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GENERAL ABSTRACT 

 

Ecdysteroids are released in rhythmic fashion from ovaries during egg development in 

Rhodnius prolixus. Transfer of ovaries from arrhythmic (LL ) animals to continuous 

darkness in vitro did not stimulate ecdysteroid release. PERIOD (PER) protein was 

observed in follicle cells of the ovary only at specific stages of oocyte development in 

both entrained (LD) and arrhythmic (LL) animals arguing against the presence of an 

endogenous ovarian clock. I showed that whole and fractionated brain extracts stimulated 

ecdysteroid release by ovaries from both LD and LL animals.  The low molecular weight 

fraction (containing insulin-like proteins, ILPs) was tenfold more potent than the high 

molecular weight fraction (containing prothoracicotropic hormone, PTTH).  None of 

recombinant PTTH, vertebrate insulins or corazonin had any significant stimulatory 

effect on ovarian ecdysteroid release. The circadian rhythm of ecdysteroid release by 

ovaries appears to be driven exogenously, probably by rhythmic release of unidentified 

hormones. 
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I. GENERAL INTRODUCTION. 

 
 

1.1 Physiology of the Ovary and Egg Development in Insects 

 

Three main types of ovaries exist in insects, the panoistic, polytrophic, and telotrophic 

ovaries (Snodgrass, 1935; Bonhag, 1958). Panoistic ovaries are comprised of only follicle 

cells surrounding oocytes, whereas polytrophic and telotrophic ovaries (collectively known as 

meroistic) are comprised of oocytes, nurse cells, and follicle cells (Huebner and Anderson, 

1972a). The telotrophic ovary is characteristic of many hemipterans, with Rhodnius prolixus 

providing an example of the cellular organization of this complex ovary type (King and Akai, 

1984). The polytrophic ovary type has been well studied in many insects, while fewer studies 

have focused on the ultrastructural organization and development of the far more complex 

telotrophic ovary (King and Akai, 1984). Insect ovaries are made up of compartmentalized 

subunits referred to as ovarioles, and the number of ovarioles in telotrophic ovaries ranges 

from a few to thousands. Many hemipterans, including R. prolixus, have seven ovarioles per 

ovary, which hangs from a terminal filament in the body cavity or haemacoel (King and Akai, 

1984). The telotrophic ovary consists of nurse cells, also known as trophocytes, confined to a 

trophic chamber in the anterior end of the ovariole, with trophic chords connecting the  

chamber to individual oocytes for the transport of nutrients and other material to the 

developing oocyte (Fig. 1.1) (Huebner and Anderson, 1972a,b,c). Posterior to this trophic 

chamber is the vitellarium, consisting of the oocytes at various stages of development and 

their surrounding follicle cells. 
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In R. prolixus, the development of oocytes into fully formed eggs is initiated by a 

blood meal. Development of oocytes occurs in two main stages, which are classified as 

previtellogenesis and vitellogenesis. During previtellogenesis, follicle cells begin as 

prefollicular tissue (Huebner and Anderson, 1972a). Small oocytes are also embedded within 

this tissue. Once stimulated, the prefollicular tissue undergoes drastic morphological changes 

in tandem with oocyte growth, forming a thin layer of follicle cells around developing oocytes 

(Huebner and Anderson, 1972a; Bonhag, 1955). During previtellogenesis, the trophocytes in 

the tropharium form a syncytial core (Huebner and Anderson, 1972b), which extends to the 

developing oocytes and transfers nutrients, such as ribosomes and mRNA (Huebner, 1981). 

This intercellular transport of nutrients is achieved by an electrical gradient that drives 

negatively charged nurse cell products (most soluble proteins and organelles in cytoplasm) 

into the oocyte (Telfer et al., 1981).  At the onset of vitellogenesis of the developing oocyte, 

the trophic cord reduces in size and then degenerates completely by mid-vitellogenesis 

(Huebner, 1981). Vitellogenesis is a period of rapid growth and development of the oocyte 

during which yolk is deposited (Hagedorn and Kunkel, 1979), and occurs between Days 2 and 

9 following a blood meal in adult female R. prolixus (Patchin and Davey, 1968). During 

vitellogenesis, lipids and proteins such as the yolk precursor protein vitellogenin are 

transferred across the follicular epithelium, and these yolk precursors are incorporated into the 

oocyte where they form the major egg yolk protein, vitellin (Huebner and Anderson, 1972c). 

During a cycle of egg development in R. prolixus, each ovariole only has one vitellogenic 

oocyte at a time (referred to as the terminal oocyte).  The preceding oocyte (known as the 

penultimate oocyte) remains in the pre-vitellogenic stage until the terminal oocyte has 

completed vitellogenesis (Huebner, 1981). Following vitellogenesis, the mature oocyte is 
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covered in a shell, known as the chorion, and the completed egg is released from the 

vitellarium (Beament, 1946). Therefore, within a single ovariole many eggs are produced in 

succession during a single reproductive cycle.  



 4 

1.1 

Figure 1.1 A line drawing of a single ovariole from the telotrophic ovary of R. 

prolixus (adapted from Huebner and Anderson, 1972b). The ovariole is divided 

into two separate compartments, the tropharium and the vitellarium. Developing 

oocytes at various stages, and their surrounding follicle cells are located in the 

vitellarium. 
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1.1.1 The Physiology and Function of Ovarian Follicle Cells 

 

The follicle cells have a variety of functions that are critical to oogenesis and 

embryonic growth and development. The single layer of binucleate follicle cells is responsible 

for the uptake of yolk proteins (Huebner and Anderson, 1972a), the formation of the chorion 

(Beament, 1946), and vitellogenin synthesis (Melo et al., 2000). Furthermore, in some insects 

the follicular epithelium is the primary site of synthesis of ovarian ecdysteroids (Goltzene et 

al., 1978).  

The follicular epithelium is derived through mitosis from prefollicular cells during pre-

vitellogenesis (Huebner and Anderson, 1972a). These cells are organized into a columnar 

epithelium, and are close in proximity to the previtellogenic oocyte (Huebner and Anderson, 

1972a). Follicle cells become binucleate during the later stages of previtellogenesis (Huebner 

and Anderson, 1972a). Throughout vitellogenesis, follicle cells on the anterior surface of the 

developing oocyte remain columnar and tightly organized (80-90 µ), while the lateral cells 

become squamous (25-30 µ, each nucleus 10-12 µ long) and significantly altered to create 

extracellular spaces, a phenomenon known as patency (Huebner and Anderson, 1972a). 

Despite these differences, the follicle cells are in close association with each other and the 

oocytes by gap junctions throughout vitellogenesis (Huebner and Anderson, 1972a). Patency 

is important for the initiation of vitellogenesis, mainly for the passage of yolk precursors into 

the oocyte through this previously impermeable barrier (Huebner and Anderson, 1972a). 

Vitellogenin in R. prolixus is synthesized in the fat body, and patency of the follicular 

epithelium appears and increases gradually throughout vitellogenesis, correlating with the rate 

of vitellogenin uptake into the oocyte from the hemolymph (Huebner and Injeyan, 1980). It 
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was shown that in addition to incorporating vitellogenin produced by the fat body into the 

developing oocyte, the follicle cells produce vitellogenin, which is taken up by the oocyte 

towards the end of vitellogenesis after patency has diminished (Melo et al., 2000). Subsequent 

to vitellogenesis, it is the single layer of binucleate follicle cells that synthesizes and deposits 

the chorion (Beament, 1946). 

 

1.1.2 Hormonal Regulation of Patency, Vitellogenesis, and Ecdysteroids in Rhodnius 

prolixus  

 

The release of regulatory factors that occurs during the entire period of egg 

development in insects has been the focus of extensive research. Classical studies showed that 

normal egg development is under control of the corpus allatum (CA)  (see Section 1.6.3) 

(Wigglesworth, 1936). Juvenile hormones (JH) (Wigglesworth, 1940) are acyclic 

sesquiterpenoids produced in the CA, a pair of endocrine glands in the retrocerebral complex 

close to the brain. JH is crucial for many aspects of insect physiology, including the 

development of patency during vitellogenesis (Ilenchuk and Davey, 1987). JH also regulates 

previtellogenic growth of the follicle in some insect species (Wyatt and Davey, 1996). In R. 

prolixus, exposure of prefollicular tissue to JH is required during larval development in order 

to acquire competence of the follicle cells to respond to JH in the vitellogenic follicle in the 

adult (Abu-Hakima and Davey, 1975). While the identity of the R. prolixus JH is not known, 

surgical removal of the CA in mated females results in delayed vitellogenesis and the 

inhibition of a patent follicular epithelium (Pratt and Davey, 1972). Through binding assays 

on isolated follicle cells it was shown that JHI directly binds to the plasma membrane 
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(Ilenchuk and Davey, 1985), and causes an increase in specific JH-sensitive membrane bound 

Na/K-ATPase activity. Additionally, JH induced follicle cell shrinkage is inhibited in the 

presence of ouabain, an Na/K-ATPase inhibitor (Abu-Hakima and Davey, 1979). Therefore, 

JH acts directly on the follicle cells to induce patency, permitting vitellogenin uptake into the 

oocyte (Pratt and Davey, 1972; Wyatt and Davey, 1996).  

In most insects, synthesis of vitellogenins in the fat body is dependent on stimulation 

by JH (Wyatt and Davey, 1996). Studies involving the removal and replacement of the CA 

demonstrated the requirement of JH for normal vitellogenin production (Coles, 1965). In R. 

prolixus, adult females lacking the CA produce low levels of vitellogenin and fewer amounts 

of eggs, and these processes can be restored to normal levels with administration of JH (Wang 

and Davey, 1993). Additionally, the function of the accessory sex glands in the reproductive 

system of some insects is dependent on the CA (Scharrer, 1946). The accessory glands 

produce mainly protein, and it has been demonstrated that JH stimulates protein synthesis in 

these glands (Wyatt and Davey, 1996). In Rhodnius (Barker and Davey, 1982), Locusta 

(Braun and Wyatt, 1995), and Melanoplus (Gillot and Friedel, 1976) removal of the CA 

causes a reduction in protein synthesis by accessory glands and application of JH (or JH 

analogues) can restore normal rates of protein synthesis. Additionally, an antigonadotropin 

that inhibits the response of follicle cells to JH was identified (Huebner and Davey, 1973). 

Four pairs of adbominal neurosecretory organs were found to be the source of this 

antigonadotropin (Davey and Kuster, 1981), which inhibits the action of JH in causing 

patency.  

In addition to JH, ecdysteroids play an important role in the regulation of 

vitellogenesis in insects (Brown et al., 2009). In Diptera, ovarian ecdysteroids released into 



 8 

the hemolymph stimulate the fat body to synthesize and release vitellogenin, which is then 

incorporated into the developing oocyte (Van de Velde et al., 2008). In many adult insects, the 

follicle cells are the source of ecdysteroids, which are taken up by the oocyte and/or released 

into the hemolymph for circulation. While the exact location and function of ovarian 

ecdysteroidogenesis in R. prolixus has not been elucidated, studies in a cockroach 

demonstrated ecdysteroid secretion by ovarian follicle cells (Zhu et al., 1983). Ovarian 

ecdysteroids have numerous roles in adult insects, in addition to initiation of vitellogenesis. 

Ecdysteroids are converted to various conjugates, which are incorporated into the developing 

oocyte where they may function in activating and regulating early embryogenesis (Lagueux et 

al., 1979). In R. prolixus, ecdysone (E) and 20-hydroxyecdysone (20E) were the only free 

ecdysteroids found in the hemolymph (Cardinal-Aucoin et al., 2013). 

Because the telotrophic ovaries of R. prolixus are suspended in the hemocoel, 

hormonal regulation of various processes during oogenesis via the hemolymph has been a 

primary area of study (Pratt and Davey, 1972). Earlier studies involving surgical lesions and 

cauterization excluded the involvement of direct innervation in the regulation of egg 

development (discussed in Büning, 1994). In addition to the regulatory factors discussed, 

many other molecules involved in the regulation of the egg development have been identified 

in other insects (see Section 4.1.4).  

 

1.2 Importance and Development of Circadian Rhythms 

 

Organisms undergo rhythmic changes in behavioural, physiological, and biochemical 

processes in the course of a day. Many of these changes occur in response to environmental 
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stimuli, such as light:dark (LD) cycles (Pittendrigh and Minis, 1964). Rhythms in organisms 

that occur with a periodicity matching that of the earth’s rotation, but persist in the absence of 

environmental cues, are termed circadian. Circadian rhythms are biological rhythms generated 

by circadian clocks (Pittendrigh, 1960). Circadian rhythms have roughly 24h periodicity, and 

convey critical timing information to diverse cells and tissues. Circadian rhythms are essential 

for coordinating and synchronizing cellular and physiological activities into a temporal 

sequence in organisms, from bacteria to humans (reviewed by Harmer et al., 2001). These 

endogenously controlled biological rhythms are synchronized to external, environmental, and 

internal hormonal controls to regulate the timing of cellular, tissue, and systemic events 

(Panda et al., 2002). The circadian clock permits anticipation of changes in the environment 

and thereby prepares the organism for these changes (discussed in Saunders, 1977).    

Not only do circadian rhythms persist in the absence of external cues, they are also 

temperature compensated (Pittendrigh, 1960). Therefore, over a wide range of temperatures 

the phase and period length of a circadian rhythm does not change. Additionally, the phase 

and period length can be adjusted so that the endogenous timing of organisms matches that of 

the surrounding environment; this process is known as entrainment (Pittendrigh and Minis, 

1964). Zeitgebers (Beling, 1929), or “time-givers”, are signals such as light, hormones, 

nutrients, and temperature, which govern and synchronize the timing of biochemical and 

physiological processes (Panda et al., 2002). Therefore, endogenously controlled biological 

rhythms are synchronized to external environmental timing signals as well as internal 

hormonal controls by Zeitgeibers.   
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1.3 The Molecular Oscillator 

 

Circadian clocks are found throughout all eukaryotes and bacteria; from cyanobacteria 

(Kondo et al., 1993), which are photosynthetic prokaryotes, to mammals. Circadian 

oscillations in physiological and biochemical functions are generated by specialized cell types 

in multicellular organisms. The traditional model of the circadian clock has three functional 

components: (1) a core molecular oscillator that generates endogenous rhythms with 

approximately a 24 hour period; (2) input pathways that entrain the molecular oscillator (via 

environmental signals which are converted to sensory information) and (3) output pathways 

that transmit circadian information to various biochemical, physiological and behavioural 

processes (Dunlap et al., 2004; Bloch et al., 2013). Clock genes, initially cloned from D. 

melanogaster, have the primary role of participating in molecular oscillations that generate 

circadian rhythms (Vafopoulou and Steel, 2005). Only a limited number of groups of cells 

possess these molecular oscillators, in which the clock genes are transcribed with circadian 

periodicity resulting in circadian changes in levels of clock gene mRNA and protein 

(Vafopoulou and Steel, 2005). Furthermore, cytoplasmic clock proteins move into the nucleus 

with circadian periodicity, where they act as transcription regulators (Vafopoulou and Steel, 

2005), resulting in transcription-translation feedback loops (TTFL). To be a clock cell, 

circadian cycling of clock gene mRNA and/or protein levels, as well as rhythmic protein 

migration into the nucleus, must free-run in continuous darkness (DD) (Vafopoulou and Steel, 

2005). In certain cells that exhibit daily cycling of clock gene expression, mRNA levels, and 

clock protein abundance, transfer to DD results in the failure of rhythmicity to free run. 

Hence, these cellular oscillators are not clock cells, and the rhythmicity in these cells must be 
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driven by true clock cells via hormones or nerves (Vafopoulou and Steel, 2005). Additionally, 

true clock cells are almost always found in groups, and are coupled together by gap junctions 

and/or hormonal or neural inputs to generate circadian rhythmicity. True circadian clocks, as 

well as driven oscillators, have been identified in the brain and peripheral tissues (discussed in 

Vafopoulou and Steel, 2005).  

 In many animals, a circadian clock in the brain coordinates and synchronizes 

circadian rhythms in peripheral tissues and organs (reviewed by Helfrich-Forster, 2004). 

Furthermore, circadian clocks or oscillators have been identified in virtually all other tissues, 

such as the eyes, liver, kidneys (reviewed by Herzog and Tosini, 2001), ovaries (reviewed by 

Sellix, 2015) and many other tissues in vertebrates, and the prothoracic glands (reviewed by 

Vafopoulou X and Steel, 2006), Malphigian tubules, fat body, rectum, and reproductive 

tissues in insects (reviewed by Giebultowicz, 2001).  

 

1.3.1 Molecular Basis for Circadian Rhythmicity 

 

In most clock cells examined to date, the TTFL is central to the circadian oscillator 

(Yu and Hardin, 2006). The first molecular model of the circadian oscillator consisted of a 

single autoregulatory feedback loop in gene expression (Hall, 2003), and the discovery of 

additional clock genes in D. melanogaster added to its complexity. The current model of the 

D. melanogaster circadian oscillator is composed of two interlocked feedback loops (Hardin, 

2004; Hardin, 2005; Stanewsky, 2003). These feedback loops are regulated by transcription 

factors that induce the expression of clock genes, that then indirectly negatively regulate their 

own transcription, thus creating oscillatory patterns of gene, mRNA, and protein expression 
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(described in Yu and Hardin, 2006). Additionally, posttranscriptional modifications, such as 

the coordinated effects of kinases and phosphatases, are important in the regulation of the 

TTFL (Yu and Hardin, 2006). The TTFL drives rhythmic expression of target downstream 

genes, called clock-controlled genes (ccgs), thus regulating specific outputs in a circadian 

manner (Wijnen et al., 2006). As in D. melanogaster, the mammalian molecular oscillator is 

composed of interlocked transcriptional feedback loops, and many orthologs or functional 

equivalents between both models have been identified (discussed in Yu and Hardin, 2006).  

 

1.3.2 The Molecular Oscillator in Insects 

 

The molecular and genetic studies of circadian rhythms began in Drosophila 

melanogaster. Originally, three fly mutants with different eclosion periods were identified, 

and all three strains were found to have a mutation in the same gene locus, period (per
long

, 

per
short

, per
01

) (Konopka and Benzer, 1971). The dPer gene, and its protein PERIOD (PER), 

was the first clock component identified. Timeless (dTim) was the second clock gene to be 

cloned in D. melanogaster, as dTIM was found to bind to and stabilize dPER via a PAS 

domain (Gekakis et al., 1995).  

The current model of the circadian clock in D. melanogaster shows that two genes 

clock (Clk) and cycle (Cyc), encode transcription factors containing basic helix-loop-helix 

(bHLH) DNA-binding domains and PAS domains (Darlington et al., 1998; Allada et al., 

1998; Rutila et al., 1998). Starting from mid-day, dCLK and CYC heterodimerize in the 

nucleus and bind to E-Box sequences, which are found in the promoter region of many 

circadian regulated genes, such as per and tim (Figure 1.2, indicated by “+”) (Hardin, 2005). 
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At the same time, per and tim mRNA levels begin to accumulate, but PER and TIM protein 

levels do not peak until the late evening (Williams and Sehgal, 2001). PER and TIM levels 

remain low during the day as a result of the blue-light photoreceptor cryptochrome (CRY), 

which undergoes a light-induced conformational change that promotes the formation of CRY-

TIM complexes (Ashmore et al., 2003). As a result, TIM is degraded by the 

ubiquitin/proteasome pathway (Ashmore and Sehgal, 2003), and PER is targeted for 

phosphorylation and degradation. Without TIM, PER is subject to phosphorylation by Double-

Time (DBT) kinase (Price et al., 1998), and then targeted for ubiquitination and subsequent 

degradation by supernumerary limbs (slmb) protein, SLMB (Grima et al., 2002). PER levels 

are also regulated by protein phosphatase 2A (PP2A) in the cytoplasm, where PP2A 

rhythmically dephosphorylates PER, thereby regulating PER stability (not shown in Figure 

1.2)(Sathyanarayanan et al., 2004). Interestingly, rhythmic dephosphorylation of PER is 

achieved by the rhythmic expression of PP2A regulatory subunits, twins (tws) and widerborst 

(wdb) in the cytoplasm (Sathyanarayanan et al., 2004). This demonstrates the importance of 

posttranslational modification (phosphorylation being the most studied) of PER and TIM in 

the cytoplasm, which plays crucial roles in the generation of a 24 h rhythm by regulating the 

stability of PER and the timing of nuclear entry of PER-TIM complexes (discussed in Harms 

et al., 2004).  

 At night when it is dark, PER and TIM accumulate and form a complex, because TIM 

is no longer destabilized by light-induced degradation (Fig. 1.2, indicated by “-“). PER-TIM 

complexes enter the nucleus (described in Harms et al., 2004), and the complex binds to 

CLK/CYC dimers resulting in hyperphosphorylation of CLK, preventing CLK/CYC 

complexes from binding to DNA (Hardin, 2005). As a result, transcription of per and tim is 
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inhibited (Hardin, 2005). Therefore, dPER and dTIM mediate negative feedback and dCLK 

and CYC regulate the positive elements of the TTFL (Yu and Hardin, 2006). The transcription 

of Clk is regulated by a second feedback loop that interlocks with the tim/per loop (Hardin, 

2004; Yu and Hardin, 2006), which will not be discussed here.  
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Figure 1.2 A diagram illustrating the core molecular machinery comprising the 

transcription-translation feedback loop (TTFL) of the D. melanogaster circadian 

clock (adapted from Hardin, 2005). Only the PER/TIM negative feedback loop is 

shown. See text for details.  
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1.3.3 The Molecular Oscillator in Mammals 

 

In mammals, the TTFL is comprised of genes homologous to the D. melanogaster 

clock genes (Harmer et al., 2001). Three per homologs have been identified in mammals, 

Per1, Per2, and Per3  (Sun et al., 1997; Zylka et al., 1998). Similar to the insect clock, the 

bHLH/PAS transcription factors CLK and BMAL1 (the mouse homolog of CYCLE) comprise 

the positive elements of the mammalian clock (Gekakis et al., 1998; Vitaterna et al., 1994). 

The negative feedback loop in the mammalian model is more complex, and has been reviewed 

in detail (Harmer et al., 2001). In short, all three PER proteins are involved in the negative 

feedback inhibition of CLK/BMAL1-mediated gene activation, and the action of PER is aided 

by two cryptochromes, CRY1 and CRY2, independently of TIM (Griffin et al., 1999; Kume et 

al., 1999).  

 

1.4 Multioscillator Organization of Circadian Systems 

 

 Circadian clocks and oscillators are present in many organs and tissues in animals. 

Because true circadian clocks generate the rhythmic inputs that drive rhythmicity in cellular 

oscillators (both in the CNS and in peripheral tissues), this leads to the notion that the 

circadian system is comprised of a hierarchal organization of oscillators (Vafopoulou and 

Steel, 2005). This hierarchal arrangement of the circadian system consists of master clocks 

driving rhythmicity in other oscillators (via nerves and/or hormones), as well as the integrated 

roles of semi-autonomous clocks.  
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1.4.1 Consequences of Circadian Disruption 

 

The implications of desynchronized circadian systems and the resulting disruption of 

internal temporal order as a result of exposure to abnormal circadian light cycles is becoming 

readily apparent (Aschoff, 1969; Pittendrigh and Minis, 1972).  With the widespread use of 

electrical lighting, as well as the increasing number of shift workers, exposure to light at night 

is resulting in repeated and long term desynchronized circadian systems (Navara and Nelson, 

2007). Not only can light pollution affect many behavioural and physiological processes in 

animals that rely on seasonal changes in day length, such as in birds (Brigham and Barclay, 

1992) and rodents (Kotler, 1984), human exposure to a low-level incandescent bulb at night 

can suppress levels of the pineal gland hormone melatonin to 50% in 39 minutes (Lewy et al., 

1985). Melatonin exhibits diurnal variations in circulating levels which peak at night, and this 

rhythm is critical for conveying photoperiodic information to entrain the circadian system in 

mammals, birds, and insects (Redman et al., 1983; Lewy et al., 1985; Vivien-Roels and Pevet, 

1993). Additionally, shift work and light exposure at night has been associated with insulin 

resistance, hypertension, and heart disease, cancer, and many other diseases in humans 

(reviewed in Haus and Smolensky, 2006). Many reproductive processes rely on variation in 

light, and disruptive effects of unnatural, long-term light exposure on reproductive behavior 

and physiology have been documented (reviewed in Reiter, 1980). 
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1.4.2 The Circadian Clock in the Insect Brain 

 

While clock gene expression has been identified in virtually all tissues examined to 

date, the center of circadian timekeeping is located in the brain of insects. Circadian master 

clocks in the insect brain were identified by lesioning, transplantation, and in vitro 

experiments, which demonstrated candidate structures that were critical for circadian 

rhythmicity. Two distinct areas in the brain possessing circadian clocks have been identified; 

the lateral and dorsal protocerebrum (detailed in Vafopoulou and Steel, 2005). However, the 

interconnectivity of anatomically separate groups of clock cells in the brain has been 

demonstrated in many insect species, indicating that the protocerebral and optic lobe clocks 

are not distinct structures but are components of a complex clock network in the brain 

(discussed in Vafopoulou and Steel, 2005).  

Early transplantation studies in the cockroach, Leucophaea maderae, demonstrated 

that the optic lobe contains a circadian clock (Page, 1982). Implantation of an optic lobe into a 

lobeless recipient animal was sufficient to restore activity rhythms, and the period of the 

locomotor rhythm was that of the optic lobe donor, rather than the recipient. Futhermore, 

isolated optic lobes in vitro showed a circadian rhythm in neural activity (Colwell and Page, 

1990).  

The central oscillator of L. maderae was localized between the medulla and the lobula 

(Fig. 1.3) (reviewed by Helfrich-Forster et al., 1998)). Pigment-dispersing hormones (PDHs) 

identified in several crustacean species (Rao and Riehm, 1993), and similar peptides in insects 

called pigment-dispersing factors (PDFs) (Rao et al., 1987), showed dense immunoreactive 
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staining in cell bodies of neurons localized to the optic lobe. These pigment-dispersing factor-

immunoreactive neurons (PDFMe) that innervate the optic lobe region fulfilled the anatomical 

criteria proposed for circadian clock neurons (Homberg et al., 1991; Page, 1984). In crickets, 

grasshoppers, and flies, the optic lobe was also identified as the location of the master clock, 

with PDH-immunoreactive (PDH-ir) neurons connecting the lamina, medulla, and different 

targets in the central brain (reviewed by Helfrich-Forster et al., 1998).  

 In D. melanogaster, PER was localized to a group of lateral neurons (LNs) in the optic 

lobe, which was sufficient to sustain behavioural rhythms in flies with a null mutation in per 

in all other cells (Frisch et al., 1994). In contrast to the centrally organized master clock in 

cockroaches and crickets, several clock gene expressing dorsal neurons of the protocerebrum 

in D. melanogaster have been identified (reviewed by Helfrich-Forster, 2003). The dorsal 

neurons (DNs), however, require functioning LNs to control activity rhythms under constant 

conditions (Helfrich-Forster, 2004). In some insects, the dorsal brain clock neurons seem just 

as important as those in the optic lobe clock (Helfrich-Forster, 2004; reviewed in Vafopoulou 

and Steel, 2006). While the role of the optic lobe in circadian timekeeping has been frequently 

described in some insect groups (Helfrich-Forster et al., 1998), its function in other insects 

such as R. prolixus is questionable as an area for the integration of timing information 

(Vafopoulou and Steel, 2005). Interestingly, rhythmic clock gene (PER/TIM) expression in 

PDF-immunoreactive LNs has only been demonstrated in D. melanogaster and R. prolixus 

(see Section 1.6.3) (Helfrich-Forster, 2004; Vafopoulou and Steel, 2006).  
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Figure 1.3 Schematic drawings of the brains of the (a) cockroach, Leucophaea 

maderae, and (b) the fruit fly, Drosophila melanogaster (adapted from Helfrich-

Forster, 1998). The lamina (La), medulla (Me), and lobula (Lo) in the optic lobe are 

indicated. The general locations of circadian pacemaker centers are indicated 

(filled circles and squares). The lateral neurons (LNs) are localized between the 

lobula and medulla in the optic lobe. In D. melanogaster, additional clock neurons, 

dorsal neurons (DNs), are located in the region of the central brain.  
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1.4.3 The Circadian Clock in the Mammalian Brain 

 

 In mammals, the master clock is located in the suprachiasmatic nuclei (SCN) of the 

hypothalamus in the brain (Klein et al., 1991). The SCN is composed of between 5,000-

30,000 neurons depending on the species, and is organized into several neuronal 

subpopulations based on different neuroactive substances (described in Helfrich-Forster, 

2004). Only a few SCN cells are considered true clock cells, and individual SCN cells in vitro 

have highly variable period lengths in electrical firing patterns and membrane potential 

(Hamada et al., 2001). Therefore, the coupling and integration of populations of SCN cells is 

required to fulfill the properties of a circadian clock, as has been demonstrated in the insect 

brain. Transplantation studies using the tau mutant hamster, with a behavioral rhythm period 

of about 20 h (in comparison to 24 h rhythm in wild type hamsters), demonstrated that the 

SCN is essential for determining the period of this rhythm (Ralph et al., 1990). Similar to the 

accessory medulla in insects, the SCN is linked with many parts of the brain, modulating 

neuroendocrine functions in a rhythmic manner (Helfrich-Forster, 2004).  

 

1.4.4 Peripheral Oscillators and Clocks in Insects 

 

The idea that one central clock in the brain controls internal temporal order 

(Pittendrigh, 1960) has been questioned as a result of the study of spatial patterns of clock-

gene expression in D. melanogaster (Plautz et al., 1997), suggesting the presence of a multi-

oscillatory circadian organization. Clock genes cycle outside of the CNS, in many tissues and 

organs involved in development, reproduction, metabolism, and excretion (reviewed in 
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Giebultowicz, 2001). Peripheral oscillators are not necessarily circadian clocks because the 

requirements of a true clock have not been met, and rhythmicity is often driven by external 

factors (see Section 1.2) (Vafopoulou and Steel, 2005). For example, in D. melanogaster 

rhythmic clock gene expression in the Malpighian tubules, which could be reset by light, was 

demonstrated using a luciferase reporter for the promoter of per (Hege et al., 1997). However, 

when tubules were transplanted into another insect, light sensitivity was lost and the tubules 

were unable to respond to humoral signals from the host insect (Giebultowicz et al., 2000). 

While it is not known what the functional significance of the tubule rhythm is, it is clear that 

entrainment of this rhythm occurs via intact connections between the Malpighian tubules and 

the whole animal (Steel and Vafopoulou, 2005).  

 The most fully characterized peripheral circadian clock in insects is found in the paired 

prothoracic gland (PG) of larval Rhodnius prolixus (reviewed in Vafopoulou and Steel, 2006). 

The photosensitive clock in this tissue generates rhythmic synthesis and release of the 

ecdysteroid molting hormones, which persists in aperiodic conditions (Vafopoulou and Steel, 

1991). This strong rhythm in titer had a free-running period length of approximately 24 h, and 

was temperature compensated (Vafopoulou and Steel, 1991). It is now well understood that 

the circadian orchestration of developmental hormones in R. prolixus is achieved by a 

multioscillator system consisting of four photosensitive circadian clocks, one in each of the 

paired PGs and two in the brain (see Section 1.5) (reviewed in Vafopoulou and Steel, 2006).   
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1.4.5 Peripheral Oscillators and Clocks in Mammals 

 

  The hierarchical organization of the mammalian circadian system is demonstrated by 

the coordination of the central clock with peripheral clocks to mediate behavioural and 

physiological outputs (reviewed by Bass and Takahashi, 2010). Peripheral clocks are 

regulated through direct neural and humoral signals from the brain clock, as well as by 

regulation from local, endogenous cellular oscillators that function independently of the brain 

clock. Peripheral clocks have been characterized in many tissues and organs in mammals, 

including the liver, muscle, fat, pancreas, and the cardiovascular system (reviewed by Bass 

and Takahashi, 2010). Bile acid synthesis, lipogenesis, cardiovascular function, inflammation, 

and glucose homeostasis are just a few biochemical and physiological processes regulated by 

peripheral oscillators (reviewed by Bass and Takahashi, 2010).  

 Ovarian clocks have been detected in mammals, and a clear rhythm in circulating 

luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from the pituitary is tightly 

regulated by light:dark (LD) signals transmitted from the SCN (Boden and Kennaway, 2006). 

The mammalian ovarian follicle is comprised of a heterogeneous population of cells, namely 

theca cells (TCs), granulosa cells (GCs), and androgen- and estrogen-producing cells 

surrounding the outside of the follicle (Sellix, 2015). The TCs and GCs undergo specific 

changes in levels of steroidogenic enzymes (Espey and Richards, 2006), and this process is 

dependent upon the appropriate timing of a surge in circulating LH (Karsch et al., 1997; Sellix 

and Menaker, 2010). Furthermore, rhythmic clock gene expression has been reported in 

mature GCs (Chu et al., 2011, Chu et al., 2012), as well as isolated GCs from rats providing 

evidence of circadian clock function in these cells (Chen et al., 2013a; Chen et al., 2013b).  
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 Circadian clocks in the mammalian ovary also play a critical role in steroid hormone 

synthesis and secretion, which show clear rhythms in rodents (Sellix, 2015). In bmal1-/- mice, 

which are infertile, reduced expression of steroidogenic acute regulatory protein (StAR) and 

low levels of circulating progesterone were observed (Ratajczak et al., 2009). It was suggested 

that clock disruption alone, which also abolishes rhythmic StAR expression in isolated bmal1-

/- mature GCs from rats (Chen et al., 2013a; Chen et al., 2013b), might lead to altered patterns 

of ovarian steroid hormone synthesis and secretion (Sellix, 2015). These findings demonstrate 

that rhythmic events such as the timing and amplitude of steroid hormone secretion, which are 

essential to fertility in the mammalian ovary, are reliant on the coordination of multiple 

peripheral oscillators in endocrine tissues and the primary circadian clock in the SCN 

(reviewed by Sellix, 2015).  

 

1.5 Entrainment of Circadian Clocks and Oscillators 

 

Every eukaryote and prokaryote examined to date has some mechanism for circadian 

timekeeping. While circadian rhythms are self-sustained and persist with a free-running period 

in the absence of external cues, circadian clocks are entrained by periodic environmental 

signals, which allow organisms to anticipate environmental changes (Pittendrigh, 1960). 

Light, temperature, social cues (Levine et al., 2002), and even magnetism (Yoshii et al., 2009) 

can act as Zeitgebers (Peschel and Helfrich-Forster, 2011). Circadian clocks also convey 

timing information to peripheral clocks and oscillators through the use of internal Zeitgebers, 

where hormones are the most common entraining signals to such clocks and oscillators 

(Vafopoulou and Steel, 2005).  
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1.5.1 Entrainment of Clocks by Light 

 

The predominant Zeitgeber for entrainment is light (or dark) (reviewed in Peschel and 

Helfrich-Forster, 2011). Furthermore, the circadian clock is sensitive to the timing of light 

exposure. In D. melanogaster, a brief exposure to light at night causes a delayed or advanced 

onset of activity on the next day, depending on the timing of the light pulse given (Peschel and 

Forster, 2011). Furthermore, in constant light (LL) a fly’s behaviour becomes arrhythmic 

(Konopka et al., 1989). It was suggested that light has a strong influence by either degrading a 

component of the TTFL mechanism that typically declines during photophase, or that a 

component that usually increases during photophase is being induced by light (Emery et al., 

1998). The stability of TIM protein is light-sensitive, and dTIM is rapidly degraded in 

response to light (Lee et al., 1996).  

Three different photoreceptive organs containing different photopigments for light 

entrainment of clock neurons have been described in D. melanogaster (Peschel and Helfrich-

Forster, 2011). The compound eyes, the ocelli, and the Hofbauer-Buchner eyelets are 

photosensitive organs involved in light entrainment pathways of clock neurons in the brain 

(Peschel and Helfrich-Forster, 2011). In some insects, it has been suggested that the only 

photoreceptors for entrainment by light are the compound eyes (Nishiitsutsuji-Uwo and 

Pittendrigh, 1986b). Severing of the optic nerve, removal of both compound eyes, or even 

partial removal of the compound eye of crickets (Tomioka et al., 1990), results in weakened 

or complete loss of entrainment in both aperiodic and LD conditions. In cockroaches, lesion 

studies demonstrated that photoreceptors in the compound eye are necessary for light 
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entrainment (Nishiitsutsuji-Uwo and Pittendrigh, 1968a). The sensitivity of the compound eye 

is also controlled by a circadian clock (Tomioka and Chiba, 1982). After severing the optic 

tracts in the cricket Gryllus bimaculatus, thereby isolating the optic lobe (OL)-compound eye 

(CE) system from the CNS, a circadian electroretinogram (ERG) rhythm persisted in DD and 

constant temperature conditions. From this, the possibility of a self-sustaining oscillator in the 

OL has been raised (Tomioka and Chiba, 1982).  

Non-ocular entrainment by light has been well studied, with the use of genetically 

eyeless or blind D. melanogaster that can be entrained to LD cycles (Helfrich-Forster, 1997). 

Cryptochromes, which are blue-light photoreceptors expressed in specific subsets of clock 

neurons and compound eyes (Yoshii et al., 2008), were found to transmit light information to 

the circadian clock. In D. melanogaster, dCRY interacts with dTIM in response to light, and 

this interaction is correlated with dTIM degradation (Ceriani et al., 1999). dCRY-mediated 

degradation of TIM prevents PER-TIM dimer formation when there is light, confining PER-

TIM dimerization to darkness (Emery et al., 1998). Therefore, in LL conditions dCRY-

mediated dTIM degradation prevents increased levels of dTIM and stabilization of dPER, 

which affects the TTFL mechanism and causes arrhythmic behaviour (Harmer et al., 2001). 

Interestingly, mutant cry
b 

flies which have a null mutation encoding the blue light 

photoreceptor do not become arrhythmic under constant light conditions (Stanewsky et al., 

1998), in comparison to wild type flies, demonstrating a unique role of dCRY in extraocular 

circadian photoreception (Emery et al., 2000).  

In vertebrates, the primary site for photoreception and entrainment is the retina, which 

contains a separate anatomical and functional system that mediates light information to the 

clock in the brain (Hannibal and Fahrenkrug, 2002). The retinohypothalamic tract (RHT) is a 
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projection of retinal ganglion cells that transmits light signals from the retina to the SCN 

directly, but transmission to the SCN can also be achieved indirectly through projections to 

the lateral geniculate nucleus (LGN) (reviewed by King and Takahashi 2000). Melanopsin is a 

photopigment expressed exclusively in certain retinal ganglion cells, and melanopsin 

containing ganglion cells are intrinsically photosensitive (Hannibal and Fahrenkrug, 2002; 

Morin et al., 2003; Gompf et al., 2014; Lucas et al., 2014). This specific subset of ganglion 

cells can detect light when isolated from the rest of the retina, and specific ablation of these 

cells abolishes non-visual responses such as photic input to the circadian system (Lucas et al., 

2003; reviewed in Lucas et al., 2014).  

 

1.5.2 Entrainment of Clock Cells by Temperature 

  

 In comparison to light, which can be perceived by the compound eyes and extra-ocular 

pathways and entrains the circadian clock, temperature changes can act directly on the TTFL 

mechanism (Rensing and Ruoff, 2002). Under constant darkness (DD) or constant light (LL), 

the activity rhythm of wild type and arrhythmic mutant per
o
 D. melanogaster could be 

entrained to periodic temperatures (12:12 h) oscillating with a 5 C difference (Tomioka et 

al., 1998). In Drosophila pseudoobscura, the circadian rhythm of eclosion can be entrained by 

temperature cycles of 8 C to 10 C amplitude in the absence of light cues (Zimmerman et al., 

1968). Temperature cycles also have an indirect effect on signaling cascades, such as cAMP, 

cGMP, and protein kinases A and C, which may influence phosphorylation of clock 

components in the TTFL mechanism (reviewed by Rensing and Ruoff, 2002). In D. 

melanogaster, entrainment of locomotor activity rhythms by a temperature cycle of 3 C was 
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observed in blind flies (Wheeler et al., 1993), and many wild type individuals are entrainable 

by temperature cycles that vary by only 2 C (Helfrich-Forster, 1998). Similar findings were 

demonstrated in crickets and cockroaches with their optic lobes removed, in which locomotor 

rhythms persisted in response to temperature cycles (Page, 1985b).  

 

 

1.5.3 Entrainment of Peripheral Tissue Clocks and Oscillators 

 

In multi-oscillatory systems, behavioural and physiological experiments have 

demonstrated that the clock in the brain often regulates the circadian rhythm of physiological 

functions in peripheral tissues with endogenous circadian oscillators (Pittendrigh, 1974). 

Through neural and hormonal inputs, the master clock can regulate and set the phase of 

peripheral circadian oscillators, while some of these peripheral oscillators can independently 

be entrained by light cycles in vitro (reviewed by Tomioka and Abdelsalam, 2004). 

 In the hemimetabolous insect, R. prolixus, the peripheral clocks in the paired PGs 

control the synthesis and release ecdysteroids with a circadian rhythm. The circadian clock in 

PG cells is photosensitive in culture, but hormonal entrainment via the photosensitive clock in 

the brain acts to set the phase of rhythmic ecdysteroidogenesis and release (Pelc and Steel, 

1997). The brain neuropeptide, prothoracicotropic hormone (PTTH), is released from the 

brain with a circadian rhythm, and synchronizes left and right PGs to regulate the output of 

ecdysteroids into the hemolymph (Vafopoulou and Steel, 1996).  Interestingly, the 

photosensitive clock in the brain has also been shown to be responsive to internal Zeitgebers. 

Expression of the ecdysteroid receptor (EcR) is induced by ecdysteroids in many target tissues 



 29 

(epidermal cells, brain neurons, fat body, rectal epithelium and oenocytes [Vafopoulou and 

Steel, 2006]), and the level of EcR expression closely parallels the hemolymph ecdysteroid 

titer during development (Vafopoulou et al., 2005). Furthermore, ecdysteroids were found to 

exert rhythmic feedback on the lateral clock neurons in the brain of R. prolixus, which exhibit 

circadian cycling of EcR (Vafopoulou and Steel, 2006). In this mechanism of feedback, 

ecdysteroids exert a rhythmic influence on the clock cells that generates rhythmicity 

(Vafopoulou and Steel, 2006).  

In mammals most cells and tissues contain endogenous circadian oscillators, but cyclic 

clock gene expression is more readily dampened in the absence of inputs from the central 

clock. Therefore, Zeitgebers such as SCN signals (neural and hormonal), feeding-fasting 

cycles, and cycles in body temperature are essential for synchronizing peripheral oscillators 

(reviewed in Son et al., 2011).  

The hypothalamus-pituitary-adrenal (HPA) axis is of interest because it constitutes the 

neuroendocrine regulation of the stress response in mammals. Additionally, adrenal 

glucocorticoids (GCs) are adrenal steroid hormones that are released with a robust circadian 

rhythm and act on many tissues and the brain (reviewed in Son et al., 2011). Each adrenal 

gland harbors an endogenous circadian clock that mediates the circadian GC rhythm by gating 

the sensitivity of the adrenals to ACTH (Oster et al., 2006). This is remarkably similar to the 

previously well-described circadian system in larval R. prolixus, which regulates the 

productions of ecdysteroids. The action of ACTH parallels that of PTTH in insects, acting on 

endocrine glands that harbor a photosensitive circadian clock (the adrenal glands and PGs, 

respectively).  
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 Neurosecretory neurons in the hypothalamus are stimulated to release corticotrophin-

releasing hormone, which in turn induces the synthesis and release of adrenocorticotropic 

hormone (ACTH) from the pituitary. ACTH targets and activates adrenal synthesis and 

secretion of GCs. Circulating GCs will interact with specific receptors in target tissues to 

enable the organism to cope with the stress (reviewed by Chrousos and Kino, 2007), and will 

also inhibit further HPA neuroendocrine activity by its upstream regulators (Sapolsky et al., 

2000).  

Interestingly, the adrenal peripheral clock is not only entrained by the action of the 

SCN central clock, but also by food entrainable oscillators in the dorsomedial hypothalamus 

(Damiola et al., 2000; Fuller et al., 2008). This finding was demonstrated with the use of 

nocturnal rodents that were restricted to daytime feeding, in which the daily GC rhythm 

showed two peaks (Holmes et al., 1997). The significance of this system is the integrated 

activity of multiple regulatory mechanisms in the brain and peripheral tissue to regulate the 

rhythm of circulating GCs, which has also been implicated in synchronizing circadian timing 

in peripheral clocks (reviewed in Son et al., 2011).   

 

1.6 Circadian Orchestration of Development in the Model Organism, Rhodnius prolixus 

 

1.6.1 Rhodnius prolixus as a Model Organism 

 

R. prolixus is a hemimetabolous insect belonging to the order Hemiptera, and the 

family Reduviidae, more commonly known as the assassin bug family (Schofield and Galvão, 

2009). R. prolixus is a triatomine bug that has adapted to feed on vertebrate blood, and has a 
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typical hemimetabolous life cycle. Using humans as hosts, it is the predominant vector of 

Trypanosoma cruzi, or Chagas disease (Dias, 1953). Each of the five larval stages, or instars, 

requires a single blood meal to initiate a series of developmental events leading to moulting, 

culminating in metamorphosis of fifth instar larvae (Buxton, 1930). As adults, a single blood 

meal will initiate a cascade of reproductive processes, resulting in egg production and 

ovulation in females (Buxton, 1930). Between blood meals, R. prolixus remain in a state of 

suppressed growth, metabolism, and reproduction that is analogous to developmental diapause 

(Wigglesworth, 1964). Development, metamorphosis, and reproduction resumes only when 

the insect receives a sufficient blood meal (Wigglesworth, 1972).  

R. prolixus was pioneered as a principal model organism for the study of insect 

physiology and endocrinology (Wigglesworth, 1934). Additionally, R. prolixus is an ideal 

model organism for circadian studies because individuals in a population are developmentally 

and reproductively synchronized with each blood meal following hatching, allowing precise 

experimental control (Vafopoulou et al., 2010). The most substantial body of literature 

documenting the endocrinology and hierarchal organization of the circadian system in insects 

was established using R. prolixus as a model organism (Vafopoulou and Steel, 2006).  

 

1.6.2 Regulation of Ecdysteroid Synthesis and Release by a Photosensitive Clock in the PGs  

 

Ecdysteroids are essential developmental hormones of larval stages, regulating molting 

and metamorphosis. Ecdysone from the PGs is converted to 20-hydroxyecdysone (20E), the 

active form, by peripheral tissues and targets the epidermal cells to initiate the molting process 

(Gilbert et al., 1980; Riddiford, 1980). When the titer of a second hormone, juvenile hormone 
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(JH), declines following development, ecdysteroids initiate metamorphosis into the adult 

(Riddiford, 1980). Ecdysteroids are released with a circadian rhythm, and virtually all cells 

respond to changes in titer of hemolymph ecdysteroids during development (reviewed in Steel 

and Vafopoulou, 2006). The PGs are known to be the primary site of ecdysteroid synthesis 

and secretion in larvae, and the PG synthetic activity and hemolymph ecdysteroid titer 

undergo gradual changes of increase and decrease during a developmental cycle in R. prolixus 

following a blood meal (Steel et al., 1982). When hemolymph samples were taken multiple 

times a day, a significant daily oscillation in hemolymph ecdysteroid titer was observed, with 

peak levels during scotophase, and deep troughs during each photophase (Ampleford and 

Steel, 1985). These findings led to the notion of an endogenous circadian clock driving the 

daily oscillations in ecdysteroid titer, which was investigated using aperiodic conditions 

(Vafopoulou and Steel, 1991).  

In continuous light (LL) environments, ecdysteroid rhythms generated by circadian 

clocks dampen after a few cycles, resulting in arrhythmic animals (Vafopoulou and Steel, 

1993). This has been demonstrated in R. prolixus; in animals exposed to long-term LL 

conditions there is a loss in rhythmic ecdysteroid synthesis and release by the PGs. Transfer to 

continuous darkness, DD, serves as a lights-off cue, reinitiating ecdysteroid rhythms 

(Vafopoulou and Steel, 2001). When animals were transferred to either LL or DD, circadian 

rhythms in ecdysteroid titer persisted. Furthermore, in DD this free running rhythm persisted 

with a phase similar to the entrained state, a period of approximately 24 hours, and the free 

running period length was temperature compensated (Vafopoulou and Steel, 1991). Similar 

results were found when PGs were explanted and ecdysteroid titer was measured in vitro 

following transfer to DD. However, transfer to LL resulted in a phase reversal of ecdysteroid 
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synthesis and hemolymph titer indicating a second oscillator that regulates 

ecdysteroidogenesis in the absence of dark cues (Vafopoulou and Steel, 1991).  

The finding that an endogenous circadian clock was located in the PGs was achieved 

by removing PGs from LL animals, incubating them in vitro in LL for several hours, followed 

by an abrupt transfer to DD. Ecdysteroid synthesis was stimulated by this “lights off” signal, 

and this was initiated and maintained by the PGs (in DD) in the absence of neural and 

hormonal input. It was concluded that the PGs possess a photosensitive clock that regulates 

ecdysteroid synthesis.  

 

1.6.3 Regulation of Ecdysteroid Synthesis and Release from the PGs by Prothoracicotropic 

Hormone (PTTH)  

 

 PTTH is the central cerebral neurohormone that regulates growth and development in 

insects (Vafopoulou and Steel, 2012). PTTH has classically been considered a larval hormone, 

with the PGs being the only known target. In R. prolixus it was found that PTTH is released 

rhythmically on almost every day throughout development, rather than being confined to a 

brief period early in a developmental cycle (Vafopoulou and Steel, 1996). PTTH hemolymph 

titer peaked during scotophase when the brain would release one third of its PTTH content, 

which was shown to be replenished during the following photophase (Vafopoulou and Steel, 

1996).  

 The PTTH peptides of R. prolixus are composed of 17kDa subunits, and have a high 

homology to PTTH of the silkworm, Bombyx mori (Vafopoulou and Steel, 2002). An in vitro 

PTTH assay was employed to quantify PTTH release, and this entailed incubating fifth instar 
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larval brains for several hours and then quantifying the content based on the ability of the 

medium to augment ecdysteroid synthesis by the PGs (Vafopoulou and Steel, 1996). With the 

use of anti-PTTH from B. mori, it was demonstrated that PTTH from Rhodnius is 

immunologically similar to Bombyx PTTH, as all biological activity from the PTTH assay 

medium was removed (Vafopoulou and Steel, 2002).  

 PTTH daily rhythms are also under circadian control. This was demonstrated by the 

findings that the free running period of PTTH release persisted for several cycles in DD and 

LL, and that transfer of larval animals raised in LL (which lack PTTH release, Vafopoulou 

and Steel, 2001) to DD initiated the rhythmic release of PTTH, which free ran in DD 

(Vafopoulou and Steel, 2001). In the 5
th

 instar of R. prolixus, two neurosecretory cells in the 

dorsolateral region of the protocerebrum (in each brain hemisphere) showed strong 

immunoreactivity to Bombyx anti-PTTH (Fig. 1.4), and a clear daily rhythm in the content of 

PTTH in the cell bodies was demonstrated by quantification of the intensity of staining by 

anti-PTTH (Vafopoulou and Steel, 2006; Vafopoulou et al., 2007). This rhythm corresponded 

with the rhythm of PTTH content of brains measured with the PTTH in vitro bioassay 

(Vafopoulou and Steel, 2001). Additionaly, a cluster of lateral clock neurons in close 

proximity to the optic lobe were identified using anti-PER, anti-TIM, and anti-PDF (see 

Section 1.4.2 ) (Vafopoulou et al., 2010). The axons of LNs are tripolar, with one branch 

transversing the protocerebrum in extremely close proximity to the two PTTH cell axons, 

indicating a neuroanatomical pathway for the circadian regulation of PTTH by the lateral 

clock neurons (reviewed in Steel and Vafopoulou, 2006).  

 While the autonomous PG clock continues to drive rhythmic synthesis and release of 

ecdysteroids in vitro, removal of PTTH signaling through decapitation or injection of a 
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sublethal dose of tetrodotoxin (TTX) in whole animals was found to cause a phase reversal of 

the rhythm of ecdysteroid release (Pelc and Steel, 1997). This parallels later findings, which 

demonstrated phase reversals in ecdysteroidogenesis when explanted PGs were maintained in 

LL (see Section 1.6.2) (Vafopoulou and Steel, 2001). The PGs are highly responsive to PTTH 

around the onset of scotophase, but not during photophase (Vafopoulou and Steel, 1999). 

Therefore, light and dark cues are capable of initiating rhythms in both PTTH release and 

ecdysteroid release independently in the brain and PG clock. However, PTTH is the dominant 

mechanism for entrainment of the PG clock, and acts to set the phase of ecdysteroidogenesis 

during development (reviewed in Steel and Vafopoulou, 2006).  

 The activation, or stimulation, of the PGs by PTTH to produce ecdysteroids occurs 

through intracellular signaling pathways. In the PG cells of Manduca sexta, PTTH signaling 

occurs through a G-protein coupled receptor (GPCR), triggering an influx of cytosolic Ca
2+

, 

increased cAMP synthesis resulting in protein kinase A (PKA) activation, and other 

mechanisms leading to ecdysteroid synthesis (Rybczynski et al., 2001; Rybczynski and 

Gilbert, 2003; Fellner et al., 2005).  

 

1.6.4 Regulation of Ecdysteroid Synthesis and Release from the PGs by Insulin and 

Insulin-like peptides (ILPs)  

 

 Insulin-like peptides (ILPs) regulate a multitude of biological and physiological events 

in insects including growth, development, metabolic processes, and reproduction. The first 

invertebrate ILP to be characterized, bombyxin II, was identified in the silkmoth, B. mori 

(Nagasawa et al., 1984). Bombyxin is a small neurosecretory hormone [a molecular weight 
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(MW) of 4400] that was found to be highly stimulatory on PGs in some insects, but not in B. 

mori, indicating that it was not the true PTTH of B. mori (reviewed in detail in Mizoguchi and 

Okamoto, 2013). To date, a total of 5 bombyxin species have been isolated from B. mori 

brains (Mizoguchi and Okamoto, 2013). In D. melanogaster, at least seven ILP genes have 

been identified (dilp1-7) (Brogiolo et al., 2001). In the brain of B. mori, bombyxin-producing 

neurosecretory cells have been localized to medial neurosecretory cells (MNCs) with axon 

terminals around the periphery of the corpus allatum (CA) (Mizoguchi et al., 1987).  

In the brains of larval R. prolixus, binding of anti-bombyxin allowed for the 

localization of eleven ILP neurosecretory cells in a group of MNCs, as well as an additional 

four cells located laterally outside of the MNC area (Vafopoulou and Steel, 2012).  

Upon intake of a blood meal, ILP fluorescence with anti-bombyxin in the 

neurosecretory cells decreased within four hours, and later increased in intensity and persisted 

throughout development and after ecdysis, indicating synthesis of ILPs (Vafopoulou and 

Steel, 2012). The presence of ILPs in the hemolymph of R. prolixus using dot blots and anti-

bombyxin confirmed its release from the brain following a blood meal (Vafopoulou and Steel, 

2012). Furthermore, the release of ILPs from the brain following a blood meal occurs with a 

clear daily rhythm. ILP fluorescence intensity peaks during scotophase, but decreases during 

mid-photophase, indicating a depletion of fluorescent material during mid- to late-scotophase 

(Vafopoulou and Steel, 2012).  

 Bombyxin II had a stimulatory effect on ecdysteroid synthesis by R. prolixus PGs in 

vitro in a dose dependent manner, but with much higher (40 fold) concentrations in 

comparison to Bombyx PTTH (Vafopoulou and Steel, 1997). In B. mori, high concentrations 

of bovine insulin stimulated ecdysteroidogenesis by the PGs during a long-term (24 h) 
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incubation period, in a dose dependent manner in vitro and in vivo (Gu et al., 2009). 

Stimulation of the PGs was blocked by an inhibitor of the phosphatidylinositol 3-kinase 

(PI3K) signaling pathway (Gu et al., 2009). Interestingly, injection of anti-bovine insulin into 

fifth instar R. prolixus larvae immediately after feeding, and on specific days post feeding, 

prevented molting (Sevala et al., 1992). Extensive studies of the functional roles of insulin and 

ILPs, mediated in part through the insulin/insulin-like growth factor signaling pathway (IIS), 

in many insect species has illustrated functional similarities to the IIS in vertebrates (reviewed 

by Vafopoulou and Steel, 2015).   

 

 

 

1.7 Circadian Rhythmicity of PTTH, ILPs, and Ecdysteroid Production in Adults 

 

1.7.1 Regulation of PTTH and ILPs by the Adult Brain 

 

 Extensive research has shown that ecdysteroid biosynthesis and the factors regulating 

it are not restricted to larvae (Gilbert et al., 1980). In adult insects, which lack PGs following 

metamorphosis, ecdysteroids are still present and alternative sites of production have been 

described. Additionally, production (Vafopoulou et al., 2007) and release (Vafopoulou et al., 

2012) of PTTH and ILPs (Vafopoulou and Steel, 2012) in adult R. prolixus brains has been 

demonstrated. 

 During the metamorphic molt cycle, the number of PTTH neurons in the lateral 

neurosecretory cell group increased from two (in unfed 5
th

 instar larvae) to five with axons 
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that project into the retrocerebral complex, which is comprised of the corpus cardiacum (CC) 

and corpus allatum (CA) (Fig. 1.4) (Vafopoulou et al., 2007). In comparison to two PTTH 

cells in each brain hemisphere of unfed larval brains and five PTTH cells in each brain 

hemisphere through larval-adult development, the brains of unfed adults contain four PTTH 

neurons in each brain hemisphere (Fig. 1.4) (Vafopoulou et al., 2007). Additionally, PTTH-

immunofluorescence in the axons of PTTH cells appears rapidly following a blood meal, as in 

larvae, indicating transport of PTTH to be released  (Vafopoulou et al., 2007). Circadian 

cycling in relative PTTH-immunofluorescence was found, with peak levels during the onset of 

scotophase and low levels in both axons and somata between late scotophase and early 

photophase, suggesting release of PTTH into the hemolymph (Vafopoulou et al., 2007). These 

findings imply an important role of PTTH in the circadian organization of the adult, as it does 

in larvae (Vafopoulou and Steel, 2007). 

The close association of larval PTTH neurons with PDF immunoreactive axons is 

maintained in adults (see Section 1.6.3) (Vafopoulou et al., 2007), indicating that circadian 

control of PTTH persists in adults (Vafopoulou et al., 2007). More recently, it was shown that 

PTTH is released from the adult brain, and the adult PTTH is closely similar to that of larvae 

in molecular weight (multiples of 17 kDa subunits), immunoreactivity, and biological activity 

on the PGs (Vafopoulou et al., 2012).   

In the brains of R. prolixus, the number of ILP cells, identified using anti-Bombyxin II 

(see Section 1.6.4) increased from 15 (3 groups) in larvae to 24 (4 groups) in adults in each 

brain hemisphere (Vafopoulou and Steel, 2012). In addition to 19 cells located in the MNC, 

five small ILP-immunoreactive neurons in the nervus corpus cardiacum (NCC) develop in the 

adult (Vafopoulou and Steel, 2012). ILP-immunofluorescent axons terminate in the CC and 
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CA, with terminal varicosities in these complexes suggesting that ILPs are released from this 

complex. ILP immunoreactive neurons are located in close proximity with the LNs, and 

rhythmic changes in ILP fluorescence intensity within cell bodies were shown, with depletion 

of immunoreactive material occurring during late scotophase or early photophase after feeding 

and continuing throughout reproduction (Vafopoulou and Steel, 2012). Therefore, the 

production and release of PTTH and ILPs are tightly coupled to the central clock in the brain, 

and rhythms in these circulating brain neurohormones may orchestrate the timing of cellular 

responses in diverse tissues in adults, as in larvae.   
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Figure 1.4 Schematic illustration of the timekeeping system in the brains of larval 

and adult R. prolixus (from Vafopoulou et al., 2007). The regions of the optic lobe 

(OL), corpius cardiacum (CC), and corpus allatum (CA) are indicated. The CC and CA 

comprise the retrocerebral complex, which is the site of release of many 

neurosecretory hormones from neuroendocrine cells (shown in green). In larva, the 

lateral clock neurons (LNs) (shown in red) are found in close proximity with a single 

pair of PTTH neurons (indicated by PTTH1). The location of dorsal clock neurons 

(DNs) is indicated, but the details of projections are not known. In the adult brain, an 

additional pair of PTTH neurons (indicated by PTTH2) is seen. Additional PDF-

immunoreactive neurons (used to trace axons of clock neurons) also appear 

(indicated by PDF). ILP positive neurons were immunolocalized in the dorsal 

protocerebrum (not shown) (Vafopoulou and Steel, 2012).  
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1.7.2 Circadian Regulation of Ovarian Ecdysteroids 

 

Ecdysteroids in adult insects are regarded as possible insect sex steroid hormones; they 

regulate cell growth in egg follicles, and promote cell division in spermatocytes (De Loof et 

al., 2001). The ovary of R. prolixus is the main source of hemolymph ecdysteroids in adult 

females during egg development (Cardinal-Aucoin et al., 2013). While the exact location and 

function of ovarian ecdysteroidogenesis in R. prolixus has not been elucidated, initial studies 

in a few lepidopteran species demonstrated ecdysteroid secretion by ovarian follicle cells (Zhu 

et al., 1983).  

Ovarian ecdysteroids have numerous roles in adult insects, in addition to initiation of 

vitellogenesis (Brown et al., 2009). Ecdysteroids are converted to various conjugates, which 

are incorporated into the developing oocyte where they are deconjugated and may function in 

activating and regulating early embryogenesis (Lagueux et al., 1979). In R. prolixus, ecdysone 

(E) and 20-hydroxyecdysone (20E) were the only free ecdysteroids found in the hemolymph 

(Cardinal-Aucoin et al., 2013). The concentration of these immunoreactive ecdysteroids was 

7-8 fold higher within the ovary compared to levels in the hemolymph, but it is unknown 

whether this represents de novo synthesis within the ovary, or a deconjugation of stored 

ecdysteroids (Cardinal-Aucoin et al., 2013). 

In adult females, a blood meal initiates a cycle of egg development (Buxton, 1933). A 

daily rhythm in hemolymph ecdysteroid titer, as well as release of ecdysteroids by ovaries in 

vitro occurs within hours after a blood meal and continues throughout a 10-day sampling 

period over the course of egg development (Cardinal-Aucoin et al., 2013). These rhythms 

appear to be under circadian control, persisting for three 24-hour cycles following transfer of 
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the insects to LL or DD. The ovaries appear to be the major contributor to hemolymph 

ecdysteroid titer in adult R. prolixus, as the ovarian ecdysteroid content and their in vitro 

release of ecdysteroids were enough to account for the levels seen in the hemolymph (Fig. 1.5) 

(Cardinal-Aucoin et al., 2013). The presence of the major developmental hormones, including 

PTTH, insulin-like peptides (ILPs), and ecdysteroids persisting in the adult insect and released 

with a daily circadian rhythm, invites comparison to the larval circadian control system. As 

previously mentioned, the adult and larval brains of R. prolixus contain the same machinery 

for circadian regulation of PTTH and ILPs, which are produced and released in high quantities 

throughout egg production (Vafopoulou and Steel, 2012; Vafopoulou et al., 2012).  
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Days after a blood meal 

Figure 1.5 Circulating ecdysteroid levels in hemolymph during egg development 

following a blood meal, termed Day 0 (dashed line) (from Cardinal-Aucoin et al., 

2013). The x-axis indicates days before and after a blood meal was given. Period of 

vitellogenesis and oviposition is indicated by the solid bar (Huebner and Anderson, 

1972a,b,c). Ecdysteroid levels increase within 2 h following a blood meal, and much 

higher levels of ecdysteroids occur around Day 4 following a blood meal. 

Vitellogenesis and oviposition continue for 10 days after a blood meal.  
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1.8 PER in Ovarian Follicle Cells in Insects 

 

In adult female D. melanogaster, the follicular cells surrounding previtellogenic 

ovarian egg chambers contain high levels of cytoplasmic PER and TIM (Kotwica et al., 2009). 

In follicle cells surrounding oocytes at the onset of vitellogenesis, PER localization in the 

nucleus was observed and later disappeared in more advanced vitellogenic follicles. Similarly, 

DBT was present in the cytoplasm of follicle cells at the onset of vitellogenesis, coinciding 

with nuclear localization of PER protein in those cells (Kotwica et al., 2009). These findings 

demonstrated a non-circadian, developmental pattern of PER in ovarian follicle cells of D. 

melanogaster.  

 More recently, the presence of PER in follicle cells of the R. prolixus ovary has 

been investigated (Hajia Yakubu, unpublished results). The first seven days of a reproductive 

cycle were examined, and the localization of PER in the nucleus of follicle cells was observed 

only on the fifth day (during scotophase), with decreased levels of PER in the nucleus on the 

sixth day. At this point, terminal oocytes had ended vitellogenesis (Huebner and Anderson, 

1972a,b,c). These findings led to the notion that PER is developmentally regulated in ovarian 

follicle cells in R. prolixus, and its presence is not a manifestation of a circadian rhythm.  
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1.9 Objectives 

 

The purpose of this study was to elucidate the regulatory mechanisms that control 

ovarian release of ecdysteroids during egg production in R. prolixus. A parallel axis of 

neurohormonal rhythms and ecdysteroid rhythms in larvae and adults leads to the possibility 

of neuroendocrine control (PTTH, ILPs) of ovarian ecdysteroid production and release in R. 

prolixus. Furthermore, circadian rhythmicity of ovarian ecdysteroids could be driven by 

rhythmic inputs originating outside of the ovary, or controlled by an ovarian clock. Recent 

work from our lab detected non-cyclical PER in ovarian follicle cells during early 

vitellogenesis, suggesting a non-circadian function of this protein in the ovary. It was 

hypothesized that (1) PER will appear at a specific developmental stage in each mature 

oocyte, and this phenomenon will not be abolished in LL animals. Further, it was predicted 

that (2) ecdysteroid release by ovaries in vitro is not photosensitive, and (3) the rhythm of 

ecdysteroid release is controlled by neurohormonal factors. Therefore, the objective of this 

study was to investigate the effects of neurohormonal treatment on ecdysteroid release by 

ovaries, as well as the presence of nuclear PER in both arrhythmic (LL) and entrained (LD) 

animals at specific developmental stages during late vitellogenesis (days 8-10).  
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II. MATERIALS AND METHODS 

 

2.1 Animals and tissue collection: 

 Adult female R. prolixus were reared in a 12 h light:12 h dark (LD) cycle at 28  0.5 

C. Animals that are fed a single blood meal initiate a synchronous cycle of egg development 

within a population. The day of feeding is referred to as day 0. Females that had undergone 

one cycle of egg production were used throughout. 

 For circadian studies, adult females were reared in continuous light (LL) at 28  0.5 

C. Insects were transferred from LL to DD, with half of the population remaining in LL, on 

Day 5 after feeding, and ovaries were excised one hour after transfer and then incubated for 4 

hours in R. prolixus saline (Lane et al., 1975). Incubation of photophase and LL ovaries was 

performed in light and incubation (including removal/replacement of media) of scotophase 

and DD ovaries was performed in darkness. Following incubation, media were removed and 

stored in methanol at -20 C until assayed by RIA. For circadian studies, a minimum of 5 

insects was sampled per treatment. 

Ovaries used for assays of different neurohormonal treatments were excised under 

saline on specific days after feeding, as specified. One ovary from each animal was incubated 

with test medium for 4 hr (herein referred to as Experimental), and the contralateral ovary was 

incubated in saline as a control (unless stated otherwise). For neurohormonal treatments, 

ovaries from 3 to 5 animals (as specified) were pooled together in groups to obtain measurable 

amounts of ecdysteroids. A minimum of 5 groups of ovaries was sampled per treatment.  
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2.2 Immunohistochemistry and Antibodies: 

Ovaries were prepared following an established protocol (Vafopoulou and Steel, 

2007). Ovaries were excised in R. prolixus saline and fixed in 4% paraformaldehyde in 

phosphate-buffered saline (PBS; pH 7.5; Tsang and Orchard, 1991) for 2 h in darkness, then 

washed in three 15 min changes of PBS. Ovaries were then incubated for one hour in blocking 

solution, consisting of PBS, 4.0% normal serum, and 4% Triton X-100 to permeabilize the 

tissues and minimize non-specific antibody binding. Tissues were washed in three 15 min 

changes of PBS and then incubated with primary antibody against PER and EcR (see below) 

at 4C for 24 h. Tissues were washed in three 15 min changes of PBS, and then incubated with 

secondary antibody (see Antibodies) for 2 h. Following washes in three 15 min changes of 

PBS, tissues were mounted in mounting medium, composed of 90% glycerol in PBS with 1% 

1,4-diazabicyclo[2,2,2,]-octane (DABCO) (Sigma-Aldrich). In technical controls, ovaries 

were incubated in non-immune serum in primary buffer, with no other changes. No 

immunostaining was observed and autofluorescence was not detected.  

Digital optical sections at 1.5M intervals were visualized using an Olympus FV300 

confocal laser scanning microscope. Microscope parameters (offset, gain, PMT) were kept 

constant. Images were processed using ImageJ 1.41 (NIH) and Adobe Photoshop 7.0.  

A custom made (Genscript, NJ) purified guinea pig polyclonal antibody raised against 

a synthetic peptide corresponding to the conserved (protein-protein dimerization motif) of the 

PAS region of PER (residues 605-618; KSSTETPPSYNQLN; known as PER-S) was used for 

PER immunolabelling. This antibody recognizes the native PER of Rhodnius (Vafopoulou et 

al., 2010), and was used at a dilution of 1:200 in primary buffer (PBS, 0.4% Triton X-100, 

4.0% normal serum, and 0.1% NaN3) for all experiments. 
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 EcR 9B9 mouse monoclonal antibody against the Manduca sexta EcR purchased from 

the Developmental Studies Hybridoma Bank (University of Iowa), was raised against the 

common region of the molecule (ecdysteroid receptor) (described in Vafopoulou, 2009). The 

present work employs this antiserum only as a tool to outline plasma and nuclear membranes, 

which is not distinguishable with anti-PER staining alone. EcR 9B9 was used at a dilution of 

1:1000 in primary buffer (PBS, 0.4% Triton X-100, 4.0% normal serum, and 0.1% NaN3) for 

all experiments. The secondary antibodies goat anti-guinea pig IgGs conjugated to the green 

fluorophore fluorescein isothiocyanate (FITC) and goat anti-mouse IgGs conjugated to the 

bright orange flurophore tetramethylrhodamine (TRITC) (both purchased from Sigma-

Aldrich) were used at a 1:200 dilution in secondary buffer (PBS, 10% normal serum, and 

0.1% NaN3) in all experiments.  

 

2.3 In vitro Assay for Brain Extract: 

 Brain-retrocerebral complexes from fifth instar larvae were excised and washed 

thoroughly in R. prolixus saline (Lane et al., 1975) on Day 14 after a blood meal. Brains from 

fifth instar larvae were used because the neuroarchitecture of the timing system has been more 

fully characterized in comparison to adult brains. Furthermore, there are technical difficulties 

associated with excision of adult brains. Brain complexes were excised from donors in late-

photophase (2 hr before lights off) and early-scotophase (1-2 hr after lights on) and were 

pooled in groups of 10 and homogenized in 150µl saline on ice. The homogenate was 

immediately heat-treated at 100°C for 3 min, and centrifuged at 10,000 x g for 10 min. The 

supernatant was removed and stored at -80°C until use. The activity of an extract was assayed 

by its ability to stimulate ecdysteroid release by Rhodnius adult ovaries in vitro. The 
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contralateral control ovaries were incubated in saline. Samples of brain extract were also 

assayed to ensure that no ecdysteroids were present (data not shown). All data on ecdysteroid 

stimulating activity are expressed as the effect of one brain equivalent.  

 

2.4 Fractionation of Brain Extract: 

Fractionation of whole brain extract was achieved by ultrafiltration (Microcon 10 YM 

membrane, Amicon; 10 kDa cut off). Ultrafiltration at 15000 x g for 15 min was performed 

after samples of whole brain extract were homogenized on ice, boiled at 100C and then 

centrifuged at 10,000 g for 10 min (see above). Retenates (>10 kDa fractions) were 

reconstituted to the starting volume of 150µl using saline, and filtrates (<10 kDa fractions) 

were reconstituted to the starting volume of 150µl using ddH2O. “High” and “low” molecular 

weight fractions were tested for their ability to stimulate ecdysteroid release by ovaries from 

adult female R. prolixus in vitro. All data on ecdysteroid stimulating activity are expressed as 

the effect of one brain equivalent.  

 

2.5 Extraction of ecdysteroids from ovaries (ovarian content): 

Ovaries were homogenized in 25 l water in a 1.5 ml graduated microtube. An 

additional 200 l water, 525 l methanol, and 750 l hexane was added, and the mixture was 

vortexed and then centrifuged at 10 000 g for 5 min. The upper (lipid) fraction was removed 

and the aqueous fraction, containing the ecdysteroids, was stored at -20 C until assayed by 

RIA. The procedure was standardized to account for any loss when removing the lipid phase, 

by removing a constant volume of the remaining aqueous phase (0.25 ml from 0.75 ml of the 

aqueous phase) from each sample. Therefore, each sample contained exactly 0.5 ml of the 
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aqueous phase, which was assayed by RIA. This standardized procedure has been shown to 

result in a mean loss of ecdysteroids of 25% (meaning an ecdysteroid extraction efficiency of 

approximately 75%) (described in Cardinal-Aucoin et al., 2013). The data presented (ovarian 

ecdysteroid content) have not been corrected for this mean loss of ecdysteroids of 25%.    

 

2.6 Peptides: 

Recombinant Bombyx PTTH (rPTTH) (expressed in E. Coli) (gift from A. Mizoguchi; 

Nagoya University, Nagoya, Japan) was used at a 6 x 10
-10

 M dilution in all experiments. This 

peptide at the concentration stated above exhibits steroidogenic activity on the PGs of 

Rhodnius (Vafopoulou and Steel, 1997). Controls were incubated in saline with 0.04% BSA. 

Bovine insulin in 0.1% acetic acid (pH=2.8) in R. prolixus saline was used at dilutions of 2.8 x 

10
-7

 M and 1.7 x 10
-6

 M, where specified. The working concentrations of bovine insulin were 

determined based on a dose response curve of Bombyxin-II on R. prolixus PGs, which showed 

significant stimulation elicitied by concentrations of 80 ng/ml to 320 ng/ml, and an increased 

response was seen using concentrations up to 1.7 x 10
-6

 M (Vafopoulou and Steel, 1997). 

Controls were incubated in 0.1% acetic acid (pH=2.8) in R. prolixus saline. Human 

recombinant insulin expressed in E. coli (Humulin-R, a kind gift from Dr. Gary Sweeney; 

York University, Toronto, Canada) was diluted in R. prolixus saline at a working 

concentration of 2.8 x 10
-7

 M. Corazonin (a kind gift from Dr. Ian Orchard, University of 

Toronto Mississauga, Mississauga, Ontario) was used at a working concentration of 10
-6  

M.  
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2.7 Ecdysteroid quantification 

Ecdysteroids were quantified by RIA, as previously described (Steel et al., 1982). H-

21B antiserum which recognizes ecdysone and 20E, was used to quantify ecdysteroids. The 

antiserum was a kind gift from Dr. Ernest F. Chang (University of California, Davis, CA, 

USA). The labeled ligand was α-[23,24-3H(N)]ecdysone (sp. act. 88.2 Ci/mmol; 1Ci=37 

GBq) (PerkinElmer, Billerica, MA, USA). Results are expressed as ng 20E equivalents, since 

20-hydroxyecdysone (20E) (Sigma) was used as the standard.   

 

 2.8 Statistical Analyses  

 Stimulation of ecdysteroid release by neurohormones was measured as the 

difference in the amount of ecdysteroid release between control and experimental members of 

ovaries. Results are expressed as the mean difference ( SEM) (in ng 20E equivalents) 

between control and experimental groups of ovaries. Differences were analyzed using the 

Mann-Whitney U Test (Rank Sum Test). *: indicates significance (p < 0.05), versus control. 

 

2.8 Trypan Blue Exclusion Assay 

 In this exclusion assay, live cells will exclude the dye, whereas dead cells will take up 

the dye and will appear blue (Strober, 2001). This assay has been used in previous studies 

examining vitellogenin uptake by ovaries from Aedes aegypti following a blood meal, which 

showed that trypan blue surrounds but does not penetrate living follicle cells of ovaries in 

vitro (Yonge and Hagedorn, 1977). This assay was employed to ensure that follicle cells in 

incubation media were viable for the length of the incubation period used. Pairs of ovaries 

were excised and incubated in either R. prolixus saline, 0.1% acetic saline, or 0.4% BSA in 
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saline for up to 24 hours. At 1, 4, 8, and 24-hour intervals, ovaries were carefully submerged 

in 4% Trypan blue for 30 seconds. Ovaries were then rinsed and viewed under a light 

microscope. Follicle cells were viable (for up to 12 hours) in each incubation medium (see 

Appendix). 
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III. RESULTS 

 

3.1 Is a Light Cue Detected by Ovaries and Does this Effect Ecdysteroid Release? 

 

Transfer of ovaries from LL animals to DD in vitro was used as a test protocol to 

investigate the effects on ovarian ecdysteroid release by a “lights-off” signal. Rhodnius PGs 

synthesize and secrete high levels of ecdysteroids in response to a signal of darkness 

(Vafopoulou and Steel, 1992). In the present study, ovaries from arrhythmic LL animals were 

excised and incubated in vitro. One member of the ovary pair was immediately placed in DD 

and the other member of the ovary pair was incubated in LL. Removal of incubation medium 

and replacement of fresh saline (using far-red lighting for ovaries in DD) occurred at 1 and 7 

hours of incubation. After one hour of incubation, the level of ecdysteroid release of ovaries 

placed in DD (grey bar) was relatively the same as the LL controls (black bar) (Fig. 2.1). After 

7 hours in incubation, the level of ecdysteroid release by ovaries in DD was not significantly 

different than the release of LL controls (Fig. 2.1).  Sampling at later time points would be 

unreliable, as the tissue in vitro begins to degenerate after 12 hours (See Section 2.7).  

 

 

3.2 Nuclear PER Localization During Egg Development in Entrained (LD) and Arrhythmic 

(LL) Animals 

 

 The presence of nuclear PER in follicle cells of terminal oocytes from two different 

cycles (each occurring around Day 5 and Day 8 following a blood meal) of vitellogenesis 

within ovarioles during egg development was examined. Around Day 5, many terminal 
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oocytes within each ovariole have just completed vitellogenesis and are beginning secondary 

coat formation. Around Day 8, a second (or even third) set of terminal oocytes undergoes 

vitellogenesis and secondary coat formation. Terminal oocytes in ovaries from LD animals 

examined on Day 5 (Fig. 2.2A), and Day 8 (Fig. 2.2B), showed nuclear localization of PER 

(for detailed microscopic anatomy of follicle cells see Huebner and Anderson, 1972a). 

Widespread PER was observed in many terminal oocytes during photophase on both days, but 

not at other time points examined (images not shown). Interestingly, ovarian follicle cells of 

terminal oocytes from LL animals, examined on Day 5 post blood meal, exhibited the same 

pattern of nuclear PER presence as was observed in LD animals (Fig. 2.3A). EcR 

immunostaining was localized to the cytoplasm of follicle cells on all days examined. No 

autofluorescence and immunostaining of secondary antibodies was observed in negative 

controls (Fig. 2.3B).  

 

 

3.3 Ecdysteroid Release by Ovaries from Entrained (LD) and Arrhythmic (LL) Animals and 

Ovarian Ecdysteroid Content from Unfed LD Animals 

 

Initial experiments aimed to verify that the endogenous variation in ecdysteroid release 

between contralateral ovary pairs was insignificant. Left and right ovaries from LD animals on 

Day 8 following a blood meal released very similar amounts of ecdysteroids in vitro (Fig 

2.4A). This was also true for ovaries from LL animals on Day 2 following a blood meal (Fig 

2.4B), however more variability in levels of ecdysteroid release between animals was 

observed, in comparison to LD animals. Based on the findings that contralateral ovaries 

release the same amount of ecdysteroids in vitro, assays investigating the effects of 
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neurohormonal treatment employed this method using one ovary as a control for the 

contralateral experimental ovary. Additionally, the ovarian content of ecdysteroids from unfed 

LD animals was almost undetectable (Fig 2.4C), with levels of ecdysteroids similar to the in 

vitro release of ovaries from unfed animals incubated in saline as controls.  

 

 

3.4 Effect of Whole Brain Extract on Ecdysteroid Release by Ovaries from Arrhythmic (LL) 

and Entrained (LD) Animals in vitro 

 

Ovaries from arrhythmic (LL) animals were initially used to examine the effect of 

brain extract on ecdysteroid release because the ecdysteroid rhythm is abolished in these 

animals (See Section 1.6.2). Furthermore, the release of PTTH from the brain ceases in LL 

(Vafopoulou and Steel, 2001). The expectation was that neurohormones have an action 

equivalent to darkness (not of light), which has been demonstrated in larval R. prolixus. PGs 

from LL animals transferred to DD in vitro abruptly synthesized high levels of ecdysteroids 

(Vafopoulou and Steel, 2002). PTTH from the brains of fifth instar larvae Rhodnius had the 

same effect on PGs from LL animals, stimulating ecdysteroid release in vitro (Vafopoulou and 

Steel, 1996). 

 Ovaries from LL animals on Day 2 following a blood meal were examined, because 

around this day ovaries (from LD animals) are releasing relatively low levels of ecdysteroids 

in comparison to later days in egg development (Fig. 1.5). Therefore, the amount of 

ecdysteroid secretion by the ovaries into the hemolymph on Day 2 is not yet at a maximum 

and may be responsive to whole brain extract to further secrete ecdysteroids. Additionally, 
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ecdysteroid release by ovaries from LL animals on Day 4 was examined as a comparison 

because at this point, ecdysteroid secretion into the hemolymph is at a maximum (Fig. 1.5). 

The present data shows that ovaries from LL animals on Day 2 post blood meal treated with 

whole brain extract exhibited a significant release of ecdysteroids in vitro (p < 0.05) (Fig. 

2.5A). The effect of whole brain extract on Day 4 ovaries from LL animals was not significant 

(Fig. 2.5B).  

Surprisingly, a high degree of variability in the levels of ecdysteroid release between 

groups of ovaries from LL animals was observed (Fig. 2.5), similar to what was observed in 

control experiments (Fig. 2.4). To test whether this variability was a consequence of LL, 

experiments were repeated using ovaries from LD animals to see if the variability could be 

reduced. Furthermore, ovaries from unfed and newly fed animals were examined, limiting the 

amount of external and internal variables involved during egg development following a blood 

meal.   

In ovaries from unfed and newly (2 hr post blood meal) fed LD animals, whole brain 

extract had a highly significant stimulatory effect (p = 0.002 and p < 0.001, respectively; Fig. 

2.6). Levels of stimulation of ecdysteroid release by ovaries from newly fed animals were 

similar to that of ovaries from unfed animals (compare Fig. 2.6A with 2.6B, whole brain 

extract). Additionally, the levels of ecdysteroid release were much less variable compared to 

those from LL animals (Fig. 2.5). Interestingly, the content of ecdysteroids in ovaries from 

unfed animals is extremely low (Fig 2.4C), and is not enough to account for the high amounts 

of ecdysteroids being released upon incubation with whole brain extract (see Discussion). 

Results are shown as the activity of whole brain extract from one brain complex per 

experimental ovary. 
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3.5 Effect of Fractionated Brain Extract on Ecdysteroid Release of Ovaries from Entrained 

(LD) Animals in vitro 

 

Fractionated brain extracts corresponding to ILP-like and PTTH-like activity also 

exhibited a stimulatory effect on ecdysteroid release of ovaries from newly (2 hr) fed animals 

(p = 0.008 and p<0.001, respectively; Fig. 2.7). The <10 kDa fraction (ILP-like activity) was 

much more stimulatory (12x fold) than the >10 kDa fraction (PTTH-like activity)  (compare 

Fig. 2.7A with Fig. 2.7B). Levels of ecdysteroid release by ovaries from newly fed animals in 

response to each brain fraction were much higher in comparison to the content of ecdysteroids 

in unfed ovaries, as was seen with treatment of whole brain extract. Results are shown as the 

activity of fractionated brain extract from one brain complex per experimental ovary.  

 

 

3.6 Effect of Bovine Insulin and Bombyx rPTTH on Ecdysteroid Release by Ovaries 

from Arrhythmic (LL) Animals in vitro 

 

 Because fractionated brain extracts corresponding to ILP-like and PTTH-like activity 

stimulated ecdysteroid release in LD ovaries (Fig. 2.7), the effects of hormones related to 

insulin-like peptides and PTTH (either structurally, functionally, or both) on ecdysteroid 

release was examined. Bovine insulin at concentrations of 2.8 x 10
-7

 M (Fig. 2.8A) and 1.7 x 

10
-6

 M (Fig. 2.8B) did not have an effect on ecdysteroid release by ovaries from LL animals 

on Day 3 post blood meal. Similarly, on Day 4 following a blood meal, no significant effect 

on ecdysteroid release with 2.8 x 10
-7

 M (Fig. 2.9A) and 1.7 x 10
-6

 M (Fig. 2.9B) bovine 
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insulin was observed. The findings parallel what was seen in ovaries from unfed and newly 

fed LD animals incubated with bovine insulin (Fig. 2.11). Interestingly, Bombyx rPTTH at a 

concentration of 6 x 10
-10

 M did not affect ecdysteroid release on Day 2 (Fig. 2.10A) or Day 4 

(Fig. 2.10B) post blood meal.  

 

 

3.7 Effect of Bovine Insulin, Humulin-R, and Corazonin on Ecdysteroid Release of Ovaries 

from Entrained (LD) Animals in vitro 

 

Bovine insulin at a concentration of 2.8 x 10
-7

 M did not affect ecdysteroid release by 

ovaries from unfed (Fig. 2.11A) or newly (2 hr) fed animals (Fig. 2.11B) in vitro. Similarly, 

Humulin-R at a concentration of 2.8 x 10
-7

 M had no significant effect on ecdysteroid release 

by ovaries from unfed (Fig. 2.12A) and newly (2 hr) fed (Fig. 2.12B) animals, and levels of 

ecdysteroids were almost undetectable. R. prolixus corazonin (10
-6 

M) did not stimulate the 

ovaries from unfed (Fig. 2.13A) and newly (2 hr) fed (Fig. 2.13B) animals to release 

ecdysteroids when incubated in vitro.  
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 Figure 2.1 Ecdysteroid release of ovaries from LL animals transferred to DD on Day 5 

following a blood meal, excised and incubated in saline, with one member of each pair 

transferred to DD immediately after excision. Medium was removed 1 hr and 7 hr after 

transfer, and stored at -20C until assayed by RIA. No significant difference in levels of 

ecdysteroid release between ovaries incubated in DD and LL controls was observed. Data 

expressed as mean  SEM (n=5-6).  
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Figure 2.2 Developmental pattern of nuclear PER presence in ovarian follicle cells of 

terminal oocytes during vitellogenesis in entrained (LD) animals. Follicle cells were double 

stained with anti-PER (left column) and anti-EcR (right column). A merge of anti-PER and 

anti-EcR is shown in the middle column. (A) Nuclear PER localization in follicle cells of 

ovaries excised from animals during mid-photophase on Day 5 and (B) follicle cells of ovaries 

excised from animals during mid-photophase on Day 8 post blood meal (n = 70 ovarioles for 

each day).  
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Figure 2.3 Nuclear PER in terminal oocytes from arrhythmic (LL) animals on Day 5 following a 

blood meal. Follicle cells were double stained with anti-PER (left column) and anti-EcR (right 

column). A merge of anti-PER and anti-EcR is shown in the middle column. (A) Nuclear PER 

surrounding condensed chromatin in follicle cells. (B) Negative controls in which 1 buffer and 

2 antibody were used (n = 28 ovarioles). Negative controls are representative of all 

immunohistochemistry studies. White arrows point to the presence of nuclear PER (n = 70 

ovarioles). 
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Figure 2.4 Ovarian ecdysteroid release in vitro during egg development. (A) Comparison of 

release between contralateral ovaries in entrained (LD) animals on Day 8 and (B) LL animals on 

Day 2 following a blood meal. (C) Total ovarian content of ecdysteroids in ovaries from unfed 

entrained (LD) animals. Dissections and incubations were carried out 2 hours after “lights on”. 

Data expressed as mean  SEM (n=5). 
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Figure 2.5 Effect of whole brain extract on ovarian ecdysteroid release in vitro by 

ovaries from LL animals on (A) Day 2 (p < 0.05) and (B) Day 4 post blood meal. 

Dissections and incubations were carried out 2 hours after “lights on”. *: Significant, 

versus control. Data expressed as mean  SEM (n=5). Results are shown as the 

activity of whole brain extract from one brain complex per experimental ovary 
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Figure 2.6 Ecdysteroid release from ovaries of LD animals incubated with whole brain 

extract. (A) Ecdysteroid release by ovaries from unfed LD animals (p = 0.002) and (B) ovaries 

from LD animals excised 2 hrs post feed (p < 0.001). A blood meal was given one hour after 

“lights on”, and ovaries from unfed and newly fed animals were dissected during early 

photophase. *: Significant, versus control. Data expressed as mean  SEM (n=5). 
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Figure 2.7 Ecdysteroid release from ovaries of LD animals treated with fractionated brain 

extracts 2 hr following a blood meal. (A) Treatment with <10kDa brain fraction (p = 0.008) 

and (B) treatment with >10kDa brain fraction (p < 0.001). A blood meal was given one hour 

after “lights on”. *: Significant, versus control. Data expressed as mean  SEM (n=5). Results 

are shown as the activity of fractionated brain extract from one brain complex per 

experimental ovary. 
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Figure 2.8 Effect of bovine insulin on in vitro ecdysteroid release in LL animals on day 3 

following a blood meal. (A) Treatment with 2.8 x 10
-7

 M and (B) treatment with 1.7 x 10
-6

 M. 

Dissections and incubations were carried out 2 hours after “lights on”. Data expressed as mean 

 SEM (n=5). 
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Figure 2.9 Effect of bovine insulin on in vitro ecdysteroid release in LL animals on day 4 

following a blood meal. (A) Treatment with 2.8 x 10
-7

 M insulin and (B) treatment with 

1.7 x 10
-6

 M. Dissections and incubations were carried out 2 hours after “lights on”. Data 

expressed as mean  SEM (n=5). 
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Figure 2.10 Effect of Bombyx rPTTH (6 x 10
-10

 M) on ovarian ecdysteroid release in vitro by 

ovaries from LL animals (A) Day 2 and (B) Day 4 post blood meal. Dissections and 

incubations were carried out 2 hours after “lights on”. Data expressed as mean  SEM (n=5). 
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Figure 2.11 Effect of bovine insulin (2.8 x 10
-7

 M) on ecdysteroid release in vitro by (A) 

ovaries from unfed LD animals and (B) by ovaries excised from LD animals 2 hrs post feed. 

A blood meal was given one hour after “lights on”, and ovaries from unfed and newly fed 

animals were dissected during early photophase. Data expressed as mean  SEM (n=8). 
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Figure 2.12 Effect of Humulin-R (2.8 x 10
-7

 M) on ecdysteroid release in vitro by (A) ovaries 

from unfed LD animals and (B) by ovaries excised from LD animals 2 hrs post feed. A blood 

meal was given one hour after “lights on”, and ovaries from unfed and newly fed animals 

were dissected during early photophase. Data expressed as mean  SEM (n=8).  
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Figure 2.13 Effect of R. prolixus corazonin (10
-6 

M) on ecdysteroid release in vitro by (A) 

ovaries from unfed LD animals and (B) by ovaries excised from LD animals 2 hrs post feed. 

A blood meal was given one hour after “lights on”, and ovaries from unfed and newly fed 

animals were dissected during early photophase. Data expressed as mean  SEM (n=8).
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IV. DISCUSSION 

 

4.1 Discussion of Results 

 

4.1.1 No Induction of Ovarian Ecdysteroid Release Upon Transfer to DD in vitro 

 

 The present data demonstrates that the ovaries in vitro do not release ecdysteroids in 

response to a signal of darkness. If the ovaries contained an endogenous circadian clock, it is 

expected that ecdysteroid release would be stimulated by transfer to DD, as has been 

demonstrated in other systems. PGs from larval fifth instar maintained in LL and transferred 

to DD in vitro elicited a rhythm of ecdysteroid release immediately, with a phase reversal of 

ecdysteroid release (peak release occurring during photophase, instead of scotophase) 

(reviewed by Steel and Vafopoulou, 2006). This rapid rate of ecdysteroid synthesis was not 

observed when PGs from DD animals were transferred to LL, demonstrating that the PGs 

respond to a “lights off” signal but not a “lights on signal”. It was concluded that PTTH 

entrains the clock in the PGs to synthesize ecdysteroids at night, as PTTH is naturally released 

during the night (Vafopoulou and Steel, 1998). In the present study, transfer to DD of ovaries 

from arrhythmic animals failed to stimulate ecdysteroid release. In fact, the level of release 

was constant after 7 hours, in comparison to the release of ovaries from LL animals, which 

fluctuated. This suggests that unlike the PGs, the ovaries may not respond to light cues to 

drive rhythmic ecdysteroid release in vitro.   

Oviposition (or laying of ovulated eggs) occurs with a circadian rhythm in R. prolixus, 

approximately 12 h after “lights on” on successive days during a reproductive cycle (Days 4-

8, approximately) (Ampleford and Davey, 1989). Rhythmic egg laying is a gated phenomenon 
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(Pittendrigh, 1966), as it is observed in individuals and whole populations and it occurs near 

the light to dark transition (Ampleford and Davey, 1989). Furthermore, rhythmic egg laying 

persisted following transfer to DD and was temperature compensated. The results 

demonstrated that a circadian clock was controlling the egg laying rhythm, but the location of 

the clock was not elucidated. A myotropic ovulation hormone is released from the brain at the 

time of oviposition when eggs are in the ovary, and assists the expulsion of eggs from the 

ovary by increasing the power of ovarian contractions (Kriger and Davey, 1983). It was 

hypothesized that the release of the ovulation hormone could be a gated event that drives the 

rhythmicity of egg laying, but nervous control of the muscles in the ovary regulating egg 

release is also likely (Ampleford and Davey, 1989). Because a daily rhythm of ovulation and 

oviposition occurs in D. melanogaster, and persists in mutant flies (per
l
, per

s
, per

0
) (McCabe 

and Birley, 1998), it was suggested that an endogenous circadian clock for ovarian rhythms in 

flies was located outside of the ovary (reviewed in Sellix, 2015). It is possible that a similar 

method of circadian timekeeping occurs in R. prolixus, with ovarian ecdysteroid rhythms (and 

probably ovulation and oviposition) being driven by a clock outside of the ovary (See Section 

4.1.5). 

 

4.1.2 Developmental pattern of nuclear PER in ovarian follicle cells in R. prolixus 

 

 Recent work has demonstrated non-cyclical PER expression throughout early to mid-

egg development (days 1-6) in previtellogenic and vitellogenic follicle cells, as well as 

trophocytes in the tropharium (Hajia Yakubu, unpublished). Around day 5 following a blood 

meal, the first cycle of vitellogenic oocytes and mature oocytes are observed (see Results) 
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(Hajia, Yakubu, Andrea Durant, Xanthe Vafopoulou, unpublished observations). These 

observations coincided with the presence of nuclear PER in follicle cells during mid to late 

scotophase (Hajia Yakubu, unpublished). 

The present study confirms this finding that around the fifth day following a blood 

meal, widespread nuclear PER is observed in some terminal oocytes, appearing at a specific 

stage of development before the deposition of the chorion layers. However, in this study 

widespread nuclear PER was observed during mid-photophase and not at other time points 

examined (i.e. scotophase), indicating that the presence of nuclear PER is not dependent on 

light cues but rather on a specific developmental phenomenon. Furthermore, widespread 

nuclear PER was localized to follicle cells of terminal oocytes during photophase on Day 8 

following a blood meal. PER expression in follicle cells of terminal oocytes during the last 

few days of a reproductive cycle had not been examined previously. Again, terminal oocytes 

(presumably the second or third cycle of vitellogenic follicles within each ovariole during a 

reproductive cycle) have ended vitellogenesis at this point, and nuclear PER expression was 

observed in follicle cells that had not yet deposited the chorion. This confirms that PER 

expression is brief, non-rhythmic, and occurs in many terminal oocytes, which are at a specific 

developmental stage regardless of the time of day.  

Interestingly, widespread nuclear PER expression was also observed in ovarian follicle 

cells from arrhythmic (LL) animals during the middle of a reproductive cycle (subjective Day 

5). If PER had a circadian function in follicle cells, and was part of a molecular oscillator, it 

might be expected that PER expression would be severely reduced or abolished in these cells 

in arrhythmic animals. This depletion of PER as a result of chronic exposure to light was 

demonstrated in PG cells of R. prolixus (Vafopoulou and Steel, 2014). Additionally, the idea 
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that the high abundance of PER in some cells, such as the follicle cells in this study, is 

unnecessary for its role as a transcriptional regulator of the steroidogenesis pathway leads to 

the notion of a multifunctional protein (Vafopoulou and Steel, 2005). Non-circadian functions 

of clock genes have been reported, such as cocaine sensitization in D. melanogaster (Andretic 

et al., 1999). It is quite possible that PER in ovarian follicle cells of R. prolixus has a function 

that is not related to timekeeping.  

In D. melanogaster, developmentally regulated clock gene expression was shown (see 

Section 1.8) (Kotwica et al., 2009). In previtellogenic follicle cells, PER expression is high, 

cytoplasmic, and non-rhythmic, and is co-localized with TIM (Beaver et al., 2003). 

DOUBLETIME (DBT), a kinase that phosphorylates and destabilizes PER, was absent from 

previtellogenic follicle cells. At the onset of vitellogenesis, follicle cells exhibit nuclear PER 

localization, which also corresponds to cytoplasmic DBT localization (Kotwica et al., 2009). 

The finding that nuclear PER in follicle cells is only observed during the early vitellogenic 

phase, and the nuclear phase of PER appears to be very brief, supports the idea in the present 

study that PER in follicle cells of insects appear to have a non-circadian role in egg 

development.  

In the oocytes of the mammalian ovary, it was shown that clock gene mRNA 

fluctuated with a developmental pattern of expression, in contrast to the rhythmic clock gene 

expression and mRNA abundance found in the GCs (see Section 1.4.5) (Amano et al., 2009). 

It was postulated that this expression suppresses rhythms of clock controlled gene expression 

during oocyte maturation and embryonic development, indicating a role for clock genes in 

oocyte maturation that are oscillator independent (Amano et al., 2009). The idea that the SCN 

may coordinate the timing of reproductive events independently of an ovarian clock, or more 
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possibly that a peripheral oscillator in the ovary is partially entrained by the SCN and that the 

molecular clock is “turned on” in developing follicle cells at some point (Sellix, 2015), 

illustrates the uncertainties of how the timing system regulates ovarian physiology.  

 

4.1.3 A factor in the brain stimulates ovarian ecdysteroid release 

  

 The finding that whole brain extract stimulates ecdysteroid release by the ovaries in 

vitro from unfed and newly fed animals is good evidence of neurohormonal control of the 

ovarian ecdysteroid rhythm. The present data supports the notion that the ovary does not 

appear to contain an endogenous circadian clock controlling the ovarian ecdysteroid rhythm. 

This is the first demonstration of regulation by the brain of ecdysteroid release from the ovary 

of adult R. prolixus. Not only did whole brain extract stimulate ecdysteroid release in unfed 

and newly fed insects, whole brain extract also stimulated ecdysteroid release in LL animals a 

few days into egg development, suggesting that a factor in the brain is important for the 

initiation and regulation of ecdysteroid release throughout an entire reproductive cycle. 

 In unfed adult R. prolixus, the brain is not releasing PTTH and ILPs (Vafopoulou and 

Steel, 2001). During egg development, the adult brain contains and releases PTTH and ILPs in 

high quantities with a circadian rhythm (Vafopoulou et al., 2012, Vafopoulou and Steel, 

2012). The rhythm of neuropeptide release occurs in concert with the rhythm of ecdysteroid 

release by the ovaries (Fig. 1.5), suggesting a possible parallel axis of control as was shown in 

larval development. In the present study, when the ovaries from unfed adult R. prolixus were 

exposed to whole brain and fractionated brain extract in vitro, ecdysteroid release was 

significantly greater than the levels of detectable ecdysteroids in ovaries from unfed animals. 
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Therefore, it appears that the unfed ovary responds to brain hormones by synthesizing and/or 

releasing ecdysteroids. However, it is also possible that the ovaries store conjugated 

ecdysteroids that are then deconjugated and released upon stimulation with brain hormones.  

It was previously shown that the content of ecdysteroids in ovaries several days after 

feeding was 7-8 fold higher than levels found in the hemolymph (Cardinal-Aucoin et al., 

2013), but it was not known whether immunoreactive ecdysteroids were synthesized de novo 

within the ovary or were produced by deconjugation of stored ecdysteroids that had been 

previously taken up by the developing oocyte (Cardinal-Aucoin et al., 2013). Ovarian follicle 

cells in other insects have been shown to synthesize ecdysteroids de novo (Zhu et al., 1983), 

and some ecdysteroids are incorporated into the developing oocyte (Lagueux et al., 1979). 

However, it is also possible that the ovaries from unfed animals store high levels of 

conjugated, non-immunoreactive ecdysteroids, which are then deconjugated and released 

following a blood meal (Lagueux et al., 1979). This would require a suitable site of storage for 

high levels of conjugated ecdysteroids in the unfed insect, as well as the rapid deconjugation 

of free ecdysteroids in response to brain factors. Conjugation and deconjugation of 

ecdysteroids with a circadian rhythm could be driven by rhythmic neuropeptide action from 

the brain in the absence of an ovarian clock. While both scenarios seem possible to account 

for the high quantities of ecdysteroids released by ovaries from unfed animals when 

stimulated with brain extract, the present study demonstrates that a factor in the brain does, in 

fact, effect ecdysteroid release by ovaries in adult R. prolixus.  

 Brain fractions with ILP-like or PTTH-like activity, which have been shown to have 

ILP-like and PTTH-like activity on R. prolixus PGs, also have a stimulatory effect on 

ecdysteroid release by the ovaries. Stimulation of ecdysteroid release by the ILP-like fraction 
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was 10 fold greater than that of PTTH-like fraction, suggesting a greater role for ILP 

involvement in insect reproduction. Bombyxin, an ILP from B. mori, has ecdysiotropic 

activity on R. prolixus PGs in high doses. Similar results of ecdysteroid secretion in response 

to ILPs were found by the PGs of B. mori (Gu et al., 2009). In larval B. mori, bombyxin 

induced meiosis in ovaries cultured in vitro (Orikasa et al., 1993). It was proposed that the 

ovaries were stimulated by bombyxin to produce ecdysteroids, because the ovaries from 

fourth instar larvae secrete ecdysteroids, and 20-hydroxyecdysone (20E) induces meiosis at 

low concentrations (Orikasa et al., 1993). In the blowfly, Phormia regina, extracts from the 

median neurosecretory cells (MNCs) of brains, which contain endogenous ILPs, effectively 

stimulated ovarian ecdysteroidogenesis (Maniere et al., 2004). In the mosquito, Aedes aegypti, 

three of eight encoded ILPs (ILP1-8) are expressed in the adult female brain, and ILP3 

stimulated ovarian ecdysteroid production in a dose-dependent manner in much lower 

concentrations compared to bovine insulin (Brown et al., 2008).  

This study demonstrates that ILP-like activity appears to play a major role in the 

regulation of ovarian ecdysteroid release in R. prolixus. Additionally, it is the first to show a 

possible role for PTTH activity as an ovarian ecdysiotropin in an adult insect. PTTH-like 

activity had a much smaller (in comparison to ILP-like activity) but significant effect on 

ecdysteroid release. To date, no other studies have examined the ecdysiotropic activity of 

PTTH on ovaries during reproduction. It is important to note that the insect brain contains a 

wide variety of neuropeptides, and it is therefore possible that other factors (in addition to 

those examined) in the brain may be influencing the ovarian ecdysteroid rhythm (see Section 

4.1.4). Furthermore, brains from larval R. prolixus were used in this study and it is 

conceivable that the adult brain contains other factors that are not present in larvae. However, 
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the use of larval brain fractions in which PTTH-like and ILP-like activity have been 

demonstrated, gives us a potential insight into the nature of stimulation by each brain fraction 

observed.  

 

 

4.1.4 Regulation of Ovarian Ecdysteroid Release by Vertebrate Insulins, Bombyx rPTTH, 

and Corazonin 

 

 In A. aegypti, bovine insulin stimulated ecdysteroid production and release by ovaries 

in adult females (Brown et al., 2009). Significant stimulation was observed in much higher 

concentrations than that of ILP3 (up to 5 nmol vs 100 pmol, respectively), which suggested 

that mammalian insulins have weak ecdysiotropic activity in comparison to endogenous ILPs 

(Brown et al., 2009). This study demonstrates that high concentrations (2.8 x 10
-7

 M and 1.7 x 

10
-6

 M) of bovine insulin do not stimulate ecdysteroid release by ovaries from unfed or newly 

fed LD animals, or ovaries from LL animals three or four days following a blood meal. In P. 

regina, high concentrations of bovine insulin (10
-5 

M) have ecdysiotropic activity on the 

ovaries, but in an age-dependent manner following adult ecdysis (Maniere et al., 2004). 

Insulin at a concentration of 10
-6

 M or less was ineffective at stimulating ovarian ecdysteroid 

release (Maniere et al., 2004). It is conceivable that bovine insulin at other doses would have 

an effect on ecdysteroid release by R. prolixus ovaries. The concentrations of bovine insulin 

that stimulated ovarian ecdysteroid release in A. aegypti and P. regina, which differed 

significantly, could have the same effect on ovaries of R. prolixus. Very little information is 

known about the hormonal regulation or functional significance of ecdysteroids in adult 

insects. Only very recently was it demonstrated in R. prolixus that the ovary is the primary 
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source of ecdysteroids in adult females, and that there is an important circadian element 

involved (Cardinal-Aucoin et al., 2013).  

 Bombyxin and vertebrate insulin do not have similar amino acid sequences, and three-

dimensional models show that bombyxin does not form dimers or hexamers that are 

characteristic of mammalian insulins (Ebberink et al., 1989). Furthermore, the first insect ILP 

three-dimensional structure to be resolved was Bombyxin II, and it was shown that the 

structure resembles relaxin more than insulin (Nagata et al., 1995). D. melanogaster 

bombyxins consist of a heterodimer of A and B chains linked by two disulfide bridges 

(Ishizaki, 2004), but it is not known if they are cleaved into A and B chains like vertebrate 

insulins (Gronke and Partridge, 2010). Based on this information, it is possible that bombyxin 

would have a different effect on ecdysteroid release by ovaries from R. prolixus than 

vertebrate insulins (which was no effect). Additionally, human insulin differs from bovine 

insulin by only three amino acids. Therefore, it was presumed that human insulin (Humulin-R 

isoform used in this study) would exhibit the same effect on ovaries as bovine insulin. As 

expected, 2.8 x 10-7 M Humulin-R did not stimulate ecdysteroid release by ovaries from 

unfed and newly fed LD animals.  

 Corazonin is a neuropeptide in insects that is stored and released from the corpora 

cardiaca (CC), and only one isoform of the peptide is found in all insects examined to date 

(Predel et al., 2007). With the exception of its heart rate-accelerating properties (Veenstra, 

1991), the regulation of color polymorphisms in locusts (Tawfik et al., 1999), and the control 

of ecdysis behaviour (Kim et al., 2004), the general role of corazonin in insects has not yet 

been elucidated. Interestingly, corazonin immunoreactive cells in the brains of two cricket 

species, Dianemobius nigrofasciatus and Allonemobius allardi, co-localizes with locations of 
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presumed circadian clock components in optic lobes and protocerebrum (Sehadova et al., 

2007). However, no difference in the distribution and intensity of immunoreactivity was 

observed when animals were reared at two different photoperiods (Sehadova et al., 2007). 

Corazonin at high concentrations (10
-6  

M) exhibits ecdysiotropic activity on fifth instar R. 

prolixus PGs (Vafopoulou and Orchard, unpublished). However, no stimulation of ecdysteroid 

release was seen when ovaries from unfed and newly fed LD animals were incubated with 

corazonin. Perhaps this neurohormone plays a larger role in larval development than in 

reproduction.  

 Surprisingly, Bombyx rPTTH did not have ecdysiotropic activity on the ovaries from 

LL animals on days 2 and 4 after a blood meal. The ovaries release ecdysteroid rhythmically, 

with maximal release occurring during the night (Cardinal-Aucoin et al., 2013), correlating 

with peak release of PTTH from the brain during the night (Vafopoulou et al., 2012). 

Furthermore, transfer of insects from 12hr light:12hr dark to LL abolishes the rhythmic 

release of PTTH from the brain of larvae and ecdysteroid release from the ovaries (Cardinal-

Aucoin et al., 2013; Vafopoulou and Steel, 2012). In larval Rhodnius, PGs from LL animals 

respond to treatment with PTTH in a manner similar to transfer to DD, initiating abrupt 

synthesis of large quantities of ecdysteroids (Vafopoulou and Steel, 1996). From this, it was 

expected that treatment with rPTTH would stimulate ecdysteroid release by ovaries in vitro. In 

the PGs of R. prolixus, stimulation of ecdysteroid synthesis and release was seen using 

concentrations of 1ng/ml and up, with significant stimulation occurring above 5 ng/ml 

(Vafopoulou and Steel, 1997). Because the adult brain possesses double the amount of 

immunoreactive PTTH cells (Vafopoulou et al., 2007), it is possible that much higher 

concentrations of PTTH are released following a blood meal, and higher concentrations than 
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used in this study would elicit an ovarian response of ecdysteroid release. The effect of rPTTH 

in increasingly larger doses on ovarian ecdysteroid release would be an interesting focus of 

future studies.    

In addition to those examined, other neuropeptides have been shown to have an 

ecdysiotropic function during egg development in insects. In A. aegypti, the egg development 

neurosecretory hormone (EDNH) was discovered as one of the first invertebrate 

gonadotropins (Lea and Handel, 1982). EDNH is produced by the medial neurosecretory cells 

and is stored in the CC and is released into the hemolymph following a blood meal, where it 

stimulates the ovarian follicle to synthesize and secrete ecdysteroids. It was suggested that 

EDNH and PTTH were the same peptide (Kelly et al., 1986). One study examined the action 

of purified brain extract from A. aegypti heads on the PGs of larval Manduca sexta in vitro, 

which demonstrated that PTTH and EDNH may have different physiological functions. 

Partially purified EDNH from A. aegypti did not possess prothoracicotropic activity in the in 

vitro PG assay, and partially purified PTTH from M. sexta did not activate Aedes atropalpus 

ovaries to synthesize ecdysteroids in vitro (Kelly et al., 1986). Therefore, in different insects 

PTTH and EDNH appear to regulate ecdysteroid synthesis in different tissues at different 

stages of the life cycle (Kelly et al., 1986). 

Neurohormones that stimulate the ovaries to secrete ecdysteroids were termned “ovary 

ecdysteroidogenic hormones” (OEHs), including EDNH (Matsumoto et al., 1989). The first 

fully characterized ovary ecdysteroidogenic hormone, OEH I, was purified from A. aegypti 

heads (Brown et al., 1998). OEH I shares sequence similarity with neuroparsin A, a 

neuropeptide identified in Locusta migratoria shown to be involved in insect reproduction, as 

well as the N-terminal part of vertebrate insulin-like growth factor binding proteins (IGFBPs) 
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(Janssen et al., 2001). Interestingly, some IGFBPs have been shown to regulate 

steroidogenesis in mammalian gonads (Monget et al., 1996). In B. mori, a Bombyx IGF-like 

peptide (BIGFLP) was purified from hemolymph, and was found to have high homology with 

bombyxins. Like IGFs, BIGFLP is secreted into the hemolymph as a single chain peptide 

(Okamoto et al., 2009). The dominant source of circulating BIGFLP in the hemolymph is the 

fat body, but the gonads of adult insects also synthesize and secrete BIGFLP. Therefore, IGFs 

in insects (in addition to OEH) may play a role in the synthesis and secretion of ecdysteroids, 

as they do in mammals. B-type allatostatins (Grb-AST B1, specifically) were shown to inhibit 

ecdysteroid synthesis in vitro by adult cricket G. bimaculatus ovaries (Lorenz et al., 1997). In 

the cockroach, Blaptica dubia, Grb-AST B1 had the opposite effect, stimulating ovarian 

ecdysteroidogenesis (Lorenz et al., 2004). 

 

4.1.5 Is Rhythmicity in Ovarian Ecdysteroids a Driven Rhythm or Controlled by an Ovarian 

Clock? 

 While PER is present in ovarian follicle cells in insects (see Section 4.1.2), it appears 

briefly at a specific developmental stage, and non-rhythmically. If the follicle cells were clock 

cells, it would be expected that the appearance of nuclear PER would be rhythmic. The 

ovaries in vitro did not respond to a “lights-off” signal by releasing ecdysteroids, in which this 

signal of darkness has been shown to influence ecdysteroid release by circadian clocks in 

other systems (see Section 4.1.1) (described Vafopoulou and Steel, 2006). The probable 

absence of an ovarian clock suggests that the rhythmic release of ecdysteroids occurs in 

response to the rhythmic release of brain factors (or even factors found elsewhere). Numerous 

possibilities exist for the regulation of the ovarian ecdysteroid rhythm. The clock in the brain 
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controls the rhythmic release of neurohormones such as PTTH and ILPs in larvae and adults 

(Vafopoulou et al., 2012; Vafopoulou and Steel, 2012). Therefore, the rhythm of ecdysteroid 

release could be driven by rhythmic hormonal stimulation. In the present study, it was 

demonstrated that whole brain extract stimulates ecdysteroid release by the ovaries, indicating 

that a factor in the brain may regulate rhythmicity in the ovaries. The questions that remain are 

what exactly are these brain factors that are influencing ecdysteroid release by ovaries, and 

how they function to cause the release from the ovary. Brain factors could be initiating de 

novo synthesis of ecdysteroids, or controlling rhythmic deconjugation of ecdysteroids. 

Because of the lack of evidence of the latter, control of ecdysteroid rhythms most likely 

occurs at the level of de novo synthesis by follicle cells.   

 

4.2 General Discussion 

 

4.2.1 New Insights into the Presence of PER in Follicle Cells of R. prolixus Ovaries During 

Egg Development 

 

 The present study demonstrates a non-circadian role for the clock protein PER in 

reproduction. Similar findings of a non-circadian function and regulation of PER, as well as 

TIM, in D. melanogaster oogenesis have been described (Beaver et al., 2003). PER and TIM 

were detected in ovarian follicle cells of females maintained in LL (similar to findings in this 

study), suggesting a role in temporally regulated but non-circadian processes (Beaver et al., 

2003). Therefore, the notion that the ovaries of D. melanogaster lack a functional circadian 

clock is very possible (Beaver et al., 2003). 
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 In mutant mice that are mPer2 deficient, an increase in tumor development and 

reduced apoptosis of cancer cells was reported (Fu et al., 2002). Additionally, the disruption 

of cell division in mPer2 mutants was demonstrated by the deregulation of temporal 

expression of genes involved in cell cycle regulation and the DNA damage-responsive 

pathways (Fu et al., 2002). In human cancer cells, inhibition of hPer1 expression resulted in 

reduced apoptosis, which was associated with the altered expression of key cell cycle 

regulators (Gery et al., 2006). It was suggested that the core clock factors function in tumor 

suppression by direct interactions with cell cycle checkpoint proteins (ATM kinase and its 

downstream target Chk2), in addition to transcriptional regulation of other cell-cycle related 

genes, indicating a non-circadian function of mPer1 in tumor suppression (Gery et al., 2002). 

Interestingly, mPer1 expression in tumor tissues (breast and lung cancers) was significantly 

reduced compared to normal tissues (Gery et al., 2006), and hPer2 expression was reduced in 

lymphoma and leukemia patient samples (Gery et al., 2005). Therefore, tissue-specific 

functions of hPer1 and hPer2 in suppression of tumorigenesis were proposed. It is likely that 

there are many non-circadian and tissue specific functions of PER in insects in addition to 

those previously mentioned (see Section 1.8), as demonstrated by the development patterns of 

nuclear PER presence in the ovaries of R. prolixus and D. melanogaster.  

 

4.2.2 Emerging Roles of Insulin and ILPs in Insect Reproduction 

 

 In vertebrates, insulin is known for its diverse biological functions related to growth, 

metabolism, and reproduction. Similarly, emerging roles for ILP signaling in insect 

reproductive physiology have been demonstrated in several species. In three lepidopteran 
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species, specific binding sites for bombyxin on ovarian follicle cells were identified 

(Fullbright et al., 1997), and a high level of bombyxin in the hemolymph of female B. mori 

was detected (Iwami et al., 1996). Furthermore, insects possess an insulin receptor, which is 

structurally and functionally similar to mammalian insulin receptors (reviewed in Claeys et 

al., 2002). However, neither insulin nor relaxin, which is another member of the insulin family 

with diverse roles in reproduction, were strong competitors for the binding of bombyxin to its 

receptor in ovarian cell lines from Spodoptera frugiperda and B. mori (Fullbright et al., 1997). 

Structural comparisons of bombyxin with the mammalian ovarian hormone, relaxin, suggest a 

closer relationship between bombyxin and relaxin than between insulin and bombyxin (Nagata 

et al., 1995). It is likely that bombyxin would have a stimulatory effect on ecdysteroid release, 

which was not mimicked by vertebrate insulins in this study.   

 Extensive studies in Dipterans demonstrated the steroidogenic functions of insulin and 

insulin-like growth factors in ovarian physiology. In A. aegypti, bovine and porcine insulin 

stimulated ecdysteroid synthesis and release in a dose-dependent manner (Riehle and Brown 

1999; Brown et al., 2008; 2009).  Furthermore, the mosquito insulin receptor (MIR) has been 

localized in follicle cells surrounding developing oocytes, the primary location of 

ecdysteroidogenesis in adult females (Riehle and Brown, 2002). Similar findings in the 

blowfly, P. regina, demonstrate the steroidogenic activity of bovine insulin, albeit at 

physiologically high concentrations, and endogenous ILPs on ovaries in another Dipteran 

species (Maniere et al., 2004). Even though only a few doses were examined, the present 

finding that vertebrate insulin did not have an apparent ecdysiotropic effect on the ovaries 

from R. prolixus may suggest that this response is limited to dipterans.  
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 The physiological significance of ILPs in the regulation of insect reproduction has 

been demonstrated with the use of genetic studies in D. melanogaster.  The onset of 

vitellogenesis and the rate of egg production in response to nutritional changes require an 

intact insulin-signaling pathway in D. melanogaster ovaries (Drummon-Barbosa and 

Spradling, 2001). In female flies lacking the insulin receptor, InR mutants, ovarian 

development was arrested at the previtellogenic stage (Tatar et al., 2001). In mammalian 

studies, transgenic mice with decreased insulin signaling showed reduced numbers of follicles, 

reduced plasma concentrations of gonadotropins and sex steroids, and decreased pituitary size 

(Burks et al., 2000). Therefore, in both insects and mammals, an intact insulin-signaling 

pathway is necessary for fertility.  

 

4.2.3 PTTH Signaling in Adult Insects 

 

 Recent findings of PTTH synthesis and release from the brain in adult female R. 

prolixus following a blood meal led to the suggestion of a parallel axis of control of 

ecdysteroidogenesis by the ovaries as has been described in the PGs during larval 

development (Vafopoulou and Steel, 2006; Cardinal-Aucoin et al., 2013). However, possible 

targets of PTTH signaling in adult females have yet to be elucidated. In the present study, 

brain fractions with PTTH-like molecular weight had a stimulatory effect on ovarian 

ecdysteroid release, but with much lower levels of stimulation than brain fractions with ILP-

like molecular weight. Furthermore, rPTTH did not have an apparent effect on ovarian 

ecdysteroid release at the concentration used.  
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In Manduca sexta, it was found that PTTH is contained in the brain at all stages of 

adult life (reviewed in Rybczynksi et al., 2009). The possibility of other undescribed 

ecdysiotropic factors in the adult brain, in addition to PTTH was discussed, although the 

PTTH was found to be present in all brain extracts from adult brains (Rybczynksi et al., 

2009). Target tissues of PTTH in adult female M. sexta were examined, and it was found that 

ovaries incubated with 
3
H-cholesterol and rPTTH for varying amounts of time did not 

synthesize ecdysteroids or ecdysone precursors (Rybczynksi et al., 2009). Additionally, of the 

tissues examined only extracts of ovary and male accessory gland tubules of adult animals 

exhibited any changes in response to PTTH treatment. In the ovary, these changes were 

localized to the accessory gland reservoirs and not the ovariole (Rybczynksi et al., 2009). The 

significance of these changes in the accessory glands is not known. However, a role for PTTH 

in non-steroidogenic tissues and other reproductive processes is implied.  

 

4.2.4 Conclusions 

  

 This study demonstrates that the ovaries do not release ecdysteroids in response to a 

“lights off” signal, and the demonstration of non-cyclical expression of PER in entrained and 

arrhythmic animals reinforces the notion that PER is a multifunctional protein, with functions 

in circadian timekeeping as well as non-circadian functions in other tissues. Similar patterns 

of nuclear PER in the follicle cells of ovaries from other insects and some mammalian systems 

have been observed. The ecdysteroid rhythm during egg development in R. prolixus is most 

likely driven by a factor in the brain, rather than an endogenous ovarian clock, or coordination 

of multiple circadian clocks as is achieved in the PGs of larvae. This study showed that low 
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molecular weight peptides from the brain (with ILP-like activity) stimulate ecdysteroid release 

from ovaries. In contrast, it was shown that high molecular weight peptides (with PTTH-like 

activity) had a relatively low stimulatory effect on ecdysteroid release. The data suggests that 

R. prolixus ILPs are the major regulators of ecdysteroid release, and PTTH plays a minor role. 

Additionally, evidence that brain factors stimulate de novo synthesis of ecdysteroids in ovaries 

was demonstrated in this study. While PTTH may not act on ecdysteroid producing tissues in 

adult insects, studies in other insects have shown a non-steroidogenic role in reproduction. 

Additional targets of PTTH signaling in R. prolixus have yet to be elucidated.  
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APPENDIX A: Trypan Blue Exlcusion Assay 

 

 

 

 
 

 
Figure 19. Trypan blue follicle cell viability assay. Ovaries from adult female 
Rhodnius prolixus on Day 5 following a blood meal incubated in R. prolixus saline 
immediately after excision for (A) 1 hour (B) 4 hours (C) 12 hours and (D) 24 
hours. Ovaries were excised, incubated in saline for the specified time periods (see 
Section 2.9 for Methods) and were then incubated with Trypan Blue for 30 
seconds. The dye will penetrate dead cells, but not live cells. Around 
approximately 12 hours in vitro, the ovariole sheath and the follicular epithelium 
begins to take up the dye, indicating the presence of dead cells.  


