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Abstract

A barrier function w =
λ

2
[(y − f(x))+]2 is compared to the solution u near a

free boundary point. The properties div(a(x)∇u) > −(h)xχ([u > 0]) and ∇w = 0
on [y = f(x)] avoided the comparison of the gradients of u and v as in the case
hx > 0. A regularity of the free boundary is established.
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1 Introduction

In the domain Ω = (0, 1)× (0, 1), we consider the free boundary problem:
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(P )



Find (u, γ) ∈ H1(Ω)× L∞(Ω) such that :

(i) u > 0, 0 6 γ 6 1, u(γ − 1) = 0 a.e. in Ω

(ii) u = φ on ∂Ω

(iii)

∫
Ω

(
a(x)∇u+ γh(x)ex

)
.∇ξdxdy = 0 ∀ξ ∈ H1

0 (Ω)

where ex = (1, 0), φ ∈ C0,1(Ω),

φ(x, y) =

∥∥∥∥∥∥
0 on Γ0 = (0, 1)× {0}, θ0(y) on {0} × [0, 1]

and
ua on Γ1 = (0, 1)× {1}, θ1(y) on {1} × [0, 1]

with θi being regular and nondecreasing functions satisfying 0 6 θi(y) 6 ua, i = 1, 2,
and ua is a positive constant.
The function h is C1([0, 1]) and satisfies for some positive constants h and h∗:

0 < h(x) 6 h, h′(x) 6 −h∗ < 0 for x ∈ [0, 1]. (1.1)

The matrix a depends only on the x-variable and satisfies:

a ∈ W 1,∞(0, 1) ∩ C0,1[0, 1] (1.2)

m|ξ|2 6 aijξiξj 6 M |ξ|2 ∀ξ ∈ R2, m > 0, M > 0. (1.3)

This problem has been studied by the author in [3] under higher regularity assumptions
on the functions h(x) and a(x). The method used involved C2 regularity of the solution
u far from the free boundary.
In this paper, we will establish the regularity using comparison methods in the weak
formulation of the problem. The motivation of this approach came from its application
to similar problem with hx > 0 in [6], [7] and for the study in a heterogeneous coastal
aquifer in [8]. Another motivation (see [4], [10]), is the fact that the solution behaves like
the solution of an obstacle problem because of the property

div(a(x)∇u) > −(h)xχ([u > 0]) in D′(Ω), (1.4)

where χ = 1 if x ∈ [u > 0] and χ = 0 if not. The property (1.4) is established by taking
±(Hϵ(u)ξ), ξ ∈ D(Ω), ξ > 0 as a test function in (P ), with

Hϵ(t) =

∥∥∥∥∥∥
0 if t < 0
t/ϵ if 0 6 t 6 ϵ
1 if t > ϵ
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This function involves in the penalization problem:

(Pϵ)



Find uϵ ∈ H1(Ω) such that :

(i) uϵ = φ on ∂Ω

(ii)

∫
Ω

(
a(x)∇uϵ + h(x)Hϵ(uϵ)ex

)
∇ξdxdy = 0 ∀ξ ∈ H1

0 (Ω)

where, for ϵ ∈ (0,min(1, ua)), we establish, as in [5], that there exists a unique solution
for (Pϵ) satisfying:

uϵ ⇀ u in H1(Ω), Hϵ(uϵ) ⇀ γ in L2(Ω)

and that (u, γ) is a solution of (P ).

Taking u−
ϵ (resp. (uϵ−ua)

+) as a test function in (Pϵ), shows that uϵ > 0 (resp. uϵ 6 ua).
Then, comparing uη

ϵ = uϵ(x, y + η) with uϵ as in [8], we obtain (uϵ)y > 0 and finally get

0 6 u 6 ua,
∂u

∂y
> 0 a.e in Ω. (1.5)

This work brings answers to the situation where the function h is not increasing. Appli-
cations of such a model appear, for example, in the Lubrication problem [2] and the dam
problem [1].

In all what follows, we consider only monotone solutions of (P ).
As a consequence, we deduce that [5]:

• ∀(x0, y0) ∈ [u > 0] = [u(x, y) > 0] ∩ Ω, ∃δ > 0 such that

u(x, y) > 0 for (x, y) ∈ Bδ(x0, y0) ∪ (x0 − δ, x0 + δ)× [y0, 1]

• Φ : (0, 1) −→ [0, 1) is well defined by

Φ(x) = inf{y ∈ (0, 1) / u(x, y) > 0}

and is upper semi-continuous (u.s.c) on (0, 1).

• [u > 0] = [y > Φ(x)].

We recall also some properties:

• div(a(x)∇u) = −(hγ)x in D′(Ω).

3



• u ∈ C0,α
loc (Ω ∪ Γ0 ∪ Γ1) ( [9] Theorem 8.24 p 202).

• [u > 0] is an open set.

• div(a(x)∇u) > 0 and (hγ)x 6 0 in D′(Ω).

2 A Barrier Function and Comparison

Let x0 ∈ (0, 1) and ϵ0 = min(x0, 1− x0)/6. Then

u ∈ C0,α
(
[x0 − ϵ0, x0 + ϵ0]× [0, 1]

)
for some α ∈ (0, 1). (2.1)

Assume that there exists ϵ1 > 0 such that

∀ϵ ∈ (0, ϵ1), y − 3ϵ > 0,

where y ∈ (0, 1) and y may depend on ϵ.

Let x1 ∈ (0, 1) satisfying

x1 < x0 and |x1 − x0| < ϵ3/α with ϵ ∈
(
0,min(ϵ0, ϵ1)

)
.

Set

Z = (x1, x0)× (y − ϵ, y), D = (x1, x0)× (0, y),

w(x, y) =
λ

2
[(y − f(x))+]2,

f(x) = y − ϵ+

∫ x

x1

[a12(s) + C0

a11(s)

]
ds,

where C0 and λ are constants. We choose C0 = 2M so that

1 =
−M + 2M

M
6 a12(x) + C0

a11(x)
6 3M

m
∀x ∈ [x0 − ϵ0, x0 + ϵ0].

Then f satisfies
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f ′(x) =
a12(x) + C0

a11(x)
> 1 > 0 and − a11(x)f

′(x) + a12(x) = −C0,

f(x1) = y − ϵ

f(x0) = y − ϵ+

∫ x0

x1

[a12(s) + C0

a11(s)

]
ds 6 y − ϵ+

3M

m
(x0 − x1)

6 y − ϵ+
3M

m
ϵ3/α < y if ϵ ∈

(
0,
( m

3M

) α
3−α

)
.

Note that [y > f(x)] ∩ Z ̸= ∅ since we have for ϵ ∈
(
0,
( m

6M

) α
3−α

)
= (0, ϵ2)

ϵ

2
< ϵ− 3M

m
ϵ3/α 6 y − f(x0) 6 y − f(x) 6 y − f(x1) = ϵ ∀x ∈ [x1, x0].

Next, we have w ∈ H1(D) and

∇w(x, y) = λ(y − f(x))

[
−f ′(x)

1

]
χ([y > f(x)])

a(x)∇w = λ(y − f(x))+
[

−f ′(x)a11 + a12
−f ′(x)a21 + a22

]
div(a(x)∇w) = λa(x)

[
−f ′(x)

1

]
.

[
−f ′(x)

1

]
in [y > f(x)]

λm[1 + (f ′(x))2] 6 div(a(x)∇w) 6 λM [1 + (f ′(x))2] in [y > f(x)].

Lemma 2.1. Let ϵ ∈
(
0,min(ϵ0, ϵ1, ϵ2)

)
and θ > 0. Then, there exists λ0 > 0 independent

of ϵ such that: ∀λ ∈ (0, λ0), we have∫
D

[
a(x)∇w.∇ζ + θχ([w > 0])ζ

]
dxdy > 0 ∀ζ ∈ H1

0 (D), ζ > 0.

Proof. Let ζ ∈ H1
0 (D), ζ > 0. We have

∫
D

[
a(x)∇w.∇ζ + θχ([w > 0])ζ

]
dxdy

=

∫
[y>f(x)]

[
− div(a(x)∇w) + θ

]
ζdxdy +

∫
[y=f(x)]

[
a(x)∇w.ν

]
ζ

5



where ν = ⟨νx, νy⟩ =
1√

1 + f ′2(x)
⟨f ′(x),−1⟩ is the unit normal to the curve [y = f(x)]

pointing towards the set [y < f(x)].
Since ∇w = 0 on [y = f(x)], we have

∫
D

[
a(x)∇w.∇ζ + θχ([w > 0])ζ

]
dxdy =

∫
[y>f(x)]

[
− div(a(x)∇w) + θ

]
ζdxdy

>
∫
[y>f(x)]

[
− λM(1 +

(3M
m

)2

) + θ
]
ζdxdy

We conclude the lemma by choosing λ0 ∈
(
0,

θ

M(1 +
(

3M
m

)2

)

)
. �

The following lemma compares u and w near a free boundary point, along the x direction.
First, from (2.1), there exists a positive constant K∗ such that for (x, y), (x′, y′) ∈ [x0 −
ϵ0, x0 + ϵ0]× [0, 1],

|u(x, y)− u(x′, y′)| 6 K∗(|x− x′|2 + |y − y′|2
)α

2 . (2.2)

Lemma 2.2. Assume that u(x0, y) = 0. Then for ϵ ∈
(
0,min( λ

8K∗ , ϵ0, ϵ1, ϵ2)
)
, we have

u(x, y) 6 w(x, y) ∀x ∈ [x1, x0].

Proof. Since u(x0, y) = 0, we have by (2.2) in particular

u(x, y) 6 K∗|x− x0|α < K∗(ϵ3/α)α for all x ∈ [x0 − ϵ3/α, x0 + ϵ3/α].

On another hand, we have for x ∈ [x1, x0],

w(x, y) =
λ

2
[(y − f(x))+]2 > λ

2
[(y − f(x2))]

2 > λ

2

( ϵ

2

)2

.

Hence,

u(x, y) 6 K∗(ϵ3/α)α 6 λ
ϵ2

8
6 w(x, y) ⇐⇒ ϵ 6 λ

8K∗ .�
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3 Non Oscillation Lemma

The following Lemma shows that we cannot have a vertical segment where u = 0 without
having u = 0 at some point to the left of the segment. When, we have a point to the
right of the segment, where u = 0, we have necessarily another point to the left. This
property is needed when proving the continuity of the free boundary.

Lemma 3.1. Let u be a solution of (P ). Let (x0, y0) ∈ Ω and r > 0 such that Br =
Br(x0, y0) ⊂⊂ Ω. Then we cannot have the following situations:

i) u > 0 in Br \ Sr and u = 0 in Sr

ii) u > 0 in B−
r and u = 0 in B+

r ∪ Sr

with Sr = {x0} × (y0 − r, y0 + r), B−
r = Br ∩ [x < x0] and B+

r = Br ∩ [x > x0].

Proof. Case i). Since u > 0 in Br \ S and |S| = 0, then γ = 1 a.e in Br. We have∫
Ω

(
a(x)∇u+ h(x)ex

)
.∇ξdxdy = 0 ∀ξ ∈ H1

0 (Ω)

Let η ∈ (0, r/4) and uη(x, y) = u(x, y − η). Then, uη satisfies

∫
Br/4

a(x)∇uη.∇ξ(x, y)dxdy =

∫
Br/4−ηey

a(x′)∇u(x′, y′).∇ξ(x′, y′ + η)dx′dy′

= −
∫
Br/4−ηey

h(x′)ξx′(x′, y′ + η)dx′dy′ = −
∫
Br/4

h(x)ξx(x, y)dxdy

=

∫
Br/4

a(x)∇u.∇ξ(x, y)dxdy ∀ξ ∈ D(Br/4).

We deduce that ∥∥∥∥∥∥
div(a(x)∇(u− uη)) = 0 in Br/4

u− uη > 0 in Br/4

u− uη = 0 on Sr/4

By the strong maximum principle, we deduce that u− uη = 0 in Br/4.

Consequently,
∂u

∂y
= 0 in D′(Br/4) which leads to u(x, y) = τ(x) in Br/4.
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Now, we have

div(a(x)∇u) = div(a(x)∇τ) = −h′(x) in Br/4.

Using the monotony of u, we have, in particular

∥∥∥∥∥∥
div(a(x)∇(u− τ)) = 0 in Dr/4 = (x0 − r

4 , x0 +
r
4 )× (y0, 1)

u− τ > 0 in Dr/4

u− τ = 0 in Br/4 ∩Dr/4.

Applying the strong maximum principle, we deduce that: u− τ = 0 in Dr/4.
The continuity of u up to Γ1 implies that τ = 1 for x ∈ (x0− r

4 , x0+
r
4 ). This contradicts

div(a(x)∇τ) = −h′(x) > 0.

Case ii). Because u = 0 in Br ∩ [x > x0], we will have

(h(x)γ)x = −div(a(x)∇u) = 0 =⇒ h(x)γ = L(y) a.e. in B+
r .

Therefore, for ξ ∈ D(Br),

∫
Br

a(x)∇u.∇ξ(x, y)dxdy = −
∫
B−

r

h(x)ξx(x, y) +

∫ y0+r

y0−r

L(y)ξ(x0, y)dy.

For uη, as defined in case i), we have for ξ ∈ D(Br/4) and ξ > 0,

∫
Br/4

a(x)∇uη.∇ξ(x, y)dxdy = −
∫
B−

r/4

h(x)ξx(x, y) +

∫ y0+r

y0−r

L(y − η)ξ(x0, y)dy.

Then, we obtain∫
Br/4

a(x)∇(u− uη).∇ξ(x, y)dxdy =

∫ y0+r

y0−r

(L(y)− L(y − η))ξ(x0, y)dy.

Thus ∥∥∥∥∥∥
div(a(x)∇(u− uη)) 6 0 in Br/4

u− uη > 0 in Br/4

u− uη = 0 in B+
r/4

since we have Ly > 0. Indeed, we have (uϵ)y > 0, (Hϵ)
′(t) > 0,

Ly = (h(x)γ)y = h(x)γy in D′(B+
r ), and

(Hϵ(uϵ))y = H ′
ϵ(uϵ)).(uϵ)y −→ γy in D′(Ω).
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As in case i), we conclude that u = τ(x) and get a contradiction. �

Arguing as in the previous proof, we establish the following property of the free
boundary:

Lemma 3.2. The set [y = Φ(x)] ∩ Ω has no horizontal segment.

Proof. Assume that there exist x1, x2 ∈ (0, 1) such that

x1 < x2 and Φ(x) = y0 ∀x ∈ [x1, x2].

Using the monotony of u, we have

u > 0 on (x1, x2)× (y0, 1] and u = 0 on (x1, x2)× (0, y0]

from which we deduce that h(x)γ = L(y) a.e in (x1, x2)× (0, y0).
Let x0 ∈ (x1, x2) and let r > 0 such that ∆r = (x0 − r, x0 + r) × (y0 − r, y0 + r) ⊂
(x1, x2) × (0, 1). For η ∈ (0, r/4), define uη(x, y) = u(x, y − η). Then, for ξ ∈ D(∆r/2),
we have

∫
∆r/2

a(x)∇(u− uη).∇ξ(x, y)dxdy =

∫
∆r/2∩[y<y0]

(L(y − η)− L(y))ξxdxdy

=

∫ y0

y0−r/2

(L(y − η)− L(y))
[
ξ(x0 + r/2, y)− ξ(x0 − r/2, y)

]
dy = 0.

Thus ∥∥∥∥∥∥
div(a(x)∇(u− uη)) = 0 in ∆r/2

u− uη > 0 in ∆r/2

u− uη = 0 in ∆r/2 ∩ [y < y0]

and we get a contradiction as in the proof of the previous lemma.�

4 Regularity of the free boundary

The main result of this section is the following theorem on the regularity of the free
boundary.

Theorem 4.1. Φ is either continuous or left continuous on a point in (0, 1)∩ [Φ(x) > 0].
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Proof. We will adopt the notations in section 2.
Let (x0,Φ(x0)) = (x0, y0) ∈ Ω with Φ(x0) > 0. Set ϵ0 = min(x0, 1− x0)/6.
Using (2.2), for ϵ ∈ (0, ϵ0), there exists δ1 ∈ (0, ϵ3/α) such that:

u(x, y) = |u(x, y)− u(x0, y0)| 6 K∗ϵ3 ∀(x, y) ∈ Bδ1(x0, y0).

1st situation. In applying the oscillation Lemma 3.1 i), assume that

∃(x−
0 , y

−
0 ) ∈ Bδ1(x0, y0), u(x−

0 , y
−
0 ) = 0, x−

0 < x0, |x−
0 − x0| < δ1 < ϵ3/α.

Set

x1 = x−
0 , y = min(Φ(x0), y

−
0 )

Z = (x1, x0)× (y − ϵ, y), D = (x1, x0)× (0, y),

w(x, y) =
λ

2
[(y − f(x))+]2, f(x) = y − ϵ+

∫ x

x1

[a12(s) + C0

a11(s)

]
ds.

We deduce from Lemma 2.2 that u(x, y) 6 w(x, y) and that (u−w)+ ∈ H1
0 (D). We can

write then ∫
D

a(x)∇u.∇(u− w)+dxdy 6
∫
D

h′(x)χ([u > 0])(u− w)+dxdy

∫
D

a(x)∇w.∇(u− w)+dxdy >
∫
D

−θχ([w > 0])(u− w)+dxdy

Subtracting the two inequalities, we obtain

∫
D

a(x)∇(u− w)+.∇(u− w)+dxdy

6
∫
D∩[w=0]

h′(x)χ([u > 0])(u− w)+dxdy +

∫
D∩[w>0]

(h′(x) + θ)(u− w)+dxdy

6
∫
D∩[w>0]

(−h∗ + θ)(u− w)+dxdy

since h′(x) 6 −h∗ < 0 on (0, 1).
First, we choose θ 6 h∗. Then, we use the ellipticity of the matrix a(x) and apply
Poincaré’s inequality to conclude that (u−w)+ = 0 in D. In particular, we have u(x, y−
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ϵ) = 0; that is the free boundary remains above the horizontal line segment (x−
0 , x0) ×

{y − ϵ} which we can express by writing that:

Φ(x) > y − ϵ > Φ(x0)− ϵ3/α − ϵ ∀x ∈ (x−
0 , x0). (4.1)

We conclude from (4.1) that Φ is lower semi continuous at x0 at the left. Therefore Φ is
continuous to the left at this point since it is u.s.c at x0.

2nd situation. Using oscillation Lemma 3.1 i), we assume this time

∃(x+
0 , y

+
0 ) ∈ Bδ1(x0, y0), u(x+

0 , y
+
0 ) = 0, x+

0 > x0, |x+
0 − x0| < δ1 < ϵ3/α.

Set

x1 = x0, x′
0 = x+

0 , y = min(Φ(x0), y
+
0 )

Z = (x1, x
′
0)× (y − ϵ, y), D = (x1, x

′
0)× (0, y),

w(x, y) =
λ

2
[(y − f(x))+]2, f(x) = y − ϵ+

∫ x

x1

[a12(s) + C0

a11(s)

]
ds.

Arguing as in the first situation, we deduce that u(x, y − ϵ) = 0 and

Φ(x) > y − ϵ > Φ(x0)− ϵ3/α − ϵ ∀x ∈ (x1, x
′
0) = (x0, x

+
0 ). (4.2)

We conclude from (4.2) that Φ is lower semi continuous at x0 to the right. So Φ is
continuous at x0 to the right.

Now, by Lemma 3.1 ii), we cannot have u > 0 to the left of the vertical line {x0}×(0, y−ϵ).
Therefore,

∃(x−
0 , y

−
0 ) ∈ Bδ1(x0, y−ϵ)∩[y < y−ϵ], u(x−

0 , y
−
0 ) = 0, x−

0 < x0, |x−
0 −x0| < δ1 < ϵ3/α.

Set

x1 = x−
0 , y′ = y−0

Z = (x1, x0)× (y′ − ϵ, y′), D = (x1, x0)× (0, y′),

w(x, y) =
λ

2
[(y − f(x))+]2, f(x) = y′ − ϵ+

∫ x

x1

[a12(s) + C0

a11(s)

]
ds.
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We then have u(x, y′− ϵ) = 0 and Φ is lower continuous to the left of x0. Indeed, we have

Φ(x) > y′− ϵ > y− ϵ− ϵ3/α− ϵ > Φ(x0)− 2ϵ3/α− 2ϵ ∀x ∈ (x1, x
′
0) = (x−

0 , x0). (4.3)

Finally we conclude from (4.3) that Φ is lower semi continuous at x0 to the left. Therefore
Φ is continuous at this point.�

Remark 4.1. We weren’t able to establish the continuity of Φ completely at any point
in (0, 1) ∩ [Φ(x) > 0]. Indeed, if the situation

iii) u > 0 in B+
r and u = 0 in B−

r ∪ Sr

couldn’t occur, this would complete the proof in situation 1 and show that Φ is continuous
at x0. Our attempt to establish iii) by similar arguments as in the proof of i) and ii) in
Lemma 3.1 led to ∥∥∥∥∥∥

div(a(x)∇(u− uη)) > 0 in Br/4

u− uη > 0 in Br/4

u− uη = 0 in B−
r/4

which prevented us to apply the maximum principle.
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