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Abstract 

Sleep is necessary for cardiometabolic health, but compared to the 1980s, greater 

proportions of adults in developed countries are sleep deprived. The primary objectives 

of this dissertation were three-fold: i) to estimate the contributions of inflammation, 

oxidative stress, antioxidants, and physical activity levels to the causal relationships 

between sleep and cardiometabolic health; ii) to correlate objective vs. subjective 

measures of sleep, and determine if the correlations vary in subpopulations; and, iii) to 

estimate the risk of developing hypertension, diabetes, dyslipidemia and obesity due to 

changes in objectively measured sleep duration and efficiency in a 4 y follow-up. The US 

National Health and Nutritional Examination Survey and the Sleep Heart Health Study 

data were used. Mediation analyses, Pearson’s correlations, and relative risk (RR) 

adjusting for age, sex, education, alcohol, smoking, marital status and body mass index 

were estimated. There are four important findings from this work. First, inflammation, 

oxidative stress, selected antioxidants, and lifestyle and moderate intensity activity levels 

contributed to some of the causal relationships between sleep and cardiometabolic 

health. Second, objective vs. subjective sleep measures correlates moderately but vary 

by sex, age, education, and obesity. Third, an increase in sleep duration increased the 

RR of developing hypertension by 29% in a 4 y follow-up. Finally, a decrease in sleep 

efficiency increased the RR of developing diabetes and dyslipidemia 57% and 65%, 

respectively. In summary, this work provides evidence that dietary and lifestyle factors lie 

on the causal pathway of several sleep and cardiometabolic health relationships, and thus 

explains their importance in cardiometabolic health. It also suggests adults perceive their 

sleep habits reasonably well, but co-morbidities and demographics affect their perception. 
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This work also provides evidence that changes in sleep habits in a relatively short time 

increases the risk of developing hypertension, diabetes, and dyslipidemia. Therefore, 

optimizing the dietary habits, physical activity levels, and sleep behaviours can improve 

the cardiometabolic health of adults. 

Keywords: Sleep, cardiometabolic health, inflammation, oxidative stress, antioxidants, 

physical activity, diabetes, hypertension, dyslipidemia, obesity, objective vs. subjective 

sleep 
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Chapter 1 General Introduction 

Cardiometabolic Health 

Metabolic syndrome (MetS) is a cluster of cardiometabolic risk factors, primarily 

obesity, hyperglycemia, dyslipidemia, and hypertension, that elevates the risk of 

developing cardiovascular disease (CVD), diabetes and certain types of cancers.1 

Specifically, having MetS increases the risk of developing diabetes and cancer by up to 

5-fold, and CVD by 2-fold.2–4 Prevalence of MetS parallels that of obesity; and over a third 

of US adults have MetS.5,6 The pathogenesis of MetS is not fully understood, but insulin 

resistance, chronic inflammation (i.e., inflammatory cytokines), oxidative stress (i.e., 

reactive oxygen species (ROS) and reactive nitrogen species (RNS)), and reduced 

antioxidants are associated with MetS.7–9 Further, research suggests factors associated 

with modernization, such as reduced sleep, physical inactivity, and unhealthy diet are 

contributing to the higher prevalence of cardiometabolic conditions.10–15 

Patterns of Sleep 

Changes in sleep patterns are among the many factors that may be contributing 

to increases in cardiometabolic decline at the population-level. At the most fundamental 

level, sleep is necessary for maintaining the health of almost all species on earth. 

However, the duration of sleep has been declining in humans, particularly since the 

1960s.12 Research suggests that the adults in the US slept about 1.5-2 h less in 2002 

than in the 1960s.12 In 2005, US adults reported sleeping 6.8 h on weekdays and 7.4 h 

on weekends; and the decrease is likely due to societal factors as well as technology use 

(e.g., shift work, double income families, cable, internet, smartphone, and 24 h access to 

stores and other conveniences).16–18 In addition, sleep quality has decreased, and both 
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sleep quality and quantity are essential for maintaining health-related quality of life in 

humans,19 and preventing weight gain, abnormal glucose function, hypertension, and 

hormonal and endocrine dysfunctions.20  

Factors Protective of Cardiometabolic Health 

Protective effects of physical activity and a healthy diet on the risk of developing 

cardiometabolic conditions are well known.21 Indeed, poor sleep, physical inactivity, 

reduced antioxidant capacities, as well as increased systematic inflammation and 

oxidative stress are common features associated with cardiometabolic decline.8,9,21–24 

However, previous research on cardiometabolic health scarcely considered the 

connected relationships between physical activity, dietary factors, and sleep habits.22,24–

27 

Conceptual Framework 

The factors that influence the relationship between sleep and cardiometabolic 

health include individual and community level factors, which has the potential to influence 

sleep habits and alter dietary and physical activity behavoiurs of people, and thus, 

contribute to cardiometabolic decline (Figure 1.1). According to Buxton et al.’s28 

framework, sleep deprivation has the potential to induce immediate changes, such as, 

decrease energy expendure, increase energy intake, increase cortisol levels, and 

decrease insulin sensitivity, by affecting the energy homeostasis and metabolism of 

affected individuals. Over time, this can result in clinical and sub-clinical changes, such 

as a rise in plasma glucose and weight gain, and over longer term this can can lead to 

the development of chronic cardiometabolic diseases. Within this context, this dissertation 

estimates the contributions of physical activity and dietary factors (i.e., oxidative stress, 



3 
 

inflammation, antioxidants) to the causal relationship between sleep and cardiometabolic 

health by evaluating them from a cross-sectional prospective using proxies for 

cardiometabolic health. Further, the longitudinal relationship between changes in sleep 

habits and their associated risk for developing cardiometabolic diseases is estimated after 

adjusting for confounding variables that includes socio-demographic and behavioral 

factors.      
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Figure 1.1 

 

Figure 1.1. The conceptual framework of the factors influencing the relationship between 

sleep and cardiometabolic health.  

The above figure is adapted from Buxton et al.28 
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Chapter 2 Literature Review 

Sleep and Cardiometabolic Health 

The importance of sleep in maintaining optimal cardiometabolic health is well 

known. Early observational and experimental studies have associated short and long 

sleep duration as well as poor sleep quality with several cardiometabolic risk factors or 

MetS.20,22,29–37 The relationship between MetS and sleep duration is U-shaped, where the 

optimal sleep of 7 h is associated with the lowest odds of MetS.38 Studies on sleep and 

metabolic dysfunction in obstructive sleep apnea patients found continuous positive 

airway pressure therapy reduced, and in some cases, reversed metabolic dysfunction.39–

42 In fact, the prevalence of metabolic dysfunction is higher in many clinical populations, 

including obstructive sleep apnea, obesity, diabetes, osteoporosis, arthritis, lung disease, 

cancer, heart disease, hypertension, and depression.43 Sleep duration decreases with 

age, and a significant portion (11%) of the US adults perceive they do not get sufficient 

sleep.44  

In 2013, two meta-analyses evaluated the relationship between sleep duration and 

MetS.38,45 In the first, Xi et al45 pooled 10 studies (9 cross-sectional and 1 cohort) and 

found higher odds MetS for short sleep duration (Odds Ratio (OR): 1.27, 95% CI: 1.09-

1.47), but not long sleep duration (1.07 (0.87-1.32)). In the second, Ju and Choi38 also 

found similar odds of MetS for short sleep duration (OR: 1.27, 95% CI: 1.10-1.48 for cross-

sectional and 1.62 (0.74-3.55) for cohort studies) and long sleep duration (1.23 (1.02-

1.49) from cross-sectional and 1.62 (0.86-3.04) from cohort studies). These studies 

provide evidence for a relationship between sleep and cardiometabolic health from an 

observational perspective. 
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Inflammation, Oxidative Stress, Antioxidants and Cardiometabolic Health 

Chronic inflammation plays a significant role in several diseases, including cancer, 

MetS, rheumatoid arthritis, asthma, hypertension, neurodegenerative diseases, diabetes 

and CVD.46–49 If chronic inflammation is not reduced by endogenous and exogenous 

antioxidants, it can lead to changes that cause disease.49 For instance, inflammation as 

a result of immune cell insults or other endogenous/exogenous stimuli can induce tissue 

destruction and fibrosis, or lead to other age-related diseases.49 Aging is associated with 

decreased immune capacity, decreased antioxidants capacity to combat free radicals, 

and increased accumulation of free radical damage; although it is not a component of 

MetS, it is the single greatest non-modifiable risk factor for cardiovascular risk.46  

A biomarker of inflammation is the C-reactive protein (CRP), which is an acute-

phase hepatic protein that is associated with diabetes, MetS, and CVD.47 γ-glutamyl 

transferase (GGT) can be used as a diagnostic tool to measure oxidative stress and 

chronic inflammation.50 However, the causal pathway between inflammation and 

oxidative stress is not clear, but it has been hypothesized that elevated GGT precedes 

CRP in the development of disease.47 Even within the normal clinical reference range (2-

30 U/L), GGT is associated with obesity, diabetes, insulin resistance, blood pressure, 

non-alcoholic fatty liver, atherosclerosis, and coronary heart disease.47,50–52 Further, GGT 

can predict mortality and morbidity, independent of alcohol abuse and liver disease.50 

Indeed, many studies have found that inflammation and oxidative stress are 

associated with cardiometabolic decline. For example, Bo et al.47 found a linear 

association between MetS and CRP/GGT, and these levels were within the current 

clinical reference range. In Lee et al,’s53 prospective study, GGT activity was increased 
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in MetS participants, while Onat et al.’s 50 prospective cohort study found that GGT was 

a significant predictor of diabetes, hypertension, and MetS risks. Oxidative stress also 

inversely relates to endogenous antioxidants, such as bilirubin52,54 and superoxide 

dismutase.55 Bilirubin, for instance, can scavenge peroxyl radicals, and decreases in the 

serum concentration of bilirubin are associated with CVD, CRP, cardiometabolic decline, 

obesity and aging.7,54 In fact, optimal antioxidant levels protect against oxidative stress, 

and can be found in vitamins A, C, D, and E, and carotenoids.46,56 Some research 

suggests that these antioxidants are also decreased in those with MetS.8,21,56,57  

Emerging research, however, suggests that uric acid, an endogenous antioxidant, 

is elevated in those with hypertension, diabetes, abdominal obesity, and MetS.58–66 A diet 

rich in high-fructose has been associated with the increased serum uric acid levels.61 

From rat studies, Nakagawa et al.67 provided an explanation for the causal role of uric 

acid in fructose diet-induced, which promotes weight gain, insulin resistance, and 

dyslipidemia, and thus, causes MetS.61 Therefore, high fructose diet induces a rise in uric 

acid levels, and contributes to the cardiometabolic decline in humans.  

Dietary Habits, Inflammation, Oxidative Stress, Antioxidants, and Sleep 

In populations with sleep disorders, the relationship between inflammation, 

oxidative stress, antioxidants, and cardiometabolic health is well known.40,41,68,69 The link 

between sleep and dietary habits is also known in free-living adults.24,26,27,70 Indeed, diet 

is a major influence on one’s inflammation, oxidative stress, and antioxidant profile,71–73 

but sleep also has an influence on diet, and thus effects inflammation, oxidative stress, 

and antioxidant levels.10 Sleep loss also increases the appetite74,75 for high fat and high 

carbohydrate foods.27,76 Further, reduced sleep duration and quality have been linked to 
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higher inflammation and oxidative stress level in humans.9,77,78 In populations with sleep 

disorders, the dietary consumptions of antioxidant rich foods improves sleep.79,80 

However, the contributions of dietary factors (i.e., inflammation, oxidative stress, and 

antioxidants) to the relationship between sleep and cardiometabolic health have not yet 

been quantified. 

Physical Activity, Cardiometabolic Health, and Sleep 

The beneficial effect of regular physical activity on cardiometabolic health is well 

known.13,81–83 Both short and long sleep durations are associated with lower levels of 

physical activity, but directionally of this relationship is not clear, and several factors, 

including physical activity may confound the sleep-MetS relationship.22,25,84,85 Physical 

inactivity, a common phenomenon in modern societies, is a major health concern.23,86 In 

the US, over two third of adults are not meeting the physical activity guidelines,87 and a 

linear dose-response relationship between television viewing (a proxy for sedentary time) 

and cardiovascular events exists.86 Specifically, physical inactivity is associated with 

weight gain and obesity, diabetes, hypertension, insulin resistance, and dyslipidemia.86,88–

92 However, research on the relationship between physical activity, sleep, and MetS is 

limited.22,93,94  

Objectively Measured and Self-Reported Sleep in Cardiometabolic Health 

Beyond the relationships described above, the correlation between objectively 

measured sleep (e.g. PSG, actigraphy) and self-reported sleep (e.g. questionnaires) is 

weak-to-moderate and varies across populations.95,96 Specifically, research on the 

correlations between objectively measured and self-reported sleep suggests that the 

correlations are ≤20% in free-living adults,97 ≤24% in those with sleep apnea,98 ≤37% in 
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opioid drug users,99 and ≤50% in healthy older adults.100 However, the correlations 

between objectively measured and self-reported sleep have not yet been adequately 

studied amongst those with MetS. 

To date, only Hall et al.101 studied the correlation between PSG measured and self-

reported sleep (Pittsburgh Sleep Quality Index (PSQI)) in participants with MetS. The 

PSQI collects information on participants usual sleep habits. In this community-based 

cohort study of White, Chinese, and African American middle-aged women, beta and 

delta (NREM stage 3/4) activities were inversely correlated with each other (r=-0.27), and 

with observed slow wave sleep scores (r=-0.26, and r=0.53, respectively).101 Overall, Hall 

et al.101 found only a modest correlation between the two methodologies (r <0.20). 

However, no other studies have evaluated the correction between PSG and self-reported 

sleep variables in MetS vs. non-MetS population. Further, the correlations studies 

typically do not use self-reported data on the night of objective sleep measurement, which 

may affect the correlations in unknown ways. 

Finally, most large sleep studies use self-reported sleep data to determine the 

relationship between sleep and cardiometabolic health,38 and thus, are susceptible to 

recall and healthy responder biases. Indeed, Young et al.95, for instance, found that 

despite reporting poor sleep, postmenopausal women had a more deep sleep (i.e., NREM 

stages 3/4) than premenopausal women. They also found postmenopausal women slept 

more than their premenopausal counterpart (388 vs. 374 min, p=0.05).95,102 While self-

reported sleep studies in general support that sleep duration and quality decreases with 

age, objectively measured sleep research suggests this difference is modest.97 

Therefore, evidence suggests that the correlation between objectively measured and self-
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reported sleep varies by measurement tools, sleep variables, and disease, but this 

relationship has not yet been adequately studied amongst those with MetS, and other 

subgroups. 

Change in Sleep Habits and Cardiometabolic Health 

There is evidence to suggest that humans have comprised on our sleep 

requirements in the last century.12,103 There is also evidence to suggest that poor sleep 

may be an important contributor to the rise in metabolic syndrome, diabetes, obesity, and 

cardiovascular disease.20,104,105 However, little research has been done on the changes 

in sleep habits and their associated cardiometabolic disease risk.106 Several studies used 

baseline self-reported sleep data to provide evidence for the relationship between sleep 

deprivation and cardiometabolic dysfunction.75,107–112 To our knowledge, only one large 

study has evaluated the relationship between changes in sleep duration and its effect on 

diabetes risk.106 In this study, Ferrie and colleagues106 found that an increase in self-

reported sleep duration by ≥2 h in a 5 y follow-up increased the risk of diabetes by 50%. 

Further, most large studies tend to focus on the relationship between sleep duration and 

cardiometabolic health38 while emerging evidence suggests that sleep quality is just as 

important for cardiometabolic health.25 Therefore, the relationship between longer-term 

changes in objectively measured sleep habits (i.e., both sleep duration and quality 

measures) and their associated cardiometabolic risks warrants immediate study.  

Summary, Objectives, and Hypotheses 

Considering only a fraction of US the adults (32%) ever consult their physician 

about sleep habits, but spend billions on sleep aids,44 further research in this area is 

needed to understand primary prevention opportunities that may improve human health. 
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Indeed, research suggests that sleep and cardiometabolic health are independently 

affected by dietary and physical activity,24,25,70,103,113,114 but the mediating effect of these 

factors to the overall relationship between sleep and cardiometabolic health has not yet 

been considered. Therefore, there is a need to quantify the contributions of lifestyle 

factors, such as diet and physical activity, and determine whether they lie on the causal 

pathways of the relationship between sleep and cardiometabolic health. Quantifying the 

mediatory effect of these factors is a crucial step towards understanding the nuances of 

this relationship.10,103,115 To evaluate this research problem (research questions 1), data 

for this dissertation will be drawn from a rich population-level dataset: the US National 

Health and Nutrition Examination Survey (Appendix D:.116 Findings from this work will 

help develop population-level primary prevention targets, such as sleep hygiene, nutrition, 

and physical activity-related health promotion activities. 

A further issue with existing sleep research is the low reliability of self-reported 

sleep data, which is often the only type of data available to assess the link between sleep 

and cardiometabolic health.102 Additionally, emerging evidence suggests varying sleep 

habits and cardiometabolic risks in selected groups, e.g., Blacks, women, and older 

adults, but these subpopulations may also perceive their sleep very differently.97,101,117–

119 Therefore, it is important to estimate the relationship between objective vs. self-

reported sleep measures and determine if the requisite sleep habits vary significantly 

between subgroups.120 Finding answers to this question will help develop assessment 

tools that may be used for clinical and research purposes.95,97,120 Thus, research question 

2 of this dissertation will evaluate the relationship between objective vs. subjective sleep 
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in adults and assesses their variations in subpopulations using a single-night of home-

PSG and self-reported sleep data from the Sleep Heart Health Study (Appendix D:.121  

Finally, the importance of longer-term changes in sleep habits and their associated 

cardiometabolic disease risks have seldom been studied due to the lack of available 

longitudinal data.106,111,122 Most studies on the relationship between sleep and 

cardiometabolic risks also use self-reported baseline sleep data to predict the risk of 

cardiometabolic diseases, and thus, they fail to directly relate the higher risks with sleep 

habits.16,30,108,109,111,123,124 Therefore, estimating the relationship between changes in 

objective sleep habits in a follow-up period and their associated cardiometabolic disease 

risks will help provide stronger evidence and augment our understanding of the temporal 

relationship between sleep and cardiometabolic health. Research question 3 of this 

dissertation will make use of objective, longitudinal data from the Sleep Heart Health 

Study (Appendix D: to address this gap.121 Evidence from this work may be used to 

implement policy changes related to sleep hygiene, e.g., exposure to light exposures 

during the night through street lamps, technology use, and shiftwork.125–127  

Therefore, the overall purpose of this work is to address the knowledge gaps 

identified above, and thus, the three key research questions evaluated in this dissertation 

are: 

1. How much do dietary and lifestyle factors contribute to the causal relationship 

between sleep and cardiometabolic health? 

2. How does self-reported and objectively measured sleep correlate in those with 

MetS? 

3. Do changes in sleep habits increase cardiometabolic disease risks? 
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These research questions are investigated in five distinct manuscripts, as follows: 

Manuscript 1: 

Objective 1: To explore the interrelationship between sleep duration and 

inflammation, oxidative stress, and antioxidant capacities. 

H1: Optimal inflammation, oxidative stress, and antioxidant levels will be 

found amongst those who report a sleep duration of 7 to 8 hours per night.  

Objective 2: To quantify the indirect mediating effect of these factors on the sleep 

duration–cardiometabolic health relationships in free-living adults. 

H2: Inflammation, oxidative stress, and antioxidants will lie on the causal 

pathway of the relationships between sleep duration and cardiometabolic 

risk factors. 

H3: Inflammation, oxidantive stress, and antioxidants will contribte to the 

relationships at least moderately (indirect mediation effect (ab) ≥0.09). 

Manuscript 2: 

Objective 1: To explore the interrelationship between sleep quality and 

inflammation, oxidative stress, and antioxidant capacities. 

H1: Optimal inflammation, oxidative stress, and antioxidant levels will be 

found amongst those who report an overall good sleep quality.  

Objective 2: To quantify the indirect mediating effect of these factors on the sleep 

quality–cardiometabolic health relationships in free-living adults. 

H2: Inflammation, oxidative stress, and antioxidants will lie on the causal 

pathway of the relationships between sleep quality and cardiometabolic risk 

factors. 
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H3: Inflammation, oxidative stress, and antioxidants will contribute to the 

relationships at least moderately (i.e., ab ≥0.09). 

Manuscript 3: 

Objective 1: To estimate the contributions of objectively measured activity levels 

to the causal relationship between sleep and cardiometabolic health. 

H1: Objectively measured activity levels will lie on the causal pathway of 

the relationships between sleep and cardiometabolic risk factors. 

H2: Physical activity levels will contribute to the relationships at least 

moderately (i.e., ab ≥0.09). 

Objective 2: To determine if higher intensities of activity have greater influence, 

similar to a dose-response relationship. 

H3: Higher intensity of physical activity will contribte to the relationships to 

a greater extent than lower intensities. 

Manuscript 4: 

Objective 1: To compare measured sleep patterns with self-reported length and 

quality in people with and without MetS. 

H1: At least a modest correlation (r≥0.25) between objectively measured 

and self-reported sleep will be found amongst those with and without MetS 

will exist. 

Objective 2: To identify whether there are differences in these relationships 

between subgroups of the population (i.e. male vs. female, age groups, 

socioeconomic and behavioral factors, and body mass index (BMI) categories). 

H2: The correlations will significantly vary between the above subgroups 
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Objective 3: To quantify the relationship between objectively measured sleep 

duration and quality with age, sex, MetS, and BMI. 

H3: Reductions in objectively measured sleep parameters will significantly 

result in higher the odds of having MetS or obesity independent of each 

other, and after adjusting for age and sex. 

Manuscript 5: 

Objective 1: To estimate the risk of developing hypertension, diabetes, 

dyslipidemia and obesity following changes in home polysomnography (PSG) 

measured sleep duration and efficiency. 

H1: Changes in objectively measured sleep duration or sleep efficiency by 

≥5% will increase the relative risk of developing hypertension, diabetes, 

dyslipidemia and obesity. 

Objective 2: To characterize changes in total sleep time and sleep efficiency over 

the follow-up. 

H2: From baseline and follow-up, both objectively measured sleep duration 

and sleep efficiency would have decreased  

Objective 3: To determine if any differences exist in disease status as a result of 

changes in sleep habits by disease status. 

H3: Those who developed a cardiometabolic disease will have significantly 

reduced sleep habit between baseline to follow-up compared to those who 

did not develop the disease.  

  



16 
 

Chapter 3 Manuscript 1: Contribution of Inflammation, Oxidative Stress, and 

Antioxidants to the Relationship between Sleep Duration and Cardiometabolic 

Health 

 

This manuscript was published in the journal of Sleep and the reprint of it can be found 

in Appendix A. Co-author of this manuscript is Chris Ardern. Thirumagal Kanagasabai 

and Chris Ardern designed the study, and critically revised the manuscript. Thirumagal 

Kanagasabai performed the statistical analyses and wrote the manuscript. 

Citation: Kanagasabai, Thirumagal, and Chris I. Ardern. “Contribution of Inflammation, 

Oxidative Stress, and Antioxidants to the Relationship between Sleep Duration and 

Cardiometabolic Health.” Sleep 38, no. 12 (2015): 1905–12. 
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Chapter 4 Manuscript 2: Inflammation, Oxidative Stress, and Antioxidants 

Contribute to Selected Sleep Quality and Cardiometabolic Health Relationships: A 

Cross-sectional Study 

 

This manuscript was published in the journal of Mediators of Inflammation and the 

reprint of it can be found in Appendix B. Co-author of this manuscript is Chris Ardern. 

Thirumagal Kanagasabai and Chris Ardern designed the study, and critically revised the 

manuscript. Thirumagal Kanagasabai performed the statistical analyses and wrote the 

manuscript. 

Citation: Kanagasabai, Thirumagal, and Chris I. Ardern. “Inflammation, Oxidative Stress, 

and Antioxidants Contribute to Selected Sleep Quality and Cardiometabolic Health 

Relationships: A Cross-Sectional Study.” Mediators of Inflammation 2015 (2015): 

824589. 
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Chapter 5 Manuscript 3: Physical activity is on the casual pathway and contributes 

to the relationship between sleep and cardiometabolic health: An accelerometer-

based assessment in NHANES 2005-06  

 

The co-authors of this manuscript are Chris Ardern and Michael Riddell. Thirumagal 

Kanagasabai and Chris Ardern designed the study. Chris Ardern and Michael Riddell 

critically revised the manuscript. Thirumagal Kanagasabai performed the statistical 

analyses and wrote the manuscript. 
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Abstract  

OBJECTIVE: To estimate the contributions of objectively measured activity levels to the 

causal relationship between sleep and cardiometabolic health.  

RESEARCH DESIGN AND METHODS: Data from the 2005-06 US National Health and 

Nutritional Examination Survey were used (N=1,226) after excluding for age (<20 y), 

pregnancy, missing sleep or cardiometabolic health variables, and invalid accelerometer 

data. Activity thresholds (counts per minute) were sedentary activity (0–99), light intensity 

(100–759), lifestyle activity (760–2019), moderate intensity (2020–5996), and vigorous 

intensity (≥5999). The bootstrap method was used to estimate the amount of mediation 

or contribution of activity levels to the sleep–cardiometabolic health relationships, which 

were quantified as large (≥0.25) or moderate (≥0.09). 

RESULTS: Lifestyle activity level lies on the causal pathway of several sleep duration 

and cardiometabolic health relationships, most notably for waist circumference (WC), 

systolic blood pressure (BP), and fasting insulin concentration. Light intensity activity level 

also moderately contributed to the sleep duration–WC relationship. Moderate intensity, 

moderate & vigorous intensity, and lifestyle activity levels moderately contributed to the 

sleep quality–WC, and sleep quality–systolic BP relationships. Finally, moderate intensity 

and lifestyle activity levels were large contributors to the sleep quality–fasting insulin 

concentration relationship. 

CONCLUSIONS: Lifestyle activity and moderate intensity activity levels have a large 

effect on the causal relationship between sleep and cardiometabolic health, including WC, 

BP, and fasting insulin concentration. Therefore, promoting these activities is an important 

intervention strategy to improve the cardiometabolic health of adults. 
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Introduction 

Sleep deprivation and poor sleep quality compromise the cardiometabolic health 

of both younger and older adults.25,113 While the optimal sleep duration for health is 

controversial, observational studies suggest that people who sleep 7-8 hours per night 

have higher levels of physical activity,17 lower levels of sedentary activity,128 and better 

cardiometabolic health114 and antioxidant profiles.129 Indeed, an inverse dose-response 

relationship between physical activity and cardiometabolic risk has been shown.130,131 

Independent of physical activity level, sedentary behavior time (i.e., excessive sitting) is 

an emerging concern. In developed countries, over 50% of adults lead a sedentary 

lifestyle, which is associated with obesity, diabetes, insulin resistance, hypertension, and 

dyslipidemia.86 Further, perceived sleep quality affects one’s capacity to engage in 

physical132 and sedentary activities.133  

Observational studies support a moderate-to-strong relationship between 

metabolic syndrome (MetS) and sleep duration, but this relationship may be distorted by 

socioeconomic and behavioral factors.38,133 The association between sleep quality and 

MetS is also affected by similar confounding variables, and greater variability for the 

associations between sleep quality and MetS have been found.25,134 Indeed, one analysis 

suggests that the causal relationship between sleep disturbance and insulin resistance 

may be moderate and bidirectional.135 

Despite the evidence for the presence of these relationships, the interrelated 

relationships between sleep, physical or sedentary activity, and cardiometabolic health in 

adults are rarely explored.  Of note, studies on sleep and cardiometabolic health consider 

physical activity as a confounding (rather than explanatory) variable,16,89,93,118,136,137 and 
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most previous studies on physical activity and cardiometabolic health do not consider 

sleep in any context.138 Therefore, the extent to which various physical activity levels 

contribute to the causal sleep–cardiometabolic health relationship is currently unknown. 

The purpose of our study is to address this knowledge gap, and thus, quantify the 

contributing role of physical activity levels. In our study, we will use accelerometer-

derived, rather than self-reported, physical activity data to minimize recall and healthy 

responder bias associated with the latter form of data. We hypothesize that activity levels 

will lie on the causal pathway between sleep and cardiometabolic health, with higher 

intensities of activity having greater influence, indicating a dose-response relationship.  

Methods 

Study Design, Setting, and Participants 

Data for this analysis was obtained from the US National Health and Nutrition 

Examination Survey (NHANES), a nationally representative cross-sectional study 

designed to assess the health and nutritional status of its non-institutionalized civilian 

population.116 Approximately 10,000 people are sampled bi-annually. Data are collected 

from personal interviews, standardized physical examinations, and laboratory samples.116 

NHANES 2005-2006 cycle with an initial sample of 10,348 individuals was used in this 

study. Subsequent exclusions for age (<20 y), pregnancy, invalid accelerometer data, 

missing cardiometabolic health variables (i.e., waist circumference (WC) [cm], systolic 

blood pressure (BP) [mmHg], diastolic BP [mmHg], triglycerides [mM], high-density 

lipoprotein (HDL)-cholesterol [mM], fasting plasma glucose [mM] and fasting insulin [pM]), 

and missing sleep data were made in sequence. The final analytic sample was 1,226.  

Exposures: Sleep Duration and Quality 
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The Sleep Disorders Questionnaire was administered to participants aged ≥16 y, 

who reported their typical sleep habits for the past month.116 The present analysis used 

data from those aged ≥20 y. A single question was used to collect sleep duration 

information: “How much sleep do you usually get on weekdays or workdays?” Response 

to this question was collected in whole numbers between 1 and 11 h, and truncated at 

≥12 h.116 Based on previous literature, sleep duration was categorized as “very short” (≤4 

h), “short” (5–6 h), “adequate” (7–8 h), and “long” (≥9 h) sleepers.129 Overall sleep quality 

was determined from the following six questions: “‘How often did you have trouble falling 

asleep?”; “How often did you wake up during the night and had trouble getting back to 

sleep?”; “How often did you wake up too early in the morning and were unable to get back 

to sleep?”; “How often did you feel unrested during the day, no matter how many hours 

of sleep you had?”; “How often did you feel excessively or overly sleepy during the day?”; 

and, “How often did you not get enough sleep?”.116 Responses to these questions 

[0=Never; 1=Rarely (1 time a month); 2=Sometimes (2-4 times a month); 3=Often (5-15 

times a month); and, 4=Almost always (16-30 times a month)] were summed to obtain an 

overall sleep quality score.116,136,139 The sleep quality score was subsequently 

categorized as: “good” (0 to <3); “fair” (3 to <7); “poor” (7 to <12); and, “very poor” (≥12 

to 24).136,139  

Outcomes: Cardiometabolic Health  

Metabolic syndrome (MetS), an indicator of cardiometabolic health, was defined 

according to the Joint Interim Statement140 as ≥3 of elevated WC (men: ≥102 cm; women: 

≥88 cm), elevated triglycerides (≥1.69 mM) or medication; low HDL cholesterol (men: 

<1.04 mM; women: <1.29 mM) or medication; elevated BP (systolic: ≥130 mmHg; 



23 
 

diastolic ≥85 mmHg) or medication; and elevated fasting plasma glucose (≥5.6 mM) or 

medication.140 Subsequently, these criteria were summed to create a number of MetS 

components [0, 1, 2, 3, 4, 5] variable.129 Finally, fasting insulin concentration [pM], as well 

as each MetS component listed above were used as individual outcome variables.  

Mediators: Physical Activity and Sedentary activity behaviour 

Objective measures of movement intensity and duration were collected over 7 

consecutive days (AM-7164, ActiGraph, Walton Beach, FL, USA).116 Because the 

ActiGraph monitors were not water-proof, participants were instructed to wear the device 

on the waist during all waking activities that were non-water-related.116,141 We obtained 

the downloadable file from NHANES that contained valid accelerometer data, defined as 

a wear time of ≥10 h per day for 4 days.116 Physical activity monitor data was 

subsequently used to define thresholds for activity in counts per minute (cpm): 0 to 99 for 

sedentary activity, 100 to 759 for light intensity activity, 760 to 2019 for lifestyle activity, 

2020 to 5998 for moderate intensity activity, and 5999 or more for vigorous intensity 

activity.141  

Mediation Model 

The mediation model, a causal model that explains the underlying relationship 

between an exposure and an outcome variable through a third (mediatory) variable, was 

used to estimate the contributions of physical activity levels on the sleep–cardiometabolic 

health relationship.142 Briefly, the mediation model is a series of regression analyses that 

contains four path analyses: 1) path a is a regression between exposure and mediator; 

2) path b is a regression between mediator and outcome while adjusting for the exposure; 

3) path c is a regression between exposure and outcome; and 4) path c’ is a regression 
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between exposure and outcome while adjusting for the mediator.142 In the mediation 

model, the products of ab and c-c’ are mathematically equivalent, and ab is considered 

as the “amount” of mediation or contribution a mediator provides to the relationship 

between an exposure and an outcome.142 

Demographic and Behavioral Characteristics 

Demographic variables used to describe the sample include age, sex, ethnicity, 

income, and education. Age was further categorized as 20 to <40 y, 40 to <65 y, and ≥65 

y. Ethnicity was self-ascribed and categorized as Non-Hispanic White, Non-Hispanic 

Black, Mexican American, and Other. Income was categorized as <$20,000, $20,000-

44,999, and ≥$45,000, and education as <high school, high school, and college.  Alcohol 

intake was categorized as none, <3, and ≥3 drinks per day, and smoking history as 

current (if smoking now), past (if smoked ≥100 cigarettes in one’s life but not a current 

smoker) or never (if smoked <100 cigarettes in one’s life) categories. 129 

Statistical Analyses 

Mean and 95% confidence interval (CI) for continuous variables, and frequency 

(percentage) and 95% CI for categorical variables were determined by sleep duration and 

sleep quality. ANOVA and χ2 tests were used, as appropriate, to test for any differences 

in demographic and behavioral characteristics across groups. The medical exam sample 

weight from the demographics data file was used to weight descriptive analyses.116 For 

the mediation analysis, we used the bootstrap method with 5000 iterations to estimate 

the amount of mediation or contribution (ab) by each mediator, and present the bias 

corrected ab estimates with 95% CI, and p-values.143 The contribution of each mediator 

is also described as “large” (≥0.25), “moderate” (≥0.09), “modest” (≥0.01), and “weak” 
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(<0.01), based on the recommendations of Kenny.142 All analyses were conducted in SAS 

v9.3 (Cary, NC, USA), except when the outcome was binary (i.e. MetS). As per the 

recommendation of Hayes144 mediation analyses for MetS were conducted using SPSS 

v22 (Chicago, IL, USA). Statistical significance was set at an α of 0.05. 

Results 

Demographic and Behavioral Characteristics 

The tables provide descriptive information about the US adult population by sleep 

duration (Table 5.1) and sleep quality (Table 5.2) categories. While those aged 40–65 y 

were more frequently short and very short sleepers (Table 5.1), the age distribution for 

long sleep duration was evenly dispersed. Men tended to report shorter sleep durations, 

but these sex differences became non-existent amongst adequate sleepers and widened 

for long sleepers (i.e., more women tended to report long sleep duration). The ethnic 

disparity between sleep durations was also remarkable: non-Hispanic Blacks had a higher 

proportion of short and very short sleepers, whereas non-Hispanic Whites had a higher 

proportion of adequate and long sleepers. Higher educational attainment was also less 

likely, but current smoking was more likely, amongst very short sleepers. As expected, a 

greater proportion of those reporting shorter sleep duration also reported lower sleep 

quality. 

For sleep quality, although 40–65 year olds were more likely to report poor and 

very poor sleep quality (Table 5.2), they were also more likely to report good and fair 

sleep quality compared to younger and older participants. In men and women, the pattern 

of sleep quality distribution was similar to sleep duration: men reported good sleep quality 

and women reported very poor sleep quality. Sleep quality was also self-reported as 



26 
 

higher amongst non-Hispanic Blacks and Mexican Americans compared with Non-

Hispanic Whites, whereas lower sleep quality was found in those with more education, as 

well as regular drinkers and smokers. Sleep duration and quality were also positively 

related in that very poor quality sleep was associated with a higher proportion of short 

and very short duration sleep, while good, fair and poor sleep were all associated with 

adequate sleep duration.  

Estimates of Mediations or Contributions 

Figure 5.1 and Figure 5.2 provide the estimates of mediation or contribution by 

each mediatory variable to the sleep–cardiometabolic health relationships. Figure 5.1 

describes the sleep duration–cardiometabolic health relationships. Estimates for 

moderate intensity, moderate & vigorous intensity, and vigorous intensity activity levels 

are provided on Figure 5.1(a); and, those for lifestyle activity, light intensity, and 

sedentary activity levels are provided on Figure 5.1(b). Only lifestyle activity and light 

intensity activity levels had significant contributions on several sleep duration–

cardiometabolic health relationships. For the sleep duration–WC relationship, the 

contributions of lifestyle activity and light intensity activity levels were large and moderate, 

respectively (ab estimate (95% CI), p-value: 0.29 (0.09, 0.54), p=0.01; and, 0.14 (0.04, 

0.33), p=0.05, respectively). Similarly, the contributions of lifestyle activity and light 

intensity activity levels on the sleep duration–systolic BP relationship were large and 

moderate: 0.37 (0.11, 0.72), p=0.01; and, 0.12 (0.01, 0.32), p=0.11, respectively. Lifestyle 

activity level also moderately contributed to the relationship between sleep duration and 

diastolic BP: -0.16 (-0.36, -0.048), p=0.04. Finally, the contributions of lifestyle activity and 

light intensity activity levels on the sleep duration–fasting insulin concentration 
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relationship were large: 0.86 (0.30, 1.81), p=0.03; and, 0.59 (0.13, 1.58), p=0.06, 

respectively.  

Figure 5.2 describes the sleep quality–cardiometabolic health relationships. 

Contribution estimates for moderate intensity, moderate & vigorous intensity, and 

vigorous intensity activity levels are provided on Figure 5.2(a); and, those for lifestyle 

activity, light intensity, and sedentary activity levels are provided on Figure 5.2(b). 

Overall, the contributions of moderate intensity, moderate & vigorous intensity, and 

lifestyle activity levels on the sleep quality–WC relationship were moderate: 0.20 (0.05, 

0.38), p=0.02; 0.19 (0.04, 0.37), p=0.03; and 0.16 (0.03, 0.31), p=0.03, respectively. 

Similarly, the same activity measures moderately contributed to the association between 

sleep quality and systolic BP: 0.19 (0.06, 0.39), p=0.02; 0.19 (0.04, 0.39), p=0.03; and 

0.24 (0.06, 0.48), p=0.02, respectively. Similar to its contribution to the relationship 

between sleep duration and diastolic BP, lifestyle activity level also moderately 

contributed to the relationship between sleep quality and diastolic BP: -0.11 (-0.24, -0.03), 

p=0.03. More importantly, the contributions of moderate intensity, moderate & vigorous 

intensity, and lifestyle activity levels on the sleep quality–fasting insulin concentration 

relationship were large: 0.47 (0.11, 1.02), p=0.04; 0.46 (0.08, 1.00), p=0.05 (not 

significant); and, 0.48 (0.10, 1.05), p=0.04, respectively.  

Discussion 

Main findings  

Our aim was to quantify the contributions of activity levels to the various sleep–

cardiometabolic health relationships, and thus, determine whether activity levels lie on 

the causal pathway. We also aimed to determine if the contributions were dose-
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dependent. In these regards, we found that moderate intensity, moderate & vigorous 

intensity, light intensity, and lifestyle activity levels significantly contributed to the 

relationship between sleep and WC, and sleep and BP. To our surprise, moderate 

intensity and lifestyle activity levels had a large contribution to the sleep–fasting insulin 

concentration relationship, while higher intensity activities did not. Thus, the contributions 

of activity levels to the sleep–cardiometabolic health relationships were not dose-

dependent. To our knowledge, this is the first time that the contributions of activity levels 

on the sleep–cardiometabolic health relationship have been evaluated, several of which 

warrant discussion. 

Waist Circumference 

The independent association between self-reported sleep disturbances or physical 

inactivity and elevated WC is generally moderate.93 Our finding that activity levels 

significantly contributed to the sleep–WC relationship is consistent with this work, but our 

lack of finding for a dose-dependent influence by the various activity levels contrasts 

some previous work.130,131 The narrow scope of our analysis (i.e., we evaluated the 

contributions of activity levels to the sleep–WC relationship), and the use of a cross-

sectional dataset to evaluate causal relationships122 may partially explain this 

discrepancy. Nonetheless, the richness of the NHANES dataset allowed us to provide 

initial evidence for the causal relationships on which future work can build. Further, it is 

important to note that we used the bootstrap method, which is a nonparametric test that 

assumes linear relationships between paths,143 and thus, our estimates are likely 

conservative.  
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Our estimates for the contribution of lifestyle activity and light intensity activity 

levels (i.e., comparable to non-exercise activity thermogenesis (NEAT)) on the sleep–WC 

relationship is novel. Previously, NEAT was found to be lower amongst those living with 

obesity,145 while its relationship with sleep was speculative.146 It is still unclear to what 

extent obesity is attributed to the overall decrease in metabolic rate, including NEAT-

based energy expenditure, but some research suggests that obesity is associated with 

increased sleeping metabolic rate137 and nocturnal activity counts.118 The increased 

sleeping metabolic rate may be due to increased sympathetic activity during nocturnal 

hours.147 However, NHANES required participants to remove the accelerometer during 

sleep, and thus, it is unlikely that the bed time activity counts had an effect on our 

findings.116 Indeed, the complex relationship between sleep, nocturnal activities, obesity, 

and cardiometabolic health is an area of research that needs further study. Future studies 

should use accelerometer-based sleep and physical activity data to limit the biases 

associated with self-reports. 

Blood Pressure Control 

Our findings suggest that within the sleep–BP framework, any contributing effects 

of physical activity levels are moderate. This is consistent with other studies that found 

only weak-to-moderate correlations between physical activity intensity and nocturnal 

BP.89 Still, another accelerometer-based study found no association between lifestyle 

activity level and BP,138 while a recent meta-analysis found that exercise only reduces BP 

modestly.148 Being physically active, however, influences the nocturnal dipping of BP 

through the sympathetic and renin–angiotensin systems.89 Therefore, our study provides 

evidence that moderate and lifestyle activities are important contributors to the causal 
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relationship between sleep and blood pressure. However, further research is needed to 

clarify the relationship between physical activity intensity, sleep, and blood pressure. 

Glycemic Control 

Several plausible mechanisms explain the relationship between sleep deprivation 

and insulin resistance, including the rise in evening cortisol levels, and the decrease in 

non-insulin-dependent utilization of glucose in the brain.149 Higher energy expenditure, 

however, is beneficial for insulin sensitivity and glycemic control in diabetes and pre-

diabetes, as it offers opportunities to utilize glucose through insulin-dependent 

pathways.149,150 The low-to-moderate physical activity also has an acute blunting effect 

on insulin levels,151 but physical activity is seldom considered in studies on sleep and 

insulin resistance or glycemic control.16,136 In this respect, our finding that moderate 

intensity and lifestyle activity are large contributors to the relationship between sleep and 

fasting insulin concentration addresses an existing knowledge gap. From a clinical 

perspective, promoting sleep alongside moderate intensity or lifestyle activity is likely to 

have a beneficial effect on the insulin sensitivity of patients.  

Finally, evidence for moderate associations between specific sleep habits and 

impaired glycemic control exists;136 however, longitudinal evidence suggests only a 

modestly elevated diabetes risk amongst short sleepers, after adjusting for self-reported 

baseline physical activity levels.16 In line with this, our results suggest that activity level 

did not significantly alter the relationship between sleep and fasting plasma glucose. 

Several measurement issues may have contributed to this (null) finding, including the 

narrow homeostatic range of plasma glucose in the non-diabetic and medicated diabetic 

populations.152 Innate differences between the types of glucose tests have also been 
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found to moderate the relationship between physical activity and glycemic control, i.e., a 

dose-dependent association between physical activity and 2 h post-challenge plasma 

glucose, but not fasting plasma glucose, exists.153 We were unable to use the 2 h post-

challenge plasma glucose in our study as it was only performed in a subsample (i.e., 

~50% of the sample).116 Future studies using the Homeostatic model assessment 

(HOMA) indices for insulin resistance and β cell function may provide additional 

information on the contributions of activity levels to the broader sleep–glycemic control 

relationship. 

Our work raises an additional question: Can sleep deprivation be compensated by 

increased physical activity levels to yield the same cardiometabolic health benefits of an 

adequate sleeper? If so, what physical activity intensities and volumes are needed to 

compensate for the sleep deprivation? Answering these questions in adult samples will 

help inform guidelines on the joint promotion of sleep, physical activity, and sedentary 

time, similar to those that are in development for children.115 Additionally, dietary factors 

including micronutrients are important contributors to the sleep–cardiometabolic health 

relationships.129,139 

Strengths and limitations 

There are several strengths and limitations associated with our study. First, given 

the cross-sectional nature of the design, future longitudinal studies are needed to confirm 

and augment our findings. Second, in applying our study exclusion criteria, our final 

analytic sample was only a fraction of the initial adult sample, but all analyses were 

bootstrapped with replacement, which provided conservative, bias-corrected indirect 

effect estimates. Although physical activity measures were accelerometer-based, sleep 
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measures were self-reported and susceptible to recall and response bias. There are also 

some notable limitations to the use of accelerometer data, including the possibility that 

data could be lost due to device tampering or processing, that it records only uniaxial 

movement, and the novelty of wearing the device may result in higher activity levels.154 

Finally, all behavioral measures in our study are susceptible to change, and with baseline-

only assessments, we were unable to account for this. 

Conclusions 

This study shows that moderate intensity and lifestyle activity levels, but not 

vigorous intensity or sedentary time, explain the causal relationships of sleep–WC, sleep–

BP, and sleep–fasting insulin concentration.  Thus, promoting these activities is a possible 

intervention strategy to improve the cardiometabolic health of adults. Since physical 

activity and sleep are related behaviours, intervening at the physical activity level may 

also positively influence sleep habits. 
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Table 5.1. Characteristics of the US adult population ≥20 years of age by sleep duration 

Characteristics 
Sleep Duration per Night 

p-value Very Short 
(n=65) 

Short (n=407) 
Adequate 
(n=665) 

Long (n=89) 

Age (Mean (95% CI)) 48.0 (43.6, 52.5) 48.6 (47.0, 50.2) 48.9 (46.4, 51.4) 50.6 (46.5, 54.8) NS 

Age categories (% (95% CI))           

  20 to <40 years 24.5 (8.4, 40.6) 28.3 (23.0, 33.6) 32.1 (27.1, 37.0) 33.2 (21.3, 45.1) 

<0.05 
  

40 to <65 years 65.0 (48.9, 81.1) 56.8 (50.4, 63.2) 48.5 (44.5, 52.6) 37.8 (20.1, 55.6) 

≥65 years 10.5 (3.7, 17.3) 14.9 (9.7, 20.0) 19.4 (13.6, 25.2) 28.9 (18.1, 39.8) 

Sex             

  
Men 57.1 (33.7, 80.4) 53.0 (47.7, 58.3) 50.2 (45.8, 54.6) 34.5 (25.2, 43.8) 

NS 
Women 42.9 (19.6, 66.3) 47.0 (41.7, 52.3) 49.8 (45.4, 54.2) 65.5 (56.2, 74.8) 

Ethnicity              

  

Non-Hispanic White 60.6 (48.3, 73) 64 (55.3, 72.7) 76.7 (70.8, 82.6) 80.8 (72.5, 89.1) 

<0.05 
Non-Hispanic Black 21.5 (11.2, 31.8) 16.1 (10.1, 22) 6.4 (3.3, 9.5) 6.9 (3.3, 10.5) 

Mexican American 7.9 (4.3, 11.6) 8.3 (5.5, 11.1) 7.7 (5.3, 10.2) 5.4 (2.3, 8.6) 

Others 9.9 (0.0, 23.0) 11.6 (7.0, 16.2) 9.2 (5.8, 12.6) 6.9 (0.2, 13.5) 

Education             

  

< High school 23.5 (15.5, 31.6) 16.6 (10.3, 22.8) 14.2 (9.5, 19.0) 12.3 (5.7, 18.9) 

<0.05 High school 39.7 (21.8, 57.6) 27.4 (23.7, 31.2) 24.1 (19.9, 28.2) 24.7 (16.8, 32.6) 

College 36.8 (18.1, 55.5) 56.0 (49.8, 62.1) 61.7 (54.5, 68.9) 63.0 (50.5, 75.6) 

Income             

  

<$20,000 24.3 (12.9, 35.7) 13.7 (8.9, 18.6) 11.7 (8.5, 14.9) 19.1 (9.6, 28.6) 

NS $20,000-44,999 24.4 (17.3, 31.5) 27.6 (20.7, 34.5) 29.4 (22.8, 35.9) 31.6 (20.8, 42.5) 

≥$45,000 51.2 (38.7, 63.8) 58.7 (48.4, 69.0) 59.0 (51.4, 66.5) 49.2 (36.5, 62.0) 

Smoking              

  None 38.1 (23.0, 53.2) 49.5 (42.7, 56.4) 49.4 (43.6, 55.1) 63.3 (54.8, 71.8) 

<0.05   Current 49.0 (38.4, 59.5) 25.1 (16.9, 33.4) 18.9 (13.7, 24.1) 19.6 (10.2, 29.0) 

  Past 12.9 (2.0, 23.8) 25.3 (20.2, 30.5) 31.7 (26.5, 36.9) 17.1 (8.2, 26.0) 

Alcohol Intake             
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  0 drinks per day 38.4 (27.7, 49.2) 35.6 (29.4, 41.8) 30.0 (26.3, 33.8) 36.4 (21.5, 51.4) 

NS   <3 drinks per day 36.0 (25.7, 46.3) 44.1 (35.8, 52.4) 45.8 (41.1, 50.5) 48.7 (33.5, 63.9) 

  ≥3 drinks per day 25.6 (11.4, 39.8) 20.3 (14.1, 26.4) 24.2 (20.6, 27.7) 14.9 (7.1, 22.7) 

Sleep Quality            

  

Good 0.8 (0.0, 2.6) 10.7 (6.1, 15.4) 18.7 (14.0, 23.4) 21.4 (14.6, 28.3) 

<0.05 
Fair 9.3 (1.1, 17.5) 16.9 (12.8, 21.0) 29.4 (24.7, 34.2) 28.0 (14.9, 41.0) 

Poor 13.3 (4.7, 21.9) 32.8 (25.0, 40.5) 36.4 (31.2, 41.6) 35.3 (20.9, 49.7) 

Very Poor 76.5 (65.5, 87.6) 39.6 (31.3, 48.0) 15.5 (11.6, 19.3) 15.3 (7.5, 23.1) 

Mean (95% CI) for continuous variables and frequency % (95% CI) for categorical variables. Sleep Duration are very short (≤4 
h per night), short (5–6 h per night), adequate (7–8 h per night), and long (≥9 h per night). Responses to six sleep quality 
habits were summed and categorized as quartiles as good (<3), fair (≥3 to 7), poor (≥7 to 12), and very poor (≥12). p<0.05, 
two-sided; ANOVA or χ2, as appropriate. NS is not significant. Sum of weights = 57,869,978. 
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Table 5.2. Characteristics of the US adult population ≥20 years of age by sleep quality 

Characteristics 
Sleep Quality 

p-value 
Good (n=256) Fair (n=292) Poor (n=366) 

Very poor 
(n=312) 

Age (Mean (95% CI)) 52.2 (49.3, 55.2) 48.7 (46.0, 51.3) 48.2 (46.1, 50.3) 48.0 (45.6, 50.4) NS 

Age categories (% (95% CI))           

  20 to <40 years 26.2 (18.0, 34.4) 34.1 (26.5, 41.7) 30.1 (26.5, 33.8) 30.7 (23.3, 38.0) 

<0.05 
  

40 to <65 years 48.1 (39.8, 56.4) 45.8 (36.6, 54.9) 53.5 (49.7, 57.4) 55.0 (45.2, 64.7) 

≥65 years 25.7 (18.1, 33.4) 20.1 (14.7, 25.6) 16.3 (11.4, 21.2) 14.4 (8.4, 20.3) 

Sex             

  
Men 63.9 (56.1, 71.7) 50.1 (42.2, 58.0) 48.7 (43, 54.5) 44.4 (37.1, 51.8) 

<0.05 
Women 36.1 (28.3, 43.9) 49.9 (42, 57.8) 51.3 (45.5, 57.0) 55.6 (48.2, 62.9) 

Ethnicity              

  

Non-Hispanic White 59.4 (46.9, 71.9) 73.2 (64.6, 81.8) 76.6 (66.8, 86.3) 73.5 (67.6, 79.4) 

<0.05 
Non-Hispanic Black 13.4 (6.8, 20.1) 9.3 (4.9, 13.7) 7.9 (4.5, 11.2) 11.9 (7.3, 16.4) 

Mexican American 15.8 (9.2, 22.3) 7.4 (3.8, 10.9) 5.8 (3.4, 8.2) 5.9 (3.9, 7.9) 

Others 11.4 (5.1, 17.7) 10.1 (3.3, 16.8) 9.7 (3.3, 16.1) 8.7 (4.7, 12.8) 

Education             

  

< High school 25.1 (18.0, 32.1) 17.1 (9.8, 24.5) 10.6 (6.8, 14.4) 13.8 (10.2, 17.3) 

<0.05 High school 26.1 (18.6, 33.6) 22.3 (17.3, 27.4) 26.2 (21.1, 31.4) 28.7 (24.3, 33.2) 

College 48.8 (37.3, 60.4) 60.5 (52.3, 68.8) 63.1 (55.7, 70.6) 57.5 (52.4, 62.6) 

Income             

  

<$20,000 15.6 (11.1, 20.2) 14.7 (9.0, 20.4) 9.9 (6.4, 13.3) 15.6 (10.4, 20.8) 

NS $20,000-44,999 33.5 (24.3, 42.8) 29.2 (21.6, 36.9) 28.2 (19.4, 36.9) 26.1 (19.8, 32.5) 

≥$45,000 50.8 (41.6, 60.1) 56.1 (47.5, 64.6) 62.0 (51.9, 72.0) 58.3 (49.8, 66.8) 

Smoking              

  None 50.7 (40.1, 61.3) 47.1 (38.5, 55.6) 54.4 (48.1, 60.6) 45.9 (37.6, 54.2) 

<0.05   Current 21.2 (11.7, 30.8) 19.5 (13.5, 25.6) 17.9 (11.8, 24.0) 31.5 (24.8, 38.2) 

  Past 28.0 (19.3, 36.7) 33.4 (24.8, 42.0) 27.7 (21.6, 33.9) 22.6 (17.0, 28.3) 

Alcohol Intake             
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  0 drinks per day 38.7 (30.9, 46.4) 33.2 (25.6, 40.9) 29.4 (22.1, 36.6) 32.5 (26.1, 38.9) 

NS   <3 drinks per day 38.8 (30.1, 47.5) 46.6 (38.3, 54.8) 47.3 (39.8, 54.8) 44.2 (36.6, 51.9) 

  ≥3 drinks per day 22.5 (15.7, 29.3) 20.2 (16.9, 23.5) 23.3 (18.3, 28.4) 23.3 (18.1, 28.4) 

Sleep Duration            

  

Very Short 0.3 (0.0, 0.8) 1.9 (0.0, 3.9) 1.9 (0.4, 3.5) 14.7 (9.9, 19.5) 

<0.05 
Short 21.0 (13.5, 28.6) 20.9 (13.9, 28.0) 29.3 (24.3, 34.3) 46.7 (35.9, 57.5) 

Adequate 69.4 (60.8, 78.1) 69.5 (62.2, 76.7) 61.8 (54.3, 69.3) 34.6 (25.4, 43.9) 

Long 9.3 (5.3, 13.3) 7.7 (5.0, 10.4) 7.0 (2.5, 11.5) 4.0 (1.3, 6.6) 

Mean (95% CI) for continuous variables and frequency % (95% CI) for categorical variables. Responses to six sleep quality 
habits were summed and categorized into quartiles as good (<3), fair (≥3 to 7), poor (≥7 to 12), and very poor (≥12). Sleep 
Duration are very short (≤4 h per night), short (5–6 h per night), adequate (7–8 h per night), and long (≥9 h per night). p<0.05, 
two-sided; ANOVA or χ2, as appropriate. NS is not significant. Sum of weights = 57,869,978. 
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Figure 5.1 

Activity Level 

 



38 
 

Figure 5.1. The contribution of a) moderate, moderate & vigorous, and vigorous activities, 

b) lifestyle activity, light, and sedentary activity activities on the sleep duration–

cardiometabolic health relationship 

MetS. metabolic syndrome; #MetS, number of MetS components; WC, waist 

circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; TG, 

triglycerides; HDL, high-density lipoprotein cholesterol; Glu, fasting plasma glucose; 

Insulin, fasting insulin concentration; ab estimate, amount of mediation or contribution by 

the mediatory variable; CI, confidence interval. *p<0.05, 95% CI are bias-corrected, 

bootstrapped values. 
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Figure 5.2 

Activity Level 
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Figure 5.2. The contribution of a) moderate, moderate & vigorous, and vigorous activities, 

b) lifestyle activity, light, and sedentary activity activities on the sleep quality–

cardiometabolic health relationship 

MetS. metabolic syndrome; #MetS, number of MetS components; WC, waist 

circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; TG, 

triglycerides; HDL, high-density lipoprotein cholesterol; Glu, fasting plasma glucose; 

Insulin, fasting insulin concentration; ab estimate, amount of mediation or contribution by 

the mediatory variable; CI, confidence interval. *p<0.05, 95% CI are bias-corrected, 

bootstrapped values. 
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Abstract 

Study Objectives: 1) To compare measured sleep patterns with self-reported length and 

quality in people with and without MetS; 2) to identify whether there are differences in 

these relationships between subgroups of the population (i.e. male vs. female, age 

groups, socioeconomic and behavioral factors, and body mass index (BMI) categories); 

and, 3) to quantify the relationship between objectively measured sleep duration and 

quality with age, sex, MetS, and BMI.  

Design: Cross-sectional analysis of the Sleep Heart Health Study 1995-1998 exam cycle. 

Setting: Multi-cohort study with non-probability samples of US residents.  

Participants: Age ≥39 y with valid home-polysomnography (PSG), self-reported sleep 

and cardiometabolic health data (N=5,204). 

Interventions: N/A. 

Measurements and Results: Objective vs. subjective sleep measures correlate 

moderately (r=0.27–0.48) and vary by subgroups (r=0.25–0.56). Having both MetS and 

obesity was associated with 9.41 min and 5.76 min less PSG measured sleep duration 

after adjusting for age, sex, and BMI or MetS. Being overweight or obese was the 

strongest predictor of MetS, while objectively measured sleep duration, efficiency and 

latency contributed minimally.  

Conclusions: This study found that adults perceive sleep habits reasonably well, but co-

morbidities and demographics affect their perception. Living with obesity reduces sleep 

duration and quality, and being overweight or obese increases the odds of MetS. 

Keywords: Objective vs. Subjective Sleep, Correlations, Obesity, Metabolic Syndrome, 

Sleep Duration, Sleep Efficiency, Sleep Latency 
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Introduction 

Obtaining sufficient sleep on a regular basis is necessary for maintaining 

cardiometabolic health of humans.155 Seven to 8 h of sleep per night is associated with 

the lowest metabolic syndrome (MetS) prevalence, and shorter sleep durations worsen 

the cardiometabolic health of both adults and children.38,75 Some evidence also suggests 

a relationship between sleep quality and cardiometabolic health. 25,134 However, sleep 

quality is inconsistently defined, which makes it difficult to compare studies.108  

Additionally, most large sleep studies use self-reported sleep information, and 

thus, they are susceptible to healthy responder bias. Indeed, systematic over-reporting of 

sleep duration is common, but over-reporting also varies in subpopulations. 102 

Lauderdale and et al.,102 for instance, found that 5 h sleepers over-reported sleep duration 

by 1.2 h compared to actigraphy data; 7 h sleepers over-reported sleep duration by 0.4 

h. Research also suggests perceived sleep varies across the lifespan.97 One study 

suggests postmenopausal women get more sleep and better quality sleep than 

premenopausal women,95 while ageing is a commonly accepted reason for declining 

sleep duration and quality.97 Other studies have also found that the correlation between 

objectively measured (e.g. polysomnography (PSG), actigraphy) and self-reported sleep 

(e.g. questionnaires) is weak-to-moderate.98–100 To date, only Hall et al.101 studied the 

correlation between PSG measured and self-reported sleep variables (r<0.20) in 

participants with MetS. However, this study compared objectively sleep measures with 

participants’ usual sleep habits rather than the night during which the objective measures 

were collected.101 This appears to be a common practice in sleep research, and it may 
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be an inaccurate representation of the correlation between objective vs. subjective sleep 

measures. 

Although the relationship between MetS and obesity, as well as sleep habit is well  

known,38,74,75,140 yet large studies using objectively measured sleep to evaluate the 

simultaneous relationship with MetS and obesity are rare.101 Objectively measured sleep 

duration and quality are, however, reduced in those with MetS101 and obesity.118. In Hall 

et al.’s 101 study, obesity was considered as a confounding variable, and they found that 

the associations between MetS and sleep efficiency, Non-Rapid Eye Movement (NREM) 

stage 1, or Apnea-Hypopnea Index (AHI) remained significant independent of obesity in 

middle-aged women.  Indeed, the simultaneous relationship between objectively 

measured sleep parameters, obesity and MetS remains to be elucidated in the general 

adult population. 

Therefore, the objectives for this study are 1) to compare measured sleep patterns 

with self-reported length and quality in people with and without MetS; 2) to identify 

whether there are differences in these relationships between different populations (i.e. 

male vs. female, age groups, socioeconomic and behavioral factors, as well as body 

mass index (BMI) classes); and, 3) to quantify the relationship between objectively 

measured sleep duration and quality with age, sex, MetS, and BMI classes. With regards 

to the first two objectives, we hypothesize at least a modest correlation (r≥0.25) between 

objectively measured and self-reported sleep amongst those with and without MetS, as 

well in subpopulations. With regards to the third objective, we hypothesize that reductions 

in objectively measured sleep parameters will significantly increase the odds of having 

MetS or obesity independent of each other.  
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Methods 

Participants 

To assess our hypotheses, we accessed the Sleep Heart Health Study (SHHS) 

data through sleepdata.org, courtesy of the National Sleep Research Resource.121 The 

US National Heart, Lung, and Blood Institute funded SHHS, which contains de-identified 

information on participants from six individual studies: Atherosclerosis Risk in 

Communities Study, Cardiovascular Health Study, Framingham Heart Study, Strong 

Heart Study, New York Hypertension Cohorts, Tucson Epidemiologic Study of Airways 

Obstructive Diseases and the Health and Environment Study. The SHHS dataset 

contains information on participants (initial n=6,441) age ≥39 y, whose sleep and 

cardiometabolic information were collected during two follow-up periods (1995-1998 and 

2001-2003). For this analysis, only data from 1995-1998 was used (n=5,804). We 

excluded participants without reliable REM/NREM data (n=85) or missing cardiometabolic 

health variables (i.e., waist circumference, triglycerides, systolic and diastolic blood 

pressures, HDL cholesterol, diabetes status) for a final analytical sample of 5,204. Ethics 

approval was obtained from York University (Toronto, Canada), and was submitted to 

National Sleep Research Resource to gain data access.  

Sleep variables 

Home-PSG-derived sleep measures includes time in REM (original variable name: 

scremp), NREM stage 1 (scstg1p), NREM stage 2 (scstg2p), NREM stage 3/4 (scstg34p), 

total sleep time (slp_time), sleep latency (slp_lat), sleep efficiency (slp_eff), time in bed 

(time_bed), WASO (wake after sleep onset, waso) and arousal Index (ai_all). Subjectively 

measured sleep variables came from the sleep habits questionnaire and the morning 
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survey. Sleep habits questionnaire variables were Epworth Sleepiness Scale (ess_s1), 

time to fall asleep (mi2slp02), weekday sleep time (hrswd02), weekend sleep time 

(hrswe02), trouble falling asleep (tfa02), unrested days (funres02), waking up too early 

(wu2em02), waking up during night (wudnrs02), not enough sleep (nges02), use of 

sleeping pills (tkpill02), and overly sleepy (sleepy02). The morning survey variables were 

total sleep time (60 x hwlghr10 + hwlgmn10), time to sleep (minfa10), sleep restful 

(rest10), sleep quality (hwwell10), and difficulty falling asleep (diffa10). In the manuscript, 

we have superscripted PSG for home-PGS and MS for morning survey to indicate the 

tool used to collect the specific sleep variable. 

Metabolic syndrome 

We used a modified version of the Joint Interim Statement for MetS140 because 

fasting glucose information was not available in the pooled dataset. The diagnostic cut-

offs were: 1) elevated waist circumference (original variable name: waist, ≥102 cm (Men) 

and ≥88 cm (Women)), 2) elevated triglycerides (trig, ≥1.69 mM) or the use of medications 

indicated for dyslipidemia, 3) low HDL cholesterol (hdl, <1.04 mM (Men) and <1.29 mM 

(Women)), 4) and, elevated blood pressure (systbp, ≥130 mmHg (systolic), or diasbp, ≥85 

mmHg (diastolic)) or the use of medications indicated for hypertension.140 In lieu of 

elevated fasting plasma glucose (≥5.6 mM), we used the history of diabetes (parrptdiab) 

or the use of medication/insulin indicated for hyperglycemia. Therefore, the presence of 

≥3 of the diagnostic cut-offs indicates MetS. 

Demographics and Behavioral Characteristics 

Age (age_s1), sex (gender), MetS, ethnicity (ethnicity and race), education 

(educat), alcohol (alcoh), cigarette pack-years (cgpkyr), smoking status (smokstat_s1), 
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marital status (mstat), body mass index (bmi_s1) were used to describe the sample. Age 

was categorized as 39-54, 55-64, 65-74, and 75-90 y. The original race variable was 

categorized as Whites, Blacks, and Others. Using the ethnicity variable, we further 

identified the ethnic group of Hispanic or Latino, and categorized the remaining 

participants as Others. Education was categorized based on the number of years in 

school (≤10, 11-15, 16-20, and >20 y). Alcohol intake (drinks per day) was categorized 

as none, moderate, and heavy using the sex specific cut-offs (i.e. moderate: ≤2 (Men), 

and ≤1 (Women); heavy: >2 (Men), and >1 (Women)), as per the dietary guidelines for 

Americans.156 The categorization for smoking status (never, current, and former) and 

marital status (married, widowed, divorced/separated, and never married) were from the 

data source, while the body mass index (BMI: kg/m2) was categorized as normal weight 

(<25), overweight (25 to <30), or obese (≥30). 

Statistical Analysis 

MetS status and sex stratified mean (95% confidence interval (CI)) for continuous 

variables, and frequency (n) (%) for categorical variables were determined. T-tests and 

χ2 were used, as appropriate, to make between and within group comparisons. Pearson’s 

correlation test was used to estimate the correlation between home-PSG-derived and 

self-reported sleep variables. To detect a modest correlation of ≥0.25 with 80% power, a 

sample size of 97 participants is required. Correlation analyses were also stratified by 

MetS status, sex, age, ethnicity, education, smoking, alcohol, marital status, and BMI to 

test the same hypothesis. To detect significant differences between subgroups (e.g., men 

vs women), the z-score for the difference between two correlations was used.157 From 

the correlation analyses, the following home-PSG-derived sleep measures were identified 
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as variables of interest for the subsequent multivariable regression analyses: total 

sleepPSG, sleep latencyPSG and sleep efficiencyPSG. β coefficients (95% CI) were estimated 

in multiple linear regressions that included age, sex, MetS status, and BMI as covariates. 

Using the same variables, multivariable logistic regressions were performed to estimate 

the odds for having MetS. All analyses were conducted in SAS v9.3 (Cary, NC, USA) and 

statistical significance set at an α of 0.05. 

Results 

Those with MetS were slightly older, less educated, non-drinkers, smoked greater 

cigarette pack years compared to non-MetS, but smoking status did not significantly differ 

by MetS status (Table 6.1). The prevalence of obesity, men of White ethnicity, women of 

Black ethnicity, and women in widowhood were higher in the MetS group. Compared to 

women, men with MetS were younger while non-MetS men were older. Men also reported 

higher educational attainment, drank and smoked more compared to women. In addition, 

a higher prevalence of MetS was found in both men and women living with excess body 

weight. 

In general, sleep quantity from the home-PSG, sleep habits questionnaire, and the 

morning survey were significantly lower amongst those with MetS, while sleep quality was 

poorer (Table 6.2). Women obtained more total sleepPSG, NREM stage 3/4PSG (i.e., deep 

sleep), and had greater sleep efficiencyPSG (i.e., time spent asleep over time spent in bed) 

compared to men, but women also had greater sleep latencyPSG (i.e., time taken to fall 

asleep). These patterns were similar in the self-reported sleep measures as well. 

Figure 6.1 contains the correlations for home-PSG vs. selected morning survey variables 

(i.e., total sleep timeMS and time to sleepMS). We found that total sleepPSG, time in bedPSG, 
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and NREM S2PSG positively correlated with total sleep timeMS (Figure 6.1a), while sleep 

efficiencyPSG negatively correlated with time to sleepMS (Figure 6.1b). The grey shaded 

area in the graphs is the null hypothesis region (r <0.25). The sleep habits questionnaire 

variables did not correlate ≥0.25 with any of the home-PSG variables (data not shown). 

MetS status did not affect participants’ ability to perceive total sleep timeMS, as the 

correlation between total sleep timeMS  and home-PSG variables did not vary by MetS 

status (Figure 6.2a), but the correlations of total sleep timeMS  vs. total sleepPSG and sleep 

efficiencyPSG were higher in women (b). The correlations of total sleep timeMS vs. total 

sleepPSG and time in bedPSG were also greater in younger people (c). Those with ≥11 y of 

education (d), not divorced/separated (e), or heavy drinkers (f) also had higher 

correlations of total sleep timeMS vs. time in bedPSG. Finally, normal weight people 

perceived sleep duration better than those living with obesity do—the correlation of total 

sleep timeMS vs. total sleepPSG was significantly higher in normal weight people compared 

to those living with obesity (g). The correlations between total sleep timeMS and home-

PSG variables were not different and ≥0.25 for ethnicity or smoking status (data now 

shown).  

Figure 6.3 contains the correlations between time to sleepMS, an indicator of sleep 

latency, and home-PSG variables. The correlation between time to sleepMS and sleep 

efficiencyPSG was higher amongst those with MetS (a), while the correlation between time 

to sleepMS and sleep timePSG was negative but higher in women (b). Older people (c), 

Blacks (d), those with 16-20 y of education (e) and heavy drinkers (f) had greater 

correlations between perceived and objective sleep latency (i.e., time to sleepMS and 

sleep latencyPSG). The correlations between perceived and home-PSG sleep latency 
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variables were not significantly different by marital status, smoking history or BMI classes 

(data not shown). 

Having MetS and obesity was associated with 9.41 m and 5.76 m lower total 

sleepPSG, respectively, in our mutually adjusted models with age, sex, and MetS and BMI 

(Table 6.3). In these models, having MetS also increased sleep latencyPSG and decreased 

sleep efficiencyPSG; being a woman increased both sleep latency and efficiency, and; 

living with obesity decreased sleep efficiency by approximately 1%. However, being 

overweight or obese was strongly associated with having MetS after adjusting for age, 

sex, and BMI (Table 6.4). Sex and age also predicted MetS, but total sleepPSG, sleep 

latencyPSG and sleep efficiencyPSG had little effect.  

Discussion 

The primary objective of our study was to determine the correlation between 

objective vs. subjective measures of sleep. In this regard, we hypothesized that the 

correlations will be at least modest (r≥0.25), and that they would vary in subpopulations. 

We found that selected objective (i.e., total sleepPSG, time in bedPSG, and NREM stage 

2PSG) and subjective (total sleep timeMS) variables correlated moderately. Similarly, sleep 

efficiencyPSG and sleep latencyPSG also moderately correlated with time to sleepMS. These 

correlations varied amongst some subpopulations: age, sex, MetS, BMI, marital status, 

ethnicity, education and alcohol intake. Our secondary objective was to quantify the 

relationship between objectively measured sleep duration (sleep timePSG) and quality 

(sleep efficiencyPSG and sleep latencyPSG) with age, sex, MetS, and BMI classes in 

mutually adjusted models. Our findings suggest that women get more sleep even after 

adjusting for age, MetS and BMI, but having MetS or living with obesity reduced sleep 
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timePSG. However, sleep latencyPSG was higher in women or those with MetS, while sleep 

efficiencyPSG was lower in those with MetS. On the other hand, living with obesity was 

associated with the largest odds of having MetS, and sleep had little effect after adjusting 

for age, sex, and BMI. 

Correlations and variations by subpopulations 

Our results are consistent with other studies on the correlation between PSG and 

self-reported sleep.95,97–102,158 However, most studies compare PSG or objectively 

measured sleep measures with participants’ usual sleep habits—akin to the sleep habits 

questionnaire data in our study—rather than the self-reported sleep variables based on 

the night of the objectively measured sleep, and thus, fail to account for the reduction in 

sleep duration and quality associated with using PSG.97 Indeed, our correlations between 

the sleep habits questionnaire variables and home-PSG sleep variables were not ≥0.25, 

and our data suggests that using PSG reduces even the perceived sleep duration and 

quality. Therefore, comparing the morning survey variables with home-PSG is a better 

reflection of the sleep duration and quality obtained during the night of PSG. However, 

the lower sleep duration and quality during the night of PSG may have reduced 

participants’ ability to perceive sleep.159 

The novelty of our study also lies in our subpopulation analyses. Women, for 

instance, in addition to obtaining more sleep, are also more perceptive of their sleep 

habits, but their ability to perceive sleep may decrease with age.95 Indeed, women are 

more likely to over report sleep problems with advancing age, even though advancing 

age is commonly associated with decreased sleep duration and quality in both sexes.97 

Subjective reporting of sleep is also  influenced by the overall health status of the 
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participants, i.e., healthier subjects have better perceived sleep than their counterparts, 

and whether they consider their sleep habits as problematic.159 Therefore, clinicians 

should use objective tools to track their patients’ sleep habits; however, discretion is 

needed when choosing the appropriate tool: PSG can interfere with the sleep of the 

participants, and actigraphy is less effective in those with insomnia.102 

Our finding that time to sleepMS and sleep latencyPSG correlated better amongst 

people of retirement age augments current knowledge that support increased sleep 

latency with age—a difference of only 10 minutes between 20 and 80 y olds.160 However, 

it is not clear why older adults are better able to perceive sleep latency than younger 

adults. The earlier bed time and napping behavior in older adults may have increased 

their alertness prior to falling asleep.161,162 However, cognitive and physical health 

declines associated with aging may explain the decrease in correlation we found for ≥75 

y olds.163 

 It is also not clear why the correlation between time to sleepMS and sleep 

latencyPSG for Blacks and heavy drinkers in our study was better than their counterparts, 

but sleep architecture is different in African Americans164,165 and drinkers.166 Perhaps, the 

shorter sleep duration associated with these groups166,167 made them more perceptive of 

their sleep latency as well. Finally, we found that in some instances time to sleepMS and 

sleep efficiencyPSG also correlated, but this comparison is not appropriate since they are 

not the same parameter of sleep quality.168 

Multivariable analyses 

Our finding that having MetS or living with obesity reduced total sleepPSG aligns 

with previous literature on sleep duration and MetS,38 and obesity.75 However, the 
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decrease was only <10 minutes after adjusting for age, sex, obesity or MetS—this small 

difference was previously unknown, and therefore, our study extends current knowledge. 

In experimental studies, only subtle changes in endocrine and metabolic health were 

found when acute sleep curtailment of hours were used.74,149,169 However, sleep studies 

in general raise an important question regarding the best sleep duration for endocrine 

and metabolic health. To this end, the recent consensus statement on sleep duration for 

adults recommends ≥ 7 h of sleep on a regular basis for overall health.170  

The relationships of sleep quality with MetS and obesity, however, has greater 

variability.25,118,134 Therefore, we focused our analyses on sleep latencyPSG and sleep 

efficiencyPSG, and found that only small but significant differences exist independent of 

other factors. This study, however, suggests that sleep efficiencyPSG, the percentage of 

the total time spend sleeping out of the overall time spend in bed, may be more important 

for MetS and obesity than sleep latencyPSG (the time taken to fall asleep). The clinical 

importance of sleep efficiency vs. sleep latency warrant further study, but exogenous 

melatonin has been found to shorten sleep latency and thus improve sleep efficiency.171 

Indeed, sleep latency and sleep efficiency are inversely related, which was confirmed in 

our study as well. Nevertheless, when we flipped the model and evaluated the effect of 

the PGS-derived sleep variables and their associations with MetS, sleep had little effect 

on the odds of having MetS, independent of being overweight or living with obesity, age, 

and sex. Therefore, preventing, managing and treating obesity is likely the best strategy 

against cardiometabolic decline. 

Limitations 
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An advantage of our study is the richness of the dataset. We had access to both 

objective and subjective sleep measures, and subjective sleep variables included the 

typical sleep habits as well as a morning survey. However, the home-PSG data were only 

collected for 1 night, which may not be an accurate reflection of participants’ usual sleep 

duration and quantity. Since our analysis is cross-sectional in nature, we are also unable 

to assess whether the exposure occurred before the outcome, i.e., we cannot infer 

causality. Further, the novelty of wearing the PSG may have affected the perceived sleep 

measures in unknown ways, similar to the effect of wearing accelerometer to collect 

activity data.154 Also, other important factors that affect sleep and cardiometabolic health 

are physical activity and diet, which were not available in this dataset. The dataset is also 

nearly 2 decades old, and thus, may not be reflective of today’s population. Finally, the 

lab-PSG is considered the gold standard to assess sleep objectively, while our study used 

home-PSG derived data. However, research suggests only minimal variations between 

the two methodologies.172 

Conclusions 

Our research found that adults perceive sleep habits reasonably well, but co-

morbidities and demographics affect their perception. Living with obesity or having MetS 

reduces sleep quantity and quality; and, sleep has a significant, but modest, association 

with MetS after adjusting for age, sex, and obesity. Prospective studies using objective 

measures of sleep are needed to better understand the relationship between changes in 

sleep habits and cardiometabolic health. 



55 
 

Table 6.1. Characteristics of the study sample 

    Non-MetS (n=3,262) MetS (n=1,942) 
p 

value3 Characteristics 
Men 

(n=1,541) 
Women 

(n=1,721) 

p 

value1 
Men (n=878) 

Women 
(n=1,064) 

p 

value2 

Age (mean (95% CI)) 63.7 (63.1, 64.2) 62.5 (61.9, 63.0) <0.05 64.1 (63.5, 64.8) 66.4 (65.7, 67.0) <0.05 <0.05 

Age category (n (%))        

  39-54 y 325 (21.1) 438 (25.5) 

<0.05 

154 (17.5) 141 (13.3) 

<0.05 <0.05 
  55-64 y 483 (31.3) 566 (32.9) 285 (32.5) 299 (28.1) 

  65-74 y 452 (29.3) 410 (23.8) 292 (33.3) 355 (33.4) 

  75-90 y 281 (18.2) 307 (17.8) 147 (16.7) 269 (25.3) 

Ethnicity        

  White 1320 (85.7) 1446 (84.0) 

NS 

784 (89.3) 900 (84.6) 

<0.05 NS 
  Black 133 (8.6) 162 (9.4) 43 (4.9) 94 (8.8) 

  Hispanic or Latino 56 (3.6) 84 (4.9) 33 (3.8) 56 (5.3) 

  Others 32 (2.1) 29 (1.7) 18 (2.1) 14 (1.3) 

Education        

  ≤10 y 102 (7.1) 107 (6.8) 

<0.05 

90 (10.8) 118 (11.8) 

<0.05 <0.05 
  11-15 y 630 (43.8) 860 (54.3) 384 (45.9) 626 (62.8) 

  16-20 y 601 (41.8) 569 (35.9) 317 (37.9) 239 (24.0) 

  >20 y 104 (7.2) 48 (3.0) 46 (5.5) 14 (1.4) 

Alcohol        

  None 605 (41.0) 981 (59.9) 

<0.05 

433 (52.8) 740 (73.4) 

<0.05 <0.05   Moderate 246 (16.7) 202 (12.3) 117 (14.3) 79 (7.8) 

  Heavy 624 (42.3) 454 (27.7) 270 (32.9) 189 (18.8) 

Cigarette (pack-years) 16.1 (15, 17.2) 8.8 (8, 9.6) <0.05 21.3 (19.5, 23.1) 10.9 (9.7, 12.2) <0.05 <0.05 

Smoking status        

  Never 585 (38.2) 984 (57.5) 

<0.05 

298 (34.2) 605 (57.0) 

<0.05 NS   Current 142 (9.3) 160 (9.4) 86 (9.9) 86 (8.1) 

  Former 803 (52.5) 567 (33.1) 487 (55.9) 370 (34.9) 

        

        

Marital Status        
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  Married 1353 (88.3) 1235 (72.6) 

<0.05 

778 (89.5) 710 (67.1) 

<0.05 <0.05 

  Widowed 38 (2.5) 203 (11.9) 21 (2.4) 187 (17.7) 

  
Divorced/Separat
ed 

109 (7.1) 213 (12.5) 55 (6.3) 131 (12.4) 

  Never Married 33 (2.2) 51 (3.0) 15 (1.7) 30 (2.8) 

Body Mass Index        

  Normal Weight 472 (30.6) 747 (43.4) 

<0.05 

70 (8.0) 171 (16.1) 

<0.05 <0.05   Overweight 795 (51.6) 628 (36.5) 361 (41.1) 400 (37.6) 

  Obese 274 (17.8) 346 (20.1) 447 (50.9) 493 (46.3) 

Mean (95% CI) for continuous variables and n (%) for categorical variables. Alcohol cut-offs are sex-specific (for men heavy is >2 drinks per 
day, and for women heavy is >1 drink per day). T-test or χ2, as appropriate between 1Non-MetS men vs. women, 2MetS men vs. women, 
and 3Non-MetS vs. MetS. NS, not significant. MetS, metabolic syndrome.  
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Table 6.2. Home Polysomnography, self-reported sleep habits, and the morning survey-based sleep duration and quality 

measures by MetS status in men and women 

 

Sleep measure 

Non-MetS (n=3,262) MetS (n=1,942)  

  Men (n=1,541) 
Women 

(n=1,721) 
Men (n=878) Women (n=1,064) 

p 
value

1 

H
o

m
e

-P
S

G
 

REM (m), mean (95% CI) 70.3 (68.9, 71.7) 75.1 (73.8, 76.5)* 64.2 (62.4, 66.0)§ 68.9 (67.2, 70.7)*§ <0.05 

NREM Stage 1  (m) 21.8 (21.1, 22.6) 15.8 (15.2, 16.3)* 21.5 (20.5, 22.5) 15.8 (15.2, 16. 5)* NS 

NREM Stage 2 (m) 215.5 (212.8, 218.1) 201.9 (199.2, 204.7)* 214.9 (211.1, 218.6) 192.9 (189.2, 196.5)*§ <0.05 

NREM Stages 3/4 (m) 46.6 (44.8, 48.4) 80.9 (78.9, 83.0)* 45.6 (43.3, 48.0) 78.5 (75.6, 81.2)* NS 

Total Sleep (m) 352.6 (349.2, 355.9) 369.3 (365.8, 372.8)* 343.5 (338.6, 348.5)§ 351.2 (346.2, 356.2)*§ <0.05 

Sleep Latency (m) 20.4 (19.1, 21.7) 22.9 (21.4, 24.5)* 24.7 (22.7, 26.7)§ 26.3 (24.5, 28.1)§ <0.05 

Sleep Efficiency (%) 81.2 (80.5, 81.9) 83.3 (82.7, 83.9)* 79.8 (78.9, 80.8)§ 80.5 (79.6, 81.3)§ <0.05 

Time in Bed (m) 432.6 (429.7, 435.4) 441.9 (439.2, 444.6)* 429.2 (425.1, 433.3) 434.7 (430.9, 438.4)§ <0.05 

WASO (m) 65.6 (63.8, 67.9) 54.5 (52.6, 56.4)* 68.7 (65.5, 72.0) 62.5 (59.9, 65.1)*§ <0.05 

Arousal Index (n/h) 20.7 (20.1, 21.2) 16.7 (16.3, 17.1)* 23.2 (22.4, 24.1)§ 17.9 (17.3, 18.5)*§ <0.05 

S
e

lf
 R

e
p

o
rt

e
d

 S
le

e
p

 H
a

b
it

s
 

Q
u

e
s

ti
o

n
n

a
ir

e
 

Epworth Sleepiness Scale 8.2 (8.0, 8.4) 7.2 (7.0, 7.4)* 8.7 (8.4, 9.0)§ 7.3 (7.1, 7.6)* <0.05 

Time to fall asleep (m) 15.4 (14.5, 16.2) 19.0 (18.0, 19.9)* 15.7 (14.6, 16.8) 22.5 (21.1, 23.8)*§ <0.05 

Weekday Sleep Time (h) 7.0 (7.0, 7.1) 7.0 (7.0, 7.1) 7.1 (7.0, 7.1) 7.0 (6.9, 7.1) NS 

Weekend Sleep Time (h) 7.4 (7.4, 7.5) 7.5 (7.4, 7.5) 7.5 (7.4, 7.6) 7.3 (7.2, 7.3)*§ <0.05 

Trouble Falling Asleep, n 
(%) 

152 (9.9) 316 (18.4)* 95 (10.8) 250 (23.5)*§ <0.05 

Unrested Days 206 (13.4) 313 (18.2)* 162 (18.5)§ 256 (24.1)*§ <0.05 

Waking up too early 216 (14.0) 335 (19.5)* 135 (15.4) 251 (23.6)*§ <0.05 

Waking up during night 242 (15.7) 407 (23.8)* 148 (16.9) 298 (28.0)*§ <0.05 

Not enough sleep 230 (14.9) 346 (20.1)* 144 (16.4) 226 (21.2)* NS 

Use of sleeping pills 76 (4.9) 166 (9.7)* 48 (5.5) 123 (11.6)* <0.05 

Overly sleepy 172 (11.2) 205 (11.9) 125 (14.2)§ 160 (15.0)§ <0.05 
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M

o
rn

in
g

 

S
u

rv
e

y
 

Total Sleep Time (m) 399.5 (395.3, 403.6) 402.4 (398.1, 406.7) 396 (390.1, 401.9) 392.7 (386.8, 398.7)§ <0.05 

Time to sleep (m) 23.4 (22.0, 24.8) 27.9 (26.1, 29.7)* 25.5 (23.4, 27.7) 33.2 (30.7, 35.7)*§ <0.05 

Sleep Restful 202 (13.1) 287 (16.7)* 157 (17.9)§ 181 (17.0) <0.05 

Sleep Quality 172 (11.2) 211 (12.3) 115 (13.1) 132 (12.4) NS 

Difficulty falling asleep 
(yes) 

419 (27.8) 506 (30.1) 257 (29.9) 376 (36.0)*§ <0.05 

Mean (95% CI) for continuous variables and n (%) for categorical variables. For the self-reported sleep habits questionnaire, n (%) is for reporting 
often (5-15 times per month) and almost always (16-30 time per month). For the morning survey, n(%) is for reporting restless and somewhat 
restless for sleep restful, or  worse and somewhat worse than usual for sleep quality. T-test or χ2, as appropriate. *p<0.05 within group comparison 
(Non-MetS or MetS) by sex. 1Overall group comparison between Non-MetS vs. MetS. §Between group comparison (Non-MetS and MetS) by men 
and women. NS, not significant. MetS, metabolic syndrome. 
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Table 6.3. Mutually adjusted multivariable models predicting change in total sleep, sleep 

latency and sleep efficiency 

 β coefficient (95% CI) 

  
Total SleepPSG 

(m) 
Sleep LatencyPSG 

(m) 
Sleep EfficiencyPSG 

(%) 

Age -1.08 (-1.27, -0.90)* 0.04 (-0.04, 0.11) -0.24 (-0.28, -0.21)* 

Women 13.75 (9.76, 17.73)* 2.10 (0.48, 3.72)* 1.54 (0.83, 2.25)* 

MetS -9.41 (-13.83, -5.00)* 3.45 (1.66, 5.23)* -1.19 (-1.98, -0.40)* 

Overweight 1.23 (-3.68, 6.14) -0.61 (-2.59, 1.37) 0.29 (-0.58, 1.15) 

Obese -5.76 (-11.36, -0.16)* 0.74 (-1.53, 3.01) -1.06 (-2.06, -0.07)* 

Models predict the unit change in total sleepPSG, sleep latencyPSG, and sleep efficiencyPSG. 
Referents were men, Non-MetS, and Normal Weight. *p<0.05 
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Table 6.4. Mutually adjusted multivariable models estimating the odds MetS for total 

sleep, sleep latency and sleep efficiency 

 ORMetS (95% CI) 

Total SleepPSG (m) 1.00 (1.00, 1.00) - - 

Sleep LatencyPSG 
(m) 

- 1.01 (1.00, 1.01) - 

Sleep EfficiencyPSG 
(%) 

- - 0.99 (0.98, 1.00) 

Age 1.03 (1.02, 1.03) 1.03 (1.02, 1.04) 1.03 (1.02, 1.04) 

Women 1.22 (1.05, 1.42) 1.24 (1.06, 1.45) 1.28 (1.09, 1.50) 

Overweight 3.07 (2.51, 3.77) 2.83 (2.29, 3.51) 2.83 (2.29, 3.51) 

Obese 9.07 (7.31, 11.24) 8.69 (6.92, 10.91) 8.62 (6.87, 10.82) 

Modeling the odds of MetS for total sleepPSG, sleep latencyPSG, and sleep efficiencyPSG. Referents 
were men and Normal Weight. *p<0.05. All OR (odds ratios) were significant. 
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Figure 6.1 

 

 

 

 

 

 

 

 

Figure 6.1. Correlations between home-polysomnography-derived sleep measures and the morning survey-based variables 

total sleep time (a) and time to sleep (b). 

*p<0.05 for H1 (r ≥ ±0.25). Gray shaded area indicates -0.25 ≤ r ≥  0.25. 
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Figure 6.2 
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Figure 6.2. Correlation between home-polysomnography-derived sleep measures and 

the morning survey-based variable total sleep time stratified by MetS (a), sex (b), age (c), 

education (d), marital status (e), alcohol consumption (f) and BMI classes (g). 

*p<0.05 for first and second group; §p<0.05 for first and third group; and, ǂp<0.05 for first 

and fourth group. MetS is metabolic syndrome, and BMI is body mass index. 
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Figure 6.3  

Figure 6.3. Correlation between home-polysomnography-derived sleep measures and the morning survey-based variable 

time to sleep stratified by MetS (a), sex (b), age (c), ethnicity (d), education (e), and alcohol consumption (f). 

*p<0.05 for first and second group; §p<0.05 for first and third group; and, ǂp<0.05 for first and fourth group. MetS is metabolic 

syndrome 
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Abstract 

Introduction: Sleep is vital for cardiometabolic health, but research on the changes in 

sleep duration and efficiency and their associated risk of developing hypertension, 

diabetes, dyslipidemia, and obesity are sparse. Our objective was to estimate the risk of 

developing hypertension, diabetes, dyslipidemia and obesity following changes in home-

polysomnography (PSG) measured sleep duration and efficiency. Methods: To examine 

this, the Sleep Heart Health Study data cycles 1995-1998 and 2001-2003 were used (≥39 

y; N=2,097). Sleep duration and efficiency were assessed with home-polysomnography 

at baseline and approximately 4 y later. The changes from baseline to follow-up were 

categorized as decrease (≤5%), increase (≥5%), or no change (change <5%, referent). 

The usage of medications for hypertension, diabetes, and dyslipidemia, and body mass 

index (BMI) for obesity were used to define the outcomes. Age, sex, education, alcohol, 

smoking, marital status and BMI were considered as confounders; BMI was excluded as 

a confounder in the obesity analysis. Results: The number of participants (%) who 

developed hypertension, diabetes, dyslipidemia, and obesity during the follow-up were 

373 (17.79%), 99 (4.72%), 175 (8.35%), and 119 (5.67%), respectively. Those who 

developed hypertension, diabetes, and dyslipidemia had decreased sleep efficiency; 

however, an increase in sleep duration increased the relative risk (RR) of developing 

hypertension (RR (95% CI): 1.29 (1.02–1.64)). Decrease in sleep efficiency increased the 

RR of developing diabetes and dyslipidemia (1.57 (0.87–2.83); and 1.65 (1.03–2.64), 

respectively). Neither change in sleep duration nor sleep efficiency increased the risk of 

developing obesity. Conclusion: Sleep efficiency, but not sleep duration, decreases over 

time, and is related to a higher risk of developing diabetes and dyslipidemia. Sleep 
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duration increase is associated with a higher risk of developing hypertension. Further 

research with longer and multiple follow-up periods will help extend our understanding of 

the relationship between sleep and cardiometabolic health. 
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Introduction 

Even though the importance of sleep for health is well known, societal changes 

over the last century has forced humans to compromise on our sleep requirements.12,103 

Poorer quality and quantity of sleep are risk factors for cardiometabolic, endocrine, and 

immune dysfunctions as well as mortality.20,75,104,105,107,109–112,173 However, most 

longitudinal studies used baseline self-reported sleep data to estimate the risk of 

developing cardiometabolic disease.109–111 Further, many of the large sleep studies have 

focused on sleep duration and cardiometabolic decline,38 but emerging evidence 

suggests sleep quality may be as important for optimizing cardiometabolic health.25  

Moreover, only limited research exists on the changes in sleep habits and their 

effect cardiometabolic health.106 Using self-reported sleep data, Ferrie and colleagues106 

found that an increase of ≥2 h in sleep duration between baseline and 5 y follow-up 

increased the risk of incident diabetes by 50%. Experimental evidence in humans also 

suggests that acute changes in sleep (i.e., sleep deprivation), increases blood pressure, 

insulin resistance, glucose intolerance, and a preference for calorie-dense foods.76,149 

Indeed, the current knowledge on the longer-term changes in sleep habits and their 

associated cardiometabolic risks is inadequate. Specifically, the risks of developing 

hypertension, diabetes, dyslipidemia, and obesity due to changes in sleep habits that 

were objectively measured in baseline and follow-up are not known.  

Therefore, our primary objective is to estimate the relative risk of developing 

hypertension, diabetes, dyslipidemia, and obesity due to changes in sleep habits over 4-

5 y (i.e., approximately 4 y of follow-up). In this regard, we hypothesize that a decrease 

of 5% or more in sleep duration (i.e., total sleep time) or efficiency between baseline and 
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the follow-up would increase the relative risk of developing hypertension, diabetes, 

dyslipidemia, and obesity. Our secondary objectives were to characterize the changes in 

total sleep time and sleep efficiency over the follow-up, determine the percent conversion 

from no disease to disease status between the baseline and follow-up, and determine if 

any differences exist in terms of changes in sleep habits by disease status. 

Methods 

Sample 

To assess our hypothesis, we accessed de-identified data from the Sleep Heart 

Health Study dataset through the National Sleep Research Resource.121 The US National 

Heart, Lung, and Blood Institute of the National Institute of Health funded the Sleep Heart 

Health Study. The Sleep Heart Health Study dataset contains information on participants 

from six individual studies: Atherosclerosis Risk in Communities Study, Cardiovascular 

Health Study, Framingham Heart Study, Strong Heart Study, New York Hypertension 

Cohorts, Tucson Epidemiologic Study of Airways Obstructive Diseases and the Health 

and Environment Study. The original purpose of this cohort study was to assess the 

association between sleep and cardiovascular outcomes. The full dataset contains 

information on participants aged ≥39 y (initial n=6,441), their home-polysomnography 

(PSG) data and medication history for hypertension, diabetes, dyslipidemia and body 

mass index (BMI). Data were collected in two follow-ups, approximately 4 y apart: 1995-

1998 (n= 5,804) and 2001-2003 (n=4,080). We excluded participants without reliable 

Rapid Eye Movement/Non-Rapid Eye Movement data (n=85 from the baseline and n=165 

from the follow-up), and missing information for hypertension, diabetes, dyslipidemia, and 

obesity (n=460). Additionally, we excluded those with missing baseline or follow-up total 
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sleep time and efficiency information (baseline: n=473; follow-up: n=831) for a final 

analytical sample of n=2,097. Ethics approval was obtained from York University 

(Toronto, Canada), and was submitted to National Sleep Research Resource to gain 

access to the dataset. 

Sleep and Cardiometabolic health variables 

Home-PSG measured total sleep time (original variable name: slp_time), sleep 

efficiency (slp_eff), and sleep latency (slp_lat) were used in our study. Baseline and 

follow-up were approximately 4 y apart.121 We calculated the percent changes from 

baseline to follow-up for the above sleep habits and categorized them as decrease (≤5%), 

increase (≥5%), or no change (i.e., change within 5%) for sleep duration (m), sleep 

efficiency (%), and sleep latency (m). Cardiometabolic health parameters assessed in our 

study were hypertension, diabetes, dyslipidemia, and obesity. The use of medications 

indicated for hypertension, diabetes, and dyslipidemia, and BMI for obesity were used to 

define the outcomes.  

Covariates 

Baseline age (age_s1), sex (gender), ethnicity (ethnicity and race), education 

(educat), alcohol (alcoh), cigarette pack-years (cgpkyr), smoking status (smokstat_s1), 

marital status (mstat), BMI classes (bmi_s1) were used to describe the sample. We 

categorized age as 39-54, 55-64, 65-74, and 75-90 y. The original race variable was 

categorized as Whites, Blacks, and Others, and we used the ethnicity variable to further 

identify the Hispanic or Latino ethic group, and categorized remaining participants as 

Others. Education categories were based on the number of years in school: ≤10, 11-15, 

16-20, and >20 y. Alcohol intake (drinks per day) was categorized as none, moderate, 
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and heavy using the sex specific cut-offs (i.e. moderate was ≤2 for men and ≤1 for women; 

heavy was >2 for men and >1 for women) based on the American Dietary Guidelines.156 

Smoking and marital status categorizations were from the original dataset.121 BMI classes 

were (kg/m2): normal weight (<25), overweight (25 to <30), or obese (≥30). 

Statistical Analysis 

Mean and 95% confidence interval (CI) for the continuous variables, and frequency 

(n) and frequency % for the categorical variables were determined by sex. T-tests and χ2 

were used, as appropriate, to make comparisons. The sample is also described by the 

percent changes in total sleep time and sleep efficiency (from baseline to follow-up) as 

well as disease status. The mean and 95% CI were estimated for the mean difference for 

the changes in total sleep time and sleep efficiency by disease status. Finally, the crude 

relative risk (RR) of developing hypertension, diabetes, dyslipidemia, or obesity for those 

who increased or decreased their total sleep time or sleep efficiency vs. no change 

(RR=1.00, referent) were determined. The RRs were subsequently adjusted for age, sex, 

education, alcohol intake, smoking, marital status and BMI in the models predicting the 

risk of incident hypertension, diabetes, and dyslipidemia. For the model predicting 

obesity, BMI and marital status were excluded—the former due to collinearity, and the 

latter due to a lack of sample size. Sleep latency was excluded from the final analyses 

based on lack of significant findings from the preliminary analyses. All analyses were 

conducted in SAS v9.3 (Cary, NC, USA) and statistical significance set at an α of 0.05. 

Results 

The baseline characteristics of the study sample stratified by sex are available in
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Table 7.1. In general, the sample is middle-aged, >85% were Whites, and had high school 

to university level education. Men in the sample smoked more cigarettes and drank more 

alcohol than the women; they were also more likely to be married than women. A third of 

the women and a fifth of the men were normal weight. However, more men than women 

were overweight, and similar proportions of men and women were living with obesity. 

Overall, total sleep time increased from baseline to follow-up, and sleep efficiency 

decreased (Table 7.2). Incident diabetes, dyslipidemia, and obesity were rare during the 

follow-up, i.e., <10%, but hypertension was not (Table 7.3). The mean change in total 

sleep time in the 4 y did not significantly vary between those who developed the disease 

and those who did not, but the mean change in sleep efficiency was significantly lower 

amongst those who developed hypertension, diabetes, and dyslipidemia (Figure 7.1).  

An increase of ≥5% in total sleep time and a decrease of ≥5% in sleep efficiency 

were associated with significantly higher risk of developing hypertension and dyslipidemia 

after adjusting for age, sex, education, alcohol intake, smoking, marital status, and BMI, 

respectively (Figure 7.2). In our crude analysis, the RR of developing diabetes was 

significant (RR (95% CI): 2.21 (1.25, 3.91)) for the decrease in sleep efficiency by ≥5%, 

but this association attenuated following multivariable adjustment. Sleep latency did not 

vary across disease status nor did it predict the development of hypertension, diabetes, 

dyslipidemia or obesity (data not show). 

Discussion 

In general, total sleep time increased in the follow-up period while sleep efficiency 

decreased. The development of diabetes, dyslipidemia, and obesity were rare 

occurrences in the follow-up period, but developing hypertension was common. 
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Compared to their non-diseased counterparts, those who developed hypertension, 

diabetes, and dyslipidemia, had significantly decreased sleep efficiency, but not total 

sleep time. In this study, our primary objective was to estimate the risk of developing 

hypertension, diabetes, dyslipidemia, and obesity as a result of changes in total sleep 

time and sleep efficiency in a 4 y follow-up. In this regard, we found that an increase in 

total sleep time by ≥5% increased the risk of developing hypertension, while a decrease 

in sleep efficiency by ≥5% increased the risk of developing diabetes and dyslipidemia. 

These novel findings augment our knowledge on changes in sleep habits and their 

associated cardiometabolic risk, and thus, warrant discussion.  

Hypertension 

Most studies used baseline sleep measures to predict incident hypertension 

risk.109,112 In our study, we estimated the change in sleep over time and estimated the risk 

of incident hypertension. In this regard, we provide novel evidence that an increase of 

≥5% in total sleep time is associated with 29% greater risk of developing hypertension. 

Indeed, sleep plays a vital role in lowering nocturnal blood pressure through the 

sympathetic nervous system,174,175 but this mechanism does not explain our finding in 

isolation; long sleep duration may be a proxy for poorer sleep quality, less physical 

activity, and the presence of co-morbidities, such as, depression and obesity, which are 

all key risk factors for hypertension.176,177 Therefore, we cannot exclude the possibility 

that the higher risk of incident hypertension associated with the increased total sleep time 

may have been due to some of these factors. We adjusted for baseline BMI in our model, 

and thus, our finding of elevated hypertension risk is independent of obesity. 

Nevertheless, the causal mechanism between long sleep duration and hypertension risk 
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remains to be elucidated. One possible mechanism could be the higher systemic 

inflammation and oxidative stress associated with long sleep duration,129,178 which 

stimulates the sympathetic nervous system,179 and increase the risk of hypertension.180 

Diabetes 

The recent study has found that an increase in self-reported sleep duration by ≥2 

h was associated with 50% higher risk of incident diabetes over a 5 y follow-up.106 

However, this study does not align with our null finding for total sleep time, which may be 

partially due to the fact we used home-PSG to assess sleep. In general, self-reported 

sleep duration tend to be over reported,97 and most previous studies used baseline self-

reported sleep to estimate the risk of incident diabetes.16,111,181 Our finding that the 

decrease in sleep efficiency increased the risk of incident diabetes provides new 

information on the role of longer-term changes in sleep efficiency and diabetes risk. This 

finding awaits confirmation in other prospective settings.  

Indeed, sleep loss is associated with elevated levels of circulating glucose through 

decreased non-insulin dependent utilization of glucose in the brain, which results in insulin 

resistance, and thus diabetes risk.149 Sleep loss also increases appetite through the 

deregulating of leptin and ghrelin pathways, which contribute to weight gain and 

obesity.149 Therefore, changes in sleep behaviours might be important predictors of 

diabetes risk, and both aging and our society are contributing to decreased 

sleep.12,74,97,182 

Dyslipidemia 

Our study has found that decreased sleep efficiency was associated with 65% 

increased risk for incident dyslipidemia within the 4 y follow-up. The obvious explanation 
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for the relationship between decreased sleep and incident dyslipidemia is the affect of 

sleep deprivation on dietary intake of fats.27 Indeed, those who are sleep deprived tend 

to have a preference for high fat and high carbohydrate foods,76 which promotes weight 

gain and obesity.183 An alternative explanation for our finding is that the use of statins 

induces sleep disturbances184 and sleep deprivation.185 The lipophilic properties of the 

drug may enable it to penetrate the blood-brain barrier and inhibiting prostaglandin D2 

synthase in the central nervous system, and thus interfere with sleep.186,187 However, 

further research is needed to test this mechanistic hypothesis.  

Obesity 

Compared to the US population, the men in our sample were more likely to be 

overweight or living with obesity, i.e., 79% of the men were either overweight or living with 

obesity at baseline.188 However, neither change in home-PSG measured total sleep time 

nor sleep efficiency increased the risk of developing obesity in the 4 y follow-up. A 

possible explanation for this may be due to the short follow-up period in our study, where 

just over 5% of the sample developed obesity. Our null finding is unlikely due to adjusting 

for covariates because our crude model as well as the mean differences for total sleep 

time and sleep efficiency between normal weight and obese sample were not significant. 

Indeed, other research support the relationship between sleep deprivation and 

obesity,74,189–192 and thus, longer prospective studies using multiple follow-ups of sleep 

are needed. 

Limitations 

A major limitation of our study is that we were unable to account for the other 

factors that influence both sleep and cardiometabolic health, such as physical activity and 
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diet, because they were not available. However, an advantage of our study is that the 

dataset contained home-PSG measured sleep parameters for both the baseline and the 

follow-up. The home-PSG sleep measures were assessment for 1 day at baseline and 1 

day approximately 4 y later, and thus, it only gives a snapshot of participants sleep habits, 

which may not be reflective of their usual sleep. Further, the lab-PSG is considered the 

gold standard to assess sleep objectively, while we used home-PSG derived data, but 

research suggests the two methodologies vary only minimally.172 Finally, because we 

used medication use to define incident hypertension, diabetes, and dyslipidemia, our 

estimates for these diseases are likely conservative, i.e., we assumed the presence of 

these disease were being treated by medications, and thus, we cannot account for 

undiagnosed cases. However according to the National Health and Nutrition Examination 

Survey data, this may account up to 8% of the US adults for hypertension and 

hypercholesterolemia, and 3% for diabetes.193 Further, nearly a quarter of the population 

with hypertension are not taking medications for it.194 

Conclusion 

Our study found that an increase in sleep duration is associated with higher risk of 

developing hypertension, while a decrease in sleep efficiency is associated with higher 

risk of developing diabetes and dyslipidemia that requires pharmaceutical treatments. 

Further research should assess the direction of sleep habit change over longer timeframe 

to understand the casual relationship between changes in sleep habits and 

cardiometabolic health risks. 
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Table 7.1. Baseline characteristics of the study participants 

    Men (n=978) Women (n=1,119) p value 

Age (mean (95% CI)) 62.2 (61.6, 62.9)  62.1 (61.4, 62.7) NS 
Age category (n (%))    
 39-54 y 230 (23.5) 283 (25.3) 

NS 
 55-64 y 330 (33.7) 356 (31.8) 
 65-74 y 289 (29.6) 319 (28.5) 
 75-90 y 129 (13.2) 161 (14.4) 
Ethnicity     
 White 871 (89.1) 972 (86.9) 

NS 
 Black 52 (5.3) 77 (6.9) 
 Hispanic or Latino 37 (3.8) 56 (5) 
 Other 18 (1.8) 14 (1.3) 
Education     
 ≤10 y 57 (6.4) 70 (7) 

<0.05 
 11-15 y 433 (48.9) 590 (58.9) 
 16-20 y 330 (37.3) 311 (31) 
 >20 y 65 (7.3) 31 (3.1) 
Alcohol     
 None 400 (43.6) 647 (61.3) 

<0.05  Moderate 162 (17.7) 153 (14.5) 
 Heavy 356 (38.8) 256 (24.2) 
Cigarette pack-years (mean (95% CI)) 16.2 (14.9, 17.6) 8.9 (7.9, 9.9) <0.05 
Smoking status (n (%))    
 Never 346 (35.5) 648 (58.1) 

<0.05  Current 95 (9.7) 85 (7.6) 
 Former 534 (54.8) 383 (34.3) 
Marital Status     
 Married 874 (91.2) 790 (72.3) 

<0.05 
 Widowed 19 (2) 153 (14) 
 Divorced/Separated 45 (4.7) 115 (10.5) 
 Never Married 20 (2.1) 35 (3.2) 
Body Mass Index    
 Normal Weight 204 (20.9) 371 (33.2) 

<0.05  Overweight 476 (48.7) 418 (37.4) 

  Obese 298 (30.5) 330 (29.5) 

Alcohol cut-offs are sex-specific (heavy for men >2 drinks per day, and for women >1 drink per day). 
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Table 7.2. Percent changes in total sleep time and sleep efficiency from baseline to 

follow-up. 

 Percent Changes 

  ≤ 5%  <5%  ≥ 5%  

Total Sleep Time (m)  597 (35.54) 398 (23.69) 685 (40.77) 

Sleep Efficiency (%) 650 (45.49) 451 (31.56) 328 (22.95) 
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Table 7.3. Incident hypertension, diabetes, dyslipidemia, and obesity between baseline 

and follow-up 

  No disease Disease 

Hypertension (n (%)) 764 (36.43) 373 (17.79) 

Diabetes 1902 (90.7) 99 (4.72) 

Dyslipidemia 929 (44.3) 175 (8.35) 
Obesity vs. Normal 
Weight 568 (27.09) 119 (5.67) 
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Figure 7.1 

 

Figure 7.1. The mean difference for the changes between baseline and follow-up of total 

sleep duration and sleep efficiency in those with and without hypertension (a), diabetes 

(b), dyslipidemia (c), and obesity (d).  

*p<0.05 for no disease vs. disease. 
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Figure 7.2 

 

Figure 7.2. Adjusted relative risk of developing hypertension, diabetes, dyslipidemia and 

obesity between baseline and follow-up.  

Hypertension, diabetes, and dyslipidemia were adjusted for age, sex, education, alcohol 

intake, smoking, marital status, and BMI. Obesity was adjusted for age, sex, education, 

alcohol intake and smoking. Referents were no hypertension, diabetes, dyslipidemia or 

normal weight, and total sleep time or sleep efficiency change of <5%. *p<0.05. 
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Chapter 8 General Discussion 

Despite the well-known relationship between sleep and cardiometabolic health, 

sleep deprivation is a common feature of modern society.195 Since sleep quality and 

duration are necessary for health; they can be considered as two sides of the same coin. 

However, it is much easier to obtain sleep duration data from participants than sleep 

quality data, especially from a population perspective.170 Therefore, much of the known 

research on sleep and cardiometabolic health has focused on sleep duration.29,38,196 

Further, the limited research on sleep quality has produced mixed results because there 

is a lack of consensus on the definition of sleep quality.170 This, however, is a challenge 

that may never be resolved because sleep is a behaviour that has changed over time in 

human history. For instance, before the 17th century, humans slept in two chunks of 4 h 

because the nighttime was reserved for creatures of the night, and candles were 

expensive.197 Modernization, work/life pressures, social jet lag, and the boom in 

technology are some reasons that have forced the average adults to sleep below 7 hours 

per night in the recent year.12,17 This parallels modern society’s higher rates of non-

communicable chronic diseases, particularly cardiometabolic diseases.114,189,198 

This dissertation augments current knowledge about the relationship between 

sleep and cardiometabolic health in several ways. The first part of the dissertation 

provides evidence for the contributing role of physical activity and dietary factors to the 

causal relationship between sleep and cardiometabolic health. These are summarized in 

Table 8.1 for sleep duration and Table 8.2 for sleep quality.  Additional details on the 

contributions of dietary factors to the relationship between sleep and fasting insulin 

concentration are available in Figure 9.1. The main objective of the additional analysis 
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was to estimate the contributions of inflammation, oxidative stress, and antioxidants to 

the causal relationship between sleep and fasting insulin level. Therefore, the main 

conclusions from this dissertation work suggest that physical activity and dietary factors 

have some, but not complete influence on WC, BP, and fasting insulin concentration. 

Indeed, this aligns with most observational studies,25,31,38,114 but this was the first time the 

mediating effect of these factors on the causal relationship between sleep parameters 

and cardiometabolic health was explored.  

Inflammation and Oxidative Stress 

Our results suggest inflammation and oxidative stress can largely explain the 

relationship between sleep and cardiometabolic health, particularly when the outcome is 

WC, SBP, or fasting insulin concentration. In populations with sleep disorders, the 

prevalence of obesity is high; and, both sleep quality and obesity have been 

independently linked to increased inflammation and decreased antioxidants.78,189,199 

Indeed, insulin resistance is a common feature associated with sleep deprivation, which 

can affect the non-insulin dependent utilization of glucose in the brain resulting in 

chronically elevated blood glucose.149 This causes the pancreas to increase insulin output 

and over time contributes to the development of insulin resistance.200 Future studies in 

this area should also assess alternative markers of glycemic control, such as the 

homeostatic model assessment (HOMA), which uses fasting glucose and insulin or C-

peptide concentrations to assess pancreatic β-cell function and insulin 

resistance.149,201,202  

Further, GGT is a diagnostic tool for alcoholism and fatty liver, conditions 

associated with elevated waist circumference, blood pressure, and dyslipidemia.47,52 We 
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used GGT as a biomarker of oxidative stress,47,54 and demonstrated that oxidative stress 

lies on the causal pathway of the relationship between sleep duration and obesity, blood 

pressure, and fasting insulin level.203,204 Hence, GGT may be a useful clinical measure of 

oxidative stress,47 and strategies to reduce oxidative stress and chronic inflammation 

would be effective against cardiometabolic dysfunction.46 Indeed, oxidative stress and 

inflammation are commonly associated with several chronic diseases, including diabetes, 

and cardiovascular disease.9,46,69,105 Therefore, further research using additional 

biomarkers of oxidative stress and inflammation, such as superoxide dismutase, 

glutathione peroxidase, catalase, interleukin-6, and tumour necrosis factor-α, may further 

our understanding of the causal role of inflammation and oxidative stress in sleep and 

cardiometabolic outcomes.55,178,199,205–207 Understanding the mediatory role of these 

factors in humans may help identify inflammation and oxidative stress pathways that may 

be targeted by therapeutics.208 

Carotenoids 

Adequate serum carotenoids level is a marker of a healthy diet rich in vegetables 

and fruits.209 Indeed, lower serum and dietary β-carotenes levels in those with MetS have 

been found,8,57,209 but dietary and serum β-carotene level do not always correlate 

strongly.210 Notably, this dissertation was the first work to evaluate the contributing role 

of carotenoids in the relationship between sleep duration and WC, SBP, and fasting 

insulin. The antioxidant property of carotenoids may reduce systemic inflammation and 

thus influence the above relationships.8 People who consume a healthy diet rich in 

vegetables and fruits also tend to get adequate sleep.70 Therefore, carotenoids may be 

important for cardiometabolic health, but longitudinal studies are needed to confirm and 



85 
 

further extend our understanding of their mediating roles on sleep and cardiometabolic 

health.  

Uric Acid 

This dissertation work was the first to evaluate the contributing effect of uric acid 

on the sleep—cardiometabolic health relationship. In this regard, we found that uric acid 

was a great mediator of the sleep—WC,—SBP, and —fasting insulin relationships. Other 

human studies have found an association between uric acid and metabolic 

dysfunction.58,59,62–66,211,212 A well-known feature of the modern high-fructose diet is 

elevated serum uric acid levels.67 In rats, a high-fructose diet causes uric acid levels to 

increase and contribute to the development of MetS.61 Indeed, uric acid may play key 

roles in the pathogenesis of high fructose diet-induced MetS by reducing acetylcholine-

mediated arterial dilation and inducing insulin resistance by reducing the bioavailability of 

endothelial nitric oxide.61,67  

Vitamin C 

The finding that vitamin C contributes to the casual relationships between sleep 

and WC, BP and fasting insulin are novel. Vitamin C, rich in fruits and vegetables, is a 

potent antioxidant, and it is found to be decreased in those with cardiometabolic 

dysfunction.8,57,80,213–215 It is also inversely related to BMI, percent body fat, and waist 

circumference213 and blood pressure.80,214 In fact, vitamin C supplements improved 

endothelial function in obstructive sleep apnea patients,80 and lowered systolic blood 

pressure in elderly.216 The exact mechanism is not known, but the antioxidant protection 

vitamin C provides against oxidative stress may partially be responsible.217 

Vitamin D 
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Finally, vitamin D contributed to the relationship between sleep duration and WC, 

SBP, and fasting insulin. Others have found an association between vitamin D and 

cardiometabolic dysfunction,56,218–220 while some research suggests vitamin D 

supplementation improves sleep.221,222 Further, visceral adipose tissue is strongly 

associated with vitamin D level (β:−2.34, p <0.0001) following adjustments for sex, 

season, systolic blood pressure, physical activity, vitamin d intake, and insulin.56 Some 

evidence also suggests that a vitamin D level of >80nM protects against age-related 

systolic blood pressure increase.218 Additionally, early supplementation with vitamin D 

has been implicated in reduced type 1 diabetes risk, as vitamin D has immune-modulating 

and antioxidant properties.223,224 Another mechanism that may explain the relationship 

between vitamin D and insulin resistance is the increased insulin receptor gene 

transcription.225  

Beyond the findings from this dissertation, additional epidemiologic and 

experimental studies are needed to confirm and extend our understanding of the factors 

that influence the relationship between sleep and cardiometabolic health. This includes 

the need to repeat the present analysis using other population datasets to confirm our 

findings. Additionally, diet- vs. supplemental-based experimental studies in humans may 

help evaluate the effect of micronutrients to the relationship between sleep and 

cardiometabolic health. From a practical standpoint, implementing policy changes that 

promote micronutrient-rich diets (i.e., reducing the costs of fresh fruits and vegetables, 

and increasing the costs of processed foods) and evaluating the effectiveness of those 

policy changes, is needed to better understand the relevancy of these strategies 226–229  

Physical Activity 
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Similarly, we evaluated the contributions of accelerometer-based physical activity 

counts to the relationship between sleep and cardiometabolic health. Most previous work 

has considered physical activity as a confounding variable to the sleep and 

cardiometabolic health relationships.16,89,118,136 This dissertation work provides evidence 

that moderate intensity and lifestyle activity levels explain the causal relationships of 

sleep–WC, sleep–BP, and sleep–fasting insulin concentration. Specifically, the 

contributions of non-exercise activity thermogenesis from lifestyle activity level suggests 

that it may contribute to the overall cardiometabolic health of adults, supporting previous 

research in this area.82,138 Indeed, the relationship between physical activity and nocturnal 

BP dipping through the suppression of the sympathetic nervous system is known.89 

Further, the beneficial effect of physical activity in protecting against insulin resistance is 

well known,149,150 but this work is the first to quantify the actual contributions of physical 

activity to the casual relationship between sleep and fasting insulin levels. However, 

additional studies in other populations are needed to confirm the accuracy of our 

estimates. For instance, the mediatory effect of physical activity may be altered in 

developing countries where the majority of the population engages in active 

transportation, and their sleep habits also differ from the US population.230–232 Further, 

the relationships investigated this dissertation may be confounded or moderated by other 

factors (e.g. level of physical fitness, sex, BMI, and ethnicity, etc.), meaning that future 

studies should include these factors to produce more accurate estimates.1,189,190,233–235  

Objective vs. Subjective Sleep 

Consistent with previous work, we found modest-to-moderate correlation between 

PSG and self-reported sleep measures in those with MetS.95,97,100–102 However, the 
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novelty of our findings lies in our subpopulation analyses. We found that women, for 

instance, are more perceptive of their sleep habits than men, but research suggests they 

tend to over-report sleep problems.95 Age, socio-economic status, and co-morbidities are 

other factors influencing one’s perception of sleep.97,159 Therefore, further research in this 

area is needed to understand better the relationship between objective vs. subjective 

measures of sleep variables. Additional research using alternative objective data 

collection tools (e.g., accelerometer and smartphone apps) and statistical methodologies 

(e.g., Bland-Altman analysis, Cronbach’s alpha, and kappa statistics) are also needed to 

confirm and better understand the relationship between objective and perceived sleep 

measures.236–241 There is also an urgent need to develop a consistent definition of sleep 

quality for research and clinical purposes.120 Identifying the variations in subgroups, such 

as MetS vs no MetS, men vs women, older adults, and obesity, as has be done, is also 

an essential step toward making recommendations on population-specific sleep 

requirements.120,165,190,192,242,243  

Sleep, Obesity and Metabolic Syndrome 

We found that having MetS or living with obesity reduced objective total sleep, 

which aligns with previous literature on sleep duration with MetS,38 and obesity.75 This 

work is significant in that the difference in sleep duration was found to be <10 minutes 

after adjusting for age, sex, obesity or MetS. Moreover, when the reverse relationship 

between sleep and MetS was evaluated, the effect of the objectively derived sleep 

variables had little effect on the odds of having MetS, independent of body weight, age, 

and sex. However, nearly a half of the population living with obesity has diagnosed sleep 

disorders, which may be a cause or consequence of obesity.244,245 To date, the 
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directionality of the relationship remains unknown, but acute sleep curtailment studies 

suggest higher caloric intake and lower physical activity level are common amongst sleep 

deprived individuals.246 Over time, chronic sleep deprivation and lower sleep quality likely 

lead to weight gain through changes in appetite regulation.191,247 Therefore, clinical 

guidelines and policies aimed at preventing, managing and treating obesity through 

promoting in sleep hygiene may help minimize the burden of obesity related co-

morbidities, such as cardiovascular disease. 

Change in Sleep Habits and Cardiometabolic Risk 

The final part of this dissertation explored the relationship between objectively 

measured change in sleep habits and their associated risk of developing cardiometabolic 

diseases. Previously, one study has evaluated the effect of changes in sleep habits and 

their effect cardiometabolic health and found that an increase of ≥2 h in self-reported 

sleep duration between baseline and 5 y follow-up increased the risk of incident diabetes 

by 50%.106 Other studies using baseline self-reported sleep only has also found that sleep 

deprivation increases the risks of developing diabetes, hypertension, cardiovascular 

events, and obesity.75,107–112 This dissertation augments current knowledge by providing 

evidence that a modest (≥5%) 4 y increase in sleep duration increases the risk of 

developing hypertension, while a ≥5% decrease in sleep efficiency increases the risk of 

developing diabetes and dyslipidemia. Our estimates are likely conservative in that these 

outcomes were defined by i) a self-report of physician-diagnosis of diabetes, hypertension 

and high cholesterol, or ii) use of medication to treat one or more of these conditions. 

Studies using clinical or laboratory data are therefore needed to confirm our findings and 

to determine the causes for changes in sleep habits, in order to develop therapeutic 
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targets or policy changes to offset reductions in sleep habits over time.248 For instance, if 

blue light exposure is identified as a culprit of reduced sleep, policies may be developed 

for the manufacturers of electronic devices to automate the blocking of sleep inhibiting 

blue light from electronic devices between 9 pm and 6 am, a few hours before the time of 

typical sleep onset.249–252 This will help ensure a consistent bedtime, another factor that 

is important for cardiometabolic health.253  

A possible explanation for the higher incidence of hypertension amongst the longer 

sleep duration may indicate poor sleep quality, less physical activity, or the presence of 

co-morbidities.176,177 The latter findings for sleep efficiency are novel, as a change in 

objective sleep efficiency has not been previously explored in this context. Future 

research is however needed to determine whether changes in sleep habits affects the 

nocturnal BP dipping, subtly increases the sympathetic nervous system activity, or acts 

through other mechanisms, and thus, increases hypertension.254 Several possible 

mechanisms may explain the higher diabetes and dyslipidemia risks. Change in sleep 

efficiency, for instance, may result in elevated glucose, which over time induces insulin 

resistance, and thus diabetes.149 Further, sleep loss alters the appetite-regulating 

hormones, leptin and ghrelin, which in turn contributes to weight gain and obesity.182,190 

Sleep loss is also associated with increased preference for the intake of foods rich in fats 

and carbohydrates, which can induce obesity and alter serum cholesterols.76 However, 

the effect of modest or gradual sleep loss and their influence on appetite regulations 

warrants further study, as it may help explain several present chronic disease epidemics 

including obesity, diabetes, and cardiovascular disease.255,256 

Conceptual framework 



91 
 

Indeed, this work aligns with the conceptual framework for the relationship 

between sleep and cardiometabolic health, which was originally developed by Buxton et 

al.’s28. According to this framework, socio-cultural and environmental factors (i.e., 

individual and community level factors) influence sleep (ie., decrease sleep duration and 

quality), which induces proximal changes by interfering with energy homeostasis  (i.e., 

decreased physical activity/intensity, increased intake of processed, energy-dense, 

nutrient-deficient foods), which over time could speed up the progression of clinical 

changes.28 Specifically, evidence from this work supports that physical activity and dietary 

habits lie on the causal pathway of the relationship between sleep and cardiometabolic 

health in the first three studies. Although we explored this relationship in a cross-sectional 

setting, we found evidence that the pathways may be more immediate than Buxton et 

al.’s28 conceptual framework suggests. Particularly in the fifth study, we found that 

changes in sleep habits in a relatively short follow-up of 4 y increased the risk of 

developing hypertension, diabetes and dyslipidemia after adjusting for confounders. 

Therefore, this dissertation provides insight into the mechanistic relationship of longer-

term sleep deprivation on chronic disease risk within Buxton et al.28 framework, and it 

augments the framework by providing evidence for the relationship between sleep quality 

and cardiometabolic risk. This work, however, did not explore the influence of socio-

cultural and environmental factors on sleep, and this remains an important area that 

warrants further study. Studies with the NHANES dataset can be performed to assess the 

influence of socio-cultural/economic and environmental factors to further test this 

conceptual framework.116 Doing such analyeses may provide insights that can be used 

to develop and implement strategies to improving the health of specific subgroups.  
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Additionally, this dissertation found that the mediatory effect of diet and physical 

activity on the relationship between sleep and cardiometabolic health was stronger in 

women than men. Sex, BMI, age, ethnicity, income, education, smoking and alcohol 

intake may therefore be significant modifiers of the overall relationship, and future 

research in this area is needed to more fully develop the conceptual framework used in 

this dissertation.17,22,167,190,257 This framework should also be tested with longitudinal 

datasets from both developed and developing countries, so as to better understand the 

broader generalizability of the framework. 

Limitations 

A major limitation of the first four manuscripts is the use of cross-sectional data, 

which has not been traditionally used to make a casual inference, first three manuscripts, 

since the temporal relationship—whether the exposure preceded the outcome—cannot 

be determined. Another limitation of our studies is the extensive use of self-reported data, 

which are susceptible to the healthy responder and recall biases. However, the NHANES 

is a rich source of data with dietary, physical activity, sleep and cardiometabolic 

parameters, and an alternative longitudinal dataset is not presently available for any 

representative adult population.116,258 Although the SHHS dataset contains objective 

sleep and self-reported or measured anthropometric and cardiometabolic disease 

markers, it lacks physical activity and dietary information.121 Although the first part of the 

dissertation uses the NHANES includes serum biomarkers and accelerometer-derived 

activity as proxies for dietary and physical activity habits (to minimize recall bias)141,258,259, 

participation in NHANES is voluntary, and thus, the findings may be biased toward the 

null since healthier participants tend to volunteer for scientific studies.116 The SHHS also 
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used a non-probably sample selection process, and thus, the generalizability of this work 

to the US adult population may be reduced.260 The first three studies were also unable to 

evaluate the effect of confounders and potential modifiers of the relationship between 

sleep, diet, physical activity and cardiometabolic health (e.g., obesity, age, and sex).142,261 

As a result, this work is baised toward the “forward” direction of the relationship in the 

conceptual framework, while some evidence for a bi-directional association between the 

factors included in the model exists.262–264 Future work should consider the “reverse” 

direction of the conceptual framework used in this dissertatoin (e.g. increase sleep 

efficiency and its effect on cardiometabolic health). Finally, we used data that are more 

than a decade old, and therefore, it is unclear whether these findings apply to the 

contemporary population. Specifically, the recent surge in smartphone use may have 

altered sleep habits amongst the contemporary population, and thus, the relationship 

between sleep and cardiometabolic risk may have also altered.265,266 Future studies with 

longitudinal, time-relevant, and objectively measured data are needed to further extend 

our understanding of the relationships studied in this work.  

Conclusion 

In conclusion, this work demonstrates that the relationship between sleep and 

cardiometabolic health can be explained partially by physical activity and dietary 

behaviours. Indeed, a holistic approach that includes sleep, physical activity and diet is 

needed to improve the cardiometabolic health profile of free-living adults. Guidelines and 

policies should be developed to target the three areas simultaneously, such as the 

guidelines for sleep, physical activity, and sedentary time in development for children.115 

One remaining factor that may influence the above relationship is social engagement, 
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which serves a vital part in sleep, diet, and physical activity behaviours.267,268 Therefore, 

additional research in this area may provide insight into the role of social influence as a 

focus of intersection to this work. 
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Table 8.1. Summary of the mediation effect for sleep duration 

 Cardiometabolic Health 
Mediator  MetS # of 

Mets 
WC SBP DBP TG HDL FPG Insulin 

C-reactive Protein 
(nM)  

                           

γ-Glutamyl transferase 
(U/L)  

   1  1              2  

Bilirubin (µM)                             
Carotenoids (µM)        2  1              2  
Uric Acid (µM)        2  2              2  
Vitamin A (µM)                             
Vitamin C (µM)         2     1           2  
Vitamin D (nM)        2  1                 
Vitamin E (µM)                             
Lifestyle Moderate Activity 
(min/d)  

 2  2  1     2  

Light Activity 
(min/d)  

  1        

Moderate Activity 
(min/d)  

         

Moderate and Vigorous Activity 
(min/d)  

       

Vigorous Activity 
(min/d)  

         

Sedentary Activity (min/d)          

 

Significant mediation effect; 1=moderate (≥0.09) and 2=large effect (≥0.25). MetS is 

metabolic syndrome. # of MetS is number of MetS components. WC is waist 

circumference. SBP is systolic blood pressure. DBP is diastolic blood pressure. TG is 

triglycerides. FPG is fasting plasma glucose. HDL is high-density lipoprotein cholesterol. 

Insulin is fasting insulin concentration. Activity thresholds (counts per minute) were 

sedentary activity (0–99), light intensity (100–759), lifestyle activity (760–2019), moderate 

intensity (2020–5996), and vigorous intensity (≥5999). 
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Table 8.2. Summary of the mediation effect for sleep quality 

 Cardiometabolic Health 
Mediator  MetS # of 

Mets 
WC SBP DBP TG HDL FPG Insulin 

C-reactive Protein 
(nM)  

      1           2 

γ-Glutamyl transferase (U/L)                   

Bilirubin (µM)                    2 
Carotenoids (µM)                      
Uric Acid (µM)                      
Vitamin A (µM)          1           
Vitamin C (µM)         1           2 
Vitamin D (nM)                      
Vitamin E (µM)                      
Lifestyle Moderate Activity 
(min/d)  

 1 1 1    2 

Light Activity (min/d)           
Moderate Activity 
(min/d)  

  1 1     2 

Moderate and Vigorous Activity 
(min/d)  

1 1      

Vigorous Activity 
(min/d)  

         

Sedentary Activity (min/d)          

 

Significant mediation effect; 1=moderate (≥0.09) and 2=large effect (≥0.25). MetS is 

metabolic syndrome. # of MetS is number of MetS components. WC is waist 

circumference. SBP is systolic blood pressure. DBP is diastolic blood pressure. TG is 

triglycerides. FPG is fasting plasma glucose. HDL is high-density lipoprotein cholesterol. 

Insulin is fasting insulin concentration. Activity thresholds (counts per minute) were 

sedentary activity (0–99), light intensity (100–759), lifestyle activity (760–2019), moderate 

intensity (2020–5996), and vigorous intensity (≥5999). 
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Chapter 9 Appendices 

Appendix A:  Manuscript 1 

Citation: Kanagasabai, Thirumagal, and Chris I. Ardern. “Contribution of Inflammation, 

Oxidative Stress, and Antioxidants to the Relationship between Sleep Duration and 

Cardiometabolic Health.” Sleep 38, no. 12 (2015): 1905–12. 
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Appendix B:  Manuscript 2 

Citation: Kanagasabai, Thirumagal, and Chris I. Ardern. “Inflammation, Oxidative Stress, 

and Antioxidants Contribute to Selected Sleep Quality and Cardiometabolic Health 

Relationships: A Cross-Sectional Study.” Mediators of Inflammation 2015 (2015): 

824589. 
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Appendix C:  Additional Analysis for the Fasting Insulin Level Outcome 

Figure 9.1 

 

Figure 9.1. The contributions of inflammation, oxidative stress, and antioxidants to the 

sleep–fasting insulin level relationship. 

ab estimate is amount of mediation or contribution by the mediatory variable; CI, 

confidence interval. *p<0.05, 95% CI are bias-corrected, bootstrapped values.  
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Appendix D:  A Brief Description of the National Health and Nutritional Examination 

Survey (NHANES) and the Sleep Hearth Health Study Datasets 

NHANES 

The National Health and Nutrition Examination Survey (NHANES) is a series of 

cross-sectional studies designed to assess the health and nutritional status of adults and 

children in the United States. It collects data from personal interviews, physical 

examinations, and laboratory analyses biannually in a nationally representative sample 

of approximately 10,000 participants. Laboratory data are obtained by blood and urine 

samples collected from survey participants at NHANES Mobile Examination Centers 

within approximately 2 weeks of the interview. Health status is assessed by physical 

examination at the Examination Centers. Demographic and other survey data regarding 

health status, nutrition, and health-related behaviors are collected by personal 

interviews.116 Further details of the protocols and sample processing methods are 

available on the NHANES’s website.258 

NHANES uses a complex, multistage, probability sampling method to select 

participants that are representative of the US civilian, non-institutionalized population. 

However, NHANES uses randomly samples households (stage 3) and individuals (stage 

4).269 Stage 1 are counties, and stage 2 are segments within the countries. Selection at 

stages 1 and 2 levels are based on the “probability proportional to a measure of size”.269 

In some instances, certain subgroups are oversampled to better estimate the health risks 

in these groups.269 Finally, a sample weight is assigned to each participant to represent 

the number of people in the population based on the census data.269  

Sleep Heart Health Study 
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The Sleep Heart Health Study dataset was obtained from the National Sleep 

Research Resource portal.121 This is a multicenter (6 cohorts), longitudinal study that 

began in 1994, and completed in 2011. The 6 cohorts were: Atherosclerosis Risk in 

Communities Study (n=1,750); Cardiovascular Health Study (n=1,350); Framingham 

Heart Study (n=1,000); Strong Heart Study (n=600); New York Hypertension Cohorts 

(n=1,000); and, Tucson Epidemiologic Study of Airways Obstructive Diseases and the 

Health and Environment Study (n=900). The Sleep Heart Health Stud’s main purpose 

was to determine if sleep-disordered breathing increased risk of developing 

cardiovascular disease and all-cause mortality.260 A non-probability sampling method was 

used to select participants who were ≥40 y with had no history of treatment for sleep 

apnea, tracheostomy, or current home oxygen therapy.  

The initial home-PSG was done between 1995 and 1998, and the follow-up home-

PSG approximately 4 y later (2001 to 2003). In total, 6,441 participants were enrolled in 

the first cycle, and 3,295 of the participants completed the follow-up cycle home-PSG 

protocol. Data were collected for both baseline and follow-up via home visits by trained 

personnel who were certified to set up the sleep monitor and obtain vital measurements, 

and collect data from the interviews, as well as review the completeness data.121 A 

technician also returned to the participant’s home the following morning to collect the 

sleep monitor and self-administered survey data. These data were checked by sleep 

technicians for completeness and quality, and the PSG data were sent to the Reading 

Center for processing.121  
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Appendix E:  Sample Sizes needed to have 80% Power  

To detect a moderate mediation effect of ≥0.09 with 80% power, 105 participants 

were required in each sleep category for manuscripts 1 and 2.142 Therefore, we had 

sufficient power in these studies. For manuscript 3 and the additional analysis, which uses 

the bootstrap method, a similar sample size has 80% power (i.e., n=100) to detect a 

moderate mediation effect.270 Therefore, we were slightly underpowered for our analyses 

for sleep duration for manuscript 3 because the very short and long sleep durations were 

below 100. However, we used 5000 iterations instead of the 1000 iterations used by 

Lockwood & MacKinnon270 in their simulation, which gives a more accurate estimation of 

the errors within the model. Further, the overall patterns of our analyses are similar for 

both sleep duration and quality, and we had sufficient power for our sleep quality 

analyses. 

For manuscript 4, a sample size of 97 participants was needed to detect a modest 

correlation of ≥0.25 with 80% power. For the multiple regression analyses in this 

manuscript, which had 4 predictors, a sample size of 45 was required to detect 30% 

higher odds of MetS. For the multiple linear regression model with 4 predictors, a sample 

size of 1,188 was required to detect a difference as small as 0.01.271 Therefore, this study 

was adequately powered. 

For manuscript 5, a sample size of 61 participants per group was needed to detect 

a 30% higher risk in the final model that included 9 predictors.271 Therefore, this study 

was sufficiently powered. 
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Appendix F:  Mediation Analyses, Sample SAS Code, Outputs, and Explanation 

Mediation Analysis 

Mediation analysis is a series of regression analyses that help explain the underlying 

relationship between an exposure and an outcome through a third, mediatory variable. 

Path a is the relationship between exposure and mediator. Path b is the relationship 

between the mediator and outcome controlling for the effect of the exposure. Path c is the 

relationship between exposure and outcome. Path c’ is relationship between exposure 

and outcome controlling for the effect of the mediator.142 These paths are illustrated in 

Figure 9.2. In a mediation model with the same cases in all paths and no latent variables, 

the products of paths ab and c-c’ are mathematically equivalent. The indirect effect (ab) 

estimate is the amount of contribution a mediator provides to the relationship between an 

exposure and an outcome.142  

total effect (c) = direct effect (c’) + indirect effect (ab) 

 indirect effect (ab) = total effect (c) - direct effect (c’) 
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Figure 9.2. Multiple regression method of the indirect mediation model. 

Path a indicates the path from sleep quality (exposure) to mediator (i.e., inflammation, 

oxidative stress, and antioxidant. Path b indicates the path from mediator to outcome (i.e., 

metabolic syndrome (MetS), number of MetS components, and individual MetS 

components) controlling for the mediator. Path c indicates the path from exposure to 

outcome. Path c' indicates the path from exposure to outcome controlling for the mediator. 

The paths of this figure are from Kenny.142 
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Sample SAS Code 

*Path a; 
PROC REG; 
MODEL CRPSI = sleepqualitycat; 
RUN; 
 
*Paths b and c’; 
PROC REG; 
MODEL INSULINPMOL = CRPSI sleepqualitycat; 
RUN; 
 
*Path c; 
PROC REG; 
MODEL INSULINPMOL = sleepqualitycat; 
RUN; 
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Sample Output for the Individual Paths 

Path a output: 

 

Paths b and c’: 

 

Path c: 

 

Path a details 

Path b details 

Path c’ details 

Path c details 
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Output From SAS Indirect Macro written by Hayes143 
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Explanation for the Output 

Note that the estimates for the paths are similar with both methods, and as described 

above, the products of ab = c-c’. The ab is the estimate of the indirect mediation effect, 

or the contribution of the mediatory variable to the relationship between and exposure 

and outcome. In this instance, the relationship between sleep quality and fasting insulin 

level (outcome) is explained by the mediatory variable (CRP) to a large extent (0.4668). 

That is, CRP contributes significantly (p=0.459) to the relationship between sleep quality 

and fasting insulin level. 
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