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Abstract

Different derivative securities, including European options, are very popular and

widely used in forms of exchange-traded instruments or over-the-counter products.

For practical purposes the European options are often priced using analytic solution

to the Black-Scholes formula. Hedging, according to the Black-Scholes model, is

accomplished via the construction of dynamically rebalanced replicating portfolio.

However, the model makes several critical assumptions. I extend the Black-Scholes

model by relaxing the assumption of no trading costs and considering the market

liquidity risk for the underlying asset. Liquidity risk is understood as the effect of

the trade size on the price of the underlying asset. I use stochastic supply curve to

model liquidity risk.

The problem is to hedge a European option in the presence of the market liq-

uidity risk for an underlying asset. One hedges with the underlying, as the option

price depends on the price of the underlying asset. The underlying asset has market

liquidity risk; thus, studying the impact of market liquidity risk is important for
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devising more effective and efficient option hedging algorithms.

The main contributions of the thesis arise from the investigation of mathemat-

ical techniques for hedging and pricing of European options in discrete time with

liquidity risk. First, I study delta hedging in Chapter 3. I show L2 convergence

of the replicating trading strategy payoff to the option payoff. In other words, the

optimal strategy minimizes the mean squared replication error. I also show that

for European put and call options with varying trading times the recommendation

is to trade closer to expiry as the spot price of the underlying asset deviates from

the strike price. Then I apply the local risk-minimizing hedge in Chapter 4. This

time the optimal strategy minimizes the conditional mean squared hedging error.

I prove the existence of the local risk-minimizing trading strategy and characterize

its structure.
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1 Introduction

1.1 Background and significance

Pricing and hedging of derivative contracts are one of the main tasks of mathemat-

ical finance. The most widely used Black-Scholes model does not recognize market

liquidity risk for the underlying asset. This thesis incorporates liquidity risk into

option pricing and hedging in discrete time. We also apply two optimality crite-

ria for the replicating trading strategy: the mean square hedging error and local

risk-minimization.

An option is a contract which gives the buyer (the owner) the right, but not the

obligation, to buy or sell a particular asset or instrument for an agreed amount on

or before a specified time in the future. An option which brings to the owner the

right to buy something at a specific price is referred to as a call; an option which

conveys the right of the owner to sell something at a specific price is referred to as

a put. One refers to the particular asset or an instrument on which the option is

based as the underlying. The agreed amount which we can pay for the underlying
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is called the exercise price or strike price. Options that can be exercised anytime

during its life are called American options. Options that can only be exercised at

the end of its life are called European options. We are concerned with European

options in this thesis.

Options have been around for several centuries. Italian bankers were using

options since the fifteenth century. Dutch were speculating in tulip bulbs using

options during the Tulip mania in 1636-37. The options with regular expiration

dates were traded at the Amsterdam bourse during the eighteenth century. On 26th

April 1973 The Chicago Board Options Exchange first created standardized, listed

options. Several months later Black and Scholes finally were able to publish their

famous paper in the Journal of Political Economy. Black and Scholes [5] introduce

in their paper the method for pricing and hedging European options.

The Black-Scholes model is unique from many perspectives. It brings together

and connects intuitively the concepts from mathematics, finance and economics.

The book written by Wilmott [26] lists twelve ways to derive the model, includ-

ing “Black-Scholes for Accountants”. However the Black-Scholes model is based

on a number of simplifying assumptions, which render the market complete. In

a complete market it is possible to reproduce the payoff of any option using the

replicating portfolio consisting of the underlying and cash. It is well-known, how-

ever, that financial markets are not complete. Asset prices depend on a multitude
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of factors, and there are restrictions on composition of portfolios the investors are

allowed to hold. Thus, in general, it is not possible to replicate a derivative payoff

perfectly.

We review the assumptions of the Black-Scholes model for options on the stock

shares. We postulate that the market has three tradeable assets: a nonrisky asset

called cash, a risky asset called the stock and a derivative security. We study a

special case when the derivative security is a European call or put.

1. Assumptions on the assets

(a) The risk-free rate is constant.

(b) The stock does not pay dividends.

(c) The price of the stock follows a geometric Brownian motion with constant

drift and volatility (a continuous time stochastic process).

2. Assumptions on the market

(a) It is possible to buy and sell any amount, no matter how close to zero,

of the stock shares (this includes short selling).

(b) It is possible to borrow and lend any amount, no matter how close to

zero, of cash.

(c) There are no transaction costs and taxes associated with trading the

assets.
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(d) There is no arbitrage opportunity (i.e., there is no way to make a riskless

profit).

(e) Hedging is done continuously.

According to the assumption (2a) market completeness implies that one is able

to buy and sell any amount of the underlying asset at the current market price.

However the number of stock shares involved in a particular trade (order size) may

influence the quoted price. For example, selling a million of shares quickly will

require accepting smaller price per share to find willing buyers, as the marketplace

may not have enough buyers at a market price. Continuous trading is not possible

in practice. Instead, one is forced to adjust the hedge only finite number of times.

To sum up, we will relax the assumptions (2c) and (2e) by introducing liquidity

risk as well as considering trading in discrete time in the thesis.

The term “liquidity risk” comes in two forms: funding liquidity risk and market

liquidity risk. One talks about funding liquidity risk at the level of institutions,

while market liquidity risk relates to an asset or an asset class. Funding liquidity

is the ability of a financial institution to settle obligations immediately when due.

Market liquidity risk for a specific security arises when one is not able to find

enough buyers and sellers to trade the security. In this thesis we are dealing with

the market liquidity risk in the context of option pricing and hedging.

One may perceive all financial bubbles as examples of market liquidity crises.
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When everybody simultaneously tries to find buyers for a specific security or a

class of securities, the market appraises the security at zero value. During the

Dutch tulip mania people were preoccupied with trading great quantities of tulip

bulbs and derivatives on those for about three to four months until the trading in

bulbs collapsed. Seventeenth century England saw high volume of trading in the

shares of South Sea Company until the share price crashes. Similarly at the outset

of the Great Depression the public rushed to sell off a whole class of securities:

stock shares of all sorts. As these historical examples show, one must watch the

market liquidity for an asset of interest to avoid losses.

An asset-liability management function in a bank among other things is re-

sponsible for funding liquidity risk. The troubles of American International Group

(AIG) during the financial crisis of 2007-2008 are examples of the funding liquidity

risk. Once AIG’s credit rating was downgraded, the firm suddenly needed addi-

tional funds to post collateral with its trading counterparties. Lehman Brothers

provides another example of funding liquidity risk in action. Once the buyers of

the securitized mortgages suddenly disappeared, Lehman could not fund itself by

selling off packaged mortgages and at the same time accrued losses on the subprime

mortgages it was holding on its books.

Regulators pay close attention to liquidity risk. The Third Accord of the Basel

Committee on Banking Supervision [22] focuses on liquidity risk management,
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while the second set of recommendations on banking laws and regulations of the

Basel Committee on Banking Supervision [21] deals mostly with capital adequacy.

Lehman Brothers failed because of mismanaged funding liquidity risk rather than

inadequate capital.

Market liquidity risk manifests itself in wider than usual bid-ask spread for an

individual security. In other words, market participants may not be able to find

a counterparty for buying/selling the security at a market price. In the worst

case scenario nobody in the marketplace may want to trade a particular security

(liquidity “dries up” as it happened during the financial crisis of 2007-2008). One

may think of market liquidity risk as a form of transaction cost. Assuming that

the trade does not influence the market price of a security, the price quoted for a

transaction may differ from the market price. The size of the trade for immediate

execution will have an effect on a quoted price.

From the point of view of economics, one may define market liquidity risk as

the absence of perfect elasticity. In our case we consider the elasticity of price of

the underlying asset with respect to the buy/sell order size. Most models in math-

ematical finance assume perfect elasticity for the supply and demand of tradeable

assets so that buy/sell orders of discretionary size do not affect asset prices. How-

ever, if there is an investor whose trades involve a substantial part of the available

asset supply, the asset prices will no longer unfold separately from the trading and
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hedging strategies chosen by the “big player”. Typical examples are institutional

investors: insurance companies, pension funds, mutual funds, etc.

Market liquidity risk affects pricing of exchange-traded options, since option

pricing theory relies on replication of the derivative payoff by trading in the under-

lying asset. The efficiency of the hedge using the underlying asset depends on the

liquidity of the underlying security. Then there is a question of factoring market

liquidity risk into pricing and hedging of over-the-counter derivatives. Over-the-

counter derivatives are unique and have client-specific contracts tailored towards

customer’s needs. As opposed to an exchange-traded derivative with a standard

form of the contract, there is no market data as the contracts are extremely diverse

and originators do not intend to provide free access to the data.

1.2 Basic concepts

In this section we present the key pioneering ideas of option pricing theory and pro-

vide some intuitive explanations. We aim at giving the reader a deep understanding

of these concepts.

We will now introduce some financial terms, and elaborate on the meaning of

concepts like cash, stock, risky asset, etc., while trying to maintain logical coherence

between concepts. However, finance, accounting and economics are social sciences,

meaning that there are always several solutions to a problem and several ways of
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defining basic concepts. We will take the liberty of selectively defining terms from

the financial vocabulary that are used in the thesis. The definitions below are

simplified and directed towards features that the models attempt to capture and

quantify. The reader should consult finance and economic textbooks for the precise

meaning of the notions and details of jargon.

Securities can be universally classified into three groups: debt securities (such as

banknotes and bonds), equity securities (e.g. ordinary stock shares) and derivative

contracts (such as forwards, futures, options and swaps). In this text we assume

for simplicity and ease of presentation that the interest rate on cash is zero. The

general case can be reduced to the case with zero interest rate by taking prices

as being relative to some numeraire. Asset’s liquidity is one of the main concepts

in this thesis. An asset’s market liquidity is the degree to which an asset can be

bought or sold in the market without affecting the asset’s price. Put differently,

liquidity is an asset’s capacity to be sold promptly without a substantial reduction

in price. In economic terms, this means that supply meets demand and both parties

agree on the price right away and are willing to transact. Cash is an example of

a tradeable asset with perfect liquidity. Cash is a nonrisky asset in the sense that

its value is preserved over time (recall that interest rate is zero). The state of the

money market account is certain and one ends up with the same amount of cash

after any period of time.
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A stock share is a tradeable asset with non-constant, risky, irregular market

price. In the Black Scholes model, shares are perfectly liquid. In our model we will

consider the impact of liquidity risk on the price of a derivative. The market price

of the share varies with time, reflecting the interplay between supply and demand,

arrival of new information to the participants, etc.

Derivative is a security which derives its value from the performance of another

entity such as an asset, index, or interest rate, called the “underlying”. Examples

of derivatives are futures, forwards, swaps, options and variations of these such as

caps, floors and credit default swaps. One may view a derivative as a legal contract

between two or more parties.

In this thesis we study a particular type of derivative: European option with

stock shares as the underlying asset. An option is a contract which gives the buyer

(the owner) the right, but not the obligation, to buy (call option) or to sell (put

option) the underlying asset, at an agreed in advance fixed price (strike price) on

or before a specified date. We will usually denote the strike price as K ∈ R and

the time until expiration as T ∈ R. An option is called European if it may only be

exercised at the specified expiration date of that option.

One may visualize the option’s value at expiration via a payoff diagram. Payoff

function is a relation between the option value at expiration and the market price

of the underlying asset. When we say “payoff” of an option we mean the payoff
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function that corresponds to that option type. Generally we will denote the payoff

function of the price of the underlying asset as p(S). The payoff function for a

European call option is max(S −K, 0) and its graph is displayed in the Figure 1.1.

The payoff function for a European put option is max(K − S, 0) and its graph is

displayed in the Figure 1.2.

0 K S

p(S)

Figure 1.1: European call option payoff.

Pricing an derivative contract means finding the “fair” value of the derivatives

contract, which we call a premium. Premium is the amount paid for the derivative

contract initially (at time t = 0). A portfolio is simultaneous ownership of some

units of cash, stock shares and derivatives of specific type at a specific time. Math-

ematically, a portfolio is an ordered triple of real numbers. We mostly will look at
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p(S)

0 K S

K

Figure 1.2: European put option payoff.

portfolios with changing amounts of cash and stock shares and fixed amounts of

derivative contracts. One can calculate of the current market value of the portfolio

denominated in the units of cash. To this end we multiply the number of stock

shares in the portfolio by the current share price, multiply the amount of derivative

contracts by its value and add the number of units of cash in the portfolio. If we

denote the number of shares by δt, number of units of cash λt, number of units of

derivatives θt and at time t the market price of one share as St, value of one deriva-

tive contract Θt, then portfolio is an ordered pair (δt, λt, θt) and δtSt + λt + θtΘt

is portfolio’s market value. A holding period of a portfolio is the time period over

which one owns securities in a portfolio.
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Hedging is any reduction in randomness of the portfolio market value. Hedging

tries to prevent both losses and gains in the portfolio market value. Cash does not

need any hedging, as its market value is constant in the model at all times, which is

the opposite of randomness. One may use financial instruments with linear payoff

diagrams (futures for instance) to hedge an exposure to stock shares. Derivatives

are usually the main tools for hedging as these instruments have nonlinear payoff

diagrams. One includes some quantities of correlated assets into the portfolio to

achieve the desired effect. Hedging may be static, that is the composition of assets

in a portfolio is determined once and does not change over the holding period. The

hedge may also be dynamic, so that the amounts of assets in a portfolio is adjusted

several times over the holding period. Black-Scholes delta-hedging is an example

of a dynamic hedge.

1.3 Summary

This section explains the statements from the abstract and outlines the structure of

this thesis. The problem of interest in this thesis is hedging and pricing a European

option with market liquidity risk for the underlying asset in discrete time. The main

contributions of this thesis are:

• convergence of the replicating strategy payoff to the option payoff in L2;
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• solution to the control problem (arranging varying trading times): the sug-

gestion for European call and put options is to rehedge more frequently closer

to expiry as the strike deviates from the spot price;

• existence of the local risk-minimizing trading strategy.

We introduce the market liquidity risk for the underlying asset in Chapter 2.

The market liquidity risk refers to the impact of the order size on the market price

of certain asset. Accordingly, the impact of liquidity risk in the context of option

hedging becomes apparent as one decides to trade in the underlying to rebalance

the replicating portfolio. Building on the model advanced by Çetin et al. [10], we

account for the market liquidity risk for the underlying security via the stochastic

supply curve. The supply curve should satisfy five technical assumptions. We

use multiplicative supply curve. To clarify, in a multiplicative supply curve some

stochastic process models the current market price of the underlying security, while

a certain increasing deterministic function models the effect of the order size.

It is not possible to exactly replicate the option payoff using only cash and

underlying asset, due to the finite number of trading times at which we adjust the

hedge, as well as presence of liquidity risk. This gives rise to the hedging error. The

hedging error of a replicating trading strategy is the difference between the final

payoffs of the option and the strategy. We will consider two optimality criteria:
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mean square error and conditional mean square error. The first approach is called

delta hedging, the second model is local risk-minimization. Both approaches are

inherently designed for hedging, although the methods may also be used for pricing.

Chapter 3 contains the application of delta hedging approach. To this end we

assume that the price process for the underlying asset follows geometric Brown-

ian motion, that is specific stochastic process. We introduce a particular class of

discrete-time hedging strategies which are generalizations of the discrete-time hedg-

ing strategies presented by Leland [20]. I prove that the payoff of such a strategy

converges in L2 to the theoretical payoff of the option as the length of the revision

interval between the rehedging times goes to zero. This is equivalent to saying

that the mean square hedging error converges to zero random variable in L2. The

strategies of this type are optimal in the delta hedging framework.

I then consider an applied problem of minimizing the first order term of the mean

square hedging error using a finite number of trading times. As a result, I discover

that for a European option the rebalancing trades should be located closer to the

expiration as the strike price deviates from the current price of the underlying asset.

We introduce the idea of varying trading times and study its impact on the hedging

error. Leland’s class of trading strategies consists of updates adjusted at constant

intervals of time. We extend this class to include strategies with rehedgings located

at varying distances from one another. We fix the initial capital of the replicating
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portfolio and look for the optimal hedge. We find the leading order term in the

Taylor series expansion of the hedging error with respect to the distance between the

trading times and then use calculus of variations to find the minimum. We compute

both the location of the trading times and corresponding simulated distributions of

hedging errors. We compute numerically the optimal trading strategy by solving

a partial differential equation. The simulation of the geometric Brownian motion

paths allows to compare the performance of the strategies with equally spaced and

varying trading times. We also derive the partial differential equation in presence

of stochastic volatility after making a simplifying assumption.

Chapter 4 describes the condition for optimality in the sense of local risk-

minimization. Local risk-minimization, in contrast to delta hedging, is very general

and much more theoretic. I still rely on stochastic supply curve to model the mar-

ket liquidity risk for the underlying asset. As opposed to the delta hedging model,

we do not specify the precise form of the price process to model the the underlying.

Instead, we allow the price process to have any form, while satisfying several as-

sumptions. The assumptions include the square-integrability of the price process,

substantial risk and bounded mean variance tradeoff. In particular, a geometric

Brownian motion satisfies these assumptions. The model can handle European op-

tions with payoffs of any form. The interval between trading times is constant,

which results in equally spaced rehedging times.
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Next we introduce liquidity risk for the underlying asset through the modified

price process. It turns out the new process may be used to hedge an option. That is,

both the modified and the original price processes yield the same class of admissible

strategies.

The optimal strategy must satisfy two conditions: minimize the conditional

variance of the cost process increments and turn the cost process into a martingale.

The latter is accomplished with another special stochastic process, while for the

former I prove the existence of the minimizer to the conditional variance. Next I

show the existence of a local risk-minimizing strategy by backward induction and

present strategy’s structure in terms of the modified price process.

The remainder of this thesis is organized as follows. Chapter 2 advances the

results of previous research on approaches to liquidity risk and introduces the Çetin-

Jarrow-Protter framework that is the backbone of the model in this thesis. Chapter

3 analyzes the hedging error for delta-hedging strategies. Chapter 4 spells out the

application of local risk-minimizing hedges. Chapter 5 describes the conclusions of

the thesis and directions for future research.

16



2 Previous results

2.1 Literature review

Liquidity risk has profound implications on the derivatives pricing and hedging,

since the usual techniques involve trading in the underlying asset. Classical theories

of mathematical finance assume it is possible to purchase and/or sell the underlying

asset at an average market price, which is not the case in practice. In fact, the prices

for buy/sell orders reflected in the bid-ask spread will differ from the quoted market

price. On top of the observations above, market may experience a sudden downturn

and the underlying asset may not be available at economically reasonable price. A

downgrade in a credit rating may trigger requests from the counterparties to post

additional margin.

The model of Brunnermeier and Pedersen [6] attempts to make a connection

between asset’s market liqudity and speculator’s funding liquidity. The authors

distinguish between three types of market participants. Customers arrive sequen-

tially to the market creating temporary market imbalances. Speculators contribute
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liquidity by smoothing the price fluctuations. Financiers set margins and provide

funding for the speculators through collateralized borrowing. The paper shows

that, under certain conditions, market liquidity and funding liquidity are mutually

upholding and may lead to liquidity crises.

There are studies investigating the degree of liquidity of exchange-traded options

from the econometric point of view. Christoffersen et al. [12] found that a decrease

in option liquidity increases the option price and predicts higher expected option

returns. The data also show the degree of liquidity of the underlying stock influences

the option return, which is consistent with the delta hedging argument. When the

stock market becomes less liquid, the cost of replicating the option increases, which

raises the option price and reduces its expected return. Cao and Wei [7] finds strong

evidence of liquidity commonality in the option market for such liquidity measures

as the bid-ask spread, volume, and price impact. In fact, smaller firms and firms

with a higher volatility exhibit stronger commonalities in liquidity. Moreover, the

authors show that information asymmetry has a major impact on option liquidity,

and option liquidity depends on the stock market’s movements.

To reduce overall market repercussion it may be desirable to split a large trade

into smaller orders. One is looking to allot certain proportion for the complete

order to each respective placement such that the overall price impact is minimized.

Problems of this type were investigated in Alfonsi et al. [2]. Instead of specifying a
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stock price model incorporating feedback effects, the authors specify the dynamics

of the limit order book and provide explicit solutions of the problem.

There are suggestions in Bhaduri et al. [4] to introduce five new derivative

instruments to manage liquidity risk in the hedge fund industry. Liquidity options

allows investor to withdraw the investment in a tradeable asset at the market price,

if the asset liquidity is low as measured by trading volume or by the width of the

bid-ask spread. A withdrawal option gives the investor the right to pull out locked-

up investment at the market price. A hedge fund return put option allows the

buyer to sell the hedge fund investment at a strike to the option seller. Finally

a hedge fund return swap and swaption exchange the return of a hedge fund into

LIBOR and allow an investor to swap return into LIBOR correspondingly. The

authors point out that pricing of these types of derivatives may prove to be quite

challenging.

There are several approaches to tie coherent risk measures to liquidity risk frame-

work as introduced in Artzner et al. [3]. In Jarrow and Protter [16] the computation

of coherent risk measure with linear supply curve from Çetin et al. [10] results in a

simple adjustment, that is multiplication by a factor with constant characterizing

the slope of the supply curve. Acerbi and Scandolo [1] introduce marginal supply

demand curve which gives the sorted vector, in decreasing (increasing) order, of

all the bid (ask) prices available. The curve produces the best bid/ask quotes for
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buying/selling certain amount of contracts and is a modified version of the supply

curve. The concept of liquidity policy captures the fact that portfolio liquidity risk

depends on the funding needs of the portfolio owner. The value function of a port-

folio under a liquidity policy ends up being a nonlinear map. The authors suggest a

new formalism of “coherent portfolio risk measures” (CPRM) that depends on the

liqudity policy and show that CPRMs are convex. The liquidity policy of marking

all long positions to the best bids and all short positions to the best offers available

(“Uppermost Mark-to-Market Value”) reduces the formalism to exactly to the case

of coherent risk measures. Ku [17] demonstrates a method to liquidate acceptable

portfolios that satisfy a convex risk measure constraint. It turns out it is possible to

liquidate the portfolio consisting of a long stock position and a large negative cash

position at some stopping time (finite almost surely) for any initial cash holdings.

In the literature on market liquidity for a specific security there are two ap-

proaches for modeling: the effect of a large trader on the underlying (“models of

feedback effect”) and the effect of liquidity costs incurred while changing position

on a price-taking trader. To model the effect of the dynamic hedging strategies on

the equilibrium price of the underlying asset Frey and Stremme [14] use general ag-

gregate demand reaction function that depends on the trader’s exogenous stochastic

income. The effect of a large trader is reflected in the volatility. In fact the au-

thors derive an explicit expression for the change in the market volatility. Agents’
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expectation establish the amplitude of the feedback effect, since the traders expect

the next period price of underlying asset to be some random variable depending on

available information.

Many researchers build on the model for market liquidity risk outlined in Çetin

et al. [10]. Essentially the spot price of the underlying in the model depends also

on the size of the block being traded through the stochastic supply curve. For

example if one wants to purchase a large amount of shares of company X right

at this moment, there may not be enough supply at the current price, so one will

end up paying above the market price for such a big block of shares. The price

effect is confined to the very occasion when the order is placed for execution. In

Çetin et al. [11] authors use strategies with minimal super-replication cost inclusive

of liquidity premium to price contingent claims in continuous time setting. The

super-replication price ends up being the unique viscosity solution of the dynamic

programming equation. In a discrete-time setting Çetin and Rogers [9] show that

the optimization of expected utility of terminal wealth does have a solution even

without the hypothesis of absence of arbitrage. Ku et al. [18] derived a partial

differential equation which provides discrete-time delta-hedging strategies whose

expected hedging error approaches zero almost surely as the length of the revision

interval goes to zero. The equation gives the value of the call option from the

seller’s point of view.
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Leland was the first to study the influence of the proportional transaction costs

on option pricing via delta-hedging arguments in Leland [20]. Continuous trading of

the classic Black-Scholes model becomes infinitely expensive no matter how modest

transaction costs might be as a percentage of turnover. Leland’s class of discrete

time trading strategies is made up of updates adjusted at fixed constant intervals

of time and relies on the modified Black-Scholes volatility dependent on the rate of

transaction costs and the length of trading intervals. It is possible to approximately

replicate the option’s payoff as the distance between trading times becomes short.

The payoff of the replicating trading strategy converges to the payoff of the option

almost surely as the length of rebalance intervals approaches zero.

One may find the extension of Leland’s class of discrete time strategies with

rehedgings located at varying distances from one another as in Grannan and Swindle

[15]. The payoff of the trading strategy with varying rehedging times converges in

L2 to the payoff of the option. The authors also establish the rate of convergence

of the replicating strategy to the desired payoff and provide the leading-order term

of the mean squared hedging error.

Local risk-minimization in continuous time is introduced in Schweizer [23] as

another optimality criterion for hedging strategies. Under five assumptions on the

price process for the underlying asset and additional two assumptions yield the

existence and uniqueness as well as a method for finding a locally risk-minimizing
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trading strategy. The optimal trading strategy is mean-self-financing, that is its

cost process is a martingale, and satisfies the stochastic optimality equation.

In Lamberton et al. [19] the authors apply local risk-minimization to a model

with proportional transaction costs in discrete time. They show the existence of a

locally risk-minimizing trading strategy for every square-integrable contingent claim

under the assumptions of substantial risk and bounded mean-variance tradeoff on

the price process of the basic asset as well as nondegeneracy requirement on the

conditional variances of asset returns.

2.2 Çetin-Jarrow-Protter model

We use the ideas from Çetin et al. [10] to model the market liquidity risk for a

stock share. Consider a filtered probability space [Ω,F ,F0≤t≤T ,P] satisfying the

usual conditions where T is a fixed time. P represents the statistical or empirical

probability measure. Assume that F0 is trivial, that is F0 = {∅,Ω}. The stochastic

process to model the underlying asset had two variables: ω ∈ Ω and t ∈ R. Now

we introduce another variable that may influence the price of the underlying asset

for a particular trade: the order size x ∈ R. The price paid for the underlying is

S(ω, t, x) - stock price, per share, at time t that the trader pays/receives for an

order of size x given the state ω. This is a stochastic supply curve. A positive order

(x > 0) represent a buy, a negative order (x < 0) signifies a sale, and x = 0 yields
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the current market price without impact of the order size.

We now impose some structure on the supply curve.

Assumption 2.1. (Supply Curve)

1. S(ω, t, x) is Ft-measurable and non-negative.

2. x 7→ S(ω, t, x) is a.e. t non-decreasing in x, a.s. (i.e. x ≤ y implies

S(ω, t, x) ≤ S(ω, t, y) a.s. P, a.e. t).

3. S is C2 in x, ∂S(t.x)/∂x and ∂2S(t.x)/∂x2 are continuous in t.

4. S(ω, t, 0) (process modeling the market price of the underlying asset) is a

semi-martingale.

5. S(ω, t, x) has continuous sample paths (including time 0) for all x.

The first assumption says the price of the underlying asset is nonnegative (which

is a feature of any time series of prices) and one finds out new prices as time goes

by, that is new filtrations Ft become available. The second assumption states the

larger the block size (or sale), the larger (the smaller) the actual price one has

to pay for the order. The third assumption requires smoothness from the price

process. The fourth assumption makes sure stochastic integrals with respect to the

stochastic process are well-defined. In fact, semi-martingales are the largest class

of stochastic processes with respect to which one may define stochastic integrals.
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The fifth assumption highlights the fact that the stochastic process is continuous

in time.

One way to define S(ω, t, x) is the multiplicative supply curve: S(ω, t, x) =

S(ω, t)f(x), where S(ω, t) is some stochastic process to model the price of the

underlying asset multiplied by the deterministic real-valued increasing function f(x)

with f(0) = 1. The requirement for f(x) to be increasing captures the following

empirical fact: market participants may not be willing to sell on the spot a large

number of shares at the current market price, otherwise arbitrage opportunities

arise. For example, the Black Scholes model corresponds to f(x) = 1. We choose

f(x) = eαx., where α is estimated using simple regression methodology from the

history of stock prices. For this choice of function clearly f ′(0) = α. Details of the

supply curve estimation are discussed in Section 3 of Çetin et al. [8]. The value of

α ends up being small, usually with 0 < α < 0.0001. The model is focused on a

small trader that cannot move the market by her transactions.

Let S(ω, t, 0) = St be the marginal price of the supply curve. We denote the

supply curve S(ω, t, x) = Stf(x). That is, we will omit the dependence of the supply

curve S on the ω variable altogether, put the time variable t in the subscript and

introduce the dependence on the order size x via the multiplication by f(x).

Generally the supply curve is random. For the sake of illustration we treat

variables S as deterministic and graph the function of the form S×eαx in figure 2.1
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with relatively large α = 0.3. Let us assume that the current market price of the

underlying asset is 20. If one wants to purchase 10 units of underlying asset, one

has to pay approximately 56 per share for the block of 10 shares, that is more than

the current market price of 20. Similarly if one wants to sell 10 units of underlying

asset (block size of −10), one has to accept approximately 7 units of cash per share,

as opposed to the market price of 20. This is what we mean by “liquidity risk” in

this thesis. Selling a lot of shares at once means one has to accept a lower price

per share. Similarly buying a big number of shares at once commands a price per

share higher than the market price.

Figure 2.1: An example of a supply curve.
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2.3 Partial differential equation for option replication

Ku et al. [18] derive the partial differential equation for delta-hedging as well as

show the almost sure convergence of the hedging error to zero. Assume the price

process St of the underlying asset follows a geometric Brownian motion

dSt = µStdt+ σStdBt, 0 ≤ t ≤ T, (2.1)

with constant drift µ ∈ R, constant volatility σ ∈ R and B is a standard Brownian

motion.

A general trading strategy (portfolio) in continuous time is a pair of stochastic

processes (Xt, Yt : t ∈ [0, T ]), where Xt stands for trader’s aggregate stock holding

at time t, Yt is the trader’s aggregate cash position at time t. Xt and Yt are

predictable, while Xt is optional process.

We introduce discrete time in the model, that is trading is possible only at

n ∈ R equally spaces times 0 = t0 < t1 < . . . < tn = T with ∆t = ti − ti−1

for i = 1, ..., n. We write Si for Sti and Xi for Xti . We will use index T for the

quantities corresponding to T = tn: denote ST for Stn and YT for Ytn .

For the purpose of option replication without liquidity risk we want to start

with what the hedger should charge for the option V (0, S0) + X0S0[f(X0) − 1] in

cash (Y0 = V (0, S0) +X0S0[f(X0)− 1], X0 = 0), then for any path of price process

St we will use the cash (and maybe borrow some more at a zero interest rate)
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to purchase or sell short some quantity of the underlying asset (Xt 6= 0). Here

V (t, S) is the solution to the partial differential equation (2.6). However we should

return at the option expiration any money we lent during the life of the trading

strategy. That means there should be no “free” money coming into the accounts

of the portfolio. By the same token there should be no arbitrary withdrawals of

assets from the portfolio. In others words the initial capital of the trading strategy

Y0 = V (0, S0) + X0S0[f(X0) − 1], holdings of the underlying asset and the price

fluctuations of St determine how much cash is left in the account. In accounting

terms we are marking to market cash and underlying asset in the portfolio. This

gives rise to the definition of the self-financing strategy.

A discrete self-financing trading strategy is a trading strategy (Xt, Yt : t ∈

{ti}ni=0) which satisfies

Yt = V (0, S0) +X0S0[f(X0)− 1] +
∑
ti<t

Xi(Si+1 − Si)

Here Yt is the payoff of the trading strategy up to time t without impact of

liquidity costs. The term V (0, S0) + X0S0[f(X0) − 1] corresponds to the cost of

setting up initial dynamic delta hedge with impact of liquidity risk. The term∑
ti<t

Xi(Si+1 − Si) represents trading gains/losses of the trading strategy.

Total liquidity costs for a trading strategy up to time T are

LT =
n∑
i=1

∆Xi[Sif(∆Xi)− Sif(0)] +X0[S0f(X0)− S0f(0)], (2.2)
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where ∆Xi = Xi −Xi−1.

The (total) hedging error of a replicating trading strategy is the difference be-

tween the payoff of the strategy YT and the theoretical payoff of the derivative being

replicated p(ST ) less total liquidity costs:

(total) hedging error = V (0, S0)+X0S0[f(X0)−1]+
n−1∑
i=0

Xi(Si+1−Si)−LT−p(ST )

(2.3)

One may also talk about a hedging error on a time interval ∆t, that consists of

profit/loss from holding X stock shares for a length of time ∆t minus the change

in the option value minus liquidity cost over time period ∆t.

We want to hedge a European call option with strike K and expiration T .

Denote the value of the option as a function of time and price of the underlying

asset: V = V (t, S). We rely on delta-hedging trading strategy to replicate the

smoothed (see Theorem 2.1) payoff of the call option (ST −K)+:

Xi = VS(ti, Si). (2.4)

That is, the construction of hedge comes from the solution to the partial differential

equation. We use delta-hedging to partially follow the argument of Leland [20].

Trying out other hedging schemes, possibly with a lower initial cost, may be one

direction of future research. The price demanded by the hedger, that is the initial

cost of the portfolio, is V (0, S0) + X0S0[f(X0)− 1]. There is no liquidation of the
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self-financing portfolio at the expiration, instead one delivers 1ST>K units of stock

and −K1ST>K units of bond.

We will need the following smoothness condition on V (t, S):

||V ||m,n,p = sup
S≥0,0≤t≤T

[
Sm

∂n+pV (t, S)

∂Sn∂tp

]
(2.5)

is finite for all nonnegative m,n and p.

Theorem 2.1. Let V (t, S) be the solution of the partial differential equation

Vt(t, S) +
1

2
σ2S2VSS(t, S) + f ′(0)σ2S3V 2

SS(t, S) = 0 (2.6)

with the (smoothed) terminal condition

V (T, S) = p(ST ),

where p is the value at time T of a call with maturity T + ε, V (t, S) satisfies the

smoothness condition (2.5). Then expected hedging error of a replicating trading

strategy given by (2.4) over the interval [0, T ] approaches zero almost surely as ∆t

goes to zero.

Proof. We will represent the total hedging error as a sum of errors over equally

spaced time intervals. We consider the hedging error over the small time interval

[ti−1, ti] for i = 1, 2, . . . , n. The change in the call option value is

∆V = V (t+ δt, S + ∆S)− V (t, S) = VS∆S + Vt∆t+
1

2
VSS(∆S)2 +O(∆t3/2),
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and the change in the current market value of the hedging strategy is according to

(2.4)

∆X = VS(t+ δt, S + ∆S)− VS(t, S) = VSS∆S + VSt∆t+
1

2
VSSS(∆S)2 +O(∆t3/2).

From (2.2), the liquidity cost at each interval is

∆X[Sf(∆X)− Sf(0)] = ∆X(f(∆X)− 1)S (2.7)

since f(0) = 1.

Taylor series expansion gives

f(∆X)− 1 = f ′(0)∆X +
1

2
f ′′(0)(∆X)2 +O(∆X3).

Next we write down the discrete time version of the geometric Brownian motion

(2.1)

∆S = µS∆t+ σZS
√

∆t

(∆S)2 = S2σ2Z2∆t+O(∆t3/2)

(∆S)k = O(∆t3/2), k = 3, 4, 5, . . .

where Z is a standard normal random variable. Therefore the change in the market
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value of the hedging strategy takes the form:

∆X = VSS∆S + VSt∆t+
1

2
VSSS(∆S)2 +O(∆t3/2)

= VSSS(µ∆t+ σZ
√

∆t) + VSt∆t+
1

2
VSSSS

2σ2Z2∆t+O(∆t3/2),

(∆X)2 = V 2
SS(∆S)2 +O(∆t3/2) = V 2

SSS
2σ2Z2∆t+O(∆t3/2),

(∆X)k = O(∆t3/2), k = 3, 4, 5, . . .

We rewrite the equation (2.7) for the liquidity cost per time interval using Taylor

expansion for f(∆X)− 1 as well as expressions for ∆X and its powers:

∆X[Sf(∆X)− Sf(0)] = ∆X(f(∆X)− 1)S

= ∆X

(
f ′(0)∆X +

1

2
f ′′(0)(∆X)2

)
S +O(∆t3/2)

= f ′(0)V 2
SSσ

2Z2S3∆t+O(∆t3/2).

Therefore, the hedging error over each revision interval is

∆H = X∆S −∆V −∆X(Sf(∆X)− Sf(0))

= −Vt∆t−
1

2
VSS(∆S)2 − f ′(0)V 2

SSσ
2Z2S3∆t+O(∆t3/2).

If V satisfies the following partial differential equation

Vt +
1

2
σ2S2VSS

(
1 + 2f ′(0)SVSS

)
= 0,

then

E[∆H] = O(∆t3/2).
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The total hedging error over the entire interval [0, T ] is the sum of individual

∆H’s according to the definition (2.3), thus

E[
∑

∆H] =
∑

E[∆H] =
∑

O(∆t3/2) = O(∆t1/2),

that is the expected hedging error over the period [0, T ] approaches zero almost

surely as ∆t becomes small.

The following theorem shows the almost sure convergence of the strategy payoff

to the option payoff. So the delta hedging strategy constructed with the help

of the partial differential equation is optimal, in a sense that total hedging error

approaches zero almost surely at the length of the interval between trading times

goes to zero.

Theorem 2.2. The payoff of the discrete time delta-hedging strategy X = VS where

V is the solution of the partial differential equation (2.6) converge almost surely to

the smoothed payoff (ST−K)+ of the call option including liquidity costs as ∆t→ 0.

Of course the argument and methodology presented in the section work well for

general European contingent claims. In the next chapter we will show an analog

of these two theorems for L2 convergence as opposed to almost sure convergence.

The proportional transaction cost models produce linear or quasilinear partial dif-
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ferential equations of the second order, while liquidity costs result in fully nonlinear

partial differential equation (2.6).
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3 Delta-hedging replicating strategies

We use the partial differential equation from Ku et al. [18] to construct replicating

trading strategies. In Theorem 3.4 I show that the payoff of the replicating trading

strategy converges to the payoff of the option in L2. Then in Theorem 3.5 I find

the exact first order term of the Taylor expansion with respect to the time interval

length ∆t of the mean squared hedging error. Finally, I find the optimal positioning

of the rebalancing times by minimizing the first order term with respect to the

deterministic “distance function” d(t). All convergence statements between random

variables are in L2 unless otherwise stated.

3.1 Convergence of the mean squared replication error

Consider a filtered probability space [Ω,F , (Ft)0≤t≤T ,P] satisfying the usual condi-

tions, where T is a fixed time, and P represents the statistical or empirical proba-

bility measure. We consider a market with a stock and a money market account.

We assume the stock pays no dividends, and the rate of interest is zero.
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Let S(ω, t, x) represent the stock price per share at time [0, T ] that a trader

pays/receives for an order of size x ∈ R. A positive order (x > 0) represents a buy,

a negative order (x < 0) signifies a sale, and x = 0 corresponds to the marginal

trade. For the detailed structure of the supply curve, we refer the reader to Section

2 of Çetin et al. [10]. This model is focused on a small trader that cannot move

the market by her transactions. Let S(ω, t, 0) = St be the marginal price of the

supply curve. We denote the multiplicative supply curve S(ω, t, x) = Stf(x) for

some deterministic real-valued increasing function with f(0) = 1.

Assume the price process St follows a geometric Brownian motion

dSt = µStdt+ σStdBt, 0 ≤ t ≤ T,

where the drift µ is a constant, the volatility σ is a positive real number, B is a

standard Brownian motion, and T is the terminal time of a European contingent

claim with the payoff p(ST ). Take f(x) = eαx. The slope at x = 0 of supply

curve, f ′(0) (denoted by α) is interpreted as the parameter for liquidity risk. The

parameter α is estimated using simple regression methodology from the history of

stock prices. Details of the supply curve estimation are discussed in Section 3 of

Çetin et al. [8]. The value of α turns out to be small in most cases, usually with

0 < α < 0.0001.

Definition 3.1. A (replicating) trading strategy is a pair (Xt, Yt : t ∈ [0, T ]) where
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Xt represents the number of units of stock held at time t and Yt represents the

trader’s cash holding at time t the trader would have, if there weren’t any liquidity

costs.

Here Xt and Yt are predictable and optional (stochastic) processes respectively,

with respect to the filtration (Ft)0≤t≤T .

Let us consider equally spaced times 0 = t0 ≤ t1 ≤ t2 ≤ ... ≤ tn = T . Set

∆t = ti − ti−1 for i = 1, ..., n. We will write Stk = Sk, Xtk = Xk. The following

definition describes a self-financing condition for discrete strategies with liquidity

risk.

Definition 3.2. A discrete self-financing trading strategy (without liquidity costs)

is a trading strategy (Xt, Yt : t ∈ {ti}ni=0) which satisfies

Yt = V (0, S0) +X0S0[f(X0)− 1] +
∑
ti<t

Xti(Si+1 − Si)

where ∆Xi = Xi −Xi−1 (i ≥ 1) and ∆X0 = X0.

Considering the usual self-financing condition without liquidity costs, it is nat-

ural to define the total accumulated liquidity costs (up to time t < tn = T ) of a

discrete trading strategy (Xt, Yt : t ∈ {ti}ni=0) by

Lt =
∑
ti<t

∆Xi[Sif(∆Xi)− Sif(0)] +X0S0[f(X0)− 1]
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and the total liquidity costs up to time T is

LT =
n∑
i=1

∆Xi[Sif(∆Xi)− Sif(0)] +X0S0[f(X0)− 1]

where ∆Xi = Xi −Xi−1 for i ≥ 1 and ∆X0 = X0.

In practice, continuous hedging is not possible, thus one cannot replicate the

option perfectly and must accept an error. Letting V (0, S0)+X0S0[f(X0)−1] denote

the “true” cash position in the hedge during the interval (t0, t1), the hedging error

inclusive of liquidity costs is

HE = V (0, S0) +X0S0[f(X0)− 1] +
n−1∑
i=0

Xi(Si+1 − Si)− LT − p(ST )

Recall that for delta-hedging approach the option premium is V (0, S0)+X0S0[f(X0)−

1], that is initial capital of a replicating trading strategy.

Hedging errors are random, so we consider distributions of hedging errors. We

compare efficiency of the different replicating trading strategies by looking at the

corresponding distributions of the hedging errors and their parameters. We use the

mean squared hedging error for a criterion to estimate the hedging error.

Definition 3.3. The mean squared hedging error (MSHE) of a replicating trading

strategy is

E

V (0, S0) +X0S0[f(X0)− 1] +
n−1∑
i=0

Xi(Si+1 − Si)− LT − p(ST )

2
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Not only did Black and Scholes show how to compute the fair price of the

European option, but also they laid out the method for eliminating the risk of

writing an option through continuous delta hedging. Implementation of continuous

delta-hedging amounts to maintaining and rebalancing two positions with a money

market account (in cash) and a stock. The goal of delta-hedging is to eliminate

the risk of writing an option completely (continuous hedging in theory) or at least

significantly reduce the level of risk (discrete hedging in practice).

Leland [20] investigated the hedging error over each revision interval in the

presence of transaction costs, and modified the parameter of Black-Scholes price

for delta-hedging strategies. Ku et al. [18] argue that a dynamic delta hedging

according to their partial differential equation for a European contingent claim

produces hedging errors over the period [0, T ] whose expectation approaches 0 al-

most surely as the length of the revision interval goes to 0. They also show that

the payoff of the discrete replicating trading strategy converges almost surely to the

terminal payoff of the option p(ST ). In these papers the trading times are equally

spaced over the life of the option.

Considering alternatives to equally spaced trading times over the life of an

option, the hedging error can be improved. We proceed to work with trading

strategies with varying rehedging times. We parametrize varying rebalancing times

with a smooth, positive, strictly increasing function d(t) via ti = d−1(i∆t). We also
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require that d(0) = 0, d(T ) = T and d′(t) 6= 0. In other words one may recover the

positioning of rehedging times through inverse of d(t). Taking d(t) = t corresponds

to the constant interval case, equally spaced trading dates. Different functions d(t)

yield different locations of the rehedging times ti. Figure 3.1 shows an example

of d(t), where the left half of the graph is concave down (which translates into

more frequent rehedging at the beginning) and the right half of the graph is convex

(which corresponds to more frequent rehedging toward the end of a period).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

t

d(t)

Figure 3.1: Setting up the varying rehedging times. Steeper slope of d(t) corre-

sponds to more frequent rebalancing.
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Theorem 3.1. Let V (t, S) be a solution to the partial differential equation (2.6)

with the final condition V (T, S) = p(ST ) and satisfies the smoothness condition

(2.5), then employing delta-hedging trading strategy, that is Xi = VS(ti, Si), results

in the following convergence statements:

∑
ti<T

VS(ti, Si)(Si+1 − Si)→
∫ T

0

VS(t, St) dSt

LT →
∫ T

0

σ2f ′(0)S3
t VSS(t, St) dt+X0S0[f(X0)− 1]

in L2 as ∆t→ 0.

Proof. We show the convergence in L2 by explicitly calculating the expected square

error and verifying that the expected square error is indeed equal to zero. Recall

that a sequence of the random variables X1, X2, . . . converges to the random variable

X in L2 if E[(Xn −X)2]→ 0 as n→ 0. With finite number of trading times n the

fact n→ 0 is equivalent to saying that the length of the time interval between the

trading times converges to zero: ∆t→ 0. The main tools are Taylor expansion and

properties of the geometric Brownian motion.

Lemma 3.2.

∑
ti<T

VS(ti, Si)(Si+1 − Si) −→
∫ T

0

VS(t, St) dSt

in L2 as ∆t→ 0.
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Proof. Consider

E

∑
ti<T

VS(ti, Si)(Si+1 − Si)−
∫ T

0

VS(t, St) dSt

2

= E

∑
ti<T

∫ ti+1

ti

VS(ti, Si) dSt −
∑
ti<T

∫ ti+1

ti

VS(t, St) dSt

2

= E

∑
ti<T

∫ ti+1

ti

(
VS(ti, Si)− VS(t, St)

)
dSt

2

= E

∑
i

(∫ ti+1

ti

(
VS(ti, Si)− VS(t, St)

)
dSt

)2


+ E

∑
i 6=j

∫ ti+1

ti

(
VS(ti, Si)− VS(t, St)

)
dSt

∫ tj+1

tj

(
VS(tj, Stj)− VS(t, St)

)
dSt


The cross terms (the second term of the last equation) become zero. We work with

the diagonal terms first.

E

∑
i

(∫ ti+1

ti

(
VS(ti, Si)− VS(t, St)

)
dSt

)2


= E

∑
i

(∫ ti+1

ti

[
VS(ti, Si)− VS(t, St)

]
[µStdt+ σStdWt]

)2


= E

∑
i

(∫ ti+1

ti

[
VS(ti, Si)− VS(t, St)

]
µStdt+

∫ ti+1

ti

[
VS(ti, Si)− VS(t, St)

]
σStdWt

)2


(3.1)

Now we demonstrate that the order of each sum is greater than or equal toO(∆t)

to conclude that the whole expression converges to zero. We start by showing that
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the sum of squares of the second term has expectation O(∆t), that is

E

∑
i

(∫ ti+1

ti

[
VS(ti, Si)− VS(t, St)

]
σStdWt

)2
 = O(∆t)→ 0 (as ∆t→ 0)

To prove this we consider

E

∑
i

(∫ ti+1

ti

[
VS(ti, Si)− VS(t, St)

]
σStdWt

)2


= E

∑
i

EFti

[∫ ti+1

ti

[
VS(ti, Si)− VS(t, St)

]
σStdWt

]2


= E

∑
i

EFti

[∫ ti+1

ti

(
VS(ti, Si)− VS(t, St)

)2
σ2S2

t dt

]
by the Ito isometry (see for instance Shreve [24]). Using a Taylor series expansion,

E

∑
i

EFti

[∫ ti+1

ti

(
V 2
SS(ti, Si)(St − Si)2 +O(∆t3/2)

)
σ2S2

t dt

]
= E

∑
i

EFti

[∫ ti+1

ti

V 2
SS(ti, Si)(St − Si)2σ2S2

t dt

]
+O(∆t5/2)




= E

∑
i

(
σ2V 2

SS(ti, Si)

∫ ti+1

ti

EFti

[
(St − Si)2S2

t

]
dt+O(∆t5/2)

) (3.2)

We note that the fact

EFti

[
(St − Si)2S2

t

]
= σ2S4

i (t− ti) +O(t− ti)2

which can be directly calculated from the distribution of St. Then equation (3.2)
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equals

E

∑
i

(
σ2V 2

SS(ti, Si)

∫ ti+1

ti

EFti

[
(St − Si)2S2

t

]
dt+O(∆t5/2)

)
= E

∑
i

σ2V 2
SS(ti, Si)

[
σ2S4

i

∫ ti+1

ti

(t− ti) dt+O(∆t3)

]
+O(∆t5/2)




= E

∑
i

(
σ4

2
V 2
SS(ti, Si)S

4
i (ti+1 − ti)2 +O(∆t5/2)

)
= E

∑
i

(
O(∆t2) +O(∆t5/2)

) = O(∆t)→ 0 (as ∆t→ 0)

This is the only term with order exactly O(∆t). To characterize the convergence

we find that

E

∑
i

σ4

2
V 2
SS(ti, Si)S

4
i (ti+1 − ti)2


= E

∑
i

σ4

2
V 2
SS(ti, Si)S

4
i (ti+1 − ti)(ti+1 − ti)


= E

∑
i

σ4

2
V 2
SS(ti, Si)S

4
i

[
∆t

d′(ti)
+O(∆t2)

]
(ti+1 − ti)


= E

∑
i

σ4

2
V 2
SS(ti, Si)S

4
i

∆t

d′(ti)
(ti+1 − ti)

+
∑
i

O(∆t3)

= ∆tE

∑
i

σ4

2
V 2
SS(ti, Si)S

4
i

1

d′(ti)
(ti+1 − ti)

+O(∆t2)

We also note that

E

∑
i

σ4

2
V 2
SS(ti, Si)S

4
i

1

d′(ti)
(ti+1 − ti)

→ E

[∫ T

0

σ4

2
V 2
SS(t, St)S

4
t

1

d′(t)
dt

]
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in L1. We claim that the remaining terms from the equation will be higher order

than O(∆t) and thus converge to zero as ∆t tends to zero. We give the proof for the

cross term, and the reasoning for the other terms is similar. Consider the expected

value conditioned on Fti of the cross term:

EFti

[∫ ti+1

ti

(
VS(ti, Si)− VS(t, St)

)
µSt dt

∫ ti+1

ti

(
VS(ti, Si)− VS(t, St)

)
σSt dWt

]

≤

EFti

[∫ ti+1

ti

(
VS(ti, Si)− VS(t, St)

)
µSt dt

]2
1/2

×

EFti

[∫ ti+1

ti

(
VS(ti, Si)− VS(t, St)

)
σSt dWt

]2
1/2

using Hölder’s inequality. Then by the Ito isometryEFti

[∫ ti+1

ti

(
VS(ti, Si)− VS(t, St)

)
µSt dt

]2
1/2

EFti

[∫ ti+1

ti

(
VS(ti, Si)− VS(t, St)

)2
σ2S2

t dt

]1/2

=

EFti

[∫ ti+1

ti

VSS(ti, Si)(St − Si)µSt dt+O(∆t2)

]2
1/2

×

EFti

[∫ ti+1

ti

V 2
SS(ti, Si)(St − Si)2σ2S2

t dt+O(∆t3)

]1/2

= O(∆t3/2)O(∆t) = O(∆t5/2)

Then summing up the terms over all subintervals gives an estimate of

E

∑
i

O(∆t5/2)

 = O(∆t3/2) > O(∆t).
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Lemma 3.3. LT →
∫ T

0
σ2f ′(0)S3

t V
2
SS(t, St)dt+X0S0[f(X0)− 1] in L2 as ∆t→ 0.

Proof. Define the following sequence of random variables

∆i ≡(Si − Si−1)2 − σ2S2
i−1(ti − ti−1)

After rearranging one gets

(Si − Si−1)2 = ∆i + σ2S2
i−1(ti − ti−1)

Let us consider

n∑
i=1

V 2
SS(ti−1, Si−1)(Si − Si−1)2Si−1f

′(0) +X0S0[f(X0)− 1]

=
n∑
i=1

V 2
SS(ti−1, Si−1)(∆i + σ2S2

i−1(ti − ti−1))Si−1f
′(0) +X0S0[f(X0)− 1]

=
n∑
i=1

V 2
SS(ti−1, Si−1)∆iSi−1f

′(0) +
n∑
i=1

V 2
SS(ti−1, Si−1)σ2(ti − ti−1)S3

i−1f
′(0)

+X0S0[f(X0)− 1]

It is easy to see that the second sum converges to
∫ T

0
σ2f ′(0)S3

t V
2
SS(t, St) dt. We

will show that for the first sum

n∑
i=1

V 2
SS(ti−1, Si−1)∆iSi−1f

′(0)→ 0
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We begin by observing that E
[∑n

i=1 V
2
SS(ti−1, Si−1)∆iSi−1f

′(0)
]2

consists of diago-

nal and cross terms. Consider the diagonal terms first:

E

 n∑
i=1

V 4
SS(ti−1, Si−1)∆2

iS
2
i−1(f ′(0))2


= E

 n∑
i=1

V 4
SS(ti−1, Si−1)S2

i−1(f ′(0))2EFti−1

[
∆2
i

] (3.3)

Recall that Si = Si−1e
Zti−Zti−1 , where Zt = µt + σWt is a Wiener process

with drift µ = µ − 1
2
σ2. Since Zti − Zti−1

∼ N
(
µ(ti − ti−1), σ2(ti − ti−1)

)
, then

the moment generating function of Zti − Zti−1
is MN (s) = eµ(ti−ti−1)s+σ2(ti−ti−1)s2/2.

Then

EFti−1

[
∆2
i

]
= EFti−1

[
(Si − Si−1)2 − σ2S2

i−1(ti − ti−1)
]2

= EFti−1

[
(Si − Si−1)4 − 2(Si − Si−1)2σ2S2

i−1(ti − ti−1) + σ4S4
i−1(ti − ti−1)2

]
= S4

i−1[3σ4(ti − ti−1)2 − 2(1 + 2µ(ti − ti−1) + 2σ2(ti − ti−1)− 2[1 + µ(ti − ti−1)

+ 1/2σ2(ti − ti−1)] + 1)(ti − ti−1)σ2 + (ti − ti−1)2σ4 +O(∆t3)]

= 2S4
i−1σ

4(ti − ti−1)2 +O(∆t3)
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Use this result to rewrite (3.3) as

E

 n∑
i=1

V 4
SS(ti−1, Si−1)S2

i−1(f ′(0))2EFti−1

[
∆2
i

]
= E

 n∑
i=1

V 4
SS(ti−1, Si−1)S2

i−1(f ′(0))2
(
2S4

i−1σ
4(ti − ti−1)(ti − ti−1) +O(∆t3)

)
= 2E

 n∑
i=1

V 4
SS(ti−1, Si−1)S6

i−1(f ′(0))2σ4

(
∆t

d′(ti)
+O(∆t2)

)
(ti − ti−1)

+O(∆t2)

= 2∆tE

 n∑
i=1

V 4
SS(ti−1, Si−1)S6

i−1(f ′(0))2σ4 1

d′(ti)
(ti − ti−1) +

n∑
i=1

O(∆t2)

+O(∆t2)

= 2∆tE

 n∑
i=1

∫ ti

ti−1

V 4
SS(ti−1, Si−1)S6

i−1(f ′(0))2σ4 1

d′(ti)
dt

+O(∆t2)→ 0 (as ∆t→ 0)

This is the only term with the order exactly O(∆t). To characterize the con-

vergence we note that

E

 n∑
i=1

∫ ti

ti−1

V 4
SS(ti−1, Si−1)S6

i−1(f ′(0))2σ4 1

d′(ti)
dt


→ E

[∫ T

0

V 4
SS(t, St)S

6
t (f

′(0))2σ4 1

d′(t)
dt

]

in L1. Therefore, we conclude that

n∑
i=1

V 2
SS(ti−1, Si−1)(Si − Si−1)2Si−1f

′(0) +X0S0[f(X0)− 1]

=
n∑
i=1

V 2
SS(ti−1, Si−1)∆iSi−1f

′(0) +
n∑
i=1

V 2
SS(ti−1, Si−1)σ2(ti − ti−1)S3

i−1f
′(0)

+X0S0[f(X0)− 1]

→
∫ T

0

V 2
SS(t, St)S

3
t σ

2f ′(0) dt+X0S0[f(X0)− 1]
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Finally, we need to show

LT −
n∑
i=1

V 2
SS(ti−1, Si−1)Si−1f

′(0)(Si − Si−1)2 −X0S0[f(X0)− 1]→ 0

We omit higher-order term on the way. First we work with

LT ≡
∑
ti<T

∆Xi[Sif(∆Xi)− Sif(0)] +X0S0[f(X0)− 1]

=
∑
ti<T

∆Xi[f(∆Xi)− 1]Si +X0S0[f(X0)− 1]

=
∑
ti<T

∆X2
i f
′(0)Si +

∑
ti<T

O(∆Xti)
3 +X0S0[f(X0)− 1]

=
n∑
i=1

f ′(0)SiV
2
SS(ti−1, Si−1)(Si − Si−1)2 +

∑
ti<T

O(∆Xti)
3 +X0S0[f(X0)− 1]

Now we turn our attention to

E

LT − n∑
i=1

f ′(0)Si−1V
2
SS(ti−1, Si−1)(Si − Si−1)2 −X0S0[f(X0)− 1]

2

= E

 n∑
i=1

f ′(0)V 2
SS(ti−1, Si−1)(Si − Si−1)3 +

∑
ti<T

O(∆Xti)
3

2

= O(∆t2)→ 0

Therefore,

LT →
∫ T

0

σ2f ′(0)S3
t V

2
SS(t, St)dt+X0S0[f(X0)− 1]

The proof of the lemma is finished.

Lemmas 3.2 and 3.3 show the convergence statements given in the Theorem 3.1.

This ends the proof of the Theorem 3.1.
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Remark 3.1. The PDE in 3.1 was introduced in Ku et al. [18] and the well-

posedness issues such as the existence of smooth solutions have not yet been fully

resolved. However, the existence and uniqueness of solutions in the viscosity sense

can be shown for options with convex payoffs, by comparing to equation (1.1) in

Çetin et al. [11] with l = 1
4αS

and adopting the result therein.

Theorem 3.4. Under the conditions of Theorem 3.1, we have

V (0, S0) +X0S0[f(X0)− 1] +
∑
ti<T

VS(ti, Si)(Si+1 − Si)− LT → p(ST )

in L2 as ∆t→ 0. In other words, the MSHE of this discrete delta-hedging strategy

approaches zero.

Proof. We prove the current theorem by relying in the result of the previous The-

orem 3.1.

Rearranging the terms of the PDE one gets

σ2f ′(0)S3V 2
SS =− Vt − 1/2σ2S2VSS

−
∫ T

0

σ2f ′(0)S3V 2
SS dt =

∫ T

0

[
−Vt − 1/2σ2S2VSS

]
dt
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Then, Theorem 3.1 implies

V (0, S0) +X0S0[f(X0)− 1] +
∑
ti<T

VS(ti, Si)(Si+1 − Sti)− LT

−→ V (0, S0) +

∫ T

0

VS(t, St) dSt −
∫ T

0

σ2f ′(0)S3
t V

2
SS(t, St) dt

= V (0, S0) +

∫ T

0

VS(t, St) dSt +

∫ T

0

[
Vt + 1/2σ2S2VSS

]
dt

= V (T, ST ) = p(ST )

by Ito’s formula, which completes the proof of Theorem 3.4.

The next theorem gives the coefficient of ∆t as a leading order term of the mean

squared hedging error assuming varying rehedging times:

Theorem 3.5. Under the conditions of theorem 3.1,

E

V (0, S0) +X0S0[f(X0)− 1] +
∑
ti<T

VS(ti, Si)(Si+1 − Sti)− LT − p(ST )

2

=∆tE

[∫ T

0

σ4 1

d′(t)
V 2
SS(t, St)S

4
t

(
1

2
+ 2αVSS(t, St)St + 2α2V 2

SS(t, St)S
2
t

)
dt

]
+O(∆t2)

51



Proof. Note that we omit the higher order terms. Denote

∑
1

≡
∑
ti<T

VS(ti, Si)(Si+1 − Sti)

∑
2

≡ LT =
∑
ti<T

∆Xi(Sif(∆Xi)− Sif(0))

∫
1

≡
∫ T

0

VS(t, St) dSt∫
2

≡
∫ T

0

σ2f ′(0)S3
t V

2
SS(t, St)dt

With this notation, the mean squared hedging error is written as:

E

V (0, S0) +X0S0[f(X0)− 1] +
∑
ti<T

VS(ti, Si)(Si+1 − Si)− LT − p(ST )

2

= E

(∑
1

−
∑

2

−
(∫

1

−
∫

2

))2


= E

[
(
∑

1

−
∫

1

)2 − 2(
∑

1

−
∫

1

)(
∑

2

−
∫

2

) + (
∑

2

−
∫

2

)2

]

The estimates for the first and third terms in the expectation are obtained from

Theorem 3.1. Only the term in the middle of the expression needs to be investigated.

By omitting the higher order terms and the almost identical computations to the

proofs of the lemmas, the cross term of the errors is essentially
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E

∑
i

∫ ti

ti−1

(
VS(t, St)− VS(ti−1, Si−1)

)
dStV

2
SS(ti−1, Si−1)∆iSi−1f

′(0)


= E

∑
i

V 3
SS(ti−1, Si−1)Si−1f

′(0)EFti−1

[
∆i

∫ ti

ti−1

(St − Si−1)dSt

]
= E

∑
i

V 3
SS(ti−1, Si−1)S5

i−1f
′(0)σ4(ti − ti−1)2



= E

∑
i

V 3
SS(ti−1, Si−1)S5

i−1f
′(0)σ4

(
∆t

d′(ti−1)
+O(∆t2)

)
(ti − ti−1)


−→ ∆tE

[∫ T

0

V 3
SS(t,St)S

5
t f
′(0)σ4 1

d′(t)
dt

]

The result follows by collecting the estimates obtained.

In the next section we are going to minimize the mean squared hedging error

as given in the Theorem 3.5.

3.2 Optimal strategies: minimizing the hedging error

In this section we reduce hedging error by using varying instead of equally spaced

trading times. We wish to replicate the payoff p(ST ) of a European option with a

fixed initial capital prescribed by the partial differential equation (option premium)

and a fixed number of available reheding times. Hedging error is nonzero due to
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presence of liquidity risk as well as absence of continous trading. We are minimizing

the first order term in ∆t of the mean squared hedging error of a trading strategy

from Theorem 3.5. We investigate the optimal positioning of the rehedging times

over all deterministic functions d(t):

We employ the calculus of variations to solve the minimization problem. Es-

sentially we find a solution d(t) giving the location of the rehedging times that will

minimize the hedging error. We start by transforming the coefficient in front of ∆t

in the mean squared hedging error using Fubini theorem:

E

[∫ T

0

σ4 1

d′(t)
V 2
SS(t, St)S

4
t

(
1

2
+ 2αVSS(t, St)St + 2α2V 2

SS(t, St)S
2
t

)
dt

]

= σ4

∫ T

0

1

d′(t)

(
1

2
E
[
V 2
SS(t, St)S

4
t

]
+ 2αE

[
V 3
SS(t, St)S

5
t

]
dt+ 2α2E

[
V 4
SS(t, St)S

6
t

])
dt

Denote by A(t) the expression in parentheses from the previous line, that is,

A(t) =
1

2
E
[
V 2
SSS

4
t

]
+ 2αE

[
V 3
SSS

5
t

]
+ 2α2E

[
V 4
SSS

6
t

]
Recall that in the calculus of variations the problem of finding a function d(t) which

minimizes the following integral

I(d) =

∫ t2

t1

F (t, d(t), d′(t))dt

where d(t1) = d1, d(t2) = d2 and d′(t) 6= 0. We want to solve

∫ T

0

1

d′(t)
A(t)dt
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with d(0) = 0, d(T ) = T, d′(t) 6= 0, which means that the integrand

F (t, d(t), d′(t)) =
1

d′(t)
A(t)

in our case. The functional F depends only on t and d′, and the Euler’s equation is

d
dt
Fd′(t, d

′) = 0. Next we integrate the Euler’s equation with respect to t from both

sides to get rid of the derivative in t. Then Fd′(t, d
′) = C1 for some constant C1.

Differentiating F with respect to d′,

Fd′(t, d
′) = − 1

(d′(t))2
A(t) = C1

Then we have 0 ≤ (d′(t))2 = −A(t)
C1

. Next we take the square root on both sides for

d′(t):

d′(t) = ±

√
|A(t)|
|−C1|

= ±
√
|A(t)|√
|−C1|

In order to find a value of
√
|−C1| from the boundary condition, we integrate with

respect to t from both sides. Then

d(t) = ±
∫ t

0

√
|A(x)|
|−C1|

dx+ C2

Recall that we require d(t) to be positive, so one is interested only in d(t) =

+
∫ t

0

√
|A(x)|
|−C1|dx+C2. Now we use the boundary conditions to determine the values

for C1 and C2. First we make use of d(0) = 0.

d(0) = 0 =

∫ 0

0

√
|A(x)|
|−C1|

dx+ C2 = 0 + C2
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so C2 = 0 and d(t) = +
∫ t

0

√
|A(x)|
|−C1|dx. Now using d(T ) = T ,

d(T ) = T =

∫ T

0

√
|A(x)|
|−C1|

dx =
1√
|−C1|

∫ T

0

√
|A(x)|dx

thus

1√
|−C1|

=
T∫ T

0

√
|A(x)|dx

The final form of d(t) should be

d(t) =

∫ t

0

√
|A(x)|
|−C1|

dx

=
T∫ T

0

√
|A(x)|dx

∫ t

0

√
|A(x)|dx

Now we compute d(t) numerically for a European call option with strike K =

100, T = 0.5 (expiration in half a year), σ = 0.4, α = 0.0001. We plot d(t)

in Figure 3.2 for strikes 100, 90 and 80, while Figure 3.3 displays d(t) for strikes

100, 110 and 120. As the strike price deviates from the spot price, the recommen-

dation is to rehedge more frequently toward the expiration (that is, the function’s

shape becomes steeper). The numerical simulations for put option produce same

recommendations.

We use implicit finite difference scheme to solve the partial differential equation

numerically. For more details, see Strikwerda [25] and Duffy [13]. Within the delta

hedging framework the partial differential equation provides the number of shares

to hold at each time for any trading strategy. Figure 3.4 displays the numerical
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Figure 3.2: Optimal d(t) for a Euro call

for decreasing strikes.

Figure 3.3: Optimal d(t) for a Euro call

for increasing strikes.
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solution of the partial differential equation (2.6) with the final condition V (T, S) =

(ST − K)+, which corresponds to the call option payoff (the strike and the spot

are equal to 100, α = 0.0001). As for the hedging errors, we use Monte Carlo to

simulate paths of the geometric Brownian motion (actually, only the values at the

expiration are utilized).

Figure 3.4: The numerical solution of the partial differential equation (2.6) with

the final condition V (T, S) = (ST −K)+.

Table 3.1 summarizes the mean square hedging errors (MSHE) from using
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varying rehedging times. We also list the mean hedging errors (MHE). The sub-

script “e” refers to equally spaced traging times, while the subscript “v” signifies

the result for the varying rebalancing times. That is, MHEe and MSHEe cor-

respond to mean hedging error and mean square hedging error for equally spaced

times. Similarly, MHEv and MSHEv correspond to mean hedging error and mean

square hedging error for varying trading times. The computations are made for the

European call option with T = 1 (maturity date in a year from now), for varying

strikes and values of α. The spot price of the underlying is 100, that is S0 = 100.

Table 3.1 summarizes the hedging errors while using 250 trading times (that is,

daily rebalancing) and σ = 0.2. Next we reduce the number of trading times from

250 to 52 (weekly rebalancing) and then down to 12 (monthly rebalancing) while

keeping σ = 0.2. We list the results in Table 3.2 and Table 3.3 correspondingly.

Table 3.4, Table 3.5 and Table 3.6 contain the results of daily, weekly and monthly

rehedging with σ = 0.1.

We note that the hedging errors in the Black-Scholes setting (the case when

α = 0) is also reduced by using varying rehedging times as well.
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α strike call price
mean

MHEe MHEv MSHEe MSHEv

0.0001 95 10.5253366 0.000589 0.000537 0.013343 0.012845

100 7.96572301 0.000671 0.000636 0.015219 0.015179

105 5.90249744 0.003042 0.003890 0.016172 0.015938

0.0005 95 10.5083716 0.001093 0.001148 0.013608 0.013572

100 7.92754391 0.000892 0.000731 0.015522 0.015310

105 5.79126726 0.002353 0.001934 0.016493 0.016269

0.001 95 10.5077284 0.000911 0.000871 0.014205 0.014167

100 7.94646865 0.001363 0.001166 0.016202 0.015746

105 5.88314392 0.001322 0.001392 0.017216 0.016732

Table 3.1: Comparison of the hedging errors for equally spaced and varying rehedg-

ing times (subscripts e and v correspondingly) with daily rehedging for σ = 0.2.
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α strike call price
mean

MHEe MHEv MSHEe MSHEv

0.0001 95 10.5253366 0.001250 0.001077 0.028108 0.020743

100 7.96572301 0.001611 0.001910 0.022895 0.021902

105 5.90249744 0.002432 0.002287 0.029164 0.028086

0.0005 95 10.5083716 0.001963 0.001294 0.027314 0.016969

100 7.92754391 0.002153 0.001704 0.025522 0.015310

105 5.79126726 0.001528 0.001617 0.020212 0.010256

0.001 95 10.5077284 0.001810 0.001876 0.017484 0.017427

100 7.94646865 0.001976 0.001023 0.019862 0.019006

105 5.88314392 0.002627 0.002587 0.020627 0.020464

Table 3.2: Comparison of the hedging errors for equally spaced and varying rehedg-

ing times (subscripts e and v correspondingly) with weekly rehedging for σ = 0.2.
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α strike call price
mean

MHEe MHEv MSHEe MSHEv

0.0001 95 10.5253366 0.001581 0.001958 0.021522 0.020216

100 7.96572301 0.001788 0.001329 0.028571 0.026941

105 5.90249744 0.001362 0.001903 0.023269 0.022128

0.0005 95 10.5083716 0.002446 0.001483 0.020451 0.021208

100 7.92754391 0.001920 0.002088 0.021412 0.016725

105 5.79126726 0.001178 0.001757 0.021846 0.017516

0.001 95 10.5077284 0.002040 0.001379 0.024547 0.021344

100 7.94646865 0.001836 0.002413 0.026706 0.024761

105 5.88314392 0.002679 0.002636 0.039682 0.037551

Table 3.3: Comparison of the hedging errors for equally spaced and varying re-

hedging times (subscripts e and v correspondingly) with monthly rehedging for

σ = 0.2.
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α strike call price
mean

MHEe MHEv MSHEe MSHEv

0.0001 95 6.88143273 0.000227 0.000132 0.005185 0.004467

100 3.97951947 0.000162 0.000096 0.009780 0.008972

105 2.05702452 0.000214 0.000198 0.001727 0.001041

0.0005 95 6.78019826 0.000247 0.000342 0.009105 0.007433

100 3.95192241 0.000519 0.000381 0.009368 0.006045

105 2.04212433 0.000229 0.000201 0.003033 0.001660

0.001 95 6.86598135 0.000114 0.000197 0.005159 0.004590

100 3.96012972 0.000336 0.000224 0.008562 0.005249

105 2.03966783 0.000032 0.000439 0.003024 0.002197

Table 3.4: Comparison of the hedging errors for equally spaced and varying rehedg-

ing times (subscripts e and v correspondingly) with daily rehedging for σ = 0.1.
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α strike call price
mean

MHEe MHEv MSHEe MSHEv

0.0001 95 6.88143273 0.000099 0.000151 0.001951 0.001464

100 3.97951947 0.000171 0.000138 0.005058 0.005497

105 2.05702452 0.000222 0.000142 0.002713 0.003129

0.0005 95 6.78019826 0.000106 0.000162 0.002930 0.002802

100 3.95192241 0.000196 0.000141 0.006242 0.005376

105 2.04212433 0.000325 0.000576 0.006958 0.008018

0.001 95 6.86598135 0.000146 0.000078 0.002999 0.002905

100 3.96012972 0.000206 0.000184 0.005813 0.005795

105 2.03966783 0.000870 0.000819 0.006991 0.007391

Table 3.5: Comparison of the hedging errors for equally spaced and varying rehedg-

ing times (subscripts e and v correspondingly) with weekly rehedging for σ = 0.1.
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α strike call price
mean

MHEe MHEv MSHEe MSHEv

0.0001 95 6.88143273 0.000156 0.000157 0.003501 0.003319

100 3.97951947 0.000154 0.000119 0.006224 0.006175

105 2.05702452 0.000180 0.000130 0.007158 0.007095

0.0005 95 6.78019826 0.000166 0.000150 0.003438 0.002921

100 3.95192241 0.000173 0.000221 0.006422 0.006124

105 2.04212433 0.000155 0.000096 0.008316 0.007607

0.001 95 6.86598135 0.000224 0.000226 0.007989 0.008012

100 3.96012972 0.000251 0.000191 0.006487 0.006062

105 2.03966783 0.000193 0.000201 0.008136 0.007965

Table 3.6: Comparison of the hedging errors for equally spaced and varying re-

hedging times (subscripts e and v correspondingly) with monthly rehedging for

σ = 0.1.
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4 Hedging via local risk-minimization

In this chapter we investigate the pricing and hedging of a European option in

a model with liquidity risk with local risk-minimization as the criterion for opti-

mality for a replicating trading strategy. We assume a general square-integrable

stochastic process to model the price of the underlying. We consider any form of

European contingent claims, including convex and concave payoffs. The main result

is existence of a local risk-minimizing strategy in Theorem 4.10.

4.1 Definitions

In this section we introduce definitions and notation for local risk-minimization in

discrete time in the presence of liquidity risk. We also find the criterion for checking

if a trading strategy is local risk-minimizing in Proposition 4.2.

Consider a filtered probability space [Ω,F = (Fk)k=0,1,...,T ,P], where T ∈ N

is a natural number representing the fixed time (expiration of the option). P is

statistical or empirical probability measure for a stock that pays no dividends.
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Assume the rate of interest is zero, that is the price process is discounted and the

price of non-risky asset is always equal to one.

Let S(ω, t, 0) = St be the marginal price of the supply curve, that is the general

price process for the underlying asset. We assume the discounted price process for

the risky asset St is adapted to the filtration F, nonnegative and square integrable:

St ∈ L2(P), that is for every t,
∫

Ω
S2
t (ω)dP (ω) = E[S2

t ] < ∞. Let the supply

curve S(ω, t, x) represent the stock price per share at time [0, T ] that a trader

pays/receives for an order of size x ∈ R. A positive order (x > 0) represents a buy,

a negative order (x < 0) signifies a sale, and x = 0 corresponds to the marginal

trade. The supply curve is multiplicative, and we write simply S(ω, t, x) = Stf(x),

where f(x) is real-valued increasing continuous function with f(0) = 1.

The goal is to hedge/replicate European contingent claim (strike K) with the

payoff p(ST ). No convexity or concavity of option’s payoff is required.

As before, we model the derivative payoff via random variables.

Definition 4.1. A contingent claim is a contract to deliver a number of units ¯δT+1

of the stock and an amount λ̄T in cash, where ¯δT+1 and λ̄T are FT -measurable

random variables, and ¯δT+1 satisfies

¯δT+1ST ∈ L2(P).

For example, upon exercise of the European call option with the maturity T
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and the strike K, the option writer has to hand over one share of stock in exchange

for K units of cash so that

¯δT+1 = 1ST>K , λ̄T = −K1ST>K .

This is settlement with delivery.

We assume for simplicity that liquidation of a position at date T does not incur

liquidity costs.

We do not specify the price process explicitly as we did in Chapter 3. Instead,

we require the price process to be square-integrable for expectations and variances

to be well-defined.

Definition 4.2. For any discrete stochastic process S = (S)k=0,1,...,T denote by

Θ(S) the space of all stochastic processes δ = (δ)k=1,...,T+1 such that

• δk is Fk−1-measurable (that is, predictable)

• δk∆Sk ∈ L2(P) for k = 1, . . . , T , where ∆Sk := Sk − Sk−1.

The requirement δk∆Sk ∈ L2(P) for k = 1, . . . , T from the following definition

makes sure the objects of the form
∑k

j=1 δj∆Sj are well-defined. In fact, δj∆Sj

represents trading gains/losses from holding δj stock shares while the stock share

price changes from date j − 1 to j.

As before, a trading strategy consists of a position in the stock shares and a

position in cash.
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Definition 4.3. A (trading) strategy η is a pair of processes δ, λ such that

• δ ∈ Θ(S) (position in a risky asset),

• λ = (λ)k=0,1,...,T is adapted to F (position in a non-risky asset/money market

account).

Definition 4.4. The (adapted) value process of a (trading) strategy η = (δ, λ) is

Vk(η) := δk+1Sk + λk ∈ L2(P).

At each date k, one may choose the number δk+1 of stock shares and the number

λk of cash to hold until the following date k + 1.

Here the change in the number of shares δk+1− δk corresponds to the order size

of the supply curve introduced above. While following the trading strategy η we

incur liquidity costs. The flow of capital at date k consists of buying or selling

(depending upon the signs) λk − λk−1 units of cash, δk+1 − δk stock shares which

results in an expenditure of the size (δk+1 − δk)Sk and liquidity cost:

λk − λk−1 + (δk+1 − δk)Sk + (δk+1 − δk)(Skf(δk+1 − δk)− Skf(0))

=λk + δk+1Sk − λk−1 −����δkSk−1 − δkSk +���
�δkSk−1 + (δk+1 − δk)Sk(f(δk+1 − δk)− 1)

=λk + δk+1Sk − (λk−1 + δkSk−1)− δk(Sk − Sk−1) + (δk+1 − δk)Sk(f(δk+1 − δk)− 1)

=Vk(η)− Vk−1(η)− δk(Sk − Sk−1) + (δk+1 − δk)Sk(f(δk+1 − δk)− 1)
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One may get the cumulative costs of the strategy η by summing over all dates

up to k. Recall that the indices for δk run from 1 to T + 1, while all other elements

of the model are indexed from 0 to T , as illustrated in the Figure 4.1.

S0 S1 S2 S3 ST

0 1 2 3 T

δ1 δ2 δ3 δ4 δT+1

λ0 λ1 λ2 λ3 λT

Figure 4.1: The indices for δk run from 1 up to T + 1.

Definition 4.5. The cost process of a strategy η = (δ, λ) is

Ck(η) := Vk(η)−
k∑
j=1

δj∆Sj +
k∑
j=1

(δj+1 − δj)(f(δj+1 − δj)− 1)Sj for k = 1, . . . , T

and C0(η) = V0(η).

The cost process monitors changes in the value process that are not due to

trading gains δj(Sj − Sj−1). We note that V0(η) is the minimum initial capital for

the trading strategy η; that is initial costs are equal to the sum invested at time 0.

In the Chapter 3 the cost process is constant, since the replicating trading strategies

are self-financing.

The next definition assumes the cost process of any strategy is square-integrable

(please see Lemma 4.3 for the proof). If Ω is finite or α = 0, this is clearly satisfied

due to the definition of a trading strategy.
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Definition 4.6. The risk process (conditional mean square error process) of a strat-

egy η is

Rk(η) := E[(CT (η)− Ck(η))2|Fk] for k = 0, 1, . . . , T.

We define the local risk-minimizing (that is, optimal) strategy via the risk pro-

cess.

We shall minimize Rk(η) only with respect to λk and δk+1, as the only decision

one has to take at time k is the choice of λk and δk+1. Other variables that influence

the risk process at date k are δk+2, . . ., δT+1 and λk+1, . . ., λT . The following

definition formalized the dependence of the risk process at date k on cash holdings

λk and the number of stock shares δk+1.

Definition 4.7. Let η = (δ, λ) be a strategy and k ∈ {0, 1, . . . , T − 1}. A local

perturbation of η at a date k is a strategy η′ = (δ′, λ′) with

• δ′j = δj for j 6= k + 1

• λ′j = λj for j 6= k.

A strategy η is called local risk-minimizing (inclusive of liquidity costs) if one has

Rk(η) ≤ Rk(η
′) P -a.s.

for any date k ∈ {0, 1, . . . , T − 1} and any local perturbation η′ of η at the date k.
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We may restate the problem in the notation of this chapter: given a contingent

claim ( ¯δT+1, λ̄T ), find a local risk-minimizing strategy η = (δ, λ) with δT+1 = ¯δT+1

and λT = λ̄T .

The following lemma gives the property of optimal strategy and the form of the

risk process.

Lemma 4.1. If η is local risk-minimizing, then C(η) is a martingale and therefore

Rk(η) = E[Rk+1(η)|Fk] + Var[∆Ck+1(η)|Fk] P -a.s. for k = 0, 1, . . . , T − 1.

(4.1)

Proof. We first prove that C(η) is a martingale, which is equivalent to showing

E[CT (η)− Ck(η)|Fk] = 0 P -a.s.

Fix a date k ∈ {0, 1, . . . , T − 1}, choose a strategy η and introduce a local

perturbation of η at date k by setting δ′ := δ (that is, same holdings of the risky

asset) and λ′j := λj for j 6= k where

λ′k := E[CT (η)− Ck(η)|Fk] + λk.

Then λ′ is clearly adapted to the filtration F and

Vk(η
′) = Vk(η) + E[CT (η)− Ck(η)|Fk] ∈ L2(P) (4.2)

Therefore η′ is a strategy, hence a local perturbation of η at date k. Also by

(4.2) and the definition of η′ one gets

CT (η′)− Ck(η′) = CT (η)− Ck(η)− E[CT (η)− Ck(η)|Fk]
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where the last term appears as the only difference in the trading stragegies η and

η′. Using the equality above we get

Rk(η
′) = E[(CT (η′)− Ck(η′))2|Fk]

= E[(CT (η)− Ck(η)− E[CT (η)− Ck(η)|Fk])2|Fk]

= E[(CT (η)− Ck(η))2|Fk]− 2 E[(CT (η)− Ck(η)) E[CT (η)− Ck(η)|Fk]|Fk]

+ E[(E[CT (η)− Ck(η)|Fk])2|Fk]

= E[(CT (η)− Ck(η))2|Fk]− (E[CT (η)− Ck(η)|Fk])2

≤ E[(CT (η)− Ck(η))2|Fk] = Rk(η)

Because η is local risk-minimizing, one must have equality P -a.s. and therefore

E[CT (η)− Ck(η)|Fk] = 0 P -a.s., showing that C(η) is a martingale.

The formula (4.1) for the risk process in the statement of the lemma is the

immediate consequence of the martingale property of C(η).

The previous Lemma 4.1 recommends to look for a local risk-minimizing strategy

by recursively minimizing Var[∆Ck+1(η)|Fk] with respect to δk+1 and then solving

for λk from the martingale property of C(η).

To continue we need to use the specific formula for the supply curve for the next
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proposition:

f(x) :=


1 + αx : |x| ≤ N

1 + sign(x)αN : |x| > N

where N ∈ R and N > − 1
α

to ensure the nonnegativity of the supply curve. Param-

eter α is estimated using simple linear regression methodology from the history of

stock prices. The value of α ends up being small, usually within 0 < α < 0.001. The

model is focused on a small trader that cannot move the market by her transactions.

Recall that in our notation x in f(x) is the order size and corresponds to the

δk+1 − δk, so we substitute δk+1 − δk for x in the formula for f(x) above:

f(δk+1 − δk) :=


1 + α(δk+1 − δk) : |δk+1 − δk| ≤ N

1 + sign(δk+1 − δk)αN : |δk+1 − δk| > N

Observe that two mutually exclusive events |δk+1 − δk| ≤ N and |δk+1 − δk| > N

constitute the whole sample space.

The flow of capital from time k − 1 to time k is:

event 1 (|δk+1 − δk| ≤ N) :

λk − λk−1 + (δk+1 − δk)Sk + (δk+1 − δk)(Skf(δk+1 − δk)− Skf(0))

=λk − λk−1 + (δk+1 − δk)Sk + Sk(δk+1 − δk)(�1 + α(δk+1 − δk)− �1)

=Vk(η)− Vk−1(η)− δk(Sk − Sk−1) + αSk(δk+1 − δk)2
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Next we use |δk+1 − δk| = sign(δk+1 − δk)(δk+1 − δk):

event 2 (|δk+1 − δk| > N) :

λk − λk−1 + (δk+1 − δk)Sk + (δk+1 − δk)(Skf(δk+1 − δk)− Skf(0))

=λk − λk−1 + (δk+1 − δk)Sk + Sk(δk+1 − δk)(�1 + αN sign(δk+1 − δk)− �1)

=Vk(η)− Vk−1(η)− δk(Sk − Sk−1) + αSkN sign(δk+1 − δk)(δk+1 − δk)

=Vk(η)− Vk−1(η)− δk(Sk − Sk−1) + αSkN |δk+1 − δk|

One also may rewrite the flow of capital from time k− 1 to time k via indicator

functions to have both events in one expression:

Vk(η)− Vk−1(η)− δk(Sk − Sk−1) + 1{|∆δk+1|≤N}αSk(∆δk+1)2

+ 1{|∆δk+1|>N}αNSk|∆δk+1|

One may get the cumulative costs of of the strategy η by summing over all dates

up to k:

Ck(η) := Vk(η)−
k∑
j=1

δj∆Sj + α
k∑
j=1

1{|∆δj+1|≤N}Sj(∆δj+1)2

+ αN

k∑
j=1

1{|∆δj+1|>N}Sj|∆δj+1| for k = 0, 1, . . . , T.
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We explicitly write out the form of ∆Ck+1(η) using the definition of Ck+1(η):

∆Ck+1(η) = ∆Vk+1(η)− δk+1∆Sk+1

+ 1{|∆δk+2|≤N}αSk+1(∆δk+2)2 + 1{|∆δk+2|>N}αNSk+1|∆δk+2| (4.3)

The next proposition is the main tool for discovering optimal strategies. We use

it once at the very end of this chapter to show that the strategy we constructed is

indeed local risk-minimizing.

Proposition 4.2. A strategy η = (δ, λ) is local risk-minimizing if and only if it has

the following two properties:

1. C(η) is a martingale

2. For each k ∈ {0, 1, . . . , T − 1}, δk+1 minimizes

Var[Vk+1(η)− δ′k+1∆Sk+1 + 1{|δk+2−δ′k+1|≤N}αSk+1(δk+2 − δ′k+1)2

+ 1{|δk+2−δ′k+1|>N}αNSk+1|δk+2 − δ′k+1||Fk]

over all Fk-measurable random variables δ′k+1 such that δ′k+1∆Sk+1 ∈ L2(P).

Proof. Note that δk+1∆Sk+1 ∈ L2(P) as a part of a trading strategy.

First we obtain several helpful facts. Since η′ = (δ′, λ′) is a local perturbation

at date k, δ′j = δj for j 6= k + 1 and λ′j = λj for j 6= k by definition, so one has

Vk+1(η′) = Vk+1(η) and δ′k+2 = δk+2 (4.4)
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Also one has

CT (η′)− Ck+1(η′) = CT (η)− Ck+1(η) (4.5)

and so Ci(η
′) is a martingale for i = k + 1, . . . , T (in particular, E[CT (η′)|Fk+1] =

Ck+1(η′)), since the terms with index k corresponding to the local perturbation

cancel out via the definition of the cost process. Next we show

Rk(η
′) = E[Rk+1(η)|Fk] + E[(∆Ck+1(η′))2|Fk] (4.6)

using the definition of risk process and (4.5), simple algebra and E[CT (η′)|Fk+1] =

Ck+1(η′) (condition on Fk+1 first):

E[Rk+1(η)|Fk] + E[(∆Ck+1(η′))2|Fk]

= E[Rk+1(η′)|Fk] + E[(∆Ck+1(η′))2|Fk]

= E[E[(CT (η′)− Ck+1(η′))2|Fk+1]|Fk] + E[(Ck+1(η′)− Ck(η′))2|Fk]

= E[C2
T (η′)|F ]− 2 E[Ck+1(η′) E[CT (η′)|Fk+1]|Fk] + E[C2

k+1(η′)|Fk]

+ E[C2
k+1(η′)|Fk]− 2Ck(η

′) E[Ck+1(η′)|Fk] + E[C2
k(η′)|Fk]

= E[C2
T (η′)|F ]− 2Ck(η

′) E[Ck+1(η′)|Fk] + E[C2
k(η′)|Fk]

= Rk(η
′)

We proceed with the proof relying on all the facts presented above.

(⇐) Suppose one has a (trading) strategy η and the conditions 1 and 2 from

the Proposition 4.2 are met for η. Choose a date k ∈ {0, 1, . . . , T − 1} and let η′
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be a local perturbation of η at date k. We will show that η is local risk-minimizing

strategy by the definition, that is Rk(η) ≤ Rk(η
′).

Using (4.4) and the form of ∆Ck+1(η′) in the formula (4.3) one gets

∆Ck+1(η′) = Vk+1(η)− Vk(η′)− δ′k+1∆Sk+1 (4.7)

+ 1{|δk+2−δ′k+1|≤N}αSk+1(δk+2 − δ′k+1)2 +1{|δk+2−δ′k+1|>N}αNSk+1|δk+2 − δ′k+1|

We use (4.6) and E[X2] ≥ Var[X] to obtain the first inequality, (4.7), omit

Fk-measurable terms from the conditional variance, use condition 2 of the current

proposition to get the second inequality, the definition of ∆Ck+1(η) and the last
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equality comes from (4.1):

Rk(η
′)

= E[Rk+1(η)|Fk] + E[(∆Ck+1(η′))2|Fk]

≥ E[Rk+1(η)|Fk] + Var[∆Ck+1(η′)|Fk]

= E[Rk+1(η)|Fk] + Var[Vk+1(η)− Vk(η′)− δ′k+1∆Sk+1

+ 1{|δk+2−δ′k+1|≤N}αSk+1(δk+2 − δ′k+1)2 + 1{|δk+2−δ′k+1|>N}αNSk+1|δk+2 − δ′k+1||Fk]

= E[Rk+1(η)|Fk] + Var[Vk+1(η)− δ′k+1∆Sk+1

+ 1{|δk+2−δ′k+1|≤N}αSk+1(δk+2 − δ′k+1)2 + 1{|δk+2−δ′k+1|>N}αNSk+1|δk+2 − δ′k+1||Fk]

≥ E[Rk+1(η)|Fk] + Var[Vk+1(η)− δk+1∆Sk+1

+ 1{|δk+2−δk+1|≤N}αSk+1(δk+2 − δk+1)2 + 1{|δk+2−δk+1|>N}αNSk+1|δk+2 − δk+1||Fk]

= E[Rk+1(η)|Fk] + Var[∆Ck+1(η)|Fk]

= Rk(η)

Then η is local risk-minimizing strategy by the definition.

(⇒) Conversely, suppose that η is local risk-minimizing. Then condition 1 (C(η)

is a martingale) holds by Lemma 4.1.

Since η is local risk-minimizing, then Rk(η)− Rk(η
′) ≤ 0 from definition. Sub-

stracting (4.6) from (4.1) yields:

Var[∆Ck+1(η)|Fk]− E[(∆Ck+1(η′))2|Fk] = Rk(η)−Rk(η
′) ≤ 0
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thus Var[∆Ck+1(η)|Fk] ≥ E[(∆Ck+1(η′))2|Fk] for any Fk-measurable choice of δ′k+1

and λ′k. Specifically, we can fix δ′k+1 and choose λ′k in such a way that E[∆Ck+1(η′)|Fk] =

0. Using this fact and the definition of variance we get:

Var[∆Ck+1(η′)|Fk] = E[(∆Ck+1(η′))2|Fk]− (E[∆Ck+1(η′)|Fk])2

= E[(∆Ck+1(η′))2|Fk]

≥ Var[∆Ck+1(η)|Fk]

so condition 2 holds.

The proposition allows to determine whether the trading strategy is local risk-

minimizing. We will use the proposition at the very end of the Theorem 4.10 to

demonstrate the optimality of the trading strategy.

4.2 Conditions on the price process and technical results

The section introduces the new modified price process Sξk and show that new process

is suitable for the option hedging (Θ(Sk) = Θ(Sξk)).

We introduce the modified price process that incorporates liquidity costs and

show that the new process may be used for hedging/replication of contingent claims.

Throughout the section we assume S is a square-integrable process: Sk ∈ L2(P) for

k = 0, 1, . . . , T . Recall that a linear combination of functions in L2(P) is in L2(P).

Also a product of a function in L2(P) and a bounded function is again in L2(P).
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Definition 4.8. (a) Ξ is the class of all bounded adapted processes ξ = (ξ)k=0,1,...,T

with values in [−N,+N ] for some fixed N ∈ N.

(b) Given an adapted process δk+1, we can associate with it a ξ = ξδ ∈ Ξ as

follows:

ξk(∆δk+1) :=


∆δk+1 : |∆δk+1| ≤ N

N sign(∆δk+1) : |∆δk+1| > N

where ∆δk+1 represents the order size.

One may think that ξ holds the structure of the supply curve.

Definition 4.9. For ξ ∈ Ξ define the modified price process Sξk by

Sξk = Sk(1 + αξk)

One may substitute the expression for ξk into the formula for Sξk above:

Sξk =


Sk(1 + α∆δk+1) : |∆δk+1| ≤ N

Sk(1 + αN sign(∆δk+1)) : |∆δk+1| > N

The definition above is for the price per share inclusive of liquidity costs. It is

clear from the construction that each process Sξk is again adapted, nonnegative and

square-integrable.

Definition 4.10. If η = (δ, λ) is a strategy, the process V ξ
k (η) is defined by

V ξ
k (η) := δk+1S

ξ
k + λk for K = 0, 1, . . . , T.
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Definition 4.11. We say that S has substantial risk if there is a constant c < ∞

such that

S2
k−1

E[∆S2
k |Fk−1]

≤ c P -a.s. for k = 1, . . . , T. (4.8)

We denote cSR the smallest constant satisfying (4.8). One may also rewrite the

definition of substantial risk (4.8) using simple algebra to get a bound on S2
k−1:

S2
k−1 ≤ cSR E[∆S2

k |Fk−1] P -a.s. for k = 1, . . . , T. (4.9)

The following lemma provides several useful properties of the trading strategies

and the modified price process Sξ. We will use several results from the lemma in

the Theorem 4.10 to prove the existence of the optimal strategy.

Lemma 4.3. Assume S has substantial risk. Then:

(a) δk+1Sk ∈ L2(P) for k = 0, 1, . . . , T and for every δ ∈ Θ(S).

(b) Θ(S) ⊆ Θ(Sξ) for every ξ ∈ Ξ.

(c) V ξ
k (η) ∈ L2(P) for k = 0, 1, . . . , T , for every ξ ∈ Ξ and for every strategy η.

(d) Ck(η) ∈ L2(P) for k = 0, 1, . . . , T and for every strategy η.
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Proof. First we prove (a). Since S has substantial risk and δ ∈ Θ(S), we write:

E[(δk+1Sk)
2] = E

[
δ2
k+1S

2
k

∆S2
k+1

∆S2
k+1

]

= E

[
δ2
k+1S

2
k

E
[
∆S2

k+1|Fk
]

E
[
∆S2

k+1|Fk
]]

= E

E

[
δ2
k+1

S2
k∆S

2
k+1

∆S2
k+1

|Fk

]
= E

[
(δk+1∆Sk+1)2 S2

k

E[∆S2
k+1|Fk]

]

≤ cSR E[(δk+1∆Sk+1)2] <∞

That is, δk+1Sk ∈ L2(P) by the definition.

We prove (b) next. Choose processes ξ ∈ Ξ, δ ∈ Θ(S) and fix date k. Then δ

is predictable and δk∆Sk ∈ L2(P) since δ ∈ Θ(S). Now we show δk∆S
ξ
k is square-

integrable.

δk∆S
ξ
k = δkSk(1 + αξk)− δkSk−1(1 + αξk−1)

= δkSk + αξkδkSk − δkSk−1 − αξk−1δkSk−1

= δk∆Sk + αξkδkSk − αξkδkSk−1 + αξkδkSk−1 − αξk−1δkSk−1

= δk∆Sk + αξkδk∆Sk + αδkSk−1∆ξk ∈ L2(P )

since ξk is bounded and also by part (a).

To prove (c) we choose ξ ∈ Ξ, strategy η and date k. That is, we have separate
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choices of ξ and η. Consider V ξ
k (η):

V ξ
k (η) = δk+1S

ξ
k + λk

= δk+1Sk(1 + αξk) + λk

= δk+1Sk + αξkδk+1Sk + λk

= Vk(η) + αξkδk+1Sk ∈ L2(P)

by part (a) and the definition of the value process Vk(η).

Finally, we show that (d) holds. Choose date k, strategy η and ξ associated to

the choice of η. Recall the form of Ck(η):

∆Ck(η) = ∆Vk(η)− δk∆Sk

+ 1{|∆δk+1|≤N}αSk(∆δk+1)2 + 1{|∆δk+1|>N}αNSk|∆δk+1|

We consider two events to deal with the indicator functions 1{|∆δk+1|≤N} and 1{|∆δk+1|>N}.

Event 1 : |∆δk+1| ≤ N , then ξk = ∆δk+1, Sξk = Sk(1 + α∆δk+1) and ∆Ck(η)

takes the form:

∆Ck(η) = ∆Vk(η)− δk∆Sk + αSk(∆δk+1)2
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Next we use simple algebra and the definition 4.9 of Sξk:

∆Ck(η)

= ∆Vk(η)− δk∆Sk + αSk(∆δk+1)2

= Vk(η)− Vk−1(η)− δk(Sk − Sk−1) + αSk(δk+1 − δk)(δk+1 − δk)

= δk+1Sk + λk −����δkSk−1 − λk−1 − δkSk +���
�δkSk−1 + αSk(δk+1 − δk)(δk+1 − δk)

= δk+1Sk(1 + α∆δk+1) + λk − δkSk(1 + α∆δk+1)− λk−1

= δk+1S
ξ
k + λk −��

��δkS
ξ
k−1 − λk−1 +

��
��δkS
ξ
k−1 − δkS

ξ
k

= ∆V ξ
k (η)− δk∆Sξk

This ends the study of the event |∆δk+1| ≤ N .

Event 2 : |∆δk+1| > N , then ξk = N sign(∆δk+1), Sξk = Sk[1 + αN sign(∆δk+1)]

and ∆Ck(η) takes the form:

∆Ck(η) = ∆Vk(η)− δk∆Sk + αN |∆δk+1|

= Vk(η)− δk∆Sk + αN∆δk+1 sign(∆δk+1)
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Next we use simple algebra and the definition 4.9 of Sξk:

∆Ck(η) = ∆Vk(η)− δk∆Sk + αNSk∆δk+1 sign(∆δk+1)

= Vk(η)− Vk−1(η)− δk(Sk − Sk−1) + αNSk(δk+1 − δk) sign(δk+1 − δk)

= δk+1Sk + λk −����δkSk−1 − λk−1 − δkSk +���
�δkSk−1

+ αNSkδk+1 sign(δk+1 − δk)− αNSkδk sign(δk+1 − δk)

= δk+1Sk[1 + αN sign(∆δk+1)] + λk − δkSk[1 + αN sign(∆δk+1)]− λk−1

= δk+1S
ξ
k + λk −��

��δkS
ξ
k−1 − λk−1 +

�
��
�

δkS
ξ
k−1 − δkS

ξ
k

= ∆V ξ
k (η)− δk∆Sξk

This ends the consideration of the event |∆δk+1| > N .

Note that ξ ∈ Ξ because δk+1 is predictable; previous equality and the definition

of V ξ
k show that (d) follows from parts (a) and (b). That is, C(η) ∈ L2(P) as a

finite linear combination of its increments that are functions in L2(P).

Definition 4.12. For ξ ∈ Ξ, the mean-variance tradeoff process of Sξ is

Lξk :=
k∑
j=1

(E[∆Sξj |Fj−1])2

Var[∆Sξj |Fj−1]
for k = 1, . . . , T.

I need the following assumption to show that the set of admissible strategies is

the same both for the original and the modified price processes. The assumption is

typical for the local risk-minimization literature.
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Definition 4.13. The mean-variance tradeoff process Lξk is P -a.s. bounded by

cMV T (ξ) if cMV T (ξ) is the smallest constant c <∞ such that

∆Lξk =
(E[∆Sξk|Fk−1])2

Var[∆Sξk|Fk−1]
≤ c for k = 1, . . . , T. (4.10)

Again, one may rewrite the definition of the bounded mean-variance tradeoff

process to interpret it as a bound on (E[∆Sξk|Fk−1])2:

(E[∆Sξk|Fk−1])2 ≤ cVar[∆Sξk|Fk−1] for k = 1, . . . , T. (4.11)

Lemma 4.4. If Sξ has a bounded mean-variance tradeoff process, then

E[(∆Sξk)
2|Fk−1] ≤ Var[∆Sξk|Fk−1](1 + cMV T (ξ)) for k = 1, . . . , T. (4.12)

Proof. Using the definition of variance and the inequality (4.11) we get:

Var[∆Sξk|Fk−1] = E[(∆Sξk)
2|Fk−1]− (E[∆Sξk|Fk−1])2

≥ E[(∆Sξk)
2|Fk−1]− cMV T (ξ) Var[∆Sξk|Fk−1]

Simple algebra gives the desired inequality (4.12).

Proposition 4.5. Fix ξ ∈ Ξ, assume that S has a bounded mean-variance tradeoff,

substantial risk and there is a constant c > 0 such that

Var[∆Sξk|Fk−1] ≥ cVar[∆Sk|Fk−1] for k = 1, . . . , T. (4.13)

Then Sξ has a bounded mean-variance tradeoff and Θ(Sξ) ⊆ Θ(S).
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Proof. First we show that (4.13) implies Sξ has a bounded mean-variance tradeoff.

Fix ξ ∈ Ξ and a date k. Using simple algebra it is easy to show that

∆Sξk = Sk(1 + αξk)− Sk−1(1 + αξk−1)

= ∆Sk + αξkSk − αξk−1Sk−1

= ∆Sk + αξk∆Sk + αSk−1∆ξk

Recall that 0 ≤ α < 1, −N ≤ ξk ≤ N , thus ∆ξk = ξk − ξk−1 ≤ 2N and (∆ξk)
2 ≤

(2N)2. Consider

(E[∆Sξk|Fk−1])2 = (E[∆Sk + αξk∆Sk + αSk−1∆ξk|Fk−1])2

= (E[∆Sk(1 + αξk) + αSk−1∆ξk|Fk−1])2

= (E[∆Sk(1 + αξk)|Fk−1] + E[αSk−1∆ξk|Fk−1])2

= (E[∆Sk(1 + αξk)|Fk−1])2 + (E[αSk−1∆ξk|Fk−1])2

+ 2 E[∆Sk(1 + αξk)|Fk−1] E[αSk−1∆ξk|Fk−1]

≤ E[∆S2
k(1 + αξk)

2|Fk−1] + E[α2S2
k−1∆ξ2

k|Fk−1])2

+ 2 E[∆Sk(1 + αξk)|Fk−1] E[αSk−1∆ξk|Fk−1]

≤ (1 + αN)2 E[∆S2
k |Fk−1] + α2S2

k−1 E[∆ξ2
k|Fk−1]

+ 2 E[∆Sk(1 + αξk)|Fk−1] E[αSk−1∆ξk|Fk−1]

≤ (1 + αN)2 E[∆S2
k |Fk−1] + (2N)2α2cSR E[∆S2

k |Fk−1]

+ 2 E[∆Sk(1 + αξk)|Fk−1] E[αSk−1∆ξk|Fk−1]
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Now we need to get an estimate for the cross term via E[∆S2
k |Fk−1] and then

use (4.12) to show that Sξ has a bounded mean-variance tradeoff. We know that

S has substantial risk, in other words S2
k−1 ≤ cSR E[∆S2

k |Fk−1]. Thus

√
S2
k−1 = |Sk−1| ≤

√
cSR

√
E[∆S2

k |Fk−1]

and so

−
√
cSR

√
E[∆S2

k |Fk−1] ≤ Sk−1 ≤
√
cSR

√
E[∆S2

k |Fk−1].

Also we observe that

E[∆Sk(1 + αξk)|Fk−1] ≤ E[|∆Sk(1 + αξk)||Fk−1]

≤ E[|∆Sk||1 + αξk||Fk−1]

≤ |1 + αN |E[|∆Sk||Fk−1]

= |1 + αN |
√

(E[|∆Sk||Fk−1])2

≤ |1 + αN |
√

E[∆S2
k |Fk−1]
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Using the inequalities above, the cross term is bounded in the following way:

2 E[∆Sk(1 + αξk)|Fk−1] E[αSk−1∆ξk|Fk−1]

≤ 2|1 + αN |
√

E[∆S2
k |Fk−1]αSk−1 E[∆ξk|Fk−1]

≤ 4αN |1 + αN |
√

E[∆S2
k |Fk−1]

√
cSR

√
E[∆S2

k |Fk−1]

= 4αN |1 + αN |
√
cSR|E[∆S2

k |Fk−1]|

≤ 4αN |1 + αN |
√
cSR E[∆S2

k |Fk−1]

Then by (4.12) and (4.13) we show that Sξ has a bounded mean-variance tradeoff

by definition. We assemble all the inequalities accumulated in the proof:

(E[∆Sξk|Fk−1])2

≤ (1 + αN)2 E[∆S2
k |Fk−1] + (2N)2α2cSR E[∆S2

k |Fk−1]

+ 4αN |1 + αN |
√
cSR E[∆S2

k |Fk−1]

≤
(
(1 + αN)2 + α2(2N)2cSR + 4αN |1 + αN |

√
cSR
)

E[∆S2
k |Fk−1]

≤ const Var[∆Sk|Fk−1]

≤ Var[∆Sξk|Fk−1]

In the second part of the proof we show Θ(Sξ) ⊆ Θ(S). To this end we choose

ξ ∈ Ξ, a strategy η = (δ, λ) and a date k so that δk ∈ Θ(Sξ). By the Doob
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decomposition theorem for a discrete process, we may write

Sξ = Sξ0 +M ξ + Aξ

where M ξ is a martingale, Aξ is an integrable predictable process (that is, Aξk is

Fk−1-measurable) with Aξ0 = 0 and ∆Aξk = E[∆Sξk|Fk−1] are uniquely determined.

Then

∆Sξk = ∆M ξ
k + ∆Aξk = ∆M ξ

k + E[∆Sξk|Fk−1]

We obtain the next equality by first omitting Fk−1-measurable terms from the vari-

ance (that is, ∆Aξk) and then recalling thatM ξ is a martingale (thus E[∆M ξ
k |Fk−1] =

0)

Var[∆Sξk|Fk−1] = Var[∆M ξ
k |Fk−1] = E[(∆M ξ

k )2|Fk−1] (4.14)

Of course equation (4.14) holds for the case ξ = 0 resulting in the price process

Sk. Since Sξ has a bounded mean-variance tradeoff, δ ∈ Θ(Sξ) if and only if

δk∆M
ξ
k ∈ L2(P) for k = 1, . . . , T for which we shortly write δ ∈ L2(M ξ). If δ is

predictable and (4.14) holds, then by (4.13)

E[(δk∆Mk)
2|Fk−1] = δ2

k E[(∆Mk)
2|Fk−1]

= δ2
k Var[∆Sk|Fk−1]

≤ δ2
kcVar[∆Sξk|Fk−1]

= cE[(δk∆M
ξ
k )2|Fk−1]
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shows that L2(M ξ) ⊆ L2(M), hence Θ(Sξ) ⊆ Θ(S) since both mean-variance

tradeoffs are bounded.

Now we find the conditions on S and α which ensure that (4.13) holds uniformly

over all ξ ∈ Ξ.

Proposition 4.6. If Var[∆Sk|Fk−1] 6= 0 and there is a constant b < 1 such that

2αN

√
E[S2

k |Fk−1]

Var[∆Sk|Fk−1]
≤ b P-a.s. for k = 1, . . . , T, (4.15)

then (4.13) holds simultaneously for all ξ ∈ Ξ, with c = 1− b.

Proof. Choose ξ ∈ Ξ. Recall

∆Sξk = Sk(1 + αξk)− Sk−1(1 + αξk−1) = ∆Sk + αξkSk − αξk−1Sk−1

Using the Cauchy-Schwarz inequality one gets

Var[X + Y ] = Var[X] + Var[Y ] + 2 Cov(X, Y ) ≥ Var[X]− 2
√

Var[X] Var[Y ]

since Var[X] > 0 and Var[Y ] > 0. Omitting Fk−1-measurable terms from the

conditional variance yields

Var[∆Sξk|Fk−1] = Var[∆Sk + αξkSk − αξk−1Sk−1|Fk−1]

= Var[∆Sk + αξkSk|Fk−1]

≥ Var[∆Sk|Fk−1]− 2α
√

Var[∆Sk|Fk−1] Var[ξkSk|Fk−1]
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We rewrite (4.15) in an equivalent form E[S2
k |Fk−1] ≤ b2

4α2N2 Var[∆Sk|Fk−1]. Since

ξ is bounded, one gets

Var[ξkSk|Fk−1] ≤ E[(ξkSk)
2|Fk−1]

≤ N2 E[S2
k |Fk−1]

≤ N2 b2

4α2N2
Var[∆Sk|Fk−1]

≤��N2 b2

4α2
�
�N2

Var[∆Sk|Fk−1]

Finally putting everything together gives us the desired inequality:

Var[∆Sξk|Fk−1] ≥ Var[∆Sk|Fk−1]− 2α
√

Var[∆Sk|Fk−1] Var[ξkSk|Fk−1]

≥ Var[∆Sk|Fk−1]− 2α

√
Var[∆Sk|Fk−1]

b2

4α2
Var[∆Sk|Fk−1]

= (1− b) Var[∆Sk|Fk−1]

Proposition 4.7. If Var[∆Sk|Fk−1] 6= 0, S has a bounded mean-variance tradeoff,

substantial risk and α satisfies

2αN
√

2 + cMV T (0) + (cSR + 2
√
cSR)(1 + cMV T (0)) < 1, (4.16)

then (4.15) holds with b < 1 of the form

b := 2αN
√

2 + cMV T (0) + (cSR + 2
√
cSR)(1 + cMV T (0)).
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Proof. Now we show how to obtain (4.15) from (4.16) and suggest a candidate for

b < 1.

Use the estimate (4.9)

S2
k−1 ≤ cSR E[∆S2

k |Fk−1]

−
√
cSR

√
E[∆S2

k |Fk−1] ≤ Sk−1 ≤
√
cSR

√
E[∆S2

k |Fk−1]

also

Sk−1 E[∆Sk|Fk−1] ≤
√
cSR

√
E[∆S2

k |Fk−1]
√

(E[∆Sk|Fk−1])2

≤
√
cSR

√
E[∆S2

k |Fk−1]
√

E[∆S2
k |Fk−1]

=
√
cSR E[∆S2

k |Fk−1]

and the estimate (4.12)

E[(∆Sk)
2|Fk−1] ≤ Var[∆Sk|Fk−1](1 + cMV T (0))

to find a bound for the numerator in (4.15):

E[S2
k |Fk−1]

= Var[∆Sk|Fk−1] + (Sk−1 + E[∆Sk|Fk−1])2

= Var[∆Sk|Fk−1] + S2
k−1 + 2Sk−1 E[∆Sk|Fk−1] + (E[∆Sk|Fk−1])2

≤ Var[∆Sk|Fk−1] + cSR E[∆S2
k |Fk−1] + 2

√
cSR E[∆S2

k |Fk−1] + E[∆S2
k |Fk−1]

≤ Var[∆Sk|Fk−1]
(
1 + cSR(1 + cMV T (0)) + 2

√
cSR(1 + cMV T (0)) + (1 + cMV T (0))

)
= Var[∆Sk|Fk−1]

(
2 + cMV T (0) + (cSR + 2

√
cSR)(1 + cMV T (0))

)
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Consider the left hand side of the inequality (4.15) and apply the bound for E[S2
k |Fk−1]

we retrieved above. Then apply (4.16) to find the precise form for b:

2αN

√
E[S2

k |Fk−1]

Var[∆Sk|Fk−1]

≤ 2αN

√
(((

((((
(

Var[∆Sk|Fk−1]
(
2 + cMV T (0) + (cSR + 2

√
cSR)(1 + cMV T (0))

)
((((

((((Var[∆Sk|Fk−1]

≤ 2αN
√(

2 + cMV T (0) + (cSR + 2
√
cSR)(1 + cMV T (0))

)
< 1

Therefore we may take b as follows, which satisfies the inequality (4.15) and also

b < 1:

b := 2αN
√

2 + cMV T (0) + (cSR + 2
√
cSR)(1 + cMV T (0))

This ends the proof.

Now we discuss the assumptions of substatial risk (4.8), bounded mean-variance

tradeoff (4.10) and restrictions on αN of the form (4.15) and (4.16).

First we show that assumption of substantial risk is equivalent to a lower bound

on returns of S. Consider a general model where F is generated by the process S

and the returns θk are i.i.d. random variables in L2(P) independent of Fk−1 and

distributed like some fixed random variable θ. This implies

Sk = Sk−1(1 + θk) for k = 1, . . . , T.
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Simple algebra shows ∆Sk = Sk−Sk−1 = Sk−1θk. Then the definition of substantial

risk (4.8) can equivalently be written as

S2
k−1

E[∆S2
k |Fk−1]

=
S2
k−1

E[S2
k−1θ

2
k|Fk−1]

= ��
�S2

k−1

��
�S2

k−1 E[θ2
k|Fk−1]

≤ c

therefore

E[θ2
k|Fk−1] ≥ 1

c
> 0 P − a.s. for k = 1, . . . , T.

In other words, this means that S has substantial risk if and only if we have some

lower bound on returns of S.

Next we turn our attention to the geometric Brownian motion in discrete time

and compute cSR and cMV T . One may discretize the analytical solution of the

geometric Brownian motion

St = S0 exp

(µ− σ2

2

)
t+ σBt


by considering equally spaced trading times 0 = t0 ≤ t1 ≤ . . . ≤ tt = T . Set

∆t = tk − tk−1 for k = 1, . . . , n. Note that tk = k∆t. In terms of returns of S this

is equivalent to 1 + θ being lognormally distributed with parameters (µ− σ2/2)∆t

and σ2∆t

1 + θ = exp

(µ− σ2

2

)
∆t+ σ

√
∆tZ

 .
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where Z is a standard normal random variable. Denote g = µ−σ2/2 for notational

convenience. Then the final form of the discretization is

1 + θ = exp
(
g∆t+ σ

√
∆tZ

)
and

Stk = Sk∆t = S0 exp
(
gk∆t+ σ

√
k∆tZ

)
Thus the random variable θ independent of Fk−1 representing the return of S takes

the form

θ = exp
(
g∆t+ σ

√
∆tZ

)
− 1

which allows us to compute cMV T from (4.10):

cMV T (0) =
(E[∆Sk|Fk−1])2

Var[∆Sk|Fk−1]
=

(E[Sk−1θ|Fk−1])2

Var[Sk−1θ|Fk−1]
= �

��S2
k−1(E[θ])2

��
�S2

k−1 Var[θ]

=

(
E

[
exp

(
g∆t+ σ

√
∆tZ

)
− 1

])2

Var

[
exp

(
g∆t+ σ

√
∆tZ

)
− 1

] =

(
e(g+ 1

2
σ2)∆t − 1

)2

e(2g+σ2)∆t
(
eσ2∆t − 1

)
=

(
g + 1

2
σ2
)2

σ2
∆t+O(∆t2)

As ∆t approaches zero, a uniform bound on cMV T (0) corresponds to the bounded-

ness of the squared market price of risk (with interest rate r equal to zero)(
g + 1

2
σ2
)2

σ2
=

(
µ− r
σ

)2

.
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trading dates cMV T (0) cSR N

12 0.0833333333 300 2618

52 0.0192307692 1300 1336

250 0.004 6250 623

Table 4.1: The values of parameters for monthly, weekly and daily rehedging.

Next we compute cSR from (4.8):

1

cSR
=

E[∆S2
k |Fk−1]

S2
k−1

=
E[S2

k−1θ
2|Fk−1]

S2
k−1

= �
��S2
k−1 E[θ2|Fk−1]

��
�S2

k−1

= E[θ2] = E

[(
exp

(
g∆t+ σ

√
∆tZ

)
− 1

)2
]

= E

[
exp

(
2g∆t+ 2σ

√
∆tZ

)
− 2 exp

(
g∆t+ σ

√
∆tZ

)
+ 1

]
= E

[
e(2g+2σ2)∆t − 2e(g+ 1

2
σ2)∆t + 1

]
= σ2∆t+O(∆t2)

In the table 4.1 we compute parameters of the model cMV T (0) and cSR for on

option with maturity of one year (T = 1), µ = 0.2, σ = 0.2, α = 10−5, r = 0. The

number of rehedging times corresponds to the monthly (n = 12), weekly (n = 52)

and daily (n = 250) hedging schedule. Also we compute the value of N in the table

from (4.16).

Consider the condition (4.15) for the geometric Brownian motion:

2αN

√
E[S2

k |Fk−1]

Var[∆Sk|Fk−1]
= 2αN

√
e(2g+2σ2)∆t

e(2g+σ2)∆t(eσ2∆t − 1)
≤ b = O(1)
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should be of the order O(1) for some b < 1. We solve the inequality above for αN

using e(2g+σ2)∆t = O(1), e(2g+2σ2)∆t = O(1) and eσ
2∆t − 1 = σ2∆t+O(∆t)2:

αN ≤ b
σ

2

√
∆t+O(∆t)

so that αN should be of the order
√

∆t.

This ends the discussion of assumptions for the geometric Brownian motion.

4.3 Optimization problem: minimizing the conditional vari-

ance

The conditional variance of the cost process from the Proposition 4.2 will have a

specific form (4.23) in the Theorem 4.10 from the next Section 4.4.

Let (Ω,F , P ) be a probability space and G ⊆ F a sub-σ-algebra of F . Let U, Y, Z

be F -measurable real-valued random variables satisfying U ∈ L2(P), Z ∈ L2(P),

ZY ∈ L2(P), ZY 2 ∈ L2(P) and let α ∈ [0, 1) be a fixed real number. Assume

there is a regular conditional distribution for (U, Y, Z) given G. All conditional

expectations, variances and covariances given G which involve U , Y and Z will be

computed with respect to this regular conditional distribution. We consider the

conditional variance

f(δ, ω) := Var[U−δZ+1{|Y−δ|>N}αNZ|Y −δ|+1{|Y−δ|≤N}αZ(Y −δ)2|G](ω). (4.17)
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We are interested in minimizing the conditional variance almost surely at some

δ∗(ω) which is G-measurable. One may employ first order conditions of optimality

to characterize the minimizer δ∗(ω) more explicitly.

The first result of the section points out the existence of a G-measurable mini-

mizer δ∗.

Proposition 4.8. Assume that Var[Z|G] > 0 P -a.s. Then there exists a G-

measurable random variable δ∗ such that for P -almost every ω,

f(δ∗(ω), ω) ≤ f(δ, ω) for all δ ∈ R.

Proof. We first show that

lim
|δ|→∞

f(δ, ω) = +∞ P-a.s. (4.18)

We split the conditional variance f(δ, ω) into four terms and study the limit of

each term when |δ| → ∞. The first term will have positive infinity for its limit

as desired, while the other terms will be bounded and of lower order in δ. We use

Var[X+Y ] = Var[X]+Var[Y ]+Cov(X, Y ), Cov(X+Z, Y ) = Cov(X, Y )+Cov(Z, Y )
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and |Y − δ| = (Y − δ) sign(Y − δ):

lim
|δ|→∞

f(δ, ω)

= lim
|δ|→∞

Var
[
U − δZ + 1{|Y−δ|>N}αNZ|Y − δ|+ 1{|Y−δ|≤N}αZ(Y − δ)2|G

]
(ω)

= lim
|δ|→∞

Var
[
U − δZ + 1{|Y−δ|>N}αNZ|Y − δ||G

]
(ω)

+ lim
|δ|→∞

Var
[
1{|Y−δ|≤N}αZ(Y − δ)2|G

]
(ω)

+ lim
|δ|→∞

Cov
(
U + αNZY sign(Y − δ), 1{|Y−δ|≤N}αZ(Y − δ)2|G

)
(ω)

− lim
|δ|→∞

δCov
(
Z(1 + αN sign(Y − δ)), 1{|Y−δ|≤N}αZ(Y − δ)2|G

)
(ω)

We study the limit of the first variance now

lim
|δ|→∞

Var
[
U − δZ + 1{|Y−δ|>N}αNZ|Y − δ||G

]
(ω)

and show it has +∞ as the limit.

Using |Y − δ| = (Y −δ) sign(Y −δ), we decompose the variance above into three
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more terms through Var[X + Y ] = Var[X] + Var[Y ] + Cov(X, Y ):

Var[U − δZ + αNZ|Y − δ| |G](ω)

= Var[U − δZ + αNZ(Y − δ) sign(Y − δ)|G](ω)

= Var[U − δZ + αNZY sign(Y − δ)− αNZδ sign(Y − δ)|G](ω)

= Var[U + αNZY sign(Y − δ)− δZ(1 + αN sign(Y − δ))|G](ω)

= δ2 Var[Z(1 + αN sign(Y − δ))|G](ω) + Var[U + αNZY sign(Y − δ)|G](ω)

− 2δCov
(
Z(1 + αN sign(Y − δ)), U + αNZY sign(Y − δ)|G

)
(ω)

:= δ2h1(δ, ω) + h2(δ, ω)− 2δh3(δ, ω)

Clearly δ2h1(δ, ω) is the highest-order term in δ. For fixed ω, h2(δ, ω) and h3(δ, ω)

are both bounded as functions of δ due to integrability assumptions on U , Y , Z.

Now we show that the coefficient h1(δ, ω) of the highest order term in δ is positive

in the limit. Using the assumption Var[Z|G](ω) > 0 P -a.s. and the dominated

convergence (as we pulled out all unbounded δ’s outside of h1(δ, ω)) we get:

lim
|δ|→∞

h1(δ, ω) = lim
|δ|→±∞

Var[Z(1 + αN sign(Y − δ))|G](ω)

= Var[Z(1± α)N |G](ω)

= (1± α)N Var[Z|G](ω) > 0 P -a.s.
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Thus the limit of the first variance is positive infinity:

lim
|δ|→∞

Var
[
U − δZ + 1{|Y−δ|>N}αNZ|Y − δ||G

]
(ω)

= lim
|δ|→∞

δ2h1(δ, ω) + lim
|δ|→∞

h2(δ, ω)− 2 lim
|δ|→∞

δh3(δ, ω) = +∞

Now we show that the remaining variances/covariances in the decomposition of

f(δ, ω) are either bounded or are maximum of the order one in δ, while the first

variance we just studied had order of two in δ (the highest order).

Next we show that the following terms are bounded:

Var
[
1{|Y−δ|≤N}αZ(Y − δ)2|G

]
(ω),

Cov
(
U + αNZY sign(Y − δ), 1{|Y−δ|≤N}αZ(Y − δ)2|G

)
(ω),

Cov
(
Z(1 + αN sign(Y − δ)), 1{|Y−δ|≤N}αZ(Y − δ)2|G

)
(ω).

Since |Y −δ| ≤ N from the indicator function, αZ(Y −δ)2 is bounded by αZN2. At

the same time the indicator function is bounded by 1. The terms Z(1+αN sign(Y −

δ)) and U + αNZY sign(Y − δ) are bounded in δ due to integrability assmptions

on U ,Y ,Z.

Applying the dominated convergence theorem shows that (4.18) holds, that is:

lim
|δ|→∞

f(δ, ω) = +∞ P-a.s.

Now we show an existence of a minimizer. Due to the continuity of f(δ, ω)

in δ, we conclude that for P -almost all ω, δ 7→ f(δ, ω) admits a minimum. Let
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Dn := {j2−n|j ∈ Z} be the set of dyadic rationals of order n. We are using Dn

to discretize the δ variable. Using larger n increases the number of equally spaced

points in the discretization. Define

δn(ω) := inf{δ ∈ Dn|f(δ, ω) ≤ f(δ′, ω) for all δ′ ∈ Dn}

Since ω 7→ f(δ, ω) is G-measurable for fixed δ, the random variable δn is clearly

G-measurable. (4.18) implies that (δn(ω))n∈N is bounded in n for P -almost every

ω, and from the continuity of f(δ, ω) in δ, we conclude that δ∗ := lim infn→∞ δn has

all the desired properties.

We established the existence of the minimizer in the previous proposition. Next

we find the derivative in δ of the conditional variance f(δ, ω).

Lemma 4.9. For P -almost every ω, δ 7→ f(δ, ω) is a continuous function with the

derivative

f ′(δ, ω) = −2 Cov
(
Z + 1{|Y−δ|>N}αZN sign(Y − δ) + 1{|Y−δ|≤N}2αZ(Y − δ),

U − δZ + 1{|Y−δ|>N}αZN |Y − δ|+ 1{|Y−δ|≤N}αZ(Y − δ)2|G
)

(ω)

Proof. The continuity of f in δ is obvious.

We are going to compute the derivative of f ′(δ, ω) from the definition:

f ′(δ, ω) = lim
h→0

f(δ + h, ω)− f(δ, ω)

h
.
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We take h > 0, while the same argument works for h < 0.

We rely on two simple facts below for h > 0:

1{|Y−δ−h|≤N} = 1{|Y−δ|≤N} − 1{δ−N≤Y <δ−N+h} + 1{δ+N<Y≤δ+N+h}

1{|Y−δ−h|>N} = 1{|Y−δ|>N} + 1{δ−N≤Y <δ−N+h} − 1{δ+N<Y≤δ+N+h}

Note that the intervals in the terms on the right hand side are identical.

Recalling that Var[X] − Var[Y ] = Cov[X − Y,X + Y ] and using previous two

decompositions of the indicator functions, we write the partial definition of the

derivative f ′(δ, ω):

f(δ + h, ω)− f(δ, ω)

h

=
1

h

(
Var

[
U − (δ + h)Z + 1{|Y−δ−h|>N}αNZ|Y − δ − h|

+ 1{|Y−δ−h|≤N}αZ(Y − δ − h)2|G
]
(ω)

− Var
[
U − δZ + 1{|Y−δ|>N}αNZ|Y − δ|+ 1{|Y−δ|≤N}αZ(Y − δ)2|G

]
(ω)

)

=
1

h
Cov

(
− hZ + 1{|Y−δ−h|>N}αNZ|Y − δ − h|+ 1{|Y−δ−h|≤N}αZ(Y − δ − h)2

− 1{|Y−δ|>N}αNZ|Y − δ| − 1{|Y−δ|≤N}αZ(Y − δ)2,

2U − 2δZ − hZ + 1{|Y−δ−h|>N}αNZ|Y − δ − h|+ 1{|Y−δ−h|≤N}αZ(Y − δ − h)2

+ 1{|Y−δ|>N}αNZ|Y − δ|+ 1{|Y−δ|≤N}αZ(Y − δ)2|G
)

(ω)
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=
1

h
Cov

(
− hZ + 1{|Y−δ|>N}αNZ|Y − δ − h|

+ 1{δ−N≤Y <δ−N+h}αNZ|Y − δ − h| − 1{δ+N<Y≤δ+N+h}αNZ|Y − δ − h|

+ 1{|Y−δ|≤N}αZ(Y − δ − h)2

− 1{δ−N≤Y <δ−N+h}αZ(Y − δ − h)2 + 1{δ+N<Y≤δ+N+h}αZ(Y − δ − h)2

− 1{|Y−δ|>N}αNZ|Y − δ| − 1{|Y−δ|≤N}αZ(Y − δ)2,

2U − 2δZ − hZ + 1{|Y−δ|>N}αNZ|Y − δ − h|

+ 1{δ−N≤Y <δ−N+h}αNZ|Y − δ − h| − 1{δ+N<Y≤δ+N+h}αNZ|Y − δ − h|

+ 1{|Y−δ|≤N}αZ(Y − δ − h)2

− 1{δ−N≤Y <δ−N+h}αZ(Y − δ − h)2 + 1{δ+N<Y≤δ+N+h}αZ(Y − δ − h)2

+ 1{|Y−δ|>N}αNZ|Y − δ|+ 1{|Y−δ|≤N}αZ(Y − δ)2|G
)

(ω)
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=
1

h
Cov

(
− hZ + 1{|Y−δ|>N}αNZ|Y − δ − h| − 1{|Y−δ|>N}αNZ|Y − δ|

+ 1{|Y−δ|≤N}αZ(Y − δ − h)2 − 1{|Y−δ|≤N}αZ(Y − δ)2

+ 1{δ−N≤Y <δ−N+h}αNZ|Y − δ − h| − 1{δ−N≤Y <δ−N+h}αZ(Y − δ − h)2

+ 1{δ+N<Y≤δ+N+h}αZ(Y − δ − h)2 − 1{δ+N<Y≤δ+N+h}αNZ|Y − δ − h|,

2U − 2δZ − hZ + 1{|Y−δ|>N}αNZ|Y − δ − h|+ 1{|Y−δ|>N}αNZ|Y − δ|

+ 1{|Y−δ|≤N}αZ(Y − δ − h)2 + 1{|Y−δ|≤N}αZ(Y − δ)2

+ 1{δ−N≤Y <δ−N+h}αNZ|Y − δ − h| − 1{δ−N≤Y <δ−N+h}αZ(Y − δ − h)2

+ 1{δ+N<Y≤δ+N+h}αZ(Y − δ − h)2 − 1{δ+N<Y≤δ+N+h}αNZ|Y − δ − h||G
)

(ω)

= Cov
(
− Z + 1{|Y−δ|>N}αNZ

|Y − δ − h| − |Y − δ|
h

+ 1{|Y−δ|≤N}αZ
(Y − δ − h)2 − (Y − δ)2

h

+
1

h
1{δ−N≤Y <δ−N+h}αZ|Y − δ − h|[N − |Y − δ − h|]

+
1

h
1{δ+N<Y≤δ+N+h}αZ|Y − δ − h|[|Y − δ − h| −N ],

2U − 2δZ − hZ + 1{|Y−δ|>N}αNZ[|Y − δ − h|+ |Y − δ|]

+ 1{|Y−δ|≤N}αZ[(Y − δ − h)2 + (Y − δ)2]

+
1

h
1{δ−N≤Y <δ−N+h}αZ|Y − δ − h|[N − |Y − δ − h|]

+
1

h
1{δ+N<Y≤δ+N+h}αZ|Y − δ − h|[|Y − δ − h| −N ]|G

)
(ω)

Next we show that one may apply the dominated convergence theorem to inter-

change the limit and the integration in the covariance. We make sure the bounds
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on the terms counteract the division by h.

For the first term with division by h clearly

∣∣|Y − δ − h| − |Y − δ|∣∣ ≤ h,

while using the inequality |Y − δ| ≤ N from the indicator function of the second

term and some simple algebra yields the following bound

1{|Y−δ|≤N}αZ
(Y − δ − h)2 − (Y − δ)2

h
= 1{|Y−δ|≤N}αZ

−2(Y − δ)h+ h2

h

≤ 1{|Y−δ|≤N}αZ(−2N + h).

Consider the third term next:

1

h
1{δ−N≤Y <δ−N+h}αZ|Y − δ − h|[N − |Y − δ − h|]

The inequality from the indicator function may be rewritten as−N−h ≤ Y−δ−h <

−N , so |Y − δ − h| is bounded, and
∣∣N − |Y − δ − h|∣∣ ≤ h, while the indicator

function itself is bounded by 1. Similar reasoning shows that the fourth term

1

h
1{δ+N<Y≤δ+N+h}αZ|Y − δ − h|[|Y − δ − h| −N ]

is bounded as well.

Therefore we may use the dominated convergence theorem and interchange the
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limit with covariance:

f ′(δ, ω) = lim
h→0

f(δ + h, ω)− f(δ, ω)

h

= Cov
(
− Z − 1{|Y−δ|>N}αNZ sign(Y − δ)− 1{|Y−δ|≤N}2αZ(Y − δ),

2U − 2δZ + 1{|Y−δ|>N}2αNZ|Y − δ|+ 1{|Y−δ|≤N}2αZ(Y − δ)2|G
)

(ω)

= −2 Cov
(
Z + 1{|Y−δ|>N}αNZ sign(Y − δ) + 1{|Y−δ|≤N}2αZ(Y − δ),

U − δZ + 1{|Y−δ|>N}αNZ|Y − δ|+ 1{|Y−δ|≤N}αZ(Y − δ)2|G
)

(ω)

since

lim
h→0

(Y − δ − h)2 − (Y − δ)2

h
= −2(Y − δ)

lim
h→0

|Y − δ − h| −|Y − δ|
h

= − sign(Y − δ)

This ends the proof.

The optimality condition f ′(δ, ω) = 0 will render the candidates for the extrema

of a continuous function f . Recall the form of the derivative:

f ′(δ, ω) = −2 Cov
(
Z + 1{|Y−δ|>N}αZN sign(Y − δ) + 1{|Y−δ|≤N}2αZ(Y − δ),

U − δZ + 1{|Y−δ|>N}αZN |Y − δ|+ 1{|Y−δ|≤N}αZ(Y − δ)2|G
)

(ω)

= −2 Cov
(

1{|Y−δ|>N}(Z + αZN sign(Y − δ)) + 1{|Y−δ|≤N}(Z + 2αZ(Y − δ)),

1{|Y−δ|>N}(U − δZ + αZN |Y − δ|) + 1{|Y−δ|≤N}(U − δZ + αZ(Y − δ)2)|G
)

(ω)

109



We do mostly algebraic manipulations and use the property of covariance:

Cov(a1X1 + a2X2, b1Y1 + b2Y2) = a1b1 Cov(X1, Y1) + a1b2 Cov(X2, Y2)

+ a2b1 Cov(X2, Y1) + a2b2 Cov(X2, Y2)

to represent f ′(δ, ω) as a sum of covariances:

− 1

2
f ′(δ, ω)

= Cov
(

1{|Y−δ|>N}(Z + αNZ sign(Y − δ))

+1{|Y−δ|≤N}(Z + 2αZ(Y − δ)),

1{|Y−δ|>N}(U − δZ + αNZ|Y − δ|)

+1{|Y−δ|≤N}(U − δZ + αZ(Y − δ)2)|G
)

(ω)

= Cov
(

1{|Y−δ|>N}Z(1 + αN sign(Y − δ))

+1{|Y−δ|≤N}(Z[1 + α(Y − δ)] + αZ(Y − δ)),

1{|Y−δ|>N}(U − δZ + αNZ(Y − δ) sign(Y − δ))

+1{|Y−δ|≤N}(U − δZ + αZY (Y − δ)− αZδ(Y − δ))|G
)

(ω)

= Cov
(

1{|Y−δ|>N}Z(1 + αN sign(Y − δ))

+1{|Y−δ|≤N}(Z[1 + α(Y − δ)] + αZ(Y − δ)),

1{|Y−δ|>N}(U + αNZY sign(Y − δ)− δZ[1 + αN sign(Y − δ)])

+1{|Y−δ|≤N}(U + αZY (Y − δ)− δZ[1 + α(Y − δ)])|G
)

(ω)
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= Cov
(

1{|Y−δ|>N}Z(1 + αN sign(Y − δ)),

1{|Y−δ|>N}(U + αNZY sign(Y − δ)− δZ[1 + αN sign(Y − δ)])|G
)

(ω)

+ Cov
(

1{|Y−δ|>N}Z(1 + αN sign(Y − δ)),

1{|Y−δ|≤N}(U + αZY (Y − δ)− δZ[1 + α(Y − δ)])|G
)

(ω)

+ Cov
(

1{|Y−δ|≤N}(Z[1 + α(Y − δ)] + αZ(Y − δ)),

1{|Y−δ|>N}(U + αNZY sign(Y − δ)− δZ[1 + αN sign(Y − δ)])|G
)

(ω)

+ Cov
(

1{|Y−δ|≤N}(Z[1 + α(Y − δ)] + αZ(Y − δ)),

1{|Y−δ|≤N}(U + αZY (Y − δ)− δZ[1 + α(Y − δ)])|G
)

(ω)
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= Cov
(

1{|Y−δ|>N}Z(1 + αN sign(Y − δ)), 1{|Y−δ|>N}(U + αNZY sign(Y − δ))|G
)

(ω)

−δCov
(

1{|Y−δ|>N}Z(1 + αN sign(Y − δ)), 1{|Y−δ|>N}Z(1 + αN sign(Y − δ))|G
)

(ω)

+ Cov
(

1{|Y−δ|>N}Z(1 + αN sign(Y − δ)), 1{|Y−δ|≤N}[U + αZY (Y − δ)]|G
)

(ω)

−δCov
(

1{|Y−δ|>N}Z(1 + αN sign(Y − δ)), 1{|Y−δ|≤N}Z[1 + α(Y − δ)]|G
)

(ω)

+ Cov
(

1{|Y−δ|≤N}(Z[1 + α(Y − δ)] + αZ(Y − δ)),

1{|Y−δ|>N}(U + αNZY sign(Y − δ))|G
)

(ω)

−δCov
(

1{|Y−δ|≤N}(Z[1 + α(Y − δ)] + αZ(Y − δ)),

1{|Y−δ|>N}Z[1 + αN sign(Y − δ)]|G
)

(ω)

+ Cov
(

1{|Y−δ|≤N}(Z[1 + α(Y − δ)] + αZ(Y − δ)), 1{|Y−δ|≤N}(U + αZY (Y − δ))|G
)

(ω)

−δCov
(

1{|Y−δ|≤N}(Z[1 + α(Y − δ)] + αZ(Y − δ)), 1{|Y−δ|≤N}Z[1 + α(Y − δ)]|G
)

(ω)

Recall that

ξk :=


∆δ∗k+1 : |∆δ∗k+1| ≤ N

N sign(∆δ∗k+1) : |∆δ∗k+1| > N
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Also

U : = E[I∗k |Fk]

Z : = Sk

Y : = δ∗k+1

δ : = δ∗k

Y − δ : = ∆δ∗k+1

G : = Fk−1.

We substitute the variables for U,Z, Y to get the δ in the notation of the discrete

model, that is equation (4.23) from the next section.
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Set f ′(δ, ω) equal to zero and solve for δ. Numerator is:

Cov
(

1{|Y−δ|>N}Z(1 + αN sign(Y − δ)), 1{|Y−δ|>N}(U + αNZY sign(Y − δ))|G
)

(ω)

+ Cov
(

1{|Y−δ|>N}Z(1 + αN sign(Y − δ)), 1{|Y−δ|≤N}[U + αZY (Y − δ)]|G
)

(ω)

+ Cov
(

1{|Y−δ|≤N}(Z[1 + α(Y − δ)] + αZ(Y − δ)),

1{|Y−δ|>N}(U + αNZY sign(Y − δ))|G
)

(ω)

+ Cov
(

1{|Y−δ|≤N}(Z[1 + α(Y − δ)] + αZ(Y − δ)), 1{|Y−δ|≤N}(U + αZY (Y − δ))|G
)

(ω)

= Cov
(

1{|Y−δ|>N}Z(1 + αN sign(Y − δ)),

1{|Y−δ|>N}(U + αNZY sign(Y − δ)) + 1{|Y−δ|≤N}[U + αZY (Y − δ)]|G
)

(ω)

+ Cov
(

1{|Y−δ|≤N}(Z[1 + α(Y − δ)] + αZ(Y − δ)),

1{|Y−δ|>N}(U + αNZY sign(Y − δ)) + 1{|Y−δ|≤N}(U + αZY (Y − δ))|G
)

(ω)

= Cov
(

1{|Y−δ|>N}Z(1 + αN sign(Y − δ)) + 1{|Y−δ|≤N}(Z[1 + α(Y − δ)] + αZ(Y − δ)),

1{|Y−δ|>N}(U + αNZY sign(Y − δ)) + 1{|Y−δ|≤N}[U + αZY (Y − δ)]

1{|Y−δ|>N}(U + αNZY sign(Y − δ)) + 1{|Y−δ|≤N}(U + αZY (Y − δ))|G
)

(ω)

= Cov
(

1{|Y−δ|>N}Z(1 + αN sign(Y − δ)) + 1{|Y−δ|≤N}(Z[1 + α(Y − δ)] + αZ(Y − δ)),

1{|Y−δ|>N}2(U + αNZY sign(Y − δ)) + 1{|Y−δ|≤N}2[U + αZY (Y − δ)]|G
)

(ω)

= 2 Cov
(

1{|∆δ∗k+1|>N}S
ξ
k + 1{|∆δ∗k+1|≤N}(Z[1 + α(Y − δ)] + αZ(Y − δ)),

1{|∆δ∗k+1|>N}(U + αNZY sign(Y − δ)) + 1{|∆δ∗k+1|≤N}[U + αZY (Y − δ)]|G
)

(ω)
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Denominator is:

Cov
(

1{|Y−δ|>N}Z(1 + αN sign(Y − δ)), 1{|Y−δ|>N}Z(1 + αN sign(Y − δ))|G
)

(ω)

+ Cov
(

1{|Y−δ|>N}Z(1 + αN sign(Y − δ)), 1{|Y−δ|≤N}Z[1 + α(Y − δ)]|G
)

(ω)

+ Cov
(

1{|Y−δ|≤N}(Z[1 + α(Y − δ)] + αZ(Y − δ)),

1{|Y−δ|>N}Z[1 + αN sign(Y − δ)]|G
)

(ω)

+ Cov
(

1{|Y−δ|≤N}(Z[1 + α(Y − δ)] + αZ(Y − δ)), 1{|Y−δ|≤N}Z[1 + α(Y − δ)]|G
)

(ω)

= Cov
(

1{|Y−δ|>N}Z(1 + αN sign(Y − δ)),

1{|Y−δ|>N}Z(1 + αN sign(Y − δ)) + 1{|Y−δ|≤N}Z[1 + α(Y − δ)]|G
)

(ω)

Cov
(

1{|Y−δ|≤N}(Z[1 + α(Y − δ)] + αZ(Y − δ)),

1{|Y−δ|>N}Z[1 + αN sign(Y − δ)] + 1{|Y−δ|≤N}Z[1 + α(Y − δ)]|G
)

(ω)

= Cov
(

1{|Y−δ|>N}Z(1 + αN sign(Y − δ)) + 1{|Y−δ|≤N}(Z[1 + α(Y − δ)] + αZ(Y − δ)),

1{|Y−δ|>N}Z(1 + αN sign(Y − δ)) + 1{|Y−δ|≤N}Z[1 + α(Y − δ)]

+1{|Y−δ|>N}Z(1 + αN sign(Y − δ)) + 1{|Y−δ|≤N}Z[1 + α(Y − δ)]|G
)

(ω)

= 2 Cov
(

1{|Y−δ|>N}Z(1 + αN sign(Y − δ)) + 1{|Y−δ|≤N}(Z[1 + α(Y − δ)] + αZ(Y − δ)),

1{|Y−δ|>N}Z(1 + αN sign(Y − δ)) + 1{|Y−δ|≤N}Z[1 + α(Y − δ)]|G
)

(ω)

So the final condition for δ∗k is:

δ∗k =
Cov

(
Sξk + 1{|∆δ∗k+1|≤N}αSkξk,E[I∗k |Fk] + αSkδ

∗
k+1ξk|Fk−1

)
(ω)

Cov
(
Sξk + 1{|∆δ∗k+1|≤N}αSkξk, S

ξ
k|Fk−1

)
(ω)

.
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4.4 Existence and structure of an optimal strategy

In this section we prove the existence of a local risk-minimizing strategy under

liquidity risk and describe its structure via backward induction.

We assume that S is a square-integrable process throughout the section.

Theorem 4.10. Assume that S has a bounded mean-variance tradeoff, substantial

risk, satisfies (4.15) and

Var[∆Sk|Fk−1] > 0 P-a.s. for k = 1, . . . , T.

Then for any contingent claim ( ¯δT+1, λ̄T ), there exists a local risk-minimizing strat-

egy η∗ = (δ∗, λ∗) with ¯δT+1 = δ∗T+1, λ̄T = λ∗T . Its first component δ∗ can be described

as follows: define process ξ ∈ Ξ by setting ξ0 := 0 and

ξk :=


∆δ∗k+1 : |∆δ∗k+1| ≤ N

N sign(∆δ∗k+1) : |∆δ∗k+1| > N P -a.s. for k = 1, . . . , T,

(4.19)

then local risk-minimizing strategy has the following structure

δ∗k =
Cov

(
∆Sξk + 1{|∆δ∗k+1|≤N}αSkξk,∆V

ξ
k (η∗)|Fk−1

)
(ω)

Cov
(

∆Sξk + 1{|∆δ∗k+1|≤N}αSkξk,∆S
ξ
k|Fk−1

)
(ω)

(4.20)

P -a.s. for k = 1, . . . , T.

Proof. We employ the backward induction argument to demonstrate the existence

of the optimal trading strategy η∗ = (δ∗, λ∗) with ¯δT+1 = δ∗T+1 and λ̄T = λ∗T . The

trading strategy is optimal, if it satisfies the assertions below for k = 0, 1, . . . , T :
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a) δ∗k+1Sk ∈ L2(P)

b) I∗k ∈ L2(P), where

I∗k := ¯δT+1ST + λ̄T −
T∑

j=k+1

δ∗j∆Sj (4.21)

+
T∑

j=k+1

1{|∆δj+1|≤N}αSj(∆δj+1)2 +
T∑

j=k+1

1{|∆δj+1|>N}αNSj|∆δj+1|

c) Define the second component λ∗ of the trading strategy η∗ by

λ∗k := E[I∗k |Fk]− δ∗k+1Sk ∈ L2(P) (4.22)

d) There exists an Fk−1-measurable random variable δ∗k such that (equivalent

form of (4.20))

δ∗k =
Cov

(
∆Sξk + 1{|∆δ∗k+1|≤N}αSkξk,E[I∗k |Fk] + αSkδ

∗
k+1ξk|Fk−1

)
(ω)

Cov
(

∆Sξk + 1{|∆δ∗k+1|≤N}αSkξk,∆S
ξ
k|Fk−1

)
(ω)

.

(4.23)

e) δ∗k∆Sk ∈ L2(P).

f) δ∗k minimizes

Var[E[I∗k |Fk]− δk∆Sk + 1{|δ∗k+1−δk|≤N}αSk(δ
∗
k+1 − δk)2

+ 1{|δ∗k+1−δk|>N}αNSk|δ
∗
k+1 − δk||Fk−1] (4.24)

over all Fk−1-measurable random variables δk satisfying δk∆Sk ∈ L2(P).
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We are going to show that if a) and b) hold for k, then there exists a Fk−1-

measurable random variable δ∗k satisfying c) - f) for k, and that in turn implies the

validity of a) and b) for k − 1.

To start the induction we work out the base case k = T . Define δ∗T+1 := ¯δT+1

and λ∗T := λ̄T . Part a) of the theorem holds for k = T by part (a) of Lemma 4.3:

δ∗T+1ST ∈ L2(P). Part b) of the current theorem has the following form for k = T :

I∗T = H = δ∗T+1ST +λ∗T ∈ L2(P). Part b) holds by the definition of contingent claim:

H = δ∗T+1ST +λ∗T ∈ L2(P). The process I∗k is vital to showing that the cost process

of the strategy η∗ = (δ∗, λ∗) we are about to construct, C(η∗) is a martingale. The

process I∗k collects and saves the previous choices for stock shares holdings δ∗k (I∗k

is a “backward value process” inclusive of liquidity costs), since liquidity costs are

path-dependent.

Next we proceed to the inductive step. Assume a) and b) hold for k.

The item c) is just the definition of λ∗k. Define the second component λ∗ of the

trading strategy η∗ by

λ∗k := E[I∗k |Fk]− δ∗k+1Sk

Note that λ∗k ∈ L2(P) by parts a) and b) for k. The construction of λ∗k requires

the introduction of the additional process I∗k . Moreover, the definition of η∗ implies
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that

E[I∗k |Fk] + αξkSkδ
∗
k+1 =���

�δ∗k+1Sk + αξkSkδ
∗
k+1 + E[I∗k |Fk]−����δ∗k+1Sk

= δ∗k+1Sk(1 + αξk) + E[I∗k |Fk]− δ∗k+1Sk

= δ∗k+1S
ξ
k + λ∗k = V ξ

k (η∗)

Using the form of V ξ
k (η∗) above we are able to show that (4.23) is just a restatement

of (4.20) (here we omit Fk−1-measurable terms from the covariances):

δ∗k =
Cov(∆Sξk + 1{|∆δ∗k+1|≤N}αSkξk,∆V

ξ
k (η∗)|Fk−1)

Cov(∆Sξk + 1{|∆δ∗k+1|≤N}αSkξk,∆S
ξ
k|Fk−1)

=
Cov(Sξk − S

ξ
k−1 + 1{|∆δ∗k+1|≤N}αSkξk, V

ξ
k (η∗)− V ξ

k−1(η∗)|Fk−1)

Cov(Sξk − S
ξ
k−1 + 1{|∆δ∗k+1|≤N}αSkξk, S

ξ
k − S

ξ
k−1|Fk−1)

=
Cov(Sξk + 1{|∆δ∗k+1|≤N}αSkξk,E[I∗k |Fk] + αSkδ

∗
k+1ξk|Fk−1)

Cov(Sξk + 1{|∆δ∗k+1|≤N}αSkξk, S
ξ
k|Fk−1)

.

Next we show d), that is, there exists a random variable δ∗k given by the previous

formula. The existence and the form of δ∗k will follow from the material in Section

4.3. Define the function

fk(δ, ω) := Var[E[I∗k |Fk]− δ∆Sk + 1{|δ∗k+1−δ|≤N}αSk(δk+1 − δ)2

+ 1{|δk+1−δ|>N}αNSk|δk+1 − δ||Fk−1](ω)

where the conditional variances and covariances are all computed with respect to

a regular conditional distribution of
(
E[I∗k |Fk], Sk, δ∗k+1

)
given Fk−1. From Propo-

sition 4.8 in Section 4.3, we the get the existence of an Fk−1-measurable random
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variable δ∗k such that

f(δ∗(ω), ω) ≤ f(δ, ω) P -a.s. for all δ. (4.25)

and

f(δ∗(ω), ω) = 0 P -a.s..

Using the representation of δ∗k from the optimality conditions gets us precisely the

form (4.23) for the δ∗k so that d) holds for k. Please see the end of Section 4.3 for

the detailed exposition.

Now we are ready to show e) holds for k, that is δ∗k∆Sk ∈ L2(P). Define

Iξk := E[I∗k |Fk] + αξkSkδ
∗
k+1

By item b), we get E[I∗k |Fk] ∈ L2(P). Using the boundedness of ξk and the part a)

for k, αξkSkδ
∗
k+1 ∈ L2(P) as a product of bounded and square-integrable functions.

Therefore Iξk is square-integrable as well: Iξk ∈ L2(P). We use the definition of Iξk to

shorten the notation in the formula for δ∗k (4.23). Assume the correlation coefficient

of the denominator in (4.23) is nonzero, that is ρd 6= 0. That is, the covariance in

the denominator in (4.23) is nonzero: Cov(∆Sξk+1{|∆δ∗k+1|≤N}αSkξk,∆S
ξ
k|Fk−1) 6= 0.

To show e) for k, namely E[(δ∗k∆Sk)
2] ∈ L2(P), we rewrite the covariance via the

correlation coefficient and variances: Cov(X, Y ) = ρXY
√

Var[X] Var[Y ], use the

Cauchy-Schwarz inequality in the form of (Cov(X, Y ))2 ≤ Var[X] Var[Y ], estimate
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(4.12) for the process X with ξ = 0 then result in the following estimates:

E[(δ∗k∆Sk)
2] = E[(∆Sk)

2(δ∗k)
2]

= E

(∆Sk)
2

(Cov(∆Sξk + 1{|∆δ∗k+1|≤N}αSkξk, I
ξ
k |Fk−1))2

(Cov(∆Sξk + 1{|∆δ∗k+1|≤N}αSkξk,∆S
ξ
k|Fk−1))2


≤ E

(∆Sk)
2

Var[∆Sξk + 1{|∆δ∗k+1|≤N}αSkξk|Fk−1] Var[Iξk |Fk−1]

ρ2
d Var[∆Sξk + 1{|∆δ∗k+1|≤N}αSkξk|Fk−1] Var[∆Sξk|Fk−1]


=

1

ρ2
d

E

E

[
(∆Sk)

2 Var[Iξk |Fk−1]

Var[∆Sξk|Fk−1]
|Fk−1

]
=

1

ρ2
d

E

[
Var[Iξk |Fk−1]

Var[∆Sξk|Fk−1]
E
[
(∆Sk)

2|Fk−1

]]

≤ 1

ρ2
dc

E

[
E[(Iξk)2|Fk−1]

E[(∆Sk)
2|Fk−1]

Var[∆Sk|Fk−1]

]

≤ 1

ρ2
dc

(1 + cMV T (0)) E[(Iξk)2] <∞

as ρ2
d is nonzero and c > 0 according to the statement of the Proposition 4.5. Then

e) holds for k.

To show f) for k, we observe that E[I∗k |Fk] ∈ L2(P ) by part b) for k, δ∗k∆Sk ∈

L2(P ) by part e) for k, then δ∗k minimizes the variance below by the result obtained

from the inequality (4.25):

Var[E[I∗k |Fk]− δk∆Sk + 1{|δ∗k+1−δk|≤N}αSk(δ
∗
k+1 − δk)2

+ 1{|δ∗k+1−δk|>N}αNSk|δ
∗
k+1 − δk||Fk−1](ω)

= fk(δk(ω), ω) P -a.s.
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This gives f) for k.

Since S has substantial risk, one may mimic the proof of part (a) of the Lemma

4.3 to get δ∗kSk−1 ∈ L2(P ), which establishes a) for k − 1.

Also we obtain

I∗k−1 = I∗k − δ∗k∆Sk + 1{|δ∗k+1−δk|≤N}αSk(δ
∗
k+1 − δk)2

+ 1{|δ∗k+1−δk|>N}αNSk|δ
∗
k+1 − δk| ∈ L2(P)

due to b) for k, e) for k and boundedness of the last two terms with the indicator

function. Thus b) holds for k − 1, and this completes the induction.

Finally we show that the strategy we constructed is indeed local risk-minimizing

by verifying that it satisfies Proposition 4.2. First we show that C(η∗) is a martin-

gale, that is E[Ck(η
∗)|Fk−1] = Ck−1(η∗). From the part c) the component λ∗ of the

trading strategy η∗ is adapted: all the terms of λ∗k are Fk-measurable. Item d) shows

that δ∗k+1 is predictable (Fk-measurable) by construction. Thus the value process

of the strategy η∗ is adapted: Vk(η
∗) = δ∗k+1Sk + λ∗k is Fk-measurable. Moreover,

the value process is also square-integrable δ∗k+1Sk + λ∗k ∈ L2(P) by a) and c). In

part e) above we established δ∗k∆Sk ∈ L2(P ), that is δ∗ ∈ Θ(S). Thus η∗ = (δ∗, λ∗)
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is a trading strategy by the definition. Using the definitions of λ∗ we get

Vk(η
∗) = δ∗k+1Sk + λ∗k

= δ∗k+1Sk + E[I∗k |Fk]− δ∗k+1Sk

= E[I∗k |Fk]

for all k. We use the definition of I∗k in the part b) to rewrite Ck(η
∗) using the

conditional expectation:

Ck(η
∗) = Vk(η

∗)−
k∑
i=1

δ∗i ∆Si +
k∑
i=1

1{|∆δi+1|≤N}αSi(∆δi+1)2

+
k∑
i=1

1{|∆δi+1|>N}αNSi|∆δi+1|

= E[I∗k |Fk]−
k∑
i=1

δ∗i ∆Si +
k∑
i=1

1{|∆δi+1|≤N}αSi(∆δi+1)2

+
k∑
i=1

1{|∆δi+1|>N}αNSi|∆δi+1|

= E[ ¯δT+1ST + λ̄T −
T∑

j=k+1

δ∗j∆Sj +
T∑

j=k+1

1{|∆δj+1|≤N}αSj(∆δj+1)2

+
T∑

j=k+1

1{|∆δj+1|>N}αNSj|∆δj+1||Fk]

−
k∑
i=1

δ∗i ∆Si +
k∑
i=1

1{|∆δi+1|≤N}αSi(∆δi+1)2

+
k∑
i=1

1{|∆δi+1|>N}αNSi|∆δi+1|

We exploit the properties of conditional expectation below to show that C(η∗) is a
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martingale:

E[Ck(η
∗)|Fk−1]

= E

[
E

[
¯δT+1ST + λ̄T −

T∑
j=k+1

δ∗j∆Sj +
T∑

j=k+1

1{|∆δj+1|≤N}αSj(∆δj+1)2

+
T∑

j=k+1

1{|∆δj+1|>N}αNSj|∆δj+1||Fk
]
|Fk−1

]

+ E

[
−

k∑
i=1

δ∗i ∆Si +
k∑
i=1

1{|∆δi+1|≤N}αSi(∆δi+1)2

+
k∑
i=1

1{|∆δi+1|>N}αNSi|∆δi+1||Fk−1

]

= E

[
¯δT+1ST + λ̄T −

T∑
j=k

δ∗j∆Sj +
T∑
j=k

1{|∆δj+1|≤N}αSj(∆δj+1)2

+
T∑
j=k

1{|∆δj+1|>N}αNSj|∆δj+1||Fk−1

]

−
k−1∑
i=1

δ∗i ∆Si +
k−1∑
i=1

1{|∆δi+1|≤N}αSi(∆δi+1)2

+
k−1∑
i=1

1{|∆δi+1|>N}αNSi|∆δi+1|

= Ck−1(η∗)

Thus C(η∗) is a martingale. Item f) ensures that δ∗k complies with the second

condition in the Proposition 4.2 (minimizing the conditional variance). Then by

Proposition 4.2 the strategy η∗ is local risk-minimizing. This ends the proof of the

main theorem.

The optimal local risk-minimizing trading strategy η∗ = (δ∗, λ∗) for a contingent
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claim ( ¯δT+1, λ̄T ) is summarized as follows:

δ∗T+1 : = ¯δT+1

λ∗T : = λ̄T

δ∗k : =
Cov

(
∆Sξk + 1{|∆δ∗k+1|≤N}αSkξk,∆V

ξ
k (η∗)|Fk−1

)
(ω)

Cov
(

∆Sξk + 1{|∆δ∗k+1|≤N}αSkξk,∆S
ξ
k|Fk−1

)
(ω)

P -a.s. for k = 1, . . . , T

λ∗k : = E[I∗k |Fk]− δ∗k+1Sk P -a.s. for k = 0, 1, . . . , T − 1

4.5 Algorithm for the numerical computations

Assume we are a writer of a European call option with the strike price K and

expiration date T . The goal is to compute the local risk-minimization hedging

strategy η = (δ, λ), that is δ stock shares and λ units of cash. We remove the

asterisk superscript in the notation for the optimal strategy to allow for space

index as in δj. Assume the price process St follows the geometric Brownian motion

(2.1) with the drift µ and volatility σ:

dSt = µStdt+ σStdBt, 0 ≤ t ≤ T,

where B is a standard Brownian motion. We approximate the stochastic process

St = S(ω, t) above via a binomial tree Sjk = S(j, k) with a large number N of time

periods. Here the discretization of ω ∈ Ω refers to the possible values of the stock
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price. The choice of the parameters for the tree ensures that if the number of time

periods in the tree is increased, in the limiting case, the discrete binomial process

converges to the continuous process (2.1).

The numerical computations consist of the two main parts: first one computes

the prescription of how many shares to hold for the hedge, and then one gener-

ates the synthetic paths of the geometric Brownian motion using the drift µ and

computes the hedging errors to check how the strategy performs. For the points

of each stock price path we determine the share and cash holdings. The algorithm

goes back in time and finds the δjk and λjk via backward induction. The output

of the computation are two trees stored in computer memory via two-dimentional

arrays, each with M < N time periods, that approximate the stochastic processes

δ and λ of the local risk-minimizing strategy η = (δ, λ). Here M is the number

of rebalancing times. Specifically, the space j indices from the tree for the price

process for the underlying produces the index for the corresponding trees for share

δjk and cash λjk holdings at some trading time tk.

Next we approximate the distribution of the price process through discrete ran-

dom variables at the trading dates. There are only M < N equally spaced trading

dates 0 = t0 < t1 < . . . < tM−1 < tM := N available for the hedge rebalancing. For

all 0 ≤ k ≤ M , at time tk there are nk = tk + 1 possible states for the stock price

and given state j at time tk in the binomial tree. The stock price can only move
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to βk = tk+1 − tk + 1 possible states at time tk+1 as illustrated in the Figure 4.2,

where pi =
(
βk−1
i

)
pβk−1−i(1− p)i for all 0 ≤ i ≤ βk − 1. The parameters u, d, p are

defined as follows:

u = eσ
√

T
N , d =

1

u
, p =

eµ
T
N − d
u− d

where σ and µ are parameters of the geometric Brownian motion. Recall that the

indices for δ run from 1 to M + 1, while the indices for λ, S, etc. run from 0 to

M . For example, for a call option for all 0 ≤ j ≤ nM − 1, δjM+1 = 1Sj
M>K and

λM = −K1Sj
M>K .

Sjk Sjk+1 = uβk−1Sjk

Sj+ik+1 = uβk−1−idiSjk

...

p0

pi

pβk−1

Sj+βk−1k+1 = dβk−1Sjk

...

Figure 4.2: The fragment of a price process approximation through a tree.

Next we show that minimization of the conditional variance (4.24) with respect

to a random variable δk boils down to the unconstrained minimization of a function

of one variable for each node of the tree δjk+1. Consider the filtration (F)k=0,1,...,M ,

given by Fk = σ(Sj|j ≤ k), the σ-field generated by the variables S0, . . . , Sk. Here
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we look for the δk that minimizes the conditional variance (4.24):

Var[E[I∗k |Fk]− δk∆Sk + 1{|δk+1−δk|≤N}αSk(δk+1 − δk)2

+ 1{|δk+1−δk|>N}αNSk|δk+1 − δk||Fk−1]

= Var[E[I∗k |Fk]− δkSk + 1{|δk+1−δk|≤N}αSk(δk+1 − δk)2

+ 1{|δk+1−δk|>N}αNSk|δk+1 − δk||Fk−1]

= Var[E[I∗k |Sk = Sjk]− δkSk + 1{|δk+1−δk|≤N}αSk(δk+1 − δk)2

+ 1{|δk+1−δk|>N}αNSk|δk+1 − δk||Sk−1 = Sjk−1]

=

βk−1−1∑
l=0

pl

(
[E[I∗k |Sk = Sj+lk ]− δkSj+lk + 1{|δj+l

k+1−δk|≤N}
αSj+lk (δj+lk+1 − δk)

2

+ 1{|δj+l
k+1−δk|>N}

αNSk|δj+lk+1 − δk|
)2

−

[
βk−1−1∑
l=0

pl

(
[E[I∗k |Sk = Sj+lk ]− δkSj+lk + 1{|δj+l

k+1−δk|≤N}
αSj+lk (δj+lk+1 − δk)

2

+ 1{|δj+l
k+1−δk|>N}

αNSk|δj+lk+1 − δk|
)]2

over all Fk−1-measurable random variables δk satisfying δk∆Sk ∈ L2(P). Basically

this is a problem of the form “minimize f(x) over all x ∈ R”, since δk is Fk−1-

measurable by its definition. Conditioning on the filtration Fk−1 in the context

of the binomial tree basically means computing the expectations and variances

separately for all the nodes Sjk−1 with the states j and fixed time index k − 1.

Moreover, δk is constant, since it is Fk−1-measurable. At the same time random

variables E[I∗k |Sk = Sjk], δ
∗
k+1, Sk have the same number of states, since those are
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Fk-measurable. Thus, for each node j for a fixed time index k − 1 the conditional

variance for a discrete random variable is a just a function with respect to a real

number δk, recall the formula for variance for a discrete random variable with states

Xi and corresponding probabilities pi: Var[X] =
∑

i pi[X
2
i ] − (

∑
i pi[Xi])

2. The

random variable E[I∗k |Fk] for the“backward value process” I∗k depends on known

random variables from the previous steps according to the formula (4.21) for I∗k , so

its computation within binomial model is straightforward although tedious.

In Section 4.3 we obtained the implicit relation (4.20) that optimal δjk should

satisfy for each k = M, . . . , 1 and for each 0 ≤ j ≤ nk − 1. We employed standard

analysis of finding the derivative and setting it equal to zero. Here we apply the

brute force approach to find the minimum: evaluate the conditional variance for

a large set of possible values for δk for each node, take the minimal value and

make sure it satisfies the implicit relation (4.20). That gives the values of δjk, that

is the approximation of δk by a discrete random variable. Finally, we find the

distribution of λjk according to the formula (4.22) for each k = M, . . . , 1 and for

each 0 ≤ j ≤ nk − 1:

λjk := E[I∗k |Sk = Sjk]− δ
j
k+1S

j
k.
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5 Conclusions and future work

It is possible to successfully include the treatment of the market liquidity risk for

the underlying asset in a discrete time model for hedging options. Moreover, the

models lend themselves to numerical computations, which yield specific algorithms

for hedging option payoffs using the underlying asset. However, there are multiple

ways to assess the performance of a hedging strategy in an incomplete market. For

example, while L2 norms of the hedging errors were minimal as demonstrated in the

proofs, mean hedging errors showed less encouraging results, as I did not provide

any theoretical background for the latter. Overall, choosing the optimality criterion

depends on multiple factors: the form of the derivative payoff, maturity date, etc.

The selection of the optimality criterion is nontrivial in general and beyond the

scope of this thesis.

In this thesis I investigated discrete time hedging of a contingent claim under

market liquidity risk. We modeled liquidity costs through a stochastic supply curve

with an underlying asset price depending on order flow. That is, the purchases of
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the large blocks are executed at higher prices, while sales are executed at lower

prices. I used a partial differential equation to define a delta-hedging strategy and

showed that the payoff of this discrete replicating strategy converges in L2 to the

payoff of the option as the length of revision interval goes to zero. I introduced the

class of discrete delta-hedging trading strategies with varying rebalancing times and

showed the mean squared hedging error improves with the transition from equally

spaced to varying rehedging times. I found an optimal hedging strategy given an

initial portfolio value which minimizes the expected square error of the strategy

payoff versus the option payoff. At the same time I showed the existence of the

local risk-minimizing trading strategy.

This work sets out several issues for the future research and expansion. Delta

hedging approach may permit generalization to delta-gamma hedging. One may

also want to seek some inequalities, including bounds on option prices, to charac-

terize the model more fully. Using coherent risk measures as a norm for hedging

errors to characterize optimality of traging strategies is another possible extension

of the model. One also may consider studying the path-dependent derivative payoffs

within the framework of liquidity risk.
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