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Abstract

Lattice Gauge Theory is a mathematical tool used to study the forces of nature, like

Quantum Electrodynamics and Quantum Chromodynamics. Quantum computers offer an al-

ternative to classical computers in studying these forces. In my thesis, a gate-based quantum

computer was used to perform calculations of the propagation of an excitation in real-time.

A new error mitigation method was developed to greatly extend the range of comprehensible

data over time by using the physics circuits to estimate the accumulated error [1]. I also

developed the theoretical foundation for higher energy systems, as well as higher dimensional

geometry.
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1 Introduction

The laws describing the electromagnetic force stipulate that like charges repel, and opposite

charges attract. The discovery that atomic nuclei are composed of protons and neutrons was

paramount to the world of particle physics because it posed the following question: what pre-

vents the positively charged protons that are held together inside the nucleus from repelling?

The answer to this is the strong force. The strong force is one of the four fundamental forces

[2]. The theory describing strong interactions and the strong force is called quantum chromo-

dynamics (QCD), which is similar to the theory describing electromagnetism at the quantum

scale, called quantum electrodynamics (QED). Both forces are carried by massless, spin-1

gauge bosons: the electrically neutral photon for QED and the color-charged gluons for QCD

[3]. The mathematics of such theories exhibit special symmetries that make them gauge in-

variant, and hence are called gauge theories. The gauge theory describing QED is called

U(1) gauge theory, which is the same mathematics that describes complex numbers. On

the other hand, the group that describes QCD is called SU(3). While QED has only one

electric charge as a degree of freedom, QCD has three color charges. Because of the presence

of additional charges and the larger symmetry group, color charges exhibit self interactions.

We use lattice gauge theory to study quantum field theories. Lattice gauge theory discretizes

space-time, resulting in a grid of links connecting lattice sites. Matter fields are defined on

the lattice sites, while gauge fields are defined on the lattice links.

The conventional method for studying lattice gauge theory has been Markov Chain Monte

Carlo (MCMC) calculations on classical hardware. The well known issue with that approach

is the notorious sign problem, which prevents real-time dynamics of quantum systems due to

the appearance of complex values that can not be interpreted as probabilities[4, 5]. Scaling

is also a problematic aspect of using classical computing due to the need for exponentially

more MCMC sampling points for larger systems [6, 7].

Quantum computing allows us to use quantum properties of matter to forego the restric-
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tions of classical computers. Quantum bits (qubits), unlike classical bits which can take

binary values 1 or 0, can be in a superposition of states since each qubit is described by a

superposition of 1 and 0. This allows us to accommodate an exponentially growing number

of states (2n) by using n qubits, where n rises linearly. We can also use quantum entangle-

ment on two or more qubits. Gate-based quantum computers provide a set of quantum gates

that allow one to encode their problem as a quantum circuit, which is just an ordered set of

gate applications [6]. In the case of lattice gauge theory, one can write out the Hamiltonian

in terms of the quantum gates. At the end of a quantum circuit, the qubits are measured

and the final state is recorded. Many runs are performed, and the expectation value of the

Hamiltonian can be constructed from the mean of the measurements.

The purpose of this research project is to explore the use of quantum computing to study

lattice gauge theories. Despite the fact that strong interactions are described by SU(3), it

was not what we decided to study. While the simplest gauge theory is U(1), which has been

studied using quantum computing [8, 9, 10], it is an Abelian gauge theory. That means that

the algebra is not comparable to the non-Abelian SU(3). The smallest non-Abelian gauge

theory is SU(2), which is the object of this research. SU(2) lattice gauge theory describes

physics similar to that of the strong force, but with one less color charge. The mathematics of

SU(2) is the same as angular momentum algebra. Thus, studying SU(2) lattice gauge theory

will serve to lay the computational groundwork for when quantum computers are powerful

enough to deal with the number of qubits needed for large and reliable SU(3) calculations.

A further simplification is achieved via the absence of charged particles, although SU(2)

calculations have been done with matter on the lattice [11, 12]. The system can be described

by a Hamiltonian that is comprised of two parts. The diagonal elements of the Hamiltonian

matrix are the chromo-electric components, and the off diagonal elements are the chromo-

magnetic components, in analogy with QED and QCD [13]. The main way to deal with the

large size of the Hamiltonian is to truncate the matrix. The most common way is to restrict

the maximum j angular momentum value, which allows us to study all the possible states
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with the links having a maximum chromo-electric energy defined by j [14].

In the past, we were the first to use Hamiltonian matrix in conjunction with the time

evolution operator to study time evolution on DWave’s quantum annealer [15]. However, this

time we used IBM’s gate-based quantum computer to perform time evolution calculations.

The systems we have chosen are linear chains of plaquettes (squares) of lengths two and five.

However, it was quickly apparent that the noise accumulation hinders any effort to collect

data at large time values. We used the ”physics circuit” to time-evolve the initial state of

the system by a full time-step t. We then used the same circuit to time evolve the system

forward by a half time-step t/2, then evolve it backwards by a half time-step −t/2. This

accumulates the same amount of noise as the physics calculation, but with the upside of

knowing that the final state should be the initial state. That allows us to estimate the noise

amount, and using that estimate to create a scaling factor for each point, then to adjust the

measured physics calculations by said scale factor to account for the noise. This allowed us to

expand the range of coherent data points [1]. Now that we have a powerful error mitigation

method, we can combine it with the methods from the previous section to reduce the noise

even further.

One of the next steps in studying SU(2) lattice gauge theory is to go beyond the jmax =

1/2 cutoff. While it is the general starting point for the truncation of the Hamiltonian, the

next step is to consider jmax = 1. All the possible states from the j = 1/2 case are included,

but now we have new states that arise from allowing for the gauge links to have a j value of

1. The total number of states becomes 11, which requires 4 qubits to describe. This poses a

challenge, but using the translational symmetry, we can create a new 11 × 11 matrix, with

an 8 × 8 submatrix that contains the ground state and a superposition of the states that

have the same energy. This allows us to use 3 qubits only.

Another way to go beyond what is familiar is to study two-dimensional lattices. Instead

of the chain of plaquettes in one dimension, we considered a set of four plaquettes that meet

at a vertex, forming a large square. When one studies one-dimensional lattices, there are two
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types of sites. There are sites with two links, and there are sites with three. This is relevant

because it is crucial for constructing the Hamiltonian. To create a state that describes the

lattice, one must use the product of all the sites in the lattice. In one-dimensional lattices,

the most complex site is the three-linked site. Thus all sites are described by using a general

three-linked site state. The sites that have only two links will have a zero for the third. Upon

using the procedure for angular momentum addition to derive the three-linked site state, it

becomes apparent that it is not important which two links are added together, then added to

the third. The order of links does not matter, and thus the process is straightforward. Once

the state of the lattice is created, it can be used to create the plaquette operator, which is

crucial for calculating the chromo-magnetic part of the Hamiltonian.

The 2× 2 clover-leaf lattice in consideration introduces us to the four-linked site. While

a three-linked site allowed for an arbitrary ordering of the links, we are not awarded that

privilege in the case of the four-linked site. It appears that one must impose a convention for

which links to add together at first. The convention chosen was that angular momentum of

the links in the positive x and y directions are added together, and the angular momentum

of the links in the negative x and y directions are added together. The resultants are added

together to get the final state of the four-linked site. Once the four-linked state was derived,

many tests were conducted to ensure that the state is equal to the two-linked and three-

linked states. That was done with the help of the Wigner 3j symbol identities. The next

step was to create the gauge link operator, and use that to calculate the elements of the

plaquette operator.

The last contribution was a program that takes in a matrix (e.g. Hamiltonian) and returns

the gates that represent the matrix. A tedious part of lattice gauge theory is expressing a

system’s Hamiltonian matrix in terms of quantum gates, specifically the identity gate (I) and

the Pauli gates (X, Y, Z). The process involved trial and error in long periods of calculating

matrix products. The need arose for a program that can eliminate that part of our work.

The program is based on observed patterns and symmetries that occur when expressing
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symmetric matrices in terms of Pauli gates. Pauli decomposition algorithms existed before,

specially for 2 × 2 Hermitian matrices. This is merely one possible way of generalizing it

to matrices of size 2n × 2n, which require n qubits to encode. The algorithm takes as an

input a 2n × 2n matrix M . The algorithm segments the M into 2n parts using n products

of the identity gate (I) and the flip gate (X). These products perform targeted rotations to

elements in the matrix such that certain elements are placed on the diagonal, from which

they are then extracted into an array. The second part is using Kronecker products of n

Hadamard gates to create a “mixing coefficients” matrix. That matrix is used with the array

of extracted elements to mix them in just the right way to generate the coefficients of the

Pauli gates needed to represent the input matrix M . The program has shown success with

Hermitian and non-Hermitian matrices. The part where this algorithm shines is that the

method can be used when doing “pen and paper” calculations to find the answers just by

looking at the matrix and performing 2n sums. That is due to the use of symmetry-based

patterns, which are the basis of the program.

This thesis is structured in a linear manner. Section 2 is a review of Abelian and non-

Abelian gauge theories. Then, the lattice is established via the discretization of space.

Lastly, the Hamiltonian form is introduced, which is crucial for studying the physics in

terms of the energy of the system. Section 3 puts the non-Abelian SU(2) gauge theory on

the lattice and shows the chromoelectric and chromomagnetic fields. Section 4 discusses

our past work on calculating SU(2) on a quantum annealer, as well as my calculations on

gate-based quantum computers. Both of these works act as motivation for the need for error

mitigation techniques. Section 5 discusses our work that introduced a new error mitigation

method called self mitigation, which uses the time evolution circuits in order to estimate the

errors acquired by the circuit. Section 6 contains my work on creating a Pauli decomposition

algorithm that is not only executed with computational ease, but can also be implemented

in pen-and-paper calculations due to its reliance on visual symmetries on the square matrix.

Finally, section 7 lays the theoretical foundation for extensions to our works in terms of
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higher energy systems and a higher-dimensional geometry.
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2 Background

2.1 Gauge Theory

2.1.1 Abelian Gauge Fields

The field theories used to describe physical systems in nature are indifferent to some trans-

formations to our description. This indifference to gauge transformations is called gauge

invariance. A gauge transformation is simply a change of phase that has no physical

significance. Quantum electrodynamics (QED) is described by the U(1) gauge theory, which

is the group of unitary matrices of size 1×1, equivalent to complex numbers. We begin with

the action of the free Dirac field, which is invariant under global U(1) transformations

S
(0)
F =

∫
d4xψ̄(x)(iγµ∂µ −M)ψ(x) (2.1)

where µ is the space-time index. Einstein’s summation notation is used, where there is an

implied summation over the contracted indices. However, the action is not invariant under

a local U(1) transformation

ψ(x) → eiα(x)ψ(x) (2.2)

∂µψ(x) → eiα(x)[∂µ + i∂µα(x)]ψ(x) (2.3)

where α(x) is a function and not a constant, and therefore the transformation acts differently

at different spacetime points. The derivative of the wave function is the source of the issue.

We introduce a covariant field Aµ(x) that can cancel the problematic piece. Thus, we have

the covariant derivative:

Dµ = ∂µ − igAµ(x) (2.4)
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where g is known as the coupling strength. The fermion field couples to the gauge field

through the covariant derivative. To understand how the gauge field must transform, we

look at the covariant derivative of the fermion field

Dµψ → (∂µ − igA′µ)e
iαψ = ∂µ(e

iαψ)− igA′µe
iαψ

= i(∂µα)e
iαψ + eiα∂µψ − igeiαA′µψ

eiα {∂µ − igAµ}︸ ︷︷ ︸
=Dµ

ψ − igeiα
{
A′µ − Aµ −

1

g
∂µα

}
︸ ︷︷ ︸

=0

ψ

Therefore, by enforcing that the covariant derivative be invariant to local gauge transforma-

tions, we find the necessary way that the gauge field transforms

Aµ(x) → Aµ(x) +
1

g
∂µα(x) (2.5)

Now that we have derived the transformation of the gauge field, we can begin to write a

gauge invariant action. Using the minimal coupling prescription, we can just replace the

ordinary derivatives with the covariant derivative in our fermionic action to get

SF =

∫
d4xψ̄(x)(iγµDµ −M)ψ(x) (2.6)

In the presence of matter, expanding the covariant derivative in the fermionic action gives

SF = S
(0)
F + S

(int)
F =

∫
d4x

[
(iψ̄γµ∂µψ −Mψ̄ψ) + gψ̄γµψAµ

]
(2.7)

where we retrieve the original fermionic lagrangian with the addition of an interaction term.

Looking again at electromagnetism, we see that this is analogous to the four-current coupling

to the four-potential Aµ. The interaction here is in terms of the Noether current jµ = ψ̄γµψ,

and is mediated by the coupling strength.

We must now address one of the consequences of the covariant derivative. In regular
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calculus, for well behaved functions, the derivatives commute like (∂µ∂ν − ∂ν∂µ)ψ = 0.

However, the covariant derivative commutator does not vanish

[Dµ, Dν ]ψ = (∂µ − igAµ)(∂νψ − igAνψ)− (∂ν − igAν)(∂µψ − igAµψ)

= −ig(∂µAν − ∂νAµ − ig [Aµ, Aν ])ψ

Since the gauge field is an element of the U(1) group, its commutator vanishes. Thus, we

recognize the electromagnetic field strength tensor

Fµν =
i

g
[Dµ, Dν ] = ∂µAν − ∂νAµ (2.8)

We need to add a kinetic lagrangian for the gauge field dynamics. Intuitively, it must use

derivatives of the gauge field ∂µAν , and must be quadratic with respect to the gauge field,

∼ A2 [16]. Thus, we use the square of 2.8 and we get

SG = −1

4

∫
d4xF µν(x)Fµν(x) (2.9)

Thus the QED action is the sum of the fermionic action and the gauge action.

2.1.2 Non-abelian Gauge Fields

This section will be based on the Yang-Mills theory and will be mirroring the treatment

from the previous section. The 1954 paper by C.N. Yang and R. Mills[17] looked at the

procedure of enforcing local gauge invariance by introducing a gauge field that cancels out the

problematic parts of the theory and resulting in the description for QED. They applied that

treatment to higher order groups. Their interest was non-abelian gauge theories. Specially,

the group of unitary N × N matrices with determinant unity, or SU(N). A non-abelian

group contains elements that do not commute. Thus they have a non-zero commutator, and

that gives rise to new physics, as we will see in this section.
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The gauge transformation on a fermion field ψ is

ψ =


ψ1

...

ψN

 , ψ → Ω(x)ψ = eiT
aαa(x)ψ (2.10)

where T is a vector made of the N2 − 1 infinitesimal generators of the SU(N) group [18].

For SU(2), the components are the Pauli matrices [19]

Ta =
σa
2
, a = 1, 2, 3 (2.11)

and for SU(3), the components are the Gell-Mann matrices [20]

Ta =
λa
2
, a = 1, . . . , 8 (2.12)

These are N × N matrices that do not commute. Thus, the commutator and the trace of

the SU(N) generators are

[Ta, Tb] = ifabcTc (2.13)

Tr(Ta) = 0, T r(TaTb) =
1

2
δab (2.14)

where fabc are the totally anti-symmetric structure constants of the group [16]. In the case

of SU(2), the structure constants are described by the famous Levi-Cevita symbol, ϵijk.

Following the same procedure as above, the covariant derivative for a non-abelian gauge

theory is defined by introducing a N2 − 1 component gauge field that is coupled with the

10



generators of SU(N)

Dµ = ∂µ − igAa
µ(x)T

a (2.15)

Aµ(x) → Ω(x)AµΩ
†(x) +

i

g
(∂µΩ(x)) Ω

†(x) (2.16)

We can now calculate the general form for a non-abelian gauge field transformation by

considering an infinitesimal gauge transformation that disregards O(α2) [21]. Combining

equations 2.13, 2.16, and 2.8, we arrive at the gauge field transformation and the field

strength tensor defined in terms of the commutator of the generators [22]

Aa
µ → Aa

µ +
1

g
∂µα

a + fabcAb
µα

c (2.17)

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν (2.18)

This highlights the emerging difference between abelian and non-abelian gauge theories. In

the abelian case, the gauge field is affected by ∂µα
a, which is the change in the phase of the

local gauge transformation. In the non-abelian case, another term, Ab
µα

c, describes how αb

causes Aa
µ to be affected by Ac

µ. In the field strength tensor, the new term containing Ab
µA

c
µ

describes self interactions of the gauge field components. Due to the new factor in the field

strength tensor, the kinetic term in the action will now contain cubic and quartic powers of

Aa
µ that describe non-trivial interactions. The gauge action is now the Yang-Mills action

SG = −1

2

∫
d4x tr (F µνFµν) = −1

2

∫
d4xF aµνF a

µν Tr
(
T aT b

)
= −1

4

∫
d4xF aµνF a

µν (2.19)

2.2 The Lattice

2.2.1 Space-time Discretization

The 1974 paper by K. G. Wilson[23] discretized Euclidean spacetime in order to study QCD.

The lattice is defined as the set of sites n where the fermion fields are defined. The sites are

11



separated by lattice spacing a, and are connected by links where the gluon fields are defined.

n n+ µ̂

a

The lattice in 4D spacetime is formally defined as

Λ = {n = (n1, n2, n3, n4)|n1, n2, n3 = 0, . . . , N − 1;n4 = 0, . . . , NT − 1} (2.20)

Our theories are described in terms of fields and their derivatives. The fermion fields on the

lattice site are now defined as

ψ(n) → Ω(n)ψ(n) (2.21)

ψ̄(n) → ψ̄(n)Ω†(n) (2.22)

The integrals are replaced with sums and the derivatives are replaced with differences

∂µψ(n) →
ψ(n+ µ̂)− ψ(n− µ̂)

2a
(2.23)∫

d4x L(x) → a4
∑
n∈Λ

L(n) (2.24)

Thus, the discretized free fermion action can be written as

S0
F = a4

∑
n∈Λ

ψ̄(n)

(
ψ(n+ µ̂)− ψ(n− µ̂)

2a
+Mψ(n)

)
(2.25)

2.2.2 The Link

Now that the fermion action is discretized, a problem arises. The problem here is that we are

dealing with separate spacetime points in equation 2.25 where ψ̄(n), ψ(n+ µ̂), and ψ(n− µ̂)

12



have different gauge transformations and are therefore non-invariant

ψ̄(n)ψ(n+ µ̂) → ψ̄(n)Ω†(n)Ω(n+ µ̂)ψ(n+ µ̂)

ψ̄(n)ψ(n− µ̂) → ψ̄(n)Ω†(n)Ω(n− µ̂)ψ(n− µ̂)

We seek an object W that has different right and left transformations such that

W (y, x)ψ(x) → Ω(y)W (y, x)ψ(x) (2.26)

Such an object is called the parallel transporter. In the continuum, we wanted to make

sure that ∂µψ(x) transformed like ψ(x). We modified the derivative and enforced gauge

invariance via the introduction of the gauge field Aµ(x). In mathematics, the field Aµ(x) is

called the connection. While the connection dealt with infinitesimal gauge invariance, gauge

invariance over finite distances must now be considered. Because our symmetry is in terms

of local phases, we expect the transporter to be a local phase itself. Since we are moving

matter fields through the potential Aµ(x), we expect the argument of the transporter to

contain A. Thus, if we wish to perform parallel transport from xi to xf along a path Γ, we

use the Wilson line [24]

W (xf , xi) = Pexp
(
ig

∫
Γ

dxµAµ(x)

)
(2.27)

W (xf , xi) → Ω(xf )W (xf , xi)Ω
†(xi) (2.28)

where P is the path ordering operator. We can discretize the Wilson line by evaluating it

at point x to point x + a and approximate the integral, then use the Taylor expansion of

Aµ(x+ a) with respect to a [25]. The result is

W (x+ a, x) = exp
{
iagAµ(n) +O(a2)

}
(2.29)
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Thus, we define link variable Uµ(n), which is the discretized gauge transporter that exists

between sites n and n+ µ̂.

n n+ µ̂n− µ̂

Uµ(n) = eiagAµ(n)U−µ(n) = U †µ(n− µ̂)

Figure 1: Visual representation of a link variable and its inverse between two sites.

Uµ(n) = exp (iagAµ(n)) = 1 + iagAµ(n) +O(a2) (2.30)

U−µ(n) = U †µ(n− µ̂) (2.31)

Uµ(n) → Ω(n)Uµ(n)Ω
†(n+ µ̂) (2.32)

This enables us to retrieve gauge invariance on the lattice. Thus, just as with the con-

tinuum case, we redefine the derivative while incorporating a factor that enables us to have

a gauge invariant action, but this time we have the link variable

ψ(n+ µ̂)− ψ(n− µ̂)

2a
→ Uµ(n)ψ(n+ µ̂)− U−µ(n)ψ(n− µ̂)

2a
(2.33)

As we take a→ 0, the covariant derivative reverts to the continuum version

Uµ(n)ψ(n+ µ̂)− U−µ(n)ψ(n− µ̂)

2a

=
1

2a

[
(1 + igaAµ(n) +O(a2))(ψ(n) + a∂µψ(n) +O(a2))−

(1− igaAµ(n− µ̂) +O(a2))(ψ(n)− a∂µψ(n) +O(a2))
]

=
ψ(n+ µ̂)− ψ(n− µ̂)

2a
+ igAµ(n)ψ(n) +O(a2)

a→0
= ∂µψ(x) + igAµ(x)ψ(x)

This result agrees with what we derived before. Thus, the gauge invariant fermionic action
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is

SF = a4
∑
n∈Λ

ψ̄(n)

(
Uµ(n)ψ(n+ µ̂)− U−µ(n)ψ(n− µ̂)

2a
+Mψ(n)

)
(2.34)

2.2.3 The Plaquette

The next step is to construct the gauge action. To understand the next step, we will briefly

restate the motivation for the gauge action in the continuum. The gauge action is the kinetic

part of the action that describes the gauge field dynamics. In the continuum, we describe

the dynamics in terms of the Fµν(x), which is called “the curvature” in mathematics. This

is evident by the fact that the strength tensor has the form of a curl operator applied on

the potential. Discretizing the Wilson line gave us the link variable, which is now our gauge

field. We now wish to describe the dynamics of the link variable Uµ(n). The curvature on

the lattice is achieved by going in a loop. We can describe a loop in the continuum by setting

the endpoint as the start point in the Wilson line equation, which gives us the Wilson Loop.

The integral can be rewritten using Stokes’ theorem and the result is in terms of the field

strength tensor over the area Σ enclosed by the closed path Γ

W (y, y) = Pexp
(
ig

∮
Γ

dxµAµ(x)

)
= Pexp

(
ig

∫∫
Σ

dxµdxνFµν(x)

)
(2.35)

A loop on the lattice can be described by the plaquette variable defined as the ordered

product of link variables representing a loop

Uµν(n) = Uµ(n)Uν(n+ µ̂)U−µ(n+ µ̂+ ν̂)U−ν(n) (2.36)

Using the Baker-Campbell-Hausdorff formula for the product of exponential matrices:

exp (A) exp (B) = exp

(
A+B +

1

2
[A,B] + . . .

)
(2.37)
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n n+ µ̂

n+ µ̂+ ν̂n+ ν̂

Uµ(n)

Uν(n+ µ̂)

U †µ(n+ ν̂)

U †ν(n)

Figure 2: A plaquette with it’s path ordered link variables

along with equation 2.30, then Taylor expanding terms such as Aµ(n + µ̂) = Aµ(n) +

a∂µAν(n) +O(a2), we obtain

Uµν(n) = exp
(
iga2Fµν(n) +O(a3)

)
(2.38)

= 1 + iga2Fµν(n)−
g2a4

2
F µν(n)Fµν(n) +O(a6)

Therefore the plaquette variable is the lattice version of the Wilson loop. Now that we have

the plaquette, we first isolate the real part of the plaquette variable, then the trace. We can

construct the action by requiring that the taking a → 0 retrieves −1
4

∫
d4xF µνFµν . Using

equation 2.36, we derive the Wilson gauge action

SG =
1

2g2

∑
n∈Λ

∑
µ<ν

[
4− Tr(Uµν(n) + U †µν(n))

]
=
a4

2

∑
n∈Λ

∑
µ,ν

Tr(F µνFµν) +O(a8) (2.39)

2.3 Hamiltonian Formulation

The Hamiltonian formulation of the electromagnetic field can be found in many quantum

field theory texts [21, 26]. For our consideration we will consider pure gauge theory, and

we will neglect the matter fields. The Lagrangian density of the abelian gauge theory from

16



equation 2.9 is used to find the canonical momentum density of the theory

Πµν(x) =
∂L

∂(∂µAν)
=

∂L
∂Fαβ

∂Fαβ

∂(∂µAν)
= −F µν (2.40)

Since we have a freedom to choose the gauge field, we choose the temporal gauge A0 = 0.

Π0j = −F 0j = −(∂0Aj) = Ej (2.41)

L = −1

4
F µνFµν =

1

2
(E2 −B2) (2.42)

The Hamiltonian density is constructed using the time-like component of the momentum

density of the gauge field.

H = Π0µ∂0Aµ − L = E2 − E2 −B2

2
=

1

2
(E2 +B2) (2.43)

is the familiar Hamiltonian density for QED.

The same process will allow us to calculate the Hamiltonian density for a non-abelian

gauge theory

H =
1

2
EaiEa

i +
1

4
F aijF a

ij (2.44)

The first part of the Hamiltonian is called the chromoelectric part, and the second part is

called the chromomagnetic part. Following the steps of Kogut and Susskind in their 1974

paper [27], we will discretize the Hamiltonian. We need to integrate over the space we are

working in, and for the purposes of this thesis, it will be a two dimensional space. Using
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equation 2.39, the Hamiltonian is thus

H =

∫
d2x

1

2
EajEa

j +
1

4
F ajkF a

jk → a2
∑
n∈Λ

(
1

2
EajEa

j +
1

4
F ajk(n)F a

jk(n)

)

= a2
∑
n∈Λ

(
1

2

∑
a

(Ea(n))2 +
1

a4g2
(4− Tr(Ujk(n) + U †jk(n)))

)

Since the plaquette variable is an element of SU(2), we can say that U †µν = Uµν [28]. We

define the plaquette operator as the trace of the plaquette variable □̂ = Tr(Ujk). We

define the sum over the squared components of the chromoelectric field as the SU(2) Casimir

operator Ê2(n) =
∑

a(E
a(n))2 [12]. The chromoelectric field is the canonical conjugate of

the gauge field Aa and has left and right end operators where Ê2 = Ê2
L = Ê2

R. This is because

links connect two sites, and at each site, there is an angular momentum state that is not

necessarily the same. A discussion about the chromoelectric and chromomagnetic energies

can be found in [29].

n n+ µ̂Uµ(n)

ÊR(n)ÊL(n)ÊR(n− µ̂) ÊL(n+ µ̂)

Figure 3: Visual representation of a link variable and its inverse between two sites.

Since the color components of the chromoelectric field are elements of SU(2), they have

the following commutation relations [12]

[Êa
L, Ê

b
L] = −iϵabcÊc

L (2.45)

[Êa
R, Ê

b
R] = iϵabcÊc

R (2.46)

[Êa
L, Ê

b
R] = 0 (2.47)

[Êa
L, Û ] = T aÛ (2.48)

[Êa
L, Û ] = ÛT a (2.49)

We discard the constant from the chromomagnetic term and we rescale factors, and define

18



x = 2/g4 to achieve the SU(2) Kogut-Susskind Hamiltonian as expressed in [13]

H
SU(2)
KS =

∑
j∈links

Ê2
j − 2x

∑
k∈plaquettes

□̂k (2.50)
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3 SU(2) Lattice Gauge Theory

To write down the Hamiltonian as a matrix, a basis must be chosen. In SU(2) lattice gauge

|j,m⟩ |j,m′⟩

|j,m,m′⟩

Figure 4: Angular momentum basis description of a link

theory, the color state of each gauge link is described using the product of angular momentum

basis |j,m,m′⟩ = |j,m⟩ ⊗ |j,m′⟩, where j is the angular momentum quantum number, and

m and m′ are the angular momentum projections of the left and right ends of a link in the

lattice, with m,m′ ∈ {−j,+j}∆=1. Thus the state of the lattice is described by the product

of all the sites

|Λ⟩ =
∏

i∈sites

|ji,mi, ni⟩ (3.1)

Conservation of color is crucial for our theory. Sites on the lattice must form an SU(2)

singlet state to adhere to Gauss’ law. Addition of angular momenta at the sites of the lattice

depends on the number of links converging towards a lattice site.

|j1,m1⟩ |j2,m2⟩

Figure 5: Angular momentum addition of two link ends at a site

For a site with two links connected to it, we use a coupled state to describe the new total

angular momentum and the angular momentum projections of the site:

|J,M⟩ =
+j1∑

m1=−j1

+j2∑
m2=−j2

⟨j1,m1; j2,m2|J,M⟩ |j1,m1⟩|j2,m2⟩ (3.2)

where J ∈ {|j1 − j2|, j1 + j2}∆=1 and M ∈ {−J,+J}∆=1. The Clebsch-Gordan coefficient,

⟨j1,m1; j2,m2|J,M⟩, describes the allowed angular momentum additions that can occur.
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We can convert a Clebsch-Gordan coefficient into an expression in terms of the Wigner-3j

symbols using the following identity:

⟨j1,m1; j2,m2|J,M⟩ = (−1)j2−j1−M
√
2J + 1

 j1 j2 J

m1 m2 −M

 (3.3)

Appendix A.2 contains a review of 3j symbols and their properties. Thus, the new 3j symbol

substitution allows us to write

|J,M⟩ =
+j1∑

m1=−j1

+j2∑
m2=−j2

(−1)j2−j1−M
√
2J + 1

 j1 j2 J

m1 m2 −M

 |j1,m1⟩|j2,m2⟩

The selection rules for 3j symbols are as follows: m1+m2−M = 0 and j1+ j2+J = integer.

Both must be satisfied for the 3j symbol to be non-zero. We are working in the absence

of matter fields, and Gauss’ law must be respected at each site of the lattice, which means

that color must be conserved such that each lattice site has no color. Therefore, we have the

following

|J = 0,M = 0⟩ =
+j∑

m=−j

 j j 0

m −m 0

 |j,m⟩|j,−m⟩ =
∑
m

(−1)j−m√
2j + 1

|j,m⟩|j,−m⟩ (3.4)

For a site with three gauge link connections, we use the procedure above to add the contri-

bution of any of the two links first, then we add the third to that.

Firstly, let’s focus on links 1 and 2, and add them together:

|j12,m12⟩ =
j1∑

m1=−j1

j2∑
m2=−j2

|j1,m1; j2,m2⟩⟨j1,m1; j2,m2|j1, j2, j12,m12⟩ (3.5)
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|j1,m1⟩

|j2,m2⟩

|j3,m3⟩

(a)

|j1,m1⟩

|j2,m2⟩

|j12,m12⟩

|j3,m3⟩

(b)

Figure 6: Angular momentum addition of three links at a site

Now to create a state that describes the site, we’ll add j12 and j3:

|J,M⟩ =
j12∑

m12=−j12

j3∑
m3=−j3

⟨j12,m12; j3,m3|j12, j3, J,M⟩|j12,m12⟩|j3,m3⟩

=

j1∑
m1=−j1

j2∑
m2=−j2

j3∑
m3=−jC

j12∑
m12=−j12

|j1,m1⟩|j2,m2⟩|j3,m3⟩

⟨j1,m1; j2,m2|j1, j2, j12,m12⟩⟨j12,m12; j3,m3|j12, j3, J,M⟩

=

j1∑
m1=−j1

j2∑
m2=−j2

j3∑
m3=−j3

j12∑
m12=−j12

|j1,m1⟩|j2,m2⟩|j3,m3⟩

(−1)j2−j1−m12(−1)j3−j12−M
√

2j12 + 1
√
2J + 1

 j1 j2 j12

m1 m2 −m12


 j12 j3 J

m12 m3 −M


In the absence of fermions, the state of the site with three connections becomes:

|J = 0,M = 0⟩ = (3.6)

(−1)j3+j2−j1
j1∑

m1=−j1

j2∑
m2=−j2

j3∑
m3=−j3

 j1 j2 j3

m1 m2 m3

 |j1,m1⟩|j2,m2⟩|j3,m3⟩

The state of a lattice, |Λ⟩, is therefore equivalent to the product of all its site states. For

our purposes, the lattice will be a one dimensional array of plaquettes with solid boundary
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conditions. Thus, the lattice contains two-linked and three-linked sites only.

The next step is to use the angular momentum basis to express the chromoelectric and

chromomagnetic parts of the Hamiltonian with the angular momentum basis. We can con-

struct any state by applying the link operator onto an unexcited link state

|j,m,m′⟩ =
√
2j + 1U j

m,m′|0, 0⟩ (3.7)

where j is the irreducible representation of SU(2), which corresponds to total angular mo-

mentum. A truncation value will be chosen, in this case jmax = 1/2, so that we limit the

size of our Hilbert space. This means that no link can have a j value larger than jmax. The

gauge link operator will contain two indices for each end of the link. The action of the gauge

link operator is expected to be that of angular momentum addition

Us,s′|j,m,m′⟩ =
j+1/2∑

J=|j−1/2|

√
2j + 1

2J + 1

∑
M.M ′

⟨J,M |j,m;
1

2
, s′⟩⟨J,M ′|j,m′; 1

2
, s′⟩|J,M,M ′⟩ (3.8)

=
∑

J,M,M ′

√
2j + 1

√
2J + 1(−1)1−2j+M+M ′

 j 1
2

J

m s −M


 j 1

2
J

m′ s′ −M ′

 |J,M,M ′⟩

where M = m+ n. The application of the Casimir operator results in the eigenvalue of the

link state

Ê2|j,m,m′⟩ = j(j + 1)|j,m,m′⟩ (3.9)

Thus, each link contributes a factor of j(j + 1) to the chromoelectric energy.

We can now begin to construct the plaquette operator. The focus of this thesis is one

dimensional lattices. A test plaquette with the relevant links labeled is shown in figure 7.

Any links that do not touch the plaquette will not be affected by the plaquette operator,
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and will adhere to the orthogonality relation

⟨l,mL,mR|j, nL, nR⟩ = δljδmLnL
δmRnR

(3.10)

The adjacent links have been included because they are involved in Gauss’ law. The one

dimensional lattice ensures that the top and bottom adjacent links are the same. The full

1 2

34

ja

ql

ja

qr

jr

jr

jl

jl

Figure 7: An arbitrary plaquette in a 1D lattice with the relevant links labeled

derivation for the plaquette operator expectation value can be found in appendix A.3. The

action of the plaquette operator is

□ =
∑

s1,s2,s3,s4

(−1)s1+s2+s3+s4U→−s1,s2U
↑
−s2,s3U

←
s4,−s3U

↓
s1,−s4 (3.11)

The result is therefore [14]

⟨jl, qlf , jaf , qrf , jr|□̂|jl, qli, jai, qri, jr⟩ = (3.12)

dim(jai)dim(jaf )
√
dim(qli)dim(qlf )dim(qri)dim(qrf )(−1)2(2jaf+jl+jr−qli−qri)jl jai qli

1
2

qlf jaf


2jr jai qri

1
2

qrf jaf


2

where dim(j) = 2j + 1. Equations 3.9 and 3.12 show that the only information needed

in calculating the Hamiltonian is the total angular momentum of each link and not the

projections. Thus, the states will only show the j values of the links.
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The Hamiltonian matrix element can be written as

⟨Λfinal|Ĥ|Λinitial⟩ =
∑

l∈links

jl(jl + 1)δinitial,final − 2x
∑

p∈plaquettes

⟨Λfinal|□̂(p)|Λinitial⟩ (3.13)

If the final state matches the initial state, the chromoelectric terms will be computed and

they lie on the diagonal of the matrix. The chromomagnetic terms are akin to the transition

elements and they lie in the off-diagonal region. The plaquette terms act as transition

elements between two states. They encode information about how one state becomes another

under the plaquette operator.

25



4 Quantum Computing

Quantum computing replaces classical computing’s bits with quantum bits, called qubits

[30]. Classical computers use transistors that act like switches; they are either 100% “on”

or 100% “off”. Qubits on the other hand use nanoscale materials and use their quantum

properties, such as entanglement and superposition. A system of one bit needs only one piece

of information to describe whether the bit is in the 0 state or the 1 state, while a qubit is

described by a|0⟩+b|1⟩, where a, b ∈ C and |a|2+ |b|2 = 1. A system of two bits can be in one

of four states: {00, 01, 10, 11}. On the other hand, a system of two qubits can have infinitely

many states a|00⟩+ b|01⟩+ c|10⟩+ d|11⟩, where a, b, c, d ∈ C and |a|2 + |b|2 + |c|2 + |d|2 = 1.

N classical bits can encode 2N states, while N qubits can encode an infinitely many states as

the superposition of the 2N states. These infinite states exist in a continuous range between

the 2N basis states. Measurements of a quantum system are stochastic. When measuring a

system, the state that was in superposition prior to measurement collapses to one of the 2N

states, and multiple “runs” of the quantum program is used to find the coefficients of the

state. These coefficients are normalized, and any operation on the qubit states is unitary,

and thus preserving the normalization condition.

4.1 Quantum Annealing

This section is based on our 2021 publication that inspired the work in this thesis [15].

A quantum annealer is a specialized quantum computer that uses qubits but no gates.

Annealers are designed to find the ground state of an Ising Hamiltonian as a function of

binary variables qi

H(q) =
N∑
i=1

hiqi +
N∑
i=1

N∑
j=1

Jijqiqj (4.1)

The DWave quantum annealer uses a simple Hamiltonian as the initial state of the system.

The ground state of the system is then adiabatically moved to the ground state of the input
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Ising Hamiltonian. The work used various lattices of sizes 2, 4, and 6 plaquettes. A distinct

feature of these lattices is that they have periodic boundary conditions, which can be thought

of as wrapping the rectangle into a cylinder. The Hamiltonian for the 2 plaquette lattice is

constructed using the plaquette operator on the vacuum state a number of times until all

possible states are constructed.

H =
g2

2



0 −2x −2x 0

−2x 3 0 −x
2

−2x 0 3 −x
2

0 −x
2

−x
2

3



|111111⟩

|222211⟩

|211222⟩

|122122⟩

(4.2)

The states make use of superscripts and subscripts in order to represent top and bottom

horizontal links, while the regular script numbers are the vertical links. The values of these

numbers are A = 2jA + 1. The DWave software allows for easy handling of Hamiltonian

0

0

0

0

0

0

(a) |111111⟩

1
2

0

1
2

0

1
2

1
2

(b) |122122⟩

1
2

1
2

1
2

1
2

0

0

(c) |222211⟩

0

1
2

0

1
2

1
2

1
2

(d) |211222⟩

Figure 8: The physical lattice states of a two plaquette lattice with periodic boundary
conditions

matrices that are not size 2N × 2N , like on gate-based quantum computers. This is because
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only the non-zero matrix elements need to be defined on a quantum annealer, while the entire

matrix needs to be 2N ×2N and expressed as a sequence of products of quantum gates. This

means that there will not be a non-physical sector. The lack of gates in the quantum annealer

comes at the cost of requiring many more qubits than gate-based quantum computers. The

next step is to consider the possible symmetries that can be exploited to reduce the size of

the matrix. We can use translational symmetry to create singlet and triplet states, which

allows us to block diagonalize the Hamiltonian into a 3 × 3 block that includes the ground

state

H =
g2

2



0 −2
√
2x 0 0

−2
√
2x 3 − x√

2
0

0 − x√
2

3 0

0 0 0 3



|111111⟩
1√
2
(|222211⟩+ |211222⟩)

|122122⟩
1√
2
(|222211⟩ − |211222⟩)

(4.3)

For larger lattices, there are also left-to-right reflections at a symmetry point, and spatial

translations along the periodic direction. For two-dimensional lattices, and for cases where

jmax > 1/2, there are top-to-bottom reflections. The procedure is then to collect the set

of states belonging to a symmetry category and create new symmetric and anti-symmetric

states. A 4-plaquette lattice with 64 states was used as an example. The states are described

by |Q(j)
i ⟩, which is the ith set with the excitation translated by j sites. Symmetric and

anti-symmetric combinations are created from states that have left-to-right symmetry. The

translation symmetry is expressed using eipx, where the allowed momenta are calculated by

distributing six points over a circle, p = {−2π/3,−π/3, 0, π/3, 2π/3, π}, and x is the integer

location of the plaquette. The real and imaginary parts are used separately. The result of

such operations is the reduction of the size of the Hamiltonian to a 13×13 ground state block.

The quantum annealer was used to compute eigenvalues and eigenvectors. The variational
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method is used to approximate the ground state energy

E0 ≤
⟨ψ|H|ψ⟩
⟨ψ|ψ⟩

(4.4)

This is called the quantum annealer eigensolver (QAE). The two modifications that are made

for the quantum annealer application, in the QAE algorithm, so that all states ψ can be

used, as opposed to binary valued states, and the null vector, where qi = 0, ∀i, must be

dealt with to not give a false minimum. Thus, introducing an adjustable offset parameter λ

that differentiates between the null vector and the ground state

⟨ψ|H|ψ⟩ → F = ⟨ψ|H|ψ⟩ − λ⟨ψ|ψ⟩ (4.5)

The states are extended beyond the single binary option by using multiple binary variables.

Thus, the ith element of the state, described by K binary variables, is

ai = −qiK +
K−1∑
k=1

qiK
2K−k

, ai ∈ [−1, 1) , i = 1, . . . , N (4.6)

Thus, for a N ×N matrix, the state is expected to have N elements, and NK logical qubits

are needed. The set of physical qubits that are used to represent one logical qubit is called a

chain. The length of the chain is determined by the inter-qubit connections. The strength of

the chain is an adjustable parameter that is implemented in the background of the DWave

system. The agreement on the state of each logical qubit in the chain is influenced by the

value of the chain strength, where disagreement is called chain breaking. The abundance

of qubits on the DWave hardware allowed for the use of 21 logical qubits for the vacuum

block of the Hamiltonian in 4.3, where each state is described by K = 7 logical qubits.

The calculation is performed in 1000 annealing cycles for the 3 × 3 case. A new version

of QAE called adaptive quantum annealer eigensolver (AQAE) was developed in the work.

The AQAE algorithm adjusts the number of logical qubits in a chain by zooming in until
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(a) (b)

Figure 9: [15] The curves are the classically computed four eigenvalues of Eq. 4.3, and the
data points are computed on DWave hardware for the two-plaquette lattice in 9a and the
four-plaquette lattice in 9b. This figure also appears in Ref. [15]

the desired accuracy is achieved. The AQAE algorithm uses a value of K = 4, and adds a

logical qubit at each adaptive step until the measured eigenvalue accuracy stops.

Vacuum expectation values were calculated via the differences of the energies, Ei − E0,

that were calculated using AQAE.

⟨0|H|0⟩ = ⟨0|HE|0⟩+ ⟨0|H□|0⟩ (4.7)

The data points from the quantum annealer calculations in figure 11a show agreement with

the classical results for jmax = 1
2
, and show small deviations for jmax = 1. The sum of the

electric and the magnetic parts is closer to the classical curve than the parts are to their

respective classical curves. The dependence on the volume of the lattice is addressed by

dividing equation 4.7 by the number of plaquettes, which gives the energy density.

Figure 11b shows the data points for lattices with two, four, and six plaquettes at jmax =

1
2
. The reason why there are no distinct points for N=6 is because of the agreement of

the N=4 and 6 data points. This figure shows that there is no significant dependence on

lattice volume at the range of x that is used. This is an indication of the locality of the
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Figure 10: AQAE with runs=1000, K=4 per entry, j=1/2, and x=0.2 for the ground state
of a six plaquette lattice. This figure also appears in Ref. [15]

energy densities. The figure also shows that the total energy density has less error than the

chromoelectric and chromomagnetic energy densities.

The next piece of the work is dedicated to the time-evolution calculations. Traditional

lattice gauge theory methods rely on the usage of Euclidean time in its calculations. Eu-

clidean time, or imaginary time, is defined as the result of rotating real time around a

complex time space via a Wick rotation. This prevents real-time dynamics calculations on

classical computers. Due to the lack of a gate set from which operators can be built, the

time evolution problem must be translated into a ground-state eigenvalue problem. This is

done using Kitaev-Feynman clock states, which will be motivated by following the work [31].

The state |ψ(t)⟩ of a system described by the Hamiltonian H(t) can be written as the time

evolution of the initial state

|ψ(t)⟩ = T
(
e
−i

∫ t
t0

dt′H(t′)
)
|ψ(t0)⟩ = U(t, t0)|ψ(t0)⟩ (4.8)
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(a) (b)

Figure 11: 11a shows the chromoelectric and chromomagnetic parts of the SU(2) Hamilto-
nian on a two-plaquette lattice. Solid, dashed, and dotted curves are the classical calculations
for jmax =

1
2
, 1, and 3

2
respectively. 11b shows the energy density calculations with jmax =

1
2
.

The solid, dashed, and dotted curves are classical calculations for Nplaq = 2, 4, and 6. This
figure also appears in Ref. [15]

where T is the time ordering operator, and U(t, t0) is the time evolution operator. The time

evolution operator evolves a system from time t0 to time t. The time evolution operator can

be written as the successive applications of time evolution operators

|ψ(t)⟩ = U(t, t0)|ψ(t0)⟩ = U(t, tn)U(tn, tn−1) . . . U(t1, t0)|ψ(t0)⟩ (4.9)

where t < t1 < . . . < tn < t. For numerical calculations, time is discretized with T discrete

time steps through the usage of states integer indices |0⟩, |1⟩, . . . , |T − 1⟩. Thus, a history

state can be constructed with the idea that the physical system representing |ψ⟩ can be

entangled with an auxiliary system to represent discrete time. The history state is thus a

superposition of the entangled states at all times

|ϕ⟩ = 1√
T

∑
t

|ψt⟩ ⊗ |t⟩ (4.10)

where |ψi⟩ = |ψ(t)⟩|t=ti is time-independent. The time evolution operator is also discretized
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by acting on the physical system with U(t1, t0) = U0, and on the time system by an outer

product that acts on |0⟩ and returns |1⟩. Thus, the operator is U0⊗|1⟩⟨0|. This is generalized

to all time steps. The clock Hamiltonian is defined as

H = C0 +
1

2

∑
t=0

(
I ⊗ |t⟩⟨t| − Ut ⊗ |t+ 1⟩⟨t| − U †t ⊗ |t⟩⟨t+ 1|+ I ⊗ |t+ 1⟩⟨t+ 1|

)
(4.11)

C0 = (I − |ψ0⟩⟨ψ0|)⊗ |0⟩⟨0| (4.12)

where C0 is a penalty term that specifies the initial state. The function to be minimized is

therefore

L =
∑
t,t′

⟨t′|⟨ψt′|C|ψt⟩|t⟩ − λ

(∑
t,t′

⟨t′|⟨ψt′ |ψt⟩|t⟩

)
(4.13)

This is known as time-embedded discrete variational principle (TEDVP). A QAE+TEDVP

can be used to perform calculations after performing a transformation that turns the Hamil-

tonian into an imaginary matrix. Taking the 3 × 3 block from equation 4.3, and adding a

heavy state to get

Hnew =
g2

2



0 −2
√
2x 0 0

−2
√
2x 3 − x√

2
0

0 − x√
2

3 −2
√
2x

0 0 −2
√
2x 6


(4.14)
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which is re-written as a purely imaginary matrix using transformation matrices P

P−1HnewP =
g2

2



3 0 0 −ih−

0 3 −ih+ 0

0 ih+ 3 0

ih− 0 0 3


(4.15)

h± =
1

2

√
18 + 33x2 ±

√
65x4 + 1116x2 + 324 (4.16)

We have two blocks in the imaginary Hamiltonian. The h+ block contains the ground state

and the heavy state we created. The h− block contains the two intermediate states, which

are the states describing the excited lattice and the superposition of single excited plaquettes,

which are of interest. The last step in turning the Hamiltonian purely imaginary is to remove

the 3II part (on the diagonal) because it is only a constant and only energy differences

matter. Thus, we take the block of interest, and we use it to calculate the time-evolution

operator, which is equivalent to a Pauli-Y rotation

Ut =

cos(ωϵ) − sin(ωϵ)

sin(ωϵ) cos(ωϵ)

 , ω =
g2

2
h− (4.17)

For the case of small x, the effect of adding the heavy state is less than the effect of trun-

cating the matrix to 3 × 3. Due to the restrictions of the DWave quantum annealer, only

certain angles are allowed. DWave’s quantum annealer was successfully utilized for lattice

gauge theory calculations. QAE and AQAE were were used to calculate the ground state

energy without the need for quantum gates, but needed lots of pre-processing in the form

of using symmetries and block diagonalization. Vacuum expectation values were also suc-

cessfully computed. Also, for the first time, a time evolution calculation was performed

on a quantum annealer using QAE+TEDVP. The time-evolution calculation required in-

tensive pre-processing and was heavily restricted with regards to time points that could be
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(a) (b)

Figure 12: The probability oscillations between states |122122⟩ and 1
2
(|222211⟩+ |211222⟩). The

data points were computed with x = 0.1. Figure 12a was calculated using two time steps
per run (t = 0 and one t ̸= 0) with K = 7 for a total of 28 logical qubits per calculation and
5×104. Each run has its own color at two locations on the graph. Figure 12b was calculated
using 104 reads with λ = 0.12 and chain strength = 0.3. Each state uses K = 2 for a total of
28 logical qubits for all the 12 data points. The solid lines of both figures are the classically
calculated result with cos2(ωt). This figure also appears in Ref. [15]

calculated. The difficulty with time-evolution calculations on a quantum annealer makes

gate-based quantum computers a more ideal choice for such calculations.

4.2 Gate-Based Quantum Computing

This section will introduce IBM’s gate-based quantum computation and its application to

ground state energy calculations, as well as the need for noise mitigation. Gate-based quan-

tum computers provide a gate set that can be used to encode “quantum circuits”. These

circuits describe a problem or an algorithm. For the sake of this work, the circuits will

represent matrices. Thus, expressing qubit states as vectors is useful for understanding how

gates are used. A single qubit system is represented by the following kets and vectors

|0⟩ =

1
0

 |1⟩ =

0
1


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IBM provides a set of gates that are used to manipulate the system. Such gates are the Pauli

gates X, Y , and Z, the identity gate I, the Hadamard gate H, and the
√
Z phase gate S.

X =

0 1

1 0

 Y =

0 −i

i 0

 Z =

1 0

0 −1


I =

1 0

0 1

 H =
1√
2

1 1

1 −1

 S =

1 0

0 i


The Identity gate and Pauli gates are sufficient to describe any Hermitian matrix. The

Hadamard gate is concerned with superposition of states, and the S gate introduces a phase

into the state. Another set of gates is the rotation gates, defined as the exponential of the

Pauli matrices exp(−iθP/2) = cos(θ/2)I − i sin(θ/2)P

RX(θ) =

 cos(θ/2) −i sin(θ/2)

−i sin(θ/2) cos((θ/2))

 RY (θ) =

cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

 RZ(θ) =

e−iθ/2 0

0 eiθ/2


For the state of a two qubit system, the states of single qubits are multiplied via the

Kronecker product in order to produce the entangled state

|01⟩ = |0⟩ ⊗ |1⟩ =

1
0

⊗

0
1

 =



0

1

0

0


Likewise, the compound gates matrices for two qubit systems are constructed by Kronecker

products of two gates applied to the different qubits

X1Z0|01⟩ = X|0⟩ ⊗ Z|1⟩ =

0 1

1 0


1
0

⊗

1 0

0 −1


0
1

 =

0
1

⊗

 0

−1


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There are multi-qubit gates too, the most prominent of which is the CNOT gate. This is a

gate that is applied to one qubit on the condition that the other qubit is in the |1⟩ state.

This gate is involved with quantum entanglement of the two qubits. The inputs for this gate

are the control qubit and target qubits.

0 •
1

(a) The circuit for CNOT(0,1)

0
1 •

(b) The circuit for CNOT(1,0)

CNOT (c = 0, t = 1) = I ⊗

1 0

0 0

+⊗X

0 0

0 1

 =



1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0



CNOT (c = 1, t = 0) =

1 0

0 0

⊗ I +

0 0

0 1

⊗X =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


The Hamiltonian for a two plaquette lattice with periodic boundary conditions can be written

in terms of Pauli gates and the identity gate

H =



0 0 0 0

0 3 0 0

0 0 3 0

0 0 0 3


− x



0 2 0 2

2 0 1
2

0

0 1
2

0 1
2

2 0 1
2

0


=

3

4
(3II − IZ − ZI − ZZ)− x

4
(5IX + 5XX + 3ZX − 3Y Y ) (4.18)

In order to use the variational method, the expectation value of the Hamiltonian must

be worked out. For an arbitrary two-qubit state, the expectation value of the diago-
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nal(chromoelectric) part of the Hamiltonian is

⟨ψ|H|ψ⟩ =
[
a∗ b∗ c∗ d∗

]


0 0 0 0

0 3 0 0

0 0 3 0

0 0 0 3





a

b

c

d


= (4.19)

3(P01 + P10 + P11) = 3(1− P00)

where Pij is the probability of measuring the system in state |ij⟩ for i, j ∈ {0, 1}. This is

not the case for the off-diagonal (chromomagnetic) part of the Hamiltonian because mea-

surements are done in the z-basis. Thus, unitary transformations must be made.

⟨G⟩ = ⟨ψ|IGI|ψ⟩ = ⟨ψ|U †UGU †U |ψ⟩ = ⟨Uψ|UGU †|Uψ⟩ = ⟨ψ̃|G̃|ψ̃⟩ (4.20)

The unitary transformation needed to turn the expectation value of the Pauli X gate into

the expectation value of the Pauli Z gate is U = H, where H is the Hadamard gate. For the

Pauli Y gate,the unitary transformation is U = HS†. Therefore, the expectation value of

the magnetic Hamiltonian is:

⟨ψ|HM |ψ⟩ = (4.21)

1

2
[5(PXX

00 + PXX
11 ) + 5(P IX

00 + P IX
10 ) + 3(PZX

00 + PZX
11 )− 3(P Y Y

00 + P Y Y
11 )]

The second part is preparing the initial state. The Hamiltonian is dominated by the chro-

moelectric part at low x values. At high x, the Hamiltonian becomes dominated by the

chromomagnetic part. At low x values, we expect the ground state to be dominated by

the state |00⟩. We also expect there to be an equal contribution from the single-plaquette

operator states, represented by qubit states |01⟩ and |11⟩. Finally, we expect a negligible

contribution from the double-plaquette operator state, |10⟩. Therefore the test state can be
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written as:

|ψ(θ)⟩ = cos(θ)|00⟩+ sin(θ)

(
|01⟩+ |11⟩√

2

)
= CH(c = 0, t = 1)Ry(2θ, t = 1)|00⟩ (4.22)

where CH is the control Hadamard gate, and θ is the variational parameter that will help

determine the approximation for the ground state energy. Once the system is initialized in

0 Ry(2θ) •

1 H

2 Ry(2θ) • H

3 H
(a) The circuits to calculate P and P IX/ZX in
parallel

0 Ry(2θ) • H

1 H H

2 Ry(2θ) • Ry(π2)

3 H Ry(π2)

(b) The circuits to calculate PXX and P Y Y in
parallel

Figure 14: The two circuits used to calculate the probabilities needed for the energy of the system

the test state through the appropriate gate sequences, a second sequence of gates needs to

be applied to account for the unitary transformations needed to get the probabilities for off-

diagonal matrix elements. For example, both P IX and PZX have a unitary transformation of

U = H, therefore both probabilities can be calculated from the same experiment, since the

experiment is initialized to |Uψ(θ)⟩. The four necessary experiments needed were split into

two sets of parallel circuits. The first circuit contained the two circuits needed for the Pij

and P
IX/ZX
ij values running in parallel. The Pij circuit used qubits 0 and 1, while the P

IX/ZX
ij

circuit used qubits 2 and 3. The second circuit contained the PXX
ij and P Y Y

ij circuits running

in parallel, using qubits 0&1 and 2&3 respectively in figure 14. IBM’s Melbourne quantum

computer was used, with 1000 runs per data point. The results deviate from the exact

value by a lot. The simulator results for figure 15 indicate that the reason is due to noise.

Using IBM’s error mitigation function, and rerunning the data at IBM’s Yorktown quantum
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Figure 15: Variational Method for a two plaquette lattice with periodic boundary conditions
with θ ∈ [−0.5, 2.00]∆=0.05. IBM’s Melbourne was used. The exact value and the classical
curve were computed using Matlab.

computer yields figure 16, which was constructed from data created using IBM’s Melbourne

quantum computer, which has 15 qubits available. 10 qubits were used on the Melbourne

quantum computer using a circuit that was a combination of figures 14a and 14b, with a

separate circuit for P IX and PZX , hence the need for 10 qubits. The results from the quantum

computer are very far off from the true minimum, where the minimum of the red curve is

E ≈ 7.3. The reason why the data is so far off from the curve calculated using the simulator

is due to bit-flip errors and measurement errors. On a real quantum computer, some qubits

can flip spins. The quantum computers at IBM are calibrated daily in order to reduce these

errors, so the best time to get data is right after calibration. However, the curve in figure 15

was created using data from the quantum computer that were collected many hours after.

However, the error due to time at which the data was collected is a very small part of the

error in the data. The errors are inherent to the quantum computer, and the error must be

mitigated. IBM provides standard measurement error mitigation functions[32] which were

used in a second round of data collection, this time on the Yorktown quantum computer
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Figure 16: Variational Method with measurement error mitigation for a two plaquette lattice
with periodic boundary conditions with θ ∈ [−0.5, 2.00]∆=0.05. IBM’s Yorktown was used.
The exact value and the classical curve were computed using Matlab.

with the circuits in figures 14a and 14b run separately. The QISKIT measurement error

mitigation procedure also sends a few circuits to the quantum computer for the purpose of

collecting data on the error rates between qubits, and QISKIT uses those values to construct a

correction matrix to the data. The result from the mitigated-data agreed with the theoretical

data, with a ground state energy of E ≈ 0. This demonstrates that gate-based quantum

computing can yield impressive results for the purposes of studying lattice gauge theories.

Time evolution on a gate-based quantum computer is a much more computationally

costly calculation. The time evolution circuit is calculated by the time evolution operator.

The increased difficulty lies in using the least number of gates through ordered Trotterizing

to cancel neighboring gates. While it was possible to deal with each term in a sum inside

the Hamiltonian as separate circuits, this is not the case for time evolution. The sums

turn into products, and produce longer circuits that contain CNOT gates. The effect is a

large increase in noise, and less useful data points, as shown in figure 17. Thus, in order

to perform reliable time-evolution calculations, extensive error mitigation must be used. In
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Figure 17: Time evolution of a two plaquette lattice with the initial state |01⟩.

the next section, a more involved error mitigation process will be invented to deal with

time-evolution calculations.
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5 Self-Mitigating Circuits

This section will be based on the publication titled “Self-mitigating Trotter circuits for SU(2)

lattice gauge theory on a quantum computer” [1].

5.1 Common Error Types

The common error types that occur when using the quantum computer can be dealt with

using various algorithms. One source of errors is measurement errors, also called readout

errors, which occur due to imperfect measurements of the qubit states. The errors appear as

readouts of incorrect states of the qubits in our system. For example, the qubit is measured

as |1⟩ while it should be |0⟩. The technique for mitigating these errors is called readout

error correction. Each of the 2N states that represent the n qubits are recreated as separate

circuits, and multiple runs are executed. Each qubit is measured, and the measurements

create a 2N × 2N calibration matrix. This matrix is applied to the results of the runs from

the desired circuit via sqeuential least squares programming [33, 34].

Another source of errors are gate errors. A special concern is the control gate, as this

gate implement quantum entanglement on two or more qubits. Due to the multi-qubit utility

of control gates, the errors are naturally higher. An especially prominent source of errors is

the CNOT gate. A method that was developed to deal with CNOT errors is Zero-Noise

Extrapolation. The concept is quite simple, we can create duplicate circuits where each

CNOT gate is replaced by an odd multiple (three CNOT s, five CNOT , ...), causing a

build up of CNOT -associated noise. The CNOT noise-free value can then be extrapolated

from the line of best fit [35]. The other method of dealing with gate errors is randomized

compiling. Gate errors are either coherent or incoherent. Incoherent errors can be modelled

as depolarizing noise, which makes it easier to mitigate. Randomized compiling works by

turning coherent noise into incoherent noise by surrounding the noisy gates with pairs of

Pauli gates. We used randomized compiling by replacing each CNOT gate with one of
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sixteen combinations of Pauli gates and a CNOT gate, selected randomly [36, 37].

5.2 Time Evolution with Self Mitigation

The notion of using error estimation circuits was inspired by [38]. For a given quantum

circuit, a similar circuit called the estimation circuit was constructed. The estimation circuit

has a similar structure to the original circuit, and is executed to measure the depolarizing

noise rate. The measurements are then used to correct the output of the original circuit. Self

mitigation follows the same line of reasoning, but uses the original circuit as the estimation

circuit instead of a different circuit. This ensures the highest degree of noise estimation

and the least amount of pre-processing in creating a non-identical similar estimation circuit.

The physical circuit will be constructed first, then the theory behind self mitigation will be

discussed.

(a) |00⟩ (b) |11⟩

(c) |10⟩ (d) |01⟩

Figure 18: The physical lattice states of a two plaquette lattice with periodic boundary
conditions

The lattices that will be studied in this section will differ from before by the solid bound-

ary conditions and the Hamiltonian will be different than equation 4.2. The state represent-

ing the lattice with the plaquette operator applied to both plaquettes now accounts for the

new link that closes the boundary conditions, and has chromoelectric energy of 9
4
. The states
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used in this section will assign a qubit to each plaquette, which is possible because jmax = 1
2
.

The links have j values of either j = 0 or j = 1
2
, and the shared links will depend on the state

of the adjacent plaquettes. The top and bottom links are then dependent on the excitation

of the plaquette itself. If the plaquette label in the state describes one of the plaquettes on

the ends of the lattice, the qubit further describes the “caps” of the lattice, along with the

top and bottom links of said plaquettes. Thus, the Hamiltonian and the states are

2

g2
H =



0 −2x −2x 0

−2x 3 0 −x

−2x 0 3 −x

0 −x −x 9
4



|00⟩

|01⟩

|10⟩

|11⟩

(5.1)

The matrix can then be translated into a qubit expression

2

g2
H =

3

8
(7− 3Z0 − 3Z1 − Z0Z1)−

x

2
[(3 + Z1)X0 + (3 + Z0)X1] (5.2)

We seek to exponentiate the Hamiltonian to calculate the time evolution operator. The

exponentiated gates are shown below

e−iθXj = RXj(2θ), e−iθYj = RYj(2θ), e−iθZj = RZj(2θ) (5.3)

which are the rotation gates from equation 4.2. Equation 5.2 contains products of gates,

which don’t have a direct single gate to represent them. The only option is to use unitary

transformations to derive the gates that represent the exponentiated Pauli products. The

result is exp(−iθUPU †) = U exp(−iθP )U †. Some useful unitary transformations are

XZX = −Z, XY X = −Y, HXH = Z, S†Y S = X (5.4)

This can be used to rewrite exponentials of X and of Y into Z rotations: exp(−iθX) =
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H RZ(2θ)H, and exp(−iθY ) = S H RZ(2θ)H S†. Another useful result is the unitary

transformation needed to go from a product of Z gates to a single Z

CX(0, 1)Z ⊗ Z CX(0, 1) = Z ⊗ I (5.5)

CX(1, 0)Z ⊗ Z CX(1, 0) = I ⊗ Z (5.6)

This can be generalized by using indices to specify the qubit that the gates act on. Let

D0 = |0⟩⟨0| and D1 = |1⟩⟨1|, where D0 +D1 = I. Then,

CXjkZjZkCXjk = (D0
j Ik +D1

jXk)ZjZk(D
0
j Ik +D1

jXk)

= (D0
jZjD

0
j )Zk + (D1

jZjD
1
j )(XkZkXk)

= D0
jZk + (−D1

j )(−Zk)

= (D0
j +D1

j )Zk

= Zk

Using these identities, we consider the following three exponentiated gate products:

e−iθZjZk = CXjk RZk(2θ)CXjk (5.7)

e−iθZjYk = CXjk RYk(2θ)CXjk (5.8)

e−iθZjXk = Hk CXjk RZk(2θ)CXjkHk (5.9)

This is due to the fact that the X gate is used to change the sign of Z and Y when used

as a unitary transformation, as shown in equation 5.4, but XXX = X. Since the native

entanglement gate is the CNOT gate, any other control gate (like CH or CZ) are composed

of other gates containing CNOT . This is a crucial point because having Y gates instead of

X gates in the Hamiltonian can make it easier to deal with its Z products because they both

use CNOT gates as unitary transformations, and neighbouring ZjZk and ZjYk products will
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result in less CXjk gates in the time evolution operator. We use the unitary transformation

that changes X to Y in equation 5.4 in order to change the Hamiltonian. Since S =
√
Z,

then SZS† = Z, which leaves the chromoelectric part of the Hamiltonian unchanged. The

chromomagnetic part will be changed and the modified Hamiltonian is

2

g2
H =

3

8
(7− 3Z0 − 3Z1 − Z0Z1)−

x

2
[(3 + Z1)Y0 + (3 + Z0)Y1] (5.10)

The second order Suzuki-Trotter approximation of exponential of matrix sums is

eA+B ≈ e
A
2 eBe

A
2 (5.11)

The single gates are well understood. The product gates are of concern. The ordering

matters, since if we can put exponentials of ZjZk and ZjYk next to each other, the exponential

is represented by two CXjk gates less than if there was a single gate in between them. Thus,

if we consider the product gates only, we get

e−itH = ei(xt/4)Z1Y0ei(3t/16)Z0Z1ei(3xt/4)Y0ei(9t/16)Z1ei(9t/16)Z0ei(3xt/4)Y1ei(x/2)Z0Y 1

× ei(3xt/4)Y1ei(9t/16)Z0ei(9t/16)Z1ei(3xt/4)Y0ei(3t/16)Z0Z1ei(xt/4)Z1Y0 (5.12)

This strategic choice results in the following ordered gate product for a single Trotter step

CX10RY0(−
xt

2
)RZ0(−

3t

4
)CX10RY0(−

3xt

2
)RZ1(−

9t

4
)RZ0(−

9t

4
)RY1(−3xt)CX01RY1(−xt)CX01

RY1(−3xt)RZ0(−
9t

4
)RZ1(−

9t

4
)RY0(−

3xt

2
)RZ0(−

3t

4
)CX10CX10RY0(−

xt

2
) (5.13)

The total time t is divided into small time intervals dt in order to compensate for this

approximation. The time evolution calculations in [14] were composed of one or two Trotter

steps, containing a mere six CNOT gates. Self mitigation aims to increase the capabilities.

To implement self-mitigation, there must be two runs. The first run is called the “physics
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Figure 19: A second-order Suzuki-Trotter step for the two plaquette lattice. The first and
the last CX gates cancel with the CX gates of the neighbouring Trotter steps, leaving four
CX per Trotter step. This figure also appears in Ref. [1].

run”, which applies N Trotter steps in the forward time direction to arrive at the final state

at time t. The second run is called the “mitigation run”, where N/2 Trotter steps are applied

in the forward time direction, and then N/2 Trotter steps are applied in the backward time

direction (dt → −dt). On an ideal quantum computer, the mitigation run would return

the system to the initial state. Measuring the qubits at the end provides a measure of the

acquired errors along the forward-backward time evolution trip. The acquisition of the same

amount of error as the physics circuit is the motivation behind using the physics circuit for

the mitigation run. Randomized compiling is also applied to both physics and mitigation

runs. Each CNOT gate is replaced by one of 16 randomized versions of the gates in appendix

A.4. The extra Pauli gates introduced by randomized compiling can be combined with those

from neighboring CNOT gates and with the rotation gates in between to reduce the circuit

size.

This is encoded on IBM’s quantum computer using IBM’s python package Qiskit. The

circuit in figure 19 is a single time-step. Our code submitted 300 runs with 104 hits per run.

The 300 runs are sent to the IBM hardware as a single python list to ensure the physics and

48



mitigation circuits run consecutively. This is important because hardware conditions affect

the results due to the calibration of the hardware. Runs occurring near the calibration time

produce less noisy results than runs occurring a long time after the hardware calibration.

Measurement mitigation/ readout error mitigation is also used, but we wrote our own code

for it. The upper panel of figure 20 displays the averaged results of the physics run and the

Figure 20: Time evolution of an excitation on a two-plaquette lattice from an initial state of
a excited left plaquette □□. The inverse gauge coupling is x = 2.0 and time step dt = 0.08.
The red solid (blue dashed) curve is the exact probability of the left (right) plaquette being
measured to have j = 1

2
. For the upper panel: The red left-pointing (blue right-pointing)

triangles are the physics data and the red (blue) error bars without symbols are the mitigation
data from the same circuit but with half the steps forward in time and then half backward
in time. All these points were computed on ibm lagos. For the lower panel: The triangles
are the physics results obtained by applying the self-mitigation correction to the data from
the upper panel. The results were obtained from 148 physics runs and 148 mitigation runs,
each with different CNOT randomizations. This figure also appears in Ref. [1].

averaged results from the mitigation run at x = 2.0. For each data point, a statistical error

bar for 148 runs is obtained from 1480 bootstrap samples and then combined in quadrature

with the statistical error from 104 hits per run. Ideally, the mitigation results would indicate
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that there is a 100% probability of returning to the initial state. That is, the probability of

measuring a qubit in state |1⟩ would be 1 for the left plaquette, and 0 for the right plaquette.

Instead, we observe that there is a smooth decline approaching the line at 1
2
, which is called

pure noise because there would be a 50% chance of being in either state. The raw physics

results are bounded by the mitigation results since the physics probabilities are between 0

and 1.

If self mitigation and randomized compiling leads to incoherent noise that is independent

of the dt→ −dt sign flip in the rotation gates of the mitigation circuit, then we can construct

a simplistic model of error that can help approximate the true result.

P
(physics)
true − 1

2

P
(physics)
computed − 1

2

=
P

(mitigation)
true − 1

2

P
(mitigation)
computed − 1

2

(5.14)

The true and computed probabilities are compared to the probability of pure noise. In this

case, there are only two possibilities, which means that Pnoise = 0.5. The idea is that the

ratio of the true value Ptrue and random noise difference to the computed value Pcomputed

and random noise difference is equivalent between the physics and the mitigation circuits.

The computed probabilities are obtained from the runs on the quantum hardware. The true

value for the physics run is the desired value, and the true value for the mitigation run is

either 0 or 1, depending on the initial state. Thus, the true physics result is therefore

P
(physics)
true =

1

2
+

(
P

(physics)
computed −

1

2

)(
P

(mitigation)
true − 1

2

P
(mitigation)
computed − 1

2

)
(5.15)

The lower panel of figure 20 shows the true values plotted. Comparison between the two

panels show the significant extension of the range of data that agree with the classical curves.

5.3 Travelling Excitation

This section will use self mitigation to create travelling excitation plots. While figure 20

was calculated with x = 2.0, which means that the chromomagnetic part of the Hamilto-
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nian overshadowed the chromoelectric part. A choice of x ⪅ 1 would put the emphasis on

the chromoelectric eigenstates while still allowing for transition between the states. The

propagation time will be larger for smaller x, becoming infinite at x = 0. This is predicted

by the dependence of the off-diagonal x-dependent terms, which act as transition elements

between the chromoelectric eigenstates. Thus, a choice of x = 0.8 is made so that excitation

propagation can occur within an observable time window. As we evaluate the time evolution

at larger times, the CNOT gates accumulate, approaching 300 CNOT gates, and the data

deviates from the classically calculated exact curves.

Figure 21: Excitation moving from one plaquette to another on a two-plaquette lattice with
x = 0.8 and dt = 0.12. The initial state is an excited left plaquette, □□. The red solid
(blue dashed) curve is the exact probability of the left(right) plaquette being measured to
have j = 1

2
. The red left-pointing (blue right-pointing) triangles are the calculations on

ibm lagos after self mitigation. This figure also appears in Ref. [1].
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5.4 Time evolution on a Five Plaquette Lattice

This section will consider a five-plaquette lattice. This requires 5 qubits. The ibm lagos

hardware provides 7 qubits. However, the longest string of nearest-neighbor qubits is of

length 5, thus the choice of a five-plaquette lattice.

Figure 22: The initial state for the time evolution of a five-plaquette lattice, |00100⟩.

For a general N plaquette one dimensional lattice, the Hamiltonian can be generalized

as

H(N)
E (x) =

3

8
(3N + 1)− 9

8
(Z0 + ZN−1)−

3

4

N−2∑
n=1

Zn −
3

8

N−2∑
n=0

ZnZn+1 (5.16)

H(N)
M (x) = −x

2

(
(3 + Z1)X0 + (3 + ZN−2)XN−1 +

N−2∑
n=1

(3 + Zn−1)(
Xn

4
)(3 + Zn+1)

)
(5.17)

This is used to construct the Hamiltonian for a five-plaquette lattice with N = 5. As per

the previous treatment, the X gates will be changed to Y gates. A new occurrence must be

addressed. There are terms that contain three qubits in the chromomagnetic Hamiltonian.

This can be easily dealt with using the prescription from equation 5.9 for the two gate

exponentials to deal with the three gate exponential

e−iθZjYkZl = CXlkCXjkRYk(2θ)CXjkCXlk (5.18)

A strategic ordering of the gates in the time-evolution operator can reduce the CNOT

gates to 16 CNOT gates for a first-order Trotter step and 22 CNOT gates for the second-

order Trotter step. The result is shown in figure 23. For the two-plaquette lattice, we use a

constant time step |dt| while changing the number of Trotter steps, but for the five-plaquette
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Figure 23: A second order Suzuki-Trotter step for the five-plaquette lattice. This figure also
appears in Ref. [1].

lattice we do the opposite. We use various time step sizes while keeping the number of Trotter

steps to four. Therefore, the total circuit contains only 94 randomized CNOT gates. These

circuits are sent to the hardware with 300 runs(each with 104 hits), where 25 = 32 runs are

used for measurement-error mitigation, 134 runs for the physics calculation, and 134 for the

self-mitigation circuit. Four separate jobs were used per data point and analyzed separately.

The averaged results are shown in figure 24. The zero-noise extrapolation method was

applied to calculate the open symbols. Each CNOT gate is replaced by a triplet of identical

CNOT gates. A linear extrapolation of the triplet results and the filled symbols results

(CNOT singlets) are used to calculate the expected zero-noise result.
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Figure 24: Time evolution on a five-plaquette lattice from the initial state of figure 22
with x = 2.0. The black solid, red dotted, and blue dashed curves are respectively the
exact probability of measuring j = 1

2
for the center plaquette, its neighbor, and the outer

plaquette, □□□□□. The black circles, red squares, and blue triangles are the corresponding
calculations on the ibm lagos quantum processor after self mitigation. Each filled data point
uses four second-order Trotter steps and 94 CNOT gates. Open data points are augmented
by zero-noise extrapolation. This figure also appears in Ref. [1].

This work has shown a new method for error correction called self-mitigation. This

method was used to study time evolution of SU(2) lattice gauge theory and has shown

significant improvements to the range of coherent data. From weaker inverse coupling to

stronger inverse coupling, useful physical results were produced using self-mitigation. This

method is uniquely suited for time evolution, and the use of the physics circuit in the mit-

igation run, as opposed to a similar circuit containing the most noisy gates, and ensures

very close approximation to the errors accumulated in the physics circuit. Combining other

mitigation techniques with self-mitigation has shown even further improvements to noise re-

duction. Zero noise extrapolation is especially useful to further mitigate the errors. However,

randomized compiling is crucial to our scheme. Randomized compiling converts gate errors
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from coherent errors into incoherent errors, which can then be dealt with.
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6 Pauli Decomposition Algorithm

This section will revolve around the Pauli decomposition algorithm that was written for the

purpose of dealing with large Hamiltonians. This will be useful when attempting to consider

larger jmax values, or different lattice geometries that extend to the second dimension. The

structure of this section is to firstly discuss the one qubit example, then the two qubit

example will be studied from which symmetry techniques will be developed that allow for

the Pauli decomposition of any matrix.

A quick review of Pauli decomposition for 2×2 matrices will be shown. This will motivate

the symmetries of diagonal and anti-diagonal matrices. Any 2×2 matrix can be decomposed

into the weighted sum of four basis matrices Mi that I shall call the basis matrices,

a1 a2

a3 a4

 =
4∑

i=1

miMi = a1

1 0

0 0

+ a2

0 1

0 0

+ a3

0 0

1 0

+ a4

0 0

0 1


Since we are working with quantum gates, it is natural for us to use Pauli basis, which is

composed of the Pauli matrices and the identity matrix:

I =

1 0

0 1

 X =

0 1

1 0

 Y = i

0 −1

1 0

 Z =

1 0

0 −1


and the basis matrices can be rewritten in terms of the Pauli matrices

M1 =
I + Z

2
M2 =

X + iY

2
M3 =

X − iY

2
M4 =

I − Z

2

Therefore, we can write any 2× 2 matrix as:

a1 a2

a3 a4

 =
4∑

i=1

piPi =
a1 + a4

2
I +

a2 + a3
2

X +
a2 − a3

2
iY +

a1 − a4
2

Z
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Separating the diagonal and the anti-diagonal parts of the matrix sheds light on an obvious

property of Pauli matrices. The diagonal part is written in terms of the mixing of the I and

Z gates, since they are purely diagonal

a1 + a4
2

I +
a1 − a4

2
Z =

1

2

[
I Z

]1 1

1 −1


a1
a4


The anti-diagonal part is described by the anti-diagonal Pauli gates X and Y

a2 + a3
2

X +
a2 − a3

2
iY =

1

2

[
X iY

]1 1

1 −1


a2
a3


This rewriting of the diagonal and anti-diagonal in terms of quadratic forms will be useful

in generalizing this approach. A general Hermitian 4× 4 matrix can be written as



a1 a2 a3 a4

a5 a6 a7 a8

a9 a10 a11 a12

a13 a14 a15 a16


To write the Pauli decomposition of this matrix, products of Pauli matrices are needed.

Following the same line of thought from before, products of the diagonal Pauli gates will

give

a1 + a6 + a11 + a16
4

II +
a1 − a6 + a11 − a16

4
IZ +

a1 + a6 − a11 − a16
4

ZI +
a1 − a6 − a11 + a16

4
ZZ

=
1

4

[
II IZ ZI ZZ

]


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1





a1

a6

a11

a16



57



This contains similarities to the 2 × 2 case, and a pattern emerges. The first matrix in the

middle is recognized to be the Hadamard gate in the 2× 2 case, and the Kronecker product

of two Hadamard gates. Thus, we begin the generalization to N qubits by introducing a

2N × 2N matrix BN that generates a Kronecker product of N Hadamard gates

B(N) = 2−N/2

N⊗
k=1

H (6.1)

The second observation is how the diagonal of a matrix is always described by the diagonal

gates. Likewise, the anti-diagonal is described by the anti-diagonal gates

[
XX iXY iY X −Y Y

]


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1





a4

a7

a10

a13


The other off-diagonal elements are described by products of diagonal and anti-diagonal

gates. To generalize this, we define the following

A
(1)
0 =

[
I Z

]
(6.2)

A
(1)
1 =

[
X iY

]
(6.3)

where the superscript is the number of qubits, and the subscript is 0 for diagonal and 1

for anti-diagonal. We can create the row vector containing the gates needed via Kronecker
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products of the Ai row vectors.

A
(2)
00 ≡ A

(1)
0 ⊗ A

(1)
0 =

[
II IZ ZI ZZ

]
A

(2)
01 ≡ A

(1)
0 ⊗ A

(1)
1 =

[
IX iIY ZX iZY

]
A

(2)
10 ≡ A

(1)
1 ⊗ A

(1)
0 =

[
XI XZ iY I iY Z

]
A

(2)
11 ≡ A

(1)
1 ⊗ A

(1)
1 =

[
XX iXY iY X −Y Y

]

The third observation is the column vectors on the right of the quadratic forms. They contain

information from the matrix being decomposed. For the 1 qubit case, the diagonal element

can be extracted using the diag function, which creates a column vector containing the N

diagonal elements of an 2N × 2N input matrix. For the off diagonal elements, a rotation

is performed using the X gate to position the anti-diagonal elements on the diagonal, then

diag is used for extraction. Thus, the result for a 2× 2 matrix M is

diag(MI) =

a1
a4


diag(MX) =

a2
a3



This can be generalized by introducing the following

C(N)
p1p2...pN

=
N⊗
k=1

Xpk
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If we want the coefficients associated with A
(2)
01 , then C

(2)
01 = X0 ⊗X1 = IX. Thus,

A(N)
p1...pN

B(N)diag(MC(N)
p1...pN

) (6.4)

where M is the input matrix. To test this, consider a Hermitian 4×4 matrix. The algorithm

will first multiply sectors of the matrix by C
(2)
ij

MC
(2)
00 =



a1 0 0 0

0 a2 0 0

0 0 a3 0

0 0 0 a4





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


=



a1 0 0 0

0 a2 0 0

0 0 a3 0

0 0 0 a4



MC
(2)
01 =



0 b1 0 0

b1 0 0 0

0 0 0 b2

0 0 b2 0





0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


=



b1 0 0 0

0 b1 0 0

0 0 b2 0

0 0 0 b2



MC
(2)
10 =



0 0 c1 0

0 0 0 c2

c1 0 0 0

0 c2 0 0





0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


=



c1 0 0 0

0 c2 0 0

0 0 c1 0

0 0 0 c2



MC
(2)
11 =



0 0 0 d1

0 0 d2 0

0 d2 0 0

d1 0 0 0





0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


=



d1 0 0 0

0 d2 0 0

0 0 d2 0

0 0 0 d1


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then the next step is the diag function

diag(MC
(2)
00 ) =

[
a1 a2 a3 a4

]T
diag(MC

(2)
01 ) =

[
b1 b1 b2 b2

]T
diag(MC

(2)
10 ) =

[
c1 c2 c1 c2

]T
diag(MC

(2)
11 ) =

[
d1 d2 d2 d1

]T

The python code for this algorithm is in appendix A.5
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7 Theoretical Extensions

This section contains attempts to go beyond the systems studied in this thesis. The first

part will discuss weaker coupling systems, characterized by jmax = 1. The second part will

show attempts at describing a four-plaquette lattice in the shape of a square, or a cloverleaf.

This section is meant to set up the theoretical foundations for a proper computational study

of these new extensions.

7.1 Weaker Coupling Two-Plaquette Lattice

The previous studies focused on jmax = 1
2
, which allowed for mapping plaquettes onto in-

dividual qubits. The links were either excited (j = 1
2
) or not excited (j = 0). To probe a

weaker coupling domain, the Hamiltonian will be truncated at jmax = 1. This introduces a

new type of link, which will be referred to as the double-excited link. The shared links can

no longer be determined by the states of the adjacent plaquettes. This means that there is

no longer a one-to-one mapping between plaquettes and qubits.

A

B

C

Figure 25: The labels for a two-plaquette lattice with jmax = 1 and A = 2jA+1, B = 2jB+1,
and C = 2jC + 1 .

The states are constructed via the repeated application of the plaquette operator to the

vacuum state. The lattices are visualized in appendix A.6. The Hamiltonian of the two

plaquette system is thus
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0 −2x −2x 0 0 0 0 0 0 0 0 111

−2x 3 0 −x −
√
3x −2x 0 0 0 0 0 221

−2x 0 3 −x −
√
3x 0 −2x 0 0 0 0 122

0 −x −x 9
2

0 0 0 −
√
3x −

√
3x 0 0 212

0 −
√
3x −

√
3x 0 13

2
0 0 −x

3
−x

3
0 0 232

0 −2x 0 0 0 8 0 −2
√
3x
3

0 0 0 331

0 0 −2x 0 0 0 8 0 −2
√
3x
3

0 0 133

0 0 0 −
√
3x −x

3
−2
√
3x
3

0 9 0 −2
√
3x
3

−4x
3

322

0 0 0 −
√
3x −x

3
0 −2

√
3x
3

0 9 −2
√
3x
3

−4x
3

223

0 0 0 0 0 0 0 −2
√
3x
3

−2
√
3x
3

12 0 313

0 0 0 0 0 0 0 −4x
3

−4x
3

0 14 333

This 11 × 11 matrix can not be mapped onto qubits because it is not a 2N × 2N matrix.

Common methods of dealing with this issue is through addition of a non-physical sector

containing only zeroes. This would bring the size of the matrix to 16× 16, and hence would

require four qubits. Another option is to further truncate the matrix down to 8 × 8. This

would defeat the purpose of exploring the jmax = 1 sector.

This section proposes a different approach, which is to attempt to exploit the translation

symmetry of the system. There are three pairs of states that can be combined into symmetric

and anti-symmetric states.

|221⟩, |122⟩ → |221⟩ ± |122⟩√
2

|331⟩, |133⟩ → |331⟩ ± |133⟩√
2

|322⟩, |223⟩ → |322⟩ ± |223⟩√
2

This allows for the block diagonalization of the Hamiltonian matrix into a 8 × 8 vacuum
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block and a 3× 3 block. The vacuum block is therefore

0 −2
√
2x 0 0 0 0 0 0 |111⟩

−2
√
2x 3 −

√
2x −

√
6x −2x 0 0 0 |221⟩+|122⟩√

2

0 −
√
2x 9

2
0 0 −

√
6x 0 0 |212⟩

0 −
√
6x 0 13

2
0 −

√
2x

3
0 0 |232⟩

0 −2x 0 0 8 − 2x√
3

0 0 |331⟩+|133⟩√
2

0 0 −
√
6x −

√
2x
3

− 2x√
3

9 −2
√
6x
3

−2
√
8x
3

|322⟩+|223⟩√
2

0 0 0 0 0 −2
√
6x
3

12 0 |313⟩

0 0 0 0 0 −2
√
8

3
0 14 |333⟩

(7.1)

This allows for the utilization of three qubits without sacrificing sections of the matrix that

include interesting high energy physics. This symmetric block is ideal for ground-state energy

calculations and vacuum expectation value calculations. This form focuses on the amount

of excitation rather than the location of the excitation in the lattice. For time evolution,

this is not useful for observing propagation of the excitation, specially because the notion of

double-excitation is now an occurrence. The utility of the symmetric block lies in the ease

of studying the change between the different excitation types (i.e. from single-excited lattice

to double-excited).

The gate representation of the symmetric block is obtained using the Pauli decomposition

algorithm. Due to the size of the matrix, the gate representation is shown below in pieces
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as the coefficients of the gates with the respective gates on the right



7.1250

−1.0000

−2.1250

0



III

IIZ

IZI

IZZ

,



−3.6250

−0.2500

0.1250

−0.2500



ZII

ZIZ

ZZI

ZZZ

,



−0.9958

−0.9958

−0.4184

−0.4184



IIX

IZX

ZIX

ZZX

,



−1.0838

1.0838

−0.1410

0.1410



IXI

IXZ

ZXI

ZXZ

,



−0.7618

0.7618

0.0547

−0.0547



IXX

−IY Y

ZXX

−ZY Y

,



−0.5000

−0.5000

−0.5000

−0.5000



XYX

−Y IY

XZX

−Y ZY

,



−0.1179

0.1179

0.1179

−0.1179



XXI

XXZ

−Y Y I

−Y Y Z

,



−0.6124

−0.6124

0.6124

0.6124



XXX

−Y XY

−Y Y X

−XY Y

Now that the coefficients are calculated, the goal in the future would be to construct the

time evolution operator and calculate the results on the quantum computer.
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7.2 Cloverleaf Lattice

1 2 3

4 5 6

7 8 9

A

B

C

D

E

F

G H I

J K L

Figure 26: The cloverleaf lattice

The other extension to the theory is going from one-dimensional lattices to two-dimensional

ones. The cloverleaf lattice is a four-plaquette lattice arranged in a square. A new type of

site appears that was not discussed before. This four-linked site results in different repre-

sentations depending on the grouping of links. I will group the positive x and y axes to get

j12, then I will group the negative x and y axes to get j34, and then I will add the results to

get J . Thus, the resultant state is

j1

j2

j4

j3

j1

j2

j3

j4

j12

j34

Figure 27: The link groupings in a four-linked site
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|J,M⟩ =
∑

m1,m2,m3,
m4,m12,m34

(−1)−j12+j34−j1+j2−j3+j4−m12−m34−M
√

2j12 + 1
√
2j34 + 1

√
2J + 1

 j1 j2 j12

m1 m2 −m12


 j3 j4 j34

m3 m4 −m34


 j12 j34 J

m12 m34 −M


|j1,m1⟩|j2,m2⟩|j3,m3⟩|j4,m4⟩ (7.2)

The next step is to ensure there is zero color at the sites, and then apply Gauss’ Law

|0, 0⟩ =
∑

m1,m2,m3,
m4,m12

(−1)−j1+j2−j3+j4+j12−m12
√
2j12 + 1

 j1 j2 j12

m1 m2 −m12


 j3 j4 j12

m3 m4 m12

 |j1,m1⟩1|j2,m2⟩2|j3,m3⟩3|j4,m4⟩4 (7.3)

The tests for the validity of this solution are provided in appendix A.7 which confirm the

solution accurately represents all types of sites in two-dimensions. The lattice is then con-

structed from the product of nine states; four states for the two-linked sites on the corners

of the square, four states for the three-linked sites on the midpoints of the square, and one

state for the four-linked site at the center. The object of our study will be a unit plaquette

1 2

4 5

A

B

D

E

G H

J K

Figure 28: The cloverleaf lattice
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on the cloverleaf lattice shown in figure 28. These are the states of the sites in the unit

plaquette

|jA, jB, jD, jE, jG, jH , jJ , jK⟩ =∑
mA,mG,mAG

∑
mD,mH ,m′

A,mDH

∑
mB ,mJ ,m

′
G,mBJ

∑
mE ,mK ,mB ,mH ,mEK

|jA,mA,m
′
A⟩|jH ,mH ,m

′
H⟩|jB,mB,m

′
B⟩|jG,mG,m

′
G⟩|jE,mE⟩|jK ,mK⟩|jD,mD⟩|jJ ,mJ⟩

(−1)−jA+jG+jAG−mAG
√

2jAG + 1

 jA jG jAG

mA mG −mAG


0 0 jAG

0 0 mAG


(−1)−jD+jH−jA+jDH−mDH

√
2jDH + 1

 jD jH jDH

mD mH −mDH


 jA 0 jDH

m′A 0 mDH


(−1)−jB+jJ+jG+jBJ−mBJ

√
2jBJ + 1

 jB jJ jBJ

mB mJ −mBJ


0 jG jBJ

0 m′G mBJ


(−1)−jE+jK−jB+jH+jEK−mEK

√
2jEK + 1

 jE jK jEK

mE mK −mEK


 jB jH jEK

m′B m′H mEK


The identities used can be found in appendix A.2. The unit plaquette state can be simplified

by collapsing the 3j symbol with two zero columns to enforce jAG = mAG = 0. That makes

it possible to rewrite the remaining 3j symbol for that line with δjA,jGδmA,−mG
. The second

and third lines can be simplified with δjA,jDH
δmA,mDH

and δjBJ ,jGδmBJ ,mG
respectively.

|jA, jB, jD, jE, jG, jH , jJ , jK⟩ =
∑

mA,mG

∑
mD,mH ,m′

A

∑
mB ,mJ ,m

′
G

∑
mE ,mK ,mB ,mH ,mEK

δjA,jGδmA,−mG

(−1)jA−mA

√
2jA + 1

(−1)−jD+jH−jA(−1)−jB+jJ+jG(−1)−jE+jK−jB+jH+jEK−mEK
√
2jEK + 1 jD jH jA

mD mH m′A


 jB jJ jG

mB mJ m′G


 jE jK jEK

mE mK −mEK


 jB jH jEK

m′B m′H mEK


|jA,mA,m

′
A⟩|jH ,mH ,m

′
H⟩|jB,mB,m

′
B⟩|jG,mG,m

′
G⟩|jE,mE⟩|jK ,mK⟩|jD,mD⟩|jJ ,mJ⟩
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Applying the plaquette operator to the unit plaquette gives

□1|jA, jB, jD, jE, jG, jH , jJ , jK⟩ =∑
s1,s2,s4,s5

(−1)s1+s2+s4+s5
∑

JA,MA,M ′
A

∑
JH ,MH ,M ′

H

∑
JB ,MB ,M ′

B

∑
JG,MG,M ′

G∑
mA,mG

∑
mD,mH ,m′

A

∑
mB ,mJ ,m

′
G

∑
mE ,mK ,mB ,mH ,mEK

δjA,jGδmA,−mG

√
2jEK + 1√
2jA + 1

(−1)jA−mA−jD+jH−jA−jB+jJ+jG−jE+jK−jB+jH+jEK−mEK

√
(2jA + 1)(2JA + 1)

√
(2jH + 1)(2JH + 1)

√
(2jB + 1)(2JB + 1)

√
(2jG + 1)(2JG + 1)

(−1)1−2jA+MA+M ′
A(−1)1−2jH+MH+M ′

H (−1)1−2jB+MB+M ′
B(−1)1−2jG+MG+M ′

G jD jH jA

mD mH m′A


 jB jJ jG

mB mJ m′G


 jE jK jEK

mE mK −mEK


 jB jH jEK

m′B m′H mEK


 jA

1
2

JA

mA −s1 −MA


 jA

1
2

JA

m′A s2 −M ′
A


 jH

1
2

JH

mH −s2 −MH


 jH

1
2

JH

m′H s5 −M ′
H


 jB

1
2

JB

mB s4 −MB


 jB

1
2

JB

m′B −s5 −M ′
B


 jG

1
2

JG

mG s1 −MG


 jG

1
2

JG

m′G −s4 −M ′
G


|JA,MA,M

′
A⟩|JH ,MH ,M

′
H⟩|JB,MB,M

′
B⟩|JG,MG,M

′
G⟩|jE,mE⟩|jK ,mK⟩|jD,mD⟩|jJ ,mJ⟩

The next step is to project a final state to the result above, which is the initial state being

acted upon by the plaquette operator. The following Kronecker deltas appear

δjA,j′A
δmA,nA

δm′
A,n′

A
δjB ,j′B

δmB ,nB
δm′

B ,n′
B
δjH ,j′H

δmH ,nH
δm′

H ,n′
H
δjG,j′G

δmG,nG
δm′

G,n′
G

δjE ,j′E
δmE ,nE

δjK ,j′K
δmK ,nK

δjD,j′D
δmD,nD

δjJ ,j′J δmJ ,nJ
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This results in the following

⟨j′A, j′B, j′D, j′E, j′G, j′H , j′J , j′K |□1|jA, jB, jD, jE, jG, jH , jJ , jK⟩ =∑
s1,s2,s4,s5

(−1)s1+s2+s4+s5
∑

JA,MA,M ′
A

∑
JH ,MH ,M ′

H

∑
JB ,MB ,M ′

B

∑
JG,MG,M ′

G∑
mA,mG

∑
mD,mH ,m′

A

∑
mB ,mJ ,m

′
G

∑
mE ,mK ,mB ,mH ,mEK

∑
nEK

δjA,jGδmA,−mG

√
2jEK + 1

√
2j′EK + 1

2jA + 1
(−1)2(jA−mA−jD+jH−jA−jB+jJ+jG−jE+jK−jB+jH)+jEK−mEK+j′EK−nEK

√
(2jA + 1)(2JA + 1)

√
(2jH + 1)(2JH + 1)

√
(2jB + 1)(2JB + 1)

√
(2jG + 1)(2JG + 1)

(−1)1−2jA+MA+M ′
A(−1)1−2jH+MH+M ′

H (−1)1−2jB+MB+M ′
B(−1)1−2jG+MG+M ′

G jD JH JA

mD MH M ′
A


 JB jJ JG

MB mJ M ′
G


 jE jK jEK

mE mK −mEK


 JB JH jEK

M ′
B M ′

H mEK


 jD jH jA

mD mH m′A


 jB jJ jG

mB mJ m′G


 jE jK j′EK

mE mK −nEK


 jB jH j′EK

m′B m′H nEK


 jA

1
2

JA

mA −s1 −MA


 jA

1
2

JA

m′A s2 −M ′
A


 jH

1
2

JH

mH −s2 −MH


 jH

1
2

JH

m′H s5 −M ′
H


 jB

1
2

JB

mB s4 −MB


 jB

1
2

JB

m′B −s5 −M ′
B


 jG

1
2

JG

mG s1 −MG


 jG

1
2

JG

m′G −s4 −M ′
G


The next step is to attempt to introduce 6j symbols, which are explained in appendix A.2.

There is a way to represent 3j and 6j symbols [39], which can give insight into which direction

to go. Using [39], it is clear that nine of the 3j symbols can be manipulated to forming 6j

symbols, as in the plaquette operator expression for a one-dimensional lattice in appendix

A.3. The difference here is that the four-linked site introduced jEK from the initial state and

j′EK from the final state. Now, jEK is the angular momentum resulting from the addition of

jE and jK . Both these links are outside the plaquette of interest, and thus the assumption

is made that jEK = j′EK since it should not change under the plaquette operator. We will
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further assume that mEK = nEK . This way, we can follow the same steps in appendix A.3,

we find that the plaquette operator on the unit plaquette on the cloverleaf lattice is

⟨final|□1|initial⟩ =√
(2jA + 1)(2JA + 1)

√
(2jB + 1)(2JB + 1)

√
(2jG + 1)(2JG + 1)

√
(2jH + 1)(2JH + 1)

(−1)jD+jJ+jEK+2(JA+JB−jG−jH)0 jG jA

1
2

JA JG


jD jH jA

1
2

JA JH


jJ jG jB

1
2

JB JG


jEK jH jB

1
2

JB JH

 (7.4)

This is similar to the result for the one-dimensional lattice. Thus, the initial and final states

are defined by the links that touch the sites on the plaquette, with the links on the plaquette

being necessarily different in the final state. The intuition gained from working with one-

dimensional lattices indicates that there would be six distinct types of states: a vacuum

state, a single excited state, an edge-adjacent double excited state, a corner-adjacent double

excited state, a triple excited state, and an all-excited state.

×1 ×4 ×4 ×2 ×4 ×1

Figure 29: The types of possible states on a cloverleaf lattice with jmax = 1. The numbers
at the bottom of the diagrams indicate the number of states symmetric under rotation of
the lattice.

However, this is not the end. The existence of jEK as a variable in the plaquette operator

means that there is hidden physics that is a result of the four-linked site. In other words,

what states the individual links are in is not sufficient to describe the lattice, and additional

information from the addition of angular momenta needs to be specified. Thus, in the future,

the goal is to carefully study and understand the full extent of the four-linked site and its

physical implications.
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8 Conclusion

In this thesis, we provided three contributions to the field of lattice gauge theories on quan-

tum computers.

In section 2, the topic of Abelian and non-Abelian gauge theories was introduced, after

which space-time was discretized, and so was the gauge theory. Lastly, the Kogut-Susskind

Hamiltonian formulation of lattice gauge theories was described.

Section 3, we use the angular momentum basis to write down a matrix form of the

Hamiltonian. The truncation is discussed, along with calculations for the chromoelectric

and chromomagnetic parts of the Hamiltonian.

Section 4 introduces two different types of quantum computers. Quantum annealers from

DWave were used to perform VQE calculations, vacuum expectation value calculations, and

restricted time evolution calculations. Then, gate-based quantum computers from IBM were

used to study ground-state calculations as well as time evolution calculations. The conclusion

is that time evolution calculations require extensive error correction for long-range results.

Section 5 discusses our publication that introduced a new method of error mitigation

specifically tailored to time evolution calculations. Self mitigation used the time evolution

circuit and evolved it half a step forward and then half a step backward. This approximates

the error accumulated during a physical time evolution run. This was used to study two-

plaquette and five-plaquette lattices. Propagation of excitation along the lattice was shown

as well at long timescales.

In section 6, a Pauli decomposition algorithm was developed that has the unique feature

of exploiting visual symmetries that can make it easy to decompose any 2N × 2N matrix

visually. This method was adopted into a python code.

In section 7, future prospects for study are discussed. The theoretical foundations were

developed for weaker coupling Hamiltonians via a truncation of jmax = 1. Another extension

is upgrading to two-dimensional lattices. The four-linked site is developed, from which the
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cloverleaf lattice state is constructed. Then, the unit plaquette operator on the cloverleaf is

derived, and future paths of study are discussed for this topic.
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A Appendix

A.1 The Wilson Line

The product ψ̄(y)ψ(x) is not gauge invariant. We wish to introduce a gauge covariant

field that transforms in such a way that can produce a gauge invariant bilinear product

ψ̄(y)W (y, x)ψ(x). In the absence of any gauge fields on the continuum, the translation

operator T̂ (a) acts on a field ψ(x) by displacing the field by a quantity a along a straight

line

T̂ (a)ψ(x) = e−a
µ∂µψ(x) =

∞∑
n=0

1

n!
(−aµ∂µ)n ψ(x) = ψ(x− a) (A.1)

In the presence of gauge fields, the covariant derivative can be used to redefine the translation

operator exp(aµDµ). Thus, we consider infinitesimal translations T̂ (dxµ) = 1−dxµDµ. This

modified translation contains two parts. The action of successive infinitesimal translations

will translate to a single translation by the integral of the exponent

∏
(1− dxµDµ) = exp

(∫
Γ

dxµDµ

)
(A.2)

where Λ is a curved path connecting two points. The first part is described by the regular

derivative, which describes a change in the coordinates and can thus be neglected. The

second part describes the resulting changes due to moving through the gauge field. This

part produces the angles needed to achieve the bilinear transformation needed for gauge

invariance

W (y, x) = exp

(
ig

∫ y

x

dzµAµ(z)

)
(A.3)

W (y, x) → e[ig
∫ y
x dzµAµ(z)]+iα(y)−iα(x) = eiα(y)W (y, x)e−iα(x) (A.4)
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Thus, we have finally arrived at a gauge covariant field that parallel transports matter fields

across the gauge potential. This is the Wilson line. For non-Abelian gauge transformations,

the path ordering operator is needed. A proof of the applicability of this derivation to

non-Abelian transformations can be found in [40].
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A.2 The Wigner 3j and 6j Symbols

This appendix is based on [Math˙Handbook]. The 3j symbols are defined as

⟨j1,m1; j2,m2|j3,−m3⟩ = (−1)j1−j2−m3
√

2j3 + 1

 j1 j2 j3

m1 m2 m3

 (A.5)

The angular momenta must follow the triangle conditions, and the projections must add to

zero

|j1 − j2| ≤ j3 ≤ j1 + j2 (A.6)

m1 +m2 +m3 = 0 (A.7)

The 3j columns of the 3j symbols are allowed to commute cyclically. A negative sign is gained

during anti-cyclic permutation or sign inversion of the angular momentum projections

 j1 j2 j3

m1 m2 m3

 = (−1)j+j1+j2

 j2 j1 j3

m2 m1 j3

 = (−1)j+j1+j2

 j1 j2 j3

−m1 −m2 −m3


(A.8)

If one column is composed of zeros, the result is

 j1 j2 0

m1 m2 0

 = δj1j2δm1 −m2

(−1)j1−m1

√
2j1 + 1

(A.9)
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The orthogonality relations are

(2j3 + 1)
∑
m1m2

 j1 j2 j3

m1 m2 m3


 j1 j2 j′3

m1 m2 m′3

 = δj3,j′3δm3,m′
3

(A.10)

∑
j3m3

(2j3 + 1)

 j1 j2 j3

m1 m2 m3


 j1 j2 j3

m′1 m′2 m3

 = δm1,m′
1
δm2,m′

2
(A.11)

∑
m1m2m3

 j1 j2 j3

m1 m2 m3


 j1 j2 j3

m1 m2 m3

 = 1 (A.12)

The 6j symbols are defined as

j1 j2 j3

l1 l2 l3

 =
∑
m1

∑
m2

∑
m3

∑
m′

1

∑
m′

2

∑
m′

3

(−1)(l1+m′
1)+(l2+m′

2)+(l3+m′
3)

×

 j1 j2 j3

m1 m2 m3


 j1 l2 l3

m1 m′2 −m′3


 l1 j2 l3

−m′1 m2 m′3


 l1 l2 j3

m′1 −m′2 m3

 (A.13)

The 6j symbol allows for the permutation of any two columns or the permutation of the

upper and lower numbers of two of the columns

j1 j2 j3

l1 l2 l3

 =

j2 j1 j3

l2 l1 l3

 =

j1 l2 l3

j1 j2 l3

 (A.14)

The orthogonality relation is

∑
j3

(2j3 + 1)(2l3 + 1)

j1 j2 j3

l1 l2 l3


j1 j2 j3

l1 l2 l′3

 = δl3,l′3 (A.15)
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A.3 Deriving the Plaquette Operator

1 2

34

G A E

H B F

C D

Figure 30: The general unit plaquette on a one dimensional lattice

□̂(p) =
∑

MNPQ

UMN(n, µ)UNP (n+ µ, ν)(U †)PQ(n+ ν, µ)(U †)QR(n, ν) (A.16)

where M,N,P,Q ∈ {−1/2,+1/2}∆=1. To express this in terms of the link operator, we will

first need to define the hermitian conjugate of the link operator [41]

(U †)mn = (Unm)
† (A.17)

(Umn)
† = (−1)m−nU−m−n (A.18)

The second equation is the only one that is relevant for our conventions. The first equation

is only useful if the link states are pointing in the direction of the link. For our purposes,

it was stated that the links states are only pointing in the positive directions. The state of

78



this lattice is:

|Λ⟩ = |jA, jB, jC , jD, jE, jF , jG, jH⟩ =∑
mA,m′

A

∑
mB ,m′

B

∑
mC ,m′

C

∑
mD,m′

D

∑
mE

∑
mF

∑
m′

G

∑
m′

H jA jG jCS

mA m′G mCS


 jA jE jD

m′A mE mD


 jB jF jD

m′B mF m′D


 jB jH jC

mB m′H m′C


|jA,mA,m

′
A⟩|jB,mB,m

′
B⟩|jC ,mC ,m

′
C⟩|jD,mD,m

′
D⟩|jE,mE⟩|jF ,mF ⟩|jG,m′G⟩|jH ,m′H⟩

The plaquette operator that includes sites 1, 2, 3, and 4 is:

Z1 =
∑

s1,s2,s3,s4

(−1)s1+s2+s3+s4UA
−s1,s2U

J
−s2,s3U

B
s4,−s3U

I
s1,−s4

Us,s′|j,m,m′⟩ =
∑
J

∑
M,M ′

√
(2j + 1)(2J + 1)(−1)1−2j+M+M ′

 j 1
2

J

m s −M


 j 1

2
J

m′ s′ −M ′

 |J,M,M ′⟩
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The plaquette operator is applied to the lattice to get:

Z1|Λ⟩ =∑
mA,m′

A

∑
mB ,m′

B

∑
mC ,m′

C

∑
mD,m′

D

∑
mE

∑
mF

∑
m′

G

∑
m′

H

∑
JA,JB ,JC ,JD

∑
s1,s2,s3,s4

∑
MA,M ′

A

∑
MB ,M ′

B

∑
MC ,M ′

C

∑
MD,M ′

D

(−1)s1+s2+s3+s4−2(jA+jB+jC+jD)+MA+M ′
A+MB+M ′

B+MC+M ′
C+MD+M ′

D√
(2jA + 1)(2JA + 1)

√
(2jB + 1)(2JB + 1)

√
(2jC + 1)(2JC + 1)

√
(2jD + 1)(2JD + 1) jA jG jC

mA m′G mC


 jA jE jD

m′A mE mD


 jB jF jD

m′B mF m′D


 jB jH jC

mB m′H m′C


 jA

1
2

JA

mA −s1 −MA


 jA

1
2

JA

m′A s2 −M ′
A


 jD

1
2

JD

mD −s2 −MD


 jD

1
2

JD

m′D s3 −M ′
D


 jB

1
2

JB

mB s4 −MB


 jB

1
2

JB

m′B −s3 −M ′
B


 jC

1
2

JC

mC s1 −MC


 jC

1
2

JC

m′C −s4 −M ′
C


|JA,MA,M

′
A⟩|JB,MB,M

′
B⟩|JC ,MC ,M

′
C⟩|JD,MD,M

′
D⟩

|jE,mE⟩|jF ,mF ⟩|jG,m′G⟩|jH ,m′H⟩

We will project the lattice state onto the plaquette operator and ket product. The states

are orthogonal, so ⟨j1,m1,m
′
1|j2,m2,m

′
2⟩ = δj1,j2δm1,m2δm′

1,m
′
2
.
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⟨Λ|Z1|Λ⟩ =
∑

JA,JB ,JI ,JJ√
(2jA + 1)(2JA + 1)

√
(2jB + 1)(2JB + 1)

√
(2jC + 1)(2JC + 1)

√
(2jD + 1)(2JD + 1)∑

s1,s2,s3,s4

∑
MA,M ′

A

∑
MB ,M ′

B

∑
MC ,M ′

C

∑
MD,M ′

D∑
mA,m′

A

∑
mB ,m′

B

∑
mC ,m′

C

∑
mD,m′

D

∑
mE

∑
mF

∑
m′

G

∑
m′

H

(−1)s1+s2+s3+s4−2(jA+jB+jC+jD)+MA+M ′
A+MB+M ′

B+MC+M ′
C+MD+M ′

D jA jG jC

mA m′G mC


 jA jE jD

m′A mE mD


 JA jG JC

MA m′G MC


 JA jE JD

M ′
A mE MD


 jB jF jD

m′B mF m′D


 jB jH jC

mB m′H m′C


 JB jF JD

M ′
B mF M ′

D


 JB jH JC

MB m′H M ′
C


 jA

1
2

JA

mA −s1 −MA


 jA

1
2

JA

m′A s2 −M ′
A


 jD

1
2

JD

mD −s2 −MD


 jD

1
2

JD

m′D s3 −M ′
D


 jB

1
2

JB

mB s4 −MB


 jB

1
2

JB

m′B −s3 −M ′
B


 jC

1
2

JC

mC s1 −MC


 jC

1
2

JC

m′C −s8 −M ′
C


We will first get rid of the squared 3j symbols using the following identities:

∑
m1,m2

 j1 j2 j3

m1 m2 m3


 j1 j2 j′3

m1 m2 m′3

 =
δj3,j′3δm3,m′

3

2j3 + 1

∑
m3

1 = 2j3 + 1
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This gives us the following:

⟨Λ|Z1|Λ⟩ =
∑

JA,JB ,JI ,JJ√
(2jA + 1)(2JA + 1)

√
(2jB + 1)(2JB + 1)

√
(2jC + 1)(2JC + 1)

√
(2jD + 1)(2JD + 1)∑

s1,s2,s3,s4

∑
MA,M ′

A

∑
MB ,M ′

B

∑
MC ,M ′

C

∑
MD,M ′

D

∑
mA,m′

A

∑
mB ,m′

B

∑
mEmF ,m′

G,m′
H

∑
mC ,m′

C

∑
mD,m′

D

(−1)s1+s2+s3+s4−2(jA+jB+jC+jD)+MA+M ′
A+MB+M ′

B+MC+M ′
C+MD+M ′

D jC
1
2

JC

mC s1 −MC


 jA

1
2

JA

mA −s1 −MA


 jA jG jC

mA m′G mC


 JA jG JC

MA m′G MC


 jA

1
2

JA

m′A s2 −M ′
A


 jD

1
2

JD

mD −s2 −MD


 jA jE jD

m′A mE mD


 JA jE JD

M ′
A mE MD


 jD

1
2

JD

m′D s3 −M ′
D


 jB

1
2

JB

m′B −s3 −M ′
B


 jB jF jD

m′B mF m′D


 JB jF JD

M ′
B mF M ′

D


 jB

1
2

JB

mB s4 −MB


 jC

1
2

JC

m′C −s4 −M ′
C


 jB jH jC

mB m′H m′C


 JB jH JC

MB m′H M ′
C



Each line of 3j symbols will be grouped into a 6j symbol. A lot of work went into manipulating

these in order to get

⟨Λ′|Z1|Λ⟩ =√
(2jA + 1)(2JA + 1)

√
(2jB + 1)(2JB + 1)

√
(2jC + 1)(2JC + 1)

√
(2jD + 1)(2JD + 1)

(−1)jE+jF+jG+jH+2(JA+JB−jC−jD)jG jC jA

1
2

JA JC


jE jD jA

1
2

JA JD


jF jD jB

1
2

JB JD


jH jC jB

1
2

JB JC


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A.4 Randomized CNOT Gates

The sixteen options for randomized compiling are

CXjk (A.19)

XkCXjkXk (A.20)

YkCXjkZjYk (A.21)

ZkCXjkZjZk (A.22)

XjCXjkXjXk (A.23)

XjXkCXjkXj (A.24)

XjYkCXjkYjZk (A.25)

XjZkCXjkYjYk (A.26)

YjCXjkYjXk (A.27)

YjXkCXjkYj (A.28)

YjYkCXjkXjZk (A.29)

YjZkCXjkXjYl (A.30)

ZjCXjkZj (A.31)

ZjXkCXjkZjXk (A.32)

ZjYkCXjkYk (A.33)

ZjZkCXjkZk (A.34)
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A.5 Pauli Decomposition Code

1 import numpy as np

2 import sympy

3

4 n = 3 # number of qubits

5 N = int (2**n) # number of elements in the matrix

6

7 sI,sX,sY,sZ=sympy.symbols("I,X,Y,Z", commutative=False)

8 j = complex (0,1)

9 I = np.array ([[1 ,0] ,[0 ,1]]) # Identity gate

10 X = np.array ([[0 ,1] ,[1 ,0]]) # Pauli X gate

11 Y = np.array ([[0,-j],[j,0]]) # Pauli Y gate

12 Z = np.array ([[1 ,0] ,[0 , -1]]) # Pauli Z gate

13 H = (Z+X)/np.sqrt (2) # Hadamard gate

14 Diagonal = np.array ([I,Z])

15 AntiDiagonal = np.array([X,Y])

16

17 V1 = np.array([I,X]) # identity and flip gates for 1 qubit

18 V = V1 # we start with 1 qubit , then we do n-1 tensor products

19 for i in range(n-1):

20 V = np.kron(V,V1)

21

22

23 def Hadamard_kron(n):

24 """ gives the n kronecker products of the Hadamard gate , as if to apply

the Hadamard gate to each qubit """

25 Hn = H

26 for i in range(n-1):

27 Hn = np.kron(Hn ,H)

28 return Hn

29

30

84



31 def binary_numbers(n):

32 """ creates a list of 2**n binary numbers """

33 N=2**n

34 binary_list = []

35 for i in range(N):

36 b = bin(i)[2:]

37 l = len(b)

38 b = str(0) * (n - l) + b

39 binary_list.append(b)

40

41 return binary_list

42

43

44 def symmetry_group_symbols(k):

45 """ the way it works:

46 if k = ’0’ : returns the array of diagonal gates respectively

47 if k = ’1’ : returns the array of anti -diagonal gates respectively

48 all symbolically """

49

50 if k == ’0’:

51 return np.array([sI ,sZ])

52 elif k == ’1’:

53 return np.array([sX ,sympy.I * sY])

54 else:

55 raise Exception(’insert string 0 or string 1’)

56

57

58 def symmetry_gates_symbols(bin_str):

59 # takes a binary string like ’010’ and creates the set of matrices

corresponding to all the gates for

60 # the symmetry defined by ’0’ for the diagonal group , and ’1’ for the

anti -diagonal group

61 # returns an array containing the aforementioned matrices
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62 group = symmetry_group_symbols(bin_str [0])

63 for i in bin_str [1:]:

64 group = np.kron(group ,symmetry_group_symbols(i))

65 return group

66

67 ## apply element wise multipication of the Hamiltonian by the products of

identity and flip

68 ## then multiply the result by the corresponding product to diagonalize

the matrix

69 ## then extract the diagonal elements from those diagonal matrices

70 ## this results in the ordered list of elements for each symmetry

71

72 def elements_dictionary(Hamiltonian):

73 # takes in a Hamiltonian matrix that must be 2**n x 2**n

74 # returns 2**n dictionary of values extracted from the matrix , ordered

in a certain way

75 # that ordering is needed to correctly combine with the hadamard gate

76 elements_dict = {}

77 bin_nums = binary_numbers(n)

78

79 for i in range(N):

80 elements_dict[bin_nums[i]] = np.diag( np.matmul(Hamiltonian ,V[i]))

81

82 return elements_dict

83

84

85 ### The final result:

86

87 def pauli_decomposition(Hamiltonian):

88 # takes 2**n x 2**n hamiltonian matrix

89 # returns a list of arrays containing the weighted sums of the gates

90 result = []

91 bin_nums = binary_numbers(n)
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92 elements_dict = elements_dictionary(Hamiltonian)

93 Hn = Hadamard_kron(n)

94 for i in bin_nums:

95 A = symmetry_gates_symbols(i)

96 B = elements_dict[i]. reshape ((N,1))

97 C = 2**(-n/2)*np.round(np.matmul(Hn,B),decimals =5)

98 D = np.matmul(A,C)

99 result.append(D)

100 return sympy.simplify(np.array(result))

101 # using the pauli_decomposition function , one can input a 2**n x 2**n

Hamiltonian

102 # the output will be the Hamiltonian in terms of pauli gates products

103 # input Hamiltonian MUST BE NUMPY ARRAY
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A.6 Two Plaquette Lattice states with jmax = 1

|111⟩

|221⟩ |122⟩

|212⟩ |232⟩

|331⟩ |133⟩

|322⟩ |223⟩

|313⟩ |333⟩

88



A.7 Four-linked Site Tests

The cloverleaf lattice contains a site with four links connected to it. This section contains

calculations

j1

j2

j3

j4

|0, 0⟩ =
∑

m1,m2,m12

(−1)−j1+j2+j12−m12
√

2j12 + 1|j1,m1⟩1|j2,m2⟩2|0, 0⟩3|0, 0⟩4 j1 j2 j12

m1 m2 −m12


0 0 j12

0 0 m12


=
∑

m1,m2

(−1)−j1+j2|j1,m1⟩1|j2,m2⟩2|0, 0⟩3|0, 0⟩4 j1 j2 0

m1 m2 0

 =
∑

m1,m2

(−1)−j1+j2|j1,m1⟩1|j2,m2⟩2|0, 0⟩3|0, 0⟩4

 j1 j2 0

m1 m2 0


=
∑
m1

|j1,m1⟩1|j1,−m1⟩2|0, 0⟩3|0, 0⟩4

 j1 j1 0

m1 −m1 0


=
∑
m1

(−1)j1−m1

√
2j1 + 1

|j1,m1⟩1|j1,−m1⟩2|0, 0⟩3|0, 0⟩4

This matches our 2-link state solution.

j1

j2

j3

j4
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|0, 0⟩ =
∑

m2,m3,m12

(−1)j2−j3+j12−m12
√

2j12 + 1|0, 0⟩1|j2,m2⟩2|j3,m3⟩3|0, 0⟩40 j2 j12

0 m2 −m12


 j3 0 j12

m3 0 m12


=

∑
m2,m3,m12

(−1)+j2−j3+j12−m12
√

2j12 + 1|0, 0⟩1|j2,m2⟩2|j3,m3⟩3|0, 0⟩4 j2 j12 0

m2 −m12 0


 j12 j3 0

m12 m3 0



There are two ways to go from here. Either we choose j12 = j2 or j12 = j3. I will first explore

the j2 option:

|0, 0⟩ =
∑
m2

(−1)+j2−m2
√

2j2 + 1|0, 0⟩1|j2,m2⟩2|j2,−m2⟩3|0, 0⟩4 j2 j2 0

m2 −m2 0


 j2 j2 0

m2 −m2 0


=
∑
m2

(−1)+j2−m2
√

2j2 + 1|0, 0⟩1|j2,m2⟩2|j2,−m2⟩3|0, 0⟩4
(−1)2j2−2m2

2j2 + 1

=
∑
m2

(−1)j2−3m2

√
2j2 + 1

|0, 0⟩1|j2,m2⟩2|j2,−m2⟩3|0, 0⟩4

=
∑
m2

(−1)j2+m2

√
2j2 + 1

|0, 0⟩1|j2,m2⟩2|j2,−m2⟩3|0, 0⟩4
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The other option is to choose j3:

|0, 0⟩ =
∑
m3

(−1)j3−m3
√

2j3 + 1|0, 0⟩1|j3,−m3⟩2|j3,m3⟩3|0, 0⟩4 j3 j3 0

−m3 m3 0


 j3 j3 0

−m3 m3 0


=
∑
m3

(−1)+j3+m3
√

2j3 + 1|0, 0⟩1|j3,−m3⟩2|j3,−m3⟩3|0, 0⟩4
(−1)2j3−2m3

2j3 + 1

=
∑
m3

(−1)j3−m3

√
2j3 + 1

|0, 0⟩1|j3,−m3⟩2|j3,m3⟩3|0, 0⟩4

These two are essentially equal since we sum over all m values.

j1

j2

j3

j4
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|0, 0⟩ =
∑

m1,m2,m3,m12

(−1)−j1+j2−j3+j12−m12
√

2j12 + 1|j1,m1⟩1|j2,m2⟩2|j3,m3⟩3|0, 0⟩4 j1 j2 j12

m1 m2 −m12


 j3 0 j12

m3 0 m12


=

∑
m1,m2,m3

(−1)−j1+j2+m3
√
2j3 + 1|j1,m1⟩1|j2,m2⟩2|j3,m3⟩3|0, 0⟩4 j1 j2 j3

m1 m2 m3


 j3 0 j3

m3 0 −m3


=

∑
m1,m2,m3

(−1)−j1+j2+j3|j1,m1⟩1|j2,m2⟩2|j3,m3⟩3|0, 0⟩4

 j1 j2 j3

m1 m2 m3



This solution matches our result from before.

j1

j2

j3

j4
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|0, 0⟩ =
∑

m2,m3,m4,m12

(−1)j2−j3+j4+j12−m12
√

2j12 + 1|0, 0⟩1|j2,m2⟩2|j3,m3⟩3|j4,m4⟩40 j2 j12

0 m2 −m12


 j3 j4 j12

m3 m4 m12


=

∑
m2,m3,m4

(−1)2j2−j3+j4−m2
√

2j2 + 1|0, 0⟩1|j2,m2⟩2|j3,m3⟩3|j4,m4⟩40 j2 j2

0 m2 −m2


 j3 j4 j2

m3 m4 m2


=

∑
m2,m3,m4

(−1)2j2−j3+j4−m2
√

2j2 + 1|0, 0⟩1|j2,m2⟩2|j3,m3⟩3|j4,m4⟩4

(−1)j2−m2

√
2j2 + 1

 j3 j4 j2

m3 m4 m2


=

∑
m2,m3,m4

(−1)3j2−j3+j4−2m2|0, 0⟩1|j2,m2⟩2|j3,m3⟩3|j4,m4⟩4

 j3 j4 j2

m3 m4 m2


There is the problem of the extra factor of (−1)2j2−2m2 . This will show up a lot in the

future, so it will be useful to derive a new identity based on what we see here. Since

j = 0, 1/2, 1, 3/2, ..., and m = −j,−j + 1, ..., j − 1, j, we can say that m = −j + k, where

k = 0, 1, 2, ..., 2j. This allows us to write j − m = 2j − k = 2j, 2j − 1, ..., 0. This works

out to always giving us integers since j is half integer. This means that (−1)2j2−2m2 = 1.

Therefore, our final answer should match the results from section 1.3:

|0, 0⟩ =
∑

m2,m3,m4

(−1)j2−j3+j4|0, 0⟩1|j2,m2⟩2|j3,m3⟩3|j4,m4⟩4

 j3 j4 j2

m3 m4 m2


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