did not differ between groups.5  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 In order to ensure that average time scores were not inflated by incomplete attempts (i.e., maximum time scores of 
120 seconds), incomplete attempts were removed before conducting analyses on completion time for both Training 
and Use-to-command 
4 Performance was also examined using total completion time, which assessed the total time required to 
complete the task, from the beginning of the first attempt to the end of the errorless attempt. Similar 
patterns of performance were obtained for both Training and Use-to-command data. 
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In summary (see Table 3), PD participants were slower than controls, but both groups 

benefited from practice by improving similarly within and across sessions.  

Model 2: Forgetting 

 Model 2 investigated the effects of delay between sessions on performance. The outcome 

variable for Model 2 was a difference score, which was calculated as the difference in 

completion time from the first training trial in one session and the second training trial in the 

preceding session. Specifically, for Training data, scores were computed for the differences in 

completion time from T3 to T2 (a one-day delay), T5 to T4 (a 7- day delay), and T7 to T6 (a 21-

day delay).  

The fixed effects associated with GROUP, DELAY (the number of days between each 

session), and the interaction of GROUP by DELAY were examined. There were three main 

questions to assess forgetting: 1) Did the effect of delay contribute to forgetting (e.g., Did 

participants retain their speed of performance during Training after the delays?); 2) Did the effect 

of group contribute to performance (e.g., Was there a difference in the amount of forgetting 

between PD participants and controls?); and 3) Did these variables interact in any way?   

Forgetting Analysis. Figure 4 displays the differences in Training performance 

measured as the mean differences in completion time across the three delays (i.e., 1 day, 7 days 

and 21 days) for PD participants and controls. Mixed linear model analyses showed that there 

was a significant effect of group [F(1, 108) = 4.74, p = .033) demonstrating a difference in the 

amount of forgetting between PD participants and controls (see Table 3). As shown in Figure 4, 

PD participants were much slower after each delay, as their completion time increased. However, 

controls appeared to maintain their performance, as their completion times were similar before 

and after the delays. 
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In summary from Model 1 and Model 2 the findings showed that both PD participants 

and controls demonstrated learning because their Training performance improved over time. 

However, despite this similarity in overall learning, the groups showed different patterns of 

forgetting; controls retained their performance between sessions whereas PD participants were 

slower after each delay.   

Error Analysis: Number of Attempts 

Learning. Figure 5 presents the mean number of attempts made during Training. To 

assess if unsuccessful attempts affected performance, the mean number of attempts was 

examined as the outcome variable with the six specified fixed effects. None of the effects were 

significant (see Table 4). Therefore, there was not a difference in the number of errors made by 

PD participants and controls, and the number of errors did not significantly decrease across trials 

or sessions.  

Forgetting. The mean differences in the number of attempts during Training are shown 

in Figure 6. The outcome variable was the difference in the number of attempts from the Post-

test in one session and the Pre-test in the previous session, and the three previously specified 

fixed effects were examined. There were no significant effects (see Table 4), demonstrating that 

participants did not make more errors after the delays, and this pattern was not different for PD 

participants and controls. 

Tool-specific Improvements in Motor Skill Learning 

To examine whether motor skills acquired during Training were tool-specific, completion 

time in T1 was compared to the untrained tool set (completed in S4). A two-way mixed ANOVA 

was used with training trial (T1 and UT) and group (PD and control) as factors, and completion 

time as the dependent variable. For the PD group, the average completion time (in seconds) was 
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33.13 (SD = 10.82) for Trial 1, and 32.02 (SD = 10.65) for the untrained set. For the control 

group, the average completion time (in seconds) was 25.21 (SD = 10.27) for Trial 1, and 25.76 

(SD = 11.72) for the untrained set. The analysis showed that there was a main effect of group 

F(1, 34) = 4.33, p = .045, η2  =  .11), but no significant interaction, or main effect of trial. Thus, 

although controls were faster than PD participants overall, there were no differences in 

completion time between T1 and untrained tools. Therefore, skills acquired during training did 

not generalize to other novel tools. 

Overview of Analyses: Use-to-command, Recall and Grasp-to-command Tests 

Model 1: Learning 

For the remaining tests (i.e., Use-to-command, Recall and Grasp-to-command), a similar 

Model 1 was used to assess learning. However, as performance patterns were already linear, a 

transformation was not performed on the DAY variable. The outcome variable for Model 1 was 

the dependent variable that corresponded to each task (i.e., completion time or accuracy). The 

fixed effects associated with GROUP, DAY and TRIAL (the Pre-test vs. Post-test) were 

assessed, as well as the fixed effects of the interaction between GROUP by DAY, GROUP by 

TRIAL, and DAY by TRIAL. Thus, Model 1 had a total of 6 predictors.  

As expected, none of the participants were able to accurately complete any of the tool 

tasks in S1 Pre-test because the tools were novel and they had not completed any training. Thus, 

the mean completion time was 120 seconds for both groups, and the mean accuracy scores for all 

remaining measures were 0. As a result, S1 was excluded, so the Model 1 analyses only included 

S2, S3 and S4 in the DAY variable. 

In addition, similar to the Training data, the predictor variables were centered to aid in 

the interpretation of our results. Thus, control participants served as the reference group, and 
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time began (i.e., DAY = 0) at the first trial in the second session (because the first session was 

excluded). The goal of the Model 1 analyses was to assess the same four questions outlined in 

the Training data. 

Model 2: Forgetting 

 For Use-to-command, Recall and Grasp-to command, Model 2 was identical to the model 

used for the Training data.  

Use-to-command Completion Time 

Learning. Figure 7 presents Use-to-command time measured as the mean completion 

time in seconds. To assess whether participants improved how quickly they performed the Use-

to-command test, completion time was examined as the outcome variable with the six specified 

fixed effects for Model 1. There was an effect of group [F(1, 216) = 3.91, p = .05], revealing that 

overall PD participants were slower than controls. However, there was not a significant 

interaction or main effect of day, indicating that the groups did not become faster over sessions 

(see Table 5). Thus, participants maintained a consistent completion time throughout the study. 

Forgetting. The outcome variable was the difference in completion time from the Post-

test in one session and the Pre-test in the preceding session (i.e., S2 Pre-test – S1 Post-test, S3 

Pre-test – S2 Post-test, S4 Pre-test – S3 Post-test). The fixed effects of group, delay and their 

interaction were assessed. The mean differences in completion time are presented in Figure 8. 

There were no significant effects for the three predictor variables in the model (see Table 

4). Most importantly, there was not a main effect of group, demonstrating that the amount of 

forgetting did not differ between PD participants and controls. Therefore, participants did not get 

significantly slower after the delays, and this retention pattern did not differ between PD 

participants and controls.  
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In summary, Use-to-command completion time remained consistent over time and within 

the four sessions (Model 1), and participants maintained their speed across delays (Model 2).  

Use-to-command Accuracy  

 S1 Learning. To examine initial learning during S1, performance was investigated using 

a two-way ANOVA with Use-to-command accuracy as the dependent variable, and group (PD 

and controls) and test trial (S1 Pre-test and S1 Post-test) as factors (Figure 9). There was only a 

main effect of test trial demonstrating that Use-to-command accuracy improved from S1 Pre-test 

to S1-Post test [F(1, 34) = 372.53, p < .001, η2  = .92], and this improvement did not differ 

between groups. Thus, participants could not initially use the tools accurately, but their 

performance significantly improved after they completed Training.  

Learning. Figure 9 shows Use-to-command performance measured as the mean accuracy 

scores. To assess whether participants improved their Use-to-command performance, accuracy 

was examined as the outcome variable with the six specified fixed effects. Overall, none of the 

effects were significant (see Table 6). Thus, PD participants and controls did not differ in their 

accuracy for the Use-to-command task. Additionally, performance did not become more accurate 

over time. However, this overall lack of improvement must be considered within the context of 

forgetting, which was assessed in Model 2. 

Forgetting. The mean differences in Use-to-command accuracy scores are presented in 

Figure 10. The outcome variable in the analysis was the difference in Use-to-command accuracy 

from the Post-test in one session and the Pre-test in the preceding session with the fixed effects 

of the three previously specified variables. There was only a significant effect of delay [F(1, 108) 

= 3.78, p = .05] (see Table 5 for a summary). Both PD participants and controls were less 

accurate over the delays, but the amount of forgetting did not differ between the groups.  
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In summary, PD participants and control did not demonstrate learning over time, as their 

accuracy score did not significantly improve (Model 1). However, this lack of improvement was 

affected by the delays between sessions, whereby participants did not retain their performance 

over the delays (Model 2). Most importantly, this performance pattern was similar for both 

groups.  

Recall Accuracy  

S1 Learning. Initial learning in Recall was investigated using a two-way ANOVA with 

accuracy as the dependent variable, and group (PD and controls) and test trial (S1 Pre-test and S1 

Post-test) as factors (Figure 11). There was only a main effect of test trial [F(1, 34) = 1245.70, p 

= < .001, η2  = .97], which shows that Recall accuracy improved from S1 Pre-test to S1-Post test, 

and this improvement did not differ between groups. Therefore, participants could not accurately 

answer questions about the tools attributes and function initially, but their performance 

significantly improved after Training. 

Learning.  Figure 11 presents the mean accuracy scores for the Recall test. To assess 

whether participants improved their Recall performance, accuracy was assessed as the outcome 

variable with the six specified fixed effects. None of the effects were significant (see Table 7), 

demonstrating that PD participants and controls did not differ in their Recall performance. 

Moreover, participants did not become more accurate over time. However, this lack of learning 

may reflect forgetting between sessions (Model 2). 

Forgetting. The mean differences in Recall accuracy scores are presented in Figure 12. 

In the analysis, the outcome variable was the difference in Recall accuracy from the Post-test in 

one session and the Pre-test in the preceding session, and the fixed effects were group, delay and 

their interaction. There was only a significant effect of days delayed [F(1, 108) = 4.47, p = .04] 
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(see Table 7 for a summary). Therefore, both PD participants and controls were less accurate 

over the delays. However, the amount of forgetting did not differ between the groups.  

Overall, in the Recall task, participants did not improve significantly over sessions 

(Model 1). However, this lack of learning was affected by delays, as both PD participants and 

controls similarly demonstrated forgetting between sessions (Model 2).  

Grasp-to-command Accuracy 

S1 Learning. Performance was investigated using a two-way ANOVA with Grasp 

accuracy as the dependent variable, and group (PD and controls) and test trial (S1 Pre-test and S1 

Post-test) as factors (Figure 13). There was a only main effect of test trial [F(1, 34) = 190.86, p = 

< .001, η2  = .85], showing that Grasp accuracy improved from S1 Pre-test to S1-Post test for all 

participants. Thus, participants could not accurately demonstrate the grasp for the tools initially, 

but their performance significantly improved after Training. 

Learning. Figure 13 presents the mean accuracy scores for the Grasp-to-command test. 

To assess whether participants improved their Grasp performance, accuracy was examined as the 

outcome variable with the six specified fixed effects. There was only a significant effect of the 

interaction between days and trial [F(1, 216) = 4.84, p = .03]. Thus, there was no significant 

improvement over sessions, and performance did not differ between groups (see Table 8). As 

shown by Figure 11, the significant interaction indicates that participants improved more from 

the Pre-test to the Post-test trial as days increased. This pattern of greater within-session 

improvement as time increased may be due to the pattern of forgetting across participants. 

Forgetting. The mean differences in Grasp accuracy scores are shown in Figure 14. The 

outcome variable was the difference in Grasp accuracy from the Post-test in one session and the 

Pre-test in the previous session, and the three previously specified fixed effects were examined. 
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There was only a significant effect of delay [F(1, 108) = 16.51, p < .001] (see Table 8), 

demonstrating forgetting between sessions. As shown in Figure 14, both groups appeared to 

forget more as the length of the delay increased. 

In summary, for the Grasp-to-command test, participants did not improve across sessions 

(Model 1). However, both group appeared to show greater within-session improvement as time 

increased. This increasing effect of trial over days was likely affected by the pattern of forgetting 

whereby participants forgot more as the delays increased (Model 2). Therefore, because 

participants retained less over time, they had the opportunity to make greater improvements 

within sessions.  

Discussion 

The current study examined the effects of delay and practice on tool-related motor skills. 

A sample of PD participants and healthy controls were trained on a set of novel complex tools 

over four sessions. Motor skill performance was examined during Training and memory for other 

aspects of tool use was examined during Recall, Grasp-to-command and Use-to-command tests. 

The purpose of the study was to determine whether more extensive training and shorter delays 

than used in Roy (in progress) would result in improvements with overall learning and retention, 

and further clarify the neural and psychological processes underlying motor skill performance in 

PD. 

In assessing motor skill performance during Training, it was hypothesized that compared 

to controls, PD participants would demonstrate preserved learning within each of the four 

sessions. However, it was predicted that individuals with PD would be impaired in retaining 

these skills, by demonstrating slower completion times after delays. I also examined the 

possibility that despite forgetting, individuals with PD might still show some overall 
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improvement with more extensive training because practice has been previously shown to 

improve long-term learning of motor skills, although previous studies did not involve the use of 

novels tools (e.g., Leow et al., 2012). The analysis for learning showed that overall participants 

improved from the first to the second training trial within sessions. Thus, PD participants were 

not impaired during within-session learning. Results also revealed that PD participants appeared 

to benefit from practice because they became significantly faster across sessions. However, 

despite overall learning, unlike controls, PD participants also demonstrated forgetting between 

sessions: they became significantly slower even after a 1-day delay. Taken together, PD 

participants were able to improve their motor skill performance with practice, though they also 

exhibited significant forgetting. 

Accuracy performance on Recall and Grasp-to-command tests was also examined. It was 

predicted that for both PD participants and controls accuracy would decline between sessions 

because performance on these tasks has been shown to be mediated by declarative memory, and 

it was hypothesized that this type knowledge would deteriorate over the delays (Roy, in progress; 

Roy & Park, 2010). Results showed that for these tasks, both groups demonstrated significant 

forgetting between sessions, and possibly for that reason, participants also did not show 

improvement across sessions. Findings regarding accuracy for these aspects of tool use are 

consistent with previous studies suggesting that declarative knowledge is required for recalling 

information about a tool’s attributes, and accurately demonstrating its correct grasp (Roy, in 

progress; Roy & Park, 2010). 

Skilled tool use was assessed by the Use-to-command test where participants were 

required to demonstrate a tool’s use without any cues or assistance after a delay. The task had 

two components: accuracy and completion time. The accuracy score indicated whether or not 
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participants performed the task accurately, whereas completion time indicated how quickly the 

successful task was performed. Results showed that for Use-to-command accuracy, both PD 

participants and control demonstrated forgetting over the delays, suggesting this aspect of the 

task was mediated, at least in part, by declarative memory. For completion time, the results were 

unexpected. Although individuals with PD were slower overall, their performance did not differ 

from that of controls. Both groups did not demonstrate learning within sessions because they did 

not get faster from the Pre-test to the Post-test, and participants did not show significant 

improvement across sessions. At the same time, participants did not demonstrate forgetting 

between sessions, as they did not get slower after the delays. Overall, participants’ completion 

times remained consistent throughout the entire study, which is not consistent with a purely 

declarative or purely procedural performance pattern.  

Tool-related Motor Skill Performance in Parkinson’s disease 

 For performance during Training, individuals with PD were unimpaired in motor skill 

learning within sessions, which is consistent with Roy (in progress), and other studies examining 

within session motor skill learning in PD on different tasks (Nieuwboer et al., 2009). It is 

possible that individuals with PD demonstrated preserved performance because the striatum is 

not heavily required in early stages of motor skill learning. Instead, the coritco-cerebellar circuit 

and hippocampus have been found to be important in early learning phases during motor skill 

acquisition (Albouy et al., 2013; Doyon et al., 2009). However, in the later stages of learning 

when there is greater automaticity in performing the skill, the striatum has been shown to have 

greater activity, while activity decreases in the cortico-cerebellar circuit (Doyon et al., 2002) and 

hippocampus (Albouy et al., 2013).  
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Although people with PD demonstrated intact within-session learning, results indicated 

that compared to controls, PD participants were impaired in retaining their motor skill 

performance across the delays. This memory performance pattern of improved acquisition within 

session and memory loss after a delay is consistent with properties of declarative memory 

(Eichenbaum, 1997; Mitchell 1990; Squire, 2009), and with the performance pattern on the 

Recall and Grasp-to-command tests, which are mediated declarative memory (Roy & Park, 

2010). Thus, one possibility is that individuals with PD used a compensatory strategy where they 

relied more heavily on declarative memory, mediated by the hippocampus, when performing 

tool-related motor skills, as a result of impaired procedural processing, mediated by the striatum. 

Thus, within a session, learning was preserved, but it was not retained over time because 

declarative memory declined over the delays. This possibly may have occurred because 

declarative and procedural memory have been previously shown to interact competitively during 

motor skill learning in healthy adults (Albouy et al., 2013). Additionally, previous studies have 

suggested that people with PD may have used a compensatory strategy during tasks that 

normally rely on the striatum. For instance, this type of compensatory relationship was 

demonstrated in a study examining performance of individuals with PD on the weather 

prediction task (Moody et al., 2004). Though the study did not find behavioural impairments in 

PD participants, neuroimaging analyses showed that there was decreased activation in the 

striatum, and increased activation in the medial temporal lobes in PD participants relative to 

controls. Thus, when the striatal system was compromised in PD, the hippocampal system 

appeared to be utilized to a greater extent. 

A compensatory relationship in PD has also been reported from a study that examined 

nondeclarative learning in a perceptual-motor sequencing task, Serial Reaction Time (SRT) 
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(Gobel et al., 2013). Overall participants with mild cognitive impairment (MCI) were unimpaired 

on the SRT task whereas participants with PD were impaired. However, two participants with 

PD displayed an interesting pattern of performance that suggested they might have employed a 

declarative strategy to complete the task. Thus, the authors speculated that individuals with PD 

might compensate impaired nondeclarative learning by relying more on declarative processing.  

An alternative possibility may be that performance was not retained due to inefficient 

procedural processing. Participants in the current study had mild-moderate PD, so they may have 

had some intact procedurally processing that was not functioning as efficiently as healthy 

controls. PD participants may have partially used procedural memory during learning, but due to 

some dysfunction, their performance deteriorated between sessions. The possibility of partially 

intact procedural processing is supported by the overall learning pattern where people with PD 

demonstrated significant improvement across sessions that did not differ from controls. The 

prospect that individuals with PD may not have an absolute deficit in procedural memory is 

important because it suggests that people with PD may still be able to show some long-lasting 

performance of motor skills; the findings from current study demonstrate individuals with PD 

can acquire and improve upon new motor skills, but require more extensive practice possibly 

because their striatal system functions less efficiently. 

Shohamy and colleagues (2008) proposed a similar explanation for impaired performance 

on probabilistic category learning in PD. In their study, the experimenters used computational 

modeling to examine the effects of extensive practice on the weather prediction task by 

individuals with PD. The model revealed that early in the task (i.e., after 600 trials), the PD 

group had a slower learning rate compared to the control group, so they displayed impaired 

performance. However, after extensive amounts of practice (i.e., 3000 trials), the PD group 
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showed similar performance compared to the control group. Thus, Shohamy and colleagues 

argued that people with PD might have a generalized slowing, but not an absolute loss, in 

nondeclarative learning.  

The extent to which individuals with PD may still be able to use procedural memory 

when performing motor skills warrants further investigation. To examine whether it is possible to 

bias the use of procedural memory, one could investigate whether inhibiting the use of 

declarative memory during Training would result in a greater reliance on procedural memory. 

Support for this possibility comes from a study by Foerde, Knowlton and Poldrack (2006) that 

examined whether the use of a distracting secondary task affected declarative and procedural 

memory involvement during probabilistic classification learning. Their results showed that 

activity in the striatum was strongly correlated with performance during the dual-task condition, 

whereas activation in the hippocampus was strongly correlated with performance when the 

secondary task was not performed concurrently during probabilistic classification learning. 

These findings suggest that it is possible to bias the use of a certain memory system through the 

use of a secondary task, which could be used to further investigate tool-related motor skill 

learning in PD, and the underlying neural and psychological processes. 

Performance During Skilled Tool Use 

Unlike performance patterns during Training and the other tool tests, findings for Use-to-

command (i.e., skilled tool use) were somewhat puzzling. In their Use-to-command accuracy 

scores, both PD participants and controls demonstrated forgetting between sessions. However, 

during completion time performance, PD participants did not demonstrate learning within 

sessions or forgetting between delays, which is inconsistent with findings from Roy (in 

progress). Regarding completion time during the Use-to-command test, Roy’s (in progress) 
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findings suggested that this aspect of the task may be mediated by procedural memory because 

PD participants became faster within a session, and unlike controls, people with PD did not 

retain their performance after a 3-week delay. However, the current study’s findings suggest that 

the sample of participants did not use procedural memory because they did not show any 

learning.  

It is unclear why this inconsistency exists, but one possible explanation is that 

participants in the two studies used different strategies to complete the Use-to-command test. 

Previous research suggests that skilled tool use requires an interaction of both memory systems 

(Roy & Park, 2010; Roy, in progress), and a number of factors may bias the extent to which 

participants use declarative and procedural memory. Additionally, within the current study’s 

patient sample, it may be that different PD participants relied on different memory systems 

during their tool use demonstration. For example, for PD participants’ Use-to-command 

completion time, there was considerable variability in their forgetting performance, as 

demonstrated by large standard errors (refer to Figure 6). The variability in performance raises 

the possibility that in the current study, participants with PD might have shown different patterns 

of learning. For instance, it may be the case that some individuals with PD showed a procedural 

learning pattern, where forgetting did not occur between delays, whereas other people with PD 

showed a declarative learning pattern, where they became significantly slower after delays. This 

variability in people with PD has been reported by Gobel and colleagues (2013), who suggested 

that two participants might have used a declarative strategy to complete a nondeclarative motor-

skill learning task, whereas the other 13 participants appeared to rely on procedural memory. The 

possibility that these differences may have occurred within the PD group in the current study will 

be examined shortly.  
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Conclusion 

The current study demonstrated that practice could benefit tool-related motor skill 

learning in PD. Although within-session gains may not be fully retained over delays, it is critical 

to note that motor skill performance of people with PD improved with more extensive training. 

The findings suggest that people with PD may still have partially intact striatal functioning and 

procedural memory, as they demonstrated some improvement that was robust to the effects of 

time. However, the lack of retention between delays also suggests that individuals with PD may 

have compensated for deficits in procedural memory by relying more heavily on declarative 

memory when learning motor skills. Although these are reasonable possibilities, the current 

study has limitations, as the findings cannot lead to decisive conclusions about the underlying 

neural and psychological mechanisms.    

Having the ability to learn and improve upon newly learned motor skills might have 

important implications for rehabilitation. Although individuals with PD may have impaired 

striatal functioning, this does not necessarily result in a complete inability to learn and retain new 

motor skills. Though people with PD may not fully retain performance over time, the current 

study showed that individuals with PD demonstrated improvement with more extensive training 

in learning new motor skills. 
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Table 1.  

 
Participant Characteristics 
 
 
 
 
Variable 

PD 
(n = 18) 

           
     M          SD       

CON 
(n = 18)  

               
   M         SD 

 
p-value 

Age 66.3 10.2 67.8 11.18 .67 

Education (years) 14.9 3.9 13.2 2.8 .16 

Gender (M/F) 13/5 12/6  

MMSE (/30) 28.7 1.1 28.8 1.1 .77 
HADS (/42) 
     HADS-anxiety (/21) 
     HADS-depression (/21) 

9.2 
4.8 
4.2 

4.2 
2.5 
2.2 

7.9 
4.1 
3.8 

3.11 
2.2 
2.1 

.33 

.36 

.58 
Years Since Onset 7.2 5.4    

UPDRS motor section   22.6            7.3    

Side Affected (L/R/B) 10/5/3    

LED (mg/day) 647.83    374.21    
PD, Parkinson’s disease; CON, Controls; MMSE, Mini-mental  
State Examination; HADS, Hospital Anxiety and Depression  
Scale; UPDRS, Unified Parkinson’s Disease Rating Scale; L/R/B, 
Left/Right/Both; LED, levodopa-equivalent dose. 
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Table 2  
 
Standardized z-scores for Participants with Parkinson’s diseasea 

 

WAIS-IV = Wechsler Adult Intelligence Scale – Fourth Edition; HVLT-R = 
Hopkins Verbal Learning Test – Revised; BVMT-R = Brief Visuospatial 
Memory Test – Revised; ROCF = Rey Osterrieth Complex Figure. 
aScores represent mean z-scores across participants for each cognitive test. Raw 
scores on each test were first scored according to appropriate normative data for 
each participant and were then converted to z-scores.  
bA one-sample t-test was conducted to obtain p-values. 
 

Neuropsychological Test M (SD)     p-valueb 

WAIS-IV (selected subtests) 
Digit Span  
Matrix Reasoning  
Information  

 
 .09 (.80) 
 .35 (.87) 
 .28 (.68) 

 
.63 
.11 
.10 

HVLT-R  
Total Recall (T1-T3) 
Delayed Recall  
Percent Retained 
Recognition Discrimination  

BVMT-R 
Total Recall (T1-T3) 
Delayed Recall  
 

 
 -.22 (.81) 
 -.36 (.80) 
 -.24 (.76) 
 -.16 (1.11) 
 
-.10 (1.11) 
-.01 (1.39) 
 
  

 
.28 
.07 
.19 
.55 
 
.71 
.97 

        
 

ROCF 
Copy 
Immediate 

          Delayed 

 
 -.02 (.89) 
 .48 (1.18) 
 .16 (1.22) 

 
.93 
.10 

       .60 
Trail Making Test 

Part A  
Part B  

 
-.70 (1.84) 
-.88 (2.17) 

 
.12 
.11 

          B-A -.29 (.88) .18 

Stroop Test (Victoria version) 
Dots  
Words  
Colour Words   

 
 -.07 (.89) 
 -.35 (.91) 
   .22 (.77) 

 
.74 
.12 
.23 

Phonemic fluency    -.10 (.56) .46 
Semantic fluency 

Animals  
Supermarket  

 
 .34 (1.01) 
 .45 (1.05) 

 
.16 
.09 

Boston Naming Test   -.14 (.92) .52 
Grooved Pegboard 

Dominant hand  
Non-dominant hand  

 
-2.42 (.70) 
-2.11 (1.05) 

 
< .001 
< .001 
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Table 3 
 
Linear Mixed Model Analyses of Learning and Forgetting for Training Completion Time 
 
 
 
 

Model Fixed Effects Estimate t p 
 
 
 
 

Model 1: 
Learning 

Group -9.51 -4.46 < .001 

Day 0.02 0.26 .79 

Linearized Day -8.11 -2.97 .003 

Trial -7.26 -3.40 .001 

Group * Linearized Day -.94 -0.35 .73 

Group * Trial 3.17 1.55 .12 

Linearized Day * Trial 2.54 .95 .34 

 
Model 2: 

Forgetting 

Group -2.73 -2.18 .03 

Delay 0.11 1.58 .12 

Group * Delay -.08 -0.80 .43 
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Table 4 
 
Linear Mixed Model Analyses of Learning and Forgetting for Training: Number of Attempts 
 
 
 

Model Fixed Effects Estimate t p 
 
 
 
 

Model 1: 
Learning 

Group -0.14 -0.97 .33 

Day -0.01 -1.2 .23 

Linearized Day -0.08 -0.40 .69 

Trial -.13 -0.84 .40 

Group * Linearized Day -0.08 -0.44 .66 

Group * Trial -.08 -0.59 .56 

Linearized Day * Trial 0.25 1.32 .19 

 
Model 2: 

Forgetting 

Group 0.21 0.86 .39 

Delay 0.003 0.28 .79 

Group * Delay -.04 -1.80 .07 
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Table 5 
 
Linear Mixed Model Analyses of Learning and Forgetting for Use-to-command Completion Time 

 
 
 

Model Fixed Effects Estimate t p 
 
 
 
 

Model 1: 
Learning 

Group -5.37 -1.98 .05 

Day 0.10 0.82 .42 

Trial 0.10 0.04 .97 

Group * Day -.012 -0.90 .37 

Group * Trial 1.73 0.55 .59 

Day * Trial -0.15 -1.14 .26 

 
Model 2: 

Forgetting 

Group 1.35 0.45 .65 

Delay 0.27 1.65 .10 

Group * Delay -0.30 -1.29 .20 
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Table 6 
 
Linear Mixed Model Analyses of Learning and Forgetting for Use-to-command Accuracy 
 
 
 
 

Model Fixed Effects Estimate t p 
 
 
 
 

Model 1: 
Learning 

Group 1.75 0.34 .74 

Day -0.19 -0.88 .38 

Trial 6.48 1.24 .22 

Group * Day 0.07 0.25 .80 

Group * Trial -1.32 -0.22 .83 

Day * Trial 0.47 1.80 .07 

 
Model 2: 

Forgetting 

Group 1.72 0.23 .82 

Delay -0.55 -1.32 .19 

Group * Delay 0.04 -.08 .94 
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Table 7 
 
Linear Mixed Model Analyses of Learning and Forgetting for Recall Accuracy 
 
 
 
 

Model Fixed Effects Estimate t p 
 
 
 
 

Model 1: 
Learning 

Group 1.57 0.40 .69 

Day 0.09 0.54 .59 

Trial 1.32 .34 .74 

Group * Day 0.005 0.02 .98 

Group * Trial -1.06 -0.23 .82 

Day * Trial 0.25 1.26 .21 

 
Model 2: 

Forgetting 

Group 5.00 1.06 .29 

Delay -0.25 -0.93 .36 

Group * Delay -0.30 -0.81 .42 
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Table 8 
 
Linear Mixed Model Analyses of Learning and Forgetting for Grasp-to-command Accuracy 
 
 
 
 

Model Fixed Effects Estimate t p 
 
 
 
 

Model 1: 
Learning 

Group -3.76 -0.70 .49 

Day -0.35 -1.49 .14 

Trial 6.95 1.30 .20 

Group * Day 0.12 0.44 .66 

Group * Trial 2.98 0.47 .64 

Day * Trial 0.59 2.20 .03 

 
Model 2: 

Forgetting 

Group -1.80 -0.27 .79 

Delay -1.09 -2.88 .005 

Group * Delay 0.01 0.01 .99 
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Figure 1. Examples of tools and their associated recipients that were developed for the study. 
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# Session 1 Session 2 Session 3 Session 4 
 Pre- 

test 
Training 
T1    T2 

Post
-test 

Pre-
test 

Training 
T3    T4 

Post
-test 

Pre-
test 

Training 
T5    T6 

Post-
test 

Pre-
test 

Training 
T7    T8 

Post
-test 

Un-
trained 

1 A B    A B B A    B A A B    A B B A    B A C 
 

2 B C    B C 
 

C B    C B B C    B C C B    C B A 

3 C A    C A A C    A C C 
 

A    C A A C    A C B 

            
                       

       1-day                           6-7 days     20-22 days 
 

Figure 2. Illustration of experimental design to demonstrate counterbalancing order of the three 

tool sets used in the study (i.e., Sets A, B, and C) across experimental sessions for each version 

(i.e., Version 1, 2 and 3).  
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Figure 3. Mean completion time (+/- SE) across Training trials. PD and control participants 

showed similar learning, as both groups displayed improvement within sessions and over time. 

 

 

Figure 4. Differences in mean completion time for Training trials (+/- SE) across days delayed. 

PD participants showed significant slowing between sessions. However, control participants 

retained their level of performance across the delays. 
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Figure 5. Mean number of attempts (+/- SE) across Training trials. PD and control participants 

did not make significantly less errors across trails or sessions. 

 

 
Figure 6. Differences in mean number of attempts during Training (+/- SE) across days delayed. 

PD and control participants did not make more errors after the delays. 
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Figure 7. Mean completion time during Use-to-command (+/- SE) across test trials. Although 

PD participants were slower overall than controls, both groups displayed consistent performance 

over time; participants did not become faster within a session, and they maintained their speeds 

after the delays. 

 

  
Figure 8. Differences in mean completion time for Use-to-command (+/- SE) across days 

delayed. Both PD and control participants retained their performance over the delays, and there 

was not a significant difference in forgetting between the groups.  
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Figure 9. Percentage of correct demonstrations for Use-to-command (+/- SE) across test trials. 

PD and control participants did not demonstrate significant learning over time. There was not 

any improvement within or between sessions. The lack of overall improvement may be due to 

forgetting that occurred over the delays. 

 

                
Figure 10. Differences in mean accuracy scores for Use-to-command (+/- SE) across days 

delayed. PD and control participants did not retain their performance over the delays. However, 

the amount of forgetting did not differ between the groups. 
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Figure 11.  Percentage of correct responses (+/- SE) for Recall test items across test trials. Both 

groups showed a similar pattern of performance. Additionally, PD and control participants did 

not improve their accuracy within sessions or over time. The lack of overall learning may be due 

to forgetting that occurred between sessions. 

                    
Figure 12. Differences in mean accuracy scores for Recall test items (+/- SE) across days 

delayed. Overall, participants displayed forgetting over the delays. Importantly, the amount of 

forgetting was similar for both groups.  
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Figure 13. Percentage of correct demonstrations of Grasp-to-command (+/- SE) across test trials. 

Overall, performance of PD and controls participants did not differ, and both groups did not 

show significant improvement over time. However, participants improved more from the Pre-test 

to the Post-test trial as time increased. 

 

                       
Figure 14. Differences in mean accuracy scores for Grasp-to-command (+/- SE) across days 

delayed. Overall, participants demonstrated forgetting over the delays, and the amount of 

forgetting was not different for PD and control participants. 
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