SOFTWARE VERIFICATION TOOLS

PART |11

PETER H. ROOSEN-RUNGE

DEPARTMENT OF COMPUTER SCIENCE
YORK UNIVERSITY
TORONTO, CANADA

© P. H. Roosen-Runge 1999-2001

SPECIFICATIONS 3

7. USING PROPOSITIONS AS SPECIFICATIONS
7.1 Specifications and computational states

Propositions which contain non-logical terms give us a formal language describing
the states of a computation, either the actual state of a computation or a state which a
program is intended to achieve at some particular point in the computation. In the latter
case, we call the description a specification. A specification can also include a description
of the assumed initial state of a computation—a pre-condition. A specification of the final
state of a computation is called a post-condition. As the names suggest, pre- and post-
conditions are typically not descriptions of what actually happens in a computation but
are requirements on what ought to happen. However, we will sometimes blur this point
and consider post-conditions based, hot on what we want the computation to do, but on
what we think it actually does.

Specifications describe computational states, and computational states are determined
by the values of variables. So specifications typically express requirements on some or
all of the variables in a program, using mathematical functions and relations. Here are
some examples:

= “x is a natural number that is at least one and at most ten”
Translating this into a mathematical proposition might yield:

natural(x) and 1 <= x <= 10.

«“x is either a prime or divisible by the prime y” recast into propositional notation:
prime(x) or (mod(x, y) = 0 and prime(y)).

Notice that this latter specification does not explicitly require that x is an integer,
although if the specification is satisfied, then this would be implied by prime(x). Now
suppose, in this example, that x = 2 and y = "string". These values satisfy the
specification, since the variable y does not need to be an integer if X is prime.

= “If the first character of the string x is not "a" then x is of length 0.
not x(1) = "a" implies length(x) = 0.

Here, in order to formalize the specification, we need notations to express the concept of
selecting a character from a string and measuring the length of a string. Such notations
are not part of standard mathematics, but are easily invented. In this case, a
representation has been chosen which treats a string mathematically as a function from
integers to characters.

The example illustrates that specifications need not provide equivalent detail for every
possible case; a specification may only specify what is true or required under some
particular assumption or condition. If the assumption does not hold, the specification
may be trivially true, as in this case, since the specification is equivalent to

x(1) = "a" or length(x) = 0.

If x(1) = "a", then the disjunction is true and the specification supplies no additional
information about x.

Exercise 7.1: Convert each of the following specifications to a single proposition.
(a) m is the smallest square larger than or equal to n

(b) X, y, and z can be ordered into a sequence of three distinct values, using a binary
Boolean relation £ as the ordering.

(c) the size of a stack s is one more than the size of pop(s) if s is not nil.

Often a condition in the specification of a computational state is expressed as a pre-
condition on a prior state. For example, in order to compute pop(s), where s is a stack, s
must be non-empty. Thus, the code

X = pop(s); y = push(a, Xx);
can only guarantee the post-condition

top(y) = a

if the pre-condition not (s = nil) is met, prior to the execution of the code.

To get some practice with simple specifications, we will consider examples in which the
code is given and the task is to construct a post-condition. In principle, code should be
constructed from specifications, not the other way around, but it usually is not, at least
not from formal specifications, so in applying the concept of verification to code, we
have to expect that the specifications may be constructed after the fact.

Consider the following C/Java statement”;

if ('lightOn) { wattage = 0; roonDark = true; }
el se { wattage = 60; roonDark = fal se; }

To give a post-condition for this statement means to specify the values of the variables
and the logical relationships between them after the statement is executed. A natural
approach is to make a disjunction from the if and else cases:

(not lightOn and wattage = 0 and roomDark) or (lightOn and wattage=60 and
not roomDark)

The Boolean variables | i ght On and r oonDar k in the code can be used directly in the
specification as logical variables; the C/Java negation ! is changed to the corresponding
not operator.

' This and some of the following examples are taken from Ritchey, T. , Java!, New Riders: 1995.

Version 3/17/07

SPECIFICATIONS 5

Instead of using disjunction, we can use a conjunction of implications which expresses
the if-then structure more closely:

(not lightOn implies wattage = 0 and roomDark) and
(lightOn implies wattage=60 and not roomDark)

The description of the state of a computation may need additional variables that are not
mentioned explicitly in the code. For example, the return statement constructs a value
which is part of the program state at that point in the computation, but no variable is

declared for it in C/Java. In such cases, we create additional specification variables® to be
used in post-conditions. These are mathematical variables which are defined in terms of
the values of program variables at a particular point in a computation; unlike program
variables, specification variables never change their value, once defined.

In the following example, we create a specification variable return whose value is the
value returned by the code, and we use it to express the post-condition following the
return from the function call:

int i = lastlndexOf(0);

if (i >= 0) {
return size() - i ;

return -1;

The post-condition can be expressed as:

lastindexOf(o) >= 0 and return = size() - i or lastindexOf(0) < 0 and return =

Strictly speaking, this post-condition is attached to a state of the computation—the state
following the return from the function—not a specific place in the code, so it must be
expressed as a general condition that obtains no matter which return statement is
executed. If we want to show what condition holds after each return statement, we can
include the condition as a comment immediately following the statement, with the
understanding that it is specific to that exit, not a general description of the
computational state following the function’s return:

> Dahl(1992) refers to these as mythical variables. Backhouse (2003, p.107) terms them ghost

variables.

int i = lastlndexO(0);
if (i >=0) {
return size() - i;
/1{ lastlndexCf(o) >= 0 and return = size() - i }
return -1;

[1{ lastlndexOX(o0) < 0 and return = -1}

Exercise 7.2;

(a) Write a post-condition for the code:

if (x > 0)
if (x ==y) a = z;
el se a = x;
(b) and for the code:
if (x >0) {
if (x ==y) a = z;
}

else a = x;
Exercise 7.3:

(a) Write a post-condition for the intended effect of the following swi t ch statement,
using a specification variable or variables whose values are character string that are
printed.

switch (tenperature){

case (0):
System out. println(*Freezing water”);
br eak;

case (37):
System out . printl n(“Human body”);
br eak;

case (100):
Systemout.println(“Boiling water”);
br eak;

def aul t:
System out . println(“sone tenperature”);

Version 3/17/07

SPECIFICATIONS 7

(b) Do the same for the following code:

switch (tenperature){
case (0):
System out. println(*Freezing water”);

case (37):
System out . printl n(“Human body”);
br eak;
case (100):
System out . println(“Boiling water”);

defaul t:
System out . println(“sone tenperature”);

Exercise 7.4: Write three different but equivalent post-conditions for the following
statement:

variable = (boolean ? valuel : value?2) + addition;

= using a conditional (if) expression ,
< as a conjunction with no conditional expression,
= as a disjunction with no conditional expression.

Exercise 7.5: Write a specification for the state of the variables at the end of the
following (Pascal) code:

IF (D ogltem = DoneD ogltem) OR
(Dl ogltem = Cancel D ogltem) THEN
BEG N
anyChanges : = TRUE;
t heSCSI : = whi chSCS| ;
Cl ockinhz : = cl ockRat e;
END
ELSE
anyChanges : = FALSE

Here is a more challenging example of specification construction, in which the code is
not given, but an informal description is provided, describing the interactions between
an application and a Screen Manager systerm module in PowerTV’s set-top box
operating system:

The developer’s guide3 gives us the following information:

* Adapted from Sambar, S., and J. Becker, PowerTV Operating System Overview, PowerTV, Inc.:
1998.

“Applications conserve precious set-top memory by using a shared screen, rather
than each application allocating its own purgeable screen. Purgeable screens save the
time associated with redrawing the screen when the application becomes active, but
at the expense of memory.

Purgeable screens allow Screen Manager to reclaim their memory resources if
memory is limited. If a screen is purged, the application is notified the next time that
it calls scr_IsPurgeable(). This notification comes in the form of a kEt ScrPurged
event. Once this event is delivered, two things can happen:

= |If the system successfully resets the purged screen to use shared memory, it
delivers to the application a kEt_ScrActivated event, indicating that the shared
screen is ready for use. The application can then either request that memory for the
purged screen be reallocated by calling scr_ReallocatePurged() or it can redraw
the shared screen and abide by the drawing restrictions for shared screens.

= If there is not enough memory to reset the purged screen to use shared memory
and bring the shared screen into focus, the system delivers a KEt_ScrUnavailable
event to the application.”

Suppose event notifications are obtained by the application by calling the function
getNextEvent(), and that the application decides whether to retain the shared screen or
reallocate a purgeable one based on whether redrawTime is greater than
minRedrawTime, unless there is not enough memory for a purgeable screen. Assume
that scr_ReallocatePurged() returns a value greater than 0 if there is enough memory
for the reallocation, otherwise 0, and that scr_ReallocatePurged() is not called unless
the application has received a KEt_ScrPurged notification.

We want to develop a post-condition which expresses the conditions under which the
application successfully calls scr_ReallocatePurged() to created a purgeable screen, or
uses a shared screen. To do this, we need some boolean specification variables to
represent the events of interest such as a kEt_ScrPurged or KEt_ScrActivated event
being received.
We define:

scrisPurgeableCalled iff scr_IsPurgeable() was called;

scrisPurgeable iff getNextEvent() was then called and returned a KEt_ScrPurged
event;

sharedScreenReady iff the following getNextEvent() returned KEt_ScrActivated;
purgeableScreen iff a purgeable screen was created.
Then we can express the intended post-condition for an implementation of the above
informal specifications as:

scrisPurgeableCalled and scrisPurgeable and (not sharedScreenReady or
sharedScreenReady and (scr_ReallocatePurged() > 0 and redrawTime >
minRedrawTime and purgeableScreen or not purgeableScreen and
(scr_ReallocatePurged() = 0 or redrawTime £ minRedrawTime)))

Version 3/17/07

SPECIFICATIONS 9

Notice that this post-condition describes what happens if the KEt_ScrPurged event has
been received: it requires that scrlsPurgeableis true. A more complete specification will
cover the possibility that KEt_ScrUnavailable and that scrisPurgeable is false.

The original specifications are quite difficult to unravel, partly because of the wording,
and partly because of the complexities of the operation of the Screen Manager. The
ambiguities in the wording and possible misunderstandings as to the intended logic
could easily lead to an incorrect implementation. Given the formal post-condition and
the definitions of its variables, the task of constructing a correct implementation
becomes easier and verifiable. (See Exercise 8.11.)

7.2 Interfaces

In object-oriented programming, object classes can be described by interfaces, as in the
following example:

public interface Set extends Contai ner

/**

* Return the first object that matches the given object, or
null if no match exists.

* @aram obj ect The object to match agai nst.

* @ee Set #put

*/

public Cbject get(Object object);

/**

* |f the object doesn't exist, add the object and return
nul I, otherw se repl ace the
* first object that matches and return the ol d object.
* @param obj ect The object to add.
* @ee Set #get
*
/
public Cbject put(Cbject object);

/**

* Renpbve all objects that match the gi ven object.

* @aram obj ect The object to match for renoval s

* @eturn the object renmoved, or null if the object was
not found.

*/

public Object renpve(Object object);

In this example, a post-condition is definable for each method given in the interface.
Since the interface is for objects of type Set, we can use set operations such as e, E, and -
to express the post-conditions. We need a specification variable to represent the set to
which the methods are applied; in fact, for put and renpove, we need two such
variables: we’ll use OIdS to represent the initial state of the set, and S to represent the
final state; we also need an order relation £ on the Set objects to represent the concept of

10

the “first” matching object4. Matching will be represented by a Boolean relation match
on set objects.

For the get operation, we have the post-condition

get(Object) e S and match(get(Object) , Object) and
(X e S and match(X, Object) implies get(Object) £ X) or
X e S implies not match(X, Object) and get(Object) = null.

The remove operation has the post-condition:

Object e OIdS and S = OIdS - Object and remove(Object) = Object or
not (Object e OIdS) and remove(Object) = null.

In this interface, there are no pre-conditions for achieving the post-conditions, or putting
it another way, we can take the pre-condition for each method to be the trivial condition
true.

Exercise 7.6: Specify a post-condition for the put method in the interface defined
above.

Exercise 7.7: Suppose the description of the put method in the interface read

/**

* Replace the first object that matches the object and
return the ol d object.

* @param obj ect The object to add.

* @ee Set #get

*

/

Write an appropriate pre-condition for this method.

7.3 Refining an interface specification

In the evolution of a program, the capabilities of a class may be extended by
replacing it with one with more capabilities. Very often, it is important that this
“upgrade” not require the rewriting of existing code which uses the services of the class.

This requires that the new class retain the names and signatures5 of the public methods
in the original class, so that the original code is still syntactically correct; but more
important, nothing should change in the expected semantics of the new methods from
the perspective of calls to those methods which rely on the specifications given in the
previous class interface. If we think of the pre- and post-conditions in the interface as a
contract which promises a certain performance if certain conditions are met, then the

* Strictly speaking, sets are unordered, so no ordering should be definable for the Set class. But in
practice, Sets are often implemented as ordered collections.

® The signature of a method is the sequence of types of the arguments in the method’s argument
list.

Version 3/17/07

SPECIFICATIONS 11

requirement we want for reuse of the new class in the existing code is that the contract
still holds. This means that if the pre-conditions in the original contract are met, then
each post-condition Post in the original interface must be implied by its corresponding
post-condition Postpew in the new interface. In this case, we say that the new interface

refines the original.

Failure of new code to properly refine old code is one of the most common causes of system
failure. When we read that a major bank was unable to record deposits or payments for two
days, we are not surprised to learn that “attempts by the bank to improve one of their
computer systems caused problems with another system, throwing everything out of
whack.”®

An easy case of refinement is one in which the original pre-conditions imply the pre-
conditions in the new interface, and the new post-conditions are special cases of the
original post-conditions:

Pre implies Prenew
and

Postnew implies Post.

We can use a Venn diagram to help visualize the relationships :

original code

As an example, suppose we extend the Set methods in Section 7.2, by adding a function
count(S, Object), so that after each method is executed, the variable S.count = count(S,
Object) = the number of objects in S which now match the argument Object. Thus, after
calling remove(Object), the post-condition is

Object eOId S and S = OIdS - Object and remove(Object) = Object
and S.count = count(OIdS, Object) - 1

or

not (Object e Old S) and remove(Object) = null

and S.count = count(OldS, Obiject).

No pre-condition is required and so, as in the original interface, we take the pre-
condition to be true. It then follows trivially that the original pre-condition implies the
new one, and the new post-condition implies the original one; so existing code (which,
of course, makes no use of the new count method) can safely use the new Set class—if it

® Globe and Mail, May 2, 1998.

12
met the conditions of the original contract and the new class meets the post-conditions
specified in its interface, then the requirements of the original contract will be met.

But not all refinements are so easily established. Suppose the relationships between the
original and the new conditions are as shown in the following diagram:

t

. Pos
=—>riginal code

Post
new

Here, while the original pre-condition guarantees that the new one is satisfied, the new
post-condition no longer implies the original post-condition Nonetheless, the new
interface satisfies the original contract—why? Because, when the new code is used, the
original pre-condition achieves something more restricted than the stated post-condition
Postnhew; it achieves a specification PP which happens to imply the original post-

condition.

To illustrate this, we consider a more complex interface, based on an example given by
[Szyperski, 1997, p. 74]:

The original class interface, called TextModel, involves a method wr i t e which inserts a
character into a character array. The pre-condition requires that the position at which
the character is inserted lies between 0 (the first position) and the length of the array len
(the last position), inclusive. The post-condition ensures that the text contains the
original characters and the inserted character at the right positions.

i nterface Text Mbdel {

void wite (int pos, char ch);
/[l insert char ch at position pos within the existing text.

/1 pre-condition:

[1{ len = "this.length' (nil) and txt = ‘“this.text’ (nil)
and (0<=1i < leninplies 'this.read (i) = array(txt,i))
and len < '"this.max' (nil)’
and 0 <= pos <= len }

/'l post-condition:

[1{ "this.length' (nil) =1len + 1
and (0<=i < pos inplies 'this.read (i) = array(txt,i))
and 'this.read (pos) = ch
and pos <i < 'this.length' (nil) inplies 'this.read (i)

Version 3/17/07

SPECIFICATIONS 13

= array(txt, i-1) }

In this interface specification, methods with no arguments are written as having the
argument ni | so that they can be treated as functions in the mathematical sense. The
variables| en, txt, and i are specification variables, not program variables; | en is the
value returned initially by the class’s | engt h method. pos is a program variable, but
since it is a parameter, it, like | en, doesn’t change as a result of executing the wite
method. t xt is the text array returned initially by the class’s t ext method; again, as a
specification variable, its value does not change as a result of the wri t e, although the
value returned by this.text() does. Finally, this.read(i) is a class method
which returns the character at positioni inthis.text().

The reason for the single quotes around the function names is to allow us to input

propositions of this sort into tools such as pr over ; otherwise, the dot in a qualified name

would cause a syntax error.

Now suppose we want to replace the wr i t e method with one which allows a character
to be inserted beyond the end of the original array, with the intervening positions filled
up with blanks. To distinguish this from the previous case, we will call the new interface
BetterTextModel. The name of the method is still wri t e and so we need to ensure that
the original code which calls wr i t e will still function correctly.

i nterface BetterText Model {

void wite (int pos, char ch);
[l insert char ch anywhere--if after the end of the text,
pad wi th bl anks.

/1 pre-condition:

[1{ len = "this.length' (nil) and txt = ‘“this.text’ (nil)
and (0<=1i < leninplies 'this.read (i) = array(txt,i))
and len < '"this.max' (nil)
and 0 <= pos <= '"this.max' (nil) }

/'l post-condition:
/[1{ "this.length' (nil
and (0 <= i < mn
"this.read' (i

) = max(len, pos) + 1
)
and 'this.read (po
h
)
s

os, len) inplies array(txt, i) =

) = ch
and (pos < i < 'this.length' (nil) inplies
"this.read (i) = ar
i mpl

and (len < i < po

ray(txt, i-1))
ies 'this.read (i) =" ") }

It is easy to see that TextModel's pre-condition implies that of BetterTextModel; the
conjuncts are identical except for

0 <= pos <= "this.max'(nil)
which should be implied by 0 <= pos <= len, and is, since

len < 'this.max'(nil).

14

But BetterTextModel's post-condition does not imply that of TextModel. The problem
lies with the conditions in BetterTextModel which do not occur in the TextModel
interface. BetterTextModel has

'this.length’(nil) = max(len, pos) + 1 and
(0 <=i < min(pos, len) implies array(txt, i) = 'this.read'(i))

whereas the corresponding condition in TextModel reads

‘this.length’(nil) = len + 1 and
(O<=i < pos implies 'this.read'(i) = array(txt,i)).

Is there any more information which we can add to the post-condition stated for
BetterTextModel which would allow us to prove the TextModel conditions? Yes, there
is, for the pre-condition for TextModel states that

0 <= pos <= len

(which, note, is not required for BetterTextModel), and—here is the key point—the
variable pos is an argument to the write method and hence can not be altered by the
method, and len is a specification variable, with the fixed value 'this.length'(nil) as
determined prior to executing the method; its value does not change either. So the
inequality can be added to the post-condition achieved by the BetterTextModel if the
pre-condition for using the original code is met. Thus, under the original contract,

min(pos, len) = pos and max(len, pos) = len

holds following the execution of the method, and that, together with BetterTextModel's
post-condition, ensures that TextModel's contract is satisfied.

Exercise 7.8: ldentify the condition PP in the diagram above, for the case of the
TextModel, and write it out as a proposition.

7.4 The Well-Behaved Expression Assumption

The specifications in the previous examples can only work under a general
assumption which needs to be made explicit: that the built-in operations and functions
computed by the code are correctly implemented by the compiler or interpreter to agree
with the mathematical definitions assumed to hold for the specifications. In other words
if a + occurs in the code, we assume it means the same as a + in a specification, and for
the latter, we usually take the normal mathematical meaning or we rely on some set of
axioms for an abstract datatype to tell us what + means (in the context of character
strings, for example.)

But the assumption the operations in the code have the expected mathematical meaning

doesn’t always hold, at least not without qualification. Consider the following Java code
fragment with post-condition :

int nl1 = |nteger. MAX VALUE;
int n2;

Version 3/17/07

SPECIFICATIONS 15

n2 = nl + 1;
[1{ n2 = nl + 1}

The code cannot meet the specification, for if nl is equal to the largest i nt value
I nt eger. MAX_VALUE, thennl + nl will not return the value n1 + nl. !

So we could only verify this code relative to an assumption about the operations and
functions in the code, an assumption which we might express informally as follows:

the operations or functions referenced in the code are assumed to be correctly implemented to
agree with their mathematical counterparts for some very large range of expected variable
values— in this case, for nearly all int values.

We will call this assumption the Well-Behaved Expression Assumption. Relative to this
assumption, the code fragment obviously meets its specification.

Exercise 7.9 Write a post-condition for what the following code achieves:

if (count > 2) flag = adjust(total - 1);
else flag = adjust(total - 1);

Discuss the specific ways in which the post-condition depends on the Well-Behaved
Expression Assumption.

The problem with the Well-Behaved Expression Assumption is that a mathematical
function may itself not be “well-behaved” on quite ordinary values. This is a different
problem than in the preceding—rather than assuming that an operation in the code
correctly implements a corresponding mathematical function, here we have to recognize
in the specification that the mathematical function itself is only defined under specific
conditions.

So for the code:

I —

y =(a*n)
Iy

the case of n = 0 cannot be taken to be covered under the Well-Behaved Expression
Assumption, by excluding O from the assumed range of n. The problem is not with the
implementation of / but with its mathematical definition. In order for y =a to be true
following the statement, n <> 0 must also be true, but expressing this as an implication

n;
a }

n<>0 impliesy=a

" Under some Java run-time interpreters, the code causes a system crash, a very undesirable
outcome. This underscores how important it is to recognize clearly the exact conditions under
which even the most innocent looking code such as a simple sum statement can be expected to
execute correctly.

16

doesn’t quite capture the situation. For the implication allows n = 0, and in that case,
there isn’t any computational state to describe following the division by n. Nothing
should be true about the computation following division by 0. If we were to allow n =0
to be true after the division statement (by, for example, skipping the division operation),
then it would be possible for a result to be produced even though the mathematical
function being computed is not defined for n = 0 and therefore does not have this
value—a distinctly undesirable situation. As one author puts it:

“It is of fundamental importance for our confidence in a program that it should never produce
wrong results which could be mistaken for correct ones. Instead one should insist on some easily
recognizable abnormal behavior, such as program abortion, whenever correct results cannot
be computed. “ [Dahl, 1992, p. 60]

If, instead of an implication, we were to specify
n<>0 and y=a

then indeed, if n is initially O, the post-condition is false. So the only way it can be
achieved is through a pre-condition that n is not 0.

But it is not always possible to meet such pre-conditions, and users find the penalty of a

“program abort” too drastic.® Some languages, such as Java, provide therefore a weaker
substitute: an exception mechanism, as illustrated in the following example:

public class Trivial Application {

public static void main(String args[]) {
int x, n;

'x'=100/n;
Systemout.println("Hello World!");

}

If n is 0 when “x=100/n;” is executed, the following output is produced (on some Java
Virtual Machines):

Executing: javai -working test
-cl asspath Trivial Application
java.lang. Arithneti cException: / by zero
at Trivial Application. main(Trivial Application.java:9)
Conpl et ed(0)

® Alan Cooper reports that in 1997, the US guided-missile cruiser Yorktown was completely
disabled due to the accidental entry of a zero as a divisor into a calibration being carried out on
an Intel Pentium Il PC running Windows, “which resulted in a complete crash of the entire
shipboard control system. Without the computers, the engines stopped and the ship sat
wallowing in the swells for two hours and forty-five minutes until it could be towed into port.*
[The Inmates are Running the Asylum, 1999, p. 13]

Version 3/17/07

SPECIFICATIONS 17

In this case, there is something true of the computational state, following the division by
zero—an exception has been “thrown” (and in this case, “caught” by the system handler
java.lang. Arithneti cException.) We can represent this in a post-condition as
we did with the r et ur n statement, by introducing as a specification variable, a Boolean
variable which is true if an exception has been raised, along with a variable for the
character string printed (as in Exercise 7.3):

(n <> 0 and x = 100/n and printed = "Hello World!") or (n = 0 and exceptionRaised)

Exercise 7.10 Construct a post-condition to describe the computational state after the
following code is executed:

/**

* Peeks at the top of the stack.
* @xception EnptyStackException
* if the stack 1s enpty.

*/

public Object peek() {
int len = size();

if (len == 0) throw new EnptySt ackException();
return elenentAt(len - 1);

}

In general, expressions within code fragments are “well-behaved” to the extent that they
have the same meaning in the code that they have in the mathematical descriptions of
the computation. One implication of being well-behaved is that distinct function calls
with the same arguments should, as they do in mathematical expressions, return the
same value. But this is not always the case, for example, when a function operates on an
object external to the code whose own state is changing independently. So in the earlier
example of the settop box, the function getNextEvent() may return different event
constants to the application code, depending on the current state of the operating
system. This makes it difficult to connect the code with a mathematical description.

Are specifications “correct”?

To conclude this chapter, we consider the question of “correct specifications”. By
constructing specifications for code in terms of mathematical and logical concepts, the
guestion of verification becomes a formal problem of determining whether or not a
computational state satisfies a particular description, in which case the code can be said
to be correct for that specification. But the issue of code correctness. should not be
confused with the issue of the ‘correctness’ of a specification. We can verify pieces of
code with respect to specifications, but we cannot prove whether the specifications
themselves are what they should be—that they are what the programmer or user
intended. As W. Maurer [1979] has observed: “you cannot state mathematically the
property of users being satisfied.” A specification may be reasonable or unreasonable,
useful or useless—but it is not provably correct or incorrect.

18

Thus the argument that verification gives you a false sense of security,, because you
don't know whether what you specified is what you want, or whether you left out
something important, misses the point. What verification gives you is a method for
comparing what a program does, as expressed by its computational states, and its stated
requirements or goals. There is no more security in a verified piece of code than there is
in a text that has passed a spelling and grammar checker.

Version 3/17/07

8. VERIFICATION THROUGH SYMBOLIC EXECUTION

8.1 Sequences of assignment statements

As an application of the algorithms incorporated in the prover program, we
consider the problem of verifying a fragment of Java code consisting of a sequence of
simple assignment statements.

If we are given an initial condition in the form of a set of initial values for some of the
variables in the code, then we can propagate this condition forward through the
sequence of assignment statements, updating the condition after each statement to show
the effects of assigning a new value to one of the variables.

To simplify the updating, the condition on the variables is maintained as a table’, which,
expressed as a proposition, has the form of a list of equalities:

vi=e1 andv2=e2 andv3z=e3.., etc.
In order to avoid circular descriptions, we will sharply distinguish between the
variables in a program text and their mathematical values — we will require that the
right side of each equality be a pure value containing no reference to any of the
variables. (Variables change their value during execution. By eliminating variables from
the expressions on the right-hand side of the equalities, we ensure that the value
remains a fixed mathematical quantity.)

The effect of assigning a value to vj by the statement vi = enew can be recorded in the
table by replacing the old value ej in the table by the expression eneyy after eliminating all
references to the vj in enew by substituting the corresponding ej. No circularity can arise
in this process since the values in the table contain no references to program variables.

Suppose at some point in the sequence of statements, an assertion is claimed to hold
among the statements. For example, given the initial condition:

X=a+2andy=7 ,

then after the execution of the statements
X =X-Y; Yy =X;

it can be asserted that
y=a-5

holds.

This can be checked by a program which symbolically executes the assignment statements,
using and updating the current table of values assigned to the variables at each steplo. If

® Sometimes called a trace table. See [Stavely, 1999, 3.5-3.7]

20

we include the conditions on the variables as comments in the code, we can represent
the symbolic execution as:

/[1{ x=a+2andy =7}
X =X - Y ;

I1{ x=a+2- 7andy =71}
y = X3

/[1{ x=a+2- 7andy

a+2-7}

(As in Chapter 7, we distinguish conditions and assertions from other comments in the
code, by wrapping themin{ }.)

The last condition, given the appropriate simplification rules, will simplify to
x=a-5andy =a -5

which obviously implies that
y=a-5.

So the program statements are verified with respect to the given assertion.

8.2 Initial values

In the first code example, the program variables x and y were explicitly assigned
initial values expressed in terms of constants; however, in the final assertion, there was
no reference to these initial values. This is not always what’s needed. In many cases, we
will wish to verify an assertion explicitly involving the initial values for which we then
need some names. We will adopt a convention employed in the programming language
Eiffel [Meyer, 1988] and use the special value 'oldV * as the name of the initial value of
the variable V.

To see how this convention is used, consider a program which increases x by 1 and sets
y equal to (the original value of) x - 1. The final assertion is then

x='oldx'+1andy="'oldx' -1
and symbolic execution of the following code

y
X

X - 1;
X + 1;

with the implicit pre-condition

' See [Dannenberg, 1982] for an early computer implementation of symbolic execution and a

formal treatment of the underlying algorithm. It is briefly discussed in [Dahl, 1992, p. 76-77].
[Gannon, 1994, Ch. 3] applies symbolic execution to the verification of functional specifications.

Symbolic execution is more generally used in analyzing the properties of programs, under the
labels non-standard execution and abstract interpretation "which amounts to performing the
program'’s computations using value descriptions or abstract values in place of the actual computed
values." [Jones, 1994]

Version 3/17/07

SPECIFICATIONS 21

x='oldx'andy ="old y'
will show that the final assertion is correct.

If the statements in the code were reversed, the assertion x ='old X' + 1 and y = 'old x' -1
would not hold. But in logic, the ordering of a set of conjuncts does not affect the truth-
value—a and b says the same thing asb and a. Again, there is a gap between the code and
its re-formulation in logic. Is there a way of writing the desired assignments which avoids
the dependence on the order of the assignments and removes the gap? The following
notation

X, y =x+1 x - 1;
while not valid C/Java syntax, expresses the idea that the effect of the assignments is as if
they were performed in parallel or simultaneously. The meaning of the parallel assignment

notation can be specified precisely using the previously introduced notation for textual
substitution:

X1, X2, . . , Xk =e1, €2, . . , ek,
{x1 =ezxfold x1 /x1] and x2 =e1[old x2 /x2] and . . xk =ek[old xk /xk]}

Introducing parallel assignment into standard programming languages would be a useful
way to eliminating the chance of errors resulting from a faulty ordering of assignment
statements.
8.3 The symbex program
The program synbex symbolically executes a sequence of assignment or i f -
statements in C/Java syntax and, if an assertion is given as a comment beginning on a

new line in the form

/1{ assertion 1},

synmbex attempts to verify that the condition computed as holding after the preceding
statement implies the assertion.

Here is a sample data file:

temp = x ; X =y ; y =tenp;
[1{ x="old y' and y ='old x' }

This produced the following output:

22

[1{ true }
e X

1 Il'g

t
X 1

y tenp

/1 assert: x=old y and y=old x
/[l -- assertion is verified.
d

/1{ y=old x and x=old y and tenp=old x }

Like pr over, synmbex will search the working directory, and the directories specified in
prolog.ini for arithmetic.sinp, equality.sinp, and | ogic.sinp. It also
loads a file si npl i fication. rul es if it exists in the working directory. This file can
either contain simplification rules or directives to load specific theory files, written in the
form

t heory(' file specification') .
or just

t heor y(name) .
if the file name. si np exists in the working directory.

The simplification rules are used by synmbex to verify an assertion by checking that the
proposition

condition implies assertion

is a tautology, where condition is a condition on the program variables which is
supposed to hold just prior to the assertion, as calculated by symbolic execution.

A pre-condition can be asserted as an initial assertion preceding the Java code. It is
assumed to be true at the beginning of the symbolic execution and is combined with the
effects of execution.

For example,
|: //{ x=a+ 2 andy = 7}
|: x=x -y ; y =x;
|: //{y = a5}
|: ~D ("D terminates the input)
/[1{ x=a+2 and y=7 }
X = X-y
y = X
/] assert: y=a-5
/[l -- assertion is verified.

/1{ a+ -5=y and a+ -5=x }

The synbex tool also checks whether an assertion is inconsistent with the current state
of computation, as in the following example:

Version 3/17/07

SPECIFICATIONS 23

|: x =x+y, y=x-Yy X=X-Y,;
|[: //{ not (y ="old x") }
|: ~D
[1{ true }
X = X +vVy;
y = X -Y,
X = X -Y;
/] assert: not y=old x
/[l -- assertion is inpossible!
I/l -- current state is y=old x and x=old y
/1{ y=old x and x=old y }

This allows us to generate a proposition describing the state at any point in a
computation, by inserting the assertion //{f al se} at the point of interest, as in the
following example:

|: temp = x ; X = x*cos(t) + y*sin(t) ;
| - //{fal se}
|: y = tenp*sin(t) - y*cos(t) ;
| : AD
[1{ true }
temp = X
X = x*cos(t) + y*sin(t) ;
[/l assert: false
/[l -- assertion is inpossible!
/[l -- current state is sin(t)*y+cos(t)*old x=x

and tenp=ol d x
y = tenp*sin(t) - y*cos(t) ;
[1{ sin(t)*old x-cos(t)*old y=y and sin(t)*old y+
cos(t)*old x=x and tenp=old x }

Exercise 8.1: What test can synmbex apply to an assertion and a condition which will
allow it to determine whether or not the assertion is impossible, given the condition?

Exercise 8.2: Write Java code fragments to compute the following parallel
assignments (with as few temporary variables as possible) and use synbex to verify,

the code™.
(a) huey, dewey, louie = dewey * huey, louie - dewey, huey + dewey;
(b) a,b,c=a+ c,b+c,2* c;

(©) X,y =x*cos(t) + y*sin(t), x*sin(t) - y* cos(t);

" (b) and (c) are taken from [Kubiak, p. 137].

24

Exercise 8.3: Figure out what expression should be substituted for * ?7?’
following code (cf. [Gries, p. 124]), and use synbex to verify that it is correct.

[1{ ¢c =2z + a*b }
z =2z +b;, a="'"27;
[1{ c =2z + a*b }
(Do not change the pre- or post-conditions.)
Exercise 8.4: If not B implies V = E then the statement
if (B) V=E
can be replaced by V = E; (assuming everything is well-behaved.)

Use symbex to justify this claim.

in the

8.4 Verifying register arithmetic

Consider a computer with 8-bit registers A, B, C, D, and the following

instructions:

where (X)

L regi sterl, register?2 ; copies register2 into registerl.

L regi ster, menory-| ocation;copies memory location into register.
L regi ster, constant ; set register to constant.

A register ; sets register A to (A) plus (register) .

Sl const ant ; sets register A to (A) minus constant.

operations.

= contents of X. Note that A serves as an accumulator for the arithmetic

Each instruction assigns a value to a register, and so can be translated directly into an
assignment statement, using variables to represent registers and memory locations. In
this way, we can verify a piece of assembler code by translating it into a C/Java
assignment statement (for a large program, this could be done automatically by an
appropriate tool) and then use symbolic execution. For example, if we let the variable a
represent the accumulator A, the assembler code

X

wr>r
>>>

10

translates to

a=Xx, a+=a, a+= a;, a += -10;

Version 3/17/07

SPECIFICATIONS 25

which can be verified by synbex to be correct with respect to the post-condition

a=4*-10.

Exercise 8.5: The following assembler code is intended to convert a two-digill
decimal number stored as two ASCII digits in locations D1 and D2 (high-order digit]
in D1) to a byte value in register A:

A, D2
48
A
A
C A
D1, A
48
C

>urrr>r>nr

Translate the code into assignment statements, and use synbex to debug it withj
respect to the post-condition:

a=10*(d1 - 48) + (d2 - 48)
Exercise 8.6: The following code is intended to leave the value 100*D1 + 10*D2 in
register A. The left-shift operation SH p is used to multiply A by a power of 2
(between 0 and 7).

D1

A
D2

>

o >

I

>Nr>NrCrr>unr>>rr>r
T T
OWOWZXrOONOP>TIO > >

Use synmbex to verify this code, or a debugged version, by translating it into
assignment statements. You can represent the effect of a left-shift using C’s shift-left
operator <<:

a << p = ashifted left p places

26

8.5 Executing conditional statements symbolically

Executing conditional statements symbolically produces much more complex
output, since the state of the program must now be described by a disjunction, each of
whose disjuncts represents one execution path through the code. Each disjunct contains
a condition on the initial variable values which holds in the current program state, and a
table of the current variable values.

As an example, if we use synbex to execute (with simplification) the code

/1{ x = x0 }
y =X + 2 ;
if (y <0 y =x;
X =Yy - X ;

we obtain the following result:

[1{ x =x0 }
y = X + 2 ;
if (y <0) //{ x0+2=y and x0=x and x0< -2 }
y = X 5
X =Yy - X 3
/1{ x0+2=y and x=2 and not x0< -2 or y=x0 and x=0 and
x0< -2 }

The synbex tool also reports on the state of the computation on each branch of a
conditional, and whether the branch can ever be taken, as shown in the following
example, in which we verify that the result of the conditional statement is only x = no,
regardless of the value of i:

[: if (1 '=4]] i !'=5) x=no ; else x = yes;
|: //{ x = no }
|: ~D
[1{ true }
if (i !'=4]|| i !'=5)//{ not i=5or not i=4}
/1 This branch is always taken.
X =no ;

else //{ i=5 and i =4 }

/] This branch is never taken.
X = yes ;

/] assert: x=no

/] -- assertion is verified.

[1{ yes=x and i=5 and i=4 or x=no and not i=5 or x=no and not
i=4}

In the following example, the question is—does the code compute the maximum of x, y,
and z?

Version 3/17/07

SPECIFICATIONS 27

[: if (x >y) if (x > 2z) max = x; else if (y > z) max = y;
el se max = z;
|: ~D
[1{ true }
it (x>y) I/{ y<x}
if (x >2z) //{ z<x and y<x }
mx = X ;
el se //{ y<x and not z<x }
if (y >2z) //1{ false }
/1 This branch is never taken.
mx = vy ;
el se //{ y<x and not z<y and
not z<x }
mx = z ;
[1{ z=max and y<x and not z<y and not z<x or x=max and z<x and
y<x or not y<x }

Symbolic execution shows that the code needs fixing: one branch of an if-statement is
never taken and as a result, the post-condition contains no case in which nax has the
valuey.

A syntactic hack:

An assertion //{ .. } must precede a statement (or be at the end of the code fragment.) So you

can't insert an assertion at the end of an then-branch or else-branch—the following won’t

work:

if (x >y) x=a; //{ a>y } else x = b;
sinceel se x = b; isonly part of a statement, not a complete statement.

To get around this, put the assertion in front of a null statement as in the following example:

if (x >y) {x=a; //I{ a>y} ;} else x =b;

28

verify C/Java code fragment using symbolic execution

context: the code fragment consists of simple assignment or i f -statements,
followed by a goal assertion as a comment //{ goal }, and possibly preceded
by an optional precondition.

method: use synbex to compute a post-condition for the fragment. and check
whether the post-condition implies the goal assertion.

proof obligations: check whether the post-condition implies the goal assertion.

background: theory files, si nplification.rul es, and the Well-Behaved
Expression assumption

Exercise 8.7: Write a C/Java code fragment to compute
X = max(x, min(y,100)) ;

using conditionals and assignment statements instead of the functions max and
min.

Write definitions for
max(x, y) and min(x, y)

using < and = . Use these definitions to construct an appropriate assertion whose
truth is equivalent to the correctness of the code.

Add this assertion to the code and use synbex to verify that the code is correct.

Exercise 8.8: Verify that the following Java code is correct with respect to the
specification {y = abs(‘old y’) }:

X =X +Yy, y=y-X
if (xty >0) y = x+y; elsey = -x - vy;

(Cf. [Zelkowitz, 1990, p. 33], [Gannon, 1994, p. 94])

Version 3/17/07

SPECIFICATIONS 29

Exercise 8.9: Beginning with version 1.4, Java has included a runtime assertion
service, as illustrated by the following example:

/***

Computes the | argest of the three passed distinct
i nt egers.

@arama, b, c the three integers
@eturn their |argest

//***

public static int largest(int a, int b, int c)

[/ Pre-condition
assert a'!=b & a'!'=c && b != c;

i nt big;
if (a>b & a > c)
big = a;
elseif (b >a & b > c¢) big = b;
el se

[/ Assertion
{ assert ¢ > a & c > b;
big = c;

}

[/ Post -condi tion
assert big >= a & big >= b & big >= c;
return big;

Change the assertions into comments in the form used by synbex, and input the
body of the | ar gest function to synbex to verify that the post-condition holds for
the returned value.

8.6 Procedures with contracts

In C syntax, procedures are functions which do not return a value—they are
declared as returning the empty type voi d. Because no value is returned, procedures
are typically used to carry out a computation with side effects either on the procedure
arguments, or more generally, on the system state. A typical C example:
bzero(&bytes, n) =zeros out n bytes, starting with the byte pointed to by the
address expression &byt es.

We can think of procedures as a sort of generalization of assignment statements, in
which the variables which are referenced via the address operator & may be assigned
new values by the procedure. (In the example, the byt es array gets a new value, in
general, as the result of the zeroing.)

Procedures can be incorporated into the symbolic execution of code by giving them a
specification in the form of a pre-condition, and a post-condition on the variables that

30

may be altered by the procedure. The pair of conditions we will call a contract, as in
Section 7.2.

Consider the procedure
voi d swap(&X, &Y);

which is intended to exchange the values of Xand Y. A contract for such a pr