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Abstract 

West Nile virus (WNV) is a vector-borne disease that first appeared in New York in 1999, then in 

Southern Ontario, Canada in 2002. Since its arrival, WNV has rapidly spread across the North 

American continent to establish itself as a seasonal endemic infection. Among other environmental 

variables, temperature is the primary determinant of WNV transmission dynamics. In this 

dissertation, the relationship between temperature and WNV transmission dynamics is 

investigated and a single-season predictive model that explicitly accounts for temperature in 

various biological and epidemiological processes is proposed. First, we develop a mosquito 

abundance model where temperature is the driving force behind mosquito development, survival, 

and diapause. Then, the model is extended to include the WNV transmission cycle between 

mosquitoes and birds. Under simplifying assumptions, we derive an expression for the basic 

reproduction number and analyze its dependence on temperature. The transmission model was 

applied to the Peel Region in Southern Ontario for validation. Numerical results demonstrate the 

capacity of the model to capture the within-season trends of mosquito- and WNV- surveillance 

data. The proposed model can potentially be used as a real-time predictive tool to inform public 

health policy.  
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1 Introduction 

Vector-borne diseases account for more than 17% of all infectious diseases and affect hundreds of 

millions of people worldwide (World Health Organization 2017). Mosquitoes are not only the 

deadliest of the disease vectors, but they are one of the deadliest animals in the world and are 

responsible for over a million deaths every year globally (Caraballo and King 2014, World Health 

Organization 2017). Mosquito-borne diseases are a constant threat to human populations due to 

their aerial mobility and the availability of breeding sites near human settlements. Of the six major 

mosquito-borne diseases (Chikungunya, Dengue, Malaria, West Nile virus (WNV), Yellow fever, 

and Zika virus), WNV and Zika virus pose a current threat to public health across the North 

American continent. In Canada, as of the date of this study, only WNV has confirmed cases of the 

virus being transmitted by mosquitoes while there have been no reported cases of Zika virus 

(Public Health Canada 2017). 

WNV is a mosquito-borne disease that was first discovered in Africa in 1937. Since the first 

appearance of West Nile virus (WNV) in New York in 1999 (Centers for Disease Control and 

Prevention 1999a, 1999b), the mosquito-borne disease has rapidly spread across the North 

American continent establishing itself as a seasonal endemic infection (Sejvar 2003, Reisen 2013). 

By 2004, WNV had been detected in all states in the continental US; in 2002, the first WNV human 

infection in Canada was reported in southern Ontario and has since been detected in all provinces 

except Prince Edward Island and Newfoundland (Infection Prevention and Control Canada 2017). 
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The majority of people (70–80%) who become infected with WNV are asymptomatic. 

Approximately 10% of infected people will develop flu-like symptoms such as headache, body 

aches, joint pains, vomiting, diarrhea, or rash. Most people with this form of the disease will 

recover completely; however, fatigue and weakness may last from several weeks to several months 

post-recovery. In rare instances (less than 1%), infected individuals will develop serious 

neurological illness such as encephalitis or meningitis. About 10% of those who develop 

neurological infection due to WNV will die from the disease (Centers for Disease Control and 

Prevention 2014). Currently, there is no vaccine or specific treatment for people infected with 

WNV. 

Unlike the other mosquito-borne diseases that are transmitted between mosquitoes and 

humans, WNV has the added complexity of involving birds, which act as amplifying reservoirs in 

the disease transmission cycle. The transmission cycle between mosquitoes and birds is heavily 

dependent on environmental conditions such as ambient temperature, precipitation, humidity, and 

wind. Among them, ambient temperature has been shown to be an important determinant of 

transmission dynamics (Kunkel et al. 2006, Hartley et al. 2012, Paz 2015). A considerable number 

of laboratory and entomological field studies have been conducted to assess the influence of 

temperature on mosquito biology (Eldridge et al. 1976, Spielman 2001, Shelton 1973, Madder et 

al. 1983, Rueda et al. 1990, Ruiz et al. 2010, Lounibos et al. 2002, Loetti et al. 2011, Ciota et al. 

2014, Jetten and Takken 1994, Bayoh and Lindsay 2003, Denlinger and Armbruster 2014, Reisen 

et al. 2006). These studies showed that temperature affects almost every aspect of their life cycle 

including oviposition, development, survival, biting rates, host-seeking activity, life-history traits, 
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overwintering behavior, and the extrinsic incubation period (EIP), all of which have some 

influence on transmission dynamics.  

Understanding the relationship between temperature and its broad spectrum of influence on 

disease transmission is imperative for public health prevention in the fight against disease 

outbreaks. The continued risk to the human population prompted the establishment of annual 

surveillance programs to monitor virus infection in mosquito populations. In regions where 

mosquito-borne diseases are prevalent, the primary means of decreasing the risk of infection in 

humans is the implementation of mosquito control programs (e.g., elimination of breeding sites, 

larvaciding, and adulticiding) and personal protection measures (e.g., wearing appropriate 

clothing, insect repellant, and avoiding sites with high mosquito activity). For mosquito control to 

be effective, it is important to understand what factors affect their population abundance.  

A substantial number of mathematical and statistical models have been developed to assess the 

influence of climate variables, such as temperature and precipitation, on the population dynamics 

and behavior of various mosquito species (Ahumada et al. 2004, Cailly et al. 2012, Cochran and 

Xu 2012, Ezanno et al. 2015, Gong et al. 2011, Gu and Novak 2006, Otero et al. 2006, Shaman et 

al. 2006, Tachiiri et al. 2006, Tran et al. 2013, Wang et al. 2011, Yoo et al. 2016). Most of these 

models were developed for a specific vector species in a specific geographical context (Ahumada 

et al. 2004, Tachiiri 2006, Otero et al. 2006, Yoo et al. 2016), while other studies sought to develop 

more generalized models that could be adapted to various vector species in different areas (Cailly 

et al. 2012, Gong et al. 2011). Tachiiri et al., (2006) created a raster-based mosquito abundance 

map for two species, Culex (Cx.) tarsalis and Cx. pipiens, which allowed them to identify areas of 

greatest potential risk of WNV in British Columbia, Canada. Cailly et al. (2012) developed a 

generic climate-driven mosquito abundance model that could be run over several years. Their 
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model identified several potential control points in the biological system of mosquitoes that could 

be used to reduce the risk of mosquito-borne disease outbreak. Otero et al. (2006) developed a 

temperature-driven stochastic population model for the species Aedes aegypti and identified 

temperature and environmental conditions that are needed for the survival of a local population of 

mosquitoes in a temperate climate. Spatio-temporal dynamics of mosquito host-seeking behavior 

were examined in the study by Cummins et al. (2012), where they developed an agent-

based/continuum model to explore the effect of behavioral decisions and spatial heterogeneity on 

the contact rate between mosquito vectors and bird hosts. The study by Gunaratne et al. (2016), 

used agent-based modelling to describe the population dynamics of Zika vector Aedes aegypti 

subjected to spatial and climatic constraints. Wang et al. (2011) developed a predictive statistical 

model for mosquito abundance which defined threshold criteria for temperature and precipitation 

conditions for the population growth of WNV vector species Cx. pipiens and Cx. restuans. The 

model developed by Yoo et al. (2016), used harmonic analysis and kernel density estimation as a 

means of examining the associations with major landscape predictors—including land-use type, 

population density, and elevation—on the spatial patterns of mosquito abundance. 

In the studies that account for temperature, various approaches have been used to model the 

effect of temperature on the mosquito life cycle. For example, some dynamical models use 

temperature-dependent development functions (Abiodun et al. 2016, Cailly et al. 2012, Lana et al. 

2011) to determine the instantaneous rate of development at each time step. Gu and Novak (2006) 

developed a stochastic phenological model, which calculated probabilities of individuals residing 

in larval, pupal, and emerging adult stages as a function of temperature. A drawback of using 

instantaneous rate functions to model mosquito development is their limitation in capturing certain 
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population dynamics, such as sudden population increases caused by weather patterns that allow 

for the simultaneous eclosion of multiple generations. 

Some studies also include a temperature-dependent mortality function, which calculate daily 

mortality rates based on the temperature experienced by developing mosquitoes on a single day 

(Ewing et al. 2016, Shaman et al. 2006, Otero et al. 2006, Tachiiri et al. 2006); however, in a 

natural environment, immature mosquitoes can survive exposure to high temperatures for short 

periods of time without significant impact on their mortality (Bayoh and Lindsay 2004). Thus, 

mortality rates can potentially be overestimated in temperate climates that experience a wide range 

of diurnal temperature fluctuations. Furthermore, these studies used temperature-dependent 

mortality functions with a Gaussian shape. Although it is a common practice to model temperature-

dependent mortality rates in this way, it can lead to an overestimation of daily mortality rates at 

lower temperatures; it has been shown that colder temperatures act more as an inhibitor to 

development rather than causing higher mortality (Bayoh and Lindsay 2003). Models that use 

constant mortality rates are also subject to diminished model performance when applied to areas 

that experience large fluctuations in seasonal temperatures. 

An often neglected but critical factor in mosquito population dynamics is the diapause 

phenomenon. Environmental conditions trigger a physiological and behavioral response in 

developing mosquitoes, which enable them to survive harsh winter conditions in a form of 

metabolic dormancy until more favorable conditions induce their emergence in the following 

season (Eldridge 1966, Spielman 2001, Zhang and Denlinger 2011). Models that exclude this 

phenomenon may experience an overestimation of the active mosquito population in numerical 

simulations during the middle and later months of the mosquito season when diapause-destined 

mosquitoes begin seeking shelter for the upcoming winter months. Some of the models that do 
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account for diapause consider photoperiod alone to determine the fraction of diapausing 

mosquitoes (Gong et al. 2011, Cailly et al., 2012); however, there is evidence that temperature 

influences the proportion of mosquitoes destined for diapause at a given photoperiod (Eldridge 

1966, Madder et al. 1983, Spielman 2001). 

Developing mathematical models describing the disease transmission cycle allows for the 

analysis of the mechanisms that influence transmission dynamics as well as the effectiveness of 

control methods (Abdelrazec 2014b). Several modelling initiatives on WNV have given valuable 

insight into various aspects of WNV transmission dynamics (Wonham et al. 2004, Bowman et al. 

2005, Cruz-Pacheco et al. 2005, Blayneh et al. 2010, Abdelrazec 2014a). Some of these models 

do not include the effect of temperature on disease transmission. The well-known and heavily cited 

study by Wonham et al. (2004) proposed that the primary driver of WNV outbreaks is the ratio of 

initial susceptible mosquitoes to birds. However, analysis of transmission dynamics excluding the 

environmental context in which it is being assessed inhibits the practical application of their model 

as a tool that can be used to inform real-time public health policy in the assessment of infection 

risk. 

Many of the models that consider the effect of temperature make simplifying biological 

assumptions on the vital dynamics of mosquitoes that limit their capacity to capture certain 

phenomena observed in surveillance data. The study by Laperriere et al. (2011) developed an 

SEIR-type model simulating the seasonal cycles of bird, equine, and human WNV cases. While 

the model included a temperature-dependent oviposition rate function, the rate of adult eclosions 

was assumed to be a proportion of the daily oviposition rate at a given temperature. This 

assumption ignores an important aspect of mosquito population dynamics where certain 
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temperature patterns can cause sudden and dramatic increases in the population, which 

consequently affects transmission dynamics. 

In addition, temperature has been shown to have a strong influence on vector competence and 

the extrinsic incubation period (EIP) (Anderson et al. 2010, Dohm et al. 2002, Reisen et al. 2006, 

Kilpatrick et al. 2008). The EIP is the time it takes for the virus to replicate itself within a host 

before it becomes infectious. The EIP for mosquitoes plays a critical role in the appearance of 

WNV in surveillance data as well as the severity of outbreaks, should they occur. Depending on 

temperature, the EIP can range from a week to a month (Goddard et al. 2003, Reisen et al. 2006, 

Bolling et al. 2009). Shortening the EIP means that an exposed mosquito becomes infectious in a 

shorter amount of time and can transmit the virus for a longer proportion of its lifetime as an adult. 

Some studies that include the effect of EIP on transmission dynamics assume either a constant rate 

of transition or use a rate that is a function of temperature for the progression from exposed 

(asymptomatic) to infectious compartments (Thomas and Urena 2001). Although the EIP is 

accounted for in their models, the assumption of a constant or functional rate of transition that is 

applied per unit time reduces model performance with respect to capturing important temperature-

dependent dynamics such as the timing and magnitude of peaks of WNV surveillance data. 

Based on our current understanding of WNV transmission and its continued persistence across 

North America, it is unlikely the disease can be fully eradicated. Nevertheless, the continued threat 

to public health warrants further research to gain a better understanding of the factors that affect 

transmission dynamics to develop more effective risk reduction strategies. To this end, this 

dissertation focuses on improving our understanding of the relationship between temperature and 

the WNV transmission cycle through the formulation of realistic mathematical models that enable 

us to qualitatively assess the mechanisms that drive transmission dynamics. Insights gained from 
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this study reinforce our current understanding of the relationship between temperature and 

infection dynamics as well as highlight issues that warrant more attention when developing model 

frameworks intended to assess the risk level of disease outbreaks. 

1.1 Mosquito biology and related factors 

The mosquito life cycle consists of three successive aquatic juvenile phases (egg, larvae, and 

pupae) and one terrestrial adult stage (Figure 1.1). Depending on the surface water temperature, it 

usually takes 1–3 weeks from the time the egg is laid until emergence to the adult stage (Madder 

et al. 1983, Rueda et al. 1990, Shelton 1973, Spielman 2001). Adult female mosquitoes generally 

mate within the first few hours of emergence and then seek a blood meal to provide a protein 

source for their eggs. After feeding, the female seeks out a sheltered place to rest for a few days 

while her eggs develop. Once the eggs are fully developed, the female oviposits her eggs on a raft 

of 150–350 eggs on the surface of standing water (Madder et al. 1983). The adult female then 

proceeds to find another blood meal and repeat the gonotrophic cycle (United States 

Environmental Protection Agency 2017). During winter months, nulliparous inseminated female 

mosquitoes can enter a state of diapause for the duration of the winter until climate conditions are 

conducive for their re-emergence in the spring. The induction of diapause begins during the 

mosquito season and depends on the number of daylight hours and temperature experienced by 

mosquitoes in the fourth larval instar and pupal stages of development (Denlinger and Armbruster 

2014). 
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Figure 1.1: The mosquito life cycle 

1.2 WNV transmission cycle 

The transmission cycle of WNV involves mosquitoes (vector) and birds (amplifying hosts). A 

susceptible mosquito can contract the virus by biting an infected bird, defined as a bird that has 

developed high enough levels of the virus in its bloodstream. Only certain species of birds act as 

virus amplifying reservoirs. Some of these species, such as crows and jays, have been shown to 

have a high mortality rate due to infection. The virus will then incubate within the bloodstream of 

an infected mosquito until it reaches sufficient levels to become infectious (Reisen et al. 2006, 

Chen et al. 2013, Centers for Disease Control and Prevention 2014). Depending on temperature, 

the incubation period of the virus can vary from days to weeks. Infectious mosquitoes can then 

transmit the virus back to a susceptible bird or to other incidental hosts such as horses or humans 

(dead-end hosts). Incidental hosts do not develop high enough levels of WNV in their bloodstream 

to transmit the virus to other biting mosquitoes (Hayes 1988, (Paz and Semenza 2013, Centers for 

Disease Control and Prevention 2014). Mosquitoes can also transmit the virus vertically, which is 

the primary mechanism enabling the disease to persist in regions that experience harsh winter 

conditions (Goddard et al. 2003, Anderson and Main 2006). 
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1.3 Mosquito surveillance program and data 

1.3.1 Study area (Peel Region, Southern Ontario) 

The Regional Municipality of Peel (also known as Peel Region) is a regional municipality in 

Southern Ontario, Canada, residing on the north shore of Lake Ontario with a total population of 

1,296,814 and a total area of 1,246.89 km2 (Statistics Canada 2011). It consists of three 

municipalities to the west and northwest of Toronto: the cities of Brampton and Mississauga, and 

the town of Caledon, as well as portions of the Oak Ridges Moraine and the Niagara Escarpment, 

3,270 ha of wetland (2.6% of land area), and 41,329 ha of farmland (33% of land area) (Wang et 

al. 2011). The four seasons in the region are clearly distinguished. Spring and autumn are 

transitional seasons with generally mild or cool temperatures with alternating dry and wet periods. 

Summer runs from June until mid-September with an average monthly temperature of 20°C for 

the warmest months of July and August. Temperatures during summer can occasionally surpass 

32°C. 

1.3.2 Mosquito surveillance program 

Mosquito surveillance in Southern Ontario was started in 2001 by the Ministry of Health and Long-

Term Care (MOHLTC). The Peel Region Health Unit used the Centers for Disease Control 

miniature light trap (Service 1993) with both CO2 and light to attract host-seeking adult female 

mosquitoes. Adult mosquitoes were trapped weekly from mid-June to early October (usually 

weeks 24–39), and the continuous observation for each trap started in 2004 (Wang et al. 2011). 

Traps are set up on one day each week and allowed to collect mosquitoes overnight until the traps 
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are collected the next day.  Trapped mosquitoes were identified to species and counted, except for 

Cx. pipiens and Cx. restuans, which were combined into one group and counted due to the 

difficulty in distinguishing the species. Except for year 2002, mosquito abundance in 2003–2016 

was measured during a period of active larval control in catch basins and surface water sites. 

During each mosquito season, there were four rounds of larval mosquito control in non-

surveillance-based catch basins. Larviciding in surface water sites was surveillance based. 

Larviciding was not done in 2002 (Wang et al. 2011).  

As was done in Wang et al. (2011), we used the average mosquito counts from the 30 trap 

locations to represent the mosquito population at the regional level. For each trap, the original 

count was smoothed over preceding and succeeding weeks: 𝑊𝑗 =
𝑤𝑗−1+𝑤𝑗+𝑤𝑗+1

3
, where 𝑤𝑗 is the 

original mosquito count in week 𝑗 and 𝑊𝑗 is its smoothed value for the week that reduces random 

effects such as moonlight or wind on capture probabilities (Service 1993). Year to year variability 

exhibited in mosquito trap counts over the same area is likely due to the seasonal fluctuations of 

temperature and precipitation in the region as well as other environmental factors. Furthermore, 

during some weeks within a given year, certain traps are observed to capture a disproportionate 

number of mosquitoes relative to other traps in the area. This presents a challenge to modelling 

population dynamics of mosquitoes for this region and will be considered in the analysis of model 

performance. 

1.3.3 Temperature data 

Mean daily temperature data for the Peel Region were obtained from Canada’s National Climate 

Archive (www.climate.weatheroffice.gc.ca). Among the three weather stations in Peel Region 

having temperature records available (Pearson International Airport, Georgetown, and 
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Orangeville), we used the data collected from Pearson International Airport to represent the 

temperature conditions for the Peel Region as they had no missing data for years 2004–2016 

(Wang et al. 2011). 

1.4 Parameters and functions (Tables 1 & 2) 

Table 1: Model parameters 

Par. Description 
Value 

(Range) 
Dimension Source 

𝑡 Time [𝑡0, 𝑡𝑒𝑛𝑑] day  

𝑘 The day of oviposition used to indicate discrete cohorts [𝑡0, 𝑡𝑒𝑛𝑑] day  

𝑖 The day of exposure to virus [𝑡0, 𝑡𝑒𝑛𝑑] day  

𝜇𝑜𝑝 
Aquatic mortality rate at optimal temperature of 

development 𝑇𝑜𝑝  0.015 day−1 

[1–4], 

[6–9] 

𝜔 Lifespan of adult mosquito 28 day [5] 

𝑚14 Slope of diapause function 𝛾𝑘 for 14 daylight hours 0.0375 -  

𝑚14.75 Slope of diapause function 𝛾𝑘 for 14.75 daylight hours 0.05625 -  

𝑗 Scale factor for 𝜇𝑙(𝑇(𝑡)) 1/25,000 -  

𝑞 Scale factor for 𝜇𝑙(𝑇(𝑡)) 3/1,000 -  

𝑇𝑒 Minimum temperature at which larva can develop 9 °C [12] 

𝑇𝑜𝑝 

Optimal temperature for aquatic development 25 °C 

[1], [4], 

[6], [7], 

[9] 

𝑇𝐷𝐷𝑒 
Total number of degree-days required to complete 

aquatic stage of development 149 °C 

[3], [6–

8] 

𝑇𝑎 
Lower temperature threshold below which temperature 

is not accumulated toward the completion of the EIP 14 °C [11] 

𝑇𝐷𝐷𝑎 
Total number of degree-days required to complete the 

EIP 139 °C [11] 

𝛽 
Per capita oviposition rate 

0.125 
(0–1) day−1 [5] 

𝑎 
Per capita biting rate of mosquitoes on birds 

 (0.03–
0.16) day−1 [5] 

𝜎 Per capita recovery rate of infected birds (0–0.2) day−1 [5] 

𝜇𝑏 Per capita mortality rate of birds due to WNV infection (0.02–0.3) day−1 [5] 

𝑐𝑣 Probability of vertical transmission in mosquitoes (0–1)  [5] 

𝑐𝑏 Probability of transmission from mosquito to bird (0.80–1.00) - [5] 

𝑐𝑚 Probability of transmission from bird to mosquito (0.02–0.24) - [5] 

Sources: [1] Madder et al. 1983 [2] Tachiiri et al. 2006 [3] Jetten and Takken 1994 [4] Rueda et al. 1990 

[5] Wonham et al. 2004 [6] Bayoh and Lindsay 2004 [7] Loetti et al. 2011 [8] Gong et al. 2011 [9] Ciota 

et al. 2014 [10] Komar et al. 2003 [11] Reisen et al. 2006 [12] Wang et al. 2011 
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Table 2: Model functions 

Var. Description (Range) Dimension Source 

𝐷𝐷𝑒(𝑡) 
Amount of degree-days accumulated towards 

development on day 𝑡 
Variable °C  

𝑑𝑓𝑘(𝑡) 
Proportion of 𝑇𝐷𝐷𝑒  accumulated on day 𝑡 by a 

cohort born on day 𝑘. 

Variable 

(0–1) 
- [7] 

𝑓𝑘(𝑡) 
Cumulative development time of a cohort born 

on day 𝑘 up to time 𝑡. 
Variable - [7] 

𝑡𝑘  
The day of eclosion for a cohort born on day 𝑘 

i.e.  𝑡𝑘 = 𝑡 when 𝑓𝑘(𝑡) ≥ 1 > 𝑓𝑘(𝑡 − 1) 
Variable day  

𝜏𝑘 
Total number of days to complete development 

for a cohort born on day 𝑘. 
Variable day  

𝑃𝑘  

Photoperiod of the day 4th larval instar begins for 

a cohort born on day 𝑘 (4th larval instar assumed 

to begin when 80% of aquatic development is 

complete). 

Variable 

(8.93–

15.44) 

hours 
[1], [10], 

[12], [13] 

𝑇𝑘  

Mean daily temperature while in 4th larval instar 

and pupal stages of development for a cohort 

born on day 𝑘 (4th larval instar assumed to begin 

when 80% of aquatic development is complete ). 

Variable °C 
[1], [10], 

[12], [13] 

𝛾𝑘(𝑇𝑘 , 𝑃𝑘) 
Proportion of non-diapausing adult female 

mosquitoes at time of eclosion 

Variable 

(0–1) 
- 

[1], [10], 

[12], [13] 

𝑇𝑙  
Two-day mean temperature of days 𝑡 and 𝑡 − 1 

for calculating temperature-dependent aquatic 

mortality rate on day 𝑡. 
Variable °C [11] 

µ𝑙(𝑇𝑙(𝑡)) 

Temperature-dependent mortality rate for adult 

mosquitoes (continuous time); per capita survival 

rate for difference equations given by 𝑒−µ𝑙(𝑇𝑙(𝑡)) 
(discrete time) 

Variable day−1 
[1–4], [5], 

[6], [8], [9] 

µ𝑚(𝑇𝑙(𝑡)) 

Temperature-dependent mortality rate for adult 

mosquitoes (continuous time); per capita survival 

rate for difference equations given by 𝑒−µ𝑚(𝑇𝑙(𝑡)) 
(discrete time) 

Variable day−1 [14] 

𝐷𝐷𝑎(𝑡) 
Amount of DDs accumulated towards completion 

of the EIP on day 𝑡. 
Variable °C  

𝑑𝛿𝑘,𝑖(𝑡) 
Proportion of 𝑇𝐷𝐷𝑎  accumulated on day 𝑡 by a 

mosquito in cohort 𝑘 that was exposed to virus on 

day  𝑖. 

Variable - [15] 

𝛿𝑘,𝑖(𝑡) 
Cumulative time of completion of the EIP of a 

mosquito in cohort 𝑘 that was exposed to virus 

on day  𝑖. 
Variable - [15] 

𝛿(𝑇(𝑡)) 
Instantaneous rate of transition from 

asymptomatic to infectious compartment. 
Variable day−1 [15] 

Sources: [1] Madder et al. 1983 [2] Tachiiri et al. 2006 [3] Jetten and Takken 1994 [4] Rueda et al. 1990 

[5] Bayoh and Lindsay 2004 [6] Loetti et al. 2011 [7] Craig et al. 1999 [8] Gong et al. 2011 [9] Ciota et 

al. 2014 [10] Eldrige 1966 [11] Canada’s National Climate Archive [12] Spielman 2001 [13] Edillo et 

al. 2009 [14] Cailly et al. 2012 [15] Reisen et al. 2006 
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1.5 Summary of dissertation 

The primary objective of this dissertation is to gain a better understanding of how mosquito biology 

and WNV transmission is influenced by temperature to develop reliable predictive models to 

forecast mosquito population abundance and WNV infection risk in the Peel Region, Southern 

Ontario. We aim to identify and assess temperature-dependent mechanisms involved in WNV 

transmission dynamics. To accomplish our objectives, we began by developing a temperature-

driven mosquito abundance model based on data obtained from laboratory studies on the effect of 

temperature on mosquito biology (Ch. 2). Under simplifying assumptions, the abundance model 

is transformed into an age-structured population model where we explore the existence and 

stability of equilibria. The model is then extended to describe the WNV transmission cycle of 

mosquitoes and birds (Ch. 3). Under simplifying assumptions, we formulate an expression for the 

basic reproduction number 𝑅0. The effect of temperature on 𝑅0 is then investigated. To test the 

model’s capacity to predict the risk of infection to humans, we compare numerical results of our 

simulated minimum infection rate (SMIR) with observed minimum infection rate (MIR) 

surveillance data for validation. Finally, we illustrate how the model can use the local temperature 

forecast as input to predict mosquito abundance and WNV infection risk within the forecasted 

timeframe.  
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2 Temperature-driven mosquito abundance model 

2.1 Introduction 

The aim of this chapter was to develop a temperature-driven abundance model simulating Cx. 

pipiens and Cx. restuans population dynamics over a single-season. We developed temperature-

dependent response functions for mosquito development, mortality, and diapause based on data 

available in published field and laboratory studies. The model was then applied to the Peel Region, 

Southern Ontario, using mosquito surveillance data from 2004–2016. Simulation results showed 

the model could capture the general trend of observed mosquito population dynamics for each 

mosquito season. The proposed model demonstrates it has potential to be used as a real-time 

mosquito abundance forecasting tool and would have direct application in mosquito control 

programs.  

2.2 Model formulation 

We developed a model composed of ODEs, evaluated at discrete time steps, to study the impact 

of temperature on the temporal dynamics of the mosquito population in the Peel Region, Southern 

Ontario. The model was designed to encompass both immature and adult stages of mosquitoes by 

separating the life cycle into two distinct stages: aquatic stage (eggs, larvae, and pupae) and adult 

stage. Only female mosquitoes will be modelled, as male mosquitoes do not take blood meals and 

are not carriers of WNV. Following the method of Shaman et al. (2006), we assume the mosquito 
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life cycle will proceed continuously. Eggs are deposited directly on breeding waters and 

immediately proceed through development. The total amount of eggs oviposited in a single day is 

determined by the total number of adult mosquitoes across all cohorts multiplied by the oviposition 

rate 𝛽. All eggs oviposited on the same day are grouped into the same cohort, which are identified 

and labelled by the day of oviposition, denoted 𝑘. Once a cohort of eggs is oviposited, there is no 

other recruitment into that cohort population. Aquatic mosquito populations are diminished by a 

temperature-dependent mortality rate and by eclosion. Adult mosquitoes are assumed to live a 

maximum of 𝜔 days after eclosion and are diminished with a temperature-dependent mortality rate 

µ𝑚(𝑇). Time is assumed to be integer-valued, with a time step of 1 day. We assume that mortality 

occurs at the beginning of each time step and reproduction occurs at the end of each time step. 

Hence, on the day adult mosquitoes reach their maximum lifespan, they die without reproducing.  

The notation 𝑁𝑠,𝑘(𝑡) is used to identify both aquatic and adult mosquito populations at time t 

and by cohort born on day 𝑘. The subscript s indicates the life cycle stage (l = aquatic stage and m 

= adult stage). The time ranges from the first to last day of the study period 𝑡 ∈ [𝑡0, 𝑡𝑒𝑛𝑑] based on 

an annual interval of 365 days. Similarly, the discrete cohort index k also ranges from the first to 

last day of the study period 𝑘 ∈ [𝑡0, 𝑡𝑒𝑛𝑑]. Each mosquito cohort is tracked throughout its lifetime 

through both aquatic and adult stages from oviposition to death; i.e., 𝑁𝑚,𝑘  represents the female 

mosquitoes that have eclosed from the corresponding aquatic cohort 𝑁𝑙,𝑘. A model diagram of the 

mosquito life cycle is depicted in Figure 2.1. 
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Figure 2.1: Model diagram describing the Cx. pipiens and Cx. restuans life cycle. The number of eggs oviposited into 

a cohort 𝑁𝑙,𝑘 on any day is the total number of adult mosquitoes multiplied by the daily oviposition rate. Once a cohort 

accumulates enough DDs to complete development, all members of that cohort will simultaneously eclose into adults. 

Adults lay eggs daily until they die 𝜔 days after eclosion. 

Temperature-dependent response functions describing the relationship between temperature 

and aquatic development (Sec. 2.2.1), mortality (Sec. 2.2.2), and diapause (Sec. 2.2.3) were 

developed a priori and locally tuned for Cx. pipiens and Cx. restuans mosquitoes in the study area. 

Model parameters were based on the most relevant data from existing literature. Definition, value, 

and dimension of model parameters and variables are given in Tables 1 and 2, respectively. Model 

equations describing mosquito survival and critical events (boundary conditions) are detailed in 

Section 2.2.4. 

2.2.1 Aquatic development 

There are several commonly used functions to fit development rate data obtained from laboratory 

studies; e.g., Logan, Holling, Briere, Lactin, Sharpe de Michelle, and Degree Days. Based on the 

results of laboratory studies on aquatic development at constant temperatures, we employed the 
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concept of degree-days (DD) to track the physiological age of developing mosquitoes as it provides 

a straightforward, accessible method of estimating development rates. This method of tracking 

temperature-dependent development has been applied in a variety of ways in existing models 

(Craig et al. 1999, Jetten and Takken 1994, Tachiiri et al. 2006). Although the linear model may 

tend to underestimate development rates at low temperatures and overestimate development rates 

at high temperatures, the mean daily temperatures in the Peel Region over the study period (June-

September) generally range from 17°C–22°C which is well within the temperature range (15°C–

30°C) in which the linear approximation is valid for the Cx. pipiens and Cx. restuans species 

(Canada’s National Climate Archive). 

Degree days are calculated by measuring the accumulated thermal units above a zero-

development threshold temperature. 

𝐷𝐷𝑒(𝑡) = {
0, 𝑇(𝑡) ≤ 𝑇𝑒

𝑇(𝑡) − 𝑇𝑒, 𝑇(𝑡) > 𝑇𝑒
 (2.2.1) 

where 𝑇(𝑡) is the mean temperature °C on day 𝑡. The parameter 𝑇𝑒 is the minimum temperature 

threshold below which development is halted. The total number of DDs required for a cohort of 

larva to be fully developed into adults is denoted by 𝑇𝐷𝐷𝑒. Empirical functions that describe the 

relationship of temperature and development time generally take the following form (Craig et al. 

1999): 

𝑑𝑓𝑘(𝑡)  =
max(0, 𝑇(𝑡) − 𝑇𝑒)

𝑇𝐷𝐷𝑒
=
𝐷𝐷𝑒(𝑡)

𝑇𝐷𝐷𝑒
 (2.2.2) 

where 𝑑𝑓𝑘(𝑡) is the proportion of 𝑇𝐷𝐷𝑒 accumulated on day 𝑡 by a cohort born on day 𝑘. The 

function 𝑓𝑘(𝑡) = ∑ 𝑑𝑓𝑘(𝑛)
𝑡
𝑛=𝑘  tracks the cumulative development of each cohort. Once a cohort 
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accumulates enough DDs, it will eclose into adults. The day of eclosion, denoted 𝑡𝑘, for a cohort 

born on day 𝑘 is given by 𝑡𝑘 = 𝑡 when 𝑓𝑘(𝑡) ≥ 1 > 𝑓𝑘(𝑡 − 1). 

 

Figure 2.2: Comparison of temperature-dependent development rates obtained from laboratory studies. The black 

dashed line represents the linear regression of the collective development rates. The red dashed line represents the 

adjusted regression line that was locally tuned for the Peel Region, Ontario. 

Figure 2.2 displays the results of multiple laboratory and field studies for Cx. pipiens and Cx. 

restuans aquatic development at constant temperatures (Madder et al. 1983, Rueda et al. 1990, 

Loetti et al. 2011, Gong et al. 2011, Ciota et al. 2014). A linear regression through the data points 

from all the studies was used to estimate parameters 𝑇𝑒 and 𝑇𝐷𝐷𝑒. The linear regression estimated 

a minimum threshold temperature of 𝑇𝑒 = 8.4°C and a total number of degree-days to emergence, 

𝑇𝐷𝐷𝑒 = 144°C. Previous studies specific to Southern Ontario (Wang et al. 2011) have used a 

minimum threshold temperature of 9°C. Adjusting the original estimate of the fitted regression 
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line to reflect a minimum threshold temperature of 𝑇𝑒 = 9°C yields a total number of degree-days 

to emergence of 𝑇𝐷𝐷𝑒 = 149°C. 

2.2.2 Mortality 

Within an optimum range, larval mortality is not significantly affected by temperature fluctuations. 

The effect of temperature on larval mortality is primarily observed at higher temperatures where 

high development rates are accompanied by high mortality rates (Madder et al. 1983, Jetten and 

Takken 1994, Rueda et al. 1990, Bayoh and Lindsay 2004, Loetti et al. 2011, Meillon et al. 1967). 

In addition, when developing at high temperatures, mosquitoes that do survive until adulthood 

experience adverse effects on their biological development that decrease the likelihood of survival 

and successful reproduction; e.g., wing length, follicle length, and adult mass. In contrast, colder 

temperatures closer to the lower development threshold act more as an inhibitor to larval 

development rather than causing high mortality (Bayoh and Lindsay 2003). Furthermore, larval 

mortality is not significantly affected when exposed to high temperatures for no more than a few 

hours during the day (Bayoh and Lindsay 2004). Thus, in our model, daily mortality rates are 

calculated based on a two-day average temperature to reduce the effect of daily temperature 

fluctuations on developing mosquito mortality. These studies also show that the optimal 

temperature for mosquito development ranges between 24–26°C, where a high rate of development 

corresponds with a low mortality rate (Madder et al. 1983, Loetti et al. 2011; Rueda et al. 1990, 

Shelton 1973). 

Some existing models that utilize a temperature-dependent mortality function do not account 

for both the development time and the proportion of individuals surviving the development period. 

They also assume mortality increases as temperature decreases and hence the shapes of the 
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functions they use resemble Gaussian or parabolic functions. Figure 2.3 shows several functions 

used in different studies to describe the functional relationship between temperature and daily 

mortality rates for developing mosquitoes. 

 

 

Figure 2.3: Comparison of temperature-dependent mortality rate functions used in existing studies: Shaman et al., 

(2006): µ = (−4.4 + 1.31𝑇 − 0.03𝑇2)−1, Tachiiri et al., (2006): µ = (0.24(𝑇 − 25)2 + 5) %, Gong et al., (2011): 

µ = 1 − 0.7𝑒−(
𝑇−15

5
)
2

. 

We develop a temperature-dependent mortality function based on data obtained from 

laboratory and field studies. Mortality rates obtained from these studies were not originally 

presented as daily mortality rates. They measured the fraction of individuals that survived the 

aquatic stage of development when reared at various constant temperatures. Converting these 

survival percentages to daily mortality rates for each temperature was done using the exponential 

model for population dynamics shown below: 
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𝑑𝐿

𝑑𝑡
= −µ𝐿,          𝑤𝑖𝑡ℎ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛:       𝐿(𝑡) = 𝐿0𝑒

−µ𝑡 
 

Solving for daily mortality rate µ yields: 

µ(𝑡) = −
1

𝑡
ln (

𝐿(𝑡)

𝐿0
) (2.2.3) 

where 𝐿0 is the initial number of larvae at the beginning of the experiment and 𝐿(𝑡) is the number 

of larvae that survived the aquatic development period up to time 𝑡. The resulting mortality rates 

from each study as well as the mortality function we formulated based on the results of these 

studies are depicted in Figure 2.4. 

 

Figure 2.4: Comparison of temperature-dependent mortality rates (day-1) based on data obtained from available 

literature. The function µ𝑙(𝑇𝑙(𝑡)), defined in equation (2.2.4), used to fit the data points is represented by the black 

dashed line. 

Instead of a function with a Gaussian shape, we formulated a piecewise parabolic function to 

fit the data for temperatures above and below the optimal temperature of development. 
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µ𝑙(𝑇𝑙(𝑡)) = {
𝑗(𝑇 − 𝑇𝑜𝑝)

2 + µ𝑜𝑝,                                        𝑖𝑓  𝑇(𝑡) < 𝑇𝑜𝑝,

𝑞(𝑇 − 𝑇𝑜𝑝)
2 + µ𝑜𝑝,                                       𝑖𝑓  𝑇(𝑡) ≥ 𝑇𝑜𝑝.

 (2.2.4) 

where 𝑗 and 𝑞 are scale factors, 𝑇𝑜𝑝 is the optimal temperature of aquatic mosquito development, 

and µ𝑜𝑝 is the corresponding mortality rate at the optimal temperature. Aquatic mortality rates are 

calculated based on a two-day average daily temperature, denoted 𝑇𝑙(𝑡), to reduce the impact of 

daily temperature fluctuations on the survival of developing mosquitoes. 

2.2.3 Diapause 

To survive unfavorable environmental conditions over winter, many mosquito species undergo a 

hibernal dormancy called diapause. Depending on species, most mosquitoes can diapause in only 

one life cycle stage: egg, larval, or adult. Photoperiod (number of day light hours), is the primary 

environmental signal responsible for the induction of diapause. Once the number of daylight hours 

decrease below a photosensitive threshold, a proportion of developing mosquitoes will undergo 

physiological changes that better prepare them to survive the winter as an adult (Zhang and 

Denlinger 2011, Spielman 2001, Eldridge 1966). While photoperiod is responsible for determining 

the induction of diapause, it has also been shown that temperature enhances the photoperiodic 

response generating a higher incidence of diapause the lower the temperature (Eldridge 1966, 

Madder et al. 1983, Denlinger and Armbruster 2014). In these studies, experiments were conducted 

at constant temperatures. At each temperature, developing mosquitoes were subjected to a range 

of photoperiods. For Cx. pipiens and Cx. restuans mosquitoes, the photosensitive stages where the 

initiation of diapause occurs have been shown to be the fourth larval instar and pupal stages of 

development. Adult females that are destined for diapause do so soon after eclosion prior to taking 
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a blood meal and after mating. Our model only considers the non-diapausing adult female 

mosquito population, as they are still actively seeking blood meals and are thus susceptible to 

WNV infection. 

Many existing mosquito abundance studies do not include the diapause phenomenon in their 

models (Shaman et al. 2006, Ruiz et al. 2010, Wonham et al. 2004). Most of the studies that do 

account for diapause primarily consider the proportion of diapausing mosquitoes as a function of 

photoperiod only (Gong et al. 2011, Cailly et al. 2012, Tachiiri et al. 2006). Figure 2.5 shows 

results from a study by Spielman (2001) where the percentage of mosquitoes destined for diapause 

increases as photoperiod length decreases when reared at a constant temperature of 18°C. To 

improve on existing methods of modelling the diapause phenomenon, we develop a response 

function that includes the effect of temperature based on the results of several field and laboratory 

studies. 

 

Figure 2.5: Effect of photoperiod on the proportion of diapause-destined blood-fed female mosquitoes reared at a 

constant 18°C (Spielman, 2001). 
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Based on data obtained from published laboratory and field studies on mosquito diapause, we 

define a linear function to describe the relationship between temperature and the proportion of 

non-diapausing females at different photoperiods. The photoperiodic threshold of 14.75 daylight 

hours for the induction of diapause was derived from these studies and corresponds with the end 

of July in the study area. The maximum photoperiod in the study area in any given year is 

approximately 15.5 daylight hours which occurs in late June, while the photoperiod corresponding 

to the disappearance of mosquitoes is approximately 12 daylight hours at the end of September. 

For photoperiods of 12 hours and below, all mosquitoes will enter diapause upon eclosion. 

Parameters 𝑃𝑘 and 𝑇𝑘 represent the photoperiod and mean temperature experienced during the 

photosensitive fourth larval instar and pupal stages of development, respectively (4th larval instar 

assumed to begin when 80% of aquatic development has completed). The photoperiod for each 

cohort born on day 𝑘 is selected from a table containing the observed number of daylight hours for 

each day in the city of Toronto, ON, for each year from 2004–2016. For each cohort, the 

photoperiod 𝑃𝑘 used for diapause induction is assumed to be the number of daylight hours on the 

day the cohort completes 80% of its aquatic development. The mean temperature 𝑇𝑘 for the days 

spanning the last 20% of aquatic development is then used to determine the incidence of emerging 

non-diapausing adult mosquitoes. For consistency with the function for degree-days, we assumed 

a base temperature of 9°C. The function 𝛾𝑘(𝑇𝑘, 𝑃𝑘) is given by equation (2.2.5) and depicted in 

Figure 2.6. 

𝛾𝑘(𝑇𝑘, 𝑃𝑘) =

{
 
 

 
 
                  1 𝑖𝑓 14.75 < 𝑃𝑘

[𝑚14 + (𝑚14.75 −𝑚14)
𝑃𝑘 − 14

0.75
] (𝑇𝑘 − 𝑇𝑒) 𝑖𝑓 14 < 𝑃𝑘 ≤ 14.75

[𝑚14

𝑃𝑘
14
] (𝑇𝑘 − 𝑇𝑒) 𝑖𝑓 12 < 𝑃𝑘 ≤ 14,

 (2.2.5) 
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where 𝑚𝑝 is the slope of the function 𝛾𝑛(𝑇𝑛, 𝑝) for the photoperiod indicated by the subscript 𝑝. 

 

Figure 2.6: Temperature and photoperiod-dependent functions for two key photoperiods defined in (2.2.5). 

Year-to-year variation in photoperiod for the same day is assumed to be negligible. Thus, we 

use a periodic sine function to estimate the number of daylight hours each day. 

𝑃𝑘 = 3.257sin(0.017(𝑘 + 0.8𝜏𝑘 − 81)) + 12.186, 𝑘 = 𝑡0,  … , 𝑡𝑒𝑛𝑑 (2.2.6) 

The function was formulated based on average photoperiodic values obtained from a table 

containing the observed number of daylight hours for each day in the city of Toronto, Ontario for 

years 2004–2016 (United States Naval Observatory 2017). 

2.2.4 Model equations 

The model is composed of a system of multiple paired ODEs to track the survival of population 

cohorts through their lifetime in the aquatic and adult stages of development. The ODE system for 

governing the survival of each cohort is given by: 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20 25 30 35 40

P
ro

p
o

rt
io

n
 o

f 
n

o
n

-d
ia

p
au

si
n

g 
ad

u
lt

 
fe

m
al

e 
m

o
sq

u
it

o
es

 (
d

ay
-1

)

Temperature °C

14.75 hrs 14 hrs

γ=0.056Tk-0.506

γ=0.038Tk-0.337



27 

 

𝑑𝑁𝑙,𝑘(𝑠)

𝑑𝑠
= −µ𝑙(𝑇𝑙(𝑡))𝑁𝑙,𝑘(𝑠),             𝑓𝑘(𝑡) < 1 𝑎𝑛𝑑 𝑡 + 1 > 𝑠 > 𝑡, (2.2.7) 

𝑑𝑁𝑚,𝑘(𝑠)

𝑑𝑠
= −µ𝑚(𝑇(𝑡))𝑁𝑚,𝑘(𝑠), 𝑓𝑘(𝑡) > 1 𝑎𝑛𝑑 𝑡 + 1 > 𝑠 ≥ 𝑡, (2.2.8) 

where µ𝑙(𝑇𝑙(𝑡)) is the temperature-dependent aquatic mortality rate. Aquatic mortality rates are 

calculated based on a two-day average daily temperature, denoted 𝑇𝑙(𝑡), to reduce the impact of 

daily temperature fluctuations on the survival of developing mosquitoes. 

Boundary conditions defining critical events such as oviposition, eclosion, and maximum adult 

lifespan are defined by the following. 

Oviposition: 

The number of eggs oviposited on any day 𝑡 equals the total number of adults that are at least 

one day old since eclosion multiplied by the oviposition rate 𝛽. Adults that reach their maximum 

lifespan die on that day before reproducing. The number of eggs oviposited on day 𝑡 is 

𝑁𝑙,𝑘=𝑡(𝑡) =  𝛽 ∑ 𝑁𝑚,𝑘(𝑡)

𝑡−2

𝑘=𝑡0

 (2.2.9) 

Eclosion: 

Upon eclosion, the variable tracking a cohort of aquatic mosquitoes will equal zero and the 

active host-seeking proportion of emerging adults will be initiated. 

𝑁𝑙,𝑘(𝑡) = 0,                                                         𝑓𝑘(𝑡) ≥ 1 > 𝑓𝑘(𝑡 − 1) (2.2.10) 
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𝑁𝑚,𝑘(𝑡) = 𝑒
−µ𝑙𝛾𝑘(𝑇𝑘, 𝑃𝑘)𝑁𝑙,𝑘(𝑡 − 1),          𝑓𝑘(𝑡) ≥ 1 > 𝑓𝑘(𝑡 − 1) (2.2.11) 

where the function 𝛾𝑘(𝑇𝑘, 𝑃𝑘) represents the proportion of non-diapausing emerging adult female 

mosquitoes (2.2.5). 

Adult Lifespan: 

All remaining adults in a cohort die before reproducing 𝜔 days after eclosion: 

𝑁𝑚,𝑘(𝑡) = 0, 𝑖𝑓 𝑡 = 𝑡𝑘 + 𝜔. (2.2.12) 

2.3 Simplified model at constant temperature 

The model developed in this study was designed to adhere to the basic and well-understood 

characteristics of mosquito biology. It was formulated in a manner that inhibits unbounded growth 

of the mosquito population over a single-season due to the inclusion of the diapause phenomenon. 

Furthermore, model equations (2.2.7) and (2.2.8) will never have negative solutions for aquatic 

and adult populations. Remaining consistent with mosquito biology at extreme temperatures, our 

model restricts mosquito development outside the range of temperatures shown to be conducive to 

mosquito development.  

In the following sections, we investigate the existence and stability of equilibrium solutions of 

our model under simplifying assumptions. Although the model was developed with an objective 

to accurately describe the vital dynamics of the mosquito life cycle, the assumptions in this section 

may over simplify certain biological processes. Nevertheless, these assumptions must be made in 

order to linearize the model equations to study the existence and stability of equilibria. Analytical 

results obtained from our simplified model are intended to draw attention to the relationship 
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between temperature and mosquito population dynamics as well as highlight some important 

mechanisms that drive population abundance. To begin, we define the model system to be in a 

state of equilibrium when the population structure does not change with time. For positive 

equilibrium solutions to exist in our model, temperature must be held constant and the effect of 

photoperiod must be ignored. At constant temperatures, the aquatic mortality rate µ𝑙 and larval 

development time τ become constant. Consequently, the model will be composed of 𝜏 + 𝜔 paired 

equations tracking cohorts of developing mosquitoes that are 1 to 𝜏 days old and after they become 

adults that are 1 to 𝜔 days old relative to the day of eclosion. Hence, the model equations (2.2.7) 

and (2.2.8) can be simplified as 

𝑑𝑁𝑙,𝑘(𝑡)

𝑑𝑡
= −µ𝑙𝑁𝑙,𝑘(𝑡),  

𝑁𝑙,𝑘(𝑡) = 𝑁𝑙,𝑘(𝑘)𝑒
−µ𝑙(𝑡−𝑘),                        0 < (𝑡 − 𝑘) < 𝜏 

(2.3.13) 

𝑑𝑁𝑚,𝑘(𝑡)

𝑑𝑡
= −µ𝑚𝑁𝑚,𝑘(𝑡),  

𝑁𝑚,𝑘(𝑡) = 𝑁𝑚,𝑘(𝑘 + 𝜏)𝑒
−µ𝑚(𝑡−𝑘−𝜏), 𝜏 < (𝑡 − 𝑘) < 𝜔, 

(2.3.14) 

where 𝜏 is the total aquatic development time (days) for each cohort and is calculated by 

𝜏 = ⌈
𝑇𝐷𝐷𝑒
𝑇 − 𝑇𝑒

⌉. (2.3.15) 

Since the development time 𝜏 for each cohort is now constant, we observe that the term, 

𝑁𝑚,𝑘(𝑘 + 𝜏)𝑒
−µ𝑙(𝑡−𝑘−𝜏) in the solution for adult mosquitoes (2.3.14) can be expressed in terms of 

its initial population in the aquatic stage. The solution for the adult equation can be rewritten as: 

𝑁𝑚,𝑘(𝑡) = 𝑁𝑙,𝑘(𝑘)𝑒
−µ𝑙𝜏𝑒−µ𝑚(𝑡−𝑘−𝜏),         𝑖𝑓 𝜏 ≤ (𝑡 − 𝑘) < 𝜔.  (2.3.16) 
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The boundary conditions defined for oviposition, eclosion, and maximum adult lifespan can 

also be simplified and are given below.  

Oviposition: 

The total number of eggs oviposited at time 𝑡 is found by solving the system of equations 

for each cohort of mosquitoes in terms of their initial populations in the aquatic stage. 

𝑁𝑙,𝑘(𝑡) = 𝛽[𝑁𝑙,𝑡−𝜏−𝜔+1(𝑡 − 𝜏 − 𝜔 + 1)𝑒
−µ𝑙𝜏𝑒−µ𝑚(𝜔−1)

+ 𝑁𝑙,𝑡−𝜏−𝜔+2(𝑡 − 𝜏 − 𝜔 + 2)𝑒
−µ𝑙𝜏𝑒−µ𝑚(𝜔−2) +⋯

+𝑁𝑙,𝑡−𝜏−1(𝑡 − 𝜏 − 1)𝑒
−µ𝑙𝜏𝑒−µ𝑚] 

 

= 𝛽𝑒−µ𝑙𝜏 ∑ 𝑁𝑙,𝑘(𝑘)

𝑡−𝜏−1

𝑘=𝑡−𝜏−𝜔+1

𝑒−µ𝑚(𝑡−𝜏−𝑘). (2.3.17) 

Eclosion of cohort born on day 𝑘: 

𝑁𝑙,𝑘(𝑘 + 𝜏) = 0, 

(2.3.18) 𝑁𝑚,𝑘(𝑡) = 0, 𝑡 < (𝑘 + 𝜏), 

𝑁𝑚,𝑘(𝑘 + 𝜏) = 𝑁𝑙,𝑘(𝑘)𝑒
−µ𝑙𝜏. 

Maximum Lifespan (𝜔 days after eclosion): 

𝑁𝑚,𝑘(𝑘 + 𝜏 + 𝜔) = 0.  (2.3.19) 
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2.4 Age-structured population model (Leslie matrix) 

Under the conditions that temperature is held constant and the effect of diapause is ignored, 

the resulting model system defined by equations (2.3.13) through (2.3.19) can be transformed into 

an autonomous time-discrete linear age-structured population model of the form 

𝑥(𝑡 + 1) = 𝐴𝑥(𝑡),                𝑥(𝑡0) ≥ 0   𝑎𝑛𝑑    𝑡 = 𝑡0, 𝑡0 + 1,… (2.4.20) 

The vector is the age class population distribution at time 𝑡 and is defined 

𝑥(𝑡) =

[
 
 
 
 
 
 
 
 
 
 
 
𝑥0(𝑡)

𝑥1(𝑡)
.
.
.

𝑥𝜏−1(𝑡)

𝑥𝜏(𝑡)
.
.
.

𝑥𝜏+𝜔−1(𝑡)]
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 

𝑁𝑙,𝑡(𝑡)

𝑁𝑙,𝑡−1(𝑡)
.
.
.

𝑁𝑙,𝑡−(𝜏−1)(𝑡)

𝑁𝑚,𝑡−𝜏(𝑡)
.
.
.

𝑁𝑚,𝑡−(𝜏+𝜔−1)(𝑡)]
 
 
 
 
 
 
 
 
 
 
 

 
(2.4.21) 

where 𝑥𝑖(𝑡) is the number of females in the 𝑖th age class at time 𝑡. Newly oviposited mosquito eggs 

are in the 𝑥0(𝑡) age class. The model is constructed such that oviposition occurs after mortality 

takes place and then population census at time 𝑡 is taken. Thus, the 𝑥𝜏+𝜔 age class is not directly 

modelled since all mosquitoes in age class 𝑥𝜏+𝜔−1 at time 𝑡 − 1 will die at the beginning of the 

following day 𝑡 before the census.  

The coefficient matrix 𝐴 is referred to as a Leslie projection matrix (Leslie 1945) that classifies 

individuals into 𝜏 + 𝜔 age classes and is written as 

𝐴 = 𝐹 + 𝑃 ≥ 0. (2.4.22) 
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where the matrix 𝐹 is referred to as the “fertility” matrix containing per capita oviposition rates 

and is given by 

𝐹 =

[
 
 
 
 
 
𝑓1 𝑓2 . . . 𝑓𝜏+𝜔
0 0 . . . 0
. . . . . .
. . . . . .
. . . . . .
0 0 . . . 0 ]

 
 
 
 
 

≥ 0, 𝑓𝑖 ≥ 0, 𝑖 = 1,2, … , 𝜏 + 𝜔, ∑ 𝑓𝑖

𝜏+𝜔

𝑖=1

≠ 0. (2.4.23) 

The “transition” matrix 𝑃 contains the age class survival probabilities and is given by 

𝑃 =

[
 
 
 
 
 
 
0 0 . . . . 0
𝑝1 0 . . . . 0
0 𝑝2. . . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 . . . 𝑝𝜏+𝜔−1 0]

 
 
 
 
 
 

≥ 0, 0 < 𝑝𝑖 < 1, 𝑖 = 1,2, … , 𝜏 + 𝜔 − 1. (2.4.24) 

The Leslie matrix 𝐴 of this linear system is 

𝐴 = 𝐹 + 𝑃 =

[
 
 
 
 
 
 
𝑓1 𝑓2 𝑓3 . . . 𝑓𝜏+𝜔−1 𝑓𝜏+𝜔
𝑝1 0 0 . . . 0 0
0 𝑝2 0 . . . 0 0
. . . . . . . .
. . . . . . . .
. . . . . . . .
0 0 0 . . . 𝑝𝜏+𝜔−1 0 ]

 
 
 
 
 
 

≥ 0, (2.4.25) 

which is a non-negative, square matrix of order 𝜏 + 𝜔 with all elements strictly zero except those 

that are in the first row and in the sub-diagonal immediately below the principal diagonal. Based 

on model equations defined by (2.3.13) through (2.3.19), the nonzero entries in the (𝜏 + 𝜔) × (𝜏 +

𝜔) fertility and transition matrices 𝐹 and 𝑃 are 

𝑓𝑖 = 𝛽𝑒
−µ𝑚 , 𝑖 = 𝜏 + 1, 𝜏 + 2,… , 𝜏 + 𝜔 − 1 (2.4.26) 
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𝑝𝑖 = {
𝑒−µ𝑙 , 𝑖 = 1, 2, … , 𝜏
𝑒−µ𝑚 , 𝑖 = 𝜏 + 1,… , 𝜏 + 𝜔 − 1.

 (2.4.27) 

The entries 𝑓𝑖 in the first row of the fertility matrix 𝐹 = (𝑓𝑖) are the number of eggs oviposited 

by an adult mosquito in the 𝑖th age class that survive one unit time. The entry 𝑝𝑖 in the transition 

matrix 𝑃 = (𝑝𝑖) is the probability of individuals in the 𝑖th age class surviving one unit time. Thus, 

the total number of eggs produced by mosquitoes in age class 𝑖 in one time step is calculated by 

multiplying 𝑓𝑖+1 by the number of females in age class 𝑖 at time 𝑡 − 1. The sum of all these values 

gives the total number of offspring produced at any given time. 

𝑥0(𝑡) = 𝑓1𝑥0(𝑡 − 1) + 𝑓2𝑥1(𝑡 − 1) + ⋯+ 𝑓𝜏+𝜔𝑥𝜏+𝜔−1(𝑡 − 1). (2.4.28) 

The mosquitoes in the second age class at time 𝑡 are those mosquitoes in the first age class at time 

𝑡 − 1 who are still alive at time 𝑡. In general, the mosquitoes in the 𝑖th age class at time 𝑡 are those 

individuals in age class 𝑖 − 1 at time 𝑡 − 1 who are still alive at time 𝑡. More precisely we have 

𝑥𝑖(𝑡) = 𝑝𝑖𝑥𝑖−1(𝑡 − 1). (2.4.29) 

Equations (2.4.28) and (2.4.29) can be expressed more compactly; 

𝑥(𝑡) = 𝐴𝑥(𝑡 − 1), 𝑡 = 𝑡0, 𝑡0 + 1,… (2.4.30) 

By simple induction, it can be shown that given an initial age class distribution 𝑥(𝑡0) we can obtain 

𝑥(𝑡) = 𝐴(𝑡−𝑡0)𝑥(𝑡0), 𝑡 = 𝑡0, 𝑡0 + 1,… 
(2.4.31) 

Thus, we can determine the age distribution of adult female mosquitoes at any time 𝑡 if we given 

an initial condition 𝑥(𝑡0) and the Leslie matrix 𝐴. 



34 

 

2.5 Limiting behavior 

From equation (2.4.31) we can determine the age distribution of the mosquito population at any 

given time; however, the general dynamics of the growth process is not immediately given by this 

equation alone. To study the asymptotic dynamics of the model, we need to investigate the 

eigenvalues and corresponding eigenvectors of the Leslie matrix 𝐴. Of interest are the properties 

of the eigenvector, denoted 𝑣1, corresponding to the dominant eigenvalue, denoted 𝜆1. 

2.5.1 Eigensystem: growth rate and stable age distribution 

If a Leslie matrix is non-negative, irreducible, and primitive the Perron–Frobenius theorem, proved 

by Oskar Perron (1907) and Georg Frobenius (1912), guarantees that the Leslie matrix will have 

a real and simple root with multiplicity one that is greater in modulus than all other eigenvalues 

and its associated eigenvector will be strictly positive. A square matrix 𝐴 of order 𝑛 is said to be 

primitive if, for some integer 𝑝, 𝐴𝑝 has only positive (non-zero) entries. Due to the post-

reproductive age class in our model, the matrix 𝐴 is reducible and does not immediately satisfy the 

conditions to apply the Perron–Frobenius theorem, since its associated graph is not strongly 

connected; i.e., contains a path from every node to every other node. However, in our model, 

partitioning the matrix 𝐴 into submatrices such that, 

𝐴 = [
𝐵 0
𝐶 0

] (2.5.32) 

allows for the application of the Perron–Frobenius theorem to the submatrix 𝐵, which is a square 

matrix of order (𝜏 + 𝜔 − 1) consisting of reproductive age classes. The matrix 𝐵 is either 

irreducible or it can be further divided to eventually yield a series of irreducible diagonal blocks 



35 

 

(Gantmacher 1959). Submatrix 𝐶 is a 1 × (𝜏 + 𝜔 − 1) matrix consisting of all zero entries except 

for the last element, which is the probability of surviving to the following time step. It can be 

verified that the submatrix 𝐵 in our model is irreducible because its associated graph is strongly 

connected. A sufficient condition for primitivity of an irreducible age-classified matrix is the 

existence of any two adjacent age classes with positive fertility (Caswell 2001). The submatrix 𝐵 

clearly satisfies this condition by equations (2.4.26) and (2.4.27) and thus is primitive. When 

studying the long-term behavior of reducible Leslie matrices of the form in (2.5.32), it is sufficient 

to analyze the smaller submatrix 𝐵 that consists of the reproductive age classes as it alone 

determines the growth rate of the entire system and is unaffected by post-reproductive age classes 

(Caswell 2001).  

The eigenvalues of the matrix 𝐵 are the roots of its characteristic equation which is found by 

solving det(𝜆𝐼 − 𝐵) = 0, where 𝜆 is an eigenvalue of the matrix 𝐵. 

det(𝜆𝐼 − 𝐵) = 𝜆(𝜏+𝜔−1) − 𝑓1𝜆
(𝜏+𝜔−2) − 𝑓2𝑝1𝜆

(𝜏+𝜔−3) −⋯− 𝑓𝜏+𝜔−1𝑝1𝑝2…𝑝𝜏+𝜔−2 = 0 (2.5.33) 

Substituting model parameter values into the characteristic equation and using summation notation 

yields 

𝜆(𝜏+𝜔−1) − 𝛽𝑒−µ𝑙𝜏 ∑𝑒−µ𝑚𝑗𝜆(𝜔−𝑗−1)
𝜔−1

𝑗=1

= 0. (2.5.34) 

As we are interested in studying the asymptotic dynamics of the model, we need to be able to say 

something in general about the roots of the characteristic equation. For convenience of analysis 

we first divide (2.5.34) by 𝜆(𝜏+𝜔−1) and rearrange the terms to yield 
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𝛽𝑒−µ𝑙𝜏 ∑𝑒−µ𝑚𝑗𝜆−(𝜏+𝑗)
𝜔−1

𝑗=1

= 1. (2.5.35) 

Equation (2.5.35) is known as the discrete form of the Lotka-Euler equation. We then define a 

function 𝜓(𝜆) to be the terms on the left-hand side of equation (2.5.35), 

𝜓(𝜆) = 𝛽𝑒−µ𝑙𝜏 ∑𝑒−µ𝑚𝑗𝜆−(𝜏+𝑗)
𝜔−1

𝑗=1

 
(2.5.36) 

so that it becomes 

𝜓(𝜆) = 1, 𝜆 ≠ 0. (2.5.37) 

Since all the coefficients of 𝜓(𝜆) are non-negative, we see that 

lim
𝜆→0

𝜓(𝜆) = ∞, 

(2.5.38) 

lim
𝜆→∞

𝜓(𝜆) = 0. 

Furthermore, 𝜓(𝜆) is strictly decreasing 

𝑑𝜓(𝜆)

𝑑𝜆
= −𝛽𝑒−µ𝑙𝜏 ∑  (𝜏 + 𝑗)𝑒−µ𝑚𝑗𝜆−(𝜏+𝑗+1)

𝜔−1

𝑗=1

< 0. (2.5.39) 

Since 𝜓(𝜆) is continuous, the Intermediate Value Theorem tells us it will cross the horizontal line 

𝜓(𝜆) = 1. In addition, since 𝜓(𝜆) is strictly decreasing, it will cross the line 𝜓(𝜆) = 1 exactly 

once. Therefore, 𝜓(𝜆) = 1 has only one positive real solution 𝜆 = 𝜆1 with multiplicity 1. All other 

roots 𝜆𝑖 are either complex or negative.  
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Our next objective is to find the eigenvector 𝑣1 corresponding to the dominant eigenvalue 𝜆1 

such that 

𝐵𝑣1 = 𝜆1𝑣1 (2.5.40) 

A nonzero vector solution of (2.5.40) exists only if the matrix (𝜆𝐼 − 𝐵) is singular; i.e., if 

det(𝜆𝐼 − 𝐵) = 0. If such an eigenvector exists, then 

𝑥(𝑡) = 𝜆1
(𝑡−𝑡0)𝑣1, 𝑡 = 𝑡0, 𝑡0 + 1, 𝑡0 + 2,… (2.5.41) 

is a solution to the model equation (2.4.20) with 𝑥(𝑡0) = 𝑣1 since 𝑥(𝑡 + 1) = 𝜆(𝑡−𝑡0+1)𝑣 =

𝜆(𝑡−𝑡0)𝜆𝑣 = 𝜆(𝑡−𝑡0)𝐴𝑣 = 𝐴(𝜆(𝑡−𝑡0)𝑣) = 𝐴𝑥(𝑡).  Note that if 𝑣1 is an eigenvector and c is a scalar, 

then 𝑐𝑣1 is also an eigenvector. For the eigenvector corresponding to the dominant eigenvalue, we 

choose a scalar 𝑐 such that 𝑐 = 𝑣1,1
−1, where 𝑣1,1 is the first element in the eigenvector associated 

with the dominant eigenvalue 𝜆1. It should be noted that since the eigenvector 𝑣1 is strictly 

positive, by the Perron–Frobenius Theorem, the first element 𝑣1,1 > 0. Choosing a scalar 𝑐 in this 

way gives us a normalized eigenvector 𝑣1 with the first entry equal to one. 

𝑣1 = 𝑣1,1
−1

[
 
 
 
 
 
𝑣1,1
𝑣1,2
.
.
.

𝑣1,𝜏+𝜔−1]
 
 
 
 
 

=

[
 
 
 
 
 

1
𝑣1,2
.
.
.

𝑣1,𝜏+𝜔−1]
 
 
 
 
 

 (2.5.42) 

We then compute 𝐵𝑣1 = 𝜆1𝑣1 to get 
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𝐵𝑣1 =

[
 
 
 
 
 
𝑓1 + 𝑓2𝑣1,2 +⋯+ 𝑓𝜏+𝜔−1𝑣1,𝜏+𝜔−1

𝑝1
𝑝2𝑣1,2
.
.

𝑝𝜏+𝜔−2𝑣1,𝜏+𝜔−2 ]
 
 
 
 
 

= 𝜆1𝑣1 =

[
 
 
 
 
 

𝜆1
𝜆1𝑣1,2
𝜆1𝑣1,3
.
.

𝜆1𝑣1,𝜏+𝜔−1]
 
 
 
 
 

. (2.5.43) 

Solving successively for 𝑣1,2 through 𝑣1,𝜏+𝜔−1 we have 

𝑣1,2 = 𝜆1
−1𝑝1,    𝑣1,3 = 𝜆1

−2𝑝1𝑝2, … , 𝑣1,𝜏+𝜔−1 = 𝜆1
−(𝜏+𝜔−2)𝑝1𝑝2…𝑝𝜏+𝜔−2 (2.5.44) 

Substituting these values back into (2.5.42) gives 

𝐵𝑣1 =

[
 
 
 
 
 
 
 𝑓1 + 𝑓2𝜆1

−1𝑝1 +⋯+ 𝑓𝜏+𝜔𝜆1
−(𝜏+𝜔−2)𝑝1𝑝2…𝑝𝜏+𝜔−2

𝑝1
𝜆1
−1𝑝1𝑝2
.
.
.

𝜆1
−(𝜏+𝜔−3)𝑝1𝑝2…𝑝𝜏+𝜔−2 ]

 
 
 
 
 
 
 

= 𝜆1𝑣1 =

[
 
 
 
 
 
 

𝜆1
𝑝1

𝜆1
−1𝑝1𝑝2
.
.
.

𝜆1
−(𝜏+𝜔−3)𝑝1𝑝2…𝑝𝜏+𝜔−2]

 
 
 
 
 
 

 (2.5.45) 

For 𝑣1 to be an eigenvector, the first entries agree. That is 

𝑓1 + 𝑓2𝜆1
−1𝑝1 +⋯+ 𝑓𝜏+𝜔−1𝜆1

−(𝜏+𝜔−2)𝑝1𝑝2…𝑝𝜏+𝜔−2 = 𝜆1. (2.5.46) 

After substituting parameter values into equation (2.5.43) and simplifying, we obtain the familiar 

Lotka–Euler equation derived in equation (2.5.35), which we know has exactly one positive root, 

and this positive root is the dominant eigenvalue of the matrix 𝐵. The normalized age class 

distribution vector is 
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𝑣1 =

[
 
 
 
 
 

1
𝜆1
−1𝑝1

𝜆1
−2𝑝1𝑝2
.
.

𝜆1
−(𝜏+𝜔−2)𝑝1𝑝2…𝑝𝜏+𝜔−2]

 
 
 
 
 

 (2.5.47) 

Using what we know about the properties of the eigenvalues and associated eigenvectors of 

the matrix 𝐵 we can determine the long-term behavior of the population structure. We employ the 

use of a theorem by Sykes (1969): 

THEOREM 1. Let B be a primitive population projection matrix with maximal eigenvalue 𝜆1 

and associated positive eigenvector 𝑣1. Then lim
𝑡→∞

𝐵𝑡−𝑡0

𝜆1
𝑡−𝑡0

= 𝐻 exists, where 𝐻 is a matrix whose 

columns are positive multiples of 𝑣1. 

By the Perron–Frobenius theorem, we know the submatrix 𝐵 in our model has a strictly 

dominant eigenvalue and associated positive eigenvector that satisfies the conditions for Theorem 

1. Hence, we can write 

lim
𝑡→∞

𝑥(𝑡)

𝜆1
𝑡−𝑡0

= lim
𝑡→∞

(
𝐵𝑡−𝑡0

𝜆1
𝑡−𝑡0

) 𝑥(𝑡0) 
 

= 𝐻𝑥(𝑡0) = 𝑐1𝑣1, (2.5.48) 

where the coefficient 𝑐1 is a positive constant depending only on the initial age class distribution 

vector 𝑥(𝑡0). Theorem 1 tells us that if a Leslie matrix is primitive, the long-term dynamics of the 

population are determined by the population growth rate 𝜆1 and the stable age class population 
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distribution 𝑣1. The age structure of the population will converge to a fixed (time-invariant) age 

structure that is independent of the initial population distribution 𝑥(𝑡0). For large 𝑡, we can 

approximate 𝑥(𝑡) by 

𝑥(𝑡) ≃ 𝑐1𝜆1
(𝑡−𝑡0)𝑣1, (2.5.49) 

If the analysis is extended to cover the entire matrix 𝐴, then the Perron–Frobenius theorem 

cannot be applied in this case since the matrix 𝐴 is reducible and hence not primitive. However, 

reducibility of this system, due to the post-reproductive age class, still allows us to solve for the 

long-run outcome. The last entry 𝑣1,𝜏+𝜔 of the limiting distribution 𝑣1 = {𝑣1,1, … , 𝑣1,𝜏+𝜔}
T for the 

matrix 𝐴 can be solved using the equation 

𝜆1𝑣1,𝜏+𝜔 = 𝑝𝜏+𝜔−1𝑣1,𝜏+𝜔−1. (2.5.50) 

This last entry in the limiting distribution represents the proportion of the population associated 

with the post-reproductive age class. In general, if the age classes of a Leslie matrix are written as 

{1, … ,𝑚,… , 𝑛} where 𝑚 is the highest age class with positive fertility, then having obtained the 

entry 𝑣1,𝑚+𝑡, the distribution for successive post reproductive age classes can be solved using the 

equation 

𝜆1𝑣1,𝑚+𝑡+1 = 𝑝𝑚+𝑡𝑣1,𝑚+𝑡 (2.5.51) 

to ultimately obtain the entire limiting distribution 𝑣1 = {𝑣1,1, … , 𝑣1,𝜏+𝜔}
𝑇. 

The eigenvalues of 𝐴 can be found by solving det(𝜆𝐼 − 𝐴) = 0, where 𝜆 is an eigenvalue of 

the matrix 𝐴. 



41 

 

det(𝜆𝐼 − 𝐴) = 𝜆(𝜏+𝜔) − 𝑓1𝜆
(𝜏+𝜔−1) − 𝑓2𝑝1𝜆

(𝜏+𝜔−2) −⋯− 𝜆𝑓𝜏+𝜔−1𝑝1𝑝2…𝑝𝜏+𝜔−2 = 0. (2.5.52) 

Factoring out a 𝜆 from the characteristic equation we arrive at 

𝜆(𝜆(𝜏+𝜔−1) − 𝑓1𝜆
(𝜏+𝜔−2) − 𝑓2𝑝1𝜆

(𝜏+𝜔−3) −⋯− 𝑓𝜏+𝜔−1𝑝1𝑝2…𝑝𝜏+𝜔−2) = 0. (2.5.53) 

From (2.5.50) we see that 𝜆 = 0 is a root of the characteristic equation with an associated right 

eigenvector 𝑣 = {0,0, … ,1}𝑇. The remaining 𝜏 + 𝜔 − 1 eigenvalues of the matrix A are identical 

to that of submatrix 𝐵 derived from (2.5.33). Thus, the dominant eigenvalue 𝜆1 for the submatrix 

𝐵 is also the dominant eigenvalue for the larger matrix A. Furthermore, the associated eigenvector, 

denoted 𝑣1
^, 

𝑣1
^ =

[
 
 
 
 
 
𝑣1,1
.
.
.

𝑣1,𝜏+𝜔−1

𝑣1,𝜏+𝜔
^ ]
 
 
 
 
 

 (2.5.54) 

will be strictly positive. Note, the first 𝜏 + 𝜔 − 1  entries of 𝑣1
^ = 𝑣1 and the last term 𝑣1,𝜏+𝜔

^ are 

positive and are found by using equation (2.5.51). The last term 𝑣1,𝜏+𝜔
^ represents the individuals 

in the age class that will die before reproducing at the next time step. Having a strictly dominant 

eigenvalue with associated positive eigenvector for the matrix 𝐴, we can now analyze the long-

term behavior of the reducible system. It must be noted that for the following analysis to hold, the 

initial population distribution 𝑥(𝑡0) cannot solely consist of individuals in the post-reproductive 

age class associated with the entry 𝑥𝜏+𝜔−1(𝑡). From equation (2.4.31), we know that, beginning 

with an initial population distribution 𝑥(𝑡0), we can determine the population distribution 𝑥(𝑡) at 
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any time 𝑡 by taking matrix powers of 𝐴(𝑡−𝑡0) and applying the resulting matrix to the initial 

population distribution 𝑥(𝑡0). The matrix 𝐴(𝑡−𝑡0)will then take the form 

𝐴(𝑡−𝑡0) = [
𝐵(𝑡−𝑡0) 0
𝑓(𝐵, 𝐶, 0) 0

] (2.5.55) 

where 𝑓(𝐵, 𝐶, 0) > 0. If we write (2.4.31) in matrix notation we have 

[
 
 
 
 
𝑥0(𝑡)

𝑥1(𝑡)
.
.

𝑥𝜏+𝜔−1(𝑡)]
 
 
 
 

= [
𝐵(𝑡−𝑡0) 0
𝑓(𝐵, 𝐶, 0) 0

]

[
 
 
 
 
𝑥0(𝑡0)

𝑥1(𝑡0).
.
.

𝑥𝜏+𝜔−1(𝑡0)]
 
 
 
 

=

[
 
 
 
 

𝐵(𝑡−𝑡0)𝑥(𝑡0)

− − − − − −−−−
𝑓(𝐵, 𝐶, 0)𝑥(𝑡0) ]

 
 
 
 

 
 

=

[
 
 
 
 
 

𝐵(𝑡−𝑡0)𝑥(𝑡0)

− − − − − −−−−
𝑝𝜏+𝜔−1[𝐵

(𝑡−1−𝑡0)𝑥(𝑡0)]𝜏+𝜔−2]
 
 
 
 
 

, 𝑡 > 𝑡0. (2.5.56) 

The last term in the resulting distribution vector 𝑥(𝑡) in (2.5.56) is always a constant multiple 

𝑝𝜏+𝜔−1 of the previous age class at time 𝑡 − 1, which is consistent with (2.5.50). From (2.5.48), 

we know the population distribution for the first 𝜏 + 𝜔 − 1 reproductive age classes converge to 

𝑣1. Equation (2.5.56) implies that the population distribution for all 𝜏 + 𝜔 age classes will 

converge to 𝑣1
^ for 𝑡 large enough. This can be shown by using equation (2.5.41) with respect to 

the matrix 𝐴. 

𝑥(𝑡) = 𝐴(𝑡−𝑡0)𝑥(𝑡0) = 𝜆1
(𝑡−𝑡0)𝑣1

^, (2.5.57) 

where 𝑥(𝑡0) = 𝑣1
^. We deduce that the limit 
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lim
𝑡→∞

𝐴𝑡−𝑡0

𝜆1
𝑡−𝑡0

= 𝐻^ exists, (2.5.58) 

where 𝐻^ = [𝑐1𝑣1
^, 𝑐2𝑣1

^, … , 𝑐𝜏+𝜔−1𝑣1
^] is a matrix whose columns are positive multiples of 𝑣1

^. 

In the same fashion as (2.5.48), we can see for large 𝑡 the population will converge to a positive 

multiple of 𝑣1
^. 

lim
𝑡→∞

𝑥(𝑡)

𝜆1
𝑡−𝑡0

= lim
𝑡→∞

(
𝐴𝑡−𝑡0

𝜆1
𝑡−𝑡0

) 𝑥(𝑡0) 
 

= 𝐻^𝑥(𝑡0) = 𝑐𝑣1
^, 𝑥1,…,𝜏+𝜔−1(𝑡0) ≥ 0 (2.5.59) 

where the coefficient 𝑐 is a positive constant depending only on the initial age class distribution 

vector 𝑥(𝑡0). We must note that convergence to the stable age distribution for the reducible matrix 

A now depends on 𝑥(𝑡0) where previously in the irreducible case of the matrix 𝐵, convergence 

was independent of the initial population distribution. For example, if 𝑥(𝑡0) consisted solely of 

post reproductive individuals then 

𝐻𝑥(𝑡0) = 0 ≠ 𝑐𝑣1
^, (2.5.60) 

since individuals in the post reproductive age class do not reproduce, causing the entire population 

to go extinct after one unit time. 

2.5.2 Existence and stability of equilibria 

In general, the asymptotic dynamics of linear population models and stability of equilibria are 

determined by the dominant eigenvalue of the Leslie matrix; however, formulas for the dominant 
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eigenvalue are not readily available for higher dimensional systems. The alternate method used 

with Leslie matrices involves the calculation of the net reproductive value r and can be applied to 

matrices of arbitrary dimension. In biological terms, the net reproductive value can be interpreted 

as the expected number of offspring per individual over its lifetime. Given a Leslie matrix of the 

form defined in equations (2.4.23) to (2.4.25), the net reproductive value is defined as 

𝑟 = ∑ 𝑓𝑖

𝜏+𝜔

𝑖=1

 ∏𝑝𝑗

𝑖

𝑗=0

> 0 (2.5.61) 

where, for notational convenience, 𝑝0 = 1 (Cushing and Yicang 1994).  Substituting model 

parameter values for 𝑓𝑖 and 𝑝𝑗 the net reproductive value for our model is 

𝑟 = 𝛽𝑒−µ𝑙𝜏(𝑒−µ𝑚 + 𝑒−2µ𝑚 +⋯+ 𝑒−(𝜔−1)µ𝑚) (2.5.62) 

Having a formula for the net reproductive value in terms of parameters that comprise the 

matrices 𝐹 and 𝑇 allows us to study how the net reproductive value is affected by changes in any 

of these parameters, particularly temperature. 

The following lemma defines the relationship between the net reproductive value 𝑟 and the 

asymptotic dynamics of the system (2.4.20) under the conditions of (2.4.23) to (2.4.25) (Cushing 

and Yicang 1994). 

LEMMA 1. For any initial distribution consisting of reproductive individuals such that 

𝑥(𝑡0) > 0: 

(i) 𝑟 < 1   𝑖𝑚𝑝𝑙𝑖𝑒𝑠   lim
𝑡→∞

𝑥𝑖(𝑡) = 0         ∀ 𝑖 = [1, (𝜏 + 𝜔 − 1)] 

(ii) 𝑟 > 1   𝑖𝑚𝑝𝑙𝑖𝑒𝑠   lim
𝑡→∞

𝑥𝑖(𝑡) = +∞     ∀ 𝑖 = [1, (𝜏 + 𝜔 − 1)]. 
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The biological interpretation of Lemma 1 for 𝑟 < 1 means that individual mosquitoes are unable 

to fully replace themselves over the course of their lifetime and will eventually become extinct. 

The case when 𝑟 > 1, implies the mosquito population will continue to grow unbounded with time.  

The following theorem defines an explicit relationship between the net reproductive value and 

the dominant eigenvalue of general structured population models which also applies to the more 

specific age-structured population model we use in this study (Cushing and Yicang 1994). 

THEOREM 2. If an 𝑛 × 𝑛 Leslie matrix 𝐴 (2.4.25) is primitive, where 𝐹 and 𝑃 satisfy (2.4.23) 

and (2.4.24), respectively, then  

(i) 𝜆1 < 1  𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑟 < 1, 

(ii) 𝜆1 > 1  𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑟 > 1, 

(iii) 𝜆1 = 1  𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑟 = 1. 

Stability of the trivial equilibrium is determined by the dominant eigenvalue, denoted 𝜆1, of 

the projection matrix 𝐴; however, as previously mentioned, in age-structured population models 

the net reproductive value is a more practical method to determine the stability of the trivial 

equilibrium. Under the conditions of Theorem 2, the trivial solution 𝑥 = 0 of (2.4.20) is 

exponentially asymptotically stable if 𝑟 < 1 and unstable when 𝑟 > 1. When 𝑟 = 𝜆1 = 1, then 

non-trivial equilibria exist. The critical value of 𝑟 = 1  represents a bifurcation when a branch of 

non-trivial equilibria intersects with the trivial equilibrium solution 𝑥 = 0. At this bifurcation 

value, the asymptotic dynamics of the system changes from eventual extinction to unbounded 

population growth. 
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To find temperatures such that positive equilibria exist, we know that net reproductive value 

must equal 𝑟 = 1. From equation (2.5.35) we have 

1 = 𝛽𝑒−µ𝑙𝜏(𝑒−µ𝑚 + 𝑒−2µ𝑚 +⋯+ 𝑒−(𝜔−1)µ𝑚). (2.5.63) 

Solving for the temperature-dependent terms, µ𝑙 and 𝜏, then rearranging the equation yields 

𝑒−µ𝑙𝜏 =
1

𝛽(𝑒−µ𝑚 + 𝑒−2µ𝑚 +⋯+ 𝑒−(𝜔−1)µ𝑚)
 (2.5.64) 

µ𝑙𝜏 =  ln (𝛽(𝑒
−µ𝑚 + 𝑒−2µ𝑚 +⋯+ 𝑒−(𝜔−1)µ𝑚)). (2.5.65) 

From (2.5.63), we observe that if the oviposition rate 

𝛽 ≤
1

(𝑒−µ𝑚 + 𝑒−2µ𝑚 +⋯+ 𝑒−(𝜔−1)µ𝑚)
, (2.5.66) 

then no equilibrium solutions can exist, since the term µ𝑙𝜏 on the left-hand side of (2.5.65) is 

always positive. For oviposition rates above this value, equilibrium solutions exist for temperatures 

that satisfy (2.5.63). Substituting the functions 𝜏 = ⌈
𝑇𝐷𝐷𝑒

𝑇−𝑇𝑒
⌉ and µ𝑙 into (2.5.65) we have 

[𝑥(𝑇 − 𝑇𝑜𝑝)
2
+ µ𝑜𝑝] ⌈

𝑇𝐷𝐷𝑒
𝑇 − 𝑇𝑒

⌉ = ln (𝛽(𝑒−µ𝑚 + 𝑒−2µ𝑚 +⋯+ 𝑒−(𝜔−1)µ𝑚)), (2.5.67) 

where, 𝑥 takes the value of parameters 𝑗 or 𝑞 if the temperature is below or above 𝑇𝑒 = 25°𝐶, 

respectively. Since the development time 𝜏 is a temperature-dependent step function that contains 

discontinuities and the aquatic mortality rate µ𝑙 is defined by a temperature-dependent piecewise 

function, solving (2.5.65) explicitly for temperature becomes tedious; however, we can simplify 

the calculation by removing the ceiling function from the term ⌈
𝑇𝐷𝐷𝑒

𝑇−𝑇𝑒
⌉ and then solving the resulting 
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equation for temperature 𝑇, accounting for the error ε introduced by removing the ceiling function. 

For simplicity, we set the right-hand side of (2.5.67) to a constant 𝐾. 

𝐾 = ln (𝛽(𝑒−µ𝑚 + 𝑒−2µ𝑚 +⋯+ 𝑒−(𝜔−1)µ𝑚)) (2.5.68) 

[𝑥(𝑇 − 𝑇𝑜𝑝)
2
+ µ𝑜𝑝] (

𝑇𝐷𝐷𝑒
𝑇 − 𝑇𝑒

) = 𝐾. (2.5.69) 

After some algebra, we get a quadratic equation in terms of temperature 𝑇: 

𝑥 𝑇𝐷𝐷𝑒𝑇
2 − (𝐾 + 2𝑥𝑇𝑜𝑝 𝑇𝐷𝐷𝑒)𝑇 +  𝑇𝐷𝐷𝑒(𝑥𝑇𝑜𝑝

2 + µ𝑜𝑝) + 𝐾𝑇𝑒 = 0. (2.5.70) 

Solving for the roots of the quadratic equation in (2.5.70), we arrive at 

𝑇 = 𝑇𝑜𝑝 +
𝐾 ± √𝐾2 + 4𝑥( 𝑇𝐷𝐷𝑒(𝑇𝑜𝑝 − 𝑇𝑒)𝐾 − µ𝑜𝑝 𝑇𝐷𝐷𝑒

2)

2𝑥 𝑇𝐷𝐷𝑒
. 

(2.5.71) 

Thus, the two positive equilibrium temperature solutions are: 

𝑇1 = 𝑇𝑜𝑝 +
𝐾 −√𝐾2 + 4𝑗 𝑇𝐷𝐷𝑒(𝑇𝑜𝑝 − 𝑇𝑒)𝐾 − 4𝑗µ𝑜𝑝 𝑇𝐷𝐷𝑒

2

2𝑗 𝑇𝐷𝐷𝑒
+ 𝜀, 𝑇 < 25, 

(2.5.72) 

𝑇2 = 𝑇𝑜𝑝 +
𝐾 + √𝐾2 + 4𝑞 𝑇𝐷𝐷𝑒(𝑇𝑜𝑝 − 𝑇𝑒)𝐾 − 4𝑞µ𝑜𝑝 𝑇𝐷𝐷𝑒

2

2𝑞 𝑇𝐷𝐷𝑒
+ 𝜀, 𝑇 ≥ 25, 

(2.5.73) 

where ε denotes the error due to the ceiling function in (2.3.15). 
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Figure 2.7: Model simulations where the net reproductive value is 𝑟 = 1 at two temperatures 𝑇1 = 22°𝐶 (solid lines) 

and 𝑇2 = 26.23°𝐶 (dashed lines) for aquatic (blue) and adult (green) mosquitoes. 

Numerical methods, such as the Chebfun function in Matlab 9.2.0 (R2017a), can easily find the 

solutions of (2.5.65). The critical temperatures 𝑇1 and 𝑇2 are bifurcation values in the sense that 

when temperature passes through one of these critical temperature values there is a drastic change 

in the population’s asymptotic dynamics from unbounded growth to extinction, corresponding to 

𝑟 > 1 and 𝑟 < 1, respectively. When the temperature is equal to 𝑇1 or 𝑇2, a family of non-trivial 

positive equilibrium solutions bifurcates from the trivial equilibrium 𝑥 = 0 as depicted in Figure 

2.7. After the initial transient state, both aquatic and adult populations remain constant with time 

for each temperature. The age class distribution vectors for both simulations were verified (not 

shown) to be consistent with (2.5.47). 

2.6 Numerical simulations 

Gaining a better understanding of how mosquito population dynamics are driven by environmental 

factors plays a key role in the study of vector-borne diseases.  The results from numerical 

simulations in the following sections may help to elucidate this relationship under certain 

temperature scenarios and thereby allow us to better explain the variability observed in mosquito 
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populations. The model was designed so that temperature is the primary driving force behind 

mosquito population dynamics. Simulations are based on specified temperature scenarios and 

observed temperature data as model input. As constructed, the model is deterministic, and there is 

no stochasticity in model output. 

To study the underlying cause behind certain population dynamics observed in surveillance 

data (low/high mortality and population spikes), we test the model under controlled temperature 

scenarios. In the first scenario (Figure 2.8), we illustrate the effect of diapause on mosquito 

populations. Next, we run the model at three constant temperatures to see how prolonged exposure 

to temperatures near the lower and upper temperature thresholds affect the mosquito population 

compared with the model when run at the optimal temperature for development 𝑇𝑜𝑝 = 25°C 

(Figure 2.9). Then we illustrate how observed surveillance data often exhibits sharp increases in 

trap counts from one week to the next. We present one possible temperature pattern that replicates 

this type of behavior (Figure 2.10). Finally, we apply the model to the Peel Region in Southern 

Ontario using observed temperature data for years 2004–2016 (Figure 2.11). Each run consisted 

of simulated immature and adult mosquito populations over a single-season. Since quantitative 

data for the total population of mosquitoes is unobtainable, model performance was assessed based 

on the correlation between simulation results and mosquito surveillance data for the Peel Region, 

Southern Ontario. Simulations were run on Matlab R2017a (9.2.0.538062). 
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2.6.1 Temperature scenarios 

The effect of Diapause 

 

Figure 2.8: Time series from a 120-day run of the model with (dashed lines) and without (solid lines) the effect of 

diapause at a constant temperature of 𝑇 = 18.5°C. 

The results illustrated in Figure 2.8 show the effect of diapause on the mosquito population 

which begins in the middle of the season. When the effect of diapause is ignored, the model does 

not capture the decline in the adult mosquito population typically observed in nature between the 

middle and end of the season. This is due to the induction of diapause caused by a decrease in 

photoperiod experienced by mosquitoes in the last stages of aquatic development. Although a 

temperature of 18.5°C is conducive for an increasing mosquito population during the first part of 

the season, once the effect of diapause is introduced (dashed line) only a proportion of mosquitoes 

will continue their gonotropic cycle of host seeking and reproduction upon eclosion. Day 212, 

which corresponded to the first day photoperiod falls below 14.75 hours of daylight, is when we 

begin to observe the divergence of adult mosquito populations due to the effect of diapause. Since 

temperature is held constant, the incidence of non-diapausing mosquitoes is determined by the 

photoperiod. As time progresses, the number of daylight hours continues to decrease and thus the 
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proportion of non-diapausing mosquitoes upon eclosion also decreases in a linear fashion. Some 

existing models that ignore the effect of diapause tend to observe peaks towards the end of the 

mosquito season and attribute this behavior primarily to the exclusion of diapause, among other 

factors, from their models (Shaman et al. 2006, Gong and DeGaetano 2010). 

Temperature-dependent development and mortality 

 

Figure 2.9: Time series from a 120-day run of the model at constant temperatures of T=11°C, T=25°C, and T=30°C. 

Development and mortality rates of aquatic stage mosquitoes are dependent upon the 

temperature experienced during the aquatic stage. As previously mentioned, lower temperatures 

act more as an inhibitor to development and do not significantly affect mortality while 

temperatures near the upper temperature threshold cause a higher rate of mortality offsetting a 

higher rate of development. Figure 2.9 depicts simulation results of the model run at three constant 

temperatures: 11°C, 25°C, and 30°C. For simulation runs at low and high temperatures of 11°C 

and 30°C, the model performs as expected. At 𝑇 = 11°C, cohorts in the aquatic stage (black dashed 

lines) are unable to accumulate enough DDs to complete development before the end of the 

simulation. Consequently, the adult population steadily declines towards extinction after the initial 
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transient period (grey dashed lines). At 𝑇 = 30°C, a considerably shorter development time of 9 

days is offset by a higher mortality rate for developing mosquitoes. Thus, both aquatic (black 

dotted lines) and adult populations (grey dotted lines) gradually decline until the end of the season. 

At the optimal temperature of development (𝑇 = 25°C), the mosquito population achieves a 

maximum on day 230 (mid-August), after which the population begins to decline due to the effect 

of diapause.  

Peaks in the mosquito population 

 

Figure 2.10: Temperature pattern (dashed line, right axis) causing a peak in the adult mosquito population (dot-dashed 

line, left axis). Aquatic population depicted by the solid line on the left axis. 

While a variety of weather conditions may cause these sudden increases in the mosquito 

population, we present one plausible scenario that demonstrates how certain temperature patterns 

can produce a sudden increase in the mosquito population (Figure 2.10). In this scenario, a period 

of cooler daily temperatures followed by a sudden and significant rise in temperature for several 

days causes multiple cohorts of larvae to eclose in rapid succession over a short period of time. 

Cohorts oviposited during the cooler period prior to the sudden rise in temperature accumulate 
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small amounts of DDs each day. A sudden rise in temperature lasting for several days essentially 

synchronizes the time of eclosion of multiple cohorts that were oviposited during the period of 

cooler temperatures, causing a sharp increase in the mosquito population on day 176. 

2.6.2 Observed temperatures 

Due to a lack of data on the overwintering process and number of mosquitoes that emerge in the 

beginning of each mosquito season, initial conditions for the start date and number of adult female 

mosquitoes for each year had to be estimated. Shelton (1973) studied the temperature-dependent 

development of eight species of mosquitoes. He found the lower threshold temperature for eclosion 

from pupa to adult occurred between temperatures of 12–15°C. We assume that a seven-day 

average daily temperature above 14°C is sufficient to break hibernation and initiate the 

gonotrophic cycle of overwintering adult female mosquitoes. Based on these criteria the start times 

for simulations began as early as Day 112 (first week of May) to Day 150 (last week of May). All 

simulations were ended on Day 274 (approximately September 30th) corresponding with the 

disappearance of mosquitoes in the study area. Once the start date was determined, initial values 

for adult mosquitoes were then estimated by running simulations for a given year with an initial 

value of 𝑁𝑚,𝑡0(𝑡0) = 1 starting on the day determined in the previous step. The initial number of 

mosquitoes was then incremented by 1 and the simulation was repeated. For each simulation, the 

root mean squared error (RMSE) of simulation vs observed trap counts for the first three weeks 

was recorded. The initial value was then selected from the simulation run that yielded the lowest 

RMSE for the first 3 weeks of the study period.  

Model simulations were run separately for each year from 2004–2016 (Figure 2.11) using 

observed temperature data obtained from the Pearson International Airport located in the Peel 
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Region. Since quantitative data for the total population of mosquitoes is unobtainable, model 

performance was assessed based on the correlation between model outputs and mosquito 

surveillance data for the Peel Region, Southern Ontario. 

 

Figure 2.11: Comparison of simulated mosquito abundance (dashed line) and trap data (solid line) for years 2004–

2016. 

The model adequately simulated the observed trend in the mosquito trap counts and the timing 

of population peaks for most years except for 2008, 2009, and 2014 were the model underestimated 
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the observed trap counts. The model overestimated trap counts in 2011 and 2013. As previously 

mentioned, the differences between model output and observed data may be due to the skewness 

in the surveillance data caused by a small number of traps capturing a disproportionately large 

number of mosquitoes relative to other traps in the area during certain weeks. To determine the 

cause of the disparity in capture amounts among traps requires further investigation and is planned 

for future modelling initiatives.  

Model performance during these years may also be due to factors other than temperature—

such as precipitation, landscape, and wind, that may have a strong influence on mosquito 

population dynamics and capture rates. For example, in 2008 there was above-average rainfall 

during the mosquito season, while the daily temperatures remained within the seasonal averages. 

The abundance of rainfall during this year would have provided an ample number of breeding sites 

for mosquitoes, which is likely the cause of the model’s underestimation of trap counts for this 

year. The study by Wang et al. (2011) demonstrated a correlation of mosquito abundance and the 

previous 35 days of precipitation.  

2.7 Discussion 

We developed a temperature-driven model of mosquito population dynamics to track the stages 

and processes in the mosquito life cycle most influenced by temperature. Our model simulates 

mosquito surveillance data for a single-season and was applied to the Peel Region of Southern 

Ontario. Although the model was applied to a specific species in a certain geographical area, the 

structure of the model allows it to be adapted to other species of mosquitoes, since the biological 

processes across different mosquito species are similar. Tuning the model would only require that 
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parameter values and temperature-dependent response functions be adapted to fit the species being 

studied.  

The model divides the mosquito life cycle into two separate and distinct compartments where 

all aquatic stages of development are grouped together in one compartment and the adult stage in 

another. In this way, the amount of accumulated temperature required to complete each stage of 

aquatic development from egg to pupa is untraceable. However, treating each stage as a separate 

compartment may provide improved model performance since each stage may have varying 

responses to temperature. 

The use of a degree-day function to track the physiological development of aquatic mosquitoes 

is of primary importance, as it enables the model to capture important dynamics such as sudden 

increases in the mosquito population due to certain temperature patterns. Moreover, modelling 

development using degree-days allows for the addition of a mosquito control feature in the model 

to reduce the population of developing mosquitoes at specified times, which would allow for the 

study of mosquito control effectiveness on population dynamics. This could be a useful tool in 

determining the effectiveness and timing of mosquito control measures. 

Our simulation results suggest that under certain environment conditions the mosquito 

population can be adequately predicted using temperature alone. However, the inability of the 

model to capture the observed dynamics of surveillance data in certain years indicates that 

additional variables need to be considered to account for the year to year variability in weather and 

other environmental factors. Since our model is focused solely on the effect of temperature on 

mosquito abundance, consideration of other factors such as precipitation and land use (spatial) 

may improve model performance and will be included in future work. Availability of more data 

on mosquito biology and its response to environmental factors would also improve accuracy. 
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Currently, the model is limited to forecasting mosquito abundance over a single-season. 

Extending the study to include a model describing the overwintering process would enable 

simulations to be run over multiple years with one set of initial conditions for the first year. Then, 

using short-term and long-term temperature forecasts as input in to the model, we could potentially 

forecast mosquito abundance for future years based on a range of climate projections.  
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3 Impact of temperature on the transmission dynamics of West 

Nile virus 

3.1 Introduction 

The objectives of this study were to 1) gain a better understanding of how mosquito biology and 

WNV transmission is influenced by temperature in order to develop reliable predictive models to 

forecast mosquito population abundance and WNV infection in the Peel Region, Southern Ontario, 

2) identify and assess the temperature-dependent mechanisms involved in WNV transmission 

dynamics. To accomplish our objectives, we began by adapting our previously developed 

temperature-driven mosquito abundance model (Sec. 3.2.1) to work in tandem with the model for 

WNV transmission between mosquitoes and birds that we develop in this study (Sec. 3.2.3). In the 

transmission model, we employ the use of a degree-day (DD) function (Sec. 3.2.2) to track the 

progression of asymptomatic mosquitoes through the EIP. Then, under simplifying assumptions 

(Sec. 3.4), we study the existence and stability of equilibria and formulate an expression for the 

basic reproduction number (Sec. 3.5). In development of our model, we aimed to capture the 

within-season dynamics as well as the year-to-year variability in the reported number of 

mosquitoes testing positive for WNV. Moreover, we aimed to capture certain phenomena observed 

in surveillance data that were not captured in existing studies on the same region thereby allowing 

us to qualitatively assess the conditions that cause these phenomena based on simulation results 

(Sec. 3.6). 
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3.2 Model formulation (non-autonomous) 

The model is constructed to track the temporal dynamics of adult female mosquitoes (vectors) and 

birds (reservoirs) over a single-season (spring to autumn). Since the model covers a relatively short 

period of several months, we only consider the vital dynamics for mosquitoes (Wonham et al. 

2004). We ignore the vital dynamics of birds, since they are assumed to have offspring once per 

year during the spring and have an average lifespan of several years. Cross-infection between 

mosquitoes and birds is modeled with difference equations. Although there is more than one 

species of birds that are involved in the disease transmission cycle, we consider all birds as one 

family for simplicity (Fan et al. 2010). The bird population is categorized into susceptible 𝑆𝑏, 

infected 𝐼𝑏, recovered 𝑅𝑏, and dead 𝐷𝑏 birds. The total living bird population calculate at time step 

𝑡 (day) is 

𝑁𝑏(𝑡) = 𝑆𝑏(𝑡) + 𝐼𝑏(𝑡) + 𝑅𝑏(𝑡). (3.2.1) 

The mosquito population is separated into two distinct stages: aquatic (eggs, larvae, and pupae), 

hereafter referred to as larva; and adults. As was done in our temperature-driven abundance model, 

mosquitoes are grouped into cohorts based on the day of their oviposition and are tracked 

throughout their lifetime from larva to adult. We consider five compartments representing 

susceptible larva 𝑆𝑙,𝑘, infected larva 𝐼𝑙,𝑘, susceptible adults 𝑆𝑚,𝑘, asymptomatically infected adults 

𝐴𝑚,𝑘, and infected adults 𝐼𝑚,𝑘, where the subscript 𝑘 represents the day of oviposition and is used 

to track distinct cohorts. The total living population for a cohort 𝑘 in the aquatic and adult stage, 

respectively, is given by 
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𝑁𝑙,𝑘(𝑡) = 𝑆𝑙,𝑘(𝑡) + 𝐼𝑙,𝑘(𝑡)     𝑎𝑛𝑑     𝑁𝑚,𝑘(𝑡) = 𝑆𝑚,𝑘(𝑡) + 𝐴𝑚,𝑘(𝑡) + 𝐼𝑚,𝑘(𝑡) (3.2.2) 

The total living aquatic mosquito population across all cohorts is given by 

𝑁𝑙(𝑡) = ∑[𝑆𝑙,𝑘(𝑡) + 𝐼𝑙,𝑘(𝑡)]

𝑡

𝑘=𝑡0

. (3.2.3) 

The total living adult mosquito population across all cohorts is given by 

𝑁𝑚(𝑡) = ∑[𝑆𝑚,𝑘(𝑡) + 𝐴𝑚,𝑘(𝑡) + 𝐼𝑚,𝑘(𝑡)]

𝑡

𝑘=𝑡0

, (3.2.4) 

where 𝑡0 is the is first day of the mosquito season and is determined by temperature.  

For this study, we assume mortality occurs at the beginning of each time step while birth, 

transfer between compartments, and infection occur at the end of each time step. A model diagram 

describing the mosquito bird interaction is depicted in Figure 3.1. 

 

Figure 3.1: Model diagram of WNV transmission cycle between mosquitoes and birds. Parameter values and functions 

are given in Tables 1 and 2, respectively. 
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Model parameters and functions were based on the most relevant data from available literature. 

Definition, value, and dimension of model parameters and variables are given in Tables 1 and 2, 

respectively. 

3.2.1 Extended mosquito abundance model 

In the previous chapter, a temperature-driven mosquito abundance model was developed. In this 

chapter, we adapt the model equations for aquatic and adult stage mosquitoes of the abundance 

model to describe the susceptible, asymptomatic, and infected classes in the disease transmission 

cycle defined in equations (3.2.2) through (3.2.4). In this section, we give a description of the 

adaptations made to the abundance model to include the transmission cycle between mosquitoes 

and birds. Functions for aquatic development, mortality, and proportion of non-diapausing adult 

female mosquitoes used in the transmission model are the same as defined in Section 2.2 and are 

not restated here. Description of parameters and functions stated in this section can be found in 

Tables 1 and 2, respectively. 

The adapted abundance model is composed of a system of multiple paired ODEs, calculated 

at discrete time steps (day), to track cohort populations throughout their lifetime in both the aquatic 

and adult stages. The ODE system for each cohort consists of five equations: two for susceptible 

and infected larva, and three for susceptible, asymptomatic, and infected adults. The instantaneous 

rate of survival for both aquatic and adult populations is modelled with an exponential function 

after Shaman et al. (2006). Survival of susceptible aquatic populations 𝑆𝑙,𝑘 (𝑡) at time 𝑡 > 𝑘 > 𝑡0 

is given by 
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𝑑𝑆𝑙,𝑘(𝑠)

𝑑𝑠
= −µ𝑙(𝑇𝑙(𝑡))𝑆𝑙,𝑘(𝑠)                     0 ≤ 𝑓𝑘(𝑡) < 1 𝑎𝑛𝑑 𝑡 + 1 > 𝑠 > 𝑡 . (3.2.5) 

where the solution of (3.2.5) at time 𝑡 > 𝑘 is 𝑆𝑙,𝑘(𝑡) = 𝑆𝑙,𝑘(𝑘)𝑒
−∑ µ𝑙(𝑇𝑙(𝑛))

𝑡

𝑛=𝑘+1 . The equation for 

infected larva 
𝑑𝐼𝑙,𝑘(𝑡)

𝑑𝑡
 is defined in the same way. The susceptible adult mosquito population is 

given by 

𝑑𝑆𝑚,𝑘(𝑠)

𝑑𝑠
= −µ𝑚(𝑇(𝑡))𝑆𝑚,𝑘(𝑠)                  𝑓𝑘(𝑡) > 1 𝑎𝑛𝑑 𝑡 + 1 > 𝑠 ≥ 𝑡, (3.2.6) 

and similarly, for asymptomatic 
𝑑𝐴𝑚,𝑘(𝑡)

𝑑𝑠
 and infected 

𝑑𝐼𝑚,𝑘(𝑡)

𝑑𝑠
 adult mosquitoes. The functions 

µ𝑙(𝑇𝑙(𝑡)) and µ𝑚(𝑇(𝑡)) are the temperature-dependent mortality rates (day-1) for aquatic and adult 

mosquitoes, respectively. 

In the transmission model, we assume mortality, infection, and transfer between compartments 

occur at the beginning of each time step. Oviposition is assumed to occur at the end of each time 

step. Thus, on the day a cohort of adult mosquitoes reaches their maximum lifespan of 𝜔 days after 

eclosion, they die before they can reproduce.  

Oviposition: 

Vertical transmission in mosquitoes plays an important role in the persistence of WNV in 

regions that experience harsh winter climates (Swayne et al. 2000, Komar et al. 2003). We assumed 

that infectious females lay eggs that are infected with probability 𝑐𝑣. The total number of eggs 

oviposited on day 𝑡 equals the total number of adults that are at least one day old since eclosion 

multiplied by the oviposition rate 𝛽. Adults that reach their maximum lifespan on that day die 

before oviposition. The number of susceptible and infected eggs oviposited on day 𝑡 is given by 



63 

 

𝑆𝑙,𝑘=𝑡(𝑡) = 𝛽 ∑[𝑆𝑚,𝑘(𝑡) + 𝐴𝑚,𝑘(𝑡) + (1 − 𝑐𝑣)𝐼𝑚,𝑘(𝑡)]

𝑡−2

𝑘=𝑡0

 (3.2.7) 

𝐼𝑙,𝑘=𝑡(𝑡) = 𝛽𝑐𝑣 ∑ 𝐼𝑚,𝑘(𝑡)

𝑡−2

𝑘=𝑡0

. (3.2.8) 

Eclosion: 

When a cohort accumulates enough DDs to complete development i.e., 𝑓𝑘(𝑡) ≥ 1 > 𝑓𝑘(𝑡 − 1), 

all individuals in the cohort will eclose into adults where a proportion of the new adult mosquitoes 

will enter diapause and the remaining individuals will enter the susceptible or infected classes of 

adult mosquitoes: 

𝑆𝑙,𝑘(𝑡) = 𝐼𝑙,𝑘(𝑡) = 0                                             𝑖𝑓 𝑡 < 𝑘 𝑜𝑟 𝑓𝑘(𝑡) ≥ 1 > 𝑓𝑘(𝑡 − 1), (3.2.9) 

𝑆𝑚,𝑘(𝑡) = 𝑆𝑙,𝑘(𝑡 − 1)𝑒
−µ𝑙(𝑇𝑙(𝑡))𝛾𝑘(𝑇𝑘, 𝑃𝑘),     𝑖𝑓 𝑓𝑘(𝑡) ≥ 1 > 𝑓𝑘(𝑡 − 1) (3.2.10) 

𝐼𝑚,𝑘(𝑡) = 𝐼𝑙,𝑘(𝑡 − 1)𝑒
−µ𝑙(𝑇𝑙(𝑡))𝛾𝑘(𝑇𝑘, 𝑃𝑘),       𝑖𝑓 𝑓𝑘(𝑡) ≥ 1 > 𝑓𝑘(𝑡 − 1). (3.2.11) 

Adult Lifespan: 

The maximum lifespan of an adult mosquito is 𝜔 days after eclosion: 

𝑆𝑚,𝑘(𝑡) = 𝐴𝑚,𝑘,𝑖(𝑡) = 𝐼𝑚,𝑘(𝑡) = 0,                    𝑖𝑓   𝑡 = 𝑘 + 𝜏𝑘 + 𝜔, (3.2.12) 

where 𝜏𝑘  is the total number of days to complete development for a cohort born on day 𝑘. 
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Asymptomatic Infection: 

 The asymptomatic class of mosquitoes is divided into 𝜔 − 1 subpopulations. Each 

subpopulation is identified by the subscript index 𝑖, which represents the day of asymptomatic 

infection. Each asymptomatically infected subpopulation is initiated when a susceptible mosquito 

contracts the virus after biting and infected bird. 

𝐴𝑚,𝑘,𝑖=𝑡(𝑡) = 𝑒
−µ𝑚(𝑇(𝑡−1)) (1 − (1 − 𝑐𝑚)

𝑎(1−𝜎−µ𝑏)𝐼𝑏(𝑡−1)
𝑁𝑏(𝑡−1)−µ𝑏𝐼𝑏(𝑡−1)) 𝑆𝑚,𝑘(𝑡 − 1), 

𝑖𝑓 𝑡 = 𝑡𝑘 + 1, 𝑡𝑘 + 2,… , 𝑡𝑘 + 𝜔 − 1. 

(3.2.13) 

3.2.2 Transition rate from asymptomatic to infected class and EIP 

The EIP has been reported in mosquitoes but not birds (Langevin et al. 2001, Turell et al. 2001). 

Thus, we only consider the EIP for mosquitoes and assume birds are immediately infectious once 

exposed to the virus. In compartmental models, the asymptomatic (or exposed) compartment is 

associated with the delay in virus transmission caused by the EIP. In a similar way as was done 

for mosquito development, we model the effect of the EIP with a linear degree-day function. 

Results from the study by Reisen et al. (2006) for the NY99 strain of WNV were used to estimate 

the minimum threshold temperature 𝑇𝑎, below which no thermal units are accumulated towards 

the completion of the EIP and the total DDs required to complete the EIP, denoted 𝑇𝐷𝐷𝑎. In their 

study, infected mosquitoes were reared at constant temperatures and then tested to determine the 

EIP associated with each temperature. The results were plotted as a function of temperature, and a 

linear relationship between temperature and the transition rate is clearly distinguishable (Figure 

3.2). 
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Figure 3.2: Transition rate as a function of temperature for NY99 strain of WNV (circles) (Reisen et al. 2006). Linear 

regression (dashed line) through data points estimated 𝑇𝑎 = 14°C and 𝑇𝐷𝐷𝑎 = 139°C. 

A linear regression through the data points estimates the minimum temperature threshold and total 

degree-days to complete the virus incubation period as 𝑇𝑎 = 14°C and 𝑇𝐷𝐷𝑎 = 139°C, 

respectively. This estimate falls in line with similar values reported in existing studies (Goddard 

et al. 2003, Hartley et al. 2012, Brown 2015) for Cx. pipiens. The calculation for degree-days for 

the EIP is 

𝐷𝐷𝑎(𝑡) = {
0,                   𝑖𝑓 𝑇(𝑡) ≤ 𝑇𝑎,

𝑇(𝑡) − 𝑇𝑎,    𝑖𝑓 𝑇(𝑡) > 𝑇𝑎,
 

(3.2.14) 

and the daily proportion of accumulated 𝑇𝐷𝐷𝑎 is 

𝑑𝛿𝑘,𝑖(𝑡)  =
max(0, 𝑇(𝑡) − 𝑇𝑎)

𝑇𝐷𝐷𝑎
=
𝐷𝐷𝑎(𝑡)

𝑇𝐷𝐷𝑎
, 𝑖 = 𝑡𝑘 + 1, 𝑡𝑘 + 2,… , 𝑡𝑘 +  𝜔, 

(3.2.15) 

where the subscript 𝑖 indicates the day a mosquito is exposed to the virus. The cumulative 

proportion of the EIP is tracked with the function 

δ= 0.0071T - 0.0936
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𝛿𝑘,𝑖(𝑡)  =∑𝑑𝛿𝑘,𝑖(𝑛)

𝑡

𝑛=𝑖

. 
(3.2.16) 

Once an asymptomatic mosquito accumulates enough degree-days to complete the EIP (i.e., when 

𝛿𝑘,𝑖(𝑡) ≥ 1 > 𝛿𝑘,𝑖(𝑡 − 1)), it will move to the infectious compartment for the cohort oviposited 

on day 𝑘. 

3.2.3 Mosquito equations 

In this section, we formulate equations describing the disease transmission dynamics between 

mosquitoes and birds based on the modelling assumptions in the previous sections. A susceptible 

aquatic cohort is initiated when adult mosquitoes, that are at least two days from reaching their 

maximum lifespan, lay eggs at rate 𝛽 (by susceptible and asymptomatic adults) and 𝛽(1 − 𝑐𝑣) (by 

infected adults), where 𝑐𝑣 is the probability of vertical infection from an infected mosquito. In a 

similar way, an infected aquatic cohort is initiated when infected adult mosquitoes lay eggs at rate 

𝛽𝑐𝑣. The equations for oviposition are given by (3.2.7) and (3.2.8). Aquatic populations are 

decreased by eclosion (3.2.9) to (3.2.11) and by natural death. The number of susceptible and 

infected mosquitoes surviving to the next time step 𝑡 + 1 is 𝑆𝑙,𝑘(𝑡)𝑒
−µ𝑙(𝑇𝑙(𝑡)) and 𝐼𝑙,𝑘(𝑡)𝑒

−µ𝑙(𝑇𝑙(𝑡)), 

respectively.  

The susceptible adult mosquito population is increased when a cohort of immature mosquitoes 

in the aquatic stage accumulate enough DDs to complete development where a proportion 

𝛾𝑘(𝑇𝑘, 𝑃𝑘) of eclosing mosquitoes will become active host-seeking adults. Following the method 

of Lewis et al. (2006), the equation for susceptible adult mosquito cohorts 𝑆𝑚,𝑘(𝑡 + 1) is derived 

as follows. The expected number of times a susceptible adult mosquito bites some infected bird in 



67 

 

one time step is 
𝑎(1−𝜎−µ𝑏)𝐼𝑏(𝑡)

𝑁𝑏(𝑡)−µ𝑏𝐼𝑏(𝑡)
. The probability a mosquito becomes infected after biting an infected 

bird is 𝑐𝑚, and the probability of avoiding infection is (1 − 𝑐𝑚). Hence, the probability of a 

susceptible adult mosquito avoiding infection in a single time step is (1 − 𝑐𝑚)
𝑎(1−𝜎−µ𝑏)𝐼𝑏(𝑡)

𝑁𝑏(𝑡)−µ𝑏𝐼𝑏(𝑡) . This 

term is commonly referred to as the force of infection; i.e., the per capita rate at which susceptible 

individuals become infected. The remaining number of susceptible mosquitoes in a cohort after a 

single time step is 𝑒−µ𝑚(𝑇(𝑡))(1 − 𝑐𝑚)
𝑎(1−𝜎−µ𝑏)𝐼𝑏(𝑡)

𝑁𝑏(𝑡)−µ𝑏𝐼𝑏(𝑡) 𝑆𝑚,𝑘(𝑡), where 𝑒−µ𝑚(𝑇(𝑡)) is the proportion of 

mosquitoes that survive to the next time step. The asymptomatically infected mosquito population 

is increased when the virus is transmitted from an infected bird to a susceptible mosquito and is 

decreased by natural death and when they become infectious after completion of the EIP. The other 

equations for mosquitoes are derived using a similar approach. We assume infected mosquitoes do 

not recover from WNV infection and do not experience an increase in mortality caused by infection 

(Wonham et al. 2004). It is also assumed there is no horizontal transmission of the virus while in 

the aquatic stage of development (Turell et al. 2001). 

Based on the assumptions of mosquito biology and vector-host interaction just described, the 

equations for mosquitoes are given by the following set of discrete-time equations for each cohort 

𝑘 where 𝑡 > 𝑘:  

𝑆𝑙,𝑘(𝑡 + 1) = [𝑆𝑙,𝑘(𝑡)𝑒
−µ𝑙(𝑇𝑙(𝑡))]𝐻(1 − 𝑓𝑘(𝑡))  (3.2.17) 

 

𝐼𝑙,𝑘(𝑡 + 1) = [𝐼𝑙,𝑘(𝑡)𝑒
−µ𝑙(𝑇𝑙(𝑡))]𝐻(1 − 𝑓𝑘(𝑡)) (3.2.18) 
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𝑆𝑚,𝑘(𝑡 + 1) = (𝛾𝑘(𝑇𝑘 , 𝑃𝑘)𝑒
−µ𝑙(𝑇𝑙(𝑡))𝑆𝑙,𝑘(𝑡) + 𝑒

−µ𝑚(𝑇)(1 − 𝑐𝑚)
𝑎(1−𝜎−µ𝑏)𝐼𝑏(𝑡)
𝑁𝑏(𝑡)−µ𝑏𝐼𝑏(𝑡) 𝑆𝑚,𝑘(𝑡))

× (1 − 𝐻(1 − 𝑓𝑘(𝑡)))𝐻(𝑔𝑘(𝑡)) 

(3.2.19) 

 

𝐴𝑚,𝑘,𝑖(𝑡 + 1) = 𝑒
−µ𝑚(𝑇(𝑡))𝐴𝑚,𝑘,𝑖(𝑡) (1 − 𝐻(1 − 𝑓𝑘(𝑡)))𝐻(𝑔𝑘(𝑡))𝐻 (1 − 𝛿𝑘,𝑖(𝑡)), 

 

(3.2.20) 

𝑤ℎ𝑒𝑟𝑒  𝑖 = 𝑡𝑘 + 1, 𝑡𝑘 + 2,… , 𝑡𝑘 +  𝜔 − 1  

 

𝐼𝑚,𝑘(𝑡 + 1) =  

(𝛾𝑘(𝑇𝑘, 𝑃𝑘)𝑒
−µ𝑙(𝑇𝑙(𝑡))𝐼𝑙,𝑘(𝑡)

+ (𝐼𝑚,𝑘(𝑡) + ∑ (𝐴𝑚,𝑘,𝑖(𝑡) (1 − 𝐻 (1 − 𝛿𝑘,𝑖(𝑡))))

𝑡𝑘+𝜔−1

𝑖=𝑡𝑘+1

)𝑒−µ𝑚(𝑇(𝑡))) 

× (1 − 𝐻(1 − 𝑓𝑘(𝑡)))𝐻(𝑔𝑘(𝑡)). (3.2.21) 

where the asymptomatic class of mosquitoes 𝐴𝑚,𝑘,𝑖(𝑡) tracks 𝜔 distinct subpopulations of 

mosquitoes in cohort 𝑘 that are exposed on day 𝑖 after eclosion until reaching their maximum 

lifespan of 𝜔 days. 𝐻(𝑥) is the Heaviside function 

𝐻(𝑥) = {
0, 𝑥 ≤ 0 
1, 𝑥 > 0.

 (3.2.22) 

The arguments 𝑓𝑘(𝑡) = ∑ 𝑑𝑓𝑘(𝑛)
𝑡
𝑛=𝑘 , 𝛿𝑘,𝑖(𝑡) = ∑ 𝑑𝛿𝑘,𝑖(𝑛)

𝑡

𝑛=𝑖
 and 𝑔𝑘(𝑡) = 𝑘 + 𝜏𝑘 + 𝜔 − 𝑡 − 1 

are used to track the age or progression of aquatic, asymptomatic, and adult populations through 

their respective compartments. 
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3.2.4 Bird equations 

The total bird population is assumed to be constant; i.e., no replenishment of the bird population 

via births since birds will mate and rear their offspring once a year during the spring. Since corvids 

have an average lifespan of 7–8 years depending on the species (Connecticut Department of 

Environmental Protection 2001), we assume birds do not die of natural causes during the study 

period. We also assume no migration of birds from other regions into the study area. In this study, 

we consider the horizontal transmission of the virus among birds to be negligible (Langevin et al. 

2001). Infection from mosquitoes to birds was derived in the same way as was done for mosquitoes 

in Section 3.2.3. The probability of a susceptible bird avoiding infection in a one time step is 

(1 − 𝑐𝑏)

𝑎𝑒−µ𝑚(𝑇(𝑡))∑ 𝐼𝑚,𝑘(𝑡)
𝑡−2

𝑘=𝑡0
𝑁𝑏(𝑡)−µ𝑏𝐼𝑏(𝑡)  and the remaining number of susceptible birds after a single time 

step is (1 − 𝑐𝑏)

𝑎𝑒−µ𝑚(𝑇(𝑡))∑ 𝐼𝑚,𝑘(𝑡)
𝑡−2

𝑘=𝑡0
𝑁𝑏(𝑡)−µ𝑏𝐼𝑏(𝑡) 𝑆𝑏(𝑡). We note that mosquitoes reaching their maximum 

lifespan at each time step will die before being able to infect any birds. Thus, only mosquitoes that 

have at least two days to live at time 𝑡 can transmit the virus to birds at time 𝑡 + 1. The infected 

bird population is increased by number of susceptible birds that become infected from the bite of 

infected mosquitoes and the number of newly infected birds is (1 − (1 −

𝑐𝑏)

𝑎𝑒−µ𝑚(𝑇(𝑡))∑ 𝐼𝑚,𝑘(𝑡)
𝑡−2

𝑘=𝑡0
𝑁𝑏(𝑡)−µ𝑏𝐼𝑏(𝑡) )𝑆𝑏(𝑡). The infected bird population decreases by death caused by 

infection at rate µ𝑏 and by recovering from infection at rate σ. Recovered birds are assumed to 
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develop lifelong immunity and are no longer susceptible to the disease. Based on these 

assumptions, the model equations for the bird population are 

𝑆𝑏(𝑡 + 1) = (1 − 𝑐𝑏)

𝑎𝑒−µ𝑚(𝑇(𝑡))∑ 𝐼𝑚,𝑘(𝑡)
𝑡−2

𝑘=𝑡0
𝑁𝑏(𝑡)−µ𝑏𝐼𝑏(𝑡) 𝑆𝑏(𝑡) 

(3.2.23) 

 

𝐼𝑏(𝑡 + 1) = (1 − (1 − 𝑐𝑏)

𝑎𝑒−µ𝑚(𝑇(𝑡))∑ 𝐼𝑚,𝑘(𝑡)
𝑡−2

𝑘=𝑡0
𝑁𝑏(𝑡)−µ𝑏𝐼𝑏(𝑡) )𝑆𝑏(𝑡) + (1 − 𝜎 − µ𝑏)𝐼𝑏(𝑡) (3.2.24) 

 

𝑅𝑏(𝑡 + 1) = 𝑅𝑏(𝑡) + 𝜎𝐼𝑏(𝑡) (3.2.25) 

 

𝐷𝑏(𝑡 + 1) = 𝐷𝑏(𝑡) + µ𝑏𝐼𝑏(𝑡). (3.2.26) 

3.3 Model properties (non-autonomous) 

In the non-autonomous model described in (3.2.1) to (3.2.26), all model parameters (Table 1) and 

functions (Table 2) are assumed to be non-negative.  

Proposition 3.3.1 All solutions of model equations defined by (3.2.17) to (3.2.26) with  

𝑆𝑙,𝑡0(𝑡0), 𝐼𝑙,𝑡0(𝑡0), 𝑆𝑎,𝑡0(𝑡0), 𝐴𝑎,𝑡0(𝑡0), 𝐼𝑎,𝑡0,𝑡0(𝑡0), 𝑆𝑏(𝑡0), 𝐼𝑏(𝑡0), 𝑁𝑙(𝑡0), 𝑁𝑚(𝑡0), 𝑁𝑏(𝑡0) ≥ 0 

remain non-negative for all time 𝑡0 ≤ 𝑡 ≤ 𝑡𝑒𝑛𝑑 under the condition 𝜎 + µ𝑏 ≤ 1.  
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Due to the range of values the parameters 𝜎 and µ𝑏 can take, as defined in Table 1, the 

condition 𝜎 + µ𝑏 ≤ 1 is naturally satisfied. Furthermore, it can be shown that all solutions of the 

system will remain non-negative in the feasible region  

𝛶 = {(𝑆𝑙,𝑘 , 𝐼𝑙,𝑘 , 𝑆𝑎,𝑘 , 𝐴𝑎,𝑘,𝑖 , 𝐼𝑎,𝑘 , 𝑆𝑏 , 𝐼𝑏 , 𝑅𝑏 , 𝐷𝑏) ∈ 𝑅
(4+𝜔)(𝑡𝑒𝑛𝑑−𝑡0)+4: 𝑆𝑙,𝑘 , 𝐼𝑙,𝑘 , 𝑆𝑎,𝑘 , 𝐴𝑎,𝑘,𝑖 , 𝐼𝑎,𝑘 , 𝑆𝑏 , 𝐼𝑏 , 𝑅𝑏 , 𝐷𝑏 ≥ 0} (3.3.27) 

for all time 𝑡0 ≤ 𝑡 ≤ 𝑡𝑒𝑛𝑑. Thus, the region 𝛶 is positively invariant. Since only adult female Cx. 

pipiens and Cx. restuans mosquitoes will enter a state of diapause, the initial number of aquatic 

mosquitoes 𝑁𝑙(𝑡0) at the beginning of each season will be zero; i.e., 𝑁𝑙(𝑡0) = 0. 

In the absence of disease, a balance in birth and death rates for mosquitoes does not necessarily 

guarantee the existence of a non-trivial disease-free equilibrium (DFE) in this model. Due to the 

temperature- and photoperiod-dependent function for the proportion of non-diapausing adults, all 

solutions of (3.2.17) to (3.2.21) with non-negative initial conditions will tend towards zero at the 

end of each season. Once the photoperiod falls below 14.75 daylight hours on day 211, which 

corresponds with the end of July, the proportion of non-diapausing adult female mosquitoes will 

continue to decrease as photoperiod decreases. For this reason, the non-autonomous model has 

only a trivial (mosquito-free) disease-free equilibrium, denoted by 

𝐸∗ = (𝑆𝑙
∗, 𝐼𝑙

∗, 𝑆𝑚
∗, 𝐴𝑚

∗, 𝐼𝑚
∗, 𝑆𝑏

∗, 𝐼𝑏
∗, 𝑅𝑏

∗, 𝐷𝑏
∗) = (0, 0, 0, 0, 0, 𝑁𝑏

∗, 0, 0, 0). (3.3.28) 

Figure 3.3 illustrates, in the absence of disease, the effect of diapause on the active host-seeking 

adult female mosquito population when temperature is held constant at low, optimal, and high 

temperatures over the study period. 
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Figure 3.3: Numerical results for adult female mosquitoes at three constant temperatures in the absence of disease: 

𝑇 = 14°C (dashed line), 𝑇 = 25°C (solid line), and 𝑇 = 30°C (dotted line).  

Although the non-autonomous model in its current state only has the trivial (mosquito-free) 

disease-free equilibrium, we can make certain reasonable biological and environmental 

assumptions that simplifies the model structure to allow for the existence of the DFE where 

positive steady states exist in the mosquito population. In Section 3.4.1, we propose three 

simplifying assumptions that allow us to transform the model equations for mosquitoes (3.2.17) to 

(3.2.21) into a discrete-time linear age-structured population model. Then, in Section 3.5 we study 

the existence and stability of the DFE in the autonomous model. 

3.4 Simplified model (autonomous) 

Before further analysis of the qualitative dynamics of the non-autonomous model described in 

(3.2.1) to (3.2.26), we consider a simplified autonomous version of the model for comparison. The 

objective of analyzing the dynamics of the autonomous model is to determine if it has different 

qualitative dynamics with respect to the existence of steady-state solutions and their stability. We 
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begin by proposing modifications to model equations (3.2.1) to (3.2.26) by making simplifying 

assumptions about environmental conditions and mosquito biology that alter the structure of the 

model thereby allowing us to reduce the number of variables and equations. The first simplifying 

assumption removes the temporal dependence on temperature by holding the temperature at a 

constant for all time 𝑡0 ≤ 𝑡 ≤ 𝑡𝑒𝑛𝑑. The second assumption removes the effect of diapause on the 

developing mosquito population to allow for the existence of DFE. The third assumption removes 

the maximum lifespan constraint. We assume no vertical transmission in the fourth assumption. 

The fifth assumption changes the DD function used to track the progression of exposed mosquitoes 

through the EIP into an instantaneous rate function that is also dependent on temperature. 

3.4.1 Simplifying assumptions 

(S1) Temperature is held constant: 𝑇(𝑡) = 𝑇,    ∀𝑡 

At constant temperatures, all cohorts will develop in the same amount of time regardless of the 

day on which they were oviposited. The total number of days to complete development for each 

cohort 𝜏𝑘 can now be denoted τ. Consequently, the model will be composed of τ + ω paired 

equations to track cohorts of developing mosquitoes from the day of oviposition to the time they 

are τ days old. Then they will be tracked through their time as adults from the time of eclosion 

until they reach their maximum adult lifespan of ω days relative to the day of eclosion. 

Temperature-dependent functions for aquatic mortality (µ𝑙(𝑇(𝑡)) = µ𝑙(𝑇)), adult mortality 

(µ𝑚(𝑇(𝑡)) = µ𝑚(𝑇)), and transition rate from asymptotic to infected (𝛿(𝑇(𝑡)) = 𝛿(𝑇)), will 

become constant and will no longer change with time. This is a reasonable short-term assumption 

as natural weather patterns can sometimes exhibit periods of time where there is little variability 

in daily temperatures. 
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(S2) Effect of diapause is removed: 𝛾𝑘(𝑇𝑘, 𝑃𝑘) =  1,   ∀𝑘 

To allow for the existence of a non-trivial disease-free equilibrium, the effect of diapause must 

be ignored. While this assumption enables us to simplify the model, it also tends to overestimate 

the mosquito population in the later part of the season after day 211. This assumption means that 

mosquitoes are no longer sensitive to the decreasing number of daylight hours, which induces a 

physiological response preparing them for diapause once the photoperiod falls below a lower 

threshold value. Hence, all new adults will enter the susceptible or infected classes upon eclosion. 

(S3) Maximum lifespan constraint removed: 𝜔 → ∞ 

This assumption is made to simplify the model structure to allow for a more convenient 

calculation of the basic reproduction number 𝑅0. To calculate 𝑅0, which involves linearizing the 

model equations about the DFE, the equations for each compartment require consolidation 

(summation of all cohort equations in each compartment at each time step). A consequence of 

imposing a maximum lifespan constraint is that at each time step the number of adults remaining 

in a cohort that is 𝜔 days old must be removed from the total population. In the absence of disease, 

this is easy; however, due to the transfer of individuals between infected compartments at each 

time step, it is difficult to track the total number of adults remaining in a cohort for a specific 

compartment when trying to consolidate all the equations for each subpopulation.  

(S4) No vertical transmission in mosquitoes: 𝐼𝑙(𝑡) = 0,    ∀𝑡 

Vertical transmission plays an important role in the prevalence of WNV in regions with 

temperate climates like Southern Ontario where only non-parous adult female mosquitoes can 

survive harsh winter temperatures in a state of diapause. The impact of vertical transmission on 

the cross-infection between mosquitoes and birds within a single-season has been found negligible 

and can thus omitted from the autonomous model (Nasci et al. 2001, Turell et al. 2001). 
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(S5) Asymptomatic mosquitoes become infectious at a temperature-dependent rate: 

𝛿(𝑇) = max(0, 0.00715𝑇 − 0.09359) (3.4.29) 

This assumes mosquitoes that become exposed to the virus after biting an infected bird will no 

longer experience a delay before becoming infectious due to the EIP. Instead, we model the 

transition between the asymptomatic and infectious compartments with a temperature-dependent 

rate 𝛿(𝑇) that estimates the same instantaneous rate of transition as the DD function (3.2.15) using 

the same minimum temperature threshold 𝑇𝑎 and total degree-days to complete the EIP, 𝑇𝐷𝐷𝑎. 

While this assumption simplifies the model, it tends to overestimate the progression of the disease, 

especially during the early part of the season, as exposed mosquitoes no longer must wait to 

accumulate enough degree-days before they become infectious. In Section 3.6.3, we analyze the 

effect of the EIP on disease transmission dynamics between mosquitoes and birds in the non-

autonomous model. We use surveillance data to justify the use of a degree-day function to model 

the EIP.  

Based on the assumptions (S1)–(S5), the model equations for mosquito discrete cohorts (3.2.17) 

to (3.2.21) can now be simplified and written as  

𝑆𝑙,𝑘(𝑡 + 1) = 𝑆𝑙,𝑘(𝑡)𝑒
−µ𝑙(𝑇)𝐻(1 − 𝑓𝑘(𝑡)),  (3.4.30) 

 

𝑆𝑚,𝑘(𝑡 + 1) = (𝑆𝑙,𝑘(𝑡)𝑒
−µ𝑙(𝑇) + 𝑒−µ𝑚(𝑇)(1 − 𝑐𝑚)

𝑎(1−𝜎−µ𝑏)𝐼𝑏(𝑡)
𝑁𝑏(𝑡)−µ𝑏𝐼𝑏(𝑡) 𝑆𝑚,𝑘(𝑡)) 

 

× (1 − 𝐻(1 − 𝑓𝑘(𝑡))) (3.4.31) 
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𝐴𝑚,𝑘(𝑡 + 1) = ((1 − (1 − 𝑐𝑚)
𝑎(1−𝜎−µ𝑏)𝐼𝑏(𝑡)
𝑁𝑏(𝑡)−µ𝑏𝐼𝑏(𝑡) )𝑆𝑚,𝑘(𝑡) + (1 − 𝛿(𝑇)) 𝐴𝑚,𝑘(𝑡)) 

 

× 𝑒−µ𝑚(𝑇) (1 − 𝐻(1 − 𝑓𝑘(𝑡))) (3.4.32) 

 

𝐼𝑚,𝑘(𝑡 + 1) = (𝐼𝑚,𝑘(𝑡) + 𝛿(𝑇)𝐴𝑚,𝑘(𝑡)) 𝑒
−µ𝑚(𝑇) (1 − 𝐻(1 − 𝑓𝑘(𝑡))). (3.4.33) 

The consolidated equations for mosquitoes in terms of the total sub-populations in each 

compartment can now be expressed by 

𝑆𝑙(𝑡 + 1) = 𝛽𝑒
−µ𝑚(𝑇)(𝑆𝑚(𝑡) + 𝐴𝑚(𝑡) + 𝐼𝑚(𝑡)) + (1 −

𝑒−µ𝑙(𝑇)(𝜏−1)

1 + ∑ 𝑒−µ𝑙𝑘𝜏−1
𝑘=1

) 𝑒−µ𝑙(𝑇)𝑆𝑙(𝑡) (3.4.34) 

 

𝑆𝑚(𝑡 + 1) =
𝑒−µ𝑙(𝑇)𝜏

1 + ∑ 𝑒−µ𝑙𝑘𝜏−1
𝑘=1

𝑆𝑙(𝑡) + 𝑒
−µ𝑚(𝑇)(1 − 𝑐𝑚)

𝑎(1−𝜎−µ𝑏)𝐼𝑏(𝑡)
𝑁𝑏(𝑡)−µ𝑏𝐼𝑏(𝑡) 𝑆𝑚(𝑡) (3.4.35) 

 

𝐴𝑚(𝑡 + 1) = 𝑒
−µ𝑚(𝑇) (1 − (1 − 𝑐𝑚)

𝑎(1−𝜎−µ𝑏)𝐼𝑏(𝑡)
𝑁𝑏(𝑡)−µ𝑏𝐼𝑏(𝑡) )𝑆𝑚(𝑡) + 𝑒

−µ𝑚(𝑇)(1 − 𝛿(𝑇))𝐴𝑚(𝑡) (3.4.36) 

 

𝐼𝑚(𝑡 + 1) = 𝑒
−µ𝑚(𝑇)𝛿(𝑇)𝐴𝑚(𝑡) + 𝑒

−µ𝑚(𝑇)𝐼𝑚(𝑡). (3.4.37) 
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where the ratio 
𝑒−µ𝑙(𝑇)(𝜏−1)

1+∑ 𝑒−µ𝑙𝑘
𝜏−1

𝑘=1

 represents the proportion of larvae at time t in the cohort that will 

eclose into adults at time 𝑡 + 1. The equations for birds based on the assumptions defined in (S1)-

(S5) are now given by 

𝑆𝑏(𝑡 + 1) = (1 − 𝑐𝑏)
𝑎𝑒−µ𝑚(𝑇)𝐼𝑚(𝑡)
𝑁𝑏(𝑡)−µ𝑏𝐼𝑏(𝑡)𝑆𝑏(𝑡) 

(3.4.38) 

 

𝐼𝑏(𝑡 + 1) = (1 − (1 − 𝑐𝑏)
𝑎𝑒−µ𝑚(𝑇)𝐼𝑚(𝑡)
𝑁𝑏(𝑡)−µ𝑏𝐼𝑏(𝑡))𝑆𝑏(𝑡) + (1 − 𝜎 − µ𝑏)𝐼𝑏(𝑡) (3.4.39) 

 

𝑅𝑏(𝑡 + 1) = 𝑅𝑏(𝑡) + 𝜎𝐼𝑏(𝑡) (3.4.40) 

 

𝐷𝑏(𝑡 + 1) = 𝐷𝑏(𝑡) + µ𝑏𝐼𝑏(𝑡). (3.4.41) 

3.4.2 Basic properties of autonomous model 

We note that the function for diapause (2.2.5) does not influence mosquito population dynamics 

prior to day 211. Hence, when temperature is held constant, the non-autonomous model and 

simplified model produce nearly identical results up to that point. Thus, analysis of the simplified 

version of the model may still provide useful insight into the dynamics of disease transmission in 

the early part of the mosquito season. 

The simplified model described in (3.4.34) to (3.4.41) assumes all model parameters are 

positive and model functions are non-negative. With non-negative initial data and the condition in 
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Proposition 3.3.1 satisfied, all solutions of the system for all time 𝑡0 ≤ 𝑡 ≤ 𝑡𝑒𝑛𝑑 will remain non-

negative in the region 

𝛶 = {(𝑆𝑙 , 𝑆𝑚, 𝐴𝑚, 𝐼𝑚, 𝑆𝑏, 𝐼𝑏, 𝑅𝑏, 𝐷𝑏) ∈ 𝑅
8: 𝑆𝑙 , 𝑆𝑚, 𝐴𝑚, 𝐼𝑚, 𝑆𝑏, 𝐼𝑏, 𝑅𝑏, 𝐷𝑏 ≥ 0}. (3.4.42) 

Although the solutions of both the non-autonomous and simplified models are bounded on the 

closed interval [𝑡0, 𝑡𝑒𝑛𝑑], we note that the trajectories of the solutions for each model at the end of 

the season under the same constant temperature scenario may differ. All solutions of the non-

autonomous model will always tend to zero due to the effect of diapause; however, within a range 

of temperatures that are conducive to rapid aquatic development accompanied by low mortality, 

the solutions for the autonomous-model will appear to have an unbounded trajectory at time 𝑡𝑒𝑛𝑑. 

Within this range of temperatures, if simulations were to continue beyond 𝑡𝑒𝑛𝑑 to infinity, the 

solutions for the mosquito equations would be unbounded due to the removal of the effect of 

diapause given in (S2). 

3.5 Existence and stability of equilibria (autonomous) 

3.5.1 Disease-free equilibrium 𝑬𝟎 

It is assumed there is a balance in mosquito oviposition and mortality rates for the existence of a 

DFE. The parameter constraint for the existence of a DFE is obtained from equations (3.4.34) and 

(3.4.35) and is given by 

(1 − 𝑒−µ𝑚)

𝑒−µ𝑚
=

𝛽𝑐𝑙𝑒
−µ𝑙

(1 − 𝑒−µ𝑙(1 − 𝑐𝑙))
 (3.5.43) 
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where and 𝑐𝑙 =
𝑒−µ𝑙(𝜏−1)

1+∑ 𝑒−µ𝑙𝑘
𝜏−1

𝑘=1

 for notational convenience. 

The DFE is 

𝐸0 = (𝑆𝑙
∗, 𝑆𝑚

∗, 𝐴𝑚
∗, 𝐼𝑚

∗, 𝑆𝑏
∗, 𝐼𝑏

∗, 𝑅𝑏
∗, 𝐷𝑏

∗) = (
𝛽𝑒−µ𝑚

(1 − (1 − 𝑐𝑙)𝑒
−µ𝑙)

𝑁𝑚
∗, 𝑁𝑚

∗, 0, 0, 𝑁𝑏
∗, 0, 0, 0) (3.5.44) 

where 𝑆𝑚
∗ = 𝑁𝑚

∗ and 𝑆𝑏
∗ = 𝑁𝑏

∗ in the absence of disease. 

We observe the parameter constraint (3.5.43) includes temperature-dependent terms µ𝑙 , µ𝑚,

and 𝜏. Thus, the existence of a DFE relies upon temperature being such that (3.5.43) is satisfied. 

It must be noted for a fixed oviposition rate 𝛽, there are only specific values of temperature that 

can generate the corresponding parameter values required by the constraint in (3.5.43). In the 

mosquito abundance model, when the oviposition rate and temperature are held constant, it was 

shown that there exist at least two temperatures below and above 𝑇𝑜𝑝, denoted 𝑇1 and 𝑇2 

respectively, that can produce positive steady states in the mosquito population (Figure 3.4). Each 

temperature produces different parameter values; however, the DFE in both cases are given by 𝐸0 

in (3.5.44). We discuss the effect of 𝑇1 and 𝑇2 on the dynamics of disease transmission in further 

detail in Section 3.6.1. 
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Figure 3.4: Numerical simulations for aquatic (blue) and adult female (black) mosquitoes demonstrating the existence 

of two positive steady states for mosquito populations about the DFE at temperatures 𝑇1 = 14°C (solid lines) and 𝑇2 =
30°C (dashed lines) with a fixed oviposition rate of 𝛽 = 0.12. Parameter and function values are generated by each 

temperature and temperature-independent dependent parameter values are from Table 1. 

3.5.2 Basic reproduction number 𝑹𝟎 

Using Perron–Frobenious theory for non-negative matrices, the linear stability of the 𝐸0 can be 

determined by the basic reproduction number 𝑅0 (Cushing and Yicang 1994, Caswell 2001, Li and 

Schneider 2002). The basic reproduction number is defined as the number of new infections that 

arise out of an infected individual over the course of its lifetime in an otherwise susceptible 

population. For a discrete-time epidemic model, the expression for 𝑅0 is the spectral radius (i.e. 

dominant eigenvalue), of the next-generation matrix constructed from the equations for 

compartments where the infection can reside (Caswell 2001, Li and Schneider 2002, Lewis et al. 

2006). These equations can be written as 𝑥(𝑡 + 1) = 𝐴𝑥(𝑡), where 𝐴 is known as the projection 

matrix and 𝑥(𝑡) is the number of individuals in each infected compartment at time 𝑡 (Caswell 

2001, Lewis et al. 2006). The matrix 𝐴 is then decomposed into two matrices such that 𝐴𝑥(𝑡) =

(𝐹 + 𝑇 )𝑥(𝑡), where the square matrices 𝐹 and 𝑇 represent the appearance of new infections and 

the transfer in and out of infected classes by other means, respectively. Both 𝐹 and 𝑇 are non-

negative and 𝑇 is non-singular with a spectral radius of less than 1. For the model equations given 

in (3.4.34) to (3.4.41), there are three compartments where the virus appears 𝐴𝑚, 𝐼𝑚, and 𝐼𝑏; 

however, since we are only interested in new infections, we do not treat the progression from 

asymptomatic to infected adults as new infections. Linearization about 𝐸0 yields 

𝐹 =

(

 
0 0 −𝑒−µ𝑚𝑎(1 − 𝜎 − µ𝑏)ln(1 − 𝑐𝑚)

𝑁𝑚
∗

𝑁𝑏
∗

0 0 0
0 −𝑒−µ𝑚𝑎ln(1 − 𝑐𝑏) 0 )

 , (3.5.45) 
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𝑇 = (
𝑒−µ𝑚(1 − 𝛿) 0 0

𝑒−µ𝑚𝛿 𝑒−µ𝑚 0
0 0 1 − 𝜎 − µ𝑏

) (3.5.46) 

 

and 

𝐴 = 𝐹 + 𝑇 = 
 

=

(

 
 
𝑒−µ𝑚(1 − 𝛿) 0 −𝑒−µ𝑚𝑎(1 − 𝜎 − µ𝑏)ln(1 − 𝑐𝑚)

𝑁𝑚
∗

𝑁𝑏
∗

𝑒−µ𝑚𝛿 𝑒−µ𝑚 0
0 −𝑒−µ𝑚𝑎ln(1 − 𝑐𝑏) 1 − 𝜎 − µ𝑏 )

 
 
. (3.5.47) 

The next-generation matrix takes the form 𝑃 = 𝐹(𝐼 − 𝑇)−1, where 𝐼 denotes the Identity 

matrix (Cushing and Yicang 1994, Caswell 2001). The matrix 𝑃 has elements 𝑝𝑖𝑗 which are the 

expected number of secondary infections of type 𝑖 caused by a single infected individual of type 

𝑗. The matrix (𝐼 − 𝑇)−1 is 

(𝐼 − 𝑇)−1 =

(

 
 
 
 
 

1

1 − 𝑒−µ𝑚(1 − 𝛿)
0 0

𝛿𝑒−µ𝑚

(1 − 𝑒−µ𝑚(1 − 𝛿)) (1 − 𝑒−µ𝑚)

1

1 − 𝑒−µ𝑚
0

0 0
1

𝜎 + µ𝑏)

 
 
 
 
 

 (3.5.48) 

and  
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𝑃 = 𝐹(𝐼 − 𝑇)−1

=

(

 
 
 

0 0
𝑎𝐶̃𝑚(1 − 𝜎 − µ𝑏)𝑒

−µ𝑚𝑁𝑚
∗

(𝜎 + µ𝑏)𝑁𝑏
∗

0 0 0

𝑎𝐶̃𝑏𝛿𝑒
−2µ𝑚

(1 − 𝑒−µ𝑚(1 − 𝛿)) (1 − 𝑒−µ𝑚)

𝑎𝐶̃𝑏𝑒
−µ𝑚

1 − 𝑒−µ𝑚
0

)

 
 
 

, 
(3.5.49) 

where 𝐶̃𝑏 = −ln(1 − 𝑐𝑏) and 𝐶̃𝑚 = −ln(1 − 𝑐𝑚) for convenience of notation. The basic 

reproduction number 𝑅0 is the spectral radius of 𝑃, denoted 𝜌(𝑃), and is found by solving for the 

roots 𝜆 of its characteristic polynomial 

𝜆 (𝜆2 −
𝑎2(1 − 𝜎 − µ𝑏)𝛿𝑒

−3µ𝑚𝐶̃𝑏𝐶̃𝑚𝑁𝑚
∗

(1 − 𝑒−µ𝑚(1 − 𝛿)) (1 − 𝑒−µ𝑚)(𝜎 + µ𝑏)𝑁𝑏
∗
) = 0 (3.5.50) 

By the Perron–Frobenius theory for non-negative matrices, the spectral radius of an irreducible 

non-negative matrix 𝑃 has a unique, positive, and algebraically simple eigenvalue. Clearly, 

(3.5.50) has one eigenvalue equal to zero. Thus, the spectral radius of 𝜌(𝑃) = 𝑅0, is given by the 

positive root of (3.5.50). 

𝑅0 = √
𝑎𝐶̃𝑏𝑒

−µ𝑚

(1 − 𝑒−µ𝑚)

𝑎𝐶̃𝑚(1 − 𝜎 − µ𝑏)𝛿𝑒
−2µ𝑚𝑁𝑚

∗

(1 − 𝑒−µ𝑚(1 − 𝛿)) (𝜎 + µ𝑏)𝑁𝑏
∗
 (3.5.51) 

The first term under the square root symbol 
𝑎𝐶̃𝑏𝑒

−µ𝑚

(1−𝑒−µ𝑚)
 can be interpreted as the number of new birds 

infected by a single infectious mosquito over the course of its lifetime; (i.e. the 𝑅0 of the virus 

from mosquitoes to birds). The second term 
𝑎𝐶̃𝑚(1−𝜎−µ𝑏)𝑒

−2µ𝑚𝛿𝑁𝑚
∗

(𝜎+µ𝑏)(1−𝑒
−µ𝑚(1−𝛿))𝑁𝑏

∗
 can be interpreted as the 𝑅0 of 

the virus from birds to mosquitoes and is expressed as the effective contact rate  𝑎𝐶̃𝑚 multiplied 
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by the number of mosquitoes per bird 
𝑁𝑚

∗

𝑁𝑏
∗  that survive the period of exposure 

𝑒−2µ𝑚𝛿

(1−𝑒−µ𝑚(1−𝛿))
 

multiplied by the average amount of time a bird is infectious 
(1−𝜎−µ𝑏)

(𝜎+µ𝑏)
. The square root of the 

expression gives the geometric mean of the two terms and represents the average number of 

secondary infections produced by a single infectious mosquito or bird during its infectious 

lifespan.  

At first inspection of (3.5.51), if parameter values are assumed to be constant, we observe that 

the ratio of mosquitoes to birds 
𝑁𝑚

∗

𝑁𝑏
∗  determines the invasiveness of virus transmission when 

introduced to a susceptible mosquito population of constant size. Setting 𝑅0 = 1 and solving for 

mosquitoes yields the critical threshold value of susceptible mosquitoes 𝑆𝑚
∗, below which the 

disease will die out and above which will cause an outbreak. 

𝑁𝑚
∗  =

(1 − 𝑒−µ𝑚(1 − 𝛿)) (1 − 𝑒−µ𝑚)(𝜎 + µ𝑏)

𝐶̃𝑏𝐶̃𝑚𝑎
2𝛿𝑒−3µ𝑚(1 − 𝜎 − µ𝑏)

𝑁𝑏
∗ = 𝑆𝑚

∗ (3.5.52) 

The exact value of 𝑆𝑚
∗ depends on the parameter values. The parameters 𝑒−µ𝑙 , 𝑒−µ𝑚 and 𝛿 depend 

on temperature, implying the exact value of 𝑆𝑚
∗ also depends implicitly on temperature. 

The effect of each parameter on 𝑅0 can be deduced from its expression in (3.5.51). The 

transition rate 𝛿 has a positive correlation with 𝑅0. This is consistent with the epidemiological 

interpretation that the longer a mosquito that is exposed to the virus remains in the asymptomatic 

class, the higher the probability that it will die before becoming infectious. Mortality rates, both 

natural (µ𝑙 and µ𝑚) and disease induced (µ𝑏), have a negative impact on 𝑅0. The higher the rate at 

which infectious individuals are removed from the transmission cycle decreases the number of 

infections it can cause during its infectious lifespan. Similarly, the recovery rate 𝜎 for birds also 

has a negative correlation with 𝑅0 for the same reason, since it affects the rate of removal of 
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infectious individuals from the transmission cycle. The biting rate and probabilities of transmission 

(𝛽, 𝑐𝑏, and 𝑐𝑚), clearly have a have a positive relationship with 𝑅0. 

In our model, due to the transient dynamics of the mosquito population prior to reaching its 

equilibrium state, the value of 𝑆𝑚
∗ used in the calculation of 𝑅0 is not readily obtained from the 

initial value of mosquitoes in the usual way. For a seasonally variable population, Wonham et al. 

(2004) showed that 𝑅0 depends on the average susceptible mosquito population level over the 

entire mosquito season. Henceforth, we denote 𝑆𝑚 to represent the average susceptible mosquito 

population on the interval [𝑡0, 𝑡𝑒𝑛𝑑] and 𝑅0 to represent the mean of the individual reproduction 

numbers calculated daily over the same period. Both 𝑆𝑚 and 𝑅0 depend on the initial conditions 

and must be computed numerically in our model due to the transient period at the start of each 

simulation. Using the same notation and a similar approach as Wonham et al. (2004), for a 

seasonally variable population we present the calculation of 𝑆𝑚 and 𝑅0 using a graphical approach 

to find the critical level of the average mosquito population 𝑆𝑚
∗ that determines whether 𝑅0  will 

be less than or greater than 1 (Figure 3.5). We illustrate this approach with a simple example to 

calculate the mean population 𝑆𝑚 and mean 𝑅0 over the season. In this example, we assume the 

mosquito population resides at a population level 𝑆𝑚
𝑎 for 𝑡𝑎 amount of time and at 𝑆𝑚

𝑏 for the 

remaining amount of time 𝑡𝑏. Then  

𝑆𝑚 =
𝑡𝑎𝑆𝑚

𝑎 + 𝑡𝑏𝑆𝑚
𝑏

𝑡𝑎 + 𝑡𝑏
 (3.5.53) 

and 
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𝑅0 =
𝑡𝑎𝑅0

𝑎 + 𝑡𝑏𝑅0
𝑏

𝑡𝑎 + 𝑡𝑏
. (3.5.54) 

where 𝑅0
𝑎 and 𝑅0

𝑏 are the basic reproduction numbers for population levels 𝑆𝑚
𝑎 and 𝑆𝑚

𝑏 relative 

to the initial bird population 𝑁𝑏(𝑡0), respectively. Then, setting 𝑅0 = 1 gives the critical threshold 

𝑆𝑚
∗ that determines whether an outbreak will occur in a seasonally variable population of 

susceptible mosquitoes. 

 

Figure 3.5: Graphical representation of calculating the critical threshold level 𝑆𝑚
∗ for a seasonally variable population. 

From the example in Figure 3.5, we observe that if the average population 𝑆𝑚 is reduced to a level 

such that 𝑆𝑚 < 𝑆𝑚
∗ then 𝑅0 < 1 and an outbreak can be avoided. This could be accomplished by 

implementing mosquito control measures to reduce the higher population level 𝑆𝑚
𝑏 for a long 

enough period such that 𝑆𝑚 < 𝑆𝑚
∗. This method can be extended to cover multiple population 

levels by applying equations (3.5.53) and (3.5.54) in the same way. 
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3.5.3 Linear stability of the disease-free equilibrium 

The relationship between 𝑅0 and the linear stability of the DFE is found by analyzing the spectral 

radius of the projection matrix 𝐴, otherwise known as the growth factor, denoted 𝑟 = 𝜌(𝐴). It 

follows from Perron–Frobenius theory for non-negative matrices (Caswell 2001, Li and Schneider 

2002), that the linear stability of 𝐸0 can be determined by 𝑟 and hence by 𝑅0. The following 

theorem from Li and Schneider (2002) gives the relationship between 𝑟 and 𝑅0. 

Theorem 4.2 Suppose the 𝑛 × 𝑛 projection matrix 𝐴 = 𝐹 + 𝑇 is irreducible where 𝐹 and 𝑇 are 

non-negative, 𝑇 is non-singular, and 𝜌(𝑇) < 1. Let 𝑃 = 𝐹(𝐼 − 𝑇)−1. Suppose that 𝑅0 > 0. Then 

i)  𝜌 (𝑇 +
𝐹

𝑅0
) = 1  

and one of the following holds: 

ii) 𝑟 = 𝑅0 = 1 

iii) 1 < 𝑟 < 𝑅0 

iv) 0 < 𝑅0 < 𝑟 < 1 

To prove that the linear stability of 𝐸0 can determined by 𝑅0, we refer to Caswell (2001), where 

it is shown that if 𝐸0 is an equilibrium solution of the matrix 𝐴, then 𝐸0 is asymptotically stable if 

𝑟 < 1 and unstable if 𝑟 > 1. It follows from Theorem 4.2 that 𝐸0 is asymptotically stable if 𝑅0 <

1 and unstable if 𝑅0 > 1. It is easy to verify that matrices 𝐴, 𝐹, and 𝑇 in (3.5.45) to (3.5.47) satisfy 

the conditions given in Theorem 4.2. From (3.5.50), clearly 𝑃 is non-negative and 𝜌(𝑃) > 0. Thus, 

the linear stability of 𝐸0 given in (3.5.44) is determined by 𝑅0. 

The stability results presented above are interpreted in the usual way regarding the asymptotic 

behavior of disease transmission for the system given in (3.4.34) to (3.4.41). However, these 
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results rely upon waiting for the system to reach its long-term regime, which is not feasible in 

practice (Li et al. 2011). The model in this study covers a single mosquito season which, in 

Southern Ontario, is relatively short and only lasts a few months (June through September). In the 

assessment of control strategies, the transient dynamics of disease transmission during this period 

cannot be ignored. 

Using data from the literature on vector–host interaction and mosquito biology (Tables 1 and 

2), we developed a WNV disease transmission model that relies on temperature as the driving 

force behind mosquito population abundance and disease transmission dynamics. In the following 

sections, we present numerical results and analysis of the effect of temperature on 𝑅0 and on the 

dynamics of disease transmission over a single-season. 

3.6 Results 

3.6.1 The effect of temperature on 𝑹𝟎 

Recall that 𝑅0 is derived from the linearized system evaluated at the DFE and that for a fixed 

oviposition rate 𝛽, the DFE can only exist at temperatures that generate parameter values that  

satisfy the condition for the existence of a DFE given in (3.5.43). As previously mentioned in Sec. 

3.5.1, there exists two such temperatures, 𝑇1 and 𝑇2, that satisfy this condition. Although the 

parameter values µ𝑙 , µ𝑚, and 𝛿 generated by each of the two temperatures meet the conditions for 

the existence of a DFE given in (3.5.43), the critical threshold level for the number of mosquitoes 

per bird (3.5.52), which determines whether an outbreak will occur, can vary considerably between 

the two temperatures. It is worth noting that the parameters mentioned above cannot be selected 

independently from one another; i.e., each temperature generates a unique set of temperature-
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dependent parameter values based on their respective functions. Examining the system in both 

temperature settings highlights the effect of temperature on mosquito biology and transmission 

dynamics when using the same initial conditions for both settings. In other words, initial 

population ratios of mosquitoes and birds that may lead to an outbreak at one temperature can be 

more or less severe at another temperature and in some cases no outbreak will occur at all (Figure 

3.6). For instance, this would be an important factor to consider in the risk assessment of an 

outbreak in geographic locations where the mean temperature during the mosquito season is closer 

to one of the two temperatures. It should also be noted that the actual temperatures 𝑇1 and 𝑇2 also 

depend on the values of temperature-independent parameters. 

(a) (b) 

 

Figure 3.6: Numerical simulations of the autonomous model given in (3.4.34) through (3.4.41) for the proportion of 

birds (a) and the relative number of mosquitoes to initial birds (b) at temperatures 𝑇1 = 16.41°C and 𝑇2 = 28.34°C 

with initial values: 𝑆𝑚(𝑡0) = 10, 𝐼𝑚(𝑡0) = 0.01, 𝑆𝑏(𝑡0) = 1, and 𝑆𝑙(𝑡0) = 𝐴𝑚(𝑡0) = 𝐼𝑏(𝑡0) = 𝑅𝑏(𝑡0) = 0. The 

threshold values of susceptible mosquitoes and average population size at each temperature were numerically 

computed to be 𝑆𝑚,𝑇1
∗ = 6.05,  𝑆𝑚,𝑇1 = 5,  𝑆𝑚,𝑇2

∗ = 2.71, and 𝑆𝑚,𝑇2 = 7.17. Simulations covered a single mosquito 

season from June through September (Days 152–274). Parameter values are from Tables 1 and 2. For birds (a), the 

left axis corresponds with the proportion of susceptible birds (black) and dead birds (blue). The right axis represents 

the proportion of infected birds (red). For mosquitoes (b), the relative numbers of susceptible aquatic (blue) and 

susceptible adult mosquitoes (black) are on the left axis while the infected adults (red) are on the right axis. At T1 

(solid lines), it takes 21 days for mosquitoes in the aquatic stage to complete development. Consequently, the average 

susceptible adult population during the season 𝑆𝑚,𝑇1 drops significantly lower than its initial value. In this case, 𝑅0,𝑇1 =

0.91, and there is a mild outbreak in the bird population while the infected mosquito population monotonically tends 

to zero until the end of the simulation. At T2 (dashed lines), the time to complete aquatic development is only 8 days, 

which produces a higher average mosquito population over the season compared with 𝑇1 . Here, 𝑅0,𝑇2 = 1.63, and we 
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see the infected mosquito population begin to increase shortly after the start of the simulation. At 𝑇2, the outbreak in 

birds is more severe, and the susceptible bird population almost goes extinct by the end of the season. 

The numerical simulations depicted in Figure 3.6, highlight the importance of temperature in 

vector-borne disease transmission dynamics that is often overlooked in studies that do not consider 

the effect of temperature. These results demonstrate that the mosquito to bird ratio and temperature 

should be considered together when assessing the risk of an outbreak. Some studies on WNV 

transmission (Wonham et al. 2004, Jang 2007) attribute infection risk primarily to the ratio of 

initial mosquitoes to birds. While this is true in the context of their models, it is also important to 

understand how the mosquito to bird ratio is affected by changes in the environmental temperature 

it resides in. Temperature is the driving force behind mosquito population dynamics, and certain 

temperature patterns can cause an explosion in the mosquito population in a relatively short 

amount of time. Thus, if temperature is ignored in these scenarios, an outbreak is more likely to 

occur uninhibited by human intervention. On the other hand, with this understanding, local 

temperature forecasts could be used to the advantage of mosquito control programs in the timing 

of control measures. For example, if recent daily temperatures have been relatively low and local 

temperature forecasts predict that daily temperatures will rise dramatically in the near future, then 

implementing control measures at mosquito breeding sites while temperatures are still low could 

minimize the number of aquatic stage mosquitoes that would eclose into adults once the 

temperatures begin to rise.  
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

 

Figure 3.7: Comparisons of conditions required to generate the same value of R0 at temperatures 𝑇1 = 16.41°C (solid 

lines) and 𝑇2 = 28.34°C (dashed lines) for the proportion of birds (a, c, e) and relative number of mosquitoes (b, d, f), 

respectively. For 𝑇1 and 𝑇2 the threshold values of susceptible mosquitoes are 𝑆𝑚,𝑇1
∗ = 12.36 and 𝑆𝑚,𝑇2

∗ = 5.53, 

respectively. In (a) and (b) 𝑅0 = 1.06, 𝑆𝑚,𝑇1 = 14.02, and 𝑆𝑚,𝑇2 = 6.22. In (c) and (d) 𝑅0 = 1.53, 𝑆𝑚,𝑇1 = 29.03, and 

𝑆𝑚,𝑇2 = 12.89. In (e) and (f) 𝑅0 = 2, 𝑆𝑚,𝑇1 = 50.06, and 𝑆𝑚,𝑇2 = 22.23. The description for the left and right axes 

and population type indicated by color is the same as in Figure 3.6. 
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In Figure 3.7, we compare the effect of temperature on the conditions required to produce the 

same 𝑅0 value at both DFE temperatures 𝑇1 and 𝑇2. As expected, the transmission dynamics at 

both temperatures are very similar; however, at 𝑇1, it takes approximately 2.25 times the average 

mosquito population required to generate the same 𝑅0 value than at 𝑇2 for all three cases. This is 

primarily due to the significantly longer amount of time required to complete aquatic development 

at 𝑇1 (21 days) than at 𝑇2 (8 days). Figure 3.8 illustrates the comparison of 𝑅0 as a function of 𝑆𝑚 

for 𝑇1 = 16.41 and 𝑇2 = 28.34 under the same model settings as Figure 3.7 using the approach 

described in (3.5.53) and (3.5.54).  

 

Figure 3.8: Comparison of 𝑅0 as a function of 𝑆𝑚 at temperatures 𝑇1 = 16.41°𝐶 (solid line) and 𝑇2 = 28.34°𝐶 (dashed 

line). 

3.6.2 MIR and SMIR 

An important objective of modelling vector-borne diseases is to gain insight into the mechanisms 

that influence disease transmission. These insights help in the decision-making process regarding 

the timing and method of risk management strategies. The current method used to gauge the level 

of risk to humans in the Peel Region is the MIR. It uses WNV test results of weekly mosquito 
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surveillance data to indicate the current level of transmission intensity. The MIR is calculated as 

the number of pools of mosquitoes testing positive for WNV, denoted 𝑖𝑝, divided by the total 

number of mosquitoes tested, denoted 𝑀, expressed per 1,000 (Gu et al. 2003): 

𝑀𝐼𝑅 =
𝑖𝑝
𝑀
∗ 1,000. (3.6.55) 

It is assumed that the proportion of infected mosquitoes is very small and that there is only one 

infected mosquito per pool that tests positive for WNV (actual number of positive mosquitoes per 

pool is unknown). Thus, the MIR can be thought of as a percentage of the sample that tests positive 

for WNV. In Figure 3.9, the number of reported human cases of WNV in the Peel Region (red 

bars, left axis) is depicted alongside the observed MIR for data (blue bars, right axis). Observe the 

MIR follows the trend in the reported number of human WNV cases well enough to be a good 

indicator for human infection risk. 

 

Figure 3.9: Reported number of humans testing positive for WNV (red bars, left axis), the observed MIR calculated 

annually (blue bars, right axis), and the simulated MIR calculated annually (yellow bars, right axis). 
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The MIR is not without its drawbacks. The calculation for the MIR does not take into 

consideration the environmental and weather conditions around the mosquito traps during the time 

they are set. Weather conditions between the time that traps are set and collected affects the actual 

number of mosquitoes that are captured. For instance, heavy rainfall or wind on the day a trap is 

set reduces the ability of the trap to capture mosquitoes during that session. The accuracy of the 

MIR also depends on the number of traps and the number of mosquitoes in each pool that is tested. 

Although it is assumed that there is only one infected mosquito per positive pool, this method 

could underestimate the MIR for a given week if the actual number of infected mosquito per 

positive pools is greater than one. This number is not actually known because mosquitoes are not 

individually tested due to the monetary and time cost of testing so many mosquitoes. The MIR 

also does not consider the number of amplifying reservoirs in its calculation. It is difficult to know 

the actual population of birds as there is no current surveillance of bird activity in the area. 

Even with its drawbacks, the MIR is still a good indicator of risk to the human population. In 

this study, we use the assumption that infection rates are low in the mosquito population to 

calculate a simulated MIR (SMIR) based on the fraction of infected mosquitoes each day. We then 

compare the SMIR to the MIR for each year to assess the capacity of our model to predict the level 

of risk to humans. Similar to the MIR, the calculation for the SMIR is also expressed per 1,000 

and is defined as 

𝑆𝑀𝐼𝑅(𝑡) =
𝐼𝑚(𝑡)

𝑁𝑚(𝑡)
∗ 1,000. (3.6.56) 

It should be noted that the MIR is calculated on a weekly basis whereas the SMIR is calculated 

daily when comparing the two indices. Thus, the MIR may not paint a full picture of the level of 

risk in-between the times mosquitoes are captured and tested each week. At the same time, it also 
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means we are unable to validate the SMIR estimates on days other than the dates of collection. We 

also note that the SMIR is not on the same scale as the MIR. Due to the lack of data on the actual 

number of birds and the proportion of infected mosquitoes at the beginning of each season, we 

assumed the same number of birds and proportion of infected mosquitoes at the beginning of each 

season. Thus, it is more important to compare the dynamics of each index rather than the 

magnitude. The availability of more data on this topic would improve SMIR estimates to be closer 

to the scale of the MIR. Numerical simulations of the SMIR compared to observed MIR values for 

each season is presented in Figure 3.10. 

3.6.3 Numerical simulations 

The model described in (3.2.1) to (3.2.26) was applied to the Peel Region, Southern Ontario, for 

years 2004–2016 using observed temperature data, mosquito surveillance data obtained from the 

Peel Public Health unit, and the parameter values and functions defined in Tables 1 and 2, 

respectively. Initial values of the total number of mosquitoes at the beginning of each season were 

selected using the method described in Section 2.6.2. The initial number of infected mosquitoes 

for each year was set at a proportion of 0.01 of the total number of initial mosquitoes (actual 

proportion is unknown). The remaining mosquitoes were assumed to be susceptible. The initial 

proportion of susceptible birds was set to 1 for each year (actual number unknown). We assumed 

no birds were infected with the virus at the beginning of each season as we assumed they have a 

disease-induced mortality rate and would have died prior to the start of the season. 

Except for 2014, for years 2009-2016 we initially observed the SMIR followed the observed 

MIR in both trend and timing of peaks better than the preceding period from 2004 to 2008. A study 

by Koenig et al. (2010) found that WNV declined in virulence during its spread across North 
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America after its initial arrival in 1999. The study found that by Year 7 after introduction to an 

area, American crow populations began to stabilize. Thus, in numerical simulations (Figure 3.10) 

for years 2004–2008 we assumed a disease-induced mortality rate for birds that was double the 

rate used for simulations for years 2009–2016. Further investigation into the functional 

relationship of virulence over time will be pursued in future work to improve model accuracy. 
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Figure 3.10: Numerical simulations for a single mosquito season (by day, bottom axis) comparing observed MIR 

(black lines, left axis) with numerical results for the SMIR (blue dashed lines, right axis) for years 2004–2016. 

The simulated MIR (SMIR) compared well with both the number of human cases each year and 

the trend of the observed MIR within-season. We observed that the SMIR values calculated on an 

annual basis using the total positive pools divided by the total number of tested mosquitoes 

(x1,000) were proportional to the annual total number of confirmed human WNV cases (Figure 

3.9, yellow bars). In 2007, the appearance of positive mosquitoes appeared significantly earlier in 

the SMIR than that indicated by MIR data. Among other factors, this could have been due in part 

to the transient dynamics of the model in the early part of the season. It could also be attributed to 

the maximum adult lifespan constraint we assumed in our mosquito abundance model. The study 

by Ciota et al. (2014) found that the longevity of adult mosquitoes was temperature-dependent 

both in laboratory and field experiments. Their results showed that longevity decreased as 

temperature increased. This variability in temperature-dependent longevity may also be the reason 

for differences between numerical results and observed MIR data for other years as well. The 

simulation for 2014 also seems to support this hypothesis. In 2014, the region experienced its 
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lowest average daily temperatures of the years considered in this study. The average daily 

temperature for the entire season was approximately 16.9°C.  To test this hypothesis, we repeated 

the simulation for 2014 multiple times while increasing the maximum lifespan parameter in one-

day increments. We found both the mosquito abundance model and transmission model produced 

the most accurate results when the maximum lifespan was set to 60 days. This value falls in line 

with the results from the study by Ciota et al. (2014). 

We draw attention to the simulation for 2009, where there was only one week that mosquitoes 

tested positive for WNV in the surveillance data. Previous models on the same region were unable 

to capture this phenomena in their simulations. However, inspection of the data produced by our 

model simulations for this year gives a plausible explanation. The simulation data revealed that 

mosquitoes that became exposed to the virus up until the middle of the season were all dying before 

they could complete the EIP to become infectious and thus did not test positive for WNV when 

captured. The observed average daily temperature in the area during this mosquito season were 

relatively low compared to other years. These lower temperatures caused the EIP during the early 

part of the season to range between 29 to 50 days based on our simulations. In our model, we 

assumed a maximum lifespan of adult mosquitoes to be 28 days post eclosion. Then during a two-

week window starting on day 220 until day 234 (August 7th–21st) temperatures rose to an average 

of 23.4°C which translated to an EIP of 18 days causing the appearance of infected mosquitoes in 

our simulations to corresponded with the date of capture on day 237 (August 25th). After this short 

window, temperatures once again fell to levels that inhibited mosquitoes from completing the EIP 

prior to reaching their maximum adult lifespan. Thus, there were no positive test results for the 

remainder of the season. Although this explanation was just one of many possible scenarios that 

could have led to the observed WNV surveillance activity for this year, it is supported by our 
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current understanding of mosquitoes’ biological response to temperature and by our understanding 

of how the EIP affects transmission dynamics as evidenced in current literature (Reisen et al. 2006, 

Hartley et al. 2012). It should be noted that although the observed surveillance data for 2007 and 

2009 appear almost identical in the timing of WNV appearance, the daily temperatures during 

2009 may have been more conducive for mosquito longevity to be closer to the maximum lifespan 

we assumed in our model, thus causing the difference in model performance between the two 

years. 

3.6.4 Forecasting WNV infection risk 

An advantage of our model is that it can be applied as a real-time within-season forecasting 

tool in a straightforward and direct manner. The only requirements are that there have been at least 

three weeks of surveillance data, observed mean daily temperatures, and a temperature forecast. A 

minimum of three weeks of surveillance data is required as the model uses the first three 

observations to determine the initial value of susceptible mosquitoes (Section 2.6.2). Observed 

mean daily temperatures are required to determine the initial start day of the simulation as well as 

drive the mosquito population up to the current day the simulation is run. Appending the 

temperature forecast to the observed temperature data and running the model will produce 

simulation results up until the end of the forecasted date. It should be noted that the model is 

designed to cover a single-season and the temperature forecast cannot extend beyond the last day 

of the calendar year.  
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   (a)    (b) 

 

Figure 3.11: Two-week (Aug. 31st–Sept. 14th) simulated predictions based on forecasted mean daily temperatures for 

the Peel Region in 2015. Temperature forecast begins on day 243 (vertical dashed line). (a) Predicted mosquito trap 

counts (dashed line) and observed trap count data (solid line). (b) Predicted SMIR (blue line, right axis) compared 

with observed MIR data (black line, left axis). 

An important characteristic of a model that is intended to be used as a predictive tool to inform 

public health policy is its ability to be applied in a user-friendly and straight forward manner. With 

this in mind, the framework of the model developed in this study was constructed to be easily 

adapted to be used as a forecasting tool for both mosquito trap counts and infection risk. Illustrated 

in Figure 3.11 is an example of applying the model to forecast two weeks of mosquito trap counts 

and infection risk using the observed mean daily temperatures and WNV surveillance data for 

2015.  

3.7 Discussion 

Based on data available from existing literature on how temperature influences mosquito biology 

and the WNV transmission cycle (Tables 1 and 2), we developed a transmission dynamics model 

between mosquitoes and birds. Adapting the temperature-driven mosquito abundance model 

developed in chapter 2, the effect of temperature on mosquito development, mortality, and 
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diapause were explicitly accounted for in the WNV transmission model developed in Chapter 3. 

The effect of temperature on the EIP was also explicitly accounted for using a degree-day function 

to track the progression of the virus within exposed mosquitoes enabling the model to capture 

important transmission dynamics such as the timing of the first appearance of WNV in surveillance 

data.  

We formulated an expression for the basic reproduction number 𝑅0 based on a simplified 

version of the model evaluated about the disease-free equilibrium. The expression for 𝑅0 contained 

temperature-dependent parameters that allowed us to quantitatively assess the invasiveness of the 

disease in different temperature settings. We showed that the ratio of mosquitoes to birds alone 

should not be the only factor considered in determining the conditions of disease outbreak. We 

found that, for a given set of initial conditions of mosquitoes and birds, temperature is the primary 

factor that drives the mosquito to bird ratio and thus transmission dynamics. 

The model was then applied to the Peel Region, Ontario for validation. We assessed the 

capacity of the model to be used as a predictive risk-assessment tool by formulating a SMIR index 

based on the observed MIR calculation. The SMIR index fit the observed MIR data well for most 

years, especially in years after 2008, implying our model has potential to be used to complement 

existing risk assessment methods. 

Existing studies on WNV transmission dynamics stress the importance of the mosquito to bird 

ratio in the assessment of methods to manage infection risk. Our study showed that the 

environmental temperature must also be considered in this assessment because temperature can 

either drive the level of infection to a major outbreak or, in some cases, force it to levels that are 

undetectable. This notion is supported by simulation results for the year 2009, where our model 

identified the likely mechanism responsible for the low frequency of positive test results to be a 
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temperature pattern that was not conducive for virus replication within exposed mosquitoes prior 

to natural death, thereby limiting the infectious period for mosquitoes that survived the EIP to only 

a few days that season.  

Differences between model results and observation data suggest that both modelling methods 

and surveillance methods need improvement to gain better accuracy in forecasting WNV risk. The 

major limitation regarding improved model performance is the lack of available data on mosquito 

biology and related epidemiological processes. More research providing detailed data on the 

biological response of mosquitoes to environmental factors would improve model accuracy. 

Moreover, model validation is subject to the availability of surveillance data, both quality and 

quantity. Surveillance initiatives that increase the period of surveillance, sample size, and 

frequency of collection and testing would give a much broader base to which we could refine and 

tune our model for improved performance. Initiation of a surveillance program for WNV-related 

bird populations in the area could also significantly enhance model performance, as currently no 

such surveillance program exists in this region. With such data, initial conditions and parameter 

estimates could be refined to more closely match the conditions in a natural environment. 

Although the model performed well in capturing within-season dynamics as measured by the 

MIR, simulation results for years 2004-2008 suggest our model needs to consider more factors 

than just temperature alone. Other environmental and entomological factors—such as land-use, 

precipitation, disease-induced mortality of reservoirs, and vector longevity—are important factors 

that affect disease transmission dynamics and should be considered in future work. Including land-

use data can improve performance by adding a spatial dimension to the model so that population 

densities by location can be considered. The type of land (industrial, urban, or rural) around trap 

locations is important in that it can help determine the proximity to human populations and thus 
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influence estimates of the contact rate between vector, reservoir, and humans. Precipitation can 

have an amplifying effect on mosquito abundance by increasing the number of breeding sites and 

negatively affecting the population by ‘washing out’ mosquitoes in the aquatic stage if there is too 

much precipitation. We also did not include other transmission-related factors that have been 

shown to have a dependency on temperature, such as oviposition rate, biting preference, and 

mosquito biting rates, which also affect transmission dynamics. 
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4 Conclusions and future work 

Mathematical models describing the relationship between environmental factors and WNV have 

advanced our understanding of key processes involved in transmission dynamics. The knowledge 

we have gained thus far has helped inform policies that have reduced the risk of infection to the 

human population. However, the complexities of disease transmission are vast and require further 

attention and modelling initiatives with the ultimate objective of eradicating WNV.  

The findings in this dissertation contribute to the existing groundwork on WNV disease 

transmission dynamics by furthering our qualitative understanding of the relationship between 

temperature, mosquito biology, and the mechanisms that influence WNV transmission dynamics 

in the mosquito–bird transmission cycle. In Chapter 2, we developed a mosquito abundance model 

that used temperature as the driving force behind population dynamics. Using data obtained from 

laboratory studies on mosquito biology at constant temperatures, we formulated temperature-

dependent response functions for key processes in the mosquito life cycle that have been shown to 

be heavily dependent on temperature: namely, mortality and diapause. Together with the use of a 

degree-day function to track the physiological age of developing mosquitoes, the resulting model 

could capture the variability in population dynamics observed in surveillance data. We showed 

how certain temperature patterns can cause a relatively small population of adult mosquitoes to 

suddenly increase or spike in a short amount of time. We also emphasized the importance of the 

effect of diapause, along with complementary research (Denlinger and Armbruster 2014, Zhang 

and Denlinger 2011) on population dynamics where other studies have tended to overestimate 
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mosquito populations at the end of the mosquito season. The model was then applied to the Peel 

Region, Southern Ontario, using observed temperature data to drive the population dynamics. 

Simulation results were then validated with annual surveillance data from 2004–2016. The model 

demonstrated an overall capacity to follow the observed within-season trend of mosquito trap 

counts. 

In chapter 3, we extended the mosquito abundance model to describe the mosquito-bird WNV 

transmission cycle. While surveying various temperature-dependent processes involved in 

transmission dynamics, we found that the EIP is a key factor in determining the timing of WNV 

activity due to the delay caused by the time it takes to accumulate enough thermal units to become 

infectious. Thus, we opted to use a degree-day function to track the progression of exposed 

mosquitoes through the incubation period rather than using a simplified assumption of a constant 

transition rate or one that returned an instantaneous rate. Our choice in modelling the EIP in this 

way allowed us to qualitatively assess the factors that caused unusual behavior found in observed 

WNV surveillance data.  

Based on the expression for 𝑅0 that was formulated from a simplified version of the model, we 

proposed that the ratio of mosquitoes to birds should not be considered by itself in the assessment 

of risk reduction strategies. We showed that the mosquito to bird ratio must be considered in the 

context of environmental temperature. We demonstrated that a given set of initial values of 

mosquitoes and birds that could lead to an outbreak at one temperature setting may not necessarily 

lead to an outbreak at another temperature setting. 

While the results of our study indicate promising potential for our transmission model to be 

used as a predictive tool to complement existing methods of measuring infection risk, we also 

acknowledge that further research is warranted to investigate factors not considered in our study. 
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Environmental factors—such as precipitation, land-use, and urban development as well as 

entomological factors such as biting rates, breeding habits, host preferences, the overwintering 

process, longevity, and host migration—all have an impact on transmission dynamics and will be 

considered in future work. As with many other studies, we also acknowledge that the biggest 

limitation of the accuracy of our model is the availability of reliable data. As more data becomes 

available, we will be able to improve model parameterization and thus its performance and 

reliability.  

Currently, the model is limited to forecasting mosquito abundance over a single-season. 

Extending the study to describe the overwintering process would enable simulations to be run over 

multiple years with one set of initial conditions for the first year. Then, using short-term and long-

term temperature forecasts as input in to the model, we could potentially forecast mosquito 

abundance and WNV infection risk for future years based on a range of climate projections. 

However, as previously mentioned, data on the overwintering process is limited. The goal of future 

work will be to improve model performance by incorporating other processes, mentioned above, 

that are influenced by temperature and considering the effect of other environmental factors on 

mosquito biology and disease transmission. The inherent design of our model’s framework lends 

itself to be adaptable to other vector-borne diseases in different geographical settings. We plan to 

apply the framework of this model to other vector-borne diseases with a two-fold aim of further 

validating the strengths and weaknesses in the design of our model and to improve our 

understanding of transmission dynamics. 
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